
DEVELOPERS
R E C O M M E N D E D P R A C T I C E S G U I D E F O R

SECURING THE
SOFTWARE SUPPLY CHAIN

1

Enduring Security Framework

August 2022

Securing the Software Supply Chain: Recommended Practices for Developers ii

Executive Summary
Cyberattacks are conducted via cyberspace and target an enterprise’s use of cyberspace for the
purpose of disrupting, disabling, destroying, or maliciously controlling a computing environment or
infrastructure; or destroying the integrity of the data or stealing controlled information.1

Recent cyberattacks such as those executed against SolarWinds and its customers, and exploits that
take advantage of vulnerabilities such as Log4j, highlight weaknesses within software supply
chains, an issue which spans both commercial and open source software and impacts both private
and Government enterprises. Accordingly, there is an increased need for software supply chain
security awareness and cognizance regarding the potential for software supply chains to be
weaponized by nation state adversaries using similar tactics, techniques, and procedures (TTPs).

In response, the White House released an Executive Order on Improving the Nation’s Cybersecurity
(EO 14028). EO 14028 establishes new requirements to secure the federal government’s software
supply chain. These requirements involve systematic reviews, process improvements, and security
standards for both software suppliers and developers, in addition to customers who acquire
software for the Federal Government.

Similarly, the Enduring Security Framework2 (ESF) Software Supply Chain Working Panel has
established this guidance to serve as a compendium of suggested practices for developers,
suppliers, and customer stakeholders to help ensure a more secure software supply chain. This
guidance is organized into a three part series: Part 1 of the series focuses on software developers;
Part 2 focuses on software suppliers; and Part 3 focuses on software customers.

Customers (acquiring organizations) may use this guidance as a basis of describing, assessing, and
measuring security practices relative to the software lifecycle. Additionally, suggested practices
listed herein may be applied across the acquisition, deployment, and operational phases of a
software supply chain.

The software supplier (vendor) is responsible for liaising between the customer and software
developer. Accordingly, vendor responsibilities include ensuring the integrity and security of
software via contractual agreements, software releases and updates, notifications, and mitigations
of vulnerabilities. This guidance contains recommended best practices and standards to aid
suppliers in these tasks.

This document will provide guidance in line with industry best practices and principles which
software developers are strongly encouraged to reference. These principles include security
requirements planning, designing software architecture from a security perspective, adding
security features, and maintaining the security of software and the underlying infrastructure (e.g.,
environments, source code review, testing).

1 Committee on National Security Systems (CNSS)

2 The ESF is a cross-sector working group that operates under the auspices of Critical Infrastructure Partnership
Advisory Council (CIPAC) to address threats and risks to the security and stability of U.S. national security systems.
It is comprised of experts from the U.S. government as well as representatives from the Information Technology,
Communications, and the Defense Industrial Base sectors. The ESF is charged with bringing together
representatives from private and public sectors to work on intelligence-driven, shared cybersecurity challenges.

https://www.cnss.gov/cnss/

Securing the Software Supply Chain: Recommended Practices for Developers iii

DISCLAIMER
DISCLAIMER OF ENDORSEMENT

This document was written for general informational purposes only. It is intended to apply to a
variety of factual circumstances and industry stakeholder, and the information provided herein is
advisory in nature. The guidance in this document is provided “as is.” Once published, the
information within may not constitute the most up-to-date guidance or technical information.
Accordingly, the document does not, and is not intended to, constitute compliance or legal advice.
Readers should confer with their respective advisors and subject matter experts to obtain advice
based on their individual circumstances. In no event shall the United States Government be liable
for any damages arising in any way out of the use of or reliance on this guidance.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or
favoring by the United States Government, and this guidance shall not be used for advertising or
product endorsement purposes. All trademarks are the property of their respective owners.

PURPOSE

NSA, ODNI, and CISA developed this document in furtherance of their respective cybersecurity
missions, including their responsibilities to develop and issue cybersecurity recommendations and
mitigations. This information may be shared broadly to reach all appropriate stakeholders.

CONTACT

Client Requirements / Inquiries: Enduring Security Framework nsaesf@cyber.nsa.gov

Media Inquiries / Press Desk:

• NSA Media Relations, 443-634-0721, MediaRelations@nsa.gov
• CISA Media Relations, 703-235-2010, CISAMedia@cisa.dhs.gov
• ODNI Media Relations, dni-media@dni.gov

mailto:nsaesf@cyber.nsa.gov
mailto:MediaRelations@nsa.gov
mailto:CISAMedia@cisa.dhs.gov
mailto:dni-media@dni.gov

Securing the Software Supply Chain: Recommended Practices for Developers iv

Table of Contents
Executive Summary .. ii

1 Introduction ... 1

1.1 Background ... 1
1.2 Document overview .. 2

2 Developer 3

2.1 Secure product criteria and management ... 4
2.2 Develop Secure Code .. 11

 Modification or Exploitation of Source Code by Insiders .. 12
 Open Source Management Practices .. 19
 Secure Development Practices .. 20
 Code Integration ... 22
 Defect/Vulnerability Customer Reported Issue .. 22
 External Development Extensions .. 23

2.3 Verify Third-Party Components ... 24
 Third-Party Binaries.. 24
 Selections and Integration .. 25
 Obtain Components from a Known and Trusted Supplier .. 25
 Component Maintenance .. 26
 Software Bill of Materials (SBOM) ... 26

2.4 Harden the Build Environment .. 27
 Build Chain Exploits .. 28
 Exploited Signing Server ... 33

2.5 Deliver Code ... 34
 Final Package Validation .. 34
 Potential Tactics to Compromise the Software Packages and Updates 35
 Compromises of the Distribution System ... 35

3 Appendices 37

3.1 Appendix A: Crosswalk between Scenarios and SSDF .. 37
3.2 Appendix B: Dependencies ... 39
3.3 Appendix C: Supply Chain Levels for Software Artifacts (SLSA) .. 40
3.4 Appendix D: Artifacts and Checklist ... 42
3.5 Appendix E: Informative References ... 55
3.6 Appendix F: Acronyms Used in This Document .. 59

Securing the Software Supply Chain: Recommended Practices for Developers 1

1 Introduction
Unmitigated vulnerabilities in the software supply chain pose a significant risk to organizations.
This paper presents actionable recommendations for a software supply chain’s development,
production and distribution, and management processes, to increase the resiliency of these
processes against compromise.

All organizations have a responsibility to establish software supply chain security practices to
mitigate risks, but the organization’s role in the software supply chain lifecycle determines the
shape and scope of this responsibility.

Because the considerations for securing the software supply chain vary based on the role an
organization plays in the supply chain, this series presents recommendations geared toward these
important roles, namely, developers, suppliers, and customers (or the organization acquiring a
software product).

This guidance is organized into a three-part series and will be released coinciding with the software
supply chain lifecycle. This is Part 1 of the series which focuses on software developers. Part 2 of
the series focuses on the software supplier and Part 3 of the series focuses on the software
customer. This series will help foster communication between these three different roles and
among cybersecurity professionals that may facilitate increased resiliency and security in the
software supply chain process.

In this series, terms such as risk, threat, exploit, and vulnerability are based on descriptions defined
in Committee on National Security Systems Glossary (CNSSI 4009).3

1.1 Background

Historically, software supply chain compromises largely targeted commonly known vulnerabilities
organizations that were left unpatched. While threat actors still use this tactic to compromise
unpatched systems, a new, less conspicuous method of compromise also threatens software supply
chains and undermines trust in the patching systems themselves that are critical to guarding
against legacy compromises. Rather than waiting for public vulnerability disclosures, threat actors
proactively inject malicious code into products that are then legitimately distributed downstream
through the global supply chain. Over the last few years, these next-generation software supply
chain compromises have significantly increased for both open source and commercial software
products.

Technology consumers generally manage software downloads and broader, more traditional
software supply chain activities separately. Considering both the upstream and downstream phases
of software as a component of supply chain risk management may help to identify problems and
provide a better way forward in terms of integrating activities to achieve systemic security.
However, there are also some differences to account for in the case of software products. A
traditional software supply chain cycle is from point of origin to point of consumption and generally
enables a customer to return a malfunctioning product and confine any impact. In contrast, if a

3 CNSSI-4009.pdf

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf

Securing the Software Supply Chain: Recommended Practices for Developers 2

software package is injected with malicious code which proliferates to multiple consumers; the
scale may be more difficult to confine and may cause an exponentially greater impact.

Common methods of compromise used against software supply chains include exploitation of
software design flaws, incorporation of vulnerable third-party components into a software product,
infiltration of the supplier’s network with malicious code prior to the final software product being
delivered, and injection of malicious software that is then deployed by the customer.

Stakeholders must seek to mitigate security concerns specific to their area of responsibility.
However, other concerns may require a mitigation approach that dictates a dependency on another
stakeholder or a shared responsibility by multiple stakeholders. Dependencies that are
inadequately communicated or addressed may lead to vulnerabilities and the potential for
compromise.

Areas where these types of vulnerabilities may exist include:

• Undocumented features or risky functionality,
• Unknown and/or revisions to contractual, functionality or security assumptions between

evaluation and deployment,
• Supplier’s change of ownership and/or of geo-location, and
• Poor supplier enterprise or development hygiene.

1.2 Document overview

This document contains the following additional sections and appendices:

Section 2 recommends principles Developers may use to help secure the software development
lifecycle (SDLC), an important process used to protect the software supply pipeline.

Section 3 is a collection of appendices supplementing the preceding sections:

Appendix A: Crosswalk Between the NIST SP800-218; Mitigating the Risk of Software
Vulnerabilities by Adopting a Secure Software Development Framework (SSDF)4 and Use Cases
described herein.

Appendix B: Dependencies

Appendix C: Supply-Chain Levels for Software Artifacts (SLSA)5

Appendix D: Recommended Artifacts and Checklist

Appendix E: Informative References

Appendix F: Acronyms

Each section contains examples of threat scenarios and recommended mitigations. Threat scenarios
explain how processes that compose a given phase of the software development lifecycle (SDLC)
relate to common vulnerabilities that could be exploited. The recommended mitigations present
controls and mitigations that could reduce the impact of the threats.

4 Draft NIST SP 800-218, Secure Software Development Framework (SSDF) Version 1.1: Recommendations for
Mitigating the Risk of Software Vulnerabilities
5 GitHub - slsa-framework/slsa: Supply-chain Levels for Software Artifacts

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218-draft.pdf
https://github.com/slsa-framework/slsa#:%7E:text=SLSA%20%28%22salsa%22%29%20is%20Supply-chain%20Levels%20for%20Software%20Artifacts,levels%20of%20software%20security%20and%20supply%20chain%20integrity.

Securing the Software Supply Chain: Recommended Practices for Developers 3

2 Developer
The secure software development lifecycle (Secure SDLC) is an important process used to secure
the software supply chain. An example of the individual group activities and the relationships
between the customers, developers and suppliers are represented in the figure below:

Figure 1: Software Supply Chain Group Relationships and Activities

The process starts when the supplier’s program management team collects feature requests from
their customer’s user-base, technical base, and marketing teams. These features include both
operational and security enhancements to the product and are used to generate use cases that are
then formulated into prioritized requirements. The supplier and developer management teams
work together to define the requirements that are used to produce the architecture and high-level
design which a development team uses to produce a product. In addition, the combined
management team defines the product development security policies and practices that are used
when producing the product. The process defines how development activities will be structured
and what artifacts will be collected for verification and validation. The following is a short list of
examples of the Secure SDLC process and practices:

• NIST “Secure Software Development Framework,”6
• Carnegie Mellon University “Secure Software Development Lifecycle Processes,”7
• ACM “The Protection of Information in Computer Systems,”8
• OWASP “Secure Development Lifecycle,”9

6 NIST Secure Software Development Framework
7 Carnegie Mellon University Secure Software Development Lifecycle Processes
8 https://web.mit.edu/Saltzer/www/publications/protection/
9 OWASP Secure Software Development Lifecycle (SSDLC)

https://csrc.nist.gov/Projects/ssdf
https://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_297287.pdf
https://owasp.org/www-pdf-archive/Jim_Manico_(Hamburg)_-_Securiing_the_SDLC.pdf
https://csrc.nist.gov/Projects/ssdf
https://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_297287.pdf
https://web.mit.edu/Saltzer/www/publications/protection/
https://owasp.org/www-pdf-archive/Jim_Manico_(Hamburg)_-_Securiing_the_SDLC.pdf

Securing the Software Supply Chain: Recommended Practices for Developers 4

• “Cisco Secure Development Lifecycle,”10
• Synopsys “Secure Software Development Lifecycle Phases,”11
• US-Cert “Secure Software Development Lifecycle Processes,”12
• OpenSSF “Secure Software Development Fundamentals Courses.”13

In addition to the high-level development documents produced, the management team defines the
security practices and procedures used for secure software development such as:

• Secure coding practices,
• The code review process,
• Software repository procedures, testing, and vulnerability assessments,
• Procedures for securely building and distributing the product.

Once released, a product is monitored for defects through a support channel, available to product
customers, and developers can securely provide updates and upgrades to address reported issues.
For each operation within the Secure SDLC, artifacts are created which attest to the adherence to
the processes required and outlined. These artifacts are outline in “Appendix D: Artifacts and
Checklist.”

2.1 Secure product criteria and management

As described in Section 2. 2 Develop secure code through Section 2.5 Deliver code, the
developer use cases are dependent on the procedures and policies defined within a Secure SDLC
process. Development team managers and members adapt and customize this process to meet their
specific needs. The Secure SDLC identifies the exact procedures and policies that are used to ensure
that secure development practices are implemented and artifacts are created to attest to the
adherence of the adopted Secure SDLC plan with respect to the implementation and distribution of
the product.

A development team is comprised of experts in development, quality assurance (QA), build
engineering, and security. The product management team is comprised of individuals with product
leadership experience, and includes product and development managers, security architects, and
company-level quality control assessors, all contributing to product release oversight.

The top-level organizational management team must ensure secure development policies and
procedures are supported within the budget and schedule and are implemented and adhered to by
the assigned development teams. The figure below outlines a secure development process and
lifecycle.

10 Cisco Secure Development Lifecycle
11 Synopsys Secure Software Development Lifecycle Phases
12 US-Cert Secure Software Development Lifecycle Processes
13 Secure Software Development Fundamentals Courses

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.synopsys.com/blogs/software-security/secure-software-development-life-cycle-journey/?utm_source=google&utm_medium=cpc&utm_term=&utm_campaign=G_S_Black_Duck_Brand_tCPA&cmp=ps-SIG-G_S_Black_Duck_Brand_tCPA&gclid=EAIaIQobChMIo9D00pa-9AIVAryGCh0lkAGwEAMYAiAAEgJS-_D_BwE
https://us-cert.cisa.gov/bsi/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes
https://openssf.org/training/courses/
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.synopsys.com/blogs/software-security/secure-software-development-life-cycle-journey/?utm_source=google&utm_medium=cpc&utm_term=&utm_campaign=G_S_Black_Duck_Brand_tCPA&cmp=ps-SIG-G_S_Black_Duck_Brand_tCPA&gclid=EAIaIQobChMIo9D00pa-9AIVAryGCh0lkAGwEAMYAiAAEgJS-_D_BwE
https://us-cert.cisa.gov/bsi/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes
https://openssf.org/training/courses/

Securing the Software Supply Chain: Recommended Practices for Developers 5

Figure 2: Secure Software Development Process (DoD Chief Information Officer, 2021)14

The example process illustrated above ensures that secure, resilient products are developed. It also
illustrates that the development process can be measured using well-defined, tangible artifacts that
may be collected, evaluated, and recorded to validate the use of the documented secure principles
and guidelines outlined by the product management team.

Threat scenarios
When developing and delivering a product, the following common threats may occur during the
software development lifecycle:

1. Adversary intentionally injecting malicious code or a developer unintentionally including
vulnerable code within a product.

