

Naval Facilities Engineering Command Southwest BRAC PMO West San Diego, CA

AIR MONITORING SUMMARY REPORT FOR PARCEL E REMEDIAL ACTION PHASE 2

HUNTERS POINT NAVAL SHIPYARD, SAN FRANCISCO, CALIFORNIA

March 1st, 2020 through March 31th, 2020

Approved for public release; distribution is unlimited

DCN: GLBN-0005-4332-0039

Naval Facilities Engineering Command Southwest BRAC PMO West San Diego, CA

AIR MONITORING SUMMARY REPORT FOR PARCEL E REMEDIAL ACTION PHASE 2

HUNTERS POINT NAVAL SHIPYARD, SAN FRANCISCO, CALIFORNIA

March 1st, 2020 through March 31st, 2020

Prepared for:

Department of the Navy Naval Facilities Engineering Command Southwest BRAC PMO West 33000 Nixie Way, Bldg, 50 San Diego, CA 92147

Gilbane Federal 1655 Grant Street, Suite 1200 Concord, CA 94520

Contract Number: N62473-17-D-0005; Task Order No. N6247317F4332 DCN: GLBN-0005-4332-0039

Table of	Contents	iv						
List of A	ttachments	iv						
List of Fi	gures	v						
List of Ta	ist of Tables							
Acronyn	ns and Abbreviations	vi						
1.0	Introduction	1-1						
2.0	Monitoring Site Locations	2-1						

	-	
3.0	Analytical Methods	
3.1	Asbestos	
3.2	PM10	
3.3	TSP, Copper, Lead, and Manganese	
3.4	Radionuclides of Concern	
4.0	Air Monitoring Data Interpretation and Action Levels	4-1
5.0	Air Monitoring Results	5-1
6.0	References	6-1

List of Attachments

Attachment 1: Ambient Pressure, Temperature, and Prevalent Wind Direction Monitoring	
Results	A-1
Attachment 2: Asbestos Monitoring Results	B-1
Attachment 3: Particulate Matter, Smaller than Ten Microns (PM10) Monitoring Results	C-1
Attachment 4: Total Suspended Particulates Monitoring Results	D-1
Attachment 5: Copper, Lead, and Manganese Monitoring Results	E-1
Attachment 6: Radiological Air Monitoring Results	F-1
Attachment 7: Laboratory Reports	G-1

Table of Contents

List of Figures

Figure 2-1: Air Monitoring Locations

List of Tables

Table 4-1: Air Monitorin	g Threshold Criteria	4-1
--------------------------	----------------------	-----

Acronyms and Abbreviations

AMSR	Air Monitoring Summary Report
Cal/OSHA	California Occupational Safety and Health Administration
Cfm	cubic feet per minute
CFR	Code of Federal Regulations
СТО	Contract Task Order
DMCP	Dust Monitoring and Control Plan
DTSC	State of California Department of Toxic Substances Control
EPA	United States Environmental Protection Agency
fiber/cm3	fiber per cubic centimeter
Gilbane	Gilbane Federal
HERO	Human and Ecological Risk Office
HPNS	Hunters Point Naval Shipyard
L/min	liters per minute
mg/m3	milligrams per cubic meter
Navy	U.S. Department of the Navy
NIOSH	National Institute for Occupational Safety and Health
PDR	personal data-logging real-time
PEL	permissible exposure limit
PM10	particulate matter less than 10 microns in diameter
TSP	total suspended particulates
TWA	time-weighted average
μg/m3	micrograms per cubic meter

Introduction

1.0 Introduction

This Air Monitoring Summary Report (AMSR) was prepared by Gilbane Federal (Gilbane) as requested by the United States Department of the Navy (Navy) under Radiological Environmental Multiple Award Contract N62473-17-D-0005, Contract Task Order (CTO) N6247317F4332. Gilbane is performing air monitoring at Hunters Point Naval Shipyard (HPNS) in accordance with the Final Dust Monitoring and Control Plan (DMCP), included as Appendix E to *Final Remedial Action Work Plan, Parcel E Remedial Action Phase 2, Hunters Point Naval Shipyard, San Francisco, California* (RAWP; Gilbane, 2019). The DMCP describes the procedures that minimize dust during work activities and requires air monitoring to ensure these procedures are effective. The DMCP helps prevent exposure of residents and construction crews to potential airborne chemicals of concern, and dust from the work area.

