### AGENDA



### FORMER NAVAL AIR STATION (NAS) MOFFETT FIELD RESTORATION ADVISORY BOARD MEETING

| Date/Time: | Thursday, October 14, 2021, 7:00 to 9:00 p.m. |
|------------|-----------------------------------------------|
| Location:  | Microsoft Teams Virtual Meeting               |

#### 7:00 to 7:10 Welcome! Review Agenda

- Virtual meeting house rules and how-to's
- Review Agenda
- RAB Member Introductions
- Regulatory Agency Introductions
- Navy Team and Others
- 7:10 to 7:25RAB Co-Chairs UpdateGreg Unangst and Chris Yantos





### FORMER NAVAL AIR STATION (NAS) MOFFETT FIELD RESTORATION ADVISORY BOARD MEETING

7:25 to 8:30 Navy Environmental Project Updates

#### \*Questions will be handled after each respective presentation (5 minutes for each)

Presenters – Navy Staff (Brandon Mills and Wilson Doctor)

- Site 28 Traffic Island
- Site 28 Vapor Intrusion
- 8:30 to 8:40 Regulatory Agency Update
- 8:40 to 8:55 Public Comment/Questions Period

\*This is a time for community members to ask questions or make comments not related to the presentations





### FORMER NAVAL AIR STATION (NAS) MOFFETT FIELD RESTORATION ADVISORY BOARD MEETING

- 8:55 to 9:00Future MeetingsDiscuss Future RAB Schedule and TopicsSet date for next RAB Meeting
- 9:00 End of RAB Meeting

RAB meeting material is posted on the Navy's environmental Web page at: <u>https://www.bracpmo.navy.mil/brac\_bases/california/former\_nas\_moffett\_field.html</u>



### THANK YOU FOR JOINING THE FORMER NAS MOFFETT FIELD RAB VIRTUAL MEETING!





### BACKGROUND



- The selected remedy and Remedial Action Objectives for Site 28 were established in the 1989 Record of Decision (ROD), 1990 Explanation of Significant Differences (ESD), 1996 ESD, and the 2010 ROD Amendment
  - Source reduction through soil excavation and groundwater extraction and treatment
  - Monitoring and evaluating the effectiveness of the remedy
- The West-Side Aquifers Treatment System (WATS) provides source removal via groundwater extraction
  - Although WATS is generally effective at Site 28, localized "hot spots" (source area) existed within the groundwater layers

### **Remedial Design/Remedial Action (RD/RA)**



- Source Reduction in shallow groundwater (known as Upper A aquifer)
  - In-situ Bioremediation (ISB) to degrade contaminants of concern (COCs)
    - ISB Treatments will be beneficial for:
      - optimizing the cleanup effort while working around existing infrastructure
      - Potentially decrease the use of pretreatment unit prior to delivery to WATS
  - Install extraction well in the treatment area for further source reduction
  - Replace extraction well EA1-1 (existing) in a new location to optimize the capture zone of groundwater
- Source Reduction in deeper groundwater
  - ISB to degrade COCs
  - Install an extraction well screened in the Lower A aquifer for source reduction and control downward vertical migration of contaminants.



- Install an extraction well screened in the Lower A-Aquifer immediately SE of Bldg 6, near well 28SI-04
- Determine the vertical extent of contaminants in B2-Aquifer by installing a monitoring well or through Geoprobe sampling
- Quarterly performance monitoring of the in-situ bioremediation
- Pretreat extracted groundwater through a temporary Advanced Oxidation process for Water treatment – Hydrogen Peroxide and Ozone to destroy organic compounds (HiPox) system
- Operate and monitor the remedy to ensure performance in accordance with Remedial Design/ Remedial Action Work Plan objectives
- Ultimately Transfer Operation & Maintenance to NASA-Ames

### **RD/RA Site Plan**







September 14, 2020: Mobilized to install new monitoring and extraction wells

≻October 7-8, 2020: Performed Baseline Sampling

- ➢ January/February 2021: Performed ISB injections
- ≻March 2021: Performed second round ISB injections
- February 2021-Current: Continue construction of well vaults, conveyance lines temporary treatment system
- ➤July 2021: Performed first quarterly ISB monitoring event

### Remedial Action Implementation Upper A Aquifer PCE Baseline Concentrations





BRAC Program Management Office.