2. Incorporating vulnerable third-party source code or binaries within a product either
knowingly or unknowingly.

3. Exploiting weaknesses within the build process used to inject malicious software within a
component of a product.

4. Modifying a product within the delivery mechanism, resulting in injection of malicious
software within the original package, update, or upgrade bundle deployed by the customer.

For more information on each threat scenario refer to Section 2.2 Develop Secure Code through
Section 2.5 Deliver Code. These sections contain more details for the threat scenarios and define
strategies for each of the types of incidents or compromises that can occur during the development
and release of a product.

14 DoD CIO Enterprise DevSecOps Fundamentals, Version 2.0, March 2021

https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecOpsFundamentals.pdf

Securing the Software Supply Chain: Recommended Practices for Developers 6

Recommended mitigations
The supplier and developer management team should set policies that ensure development
organizations have security-focused principles and guidelines in place to:

• Generate architecture and design documents,

• Gather a trained, qualified, and trustworthy development team,

• Create threat models of the software product,

• Define and implement security test plans,

• Define release criteria and evaluate the product against it,

• Establish product support and vulnerability handling policies and procedures,

• Assess the developers’ capabilities and understanding of the secure development process
and assign training,

• Document and publish the security procedures and processes for each software release.

Architecture and design documents
Architecture and design documents should be based on customer and marketing requirements that
have been gathered, correlated, and prioritized. Specific security-related assessments and
reliability criteria derived from operational customer environments and known product risk
assessments should be included in the requirements. The requirements should take into account
security criteria for specific industries such as NIAP, FedRAMP, HIPAA, or FIPS-140 and that are
based on Zero Trust principles. Architecture and design documents should address all
requirements defined and describe the components, interfaces used, and functionality needed to
implement the product in various levels of detail based on the needs of the development group.

The development team
Members of the development team should be trained and qualified to perform the security
development tasks outlined in the architecture and high-level design document.

Threat models
Impartial, senior-level security architects and developers should create threat models of the
product under development. These personnel should be familiar with identifying trust boundaries,
relationships, and inflection points where data or systems might be compromised. Threat models
should be developed for all critical software components, as well as for all critical systems in the
build pipeline.

All code and systems involved within the build pipeline should be reviewed on an ongoing basis
against the associated threat model. Changes should be made as needed to ensure neither the code
nor systems have structural vulnerabilities. Threat models should further be:

• Updated as functionality changes, for major releases, or minimally at least annually,

• Made available to other internal engineering teams that are picking up or operating any
associated software components or systems.

Securing the Software Supply Chain: Recommended Practices for Developers 7

Management policies should also specify that developers assigned to create the threat models use
component-level designs for completeness. Models should be reviewed and approved by at least
two independent engineers on the team and evolve as architectural and design changes occur. The
threat model process needs to be adaptive when organizational policies and procedures change.

Security test plans

An impartial Quality Assurance (QA) individual, team, or an impartial entity with QA expertise
should define and implement security test plans.

A QA team is comprised of automation and build expert(s) who leverage modern techniques
required to apply secure testing strategies for all components defined within the architecture and
high-level design documents.

Developers should perform unit- and system-level security tests that are validated by QA. This
allows QA to perform further security testing to cover a broader and deeper set of tests with less
duplication of effort. The strategies defined within the test plan should include:

• Code coverage, which is integrated into each build and tracked as part of implementing the
test and development plan,

• Baseline levels of code coverage should ideally be achieved on all code that is checked in,
before new code is committed,

• Policies should be defined to maximize code coverage and address the SSDF tasks defined in
PO.2.1, PW.5.2 and PW.8.2 of the National Institute of Standards and Technology (NIST)
Special Publication (SP) 800-218 Standard,

• Test coverage should identify the percentage of code paths the test plan covers as well as
the types of test tools used.

When release readiness criteria are defined, they may include requirements for the following types
of tests:

• Static and dynamic application security testing (SAST and DAST) should be performed on all
code prior to check-in and for each release using a standard set of company-approved tools.
Results of testing should be documented, and all discovered vulnerabilities should be
analyzed and addressed,

• Software Composition Analysis should be performed on all third-party software to include
review against the MITRE Common Vulnerabilities and Exposures (CVE) and the NIST
software security vulnerability bulletins. (NIST SSDF PW.3.2),

• Fuzzing should be performed on all software components during development to ensure
that they exhibit expected behavior with different inputs. Results should be documented,
and any anomalies or vulnerabilities should be addressed,

• Where possible, plan to employ memory-safe programming languages to mitigate a large
portion of the most common exploitable vulnerabilities,

• For many types of software products including security software and general-purpose
operating systems, many government customers may require independent lab testing

Securing the Software Supply Chain: Recommended Practices for Developers 8

against a National Information Assurance Partnership (NIAP) Protection Profile (NIAP
CCEVS),15

• Verification should be done to ensure that applicable anti-exploitation features are
leveraged in development depending on the platform on which the software will operate.
Such features complicate or prevent exploitation of many classes of unforeseen
vulnerabilities. The Application Software Protection Profile v1.416 includes requirements
for “Anti-Exploitation Capabilities” under FPT AEX Ext.1 and is available at niap-ccevs.org
under “NIAP-Approved pps”,

• Penetration testing should be done as routinely as possible, but not less than once per year,
depending on potential risk (e.g., cloud products should be pen-tested more frequently),

• Use a testing approach that considers only externally visible behavior of the product
without knowledge of the code, nor the inner working of the software to assure that
repaired vulnerabilities are truly fixed against all possible compromises.

The results of all security testing should be documented, security defects should be fixed, and a
synopsis of the test results should be made available to customers. This synopsis should include any
Common Vulnerability Scoring System (CVSS) scores. The QA results should be used as one of the
measurements of a product’s readiness for release.

Release criteria
The management team should establish, manage, and apply release criteria and evaluate whether
the product satisfies the criteria. The criteria should include:

• No unacceptable security vulnerabilities found when performing all required threat
modeling and testing are pending,

• Cybersecurity hygiene of the development environment was maintained during
development, as described in Section 2. Developer, and the relevant artifacts were
collected and securely stored for future reference,

• Products were developed following the secure software development practices and tasks
set by the organization, and relevant artifacts were collected and securely stored for future
references. Examples of the artifacts are the design and architecture documents (ex. system
and software component data flow, UML model), the threat model, verification and test
results, revision history of software design, all the components, and a list of open issues and
known vulnerabilities,

• Produce, correlate, and validate a Software Bill of Materials (SBOM). Contents of the SBOM
are described in Section 2.3.5 Threat scenario: software bill of materials (SBOM) and
the National Telecommunications and Information Administration (NTIA’s) The Minimum
Elements for a Software Bill of Materials (SBOM),17

• The product management team ensures that all released binaries are digitally signed with a
key associated with a root certificate from a trusted certificate authority,

15 https://www.niap-ccevs.org/Profile/PP.cfm
16 https://www.niap-ccevs.org/Profile/info.cfm?ppid=462&id-462
17 https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

https://www.niap-ccevs.org/Profile/PP.cfm
https://www.niap-ccevs.org/Profile/info.cfm?ppid=462&id-462
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

Securing the Software Supply Chain: Recommended Practices for Developers 9

• All released software meets company-wide cryptographic standards. These standards
should be based on relevant industry best practices or (for federal agencies) applicable
government standards such as NIST SP 800-175B; Guideline for Using Cryptographic
Standards in the Federal Government: Cryptographic Mechanisms and be enforced with an
appropriately defined responsible, accountable, consulted, and informed (RACI) matrix,

• All shipping of open source meets company-wide standards including vulnerability
assessment of the source and this information is made available to development groups.
Ship the latest stable versions of open source, removing or providing a support plan for any
open source software that has reached end of life, and ensuring licensing, if any, is fully
understood and compliant with the open source usage policy.

Product support and vulnerability handling policies
The management team defines the product support and vulnerability handling policies and
procedures as they address the entire lifecycle of the product from conception to end of life (EOL).

• Using a vulnerability submission system, all known security issues and vulnerabilities
should be collected and tracked as product defects in the organization’s defect tracking tool.
This includes common weakness enumeration (CWE) and CVSS scores, specific impacts on
the component, and any other relevant supporting data. Vulnerability information should
only be stored in access-controlled pages in the defect tracking system, given the potential
sensitivity,

• The organization should have a central company-wide The Product Security Incident
Response Team (PSIRT) that supports a public-facing reporting tool (for example a web
page) that makes it easy for external researchers to report vulnerabilities in the
organization’s products. The PSIRT team should work with external researchers to
acknowledge and gather information on any reported vulnerabilities, and to ensure that any
reported vulnerability is fixed. Organizations should practice responsible disclosure on all
vulnerabilities,

• Updates to all in-field software, including patches and product updates should be delivered
using a secure protocol like HTTPS/TLS. The in-field software products should perform
integrity or signature checks on all delivered files to ensure the files are valid. This applies
to delivering updates to both on-premise and in-the-cloud software products.

Assessment and training
The management team defines policies and procedures used to assess developers’ capabilities and
understanding of the secure development process. These policies should address:

• Who requires training,
• How frequently they must train,
• Who is authorized to conduct the training,
• The training topics,
• How to evaluate the trainees ability to meet the standards established by the training.

Securing the Software Supply Chain: Recommended Practices for Developers 10

Security training for the development team is ideally conducted by a centralized, expert security
team who can help product teams grow their expertise in secure development. It also provides
engineers a point of contact when they have specific security questions.
The training should include:

• Secure software development and design,
• Secure code reviews,
• Software verification testing,
• Use of security and vulnerability assessment tools during development.

Developers should take regular and relevant security training, both for common topics and those
deemed necessary for the individual role. Successful completion should be tracked for all engineers.
Organizations should ensure individuals complete security training commensurate with the impact
level of the system and software to which the individuals are assigned.

Engineers within the development organization should also be required to take annual training of
organization-approved cybersecurity best practices. An example of this training would include how
to spot suspicious emails and the point of contact for reporting a suspected breach. This training
should include a test at the end of the course to ensure understanding of the material. See also NIST
SP 800-50, “Building an Information Technology Security Awareness and Training Program,” for
more information on how training should be conducted and measured.

Individuals within a development team should be evaluated periodically, at least annually, to
measure their knowledge and compliance against product security goals. At a minimum, this should
be a representative survey, displaying a team’s or individual’s awareness of required corporate
training, and any artifacts that attest to compliance with policy. Gaps should be examined to
determine and address root causes, e.g., if there is a lack of usable tools to implement organizational
security expectations.

Security procedures and processes
The management team documents the security procedures and processes. These documents should
be reviewed, updated, and to the extent possible, made publicly available for each software release.
This must be done without divulging sensitive security information about the product. These are
living documents, which are reviewed both when questions arise during the development of the
product and after the product has been released in a formal “after-actions” report or “lessons-
learned” session with all members involved in the secure development process.

Alignment with SSDF
The mitigations provided in this section align with the activities found in NIST SP 800-218, “Secure
Software Development Framework (SSDF) Version 1.1: Recommendations for Mitigating the Risk of
Software Vulnerabilities.” The following table aligns tangible development activities with the SSDF
recommendations:

Securing the Software Supply Chain: Recommended Practices for Developers 11

Table 1: Mitigation alignment with SSDF

Mitigation Activity in SSDF v.1
Architecture and design
documents

 PO.1.1, PO.4.1, PO.4.2, PW.4.3,
PW.3.1

Development team trained in
secure development

 PO.2.2, PW.1.1, PS.1.1, PS.3.1,
PW.4.2, PW.4.3, PW.5.1, PW.5.2,
PW.6.1, PW.6.2, PW.7.1, PW.7.2

Threat models PW.1.1
Security test plans PO.3.1, PO.3.2, PO.3.3, PO.4.1,

PO.4.2, PW.4.3, PW.5.1, PW.5.2,
PW.6.1, PW.6.2, PW.7.1, PW.7.2,
PW.7.2, PW.8.1, PW.8.2, PW.9.1,
PW.9.2, RV.1.1, RV.1.2, RV.3.3,
RV.3.4

Document results with CVSS
scores; verify security defects
are fixed

RV.3.2, RV.3.4, PS.2.1, PS.2.2

Product release Deliver testing and threat
model documentation,
vulnerability reports, and
SBOM.

PS.2.1, PS.2.2, PW.2.1, RV.1.2

Support channel to report
flaws.

RV.1.1

Digitally sign shipping
binaries with key and trusted
root certificate

PS.2.1

Product support Track known security
issues/vulnerabilities

RV.1.1, RV.1.2, RV.1.3

Incident response with public-
facing reporting tools, fix
reported items and disclose

RV.1.3, RV.2.1, RV.2.2, RV3.1,
RV.3.3

Update in-field products PS.3.2
Assessment and training of
developers

 RV.3.4

Security procedures and
processes for each release

 RV.2.2

Cryptographic and third-party
software integration standards

 PW.3.2, PW.4.1

Note SSDF Activity Codes: PO – Prepare Organization; PW - Produce Well-Secured
Software; PS – Protect Software; and RV – Respond to Vulnerabilities.

2.2 Develop Secure Code

Source code development involves reviewing the approved product requirements and design
documents and implementing all required features and functionality. This should be done
according to the policy and procedures for writing source code and in a specified computer
programming language (e.g., C++, Java, Python, RUST, etc.) as specified in SSDF PO.1.1, PO.2.2, and
PW.1 of NIST SP 800-218.

Care should be taken when there is an opportunity to select the programing language to be used for
development, considering whether the language is statically or dynamically typed, and what

Securing the Software Supply Chain: Recommended Practices for Developers 12

protections are inherently built into it to mitigate vulnerabilities and provide memory and thread
safe operations. Secure software development follows the principles outlined by Saltzer and
Schroeder in “The Protection of Information in Computer Systems,18” which include:

• Open design,
• Fail-safe defaults,
• Least privilege,
• Economy of mechanism,
• Separation of privileges,
• Total mediation,
• Least Common mechanism,
• Psychological acceptability,

Developers may also integrate common core libraries and reuse trusted modules which have
already been vetted by the organization as defined in SSDF PW.4. In many cases these guidelines
outline the approved security settings for compilers and the deployment of standardized
development environments and tools as specified in SSDF PO.3 and PW.6. Source code will typically
be version controlled and managed in a source code control system following the guidelines in
SSDF PS.1.1 and PS.3, and developers may be required to perform peer-reviews of their source
prior to allowing code to enter a main repository as specified in SSDF PS.1.1 and PW.7. At times,
engineers are required to compare and merge changes across code lines and repositories to
manage source code properly in a distributed team model.

 Modification or Exploitation of Source Code by Insiders

The Cybersecurity and Infrastructure Security Agency (CISA) defines insiders as “any person who
has or had authorized access to or knowledge of an organization’s resources, including personnel,
facilities, information, equipment, networks, and systems.”19

CISA defines insider threat as “the potential for an insider to use their authorized access or
understanding of an organization to harm that organization.” This includes intentional as well as
unintentional acts.

Software development group managers should ensure that the development process prevents the
intentional and unintentional injection of malicious code or design flaws into production code.
Source code modifications can occur at the developer level in one or more of the following
scenarios:

• When an engineer is compromised by outside influence or dissatisfaction,
• When an engineer is poorly trained,
• When engineers put backdoors into a product,
• When remote development systems are not secured or when protections are removed,
• When accounts and credentials for terminated or inactive personnel remain available.

18 http://web.mit.edu/Saltzer/www/publications/protection/index.html
19 https://www.cisa.gov/defining-insider-threats

http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://web.mit.edu/Saltzer/www/publications/protection/index.html
https://www.cisa.gov/defining-insider-threats

Securing the Software Supply Chain: Recommended Practices for Developers 13

1. Compromised engineers

The compromised engineer is a difficult threat to detect and assess. A compromised employee
may be under pressure from outside influences or may have a grudge to avenge. . Poor
performance reviews, lack of promotion, or disciplinary actions are only a few of the events that
might cause a developer to take action against an organization and sabotage its development
effort. Additionally, nation states or competitors can leverage an insider’s struggles with
controlled substances, failing relationships, or debt, among other things.

