

Naval Facilities Engineering Command Southwest BRAC PMO West San Diego, CA

AIR MONITORING SUMMARY REPORT

MARCH 30 TO APRIL 12, 2019

Remedial Action/Non-Time-Critical Removal Action Installation Restoration Site 12

FORMER NAVAL STATION TREASURE ISLAND, SAN FRANCISCO, CA

May 2019

Approved for public release; distribution is unlimited

DCN: GLBN-0005-F4239-027

Naval Facilities Engineering Command Southwest BRAC PMO West San Diego, CA

AIR MONITORING SUMMARY REPORT

MARCH 30 TO APRIL 12, 2019

Remedial Action/Non-Time-Critical Removal Action Installation Restoration Site 12

FORMER NAVAL STATION TREASURE ISLAND, SAN FRANCISCO, CA

Prepared for:

Department of the Navy Naval Facilities Engineering Command Southwest BRAC PMO West 33000 Nixie Way, Bldg 50 San Diego, CA 92147

Prepared by:

Gilbane Federal 1655 Grant Street Suite 1200 Concord, California 94520

Contract Number: N62473-17-D-0005; Task Order No. N6247317F4239 DCN: GLBN-0005-F4239-027

TABLE OF CONTENTS

List of Figures	i
List of Tables	
List of Attachments	
List of Abbreviations and Acronyms	ii
1.0 Introduction	
2.0 Monitoring Site Locations	2
2.1 Dust Monitoring	
2.2 Air Monitoring	2
2.3 Radiological Air Monitoring	3
3.0 Sampling and Analytical Methods	
3.1 Dust Samples	3
3.2 Air Samples	4
3.3 Radiological Air Samples	4
4.0 Dust and Air Monitoring Data	5
5.0 Air Monitoring Results	
6.0 References	10

LIST OF FIGURES

Figure 1	PDR Monitoring Locations IR Site 32
Figure 2	PDR Monitoring Locations IR Site 12
Figure 3	Air Monitoring Locations IR Site 12

LIST OF TABLES

Table 1	Dust Monitoring Project Action Levels
Table 2	Air Monitoring Project Screening Criteria

LIST OF ATTACHMENTS

Attachment 1	PDR Summary Table and Field Forms
Attachment 2	Summary of Air Monitoring and Air Sampling Results
Attachment 3	Radiological Air Monitoring Results

LIST OF ABBREVIATIONS AND ACRONYMS

AMPAir Monitoring PlanBAAQMDBay Area Air Quality Management DistrictBAPbenzo(a)pyrenecfmcubic feet per minuteCFRCode of Federal RegulationsDACderived air concentrationDTSCDepartment of Toxic Substances ControlHEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m ³ milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxinTLVthreshold limit value
BAPbenzo(a)pyrenecfmcubic feet per minuteCFRCode of Federal RegulationsDACderived air concentrationDTSCDepartment of Toxic Substances ControlHEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m ³ milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
BAPbenzo(a)pyrenecfmcubic feet per minuteCFRCode of Federal RegulationsDACderived air concentrationDTSCDepartment of Toxic Substances ControlHEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m ³ milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
CFRCode of Federal RegulationsDACderived air concentrationDTSCDepartment of Toxic Substances ControlHEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m ³ milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
DACderived air concentrationDTSCDepartment of Toxic Substances ControlHEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m ³ milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
DACderived air concentrationDTSCDepartment of Toxic Substances ControlHEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m ³ milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
HEROHuman and Ecological Risk OfficeGilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m³milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
GilbaneGilbane FederalDCPDust Control PlanIRInstallation Restorationmg/m³milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
DCPDust Control PlanIRInstallation Restorationmg/m³milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
IRInstallation Restorationmg/m³milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
mg/m³milligram per cubic meterNavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
NavyU.S. Department of the NavyPAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
PAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
PCBpolychlorinated biphenylPDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
PDRpersonal data-logging real-time aerosol monitorPM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
PM10particulate matter less than 10 microns in diameterPUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
PUFpolyurethane foamRa-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
Ra-226radium-226TCDD2,3,7,8-tetrachlorodibenzo-p-dioxin
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TLV threshold limit value
TSP total suspended particulates
μg/m ³ microgram per cubic meter
USEPA United States Environmental Protection Agency
Work Plan Final Work Plan, Remedial Action/Non-Time Critical Removal Action, Installation
Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California

1.0 INTRODUCTION

This Air Monitoring Report was prepared by Gilbane Federal (Gilbane) as requested by the United States Department of the Navy (Navy) under the Radiological Multiple Award Contract (RADMAC II) N62473-12-D-D005, Contract Task Order F4239. Gilbane is performing dust and air monitoring at Former Naval Station Treasure Island in accordance with the Final Dust Control Plan (DCP) and Air Monitoring Plan (AMP), included as appendices to *Remedial Action/Non-Time Critical Removal Action Work Plan, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (Work Plan; Gilbane, 2018).

The DCP describes best management practices and procedures to be implemented to minimize dust generation during work activities. Dust monitoring is conducted to ensure that these procedures are effective. Dust monitoring is also conducted to verify that the working environment meets occupational health and safety standards and that workers are safe. The AMP outlines the requirements for prevention of exposure for construction workers to dust and potential airborne chemicals of concern from the work area. The AMP also establishes the conservative project action levels for dust at the work area boundary to protect residents.

This summary report describes the following:

- Dust and air monitoring sampling locations Section 2.0;
- Dust and air monitoring sample collection and analytical methods Section 3.0;
- Dust and air monitoring data Section 4.0; and
- Dust and air monitoring results Section 5.0.

This summary report presents the dust and air monitoring test results at Installation Restoration (IR) Site 12 and/or IR Site 32 from March 30th, 2019 through April 12th, 2019, and compares the results with the established action levels included in the Work Plan (Gilbane, 2018).

IR Site 32, located 600 yards to the east of IR Site 12, is being used as a radiological screening yard and staging yard for the IR Site 12 project activities. The screening criteria established for IR Site 12 will be applied to the air monitoring at IR Site 32.

During the reporting period, personal data-logging real-time aerosol monitoring (PDR) dust data was collected. Air samples were collected and analyzed for lead, chromium, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dioxin [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)], total suspended particulates (TSP), and particulate matter less than 10 microns in diameter (PM10). In addition, air samples were analyzed for radiological gross alpha and beta levels.

2.0 MONITORING SITE LOCATIONS

2.1 Dust Monitoring

During earthmoving activities, multiple PDR stations are set up to monitor real-time airborne dust concentrations. The purpose of the PDR stations is to act as a first line of defense in protecting workers' health, and ultimately the public's health, during field activities. Dust levels are monitored at, and immediately adjacent to, the work area at the locations that will most likely contain the greatest volume of airborne dust. The objective of this dust monitoring approach is to demonstrate that dust levels are below action levels.

The general locations for dust monitors in IR Site 32 are shown on Figure 1, and the general locations for dust monitors for IR Site 12 are shown on Figure 2. Specific locations of each PDR are described in the individual PDR daily data files. Field forms from each location are presented in Attachment 1 of this report. During earth moving activities (i.e. transporting soil to radiological screening yard pads, managing radiological screening yard pads, etc.) at IR Site 32, one PDR serves as the upwind (background) location and two PDRs are placed in downwind perimeter locations. Correspondingly, during earth moving activities at IR Site 12 (i.e., transportation of excavated soil to the radiological screening yard, excavation, and backfilling), one PDR serves as the upwind (background) location and two PDRs are placed in downwind perimeter forecasts including wind direction are checked daily with a weather station located at Building 572.

2.2 Air Monitoring

Air monitoring samples were collected at the upwind Perimeter Road location and at the downwind location at the gate to Site 32. Air monitoring samples collected using high volume samplers are collected to identify and quantify airborne contaminants and to confirm the results recorded during dust (PDR) monitoring. Air monitoring stations are mobilized to collect air monitoring samples upwind and downwind of work areas. General locations of air monitoring stations are shown on Figure 3. The locations of the air monitoring stations are determined based on the prevailing wind direction (typically

from the northwest) and are modified as needed. A weather station is erected to monitor the wind direction.