## Remedial Action Implementation Lower A Aquifer PCE Baseline Concentrations





### **Remedial Action Implementation Upper A-Aquifer**



|              |                        |                   |                 | Parameter:         | PCE     | TCE    | cis-1,2-DCE | trans-1,2-DCE | 1,1-DCE | Vinyl Chloride | 1,1-DCA | DHC       | Total Organic<br>Carbon |
|--------------|------------------------|-------------------|-----------------|--------------------|---------|--------|-------------|---------------|---------|----------------|---------|-----------|-------------------------|
|              |                        |                   | Pro             | ject Action Limit: | 5       | 5      | 6           | 6             | 6       | 0.5            | 5       |           |                         |
| Well ID      | Purpose                | Aquifer           | Screen Interval | Sample Date        | μg/L    | μg/L   | μg/L        | μg/L          | μg/L    | μg/L           | μg/L    | cells/mL  | mg/L                    |
| 280W-09      |                        |                   | 12-17           | 09/19/16           | 0.71J   | 5.3    | 1,200       | NA            | NA      | 85             | NA      | nc        | nc                      |
|              | 100                    |                   |                 | 09/27/18           | <0.13   | 1.8    | 1,000       | <3.8          | 13      | 94             | 13      | nc        | nc                      |
|              | ISB<br>Monitoring      | Upper A (WT)      |                 | 10/01/20           | <1.3    | 1.0    | 730         | <1.5          | 7.6     | 380            | 13      | nc        | nc                      |
|              | wontoning              |                   |                 | 10/07/20           | 0.26J   | 0.25J  | 370         | 0.65J         | 4.1     | 350            | 14      | nc        | 1.0                     |
|              |                        |                   |                 | 07/06/21           | <0.15   | <0.15  | 67          | <0.15         | <0.25   | 7.5            | <0.15   | nc        | 705                     |
|              | 10.0                   |                   | 24-29           | 06/20/11           | 0.29J   | 390    | 150         | 0.46J         | 25      | 0.55           | 7.5     | nc        | 0.509J                  |
| 280W-10      | ISB<br>Monitoring      | Upper A           |                 | 10/07/20           | 3.8     | 24     | 390         | 2.2           | 4.0     | 97             | 5.2     | nc        | 0.61                    |
|              | wontoning              |                   |                 | 07/06/21           | <0.15   | 1.7    | 28          | <0.15         | <0.25   | 1.4            | <0.15   | nc        | 715                     |
| 2000420      | ISB                    | Linner A          | 45.05           | 10/07/20           | 18,000  | 720J   | 390J        | 3.2           | 9.3     | 24             | 5.0     | <5.00E-01 | 1.1                     |
| 28077-30     | Monitoring             | Upper A           | 15-35           | 07/07/21           | 37      | 480    | 5,700       | 200           | 0.97J   | 94             | <0.15   | 3.68E+05  | 314                     |
|              | 10.0                   |                   | 15-35           | 10/07/20           | 540     | 290    | 1,600       | 2.8           | 7.5     | 1,200          | 0.64J   | <5.00E-01 | 5.3                     |
| 280W-31      | ISB<br>Monitoring      | Upper A           |                 |                    | 520     | 280    | 1,600       | 2.7           | 7.4     | 1,200          | 0.57J   | nc        | nc                      |
|              | wontoning              |                   |                 | 07/07/21           | <0.3    | 0.40J  | 99          | 0.97J         | <0.25   | 160            | 1.1     | 9.90E+04  | 98.3                    |
| 200044 22    | ISB                    | 11 4              | 15-35           | 10/07/20           | 2.4     | 260    | 150         | 1.2           | 7.5     | 4.7            | 4.1     | 9.00E-01  | 1.2                     |
| 28077-32     | Monitoring             | Upper A           |                 | 07/06/21           | <0.15   | <0.15  | 3.0         | <0.15         | <0.25   | <0.15          | <0.15   | 1.33E+02  | 153                     |
|              |                        | Upper A (WT)      | 8-18            | 09/10/15           | 120,000 | 4,800  | 1,400       | 6.9J          | 31      | 5.8J           | 7.5J    | nc        | nc                      |
|              | ISB & RA<br>Monitoring |                   |                 | 10/04/16           | 120,000 | 33,000 | 75,000      | 9.0           | 3.9     | 4200           | 0.29J   | nc        | nc                      |
| 28SI-16      |                        |                   |                 | 10/01/18           | 38,000  | 16,000 | 8,200       | <500          | 25      | 750            | 5.7     | nc        | nc                      |
|              |                        |                   |                 | 10/07/20           | 140,000 | 13,000 | 4,900       | 52            | 27      | 650J           | 5.2     | 1.20E+00  | 2.0                     |
|              |                        |                   |                 | 07/07/21           | 10,000  | 10,000 | 1,200,000   | 710           | 50      | 4,300          | <0.15   | 3.86E+05  | 78.7                    |
|              |                        | Upper A (WT)      | 7-17            | 09/23/15           | <50     | <50    | 1,600       | <25           | 30J     | 200            | 31J     | nc        | nc                      |
|              | ISB<br>Monitoring      |                   |                 | 09/19/16           | <15     | <13    | 1,600       | NA            | NA      | 250            | NA      | nc        | nc                      |
|              |                        |                   |                 | 09/27/18           | <0.13   | 1.2    | 820         | <3.8          | 28      | 79             | 27      | nc        | nc                      |
| WNX-2        |                        |                   |                 | 10/01/20           | <0.65   | 0.90   | 380         | 0.75J         | 6.5     | 86             | 11      | nc        | nc                      |
|              |                        |                   |                 | 10/08/20           | <0.15   | <0.15  | <0.15       | <0.15         | <0.25   | 0.40J          | 0.17J   | nc        | 1.7                     |
|              |                        |                   |                 | 07/06/21           | <0.15   | <0.15  | 31          | 1.2           | <0.25   | 12             | <0.15   | nc        | 127                     |
| EA4 7        | Extraction             | 11 6              | 45.00           | 10/08/20           | 0.74J   | 0.65J  | 31          | <0.15         | <0.25   | 73             | 4.9     | nc        | 1.8                     |
| EA1-7 Monito | Monitoring             | onitoring Upper A | oper A 15-30    | 07/08/21           | <0.15   | 0.53J  | 2.2         | <0.15         | <0.25   | <0.15          | 2.9     | nc        | 5.6                     |