Because a developer has inside knowledge of the code base and is often an expert in their
respective coding language, environment, and style, developers can design subtle
vulnerabilities that are very difficult to detect. In addition, access to design details not publicly
available can provide inside knowledge of weak architecture or code areas that contain security
weaknesses that may be exploited.

Once implemented and injected into the build infrastructure, built-in vulnerabilities are
compiled, signed, and hashed, allowing the high-level security validation checks to pass without
any indication of compromise.

2. Poorly trained engineers

Engineers who have not been properly trained in security design and coding practices can
unintentionally introduce vulnerabilities within source code that, once submitted into a source
control repository, can be difficult to detect. The type of vulnerabilities can range from buffer
overflows to logic flaws, the latter being harder to discover. These "zero-day bugs" can reside in
a product for a long time and are instrumental in providing an easy compromise vector for
adversaries that discover them.

3. Ease of development features (backdoors)

Developers will sometimes add debugging features within a product to facilitate the
troubleshooting, setup, or problem-reporting processes commonly performed before initial
development. These features, in many cases, are privileged operations that allow the
development team to obtain statistics and logs and issue remote commands to reconfigure the
system under development. While these developer features can be helpful, often they are tightly
integrated into the product’s core components, making them hard to remove. In some cases,
they cause components to be “extended” to facilitate the tools and features being used but not
formally designed within the product.

These features are often planned to be completely removed before release, but in some
situations, they are not removed due to the core component integration and the level of work or
risk involved with removing them near the scheduled time of product delivery. These features
could be disabled upon release, but when left in the shipped product they create risk of
discovery and exploitation. Another ease of development concern is when only one portion or
function of an application requires elevated privileges, but the entire application is configured
to run with the privileges required to perform the single task. Privileges should be raised to
complete specific functions and then immediately lowered to reduce the attack surface.

Securing the Software Supply Chain: Recommended Practices for Developers 14

4. Compromised remote development systems

A common practice within the development environment is allowing remote development for
employees or contracting off-site third-party developers. Many of these remote developers
work from home or a satellite office and use organization-supplied machines and resources
connected over a VPN. When using this environment, the remote office becomes an extension of
the organization’s network, and the developer has access to all the development resources
normally associated with a standard work environment to include creating, compiling, and
checking in source changes.

While there are many benefits to facilitating this work environment, remote work comes with
risk. The home or remote office network may not provide the same level of network protection
as a company’s on-premise facility. In addition, remote employees may be more tempted to use
restricted network-based applications for social media, web surfing, games, and in some cases
removing local computer protections to facilitate their use. In this environment, these systems
can become compromised, allowing an adversary to use backdoors within the remote
environment to access and modify source code within an otherwise protected organization
infrastructure.

5. Use of lingering accounts or credentials of a terminated or inactive user

When employees have been terminated, reassigned to another project, or away from work for
an extended duration, their privileges and accounts often remain operational, and may be used
to perform malicious activity without the account owner’s knowledge. In this case, the owner of
the account is not monitoring its use and is unaware of any malicious activity performed with it.
Unauthorized use of accounts in this way grants access to all the development resources
available to the original account owner.

Recommended Mitigations
Specific processes may help mitigate the risk of intentional or unintentional injection of malicious
code in a development project, including:

• Implementing a well-balanced authenticated source code check-in process,
• Performing automatic static and dynamic security/vulnerability scanning,
• Conducting nightly builds with security and regression tests,
• Map features to requirements,
• Prioritize code reviews and review critical code,
• Secure Software Development/Programming Training,
• Harden the Development Environment.

1. Implement a well-balanced authenticated source control check-in process

Fundamental to the protection of the source code repository and its contents are the methods
used to control access to it and the validation process used to ascertain whether a check-in is
“good.” Access and validation start with good source code management (SCM) principles to
track modifications to a source code repository. Such principles include a running history of
changes to a code base and resolving conflicts when merging updates from multiple
contributors. As an example, the acquisition processes for free and open source software,

Securing the Software Supply Chain: Recommended Practices for Developers 15

commercial off the shelf software source components, and the management of a secure
software repository are outlined in Figure 3.

Figure 3: Secure Repository Process Flow

The secure repository should initially and continuously look for new vulnerabilities and
updates within the added components. A log of all developers and the components they
download should be kept. If a component becomes flagged due to a new vulnerability or update
in the future, the developers who have downloaded the component should be automatically
notified to address the issue. In this manner, when new vulnerabilities arise, it will also be
evident which programs/projects are affected.

At a minimum, the source control system should be protected using industry recognized
multifactor authentication (MFA), not only to log check-ins, but for all access to the secured
repositories. When check-ins are made, an audit trail is created that logs the MFA developer ID,
files modified, and date and time of the check-in. Depending on the complexity, security
requirements, development resources available, and time constraints, consider the following
when implementing a well-balanced source control check-in process:

Peer/lead review

• Allow no code that has not been peer or lead reviewed to be checked-in to a source
control repository,

• Require comments listing the relevant requirement for the check-in,
• Include the MFA ID of the reviewer and the reason for the modification of the

source,
• Include any cross-development dependencies on another development effort co-

dependencies should never be checked-in separately,

Securing the Software Supply Chain: Recommended Practices for Developers 16

• Perform unit and security tests.

Working and production branches

To control the quality of the produced software, two or more branches of the development
tree are maintained. During the normal software development process, all code can be
stored in the working, general purpose, development branch. As a component development
effort evolves, the source supporting a delivery feature is coded, tested, and reviewed by
senior engineers, and the functions and requirements of the component are cross-
referenced. This ensures the feature set is met and nothing exists for any feature creep.
Approved code is moved to a production branch by a development integrity assurance team
made up of senior level engineers, build engineers and designers. The production branch,
sometimes referred to as the release branch, is used as the sole repository from which
release product is built. This branch should be protected with reviewers and continuous
integration/continuous delivery (CI/CD) tests with SAST enforced at the SCM. The process
flow for branch readiness and transfer could be summarized as:

1. Developers work in the development branch.
2. Leads promote software to a QA branch when source is code reviewed and

approved.
3. QA individuals/teams test from QA branch.
4. Once integrated code is tested and approved it is moved into the production branch.

Access to the production branches is restricted to a small set of build and development team
members. All builds used to create production products are created from the production branch
of the repository. Once a product is released, the product branch should be labelled and locked
down with restricted customer or read-only access. The implementation of this lockdown
procedure ensures secure and reproducible builds.

2. Perform static and dynamic security/vulnerability scanning

Performing automatic static and dynamic vulnerability scanning on all components of the
system for each committed change is key to the security and integrity of the build process and
to validate the readiness of product release. This automatic scanning can perform code analysis
to determine if restricted application programming interfaces (APIs) that contain
vulnerabilities such as a buffer-overflow or memory leakage are used within the source under
evaluation, as well as other security related scanning. Performing static analysis to scan for
secrets before commit and during CI/CD blocks secrets from the code base. The complexity and
thoroughness of these static scanning technologies vary greatly. These tools should be used by
test teams as well as locally used by the development engineer. Most secure development
processes recommend this practice.

Separate and higher quality scanning tools should also be used within the product build
environment. It should also be noted that static analyzers work better on statically-typed
languages such as C++, since the type of variables used within the code are known at compile
time, whereas dynamically-typed languages such as Python resolve the variable types at
runtime. As functions and components are completed and able to be executed, dynamic testing
can find additional security weaknesses. These are often user input errors or malicious
injections and can only be identified during testing at runtime. For web applications, Interactive

Securing the Software Supply Chain: Recommended Practices for Developers 17

Application Security Testing (IAST), Dynamic Application Security Testing (DAST) and Runtime
Application Self-Protection (RASP) tools should be used, as specified in NIST 800-53 v5.20
Because IAST tools tend to have far more false positives than SAST, particularly with web
applications, SAST tools that use introspection are encouraged when implementing the security
testing requirements within this environment.

3. Conduct nightly builds with security and regression tests

To ensure the integrity and quality of the development process, nightly builds should be
performed that include manual and automated security and regression tests. Test cases should
be implemented during the design of the software and extended during coding to validate all
areas of functionality for both “good” and “bad” scenarios. Using this process, any flaws or
changes, whether malicious or inadvertent, can be recognized and addressed.

The nightly builds with regression tests should be implemented by a QA engineer and
incorporated into the build environment by a build engineer. This is different than the case of a
developer’s own automated unit test, which may run manually during coding and automatically
during the “building” of the component and for which the developer is generally responsible.

Artifacts such as logs and automated email notifications sent when regression tests fail help
notify and track where and when problems arise. The nightly build process also acts as a good
performance matrix to assess the developer capabilities and comply with security and
development processes. Refer to Section 2.4 Harden the Build Environment for more details
related to production builds of the product as compared to local development builds
documented in this section.

4. Map features to requirements

It is important that all components and functionality of a product are architected and designed
to interact with the system using secure design practices, including threat modeling and attack
surface analysis. Once all security risks are identified and mitigated, architecture and design
documents are finalized and disseminated to development groups for implementation. Low-
level design and functional specifications are created that map directly to the given architecture
and high-level design, and development tasks and schedules are mapped out. During the coding
and implementation of the system, care must be taken to ensure that all development efforts
map to specific system requirements and that there is no “feature creep” that might
compromise product integrity or inject vulnerabilities.

Formal, informal, and peer reviews help ensure that code added to the repository meets specific
requirements and only those requirements. These reviews can also identify modules and
unused code that are included as part of a larger package or component feature. When possible,
only required modules should be included in the product.

Additionally, developers should remove unused modules and code that is out of scope of the
requirements and design document. Restricting the addition of developer tools, like those that
aid debugging, configuration, and monitoring, to only those approved within the design of the

20 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

Securing the Software Supply Chain: Recommended Practices for Developers 18

system also mitigates the attack surface. Reporting and addressing feature creep as soon as
possible helps as well.

In addition, the build environment should support the scanning and detection of all plug-ins
within the system. The results should be cross-correlated with an allowed list to ensure
unauthorized components haven’t been added. These scans produce artifacts that describe
which components and software features are included in a product, and, more importantly,
ensures that all components have undergone analysis so each component’s risk is understood
and documented.

5. Prioritize code reviews and review critical code

Code reviews are performed using two different processes, formal and informal, and are
implemented during different stages of the development lifecycle.

Code reviews should be prioritized, and, at a minimum, the most critical code should be
identified and reviewed using both the formal and informal review processes. Critical code
includes components that:

• Use or provide cryptography,
• Require privilege escalation,
• Access protected resources,
• Are essential to the purpose of the software, or
• Have a high percentage path flow, among other factors.

In addition to formal and informal code reviews, automated code review tools should be
deployed to provide full code review coverage.

The informal code review process is used by the internal development group when measurable
stages or checkpoints are achieved during development. The informal review is used to ensure
secure coding policies and procedures are being followed and that the source under review
meets the design and functional requirements documented within the low-level design of the
component. These reviews are conducted by members of the development team to include
project leaders and senior developers and ensure security and integrity during development of
the specified component. While informal, the process for conducting code reviews produces
documentation on the areas reviewed and the results, which can be used to help measure a
development group’s performance. Informal code reviews are also used as a training tool to
provide awareness to group members on how to implement secure coding practices.
Furthermore, informal code reviews can be used to measure the quality of the code review
process and developer deliverables being produced.

Formal code reviews ensure the secure integration of key components using best practices.
These reviews focus on the integrity of a system, design, and architecture, while addressing all
functional, security, and reliability concerns. They also identify any areas of concern that may
be exploited or compromised.

Engineering groups, including members of QA, build experts, designers, and architects, usually
conduct formal code reviews. In formal code reviews, before review of the source, the owners of
the component describe the component’s functionality and its interaction with other

Securing the Software Supply Chain: Recommended Practices for Developers 19

components in the system. A designated individual takes detailed notes that track the review of
core components of the product.

The outcome of the formal code review is a list of activities and concerns that must be
addressed prior to shipping the product. Formal code reviews aid the development effort by
sharing knowledge of the product design and implementation which enhance the build and
testing requirements of the development environment. Formal code reviews also allow the
product management team to measure the product’s readiness for release, ensuring it meets all
requirements prior to release.

6. Secure Software Development/Programming Training

As outlined in Section 2.1, “Recommended Mitigations,” subsection “Assessment and
training,” developers should continually take training to understand the secure development
practices required for corporate development. This resource must also be made available
during the development lifecycle to allow developers to contact experts and address concerns
or questions they may have about a specific security issue, practice, or vulnerability. During
day-to-day development activity, access to security experts should be used to facilitate the peer
and source code reviews and to train individuals on corporate security practices and evaluate
their knowledge. A well-implemented peer review process allows engineers to prevent defects,
minimize security weaknesses, and promote team collaboration and knowledge-sharing.

7. Harden the Development Environment

As with the build environment, the development environment must be hardened. The
mitigations defined in Section 2.4 Harden the Build Environment also apply to the
development environment. However, while the production build systems are generally located
in a protected segmented network with limited access, the development build environment may
be housed in endpoint systems that are less isolated. For example, many development
environments allow remote VPN access to the internal development machines to facilitate
remote workers and allow them to participate in development activities. In such situations,
when connecting to a corporate development environment from a remote location, a VPN and
MFA must be used to protect the development environment. Endpoint security software should
be installed to prevent, detect, and respond to threats against the host system. In addition to
VPNs, implementers should consider the use of a “jump-host,” a system which acts as a portal
between a less secured remote host and the protected development environment. This allows
all activity to be continuously monitored and providing protection and/or limited accessibility
and operational privileges for the remote developer. A threat model and vulnerability
assessment are required for all development environments associated with product
development.

 Open Source Management Practices

Developers commonly use open source code in application development, with projects potentially
having multiple dependencies on open source libraries which may contain vulnerabilities.

Securing the Software Supply Chain: Recommended Practices for Developers 20

Recommended mitigations
Development organizations should employ dedicated systems that download, scan, and perform
recurring checks of open source libraries for new versions, updates, and known or new
vulnerabilities (see Figure 3 above). As with all software, we strongly recommend educating
developers on considerations for the use of open source software, close-source software, and
evolving best-practice mitigations. Please refer to the SSDF for more details, specifically PW.4.1,
PW.4.4, PW.4.5 and PO.1.3.

 Secure Development Practices

Managers of a software development group should ensure that the development process used to
generate, test, and preserve source code are accomplished using well-defined and secure practices.
This helps establish trust in the engineering tools-chain and procedures used. These practices
address the following security concerns:

• Secure developer environment,
• Use secure development build configurations,
• Use secure third-party software tool-chain and compatibility libraries.

Recommended mitigations
The following are recommended activities to implement secure development practices:

1. Secure the developer environment

When ensuring the integrity of the development environment, care must be taken to harden the
development systems within the build pipeline as defined in Section 2.4 Harden the Build
Environment. In addition, all development systems must be restricted to development
operations only. No other activity such as email should be conducted for business nor personal
use. If possible, development systems should not have access to the Internet and may be
deployed as local virtual systems with host-only access. All tools installed on development
systems must be pre-approved, to include debuggers, test tools, vulnerability scanners, and
modeling software even when confined to single local development use.