This summary report describes the following:

- Where and how air monitoring samples were collected.
- What test methods were used to analyze air monitoring samples.
- How air monitoring data were evaluated.

This AMSR summarizes the air monitoring activities conducted by Gilbane at HPNS from March 1st, 2020 through March 31st, 2020 and compares the results with the established action levels presented in the DMCP (Appendix E of the RAWP [Gilbane, 2019]).

2.0 Monitoring Site Locations

Air monitoring stations were deployed at one upwind and one downwind location from the work area whenever active soil handling operations were in progress. Based on past meteorological data, the prevalent wind direction at HPNS was from the west or west-southwest. The locations of Parcel E air monitoring stations are presented on Figure 2-1.

Air monitoring was performed to estimate and assess the impact of field activities. The locations of air monitoring stations were determined based on the prevailing wind direction and were modified as needed for accessibility and worker safety considerations. Wind direction was monitored daily using a windsock and confirmed with the prevalent wind direction recorded for the Hunters Point Station (KCASANFR994) published at Weather Underground (www.wunderground.com). Atmospheric parameters were checked daily at www.wunderground.com (see Attachment 1). Monitoring stations remained stationary while sampling was conducted. Each monitoring station included four different monitoring systems:

- 1. Asbestos
- 2. Particulate matter less than 10 microns in diameter (PM10)
- 3. Total suspended particulates (TSP) and Metals (Copper, Lead, and Manganese)
- 4. Radiological air samplers.

3.0 Analytical Methods

3.1 Asbestos

Air samples were sampled and analyzed in accordance with National Institute for Occupational Safety and Health (NIOSH) Method 7400, from the NIOSH Manual of Analytical Methods (NIOSH, 1994). Method 7400 requires that samples be collected on three-piece cellulose ester filters fitted with conductive cowlings at a sampling rate of between 0.5 liters per minute (L/min) and 16 L/min. Each sample was collected over a period of less than 24 hours.

3.2 PM10

Filter-based PM10 data are collected to ensure the protection of public health and safety during construction operations. Filter-based PM10 data are generated by sampling with calibrated air monitoring equipment that are operated continuously over a period of time (usually 8 or 24 hours) in accordance with the U.S. Environmental Protection Agency (EPA) reference sampling method for PM10 as described in 40 CFR 50, Subpart J, during which time measurements are taken to precisely calculate the volume of air that has passed through the filter media sample. The period sampled is dependent on the duration of the work activity. The sample is then shipped to a certified analytical laboratory where the sample results are gravimetrically determined, after which the results are validated for quality assurance. In this way the precise amount of PM10 present in each cubic meter of air is determined.

3.3 TSP, Copper, Lead, and Manganese

TSP samples were collected with a high-volume (39 to 60 cubic feet per minute [cfm]) air sampler in accordance with EPA's reference sampling method for TSP, described in Title 40 Code of Federal Regulations (CFR), Part 50, Subpart B. Each sample was collected on a filter over an approximately 8 to 24-hour period (depending on the duration of the work activity). The filter was then weighed to determine the amount of TSP collected. Once the filter weight was determined, the sample was analyzed for copper and manganese in accordance with one of the IO-3 methods identified in Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air (EPA, 1999), and for lead in accordance with a modified EPA Method 12.

3.4 Radionuclides of Concern

Radiological air samples were collected with a LV-1 low-volume air sampler. Air filters are counted onsite following a decay period and are compared with public air concentration limits published in 10 CFR Part 20. Radiological air sampling methods and procedures are detailed in Gilbane Radiological Procedure PR-RP-150 *Radiological Survey and Sampling* (Gilbane, 2016).

The radiological air sample is counted on a Low Background Protean WPC-9950 and analyzed for gross alpha and beta activity. The calculated airborne concentration in microcuries is then compared to the effluent concentration limit specified in Table 2 of Appendix B to 10 CFR 20. The effluent concentration of a given radionuclide in air which, if inhaled continuously over the course of a year, results in an exposure equal to the annual regulatory limit specified in 10 CFR 20.1302. The threshold for radiological effluent air monitoring samples is 10 percent of the effluent

Analytical Methods

concentration, which ensures work practices are evaluated and modified as necessary to ensure the limit is not reached.