### **Remedial Action Implementation Upper A-Aquifer**





### **Remedial Action Implementation Upper A-Aquifer**





### **Remedial Action Implementation Lower A-Aquifer**



|                       |                        |          |                 | Parameter:  | PCE    | TCE    | cis-1,2-DCE | trans-1,2-DCE | 1,1-DCE | Vinyl Chloride | 1,1-DCA | DHC      | Total Organic<br>Carbon |
|-----------------------|------------------------|----------|-----------------|-------------|--------|--------|-------------|---------------|---------|----------------|---------|----------|-------------------------|
| Project Action Limit: |                        |          |                 |             | 5      | 5      | 6           | 6             | 6       | 0.5            | 5       |          |                         |
| Well ID               | Purpose                | Aquifer  | Screen Interval | Sample Date | μg/L   | µg/L   | µg/L        | µg/L          | μg/L    | µg/L           | µg/L    | cells/mL | mg/L                    |
| 280W-11               | ISB<br>Monitoring      |          | 40-50           | 09/10/15    | 27     | 240    | 32          | 0.17J         | 15      | 0.57           | 3.1     | nc       | 0.875J                  |
|                       |                        |          |                 | 10/04/16    | 3.8    | 210    | 300         | 2.6           | 12      | 29             | 2.6     | nc       | 0.432J                  |
|                       |                        | Louver A |                 | 09/27/18    | 2.3    | 67     | 93          | 0.75J         | 3.8     | 79             | 1.4     | nc       | nc                      |
|                       |                        | Lower A  |                 | 10/01/20    | 1.9    | 57     | 76          | 0.80J         | 3.4     | 26             | 0.98J   | nc       | nc                      |
|                       |                        |          |                 | 10/07/20    | 2.7    | 140    | 200         | <0.15         | 8.5     | 65             | 2.0     | nc       | 0.57                    |
|                       |                        |          |                 | 07/06/21    | <0.15  | 1.6    | 28          | <0.15         | <0.25   | 2.4            | <0.15   | nc       | 1,400                   |
| 280W-25               |                        | Lower A  | 62-72           | 09/09/15    | 6.5    | 1,900  | 15          | 1.4           | 5.1     | <0.2           | 0.21J   | nc       | 0.687J                  |
|                       | ISB<br>Monitoring      |          |                 | 10/04/16    | 2.5    | 1,400  | 890         | 6.4           | 8.2     | 37             | 0.25J   | nc       | 1.15                    |
|                       |                        |          |                 | 10/07/20    | 4.9    | 310    | 600         | 3.0           | 11      | 34             | <0.15   | nc       | 1.0                     |
|                       |                        |          |                 | 07/08/21    | <0.15  | 3.3    | 160         | <0.15         | <0.25   | <0.15          | <0.15   | nc       | 1,410                   |
| 00014400              | ISB<br>Monitoring      | Lawar A  | 40-55           | 10/07/20    | 900    | 100    | 280         | 1.1           | 2.9     | 230            | <0.15   | 3.40E+01 | 1.5                     |
| 28000-33              |                        | Lower A  |                 | 07/07/21    | 0.99J  | 3.3    | 110         | 6.0           | <0.25   | 24             | <0.15   | 6.62E+04 | 434                     |
| 2001/024              | ISB<br>Monitoring      | Lower A  | 40-55           | 10/07/20    | 330    | 90     | 310         | 0.90J         | 0.59J   | 140            | <0.15   | 3.83E+01 | 4.9                     |
| 28000-34              |                        |          |                 | 07/07/21    | <0.15  | <0.15  | 3.9         | 0.18J         | <0.25   | 5.1            | <0.15   | 1.48E+05 | 42.6                    |
|                       | ISB & RA<br>Monitoring | Lower A  | 63-68           | 10/14/14    | 1,000  | 1,900  | 190,000     | 270           | 130     | 21,000         | <20     | nc       | 4.64                    |
|                       |                        |          |                 | 09/10/15    | 28,000 | 12,000 | 180,000     | 270           | 290     | 44,000         | 0.50J   | 1.46E+03 | 4.80                    |
|                       |                        |          |                 | 10/04/16    | 1.4    | 1.3    | 310,000     | 6.5           | 7.3     | 160,000        | <0.2    | 178      | 342                     |
| 28SI-13               |                        |          |                 | 09/28/18    | 39     | 20     | 67,000      | <2,500        | 83      | 77,000         | <0.5    | nc       | nc                      |
|                       |                        |          |                 | 10/01/20    | 18     | 33     | 190,000     | <1,500        | 100     | 460,000        | <17     | nc       | nc                      |
|                       |                        |          |                 | 10/07/20    | 9.3J   | 8.9J   | 160,000     | 740           | 170     | 200,000        | <7.5    | 3.26E+06 | 263                     |
|                       |                        |          |                 | 07/07/21    | 6.0    | 28     | 9,600       | 14            | 6.4     | 6,700          | <0.15   | 1.02E+04 | 554                     |
| EA2-4 N               | Extraction             | Lower A  | er A 55-75      | 10/08/20    | 2.6    | 0.83J  | 360         | 0.63J         | 5.9     | 41             | 13      | nc       | 3.0                     |
|                       | Monitoring             |          |                 | 07/08/21    | 8.3    | 44     | 240J        | 1.2           | <0.25   | 37             | <0.15   | nc       | 4.0                     |