2. Use secure development build configurations

Many exploits use common compromise techniques such as buffer overflows, return-oriented
programming (ROP) execution gadgets, delayed dynamic function loading, and overriding
Software Exception Handlers (SEH). For many of these techniques, compiler, assembler, linker,
and interpreter tools have been extended to include defenses to mitigate these risks. The
following is a list of build-chain defensive techniques that should be deployed to narrow the
compromise vectors:

a) Stack Cookies – Prevents stack overwrites,

b) Address Space Layout Randomization (ASLR) – Prevents ROP/Hardcoded IP
references,

c) SEHOP – Prevents SEH hooking,

d) Data Execution Protection (DEP) – Stack/Heap execution prevention,

Securing the Software Supply Chain: Recommended Practices for Developers 21

e) No Execute Bit (NX) – CPU flag execution prevention of memory locations,

f) Static Libraries – Prevents preloading of malicious dynamic libraries,

g) Stripping Binaries – Removing symbols from binary files makes it harder for the file
to be reverse engineered,

h) Hardware Specific Preventions – More preventions are available based on built-in
hardware support.

While the above preventions are crucial for ensuring the runtime protection of software under
development, the development team should also provide to the end user a suggested
environment for which their software may run securely. For example, many antivirus products
provide behavior analysis engines to provide additional security checks, for example:

a) Heap Spray Mitigation – Monitoring commonly targeted heap addresses,

b) Stack Pivot Detection – Detects ROP,

c) ROP Call Detection – Detects JMP/RET (unconventional program flows),

d) DLL Injection Detection – Dynamic Link Library (DLL) location and signature
validation,

e) Null Page Detection – Dereference exploitation prevention,

f) Root-Kit Detection – Address hooking prevention,

g) Behavioral Heuristics – Detection of unusual CPU, memory and resource activity.

It is also important to note that while interpretive languages generally do not have the
vulnerability risks outlined above, the implementation of the interpreter itself and the
underlying system libraries they use do, therefore these mitigations hold true for them as well.

3. Use secure third-party software toolchains and compatibility libraries

In developers' build processes, various tasks are often integrated within an Integrated
Development Environment (IDE). Many of these environments are self-contained and allow all
development, to include coding, compiling, linking, packaging, and debugging, to be performed
from within the tool. The IDE may even provide the ability to check-in a source to a repository.
In many cases, these IDEs support multiple compiler languages and environments and the
ability to extend the IDE by installing plug-ins. Because of the complexity and untrusted
sources, IDEs may become compromised, leading to an insecure local development
environment. To ensure the integrity of the development process, all IDEs and their associated
plug-ins used within a developer environment must be preapproved, validated, and scanned for
vulnerabilities before being incorporated onto any developer machine.

Build environments may require the use of operating system specific utilities and commands.
For example, a Windows environment may require Linux operating system commands during
the build process on the developer host. Such build environments may necessitate the need for
third-party operating system tools and utilities to be installed on the development host to
provide compatibility between the development environment and the production build
environment. In addition, many development environments require API conversion libraries to

Securing the Software Supply Chain: Recommended Practices for Developers 22

facilitate a common coding environment between two disparate operating systems such as
Windows and Linux. Toolchains and compatibilities libraries are available through commercial
and open source software. Both the compatibility toolchains and libraries also need to go
through a vulnerability assessment prior to being adopted within the development
environment.

 Code Integration

Development managers want to ensure that the components and software integrated into the
delivered product is tested within the integrated environment for which it will be deployed. This
process involves incorporating all required dependencies including source code, components, and
additional required metadata and utilities into a single system. During code integration, the
developer will ensure that the code can be successfully built, and monitor and evaluate the runtime
behavior. Software should be integrated using zero trust principles as recommended in NIST
SP800-207.

Recommended mitigations
All third-party modules should be tested for known vulnerabilities against the Common
Vulnerabilities and Exposures (CVEs) that are listed in the National Vulnerability Database (NVD). A
software composition analysis tool can help automate this process. The development team should
also subscribe to alerts and reports from the National Cyber Awareness System and other sources
for the latest software vulnerability information. Once modules are reviewed for vulnerabilities,
they can be added to a developer or Open source Review Board (OSRB) repository for all approved
downloaded modules. This trusted repository should continue ongoing testing to identify new
vulnerabilities that are reported within the modules. It should also incorporate a process to provide
vulnerability updates and/or patches to the end-user. Applications include code from other sources,
sometimes slightly modifying or adding integration code for their specific use purpose.

There are security dependency analyzers and many other tools and services that can help detect
reused components with known vulnerabilities. These activities are typically conducted in an
Integrated Development Environment (IDE) and use the organizations’ secure coding practice and
guidelines such as in PW.3.1, PW.3.2 and PW.4.1 of the SSDF. Code integration should be
implemented using zero trust principles. Trust should not be implied and therefore critical
components and functions should check usage and access rights within the code and only use
escalated privileges when necessary. Developers should ensure that code and build integration
process is repeatable. Developers and QA engineers may provide automated regression tests to
ensure components are integrated properly and functioning as specified in the design and
requirements document. They may also provide additional static and dynamic scanning tools to
detect coding errors and security flaws within the developed code as defined in SSDF PW.5.1 and
5.2.

 Defect/Vulnerability Customer Reported Issue

Managers of a software development group should ensure that the software they develop is free of
high-risk known defects and vulnerabilities. When vulnerabilities are discovered and reported by
the customer, the development group should respond to the incident and provide component
updates to mitigate the risk associated with the defect or vulnerability.

Securing the Software Supply Chain: Recommended Practices for Developers 23

Recommended mitigations
Suppliers should have a public process to accept reports of potential defects and vulnerabilities
from customers and third-party researchers. Suppliers should use automated vulnerability
notifications from trusted organizations such as the Cybersecurity & Infrastructure Security Agency
(CISA) to receive timely alerts of the recent and high-risk threats. All notifications should be
evaluated with respect to the relationship to the product and prioritized based on risk assessment.

Engineers should then be assigned to review, diagnose, and resolve issues as defined in PW.8,
RV.1.1 and RV.1.3. To decrease the attack surface, a process should be implemented to identify the
class of the vulnerability and examine other product features and components that might
potentially be affected by the same identified class of incident. Customers should be provided
timely responses with the organization’s internal vulnerability management policy, which should
be based on industry best practice documents such as NIST SP 800-216 guidelines. Updates to
software are made available using a secure channel as required and specified in SSDF RV.2.1,
RV.2.2. The update is also made available and communicated to all customers of the product
describing the defect or vulnerability and resolution. Updates may also be automatically applied to
a product based on the update strategy configured by the customer.

 External Development Extensions

Once released, product functionality may be extended by a development team other than the
original product development team. In many cases, this external development team, with respect to
the development responsible for the product, may need to add additional functionality to the
product or customize it for specific customers’ needs which were not met or implemented by the
owner of the product. This external development team may be a solution team within the company
that produced the product or a Value-Added Reseller (VAR). An example of the type of activity that
might be performed is the addition of a required authentication method to the existing product.

When such an activity occurs, modifications to the product can include the addition of software
packages to support the feature, as well as graphical user interface (GUI) changes to enable and
manage the new functionality. During this activity, vulnerabilities may be introduced by the new
development, the new packages deployed, or modifying a provided API that is not being used as
designed or intended.

Recommended Mitigations
When possible, extensions to a product must follow all secure development practices as the
originating product development as defined in SSDF PS.1.1, PW.4.1, PW.4.2, PW.5 and PW.7. In
addition, a Software Bill of Materials (SBOM) should be made available that details the additional
packages and software that was added. If signing is required, the certificate that is used (if not from
the same supplier of the product) must be clearly identified. Modules that are modified from
original source must be clearly identified within the new SBOM and original component
information and owners identified along with all the new information required to describe the
modified module, as required by SSDF PS.1.1.

The PSIRT must be available and ready to assist end users when problems occur, even if the cause
of the problem is related to the extensions added as required in SSDF RV.2.1. In many cases, the
VAR will act as a “go-between” between the customer and the product PSIRT to help resolve issues.

Securing the Software Supply Chain: Recommended Practices for Developers 24

Feedback to engineers to resolve issues must be aggregated between the customer and external
development group to allow timely, accurate information which may be used to resolve issues. Any
code modifications due to vulnerabilities within the provided APIs and functionality must be
corrected and published to all customers. The activities provide mitigations in line with the
following SSDF activities:

1. PS.1.1 - Store Code and Executables, and Review and Approve All Changes.

2. PS.3.2 - Create and maintain a SBOM for each software package created.

3. PW.4.1 - Acquire well-secure components.

4. PW.4.2 - Create secure software components in-house.

5. PW.5 - Create Source Code Adhering to Secure Coding Practices.

6. PW.7 - Review and/or Analyze Human-Readable Code.

7. RV.2.1 - Analyze each vulnerability to gather sufficient information to plan its remediation.

2.3 Verify Third-Party Components

Developers routinely incorporate third-party commercial software components as an aspect of
their activities to leverage existing Application Programming Interface (API) capabilities. These
components may be Free Open Source Software (FOSS) or Commercial Off-the-Shelf Software
(COTS). When sourcing these components, developers will typically make their selection based on
criteria including the capabilities the component enables and the sustaining engineering support
model for the component. Prior to the incorporation of third-party components by engineers, an
organization may require an approval process as outlined in Section 2.2.4, Code Integration. This
process may include vulnerability database analysis, secure composition analysis, vulnerability
analysis, risk assessment, and source code evaluation on the components under consideration, the
results of which indicate whether the specific components identified are allowed or not. Once
selected, the identified components are continually monitored, if possible, by using an automatic
vulnerability tracking service that prioritizes and fixes identified vulnerabilities within open source
components. PSIRT teams may discover new vulnerabilities and alert product owners to remediate
when a new vulnerability is discovered.

 Third-Party Binaries

Third-party software, sometimes delivered in binary format, is like a black box for the engineer or
the organization who is integrating it. The software may not be actively maintained and may have
security weakness or vulnerabilities.

Recommended mitigations
1. Binary scanning and software composition analysis tools can often detect unknown files

and the open source components contained in binary packages, identifying the security
weaknesses associated with these components without the need for source code. The tools
may evaluate and provide a score of the vulnerabilities detected. The activities are highly
recommended to verify the integrity of the third-party software. The output can be
compared with the SBOM, or the source codes provided by the third party, to verify the
SBOM.

Securing the Software Supply Chain: Recommended Practices for Developers 25

2. The development team runs the binary scan of the third-party software, identifies potential
threats including unknown components, open software components and vulnerabilities.
The output of the composition analysis should be considered in the organization’s decision
to select and integrate the software component. Please see Section 2.3.2 Selections and
Integration and 2.3.3 Obtain Components from a Known and Trusted Supplier for
more information.

 Selections and Integration

Before the integration of third-party components, each component must be evaluated for the
potential security risk that might be associated with it. The evaluation includes reviewing and
testing the software.

Recommended Mitigations
SAST/DAST and other appropriate review such as composition analysis must be performed to
determine if the risk is acceptable. Once determined, the source code (not binaries alone) should be
integrated into the build environment allowing the security scanning processes of the build
environment approved by the organization to take place. Whenever possible, images should be
built from the source and not downloaded from the internet, unless there is an understanding of the
provenance and trust of delivery.

 Obtain Components from a Known and Trusted Supplier

When considering the selection of a third-party component, care should be taken to build a
relationship with a known and trusted supplier that has a proven record for secure coding practices
and quality delivery of their components.

Recommended mitigations
When the organization makes decisions concerning selection, use, changes, or updates of third-
party or open-source software for its products, it should perform a risk assessment and ensure the
residual risks are acceptable. The organization should verify a third-party’s ownership and control
status, their Data Universal Numbering System (DUNS), and past performance of the suppliers and
their upstream suppliers, if such information is available,. The selection will also take into account
the producer’s country of origin and adhere to the Defense Federal Acquisition Regulation
Supplement (DFARS), as required.

Suppliers should produce artifacts attesting to the development process, quality, and security
aspects of the component being considered for inclusion in an organization’s software product. The
availability of artifacts does not exclude the process listed in Section 2.3.2 Selections and
Integration. In addition, an organization will compile a list of known trusted suppliers and their
associated artifacts that have been integrated into the company’s products as well as a repository of
the third-party components that have been vetted. A record of all components that comprise a
product are captured within an SBOM to implicitly aid in the verification and vetting of the product
in its entirety. Trusted suppliers are measured by:

1. The third-party component meets all requirements for the product considering adoption.

Securing the Software Supply Chain: Recommended Practices for Developers 26

2. The quality of the third-party component is verified based on the results of testing by the
adopting organization.

3. The quality of the artifacts supplied, for example the validation of an SBOM, is validated as
being correct.

4. The owner of the component has a history of timely responses to known vulnerabilities
reported within the third-party component.

5. The third-party mechanism to report vulnerabilities is easy to use. All available updates of
adopted components are easy to integrate into the development environment using well
defined and understood update procedures between the third-party and development
group.

 Component Maintenance

Once a third-party component has been selected and integrated into the product, care must be
taken to monitor modification of the component by the supplier, specifically with respect to
addressing know CVEs and vulnerabilities that have been reported by the development team and
community of customers of that component. Adoption of changes follows the same process as
outlined in Section 2.3.2, Selections and Integration.

Recommended mitigations
The adopting product organization should monitor available CVE reporting mechanisms and third-
party support channels to determine whether vulnerabilities identified within an adopted third-
party component can impact the products and take appropriate actions to solve or mitigate the
vulnerability. The contract with the third party should resolve future vulnerabilities. The owner of
the third-party component must also notify the product organization of the presence of a
vulnerability, the risk associated with it and a timeframe for when the vulnerability will be
addressed and made available to the product organization.

 Software Bill of Materials (SBOM)

The details of an integrated third-party component should be reported in an SBOM for the product
developed to easily validate approved components and identify the presence of vulnerable
components when defects are discovered. Several specifications define the format of an SBOM:

1. The Linux Foundation Projects “Software Package Data eXchange (SPDX).”
2. OWASP “CycloneDX.”
3. NIST “Software Identification (SWID) tags.”

Recommended Mitigations
An SBOM provided by a supplier or owner of the third-party component should be validated and
updated as needed. Any discrepancies should be reported to the supplier. To that end, software
composition analysis (SCA) tools should be applied to the software deliverable from the third-party.
The third party's SBOM can be compared with the SBOM produced by the SCA tools. As described in
2.5 Deliver Code, the binary scanning SCA tool can identify the contents of the final deliverables
from the third-party software.

https://cyclonedx.org/
https://csrc.nist.gov/projects/Software-Identification-SWID

Securing the Software Supply Chain: Recommended Practices for Developers 27

If an SBOM is not available from the supplier, the development team will derive the required
information to describe the third-party component within the SBOM for example by utilizing
software composition analysis tools. When third-party source is modified by a developer, both the
initial SBOM, if provided by the supplier and the updated SBOM, describing the enhancement or
defects addressed in the original supplied source, can be defined within the SBOM’s dependency
relationship element.

Please refer to Section 5 (recommended data fields) in NTIA’s The Minimum Elements for a Software
Bill of Materials (SBOM).

2.4 Harden the Build Environment

This document outlines two types of build environments, the individual developer environment
and the production build environment. An example of both environments are outlined in Figure 4.
For more information on the individual developer environment, refer to section 2.2.3 Secure
Development Practices.

Figure 4: Secure Build Environment

The production build environment is where reproducible deliverables are built. The components
that comprise a product are provided to end users as a bundle that may include multiple modules
and a cryptographic signature. The cryptographic signature validates that the software has not
been tampered with and was authored by the software supplier. The build process may include
automated tasks to validate the security of the software. The software is installed by customers and,
after some validation, put into production. The build environment may produce software that is

Securing the Software Supply Chain: Recommended Practices for Developers 28

then deployed as software-as-a-service (SaaS). These applications provide some functionality over
the network. The resulting software is usually not distributed to customers for installation. Other
common build environments under consideration include the following:

• Continuous integration/continuous deployment. In this case, the software is installed in a
subset of the cloud for immediate feedback and A/B testing,

• Building software as part of a rapid iterative cycle, such as using an Agile Development
method. The resulting software may be distributed to customers or may be used for testing
without distribution,

• Building software as part of an open source project, where executables are not distributed
as an output of the project. In this case, the software resulting from the build is intended to
be a baseline for testing and to identify problems early in the development cycle.