High volume air monitoring stations remain stationary while sampling is being conducted; however, locations may be adjusted when the wind direction changes and when overall excavation work areas change from one site to another. Each upwind and downwind high volume monitoring station includes separate monitoring systems for the following:

- TSP- collected daily
- PM10- collected daily
- Lead and chromium- collected daily
- PAHs, PCBs, and Dioxins- collected on alternating days

2.3 Radiological Air Monitoring

Radiological air samplers are positioned adjacent to excavation work activities for radiologically impacted soil at one upwind and one downwind location during earthmoving activities associated with radiologically impacted soil. The radiological air samplers may be co-located with PDRs or the high-volume samplers.

3.0 SAMPLING AND ANALYTICAL METHODS

Dust and air samples are collected during earthmoving activities. However, during precipitation events, the dust and air monitoring units may not be operable. An attempt will be made to collect samples and readings regardless of the weather. If dust or air monitors are found to be malfunctioning or nonfunctional, earthmoving activities will stop until monitors can be repaired or replaced. The Site Health and Safety Officer is responsible for monitoring the air and dust monitoring sampling equipment. In rare cases, due to ancillary equipment malfunction such as generator failure during the night, a sample may be collected that represents a period of less than 24 hours. If this situation occurs, a note is added to the sample result data tables indicating why the full sampling period was not achieved.

3.1 Dust Samples

The PDR is a high sensitivity photometric monitor with a light-scattering sensing configuration that has been optimized for the measurement of the respirable fraction of airborne dust, smoke, fumes, and mists.

PDRs are used to evaluate real-time monitoring of airborne dust concentrations, to determine if there is a need for additional dust control or personal protection.

3.2 Air Samples

Air samples were sampled in accordance with the United States Environmental Protection Agency (USEPA) reference sampling method for PM10, described in 40 Code of Federal Regulations (CFR) 50, Subpart J. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighted to determine the amount of PM10 collected.

TSP samples were collected with a high-volume (39 to 60 cubic feet per minute [cfm]) air sampler in accordance with USEPA's reference sampling method for TSP, described in Title 40 CFR, Part 50, Subpart B. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of TSP collected. Once the filter weight was determined, the sample was analyzed for lead and chromium in in accordance with USEPA Method 6020 using inductively coupled mass spectrometry.

Air samples for PCBs, PAHs, and dioxins are collected and analyzed in accordance with USEPA Methods TO-4A, TO-13, TO-9A, respectively, using TISH polyurethane (PUF) samplers. The filter media collected from the air samplers is submitted to the analytical laboratory for appropriate analysis.

PCB, PAH, and dioxin samples are collected on alternating days at the downwind and upwind stations during earthmoving activities.

3.3 Radiological Air Samples

Radiological air monitoring is also conducted upwind and downwind on days of earthmoving activities. Radiological samples are collected with a LV-1 low volume air sampler. Air filters are counted on site following a decay period and are compared with public air concentration limits published in 10 CFR Part 20. Radiological air sampling methods and procedures are detailed in Gilbane Radiological Procedure PR-RP-150 *Radiological Survey and Sampling*.

The radiological air sample is counted on a Low Background Protean WPC-9950 and analyzed for gross alpha and beta activity. The calculated airborne concentration in microcuries is then compared to the effluent concentration (often but incorrectly refer to as a derived air concentration [DAC] which applies only to occupational exposures) limit specified in Table 2 of Appendix B to 10 CFR 20. The effluent

concentration is the concentration of a given radionuclide in air which, if inhaled continuously over the course of a year, results in an exposure equal to the annual regulatory limit specified in 10 CFR 20.1302. The threshold for radiological effluent air monitoring samples is 10 percent of the effluent concentration, which ensures work practices are evaluated and modified as necessary to ensure the limit is not reached.

4.0 DUST AND AIR MONITORING DATA

The Human and Ecological Risk Office (HERO) at the request of the California Department of Toxic Substances Control (DTSC) developed dust action levels for community air monitoring for IR Site 12. Subchronic and chronic dust action levels as PM10 were calculated for lead, chromium, dioxin, benzo(a)pyrene (BAP), 4,4-dichlorodiphenyldichloroethane (4,4'-DDD) and PCBs. As presented in the document *Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (HERO, 2018), the action levels were calculated using the maximum chemicals of concern soil concentrations at IR Site 12. As noted in **Section 1.0**, IR Site 12 action levels will be implemented for project work at IR Site 32.

Based on HERO's recommendations, a PM10 dust action level of 50 microgram per cubic meter (ug/m³) will be implemented for all excavations areas at IR Site 12 except at the area surrounding sampling location KCH-1217-1 which will have a limit of 8 ug/m³ due to the elevated level of contaminants historically measured at this location. TSP is expected to be further controlled based on the limit employed for PM10, in accordance with guidance provided by the San Francisco Bay Area Air Quality Management District (BAAQMD), which estimates that PM10 makes up approximately 55 percent of TSP. If it is apparent that project activities are the cause of exceedances, additional control measures will be considered and implemented.

Dust monitoring action levels that are implemented on a real-time basis are listed in Table 1. PDR data are collected and reviewed each day by the Site Health and Safety Manager. PDR data are included in Attachment 1.

Analytical results from air monitoring samples are compared with the project screening criteria (threshold limit values [TLV]) listed in Table 2. Air monitoring results are included in Attachment 2. Radiological monitoring results are included in Attachment 3.

Method	Monitoring Location	Monitoring Frequency ^a	Action Level b	Action
PDR	Near Workers' Breathing Zones (typically on equipment)	Periodically ^c	>2.3 mg/m	Continue work. Use Level D and increase dust control (i.e., apply water or other suppression method). Optionally upgrade to Level C until concentrations are reduced.
	Job Site Perimeter	Continuously	<1.0 mg/m ³ >1.0 mg/m ³	Continue work. Increase dust control and re- evaluate. Stop work if levels do not decrease.

Table 1Dust Monitoring Project Action Levels

Notes:

Only the Health and Safety Manager is authorized to downgrade levels of personal protective equipment.

a Frequency of air monitoring may be adjusted by the project Certified Industrial Hygienist after sufficient characterization of site contaminants has been completed, tasks have been modified, or site controls have proven effective.

b Five readings exceeding the action level in any 15-minute period or a sustained reading exceeding the action level for five minutes will trigger a response. Action levels represent airborne particulate concentrations in excess of background particulate concentrations.

c *PDR will be monitored a minimum of three times a day.*

< less than

> greater than

mg/m³ milligram per cubic meter

PDR personal data-logging real-time aerosol monitor

Chemicals of Concern	Chemicals of Concern (Threshold Limit Value) µg/m ³	
Lead	242	TI Site 12 Dust Action Level
Chromium	929	TI Site 12 Dust Action Level
TSP	50	TI Site 12 Dust Action Level
PM10	50	BAAQMD ambient air quality
BAP	50 (8) ^b	TI Site 12 Dust Action Level
PCBsa	NA	TI Site 12 Dust Action Level
4,4'-DDD	200	TI Site 12 Dust Action Level
Dioxin ^a	1E+07	TI Site 12 Dust Action Level
Radiological (Ra-226)	10% of DAC ^c	Occupational and public air concentration limits for Ra-226 published in 10 Code of Federal Regulations Part 20.

Table 2Air Monitoring Project Screening Criteria

Notes:

a The dust action level was increased by a factor of 10 to account for the short-term duration of the project relative to the lifetime assumptions incorporated into the toxicity criteria and exposure assumption.

b BAP action levels will be $50 \mu g/m^3$ for all excavations except for the area surrounding sample locations KCH-1217-1 at which it will be $8 \mu g/m^3$

c Public air concentration limits are commonly referred to as DAC, but are in actuality Effluent Concentrations from Table 2 for 10 CFR Part 20.