### **Remedial Action Implementation Lower A-Aquifer**





### **Remedial Action Implementation System**





# Remedial Action Implementation – Upcoming Schedule

- > October 2021: Second quarter performance monitoring event
- November 2021: Install HiPox Unit
- December 2021-January 2022: Begin extracting EA1-1R and EA 2-5
- January 2022: Third quarter performance monitoring event
- > April 2022: Forth quarter performance monitoring event
- May 2022: Evaluate ISB treatment and determine when Traffic Island Area extraction wells will start pumping to HiPox Unit
- ➢ June 2022: Begin preparation of completion report



### **Vapor Intrusion Update** Installation Restoration (IR) Site 28 Former Naval Air Station Moffett Field, CA

Restoration Advisory Board (RAB) Meeting October 14, 2021

### AREA OF RESPONSIBILITY VAPOR INTRUSION (VI)





### **VAPOR INTRUSION MITIGATION PROCESS**



- Following the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process
  - 2010 EPA VI Record of Decision Amendment
- Annual sampling of buildings
  - January 2021 latest sampling
- Annual samples collected from work areas and preferential pathways
  - Using Summa canisters
- Annual Sampling conducted with Heating Ventilation and Air Conditioning (HVAC) ON and OFF
- Diagnostic Testing performed to optimize Final Remedy

### **VAPOR INTRUSION MITIGATION PROCESS**



- April 2021 Final Work Plan for VI Mitigation for Buildings 3, 10, 45, 126, N239 & N239A
  - Reducing VI (e.g., sealing slab openings/cracks, installing sub-slab depressurization)
  - -Conducted interim VI pathway reduction field work in SEP-OCT 2019 in Bldgs. 3, 45, 126, N239, N239A
  - Conducted diagnostic testing for Buildings 3, 45 & 126 in July 2021
- Planning mitigation measures for Buildings 15, 16 & 567 based on 2020 annual sampling results
  - Conducted diagnostic testing OCT 2021

### **DIAGNOSTIC TESTING**









# Sub-slab depressurization system creates a negative pressure below the building reducing soil gas entering the building



Schematic Sub-Slab Depressurization System



Sub-Slab Depressurization Blower and Vent



# Questions