Common to all scenarios are the tasks associated with architecting, implementing, and maintaining
or optimizing the build process. Also common are provisioning and configuring equipment as build
servers or VMs, networking, and configuring user permissions.

The build system must be developed and maintained with the same level of security, integrity, and
diligence as the source code and resultant product itself, as described in Section 2.1
Recommended Mitigations.

The build environment may be hosted in on-premise systems or may be hosted in a cloud. The same
rigor and discipline for hardening an on-premise build environment should be used for the cloud-
based build environment.

Note: It might be advantageous to build software in both cloud and on-premise environments and
compare the results. If the results do not match, there may be evidence of supply-chain tampering.

 Build Chain Exploits

The build environment is a prime target in a supply chain compromise. In this scenario, a
compromise may occur when a threat actor:

1. Infiltrates the development network.

2. Performs a scan to locate the repository and build systems and to identify vulnerabilities.

3. Crafts an exploit to compromise the build system or repository (or both.

4. Deploys the exploit.

In this case, the exploit is subsequently included in:

• Compiled source code,

• Included libraries,

• Reintroduced when libraries revert to older third-party libraries with vulnerabilities,

• Resident memory, which gets embedded in source during compile time via a rootkit-the
source is not modified in the repository,

Securing the Software Supply Chain: Recommended Practices for Developers 29

• Network Man-in-the-Middle (MITM) attack, which modifies source when being pulled down
to build system.

Recommended Mitigations
The build pipeline infrastructure includes all systems that come in contact with the development
and build process such as source code repositories, engineering workstations, build systems,
signing servers, and deployment servers for both on-premise machines and those hosted in the
cloud. Each of these systems should be:

• Completely locked down,
• Protected from external and off-local area network (LAN) activity,
• Monitored for data leakage, particularly code repositories and engineering workstations,
• Configured to prevent infiltration and exfiltration.

Additionally:

• Subject build scripts and configuration files to the same code review process listed in
Section 2.2.1 Modification or Exploitation of Source Code by Insiders.

• Use version control for pipeline configurations,
• Ensure each system requires multi-factor authentication,
• Segregate the engineering network from the corporate network,
• Minimize and regularly audit service accounts,
• Log all access to the build pipeline,
• Protect any secrets associated with the build pipeline.

Lock systems down

When locking down systems, only those operations specific to each system’s function should be
allowed. For example, build systems should only perform operations necessary to delivering builds.

Protect systems from external and off-LAN network activity

To protect systems from potentially harmful network activity inbound and outbound network
connections other than allowed URLs and necessary services should be blocked.

To assure that all source and other intellectual property on engineering machines is safeguarded,
each system’s cybersecurity defenses should be configured to prevent infiltration and exfiltration
on all engineering workstations (e.g., configuring intrusion detection and prevention, behavior
blocking, reputation-based security, machine learning-based protection, application isolation and
control, and vulnerability protection).

Version control pipeline configurations

Pipeline configurations should be version controlled. Administrators should only update the
configuration code, not the actual systems.

In a continuous delivery (CD) pipeline environment, the CD orchestrator should be the only entity
that manages all the environments, for example the development and production environments. All

Securing the Software Supply Chain: Recommended Practices for Developers 30

configurations and rules for the environments should be version-controlled and managed by the
orchestrator. This will ensure any changes—whether malicious or accidental—that could weaken
the security posture of the system will be immediately visible.

Administrators should rarely have to adjust the systems themselves, as configuration settings are in
code and executed by the pipeline. An exception to this would be when an administrator has to fix
the mean time to failure in production. In this case, the secrets management tool can generate a
temporary Socket Shell (SSH) key for a limited time to allow the administrator access. Once
approved, administrative changes should be adjusted in the pipeline configurations and
automatically managed.

Also ensure that the administrator tools are not in the public environment such as a Kubernetes
cluster. Utilize hardening guides such as the Kubernetes Security - Operating Kubernetes Clusters and
Applications Safely21 and Kubernetes Hardening Guidance22

Support the separation of duties. For example, the lead or business owner should be the owner and
administrator of the build keys. The root account should not have access to the key.

Multi-factor authentication

Each system should use multi-factor authentication (MFA): wherever possible, require MFA for
access to build pipeline systems. Limit access to build pipeline machines using best practices such
as role-based access control and least privilege. For more information on this, please refer to NIST
SP 800-172 sec. 3.1, Role Based Access Control. This specifically explains how to employ dual
authorization to execute critical or sensitive system and organizational operations.

Segregate the engineering network

Each system should only be accessible via an engineering network that is completely segregated
from the organization’s corporate network. If possible, the engineering network should have no
direct access to the Internet.

Minimize and regularly audit service accounts

The use of service accounts, like non-human privileged accounts used to run automated processes,
should be minimized and carefully audited. Every service account login should be logged. These
logs should include date and time and the origin of login. Service accounts should follow the “least
privileged” policy. All service accounts should be regularly reviewed to assure they are still needed,
and unnecessary accounts removed. Per guidelines in NIST SP 800-53, software function privileges
should be raised when needed to perform a function and then lowered when completed.

Log all access to the build pipeline

All access to build pipeline systems should be logged. At minimum, log the MFA ID of the user
authenticating access and the date and time.

21 https://kubernetes-security.info/
22 https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-
hardening-guidance/

https://kubernetes-security.info/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/

Securing the Software Supply Chain: Recommended Practices for Developers 31

Protect any secrets associated with the build pipeline

Best practices should be implemented to protect any secrets associated with the build pipeline.
Secrets can be but are not limited to account passwords, API keys, and private certificates. Require
default usernames and passwords in the pipeline to be changed. Any documentation inside the
organization containing secrets should have strong role-based access control. Additionally, avoid
putting secrets in plain text in any code (e.g., automation code), avoid logging sensitive data in
application logs, and regularly rotate secrets. Please refer to NIST SP 800-57, Part 1, Revision 5 for
more details.

Recommended Mitigations (advanced)
The following mitigations describe advanced build best practices, and may offer additional
protection when they complement the mitigations described previously in Section 2.4.1 Build
Chain Exploits.

Hermetic builds

All transitive build steps, sources, and dependencies should be fully declared up front with
immutable references and the build steps should run with no network access.

The developer-defined build script must declare all dependencies, including sources and other
build steps, using immutable references in a format that the build service understands.

The build service:

• Must fetch all artifacts in a trusted control plane,
• Must not allow mutable references,
• Must verify the integrity of each artifact,
• Must prevent network access while running the build steps.

If the immutable reference includes a cryptographic hash, the service must verify the hash and
reject the fetch if the verification fails. Otherwise, the service must fetch the artifact over a channel
that ensures transport integrity, such as Transport Layer Security (TLS) or code signing.

A "best effort" is sufficient when attempting to prevent network access while running build steps.
This should deter a reasonable team from having a non-hermetic build, but it need not stop a
determined adversary. For example, using a container to prevent network access is sufficient.

Reproducible builds

Reproducible builds provide additional protection and validation against attempts to compromise
build systems. They ensure the binary products of each build system match: i.e., they are built from
the same source, regardless of variable metadata such as the order of input files, timestamps,
locales, and paths. Reproducible builds are those where re-running the build steps with identical
input artifacts results in bit-for-bit identical output. Builds that cannot meet this must provide a
justification why the build cannot be made reproducible.

• Establish and maintain an authoritative source and repository to provide a trusted source
and accountability for approved and implemented system components as defined in NIST
SP800-172 Sec. 3.4,

Securing the Software Supply Chain: Recommended Practices for Developers 32

• Employ automated mechanisms to detect misconfigured or unauthorized system
components; after detection, remediation is performed to either patch, re-configure or
remove the identified components,

• Employ automated discovery and management tools to maintain an up-to-date, complete,
accurate, and readily available inventory of system components,

• Identify and authenticate as defined in NIST SP800-172 Sec. 3.5 [Assignment: organization-
defined systems and system components] before establishing a network connection using
bidirectional authentication that is cryptographically based and replay resistant,

• Employ automated mechanisms for the generation, protection, rotation, and management of
passwords for systems and system components that do not support multi-factor
authentication or complex account management,

• Employ automated or manual/procedural mechanisms to prohibit system components from
connecting to organizational systems unless the components are known, authenticated, in a
properly configured state, or in a trust profile,

• Employ a means to allow the comparison of binaries built from two or more disparate,
segmented, protected, and secured environments.

These mitigations can be modeled after the emerging frameworks, including build requirements of
the Supply-Chain Levels for Software Artifacts (SLSA) project and the Software Component
Verification Standard (SCVS). SLSA provides for different security levels, each of which provide
requirements, processes, and best practices to increase trust in software. SCVS is set by the Open
Web Application Security Project (OWASP). The standards comprise six families of control
requirements including build environment for verification of the integrity of software supply chain.

The artifacts for builds should include, at a minimum, the source repository, the third-party
dependencies, the build script, and the output of the build. Some products may supply these
artifacts to the recipient of the software, though in many cases the supplier may require a special
license or agreement to obtain these artifacts. For reproducible builds, the artifact should be the
output of the script that compares the builds. All artifacts should be retained by the supplier for the
entire support lifetime of the product until it is marked for end of life.

Recommended Mitigations
Advanced techniques may include:

1. SSDF PO.3 (Implement a Supporting Toolchain), specifically PO.3.2 and PO.3.3, since the
toolchain is used in the build process.

2. SSDF PO.4 (Define Criteria for Software Security Checks), specifically PO.4.2 to gather
information from the build to support security criteria.

3. SSDF PS.1 (Protect All Forms of Code from Unauthorized Access), specifically PS.1.1,
generating the information in PS.2.1 and implementing PS.3.1.

4. SSDF PW.6 (Configure the Compilation and Build Processes).

5. SSDF PW.8 (Test Executable Code) if the tests are designed to be run and verified as part of
the build process.

Securing the Software Supply Chain: Recommended Practices for Developers 33

6. SSDF PW.9 (Configure the Software to Have Secure Settings by Default), particularly as part
of the architecting, implementing and maintaining the build process.

7. SSDF RV.1 (Identify and Confirm Vulnerabilities on an Ongoing Basis) particularly RV.1.2
where automated code scanning may be part of the build process.

 Exploited Signing Server

Software distributed as an artifact to a customer should be delivered with a unique cryptographic
signature which verifies the integrity of the software artifact. However, if the signing facility itself
has been compromised, then the delivered artifact may also have been compromised, and the
signature validates the compromised artifact and not the true artifact.

NOTE: Software delivered to a customer as a service rather than as a binary artifact will not typically
be delivered with a cryptographic signature.

A threat actor could impersonate a target by compromising the code-signing service, using the
signing system to sign compromised components or products. They could do this by leveraging
misconfigured account access controls on a server, or exploiting the service using a known or zero-
day exploit.

A threat actor could also impersonate a target using a self-signed certificate and injecting into the
build or signing process.

Recommended mitigations
Code signing is usually the last line of defense against a software supply chain exploit. Both
suppliers and developers work together to ensure the integrity of the signing servers is not
compromised. Section 2.2.1 Protect All Forms of Code from Unauthorized Access of Part 2 of
this series, focusing on the supplier, will discuss the high-level supplier specific concerns. The
following procedures are used by developers to ensure code-signing integrity:

1. Implement strong authentication methods such as strong passwords, certificates, two factor
authentication (MFA), and physical access control to protect the signing infrastructure.

2. Control user access to the signing infrastructure, using least privileges, revocation of user
credentials after departure or termination, MFA for code commits, and continuous
authentication utilizing behavior analytics.

3. Conduct code signing on a physically isolated network segment.
4. Use intrusion detection and protection systems in the code-signing environment to protect

the code-signing resources, machines, and process used.
5. Deploy and use a Security Information and Event Management (SIEM) system.
6. Use cryptography in transit and at rest.
7. Apply hardening procedures on the signing environment systems that allow customers to

deploy and install only signed and verified release packages and products.
8. Use centralized log servers (with append only, encryption, etc.)
9. Ensure the signing system meets baseline security standards.
10. Require multi-party approval for physical and remote access and log all access.

Securing the Software Supply Chain: Recommended Practices for Developers 34

11. Grant super-user access to only a small number of signing system admins.
12. Implement the following Indirect Controls:

a) Perform periodic vulnerability scans (network and web application),
b) Perform periodic penetration testing (network, web, wireless and red teaming),
c) Classify documents properly (Confidential, Top Secret, etc.),
d) Watermark usage on the documents,
e) Use Data Loss Prevention (DLP) tools,
f) Properly dispose of physical media by destroying it,
g) Properly dispose of digital media by wiping it,
h) Monitor / perform integrity checks of executables, libraries, configuration files, etc.

2.5 Deliver Code

Software suppliers utilize distribution systems to deliver software packages to customers. The
package includes metadata (e.g., a version number) and software to install or update in the
customer’s information system and network. Before shipping the package to the customers, the
developer should perform binary composition analysis to verify the contents of the package.

The distribution system is comprised of a repository, which stores packages for delivery, and a
package manager at the customer information system. The two entities establish a secure
connection over the internet and transfer the package.

 Final Package Validation

The final package or update to be delivered to a customer may have issues that expose the
developer and customers to cybersecurity and privacy risks. For example, it may contain
confidential information (e.g., hard coded credentials, personal data), open source software license
issues, and components included in files with unknown origin. Moreover, the deliverable may have
been built with improper compiler options or build settings.

Recommended mitigations
1. Binary software composition analysis tools can investigate what exactly is included in the

final deliverables and identify potential issues in the final packages described above. The
developer should run a binary scanning or composition analysis tool and ensure the
integrity of its product before delivery. The tool can detect potential vulnerabilities and
threats – including software of unknown provenance (SOUP) and secrets inadvertently
included in the final packages – and produce an SBOM of the final package for the customer.

2. The organization can compare the binary analysis output and the other artifacts from the
build process to ensure that the final package includes only the intended software
components. Upon receipt, the customer can run the binary software composition tool to
assess risks by verifying the contents of the delivered code before the deployment. The
customer can continue to utilize the tool for continuous monitoring of post deployment
vulnerabilities.

3. Supplier and customer run binary scanning or composition analysis tools to verify the
integrity of final software packages or updates provided by developers. The developer can

Securing the Software Supply Chain: Recommended Practices for Developers 35

include the SBOMs within the final packages. It may depend on contracts or arrangements
between developer and customers. An SBOM should contain all primary (top level)
components of the final product, with all their transitive dependencies listed. Depending on
the contracts with customers, the supplier, or the developer provides further details.

 Potential Tactics to Compromise the Software Packages and Updates

The package may be compromised while going through the distribution system from the supplier to
the customer. An adversary may attempt a man-in-the-middle attack or compromise the source
code repository. As a result, malware or vulnerabilities can be introduced to the package, or an
older version of the package containing an exploitable vulnerability can be delivered to the
customer. Installing the compromised packages will impose risk to the customer organization and
its system.

Recommended mitigations
The package including the correct metadata should be signed by a cryptographically-secure
signature algorithm before being uploaded to the repository. Alternatively, the package can include
cryptographic hashes. The package manager should verify the signature or hashes and the
metadata including the version number. If verification fails, the manager should not process the
package.

Note: The developer must take great care to protect its private key used for the digital signature or
hashes as anyone can impersonate the developer if the private key is stolen. A lost key may prevent
future updates or incur challenges with distributing new keys.

1. Product-Level:
a) Hash/Digital Signature of Product Distribution Package,
b) Hash/ Digital Signature of Product Update,
c) Hash/ Digital Signature of Product Upgrade.

2. Component-Level:
a) Hash/ Digital Signature of Product Components in Distribution Package.

Note: Further study is necessary to define what types of components or static files should be signed or
hashed in a package. The static files can include SBOM, configuration files and documentation. For
correct verification of such components, guidelines or standards are needed to clearly specify how to
create the signature and hash.