%	percent
4,4'-DDD	dichlorodiphenyldichloroethane
BAAQMD	Bay Area Air Quality Management District
BAP	benzo(a)pyrene
DAC	derived air concentration
PCBs	polychlorinated biphenyls
PM10	particulate matter smaller than 10 microns in diameter
Ra-226	radium-226
TSP	total suspended particulates
$\mu g/m^3$	microgram per cubic meter

5.0 AIR MONITORING RESULTS

If dust (PDR) monitoring equipment alarm, the source of exceedance will be determined by evaluating both upwind and downwind dust (PDR) sample locations. If the difference between upwind and downwind concentrations is greater than the action level for a sustained period of 15 minutes, then earthmoving activities will be halted until dust control measures are implemented. These may include, but are not limited to adding water to the work area during earth moving tasks, evaluation of alternate work procedures or equipment, and/or cessation of the activity that is creating the dust until the PDR readings are below the screening criteria.

PDR summary results are presented in Attachment 1. Weather information (including ambient pressure and temperature data) and high volume air monitoring sample results are presented in Attachment 2. Weather information was collected from the weather station at Building 572, Avenue M, Treasure Island, San Francisco, California. Radiological air monitoring results are presented in Attachment 3.

PM10 analytical results from March 30, 2019 to April 12, 2019 did not exceed the project-specific screening criteria presented in Table 2.

TSP analytical results from March 30, 2019 to April 12, 2019 did not exceed the project-specific screening criteria presented in Table 2, with the following exceptions:

- The results for AMS02 on April 10, 2019, which was reported at a delta between the downwind and upwind stations of 82.04 ug/m³. The highest PDR reading for the corresponding day (April 9, 2019) was 0.014 mg/m³ at DM1, which would seem to indicate site activities were not the source of the exceedance.
- The results for AMS02 on April 11, 2019, which was reported at a delta between the downwind and upwind stations of 81.92 ug/m³. The highest PDR reading for the corresponding day (April 10, 2019) was 0.018 mg/m³ at DM2, which would seem to indicate site activities were not the source of the exceedance.
- The results for AMS02 on April 12, 2019, which was reported at a delta between the downwind and upwind stations of 158.60 ug/m³. The highest PDR reading for the corresponding day (April 11, 2019) was 0.041 mg/m³ at DM2, which would seem to indicate site activities were not the source of the exceedance.

Metals (chromium and lead), PAHs, total PCBs, and dioxin analytical results from March 30, 2019 to April 12, 2019 did not exceed the project-specific screening criteria presented in Table 2.

Dust (PDR) delta action levels did not exceed during the reporting period. The data sheets are found in Attachment 1.

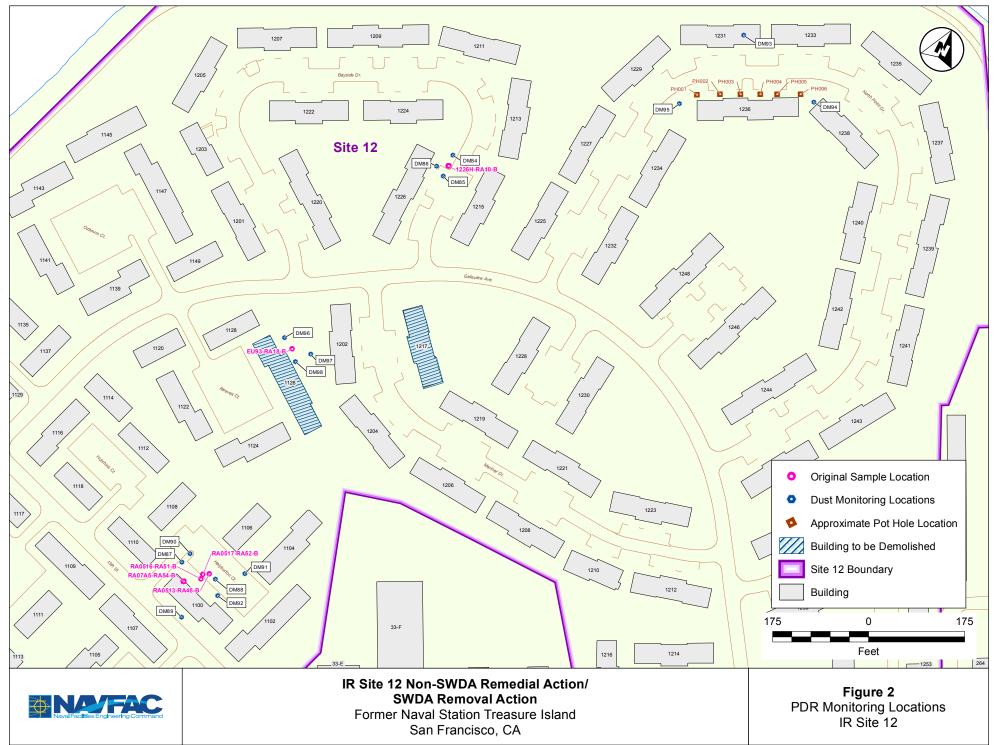
Radiological air monitoring action levels were not exceeded during the reporting period.

6.0 **REFERENCES**

Gilbane, 2016. Radiological Procedure PR-RP-150 Radiological Survey and Sampling. January.

Gilbane, 2018. Remedial Action/Non-Time Critical Removal Action Work Plan, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.

Gilbane, 2018. Remedial Action/Non-Time Critical Removal Action Work Plan, Air Monitoring Report, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.


Gilbane, 2018. Remedial Action/Non-Time Critical Removal Action Work Plan, Dust Control Plan, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.

HERO, 2018. Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.

FIGURES

G:\arcGIS\Navy\Treasure_Island\PROJECTS\Rad_s12_Confrm_Excav\Site32_Dust_Samples.mxd 3/7/2019 [13:51 PM] EANDERSON, Gilbane

ATTACHMENTS

ATTACHMENT 1 PDR SUMMARY TABLE AND FIELD FORMS

Table 1-1 Personal Data-logging Real-time (PDR) Aerosol Monitoring Results Remedial Action/NTCRA IR Site 12

Former Naval Station Treasure Island, San Francisco, California

DustTrak Unit	IR Site	Date	Maximum (mg/m ³)	Average (mg/m ³)	Delta Between Upwind and Downwind stations (mg/m³)	Below action level? (0.050 mg/m ³) (Yes/No)
DM1	Site 32		0.019	0.014	NA	NA
DM2	Site 32	1 1	0.027	0.019	0.005	Yes
DM3	Site 32	4/1/2019	0.017	0.014	0.000	Yes
DM84	Site 12	4/1/2013	0.030	0.021	NA	NA
DM85	Site 12		0.016	0.011	-0.010	Yes
DM86	Site 12		0.022	0.015	-0.007	Yes
DM1	Site 32		0.007	0.005	NA	NA
DM2	Site 32	1	0.006	0.004	-0.002	Yes
DM3	Site 32	4/0/0040	0.008	0.005	-0.001	Yes
DM87	Site 12	4/2/2019	0.002	0.001	NA	NA
DM88	Site 12] [0.002	0.001	0.000	Yes
DM89	Site 12		0.003	0.002	0.001	Yes
DM1	Site 32		0005	0.003	NA	NA
DM2	Site 32	1	0.007	0.006	0.002	Yes
DM3	Site 32	4/0/0040	0.005	0.004	0.001	Yes
DM90	Site 12	4/3/2019	0.002	0.002	NA	NA
DM91	Site 12	1	0.007	0.004	0.002	Yes
DM92	Site 12	1	0.007	0.004	0.002	Yes
DM1	Site 32		0.003	0.002	NA	NA
DM2	Site 32	4/4/2019	0.013	0.007	0.005	Yes
DM3	Site 32		0.008	0.005	0.003	Yes
DM93	Site 12	4/4/2019	0.004	0.002	NA	NA
DM94	Site 12		0.004	0.002	0.000	Yes
DM95	Site 12		0.004	0.003	0.000	Yes
DM1	Site 32		0.014	0.011	NA	NA
DM2	Site 32	1	0.023	0.016	0.005	Yes
DM3	Site 32	4/0/0040	0.012	0.010	-0.002	Yes
DM96	Site 12	4/8/2019	0.010	0.005	NA	NA
DM97	Site 12	1 [0.015	0.008	0.004	Yes
DM98	Site 12	1	0.014	0.007	0.002	Yes
DM1	Site 32		0.014	0.008	NA	NA
DM2	Site 32	4/9/2019	0.013	0.010	0.001	Yes
DM3	Site 32	1 1	0.011	0.006	-0.002	Yes
DM1	Site 32	l l	0.015	0.007	NA	NA
DM2	Site 32	4/10/2019	0.018	0.011	0.004	Yes
DM3	Site 32	1 1	0.010	0.007	-0.001	Yes
DM1	Site 32		0.017	0.013	NA	NA
DM1 DM2	Site 32	4/11/2019	0.041	0.022	0.008	Yes
DM3	Site 32		0.020	0.013	0.000	Yes