The equipment specifications and sampling procedures have complied with the specifications provided in the regulations for the sampler, filter, accuracy, calibration, and quality assurance.

4.0 Air Monitoring Data Interpretation and Action Levels

To facilitate the comparison to project action levels, the delta between the upwind and downwind PM10 and TSP analytical results was calculated for detected values. Negative results indicating that the upwind concentration was greater than the downwind concentration, or instances where no delta was calculated due to non-detected results, are interpreted as acceptable.

The resulting deltas for PM10 and TSP and analytical data from air monitoring metals and radiological samples were compared with the threshold criteria listed in Table 4-1 reproduced from Table 1 of the approved DMCP (Appendix E of the RAWP [Gilbane, 2019]. The PM10 delta was additionally compared to the criterion taken from the *Technical Memorandum: Draft Dust Action Levels for Parcel E, Hunters Point Shipyard, San Francisco, California* (Department of Toxic Substances Control [DTSC] 2017) of 50 ug/m³.

Test Parameter	Threshold Criterion	Threshold Criteria Reference
Asbestos	0.1 fiber/cm ³	Cal/OSHA PEL
PM10	5,000 ug/m ³	Cal/OSHA PEL
тер	$0 E ma/m^3$	Basewide HPNS Level selected to minimize
138		overall permissible dust release from sites
Copper	1.0 mg/m ³	Cal/OSHA PEL
Lead	0.050 mg/m ³	Cal/OSHA PEL
Manganese	0.200 mg/m ³	Cal/OSHA PEL
Radiological	10% of Effluent	Occupational and public air concentration
	Concentration Values	limits for ROCs are published in 10 Code of
		Federal Regulations Part 20, Appendix B.

Table 4-1: Air Monitoring Threshold Criteria

Notes:

^a = Cal/OSHA PEL for particulates not otherwise regulated (respiratory) used for PM10.

 $\mu g/m^3$ = micrograms per cubic meter

Cal/OSHA = California Division of Occupational Safety and Health Administration

fiber/cm³ = fiber per cubic centimeter

HPNS = Hunters Point Naval Shipyard

mg/m³ = milligrams per cubic meter

PEL = permissible exposure limit

PM10 = particulate matter less than 10 microns in diameter

TSP = total suspended particulates

5.0 Air Monitoring Results

Weather information (including ambient pressure and temperature data) is presented in the table included as Attachment 1. Data was collected from downwind Station 1 in Parcel D-1 and upwind Station 2 in Parcel E from March 2nd to March 12th, 2020, during which Gilbane was relocating stockpiles from Parcel E to Parcel D-1. Samples were not collected during periods of site inactivity, rain events, and/or while site work was limited to non-earth moving tasks. Air samples were not run on March 16th and March 17th, 2020 since there were no earth-moving tasks during that time. On March 16th, 2020, a shelter in place order was issued by the City and County of San Francisco Department of Public Health due to the risk of the rapid spread of the virus that causes Coronavirus 2019 Disease. Subsequently on March 19th, 2020, the California State Public Health Officer and Director of the California Department of Public Health issued a stay home order in effect until further notice. As a result, the site was shut down on March 17th, 2020, and remained closed from March 18th, 2020 through March 31st, 2020.

Construction and remediation activities conducted from March 1st through March 31st, 2020, did not result in the exceedance of the established threshold criteria, as described in detail below.

Asbestos results from March 1st through March 31st, 2020 did not exceed the project-specific screening criteria presented in Table 4-1. The results are presented as Attachment 2.

PM10 results from March 1st through March 31st, 2020 did not exceed the project-specific screening criteria presented in Table 4-1. The results are presented as Attachment 3.

TSP, lead, manganese, and copper results from March 1st through March 31st, 2020 did not exceed the project-specific screening criteria presented in Table 4-1. The results are presented as Attachments 4 and 5.

Radiological air sampling results from March 1st through March 31st, 2020 did not exceed the project-specific screening criteria presented in Table 4-1. The results are presented as Attachment 6.