 Compromises of the Distribution System

Attacks to the distribution system include compromising the repository to introduce malware into
the packages stored in the repository, taking advantage of the package manager vulnerabilities to
direct it to a malicious site, and a MITM attack between the supplier, the repository, and the
package manager. As a result, a compromised package can be delivered to the customer.

Recommended mitigations
The following activities may be optional if the developer takes the mitigation measures described in
section 2.5.2 Potential Attacks to Compromise the Software Packages and Updates. The

Securing the Software Supply Chain: Recommended Practices for Developers 36

developer should secure the repository according to information security management standards
or guidelines to ensure its integrity. For example, apply continuous monitoring to prevent, detect
and remediate threats against the repository. The developer should practice the recommendations
described in the proceeding sections of Section 2.5 Deliver Code of this document to develop, test,
and provide a secure package manager.

In addition, the developer, or the supplier should manage new vulnerabilities associated with the
package manager and ensure that the customer uses its latest version. Moreover, the developer
should ensure that transport layer security of the distribution system is configured properly to
ensure the confidentiality, integrity, and authenticity of information to be transferred, for example,
the TLS protocol version, algorithms for key exchange, encryption, message authentication and
signature as recommended by NIST SP 800-52 rev.2 (Guidelines for the Selection, configuration, and
Use of Transport Layer Security (TLS) Implementations).

1. Protect All Forms of Code from Unauthorized Access (SSDF PS.1). As described in the
previous subsection, the developer may take the following mitigation measures:

a) Repositories: apply information security management standards or guidelines to
secure the repositories,

b) Package managers: apply secure development process to provide secure and up-to-
date package managers to the customer,

c) Distribution system transport layer security: select, configure, and use transport
security implementation recommended by NIST SP 800-52 rev.2.

Securing the Software Supply Chain: Recommended Practices for Developers 37

3 Appendices

3.1 Appendix A: Crosswalk between Scenarios and SSDF

The reference numbers in the below crosswalk may look similar for each role (Developer, Supplier
and Customer), however they correlate to their specific part of this series.

SSDF # Developer Supplier Customer
PO.1 2.2.3 Secure Development

Practices
2.1.1 Define criteria for
software security checks

PS.1 2.2.1.1 Source Control
Check-in Process

2.2.1.4 Code Reviews

2.2.6 External
Development Extensions

2.3.2 Selections and
Integration

24.1 Build Chain Exploits

2.5.3 Secure the
Distribution System

2.2.1 Protect all forms of
code from unauthorized
access

2.2.2 Provide a
mechanism for verifying
software release integrity
(PS.1, PW.9)

PS.3 2.2.1.1 Source Control
Check-in Process

2.2.1.2 Automatic and
Manual Dynamic and
Static Security /
Vulnerability Scanning

2.3.2 Selections and
Integration

2.3.3 Obtain Components
from a Known and
Trusted Supplier

2.4.1 Build Chain Exploits

2.2.3 Archive and protect
each software release

PW.1 2.3.2 Selections and
Integration

2.3.1 Design software to
meet security
requirements

PW.3 2.2.3 Secure Development
Practices

2.3.2 Selections and
Integration

2.3.3 Obtain Components
from a Known and
Trusted Supplier

2.3.2 Verify third-party
software complies with
security requirements

2.1 Procurement/Acquisition (1)
Requirements Definition /
Recommended Controls
(viii)(viii)

2.2 Deployment (6)
(2) Testing – Functionality (c)
Recommended Controls (ii)
Verify contents in SBOM

Securing the Software Supply Chain: Recommended Practices for Developers 38

2.3.4 Component
Maintenance

2.3.5 Software Bill of
Material (SBOM)

2.2 Deployment (6)
Deploy (3) Contracting /
Recommended Controls (v) (viii)
(ix)(x)

PW.6 2.2.3.2 Use of Unsecure
Development Build
Configurations

2.4.1 Build Chain Exploits

2.3.3 Configure the
compilation and build
processes

PW.7 2.2.1.4 Code Reviews

2.2 Open source
Management Practices

2.2.6 External
Development Extensions

23.2 Selections and
Integration

2.3.3 Obtain Components
from a Known and
Trusted Supplier

2.3.4 Review and/or
analyze human-readable
code

PW.8 2.2.1.3 Nightly Builds
with Regression Test
Automation

2.3.2 Selections and
Integration

2.4.1 Build Chain Exploits

2.3.5 Test executable code

PW.9 2.2.3.2 Use of Unsecure
Development Build
Configurations

2.4.1 Build Chain Exploits

2.2.2 Provide a
mechanism for verifying
software release integrity
(PS.1, PW.9)

2.3.6 Configure the
software to have secure
settings by default

RV.1 2.3.4 Component
Maintenance

2.4.1 Build Chain Exploits

2.4.1 Identify, analyze,
and remediate
vulnerabilities on a
continuous basis

Securing the Software Supply Chain: Recommended Practices for Developers 39

3.2 Appendix B: Dependencies

Green - Dependencies/artifacts recommended to be provided by the supplier for benefit of the
developer.

Dark Green - Dependencies/artifacts recommended to be provided by third-Party suppliers for
benefit of the developer.

Pink - Dependencies/artifacts recommended to be provided by the customer for benefit of the
supplier/developer.

Dependency

1 Provide issues from customers

2 Provide given hashes as required

3 SDLC policies and procedures

4 Secure architecture, high-level design

5 Qualified team assembly with code/security training

6 Independent QA individual/team

7 Independent security audit individual/team

8 Open source Review Board (OSRB) with repository

9 Product release management/resources

10 SBOM

11 Development location and information

12 Third-party SBOM

13 Third-party License

14 Release notes (detailing vulnerabilities fixed)

15 Vulnerability notifications

16 Publish updates and patches to the customer to address new vulnerabilities or weaknesses
found within the product

17 Requirements and criteria for success

18 Implied industry security requirements

19 Provide issues from operational environment, take updates and patches

20 Vulnerability notifications and reporting from the users

Securing the Software Supply Chain: Recommended Practices for Developers 40

3.3 Appendix C: Supply Chain Levels for Software Artifacts (SLSA)

Supply-Chain Levels for Software Artifacts (SLSA) is a security framework from source to service,
giving anyone working with software a common language for increasing levels of software security.
The framework is currently in Alpha stage and constantly being improved by supplier-neutral
community. Google has been using an internal version of SLSA since 2013 and requires it for all of
their production workloads. http://slsa.dev

Requirement Description L1 L2 L3 L4

Scripted build All build steps were fully defined in some sort of “build
script”. The only manual command, if any, was to invoke
the build script.
Examples:
• Build script is Makefile, invoked via make all.
• Build script is. github / workflows / build.yaml,

invoked by GitHub Actions.

✓ ✓ ✓ ✓

Build service All build steps ran using some build service, not on a
developer’s workstation.
Examples: GitHub Actions, Google Cloud Build, Travis
CI.

✓ ✓ ✓

Ephemeral
environment

The build service ensured that the build steps ran in an
ephemeral environment, such as a container or VM,
provisioned solely for this build, and not reused from a
prior build.

✓ ✓

Isolated The build service ensured that the build steps ran in an
isolated environment free of influence from other build
instances, whether prior or concurrent.
• It MUST NOT be possible for a build to access any

secrets of the build service, such as the
provenance signing key.

• It MUST NOT be possible for two builds that
overlap in time to influence one another.

• It MUST NOT be possible for one build to persist or
influence the build environment of a subsequent
build.

• Build caches, if used, MUST be purely content-
addressable to prevent tampering.

✓ ✓

Parameterless The build output cannot be affected by user parameters
other than the build entry point and the top-level
source location. In other words, the build is fully
defined through the build script and nothing else.

Examples:
• GitHub Actions workflow dispatch inputs MUST be

empty.

✓

http://slsa.dev/
https://docs.github.com/en/actions/reference/events-that-trigger-workflows#workflow_dispatch

Securing the Software Supply Chain: Recommended Practices for Developers 41

• Google Cloud Build user-defined substitutions
MUST be empty. (Default substitutions, whose
values are defined by the server, are acceptable.)

Hermetic All transitive build steps, sources, and dependencies
were fully declared up front with immutable references,
and the build steps ran with no network access.
The developer-defined build script:
• MUST declare all dependencies, including sources

and other build steps, using immutable references
in a format that the build service understands.

The build service:
• MUST fetch all artifacts in a trusted control plane.
• MUST NOT allow mutable references.
• MUST verify the integrity of each artifact.

o If the immutable reference includes a
cryptographic hash, the service MUST verify
the hash and reject the fetch if the verification
fails.

o Otherwise, the service MUST fetch the artifact
over a channel that ensures transport
integrity, such as TLS or code signing.

• MUST prevent network access while running the
build steps.
o This requirement is “best effort.” It SHOULD

deter a reasonable team from having a non-
hermetic build, but it need not stop a
determined adversary. For example, using a
container to prevent network access is
sufficient.

✓

Reproducible Re-running the build steps with identical input artifacts
results in bit-for-bit identical output. Builds that cannot
meet this MUST provide a justification why the build
cannot be made reproducible.
“○” means that this requirement is “best effort”. The
developer-provided build script SHOULD declare
whether the build is intended to be reproducible or a
justification why not. The build service MAY blindly
propagate this intent without verifying reproducibility.
A customer MAY reject the build if it does not
reproduce.

○

https://cloud.google.com/build/docs/configuring-builds/substitute-variable-values
https://slsa.dev/requirements#immutable-reference
https://slsa.dev/requirements#immutable-reference
https://slsa.dev/requirements#immutable-reference

Securing the Software Supply Chain: Recommended Practices for Developers 42

3.4 Appendix D: Artifacts and Checklist

In principle, any artifacts created during the lifecycle of the software development process are
owned by a developing organization. These organizations can determine what artifacts are made
available with potential and current customers of a product with or without a Non-Disclosure
Agreement (NDA). Availability of information must take into consideration regulatory and legal
requirements, the customer requirements for the information and the risk involved by exposing
information leading to the exploitation of the product. Exceptions may include open source
development organizations, which are more inclined to make all development information available,
to include source code.

When defining the availability of an artifact, the general terms used in this section will be the
following:

1. Publicly disclosed,

2. Externally available:

a) under a Non-Disclosure Agreement (NDA),

b) government agency mandated requirement.

3. Private / company confidential.

The availability of an artifact varies between companies and agencies and is only described here as a
reference for what might be possible when using artifacts to validate the software supply chain
process. Some artifacts, such as a high-level architecture document may be intentionally generated
to allow any perspective consumers an introductory artifact detailing the overall strategies used in
the design, development, and operation of a product. These publicly disclosed documents may
describe common industry nomenclature, such as Federal Information Process Standards (FIPS)
compliance, cryptography standards used, development processes adhered to or certifications
processes passed. NDA and government mandated availability require contractual agreements
providing access to artifacts that would not normally be exposed by the organization that produced
the product. While private or company confidential artifacts are generally low-level and detailed
work products that may contain sensitive secrets and knowhow and if exposed, provide potential
insight into product’s competitive implementation and threat vectors that may not be addressed in
the product, therefor posing a threat if exposed outside of the producers environment.
Private/company confidential artifacts are generally maintained by the “Suppliers” and “Developers”
of the product to facilitate the auditing and validation of adherence to the Secure Software
Development Lifecycle (Secure SDLC) and security practices set forth by the product owner,
company, or organization. For more information on the Secure SDLC process, refer to Section 2.1
“Secure Product Criteria and Management,” subsection Recommended Mitigations, Item 8.

Most of the artifacts collected during the development lifecycle are not meant to be shared outside
the developing organization yet may be preserved in persistent storage as evidence to verify the
integrity of the policies and processes used during the development of a product. A developer should
securely retain artifacts of software development for a certain duration according to the secure
software development policies and processes. As a by-product of the process used to implement and
mitigate the attack surface and threat model of the software as well as the software build pipeline
during the development process, the following artifacts may be created, and collected:

Securing the Software Supply Chain: Recommended Practices for Developers 43

Artifact Examples Description/Purpose
High-level Secure
Development
Lifecycle Process
document

Attestation to secure development practices which can cover:
• Secure software architecture/design process
• Attack surface investigation and threat modeling process
• Secure software development/programming training
• Software security testing process
• Source control check-in process
• Trusted repository for modules and processes
• Continuous integration and delivery (CI/CD) processes
• Defect/vulnerability reporting and customer update process
• Code review process for security and continuous software security

improvement
• Continuous verification of third-party binaries
• Open source management practices
• Hardening the build environment
• Secure relationship with a third-party supplier
• Process to secure the signing server
• Final package validation process

Product Readiness
checklist

Attestation to product release, product readiness for shipment, and secure
shipping criteria which can cover:

• No pending known critical bugs and vulnerabilities (e.g. bug track
report)

• Cryptographically signed components
• Proper software licensing

Product
Support/Response
Plan

Attestation to vulnerability discloser and response process (e.g. handling
of policy violation and anomalies)

Software Bill of
Material (SBOM)

• Attestation to the integrity of the producer
• Attestation to the security and authenticity of components

included in the product
• Attestation to the third-party software components
• Attestation to the integrity of software licenses

Architecture/Design
Documents

• Attestation to secure architecture/design practices
• Mitigation of attack surface vulnerabilities
• Attestation to mapping secure requirements to software

architecture and components

Developer Training
Certificates/Training
Completion
Statistics/data

• Attestation to secure development practices
• Attestation to secure coding practices

Threat Model Results
Document

• Attestation to secure design practices
• Attestation to secure third-party component integration practices

Securing the Software Supply Chain: Recommended Practices for Developers 44

High-level Software
Security Test Plan and
Results

High-level, system and unit level test plan and results (A set of tests should
be commensurate with the requirements and risk profile of the product or
service.)

• Coverage details
• SAST - Static Application Security Testing
• DAST - Dynamic Application Security Testing
• SCA - Software Composition Analysis
• Fuzzing/Dynamic
• Penetration
• Red team testing
• Black box testing
• QA security feature analysis

Automatic and Manual
Dynamic and Static
Security/Vulnerability
Reports (Security
Scanning Results)
Reports

The reports can cover:
• Security Scanning Results for Static, Dynamic, Software

Composition Analysis and Fuzzing
• Security Scanning Results for Penetration or Red-Teaming
• Attestation to secure development/build/test practices
• Mitigation against known software weakness classes in the

Common Weakness Enumeration (CWE)
• Mitigation against publicly known vulnerabilities and Common

Vulnerabilities and Exposures (CVEs)

Open source Review
Process Document
and Allowed List

Attestation to secure open source review process and management

Build Log • Attestation to the integrity of securely built products
• Attestation to no known critical errors/warnings
• Attestation to use of tool-chain defenses (stack checking, ASLR,

etc.)

Secure Development
Build Configurations
Listing

• Attestation to secure build environment

Third-Party Software
Tool-Chains List

• Attestation to secure build environment

The artifacts described in the table above may be used for attestation of the integrity of an
organization’s secure development process that was used to produce a given product.
Organizations can then provide a high-level checklist, illustrated below, which may utilize artifacts
created during the development process that attest to the adherence, at some level, to the
recommended practice during the development process. The developer may add a brief description
regarding how the organization supports a check list item in addition to Yes/No/Not Applicable
(NA)/Incomplete (Inc) response, e.g. alternative practices to support it and reasons for non-
applicability.

Securing the Software Supply Chain: Recommended Practices for Developers 45

The document references in the below table are focused on the Developer portion of this series.

Measurable Outcome/
Description

Practice
Observed
Yes, No,
NA, Inc

SSDF
Tasks

Artifact Examples Document References

Secure Product Criteria & Management

Do you define policies that
specify risk-based software
architecture and design
requirements?

 PO.1.2 Architecture/Design
Documents

2.1 Secure Product
Criteria and
Management

Do you require team members
to regularly participate in
secure software architecture,
design, development, and
testing training and monitor
their training completion?