Notes:

bold = results above screening criteria mg/m³ = milligram per cubic meter

NA = not applicable

AIR MONITORING LOG

Client Name NAVFAC

Project No. J310000300

Logged by M, Ke Cex Weather overcust Date <u>'1/1/19</u> Page <u>1</u> of <u>1</u>

Instrument Type: _Dust Trak II

Calibration Standards Used Factory Calibrated

Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
8:45	DM 84	UW excavation 1226H	0,019	3703	Pre excavation reading
8:20	DM85	DW Execution 1226 H	0.010	1649	5
8:52	DM 86	DW excavation 1226H	0.010	2368	
9:45	DM84	13. 1 .1	0.030		Execution 1226H engoiling
1	DM85	•1.50 Te (15)	0.016		
T	DM86	• <u>•</u> •. ••.	0. 072		
11:40	DM84		0.018		
1	DMBS		0.012		
Ý	DMBb		0.017		4
1:40	DMBY		0.021		Backfill w clean soil
	DM85		0.010		1
	DM86		0.012		
3:00	DM84		0.018		Finish backfill
	DM85		0.009		
Y	DM86	- 1564 1.111	0.012		1
L					
L					
				0	

AIR MONITORING LOG - Site 32

Client Name NAVFAC

Project No. J310000300

Logged by Mike Cox

Weather overcast

Instrument Type: <u>Dust Trak II</u>

Calibration Standards Used Factory Calibrated

Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:30	DMI	UW site 32	0.019	2714	No earth moving activities
7:40	DMZ	DW site 32	0.017	2724	1
7146	DM3	DW site 32	0.014	0943	+
0924	DMZ	17W 5:4-32	0.019	2724	Dump asphilt and concrete debris
0928	Dm 3	17W Site 32	0.012	0943	11 11
0935	DMI	UW SILE.32 .	0.011	2714	. 1 ¹ 17
1005	DMZ		0.027		Pump soil from exclusion
1007	17m3		0.017		17 *1
1011	DMI		0.016		d h
1041	DMZ		0.019		îr 11
1043	DIN 3		0.013		1) ()
1047	0m1	94	0.014		ų v
1101	pm2		0.020		Dump asphalt Ston excavation
1103	.pm 3		0.016		11 II
HIC	pmi	-	0.012		1) 22
1149	DMZ		0.019		broup soil from excavation
1151	DM 3		0.014		vi vi
1155	DMI		0.012		ui st
3:30	DMI		0.017		
	DMZ		0.015		
~	OM3		0.013		
				0	

Date <u>4/1/19</u> Page_1_of_3

1003

Gilloane

AIR MONITORING LOG

Client Name	NAVFAC		 Date	L
Project No.	J <u>310000300</u>		 Page	١
Logged by	Mike Cox		0	
Weather	overcent/raily	55°		

Date $\frac{1/2}{19}$

Instrument Type: Dust Trak II

Calibration Standards Used Factory Calibrated

Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:37	DMI	Ulwsite 32	0,007	2368	Ne carth mousing
7:45	DMZ	DW site 32	0.006	1649	1
7:49	DM3	DW site 32	0.008	2714	\downarrow
9:15	DM87	UW Priscreet sample RAGT-05	0.001	0943	Discreet sampling using drill rig
1	DM88	DW Discreet sample	0.002	3703	1
4	DM89	OW Discreet Sample RA07-05	0.003	2724	-
10:05	DMI	• •	8.007		
	DM2		0.005		
¥	DM3		0.005		
11:30	DM87		0.001		
	DM88		0.001		
+	DMBQ		0.001		
1:20	DMI		0,003		
	DM2		0.002		
	DM3		0.00Z		
2:40	DM87		0.002		
	DM 38		0.001		
1	DM89		8,007		
3:30	DM87		100.0		
-	DMBB		D.001		
V	DM89		0,002		
4:40	DMI		0.003		
E.	DMZ		0.001		
	DM3		0.003	9	

AIR MONITORING LOG

Client Name <u>NAVFAC</u> Project No. <u>J310000300</u>

Date		13	11	9	
Page	l	of	1		

Logged by Mike Cox

Weather Sunny

Instrument Type: Dust Trak II

Calibration Standards Used _____ Factory Calibrated

-		seu <u>raciory calibrateu</u>			
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:30	DMI	UW site 32	0.005	1649	No earth moving actuitles
1	DM2	DW site 32	0.007	2368	1
	DM3	DWsite 32	0,005	2714	+
11.00	DM90 M	UW Discreet execution -Sample RAPOS-14	0.002	0943	Discreet sample using doll rig
	DM91 m	DW Discreet execution Sample . BAO 5-14	0.007	3763	0.0
	DM92 ne	DW Discreet eren Sample BA05-14	0,007	2724	1 1
11'.30	DMI		6.003		
	DM2		0.005		
V	DM3		0.003		
2:00	DM90		0.002		
	DM91		B.00Z		
N.	DM92		0.002		
3:18	DM9G		0.002		Frish Discreet Sample locatron
	DM91		6.004		1
×	DM92		B.002		\checkmark
3:40	DMI		0.002		
	DM2		0.005		
V	DM3		0.005		
				0	

All and a second

AIR MONITORING LOG

Client Name NAVFAC

Project No.	J31000	00300
Logged by	Scout	Ahern

Date	4-	4-19	
Page_	l	of	

Weather 55° ovcrast, ramy Instrument Type: Dust Trak II

Calibration Standards Used Factory Calibrated

Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
0816	DMI	UW site 32	0.003	2368	No earth housing
0828	OM2	DW site 32	0.005	1649	1
0960	ทм3	DW site 32	0.004	2724	V
9115	DM93	UW Northpoint	0.002	0943	Pothole son at North point
	DM 94	DW-E-Ngrth point	0.004	2714	
+	DM 95	PW-W Ng the power	0,003	3703	
1025	DM93		0.003		
	DM94		B.00Z		
V	DM95		0.004		
12:00	DMI		6.003		
	DMZ		0.013		
	DM3	<i>i</i>	0.004		
1:00	DM933		0.001		
	DM94		0.001		
	DM95		0:002		
2:45	DM93		0.002		<i>v</i> .
	DM94		0,002		
\downarrow	DM95		0.002		
2:55	DMI		0.001		
	DMZ		0.002		
V	pm3		0.005		
3:30	DM93		0.004		
1	DM94		0.001		
\checkmark	DM95		0.002	0	
4:30	DMI DM2 OM3		13.001 0.006 0.008		535. 4 2 - 4

AÎR MONITORING LOG

Client Name NAVFAC Project No. J310000300

Project N	0 <u>. J310000300</u>	
Logged b	y Mike	Cox

Logged byI	ļ	/
------------	---	---

Weather___

Instrument Type: Dust Trak II

14

Calibration Standards Used Factory Calibrated

Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:35	DMI	4WSite32	0.012	2724	No earth hours
7.40	DMZ	DW site 32	0.011	3703	
7:45	DM3	DW site 32	0.008	0943	1
8:50	DM96	UW Backfill EU93	0,003	1649	Backfilling EU93
	DM97	DW beckfull EU93	0.007	2714	
	DM 98	DW backGIIE493	0.005	2368	
10:20	DMI	•	0.014		
	DMZ		0.023		
1	DM3		0.012		-
10:30	DM 96		0.010		
	DM97		0.015	+ 0m	
	DM98		0.014		
1:30	12M96	in the second se	0.003		
	DM97		0.006		
Y	DN98		0.004		
1:45	DMI		0.009		1
	DMZ		0.013		
1	DM3		0.009		
4:10	DWI		0.009		
	DMZ		0.016		
\downarrow	DM3	5	0.009		
4:30	pm96		0.003		
	DM97		0.005		
+	DMAB		0.004	6	

Date 4/8/19

Ţ

_of

Page___

R.