Analytical laboratory reports are included as Attachment 7.

6.0 References

- Department of Toxic Substances Control (DTSC), 2017. Draft Technical Memorandum: Dust Action Levels for Parcel E, Hunters Point. May.
- National Institute for Occupational Safety and Health, (NIOSH), 1994. Manual of Analytical Methods.
- United States Environmental Protection Agency (EPA), 1998. Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Specific Methods.
- Gilbane Federal, 2014. Final Remedial Action Work Plan, Parcel E Remedial Action, Phase 2, Hunters Point Naval Shipyard, San Francisco, California. October

FIGURES

G:\ArcGIS\Navy\HPS\PROJECTS\Parcel_E\Air_Monitor_Stations.mxd 2/24/2020 azhuk, Gilbane

ATTACHMENTS

Ambient Pressure and Temperature Monitoring Results

ATTACHMENT 1

AMBIENT PRESSURE, TEMPERATURE, AND PREVALENT WIND DIRECTION MONITORING RESULTS

Ambient Pressure and Temperature Monitoring Results

Attachment 1 Ambient Pressure, Temperature, and Prevalent Wind Direction Monitoring Result Remedial Action Parcel E, Phase 2 Hunters Point Naval Shipyard, San Francisco, California

Start Date	Ambient Pressure (in Hg)	Ambient Temperature (°F)	Prevalent Wind Direction
3/2/2020	30.07	62.0	SW
3/3/2020	30.06	60.0	SSW
3/4/2020	30.13	59.0	W
3/5/2020	30.20	58.0	WNW
3/9/2020	30.12	57.0	NW
3/10/2020	30.05	61.0	NNW
3/11/2020	30.05	56.0	WNW
3/12/2020	29.94	56.0	NW

Note:

Data collected using wunderground.com from Hunters Point Station - KCASANSFR994.

°F = degree Fareheit

in Hg = inches of mercury

N = North

S= South

W = West

Asbestos Monitoring Results

ATTACHMENT 2 ASBESTOS MONITORING RESULTS

Asbestos Monitoring Results

Attachment 2 Asbestos Monitoring Results Remedial Action Parcel E, Phase 2 Hunters Point Naval Shipyard, San Francisco, California

Sample, Date an	d Station Infor	mation	Sampler Run li	nformation	Asbestos Fibers					
				Total Air						
	Sample Start	Monitoring		Volume			Exceedance			
Sample ID	Date ¹	Station	Duration of Run	Monitored	Asbestos	Conc Asbestos	(Yes/No)			
			(min)	(m ³)	(fibers)	(fibers/cm ³)	()			
MSE01A-030220	03/02/20	1A	476	952	13.5	0.007	No			
MSE02-030220	03/02/20	2	461	922	23.0	0.012	No			
MSE01A-030320	03/03/20	1A	468	936	11.0	0.006	No			
MSE02-030320	03/03/20	2	462	924	11.5	0.006	No			
MSE01A-030420	03/04/20	1A	475	950	11.0	0.006	No			
MSE02-030420	03/04/20	2	464	928	11.0	0.006	No			
MSE01A-030520	03/05/20	1A	441	882	18.5	0.100	No			
MSE02-030520	03/05/20	2	432	864	10.0	0.006	No			
MSE01A-030920	03/09/20	1A	436	872	13.5	0.008	No			
MSE02-030920	03/09/20	2	412	824	18.0	0.011	No			
MSE01A-031020	03/10/20	1A	453	906	12.0	0.006	No			
MSE02-031020	03/10/20	2	430	860	18.0	0.010	No			
MSE01A-031120	3/11/20	1A	473	946	13.0	0.007	No			
MSE02-031120	3/11/20	2	470	940	14.0	0.007	No			
MSE01A-031220	3/12/20	1A	414	828	12.5	0.007	No			
MSE02-031220	3/12/20	2	404	808	17.0	0.010	No			

Notes:

Samples analyzed by A&B Labs Sample locations are shown on Figure 2-1 min = minutes m^3 = cubic meters fibers/cm³ = fibers per cubic centimeter

ATTACHMENT 3 PM10 MONITORING RESULTS

PM10 Monitoring Results

Attachment 3

Particulate Matter, Smaller than Ten Microns (PM10) Monitoring Results Remedial Action Parcel E, Phase 2