 PO.2.2

RV.3.4

Training Completion
Data/Statistics

Developer Training
Certificates

2.1 Secure Product
Criteria and
Management

2.2.1 Secure Software
Development/
Programming Training

Have development team
members attended training
programs specific to their
roles, development tools and
languages to update their
skills?

 PO.2.2 Training Completion
Data/Statistics

Developer Training
Certificates

2.2.1 Malicious
Modification of Source
Code Threat Scenario,
Subsection 6: Secure
Product Criteria and
Management

At a minimum, for all critical
software components and
external services that your
team operates and owns, have
you completed the attack
surface survey and threat
models for all such services?

 PW.1.1
PW.2.1

Threat Model Results
Documents

2.1 Secure Product
Criteria and
Management

2.2.1 Malicious
Modification of Source
Code Threat Scenario

Subsection 5.
Requirements to Design
/ Development Feature
Mapping

Do you have up to date threat
models for all critical
components your team ships
that have been reviewed by a
person trained in software
security and do you make this
document available to other
teams that pick up your
component?

 PW.1.1,
PW.2.1

Threat Model Results
Document

2.1 Secure Product
Criteria and
Management

Securing the Software Supply Chain: Recommended Practices for Developers 46

Has your team held a black-
box investigation for security?

 Black box test results 2.1 Secure Product
Criteria and
Management

2.3.1 Third-Party
Binaries Threat
Scenario

Do you have and use security
tools and methodology (e.g.
recommended by NISTIR
8397) for static, dynamic and
Software Composition Analysis
and ensure that all high
severity issues are addressed?

 PO.3.1 SAST, DAST, SCA test
results

2.1 Secure Product
Criteria and
Management

2.3.2 Selections and
Integration Threat
Scenario

Do you perform input fuzzing
as part of a regular process for
your component or product's
inputs?

 PW.8.2 Fuzzing/Dynamic
test results

2.1 Secure Product
Criteria and
Management

Do you have security testing as
part of your overall QA plan to
enhance the testing of specific
features of your product?

 Product test results 2.1 Secure Product
Criteria and
Management

Has your product or
components been identified as
needing penetration testing? If
so, are all issues found
recorded in a bug tracker, with
high priority defects set to
prevent shipment of the
product?

 PW.8.2 Penetration Test
Results

2.1 Secure Product
Criteria and
Management

Has your product or
components been identified as
needing red-team testing? If
so, are all issues found
recorded in a bug tracker, with
high priority defects set to
prevent shipment of the
product?

 Red-Team Test
Results

2.4.3 Signing Server
Exploits Threat Scenario

Has your product or
components been identified as
needing testing for security
gaps by an external party? If
so, has your code or systems
been tested for security gaps
by an external party (e.g. JFAC
Software Assurance providers,
pen testing, threat model

 Third-party Test
Results

2.1 Secure Product
Criteria and
Management

Securing the Software Supply Chain: Recommended Practices for Developers 47

reviews, vulnerability scan
tools and red-teams)?

Does your release include an
SBOM and confirmation that
no unacceptable security
vulnerabilities are pending,
binaries are digitally signed
and meet cryptographic
standards?

 SBOM

Product Bug
Tracking Report

2.1 Secure Product
Criteria and
Management

2.2.5
Defect/Vulnerability
Customer Issues Report
Scenario

2.2.6 External
Developer Extensions
Threat Scenario

2.3.5 Software Bill of
Material (SBOM) Threat
Scenario

2.5.1 Final Package
Validation Threat
Scenario

Are all public cloud resources
continuously monitored by a
tool that analyzes and alerts
for policy violations and
anomalies?

 Product Support /
Response Plan

2.1 Secure Product
Criteria and
Management

2.2.6 External
Development
Extensions Threat
Scenario

Are the alerts being actively
monitored?

 Product Support /
Response Plan

2.2.5 Defect/
Vulnerability Customer
Issues Report Scenario

Is there a process in place to
resolve policy violations
within a specific amount of
time?

 Product Support /
Response Plan

2.1 Secure Product
Criteria and
Management

2.2 Develop Secure
Code

2.2.5
Defect/Vulnerability
Customer Issues Report
Scenario

Develop Secure Code

Securing the Software Supply Chain: Recommended Practices for Developers 48

Are all of your security issues
tracked with a bug tracker and
scored, for example using
CVSSv3 scores to help
determine fix prioritization
and release scheduling?

 RV.2.1 Secure Software
Development
Lifecycle Process
document

Bug Tracker Report

2.1 Secure Product
Criteria and
Management

2.2.1 Malicious
Modification of Source
Code Threat Scenario

2.2.1.2. Automatic and
Manual Dynamic and
Static
Security/Vulnerability
Scanning

Do you use access-controlled
applications to store sensitive
vulnerability information for
all issues affecting production
code that is more restrictive
than plain bug tracker defects?

 PO.5.1 Secure Software
Development
Lifecycle Process
document

2.4.1 Build Chain
Exploits Threat Scenario

Does your team have a process
to reduce a class of
vulnerabilities based on
previously identified
vulnerabilities or incidents?

 PW.7.2 Secure Software
Development
Lifecycle Process
document

2.2.1 Malicious
Modification of Source
Code Threat Scenario

2.2.5
Defect/Vulnerability
Customer Issue Reports
Threat Scenario

Do you perform nightly builds
with automated regression
and security test to quickly
detect problems with recent
builds?

 Secure Software
Development
Lifecycle Process
document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 3: Nightly
Builds with Regression
Test Automation Plan

Are code check-ins gated by
code collaborators and source
control to prevent anyone
from accidentally or
intentionally submitting un-
reviewed code changes?

 PW.7.2 Secure Software
Development
Lifecycle Process
document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 1: Source
Control Check-In
Process

2.3.1 Malicious
Modification of Source
Code Threat Scenario

2.2.1 Malicious
Modification of Source
Code Threat Scenario:
Subsection 6. Secure
Software Development/
Programming Training

Securing the Software Supply Chain: Recommended Practices for Developers 49

Does the team require code
reviews for all code and build
scripts / configuration
changes?

 PW.7 Secure Software
Development
Lifecycle Process
document

2.4.1 Build Chain
Exploits Threat Scenario

Does the team measure and
analyze the quality of the code
review process?

 Secure Software
Development
Lifecycle Process
document

2.1 Secure Product
Criteria and
Management

2.2.1 Malicious
Modification of Source
Code Threat Scenario

Subsection 4. Code
Reviews

Do you ensure only required
modules are included in the
product and “unused” modules
and code out of scope of the
requirements and design
document are uninstalled or
removed, mitigating “living-
off-the-land” attacks and
decreasing the attack surface?

 Secure Software
Development
Lifecycle Process
document

Requirements
Document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 5:
Requirements to
Design/ Development
Feature Mapping

Do you map all your security
requirements to the software
component of the product and
track their
completion/adherence?

 Secure Software
Development
Lifecycle Process
document

Security
Requirements
Document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 5:
Requirements to
Design/ Development
Feature Mapping

Are unmodified third-party
libraries retrieved from a
common location such as a
secured persistent storage or
shared repository location out
of band of the development
process and not individually
built by your team?

 Secure Software
Development
Lifecycle Process
document

2.1 Secure Product
Criteria and
Management

2.2.4 Code Integration
Threat Scenario

2.3.1 Third-Party
Binaries Threat
Scenario

2.3.3 Obtain
Components from a
Known and Trusted
Supplier Threat
Scenario

Securing the Software Supply Chain: Recommended Practices for Developers 50

2.3.4 Component
Maintenance Threat
Scenario

Do you monitor new
vulnerabilities applicable to
your software e.g. using
registered vulnerability
notification services?

 RV.1.1 Secure Software
Development
Lifecycle Process
document

2.3 Verify Third-Party
Components

2.5.1 Final Package
Validation Threat
Scenario

Do you have and adhere to
responsible disclosure
requirements for all externally
identified vulnerabilities?

 Secure Software
Development
Lifecycle Process
document

2.2.5 Detect /
Vulnerability Customer
Issue Reports Threat
Scenario

Are all of your builds
continuously built and tested?

 Secure Software
Development
Lifecycle Process
document

2.4.2 Build Chain
Exploits; Advanced
Practices Threat
Scenario

Does a check-in immediately
trigger a build?

 Secure Software
Development
Lifecycle Process
document

2.4.2 Build Chain
Exploits; Advanced
Practices Threat
Scenario

Does a completed build
automatically go through some
acceptance testing?

 Secure Software
Development
Lifecycle Process
document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 3: Nightly
Builds with Regression
Test Automation

If the testing passes, is the
build automatically deployed
so others can consume it?

 PO.3.1 Secure Software
Development
Lifecycle Process
document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 3: Nightly
Builds with Regression
Test Automation

Verify Third-Party Components

Do you track all third-party
components you use directly
and all internal components in
a secure and persistent
repository?

 PS.1.1

PW.4.1

Secure Software
Development
Lifecycle Process
document

OSRB Approved List

Product/Component
Scan Results

2.2.2 Open source
Management Practices

2.3.1 Third-Party
Binaries Threat
Scenario

Do you have the requirement
for an Open source Review
Board to approve third-party

 PW.4.1

PW.4.4

Secure Software
Development

2.3.3 Obtain
Components from a
Known and Trusted

Securing the Software Supply Chain: Recommended Practices for Developers 51

libraries included in a product
and audit approved third-
party libraries for version
adherence and vulnerabilities?

Lifecycle Process
document

OSRB Approved List

Supplier Threat
Scenario

Do you remove or mitigate
critical known vulnerabilities
or end of life issues of third-
party components before each
release?

 PW.4.5 Secure Software
Development
Lifecycle Process
document

OSRB Approved List

2.2.4 Code Integration
Threat Scenario

When considering the
selection of a third-party
component, do use a known
and trusted supplier that has a
proven record for secure
coding practices and quality
delivery of their components?

 PO.1.3 Secure Software
Development
Lifecycle Process
document

OSRB Approved List

2.3.3 Obtain
Components from a
Known and Trusted
Supplier Threat
Scenario

Within a developer
environment, do you monitor
and approve of all IDEs and
third-party
development/debugging
extensions to ensure their
adoption does not weaken the
security posture of the local
development environment?

 Secure Software
Development
Lifecycle Process
document

2.2.3 Use of Secure
Third-Party Software
Tool-Chains and
Compatibility Libraries

2.2.6 External
Development
Extensions Threat
Scenario

Do you have a trusted
repository to support ongoing
software composition analysis
and security testing for all
external and downloaded
modules?

 Secure Software
Development
Lifecycle Process
document

2.2.4 Code Integration
Threat Scenario

Harden the Build Environment

Have you completed attack
surface investigation and
threat modeling for your build
environment?

 Threat/Risks Model
Results Documents

2.1 Secure Product
Criteria and
Management

2.2.1 Malicious
Modification of Source
Code Threat Scenario:
Subsection 7. Harden
the Development
Environment

Securing the Software Supply Chain: Recommended Practices for Developers 52

Do you ensure that only in
very rare cases, the build
process accesses the open
Internet and these cases are
documented and approved
within the security plan?

 PO.5.1 Secure Software
Development
Lifecycle Process
document

2.4.1 Build Chain Threat
Scenario

Do you limit and secure access
to your development
environment to essential
administrators?

 Secure Software
Development
Lifecycle Process
document

2.4 Harden the
Development
Environment

Do you monitor the build chain
for unauthorized access and
modifications?

 Secure Software
Development
Lifecycle Process
document

2.4 Harden the
Development
Environment

Do you document approval
and audit logs of build chain
modifications?

 Secure Software
Development
Lifecycle Process
document

2.4 Harden the
Development
Environment

Do you enforce build-chain
configuration defensive
techniques required to narrow
the attack vectors of the
components and products
being developed?

 Secure Software
Development
Lifecycle Process
document

Build Logs

2.2.3 Use of Secure
Development Build
Configurations

Do you ensure the integrity of
the individual development
environment, caring to harden
the development systems
within the build pipeline?

 Secure Software
Development
Lifecycle Process
document

2.2.3 Secure Developer
Environment

Does your build process
encrypt data in transit?

 Secure Software
Development
Lifecycle Process
document

2.5.3 Secure the
Distribution System
Threat Scenario

Does each critical server
within the build chain owned
by the team have a clearly
defined owner responsible for
patch maintenance?

 PO.5.1 Secure Software
Development
Lifecycle Process
document

2.1 Secure Product
Criteria and
Management

2.4.2 Build Chain
Exploits; Advanced
Practices Threat
Scenario

Do you have a requirement
that server patch levels are
checked periodically?

 Secure Software
Development
Lifecycle Process
document

2.1 Secure Product
Criteria and
Management

Securing the Software Supply Chain: Recommended Practices for Developers 53

Is unnecessary outbound
internet connectivity blocked?

 PO.5.1 Secure Software
Development
Lifecycle Process
document

2.2.3 Secure
Development Practices
Threat Scenario
Subsection 1: Secure the
Developer Environment

2.4.1 Build Chain
Exploits Threat Scenario

Is unnecessary inbound
internet connectivity blocked?

 PO.5.1 Secure Software
Development
Lifecycle Process
document

2.2.3 Secure
Development Practices
Threat Scenario
Subsection 1: Secure the
Developer Environment

2.4.1 Build Chain
Exploits Threat Scenario

Is the integrity of the builds
verified to ensure no malicious
changes have occurred during
the build and packaging
process, for example, are two
or more builds performed in
different protected
environments and the results
compared to ensure the
integrity of the build process?

 Secure Software
Development
Lifecycle Process
document

2.4.2 Build Chain
Exploits; Advanced
Practices Threat
Scenario

Do you use the toolchain to
automatically gather
information that informs
security decision-making?

 P0.4.2 Secure Software
Development
Lifecycle Process
document

Does the tool chain
automatically scan for
vulnerabilities and stop the
build process and report
errors when detected, if so
configured?

 PS.1.1

PW.7.2

Secure Software
Development
Lifecycle Process
document

2.2.1 Malicious
Modification of Source
Code Threat Scenario
Subsection 2: Automatic
and Manual Dynamic
and Static Security /
Vulnerability Scanning

2.2.4 Code Integration
Threat Scenario

Do you store access
credentials (e.g. hashes for
passwords) and secrets in a
secure (e.g. encrypted)
location such as a secure vault?

 2.4.1 Build Chain
Exploits Threat Scenario

Secure Code Delivery

Securing the Software Supply Chain: Recommended Practices for Developers 54

Do you perform binary
composition analysis of the
final package?

 Secure Software
Development
Lifecycle Process
document

2.5.1 Final Package
Validation Threat
Scenario

Do you have a Software Bill of
Materials (SBOM) that satisfies
the contracts?

 PS.3.2

PW.4.1

 2.5.1 Final Package
Validation Threat
Scenario

Do you digitally sign all
required binaries you ship?

 PS.1.1

PS.2.1

Secure Software
Development
Lifecycle Process
document

2.5.2 Instrument
Integrity Checks, Code
Signing and Hashing
Threat Scenario

Do you ensure that no
globally-trusted certificates
are directly accessible and use
a dedicated, protected signing
server when signing is
required?

 Secure Software
Development
Lifecycle Process
document

2.4.3 Signing Server
Exploits

Are you using organization
approved Configuration
Management tools to sign your
shipping binaries?

 Secure Software
Development
Lifecycle Process
document

2.4.2 Build Chain
Exploits; Advanced
Practices Threat
Scenario

Do you comply with the use of
cryptography recommended
by the organization’s security
policy?