10 2

AIR MONITORING LOG

Client Name NAVFAC

Project No. J310000300

Logged by Mike Cox

Weather___

Instrument Type: <u>Dust Trak II</u>

Calibration Standards Used Factory Calibrated

Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:40	DWI	UW site 32	0.005		No earth moving activities
	DM2	DW site 32	0.009	3703	1
V	DM3	DW site 32	0,002	8943	
1040	DUI	(* • •	0.009		
1	PMZ	121 A 14	0.005		
	DM3		0.004		
1350	DM1		0.014		
	DWZ		0.011		
V	PM3		0,007		
1630	DMI		0.005		Rock being placed
	DMZ		6.013		in parking lot int foreight of force at site 32
	DM3		0.011		at site 32
				6	

Date

of

Page_

idea

AIR MONITORING LOG

Client Name <u>NAVFAC</u> Project No<u>J310000300</u>

Date	4	110	/19	
Page_		of	1	_

1

Logged by ______ Mi Ke Cox______ Weather_____

Instrument Type: <u>Dust Trak II</u>

Calibration Standards Used Factory Calibrated

	and a second sec	seu <u>raciony Cambrated</u>			
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:45	DMI	UWSite 32	0.005	0943	NO earth mouth
	DMZ	DW site 32	0.008	3703	
	DM 3	DW site 32	0.005	1649	
10:50	DMI	··•• .	0.003	0943	Soil import at
	DM2	••••	0.010		Site 6
	DM3		0.004		1
12:55	DMI	• ·	0.006		
	DMZ		0.009		
*	DM3		0,007		V
4:25	DMI		0.015		
	DM2		0.018		
	DM3		0.010		
	•				
					1
				6	
			1		1

Arn

Gilbane

AIR MONITORING LOG

Client Name NAVFAC Project No 104000 0300

۲	roje	ect	NO	<u>. J</u>	31	00	0	U
							Δ	

Logged by Mike

Weather____

Instrument Type: Dust Trak II

Calibration Standards Used Factory Calibrated

Cx

ounor actor		Sed ractory Calibrated			
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
7:25	DMI	UW site 32	0.009	1649	No earth noung activities
	DMZ	DW site 32	0.015	3763	
1	DM3	DW site 32	0.010	0943	\downarrow
10:30	DMI	·· • •	0.013		Sweeping in fart of gate a tsites with sweeps
10:45	DMZ		0,041		with sweeps
10:50	DM 3		B.012		1
1:20	DMI	•••	0.014		Macing soil in site
	DM2		0.015		
+	DM3		0.020		
3:30	DMI		6.017		
	DM2		0.015		
V	DM3	1.6	0.011		
					1
		100 D/ 01 1/1 2/2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
				۵	
L					

STA

4/11/19

of

Date

Page_

ATTACHMENT 2 SUMMARY OF AIR MONITORING AND AIR SAMPLING RESULTS

Table 2-1Ambient Pressure and Temperature Monitoring ResultsRemedial Action/NTCRA IR Site 12Former Naval Station Treasure Island, San Francisco, California

Sample Date	Ambient Pressure (inches of Hg)	Ambient Temperature (°F)	Ambient Temperature (K)
4/2/2019	30.11	56.72	286.88
4/3/2019	30.11	55.40	286.15
4/4/2019	30.21	55.40	286.15
4/5/2019	30.18	56.99	287.03
4/9/2019	30.39	57.49	287.31
4/10/2019	30.44	57.35	287.23
4/11/2019	30.44	57.53	287.33
4/12/2019	30.28	56.45	286.73

Notes:

Weather data collected from weather station at Building 572, Avenue M, Treasure Island, San Francisco, CA

°F = Degrees Fahrenheit

Hg = mercury

K = Kelvin

Table 2-2Particulate Matter Smaller than Ten Microns (PM10)Remedial Action/NTCRA IR Site 12Former Naval Station Treasure Island, San Francisco, California

Location ID	Sampling Period (Hours)	Sample Date	Particulate Matter Less Than 10 Microns in Diameter (ug/m ³)	Delta between Downwind and Upwind Stations (ug/m ³)	PM10 Exceedance? (Yes/No)
				Screening Criteria	50
AMS01	24.82	4/2/2019	19	NA	NA
	24.77	4/3/2019	11	NA	NA
	25.22	4/4/2019	9.2	NA	NA
	22.75	4/5/2019	6.3	NA	NA
	25.13	4/9/2019	7.2	NA	NA
	24.37	4/10/2019	16	NA	NA
	24.65	4/11/2019	24	NA	NA
	23.87	4/12/2019	13	NA	NA
AMS02	23.76	4/2/2019	24	5	No
	23.71	4/3/2019	15	4	No
	24.09	4/4/2019	14	4.8	No
	23.72	4/5/2019	9.2	2.9	No
	23.84	4/9/2019	18	10.8	No
	23.36	4/10/2019	40	24	No
	23.74	4/11/2019	52	28	No
	22.52	4/12/2019	52	39	No
AMS07	23.81	4/2/2019	26	NA	NA
	23.68	4/3/2019	21	NA	NA
	24.22	4/4/2019	16	NA	NA
	23.82	4/5/2019	9.5	NA	NA
	17.88	4/9/2019	12	NA	NA
	4.27 *	4/10/2019	18	NA	NA
	21.48	4/11/2019	29	NA	NA
	22.36	4/12/2019	4.3	NA	NA
AMS12	23.97	4/2/2019	21	-5	No
	23.78	4/3/2019	12	-9	No
	24.35	4/4/2019	4.5	-11.5	No
	23.76	4/5/2019	7.3	-2.2	No
	24.25	4/9/2019	18	6	No
	23.49	4/10/2019	12	-6	No
	23.77	4/11/2019	23	-6	No
	23.03	4/12/2019	R	NA	NA

Notes:

R = rejected data; result unusable

NA = not applicable

ug/m3 = microgram per cubic meter

* = PM10 sampler malfunctioned

PM10 = particulate matter less then 10 microns in diameter

Table 2-3Total Suspended Particulates Monitoring ResultsRemedial Action/NTCRA IR Site 12Former Naval Station Treasure Island, San Francisco, California

Location ID	Sampling Period (Hours)	Sample Date	Total Suspended Particulate (ug/m ³)	Delta Between Downwind and Upwind Stations (ug/m ³)	TSP Exceedance? (Yes/No)
	ĮĮ		_	Screening Criteria	50
AMS01	24.82	4/2/2019	22.03	NA	NA
	24.69	4/3/2019	12.93	NA	NA
	25.26	4/4/2019	12.92	NA	NA
	24.83	4/5/2019	14.26	NA	NA
	25.17	4/9/2019	19.36	NA	NA
	24.35	4/10/2019	22.10	NA	NA
	22.71	4/11/2019	30.86	NA	NA
	23.87	4/12/2019	24.48	NA	NA
AMS02	23.75	4/2/2019	34.04	12.0	No
	23.65	4/3/2019	17.07	4.14	No
	24.13	4/4/2019	17.47	4.55	No
	23.69	4/5/2019	25.68	11.4	No
	23.81	4/9/2019	42.93	23.57	No
	23.33	4/10/2019	104.14	82.04	Yes
	23.78	4/11/2019	112.79	81.92	Yes
	22.49	4/12/2019	183.08	158.60	Yes
AMS07	23.83	4/2/2019	28.12	NA	NA
	23.68	4/3/2019	26.52	NA	NA
	24.25	4/4/2019	17.46	NA	NA
	23.83	4/5/2019	20.28	NA	NA
	17.88	4/9/2019	29.78	NA	NA
	4.33 *	4/10/2019	36.07	NA	NA
	21.59	4/11/2019	26.80	NA	NA
	22.34	4/12/2019	8.08	NA	NA
AMS12	23.96	4/2/2019	26.33	-1.79	No
	23.79	4/3/2019	14.72	-11.8	No
	24.39	4/4/2019	13.83	-3.63	No
	23.93	4/5/2019	14.59	-5.69	No
	24.27	4/9/2019	19.90	-9.87	No
	23.41	4/10/2019	24.41	-11.65	No
	23.80	4/11/2019	30.10	3.30	No
	23.08	4/12/2019	8.60	0.51	No