Hunters Point Naval Shipyard, San Francisco, California

Sample, Date and	Station Inform	nation	Sampler Run Information	PM10s											
Sample ID	Monitoring Station	Sample Start Date ¹	Total Air Volume Monitored (m ³)	Total Mass (mg)	Concen- tration in Air (mg/m³)	Delta between Downwind and Upwind (mg/m ³)	Delta between Downwind and Upwind (ug/m ³)	Cal/OSHA PEL (ug/m³)	Exceedance (Yes/No)	HERO Action Level ² (ug/m ³)	Exceedance (Yes/No)				
Q0374064-MSE01A	1A	3/2/20	1661.04	31	0.019				No		No				
Q0374065-MSE02	2	3/2/20	1629.04	22	0.014	0.005	5.0	5,000	No	50	No				
Q0374062-MSE01A	1A	3/3/20	1589.83	34	0.021				No		No				
Q0374063-MSE02	2	3/3/20	1100.19	11	0.0099	0.0111	11.1	5,000	No	50	No				
Q0374076-MSE01A	1A	3/4/20	1628.24	32	0.019				No		No				
Q0374077-MSE02	2	3/4/20	1617.41	26	0.016	0.003	3.0	5,000	No	50	No				
Q0374070-MSE01A	1A	3/5/20	505.16	5.2	0.01				No		No				
Q0374071-MSE02	2	3/5/20	495.45	3.6	0.0073	0.0027	2.7	5,000	No	50	No				
Q0374074-MSE01A	1A	3/9/20	1601.77	4.5	0.0028				No		No				
Q0374075-MSE02	2	3/9/20	1587.43	3.1	0.002	0.0008	0.8	5,000	No	50	No				
Q0374072-MSE01A	1A	3/10/20	1655.51	4.3	0.0026				No		No				
Q0374073-MSE02	2	3/10/20	1634.10	4.5	0.0028	-0.0002	-0.2	5,000	No	50	No				
Q0374060-MSE01A	1A	3/11/20	1634.30	12	0.0076				No		No				
Q0374061-MSE02	2	3/11/20	1623.96	10	0.0064	0.0012	1.2	5,000	No	50	No				
Q0374058-MSE01A	1A	3/12/20	472.59	12	0.026				No		No				
Q0374059-MSE02	2	3/12/20	456.56	11	0.025	0.0010	1.0	5,000	No	50	No				

Notes:

¹Air sample was not collected on days with rain or when contaminated soil was not disturbed.

²PM10 data is additionally compared to the recommended dust action level of 50 ug/m³ for total PM10 in accordance with the DTSC Human and Ecological Risk Office (HERO) Parcel E Memorandum dated April 29, 2019 (DTSC, 2019) for informational purposes only.

Samples analyzed by ALS Environmental

Sample locations are shown on Figure 2-1

DTSC = Department of Toxic Substances Control

 m^3 = cubic meters

mg = milligrams

 $mg/m^3 = milligrams$ per cubic meter

 PM_{10} -particulate matter smaller than 10 microns in diameter

Gilbane

ATTACHMENT 4 TSP MONITORING RESULTS

Attachment 4 Total Suspended Particulates Monitoring Results Remedial Action Parcel E, Phase 2 Hunters Point Naval Shipyard, San Francisco, California