 PS.1.1 Secure Software
Development
Lifecycle Process
document

2.5.3 Secure the
Distribution System
Threat Scenario

2.4.3 Signing Server
Exploits

Securing the Software Supply Chain: Recommended Practices for Developers 55

3.5 Appendix E: Informative References

Abbreviation Document Name

ACM Communications of the ACM 17, “The Protection of Information in Computer
Systems”. Available at
(http://web.mit.edu/Saltzer/www/publications/protection/index.html)

BSIMM10 Migues S, Steven J, Ware M (2019) Building Security in Maturity Model (BSIMM)
Version 10. Available at (https://www.bsimm.com/download/)

CISA Cybersecurity & Infrastructure Security Agency. Available at
(https://www.cisa.gov/defining-insider-threats)

CISCO_SDLC Cisco. 2021. Cisco Secure Development Lifecycle. Available at
(https://www.cisco.com/c/dam/en_us/about/doing_business/trust-
center/docs/cisco-secure-development-lifecycle.pdf)

DoD CIO DoD Enterprise, 2021. DevSecOps Fundamentals Lifecycle Phases Version 2.0.
Available at
(https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevS
ecOpsFundamentals.pdf)

EO14028 EOP. 2021. “Improving the Nation’s Cybersecurity”, Executive Order 14028, 86
FR 26633, Document number 2021- 10460. Available at
(https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/)

FIPS140 National Institute of Standards and Technology. 2019. “Security Requirements
for Cryptographic Modules.” Available at
(https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf).

IDASOAR Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art Resources
(SOAR) for Software Vulnerability Detection, Test, and Evaluation 2016.
(Institute for Defense Analyses [IDA], Alexandria, VA), IDA Paper P-8005.
Available at (https://www.ida.org/research-and-
publications/publications/all/s/st/stateoftheartresources-soar-for-software-
vulnerability-detection-test-and-evaluation-2016)

INTEL Intel. Software Supply Chain Threats; A White Paper Version 1.0, July 2021.
Available at https://www.intel.com/content/www/us/en/security/supply-
chain-threat-whitepaper.html

ISO27034 International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC), Information technology – Security techniques –
Application security – Part 1: Overview and concepts, ISO/IEC 27034-1:2011,
2011. Available at (https://www.iso.org/standard/44378.html)

MITRE_CAPEC MITRE. 2021. Common Attack Pattern Enumeration and Classification. Available
at (https://capec.mitre.org/data/definitions/437.html)

MITRE_CVE MITRE. 2021. “Common Vulnerability and Exposure, CVE.” 2021. Available at
(https://cve.mitre.org/index.html).

https://www.cs.virginia.edu/%7Eevans/cs551/saltzer/
https://www.cs.virginia.edu/%7Eevans/cs551/saltzer/
http://web.mit.edu/Saltzer/www/publications/protection/index.html
https://www.bsimm.com/download/
https://www.cisa.gov/defining-insider-threats
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecOpsFundamentals.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecOpsFundamentals.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheartresources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheartresources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheartresources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.iso.org/standard/44378.html
https://capec.mitre.org/data/definitions/437.html
https://cve.mitre.org/index.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.intel.com/content/www/us/en/security/supply-chain-threat-whitepaper.html
https://www.intel.com/content/www/us/en/security/supply-chain-threat-whitepaper.html

Securing the Software Supply Chain: Recommended Practices for Developers 56

MSSDL Microsoft (2019) Security Development Lifecycle. Available at
https://www.microsoft.com/en-us/sdl

NASASTD8739 National Aeronautics and Space Administration. 2021. “SOFTWARE ASSURANCE
AND SOFTWARE SAFETY STANDARD, NASA-STD-8739.8A.” Available at
(https://standards.nasa.gov/sites/default/files/standards/NASA/PUBLISHED/A
1/nasa-std-8739.8a.pdf).

NICCS National Initiative for Cybersecurity Careers and Studies, National Initiative for
Cybersecurity Education. 2021 Workforce Framework for Cybersecurity (NICE
Framework). Available at (https://niccs.cisa.gov/workforce-
development/cyber-security-workforce-framework)

NISTCSF National Institute of Standards and Technology. 2018. “Framework for
Improving Critical Infrastructure Cybersecurity, Version 1.1.” Available at
(https://doi.org/10.6028/NIST.CSWP.04162018)

NISTMSDV National Institute of Standards and Technology. 2018. “Guidelines on Minimum
Standards for Developer Verification of Software”. available at
(https://www.nist.gov/system/files/documents/2021/07/13/Developer%20Ve
rification%20of%20Software.pdf)

NTIASBOM National Telecommunications and Information Administration. 2021. “The
Minimum Elements for a Software Bill of Materials (SBOM).” Available at
(https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-
materials-sbom)

NVD National Vulnerability Database. Available at (https://www.nist.gov/programs-
projects/national-vulnerability-database-nvd)

OWASP_ASVS Open Web Application Security Project (2019) OWASP Application Security
Verification Standard 4.0. Available at https://github.com/OWASP/ASVS

OWASP_SAMM Open Web Application Security Project (2017) Software Assurance Maturity
Model Version 1.5. Available at (https://owasp.org/www-pdf-
archive/SAMM_Core_V1-5_FINAL.pdf)

OWASP_SCVS OWASP. 2021. “OWASP Software Component Verification Standard.” Retrieved
Sep. 25, 2021 (https://owasp.org/www-project-software-component-
verification-standard/).

OWASP_TEST Open Web Application Security Project (2014) OWASP Testing Guide 4.0.
Available at (https://owasp.org/www-project-web-security-testing-
guide/assets/archive/OWASP_Testing_Guide_v4.pdf)

PCI_SSLRAP Payment Card Industry (PCI) Security Standards Council (2019) Secure Software
Lifecycle (Secure SLC) Requirements and Assessment Procedures Version 1.0.
Available at
(https://www.pcisecuritystandards.org/document_library?category=sware_sec
#results)

SC_AGILE Software Assurance Forum for Excellence in Code (2012) Practical Security
Stories and Security Tasks for Agile Development Environments. Available at
(http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf)

https://standards.nasa.gov/sites/default/files/standards/NASA/PUBLISHED/A1/nasa-std-8739.8a.pdf
https://standards.nasa.gov/sites/default/files/standards/NASA/PUBLISHED/A1/nasa-std-8739.8a.pdf
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework
https://doi.org/10.6028/NIST.CSWP.04162018
https://www.nist.gov/publications/guidelines-minimum-standards-developer-verification-software
https://www.nist.gov/publications/guidelines-minimum-standards-developer-verification-software
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://github.com/OWASP/ASVS
https://owasp.org/www-pdf-archive/SAMM_Core_V1-5_FINAL.pdf
https://owasp.org/www-pdf-archive/SAMM_Core_V1-5_FINAL.pdf
https://owasp.org/www-project-software-component-verification-standard/
https://owasp.org/www-project-software-component-verification-standard/
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://www.pcisecuritystandards.org/document_library?category=sware_sec%23results
https://www.pcisecuritystandards.org/document_library?category=sware_sec%23results
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf
https://www.microsoft.com/en-us/sdl

Securing the Software Supply Chain: Recommended Practices for Developers 57

SC_FPSSD Software Assurance Forum for Excellence in Code (2018) Fundamental Practices
for Secure Software Development: Essential Elements of a Secure Development
Lifecycle Program, Third Edition. Available at (https://safecode.org/wpcontent/
uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev
elopment_March_2018.pdf)

SC_SIC Software Assurance Forum for Excellence in Code (2010) Software Integrity
Controls: An Assurance-Based Approach to Minimizing Risks in the Software
Supply Chain. Available at
(http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0
610.pdf)

SC_TPC Software Assurance Forum for Excellence in Code (2017) Managing Security
Risks Inherent in the Use of Third-Party Components. Available at
(https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TPC_Whit
epaper.pdf)

SC_TTM Software Assurance Forum for Excellence in Code (2017) Tactical Threat
Modeling. Available at
(https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TM_White
paper.pdf)

SLSA The Linux Foundation. 2021. “Improving artifact integrity across the supply
chain – SLSA.” Available at (https://slsa.dev/)

SP80050 National Institute of Standards and Technology. 2021. “PRE-DRAFT Call for
Comments: Building a Cybersecurity and Privacy Awareness and Training
Program, SPS 800-50 Rev 1.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-50/rev-1/draft).” Retrieved
Sep. 25, 2021.

SP80052 National Institute of Standards and Technology. 2020. “Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS)
Implementations, SP 800-52 Rev. 2.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final).

SP80053 National Institute of Standards and Technology. 2020. “Security and Privacy
Controls for Information Systems and Organizations. Available at
(https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final)

SP80057 National Institute of Standards and Technology. 2020. “Recommendation for Key
Management: Part 1 – General, SP 800-57 Part 1 Rev. 5.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final)

SP800160 National Institute of Standards and Technology. 2018. “Systems Security
Engineering.” Available at (https://doi.org/10.6028/NIST.SP.800-160v1)

SP800161 "National Institute of Standards and Technology. 2021. ""Supply Chain Risk
Management Practices for Federal Information Systems and Organizations.""
Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf)"

https://safecode.org/wpcontent/%20uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev%20elopment_March_2018.pdf
https://safecode.org/wpcontent/%20uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev%20elopment_March_2018.pdf
https://safecode.org/wpcontent/%20uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev%20elopment_March_2018.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://slsa.dev/
https://csrc.nist.gov/publications/detail/sp/800-50/rev-1/draft
https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://doi.org/10.6028/NIST.SP.800-160v1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf

Securing the Software Supply Chain: Recommended Practices for Developers 58

SP800172 ”Enhanced Security Requirements for Protecting Controlled Unclassified
Information: A Supplement to NIST SP 800-171. Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-172.pdf)

SP800175B National Institute of Standards and Technology. 2020. “Guideline for Using
Cryptographic Standards in the Federal Government: Cryptographic
Mechanisms. SP 800-175B Rev. 1.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-175b/rev-1/final).

SP800181 National Institute of Standards and Technology, National Initiative for
Cybersecurity Education. 2020. “Workforce Framework for Cybersecurity (NICE
Framework).” Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-181r1.pdf)

SP800193 National Institute of Standards and Technology. 2018. “Platform Firmware
Resiliency Guidelines, SP-800-193.” Available at
(https://csrc.nist.gov/publications/detail/sp/800-193/final).

SP800207 National Institute of Standards and Technology. 2020. “Zero-Trust Architecture,
SP-800-207.”
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

SSDF National Institute of Standards and Technology. 2020. “Mitigating the Risk of
Software Vulnerabilities by Adopting a Secure Software Development
Framework (SSDF).” Available at
(https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf)

SWEBOK3 IEEE Computer Society. 2014. Guide to the Software Engineering Body of
Knowledge. Available at (https://www.computer.org/education/bodies-of-
knowledge/software-engineering/v3)

SYNOPSYS Synopsys. 2021. “Synopsys Information Security Requirements for Vendors.”
Available at https://www.synopsys.com/company/legal/info-security.html

ZDNET IBM, ZDNET. 2021. “Managing a Software as a Vendor Relationship: Best
Practices”. Available at (https://www.zdnet.com/article/managing-a-software-
as-a-service-vendor-relationship-best-practices/)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-172.pdf
https://csrc.nist.gov/publications/detail/sp/800-175b/rev-1/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-181r1.pdf
https://csrc.nist.gov/publications/detail/sp/800-193/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf
https://www.computer.org/education/bodies-of-knowledge/software-engineering/v3
https://www.computer.org/education/bodies-of-knowledge/software-engineering/v3
https://www.synopsys.com/company/legal/info-security.html
https://www.zdnet.com/article/managing-a-software-as-a-service-vendor-relationship-best-practices/
https://www.zdnet.com/article/managing-a-software-as-a-service-vendor-relationship-best-practices/

Securing the Software Supply Chain: Recommended Practices for Developers 59

3.6 Appendix F: Acronyms Used in This Document

Acronym Meaning
API Application Programming Interface
ASLR Address Space Layout Randomization
CI/CD Continuous Integration/Continuous Delivery
CNSSI Committee on National Security Systems Instruction
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DAST Dynamic Application Security Testing
DLP Data Loss Prevention
DUNS Data Universal Numbering System
EO Executive Order
EOL End of Life
ESF Enduring Security Framework
FARS/DFARS Federal Acquisition Regulation/Defense Federal Acquisition Regulation
FedRAMP Federal Risk and Authorization Management Program
FIPS Federal Information Process Standards
HIPAA Health Insurance Portability and Accountability Act
HSM Hardware Security Module
HTTPS Hypertext Transfer Protocol Secure
IAST Interactive Application Security Testing
IDE Integrated Development Environment
LAN Local Area Network
MFA Multi Factor Authentication
MITM Man in The Middle
ML Machine Language
NIAP National Information Assurance Partnership
NIST National Institute of Standards and Technology (US DOC)
NTIA National Telecommunications and Information Administration (US DOC)
NVD National Vulnerability Database
OpenSSF Open Source Security Foundation
OSRB Open source Review Board
OSS Open Source Software
OWASP Open Web Application Security Project
PO Prepare Organization

Securing the Software Supply Chain: Recommended Practices for Developers 60

PS Protect Software
PSIRT Product Security Incident Response Team
PW Produce Well-Secured Software
QA Quality Assurance
RACI Responsible, Accountable, Consulted, and Informed
RASP Runtime Application Self-Protection
RM Risk Management
ROP Return-oriented Programming
RV Respond to Vulnerabilities
SaaS Software-as-a-Service
SAST Static Application Security Testing
SBOM Software Bill of Material
SCA Software Composition Analysis
SCM Supply Chain Management
SCM Source Code Management
SCRM Supply Chain Risk Management
SCVS Software Component Verification Standard
SDLC Software Development Lifecycle
SEH Software Exception Handler
SHA Secure Hash Algorithm
SIEM Security Information and Event Management
SLSA Supply-chain Levels for Software Artifacts
SOUP Software of Unknown Provenance
SOX Sarbanes-Oxley Act
SPDX Software Package Data eXchange
SSDF Secure Software Development Framework
SSH Socket Shell
SwA Software Assurance
SWID Software Identification
TLS Transport Layer Security
TSA Time Stamp
UML Unified Modeling Language
VAR Value-added Reseller
VCS Version Control System
VM Virtual Machine
VPN Virtual Private Network

	SECURING THE SOFTWARE SUPPLY CHAIN RECOMMENDED PRACTICES GUIDE FOR DEVELOPERS
	Executive Summary
	DISCLAIMER
	DISCLAIMER OF ENDORSEMENT
	PURPOSE
	CONTACT

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Document overview

	2 Developer
	2.1 Secure product criteria and management
	Threat scenarios
	Recommended mitigations
	Architecture and design documents
	The development team
	Threat models
	Security test plans
	Release criteria
	Product support and vulnerability handling policies
	Assessment and training
	Security procedures and processes
	Alignment with SSDF

	2.2 Develop Secure Code
	2.2.1 Modification or Exploitation of Source Code by Insiders
	2.2.2 Open Source Management Practices
	2.2.3 Secure Development Practices
	2.2.4 Code Integration
	2.2.5 Defect/Vulnerability Customer Reported Issue
	2.2.6 External Development Extensions

	2.3 Verify Third-Party Components
	Third-Party Binaries
	2.3.2 Selections and Integration
	2.3.3 Obtain Components from a Known and Trusted Supplier
	2.3.4 Component Maintenance
	2.3.5 Software Bill of Materials (SBOM)

	2.4 Harden the Build Environment
	2.4.1 Build Chain Exploits
	2.4.2 Exploited Signing Server

	2.5 Deliver Code
	2.5.1 Final Package Validation
	2.5.2 Potential Tactics to Compromise the Software Packages and Updates
	2.5.3 Compromises of the Distribution System

	3 Appendices
	3.1 Appendix A: Crosswalk between Scenarios and SSDF
	3.2 Appendix B: Dependencies
	3.3 Appendix C: Supply Chain Levels for Software Artifacts (SLSA)
	3.4 Appendix D: Artifacts and Checklist
	3.5 Appendix E: Informative References

	3.6 Appendix F: Acronyms Used in This Document