Notes:

NA = not applicable

TSP = total suspended particulate

bold = results above screening criteria

* = TSP sampler malfunctioned

Table 2-4Metals by EPA 6020 Monitoring ResultsRemedial Action/NTCRA IR Site 12Former Naval Station Treasure Island, San Francisco, California

Location ID	Sampling Period (Hours)	Sample Date	Lead (ug/m³)	Lead Exceedance? (Yes/No)	Chromium (ug/m³)	Chromium Exceedance? (Yes/No)
Screening Crite	eria			242		929
AMS01	24.82	4/2/2019	0.00082 J	No	0.0045	No
	24.77	4/3/2019	0.0006 J	No	0.004	No
	25.22	4/4/2019	0.00039 J	No	0.0035	No
	22.75	4/5/2019	0.00085 J	No	0.0012 J	No
	25.13	4/9/2019	0.0008 J	No	0.00071 J	No
	24.37	4/10/2019	0.0005 J	No	0.0031	No
	24.65	4/11/2019	0.001	No	0.0036	No
	23.87	4/12/2019	0.0013	No	0.0035	No
AMS02	23.76	4/2/2019	0.0011	No	0.0044	No
	23.71	4/3/2019	0.00076 J	No	0.0043	No
	24.09	4/4/2019	0.00078 J	No	0.0042	No
	23.72	4/5/2019	0.0015	No	0.0013 J	No
	23.84	4/9/2019	0.0012	No	0.00096 J	No
	23.36	4/10/2019	0.0038	No	0.0049	No
	23.74	4/11/2019	0.0054	No	0.0051	No
	22.52	4/12/2019	0.0082	No	0.0066	No
AMS07	23.81	4/2/2019	0.0007 J	No	0.004	No
	23.68	4/3/2019	0.00046 J	No	0.0042	No
	24.22	4/4/2019	0.00065 J	No	0.004	No
	23.82	4/5/2019	0.00071 J	No	0.001 J	No
	17.88	4/9/2019	0.00064 J	No	0.0013 J	No
	4.27 *	4/10/2019	0.0023 J	No	0.021	No
	21.48	4/11/2019	0.0013	No	0.0042	No
	22.36	4/12/2019	0.0011	No	0.0042	No
AMS12	23.97	4/2/2019	0.00079 J	No	0.0043	No
	23.78	4/3/2019	0.0006 J	No	0.0041	No
	24.35	4/4/2019	0.00067 J	No	0.00093 J	No
	23.76	4/5/2019	0.00064 J	No	0.0012 J	No
	24.25	4/9/2019	0.00069 J	No	0.0048	No
	23.49	4/10/2019	0.00079 J	No	0.0043	No
	23.77	4/11/2019	0.0011	No	0.0036	No
	23.03	4/12/2019	0.0011	No	0.0037	No

Notes:

J = qualified as estimated

ug/m³ = microgram per cubic meter

* = sampler malfunction

Table 2-5

Polycyclic Aromatic Hydrocarbons by TO-13 Monitoring Results Remedial Action/NTCRA IR Site 12 Former Naval Station Treasure Island, San Francisco, California

Location	Sampling	Sample Date	BAP(Eq)	BAP(Eq)	2-Methyl-	Acenaph-	Acenaph-	Anthra-	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g,h,i)	Benzo(k)	Chrysene	Dibenz(a,h)	Fluoran-	Fluorene	Indeno	Naph-	Phenan-	Pyrene
ID	Period		Exceed-		naph-	thene	thylene	cene	anthra-	pyrene	fluoran-	perylene	fluoran-	(ug/m ³)	anthra-cene	thene	(ug/m3)	(1,2,3-c,d)	thalene	threne	(ug/m3)
	(Hours)		ance?		thalene	(ug/m ³)	(ug/m ³)	(ug/m³)	cene	(ug/m ³)	thene	(ug/m ³)	thene		(ug/m ³)	(ug/m3)		pyrene	(ug/m3)	(ug/m3)	1
			(Yes/No)		(ug/m ³)	-	_		(ug/m ³)		(ug/m ³)	_	(ug/m ³)		_			(ug/m3)			
	Screenin	g Criteria ¹		50	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
AMS01	24.67	4/3/2019	No	0	< 0.001	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	0.00082 J	< 0.00051	< 0.00051
	25.10	4/9/2019	No	0	0.0068	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.00042 J	< 0.0005	0.0041	0.00075	< 0.0005
	23.76	4/12/2019	No	0	0.0013	0.00037 J	< 0.00049	< 0.00049	< 0.00049	< 0.00049	< 0.00049	< 0.00049	< 0.00049	< 0.00049	< 0.00049	< 0.00049	0.0003 J	< 0.00049	0.001	0.00058	< 0.00049
AMS02	23.61	4/3/2019	No	0	0.0037	0.00026 J	< 0.00048	< 0.00048	< 0.00048	< 0.00048	< 0.00048	< 0.00048	< 0.00048	< 0.00048	< 0.00048	0.00021 J	0.00056	< 0.00048	0.0062	0.0011	0.00036 J
	23.79	4/9/2019	No	0	0.0064	0.00041 J	0.00026 J	< 0.00046	< 0.00046	< 0.00046	< 0.00046	< 0.00046	< 0.00046	< 0.00046	< 0.00046	0.00027 J	0.00065	< 0.00046	0.0098	0.0017	0.0008
	22.51	4/12/2019	No	0	0.0086	0.00073	0.00025 J	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	0.00024 J	0.00063	< 0.00052	0.011	0.0012	0.0011
AMS07	23.77	4/3/2019	No	0	0.002	0.00032 J	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	0.00042 J	< 0.00051	0.0044	0.00087	0.00027 J
	17.83 *	4/9/2019	No	0	0.0012 J	0.0003 J	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	0.00029 J	< 0.00064	0.003	0.00075	< 0.00064
	22.34	4/12/2019	No	0	0.00099 J	0.00055	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	< 0.00051	0.00038 J	< 0.00051	0.0013	0.00064	< 0.00051
AMS12	23.75	4/3/2019	No	0	0.00099	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00038	0.00024 J	< 0.00038	0.0018	0.00053	< 0.00038
	24.83	4/9/2019	No	0	0.00052 J	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	< 0.00036	0.00017 J	< 0.00036	0.00083	0.00039	< 0.00036
	23.04	4/12/2019	No	0	< 0.00078	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	0.00051 J	0.00017 J	< 0.00039

Notes:

¹ The screening criteria for BAP(Eq) is 50 ug/m³ except for the area

surrounding excavation KCH-1217-1 at which it will be 8 ug/m³.

NA = not applicable

ND = Not detected

NE = Not established

BAP(Eq) = Benzo(a) pyrene equivalency

J = estimated value

< = nondetected less than associated reporting limit

* = PUF sampler malfunction

Table 2-6Polychlorinated Biphenyls by TO-4A Monitoring ResultsRemedial Action/NTCRA IR Site 12Former Naval Station Treasure Island, San Francisco, California

Location ID Sample Date Total PCB Exceedance? Total PCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1260 Sampling PCB-1248 PCB-1254 Period (Yes/No) (Aroclor (Aroclor (Aroclor (Aroclor (Aroclor (Aroclor (Aroclor 1254) 1260) (Hours) 1016) 1221) 1232) 1242) 1248) (ug/m^3) (ug/m^3) <u>(ug/m³)</u> (ug/m^3) (ug/m^3) (ug/m^3) (ug/m^3) NE Screening Criteria 24.8 4/2/2019 NA < 0.00071 < 0.00071 < 0.00071 < 0.00071 < 0.00071 < 0.00071 < 0.00071 0 AMS01 24.77 4/5/2019 NA < 0.0007 < 0.0007 0 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 24.49 4/11/2019 NA 0 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 23.78 4/2/2019 NA 0 < 0.00067 < 0.00067 < 0.00067 < 0.00067 < 0.00067 < 0.00067 < 0.00067 AMS02 23.65 4/5/2019 NA 0 < 0.00066 < 0.00066 < 0.00066 < 0.00066 < 0.00066 < 0.00066 < 0.00066 23.65 4/11/2019 NA 0 < 0.00068 < 0.00068 < 0.00068 < 0.00068 < 0.00068 < 0.00068 < 0.00068 23.83 4/2/2019 NA 0 < 0.00071 < 0.00071 < 0.00071 < 0.00071 < 0.00071 < 0.00071 < 0.00071 AMS07 23.87 4/5/2019 < 0.00064 < 0.00064 < 0.00064 < 0.00064 < 0.00064 < 0.00064 NA 0 < 0.00064 23.26 4/11/2019 NA 0 < 0.00074 < 0.00074 < 0.00074 < 0.00074 < 0.00074 < 0.00074 < 0.00074 23.94 4/2/2019 NA 0 < 0.00056 < 0.00056 < 0.00056 < 0.00056 < 0.00056 < 0.00056 < 0.00056 AMS12 4/5/2019 < 0.00053 < 0.00053 23.92 NA 0 < 0.00053 < 0.00053 < 0.00053 < 0.00053 < 0.00053 23.73 4/11/2019 NA 0 < 0.00055 < 0.00055 < 0.00055 < 0.00055 < 0.00055 < 0.00055 < 0.00055

Notes:

NE = none established

PCB = polychlorinated biphenyl

 $ug/m^3 = microgram per cubic meter$

< = nondetected less than associated reporting limit

Table 2-7Dioxin as 2,3,4,7,8-TCDD by TO-9A Monitoring ResultsRemedial Action/NTCRA IR Site 12Former Naval Station Treasure Island, San Francisco, California

Location ID	Sampling Period (Hours)	Sample Date	2,3,7,8-Tetrachlorodibenzo-p- dioxin (ug/m³)	Dioxin Exceedance? (Yes/No)
	1		Screening Criteria	10,000,000
AMS01	23.82	4/4/2019	< 0.00000021	No
	24.25	4/10/2019	< 0.00000019	No
AMS02	24.11	4/4/2019	< 0.00000017	No
	23.32	4/10/2019	< 0.00000019	No
AMS07	24.29	4/4/2019	< 0.00000018	No
	4.38 *	4/10/2019	< 0.00000094	No
AMS12	24.32	4/4/2019	< 0.00000014	No
	23.42	4/10/2019	< 0.00000015	No

Notes:

* = PUF sampler malfunction

ug/m³ = microgram per cubic meter

< = nondetected less than associated reporting limit

ATTACHMENT 3 RADIOLOGICAL AIR MONITORING RESULTS

Gilba	Gilbane														AIR SA	MPLE	RESUI	_TS - P	UBLIC	EXPO	SURE I	MONIT	ORING	
				Р	Project Inform	nation					Effluent	: Air Con	centration		Sa	mpling Per	iod		Color Codes					
Contract /	Task Order N	umber: F	Project Title	e / Locati	ion:		Gilbane Project N	lumber:					Alpha	Beta	Air samples collected			Value < MDC Value <				< 0.1 x Effluent Conc		
N62	2473-17-D-00	05	IR Site	12 RD/R	A, Treasure Is	sland, SF, CA	J3	10000300		Radionuclide Ra-226 Sr-90				Sr-90	between March 18, 2018			< 72 hr decay time Value			Value >	> 0.1 x Effluent Conc		
			Infor	mation ef	ffective as of:	5/3/2019				Effluent Conc (µCi/ml) 9.E-13 6.E-12					2 and April 29, 2019			Data reviewed Valu			Value	e > Effluent Conc		
				ç	Sample Colle	ection				Count Information			n			Sample Results				Initials				
Sample	Sample	Sam	ple	Equip	Ave Flow	Start	End	Elapsed	Volume	Inst	Count	Time	Counting	Gross	Activity N		dpm	Activity	(µCi/ml)	Effluent	Conc (%)	Count	Data	
Number	Туре	Loca	tion	No	Rate (Ipm)	Day Time	Date Time	Time (min)	(ml)	No	Date	(min)	Units	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Tech	Reviewer	
AS-001	Perimeter	AMS	-01	PE01	50	10/1/18 9:40	10/1/18 16:35	415	2.1E+07	А	10/15/18	20	cpm	0.700	3.150	2.0	6.1	4.4E-14	1.3E-13	4.9%	2.2%	СК	СВ	
AS-002	Perimeter	AMS	-02	PE02	60	10/1/18 10:00	10/1/18 16:30	390	2.3E+07	А	10/15/18	20	cpm	0.900	2.750	2.6	5.0	5.0E-14	9.7E-14	5.5%	1.6%	СК	СВ	
AS-003	Perimeter	AMS	-01	PE01	50	10/2/18 9:30	10/2/18 16:20	410	2.0E+07	А	10/15/18	20	cpm	0.150	3.400	0.4	6.8	9.5E-15	1.5E-13	1.1%	2.5%	СК	СВ	
AS-004	Perimeter	AMS	-02	PE02	60	10/2/18 8:30	10/2/18 16:15	465	2.8E+07	А	10/15/18	20	cpm	0.300	3.800	0.9	7.9	1.4E-14	1.3E-13	1.6%	2.1%	СК	СВ	
AS-005	Perimeter	AMS	-01	PE01	50	10/3/18 7:15	10/3/18 16:15	540	2.7E+07	А	10/15/18	20	cpm	0.050	2.600	0.1	4.6	2.4E-15	7.7E-14	0.3%	1.3%	СК	СВ	
AS-006	Perimeter	AMS	-02	PE02	60	10/3/18 7:20	10/3/18 16:30	550	3.3E+07	А	10/15/18	20	cpm	0.350	3.350	1.0	6.6	1.4E-14	9.1E-14	1.5%	1.5%	Ck	СВ	
AS-007	Perimeter	AMS	-01	PE01	50	10/9/18 8:20	10/9/18 16:25	485	2.4E+07	А	10/15/18	20	cpm	0.150	3.100	0.4	6.0	8.0E-15	1.1E-13	0.9%	1.8%	СК	СВ	
AS-008	Perimeter	AMS	-02	PE02	60	10/9/18 8:15	10/9/18 16:20	485	2.9E+07	А	10/15/18	20	cpm	0.100	3.950	0.3	8.3	4.5E-15	1.3E-13	0.5%	2.1%	СК	СВ	
AS-009	Perimeter	AMS	-01	PE01	50	10/10/18 7:25	10/10/18 16:10	525	2.6E+07	А	10/15/18	20	cpm	0.400	3.050	1.2	5.8	2.0E-14	1.0E-13	2.2%	1.7%	СК	СВ	
AS-010	Perimeter	AMS	-02	PE02	60	10/10/18 7:15	10/10/18 16:20	545	3.3E+07	А	10/15/18	20	cpm	0.450	2.650	1.3	4.7	1.8E-14	6.5E-14	2.0%	1.1%	СК	СВ	
AS-011	Perimeter	AMS	-01	PE01	50	10/11/18 7:35	10/11/18 16:00	505	2.5E+07	А	10/15/18	20	cpm	0.200	4.550	0.6	9.9	1.0E-14	1.8E-13	1.1%	2.9%	СК	СВ	
AS-012	Perimeter	AMS	-02	PE02	60	10/11/18 7:30	10/11/18 16:10	520	3.1E+07	А	10/15/18	20	cpm	0.200	3.700	0.6	7.6	8.3E-15	1.1E-13	0.9%	1.8%	СК	СВ	
AS-013	Perimeter	AMS	-01	PE01	50	10/15/18 7:50	10/15/18 15:50	480	2.4E+07	А	10/22/18	20	cpm	0.200	3.650	0.6	7.5	1.1E-14	1.4E-13	1.2%	2.3%	BS	СВ	
AS-014	Perimeter	AMS	-02	PE02	60	10/15/18 8:00	10/15/18 15:45	465	2.8E+07	А	10/22/18	20	cpm	0.150	3.150	0.4	6.1	7.0E-15	9.8E-14	0.8%	1.6%	BS	СВ	
AS-015	Perimeter	AMS	-01	PE01	50	10/16/18 6:35	10/16/18 14:25	470	2.4E+07	А	10/22/18	20	cpm	0.650	3.050	1.9	5.8	3.6E-14	1.1E-13	4.0%	1.9%	BS	СВ	
AS-016	Perimeter	AMS	-02	PE02	60	10/16/18 6:15	10/16/18 14:35	500	3.0E+07	А	10/22/18	20	cpm	0.750	3.050	2.2	5.8	3.2E-14	8.7E-14	3.6%	1.5%	BS	СВ	
AS-017	Perimeter	AMS	-01	PE01	50	10/17/18 6:15	10/17/18 14:50	515	2.6E+07	А	10/22/18	20	cpm	0.750	4.400	2.2	9.5	3.8E-14	1.7E-13	4.2%	2.8%	BS	СВ	
AS-018	Perimeter	AMS	-02	PE02	60	10/17/18 6:20	10/17/18 14:40	500	3.0E+07	А	10/22/18	20	cpm	0.650	3.650	1.9	7.5	2.8E-14	1.1E-13	3.1%	1.9%	BS	СВ	
AS-019	Perimeter	AMS	-01	PE01	50	10/18/18 5:44	10/18/18 14:10	506	2.5E+07	А	10/22/18	20	cpm	0.400	4.100	1.2	8.7	2.1E-14	1.5E-13	2.3%	2.6%	BS	СВ	
AS-020	Perimeter	AMS	-02	PE02	60	10/18/18 5:50	10/18/18 14:00	490	2.9E+07	А	10/22/18	20	cpm	0.700	4.100	2.0	8.7	3.1E-14	1.3E-13	3.4%	2.2%	BS	СВ	
AS-021	Perimeter	AMS	-01	PE01	50	10/22/18 6:00	10/22/18 14:30	510	2.5E+07	А	10/29/18	20	cpm	0.750	3.450	2.2	6.9	3.8E-14	1.2E-13	4.2%	2.0%	BS	СВ	
AS-022	Perimeter	AMS	-02	PE02	60	10/22/18 6:15	10/22/18 14:45	510	3.1E+07	А	10/29/18	20	cpm	0.950	3.900	2.7	8.1	4.0E-14	1.2E-13	4.5%	2.0%	BS	СВ	
AS-023	Perimeter	AMS	-01	PE01	50	10/23/18 5:45	10/23/18 14:30	525	2.6E+07	А	10/29/18	20	cpm	0.550	3.250	1.6	6.4	2.7E-14	1.1E-13	3.0%	1.8%	BS	СВ	
AS-024	Perimeter	AMS	-02	PE02	60	10/23/18 5:52	10/23/18 14:40	528	3.2E+07	А	10/29/18	20	cpm	0.700	4.050	2.0	8.5	2.9E-14	1.2E-13	3.2%	2.0%	BS	СВ	
AS-025	Perimeter	AMS	-01	PE01	50	10/24/18 5:30	10/24/18 14:20	530	2.6E+07	А	10/29/18	20	cpm	0.150	4.300	0.4	9.2	7.3E-15	1.6E-13	0.8%	2.6%	BS	СВ	
AS-026	Perimeter	AMS	-02	PE02	60	10/24/18 5:40	10/24/18 14:30	530	3.2E+07	А	10/29/18	20	cpm	0.150	2.750	0.4	5.0	6.1E-15	7.1E-14	0.7%	1.2%	BS	СВ	
AS-027	Perimeter	AMS	-01	PE01	50	10/25/18 5:30	10/25/18 13:30	480	2.4E+07	А	10/29/18	20	cpm	0.200	2.550	0.6	4.5	1.1E-14	8.4E-14	1.2%	1.4%	BS	СВ	
AS-028	Perimeter	AMS	-02	PE02	60	10/25/18 5:40	10/25/18 13:40	480	2.9E+07	А	10/29/18	20	cpm	0.050	3.150	0.1	6.1	2.3E-15	9.5E-14	0.3%	1.6%	BS	СВ	

Gilba	ane													AIR SA	MPLE	RESUL	_TS - P	UBLIC	EXPO	SURE I	MONIT	ORING	
			Р	roject Inforn	nation				Effluent Air Concentration				Sampling Period			Color Codes							
Contract /	Contract / Task Order Number: Project Title / Location: Gilbane Project Number:											Alpha	Beta	Air s	amples coll	ected	Value < MDC Value				e < 0.1 x Effluent Conc		
N62473-17-D-0005 IR Site 12 RD/RA, Treasure Island, SF, CA J310000300								Rad	ionuclide	Ra-226	Sr-90	between	March 18,	2018	< 72	2 hr decay ti	ime	Value >	0.1 x Efflu	ent Conc			
	Information effective as of: 5/3/2019								Effluent Conc (µCi/ml) 9.E-13 6.E-12			and	April 29, 20)19	D	ata reviewe	d	Value	e > Effluent	Conc			
	Sample Collection											Count I	nformatio	n				Sample	Results		Init	tials	
Sample	Sample	Sample	Equip	Ave Flow	Start	End	Elapsed	Volume	Inst	Count	Time	Counting	Gross	Activity	Net	dpm	Activity	(µCi/ml)	Effluent	Conc (%)	Count	Data	
Number	Туре	Location	No	Rate (Ipm)	Day Time	Date Time	Time (min)	(ml)	No	Date	(min)	Units	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Tech	Reviewer	
AS-029	Perimeter	AMS-01	PE01	50	10/29/18 7:24	10/29/18 16:00	516	2.6E+07	А	11/6/18	20	cpm	0.250	4.300	0.7	9.2	1.3E-14	1.6E-13	1.4%	2.7%	BS	СВ	
AS-030	Perimeter	AMS-02	PE02	60	10/29/18 7:40	10/29/18 16:15	515	3.1E+07	А	11/6/18	20	cpm	0.500	3.050	1.4	5.8	2.1E-14	8.5E-14	2.3%	1.4%	BS	СВ	
AS-031	Perimeter	AMS-01	PE01	50	10/30/18 5:30	10/30/18 14:00	510	2.6E+07	А	11/6/18	20	cpm	0.350	3.150	1.0	6.1	1.8E-14	1.1E-13	2.0%	1.8%	BS	СВ	
AS-032	Perimeter	AMS-02	PE02	60	10/30/18 5:40	10/30/18 14:10	510	3.1E+07	А	11/6/18	20	cpm	0.200	4.800	0.6	10.6	8.5E-15	1.6E-13	0.9%	2.6%	BS	СВ	
AS-033	Perimeter	AMS-01	PE01	50	10/31/18 5:25	10/31/18 14:30	545	2.7E+07	А	11/6/18	20	cpm	0.150	4.950	0.4	11.0	7.1E-15	1.8E-13	0.8%	3.0%	BS	СВ	
AS-034	Perimeter	AMS-02	PE02	60	10/31/18 5:40	10/31/18 14:40	540	3.2E+07	Α	11/6/18	20	cpm	0.200	4.150	0.6	8.8	8.0E-15	1.2E-13	0.9%	2.0%	BS	СВ	
AS-035	Perimeter	AMS-01	PE01	50	11/1/18 5:30	11/1/18 14:10	520	2.6E+07	А	11/6/18	20	cpm	0.150	4.150	0.4	8.8	7.5E-15	1.5E-13	0.8%	2.5%	BS	СВ	
AS-036	Perimeter	AMS-02	PE02	60	11/1/18 5:35	11/1/18 14:20	525	3.1E+07	A	11/6/18	20	cpm	0.050	4.150	0.1	8.8	2.1E-15	1.3E-13	0.2%	2.1%	BS	СВ	