Sample, Date and S	Station Inform	mation	Sampler Run Information	Total Suspended Particulates							
Monitoring Station		Sample Start Date ¹	Total Air Volume Monitored (m ³)	Total Mass (mg)	Concen- tration in Air (mg/m ³)	Delta between Downwind and Upwind (mg/m ³)	Basewide HPNS Level (mg/m ³)	Exceedance (Yes/No)			
9764167-MSE01A	1A	3/2/20	1745.45	68	0.039						
9764168-MSE02	2	3/2/20	1664.17	47	0.028	0.011	0.5	No			
9764165-MSE01A	1A	3/3/20	1752.79	70	0.040						
9764166-MSE02	2	3/3/20	1662.20	54	0.032	0.008	0.5	No			
9764179-MSE01A	1A	3/4/20	1724.85	80	0.046						
9764180-MSE02	2	3/4/20	1663.95	58	0.035	0.011	0.5	No			
9764177-MSE01A	1A	3/5/20	536.62	28	0.053						
9764178-MSE02	2	3/5/20	505.49	12	0.023	0.030	0.5	No			
9764175-MSE01A	1A	3/9/20	1690.53	38	0.022						
9764176-MSE02	2	3/9/20	1616.85	20	0.013	0.009	0.5	No			
9764173-MSE01A	1A	3/10/20	1753.54	52	0.029						
9764174-MSE02	2	3/10/20	1662.49	33	0.020	0.009	0.5	No			
9764163-MSE01A	1A	3/11/20	1726.81	57	0.033						
9764164-MSE02	2	3/11/20	1653.02	36	0.022	0.011	0.5	No			
9764161-MSE01A	1A	3/12/20	500.86	17	0.034						
9764162-MSE02	2	3/12/20	465.55	6.6	0.014	0.020	0.5	No			

Notes:

¹Air sample was not collected on days with rain or when contaminated soil was not disturbed.

Samples analyzed by ALS Environmental

Sample locations are shown on Figure 2-1

-- indicates difference was not calculated

< = below detection limit

HPNS = Hunters Point Naval Shipyard

mg = milligrams

 mg/m^3 = milligrams per cubic meter

 m^3 = cubic meters

NA = not applicable

ug = micrograms

Copper, Lead, and Manganese Monitoring Results

ATTACHMENT 5

COPPER, LEAD, AND MANGANESE MONITORING RESULTS

Copper, Lead, and Manganese Monitoring Results

Attachment 5 Copper, Lead, and Manganese Monitoring Results Remedial Action Parcel E, Phase 2 Hunters Point Naval Shipyard, San Francisco, California

			Run											
Sample, Date and S	Station Infor	mation	Information		Copper			Lead		Manganese				
Sample ID	Monitoring Station	Sample Start Date ¹	Total Air Volume Monitored	Result	Concen- tration in Air	Exceedance (Yes/No)	Result	Concen-tration in Air	Exceedance (Yes/No)	Result	Concen- tration in Air	Exceedance (Yes/No)		
	olulion		(m ³)	(ug)	(mg/m ³)	(100,110)	(ug)	(mg/m ³)	(100,110)	(ug)	(mg/m ³)	(100,110)		
9764167-MSE01A	1A	3/2/20	1745.45	2,300	0.0013	No	ND	<0.000014	No	30	0.000017	No		
9764168-MSE02	2	3/2/20	1664.17	240	0.00015	No	ND	<0.000015	No	ND	<0.000015	No		
9764165-MSE01A	1A	3/3/20	1752.79	3,600	0.0020	No	ND	<0.000014	No	28	0.000016	No		
9764166-MSE02	2	3/3/20	1662.20	260 0.00016 No		No	ND	<0.000015	No	ND	<0.000015	No		
9764179-MSE01A	1A	3/4/20	1724.85	3,000	3,000 0.0018		ND	<0.000014	No	36	0.000021	No		
9764180-MSE02	2	3/4/20	1663.95	390	0.00024	No	ND	<0.000015	No	ND	<0.000015	No		
9764177-MSE01A	1A	3/5/20	536.62	440	0.00081	No	ND	<0.000047	No	27	0.000051	No		
9764178-MSE02	2	3/5/20	505.49	130	0.00025	No	ND	<0.000049	No	ND	<0.000049	No		
9764175-MSE01A	1A	3/9/20	1690.53	2,700	0.0016	No	ND	<0.000015	No	ND	<0.000015	No		
9764176-MSE02	2	3/9/20	1616.85	520	0.00032	No	ND	<0.000015	No	ND	<0.000015	No		
9764173-MSE01A	1A	3/10/20	1753.54	3,000	0.0017	No	ND	<0.000014	No	38	0.000022	No		
9764174-MSE02	2	3/10/20	1662.49	1,000	0.00061	No	ND	<0.000015	No	ND	<0.000015	No		
9764163-MSE01A	1A	3/11/20	1726.81	2,200	0.0012	No	ND	<0.000014	No	28	0.000016	No		
9764164-MSE02	2	3/11/20	1653.02	480	0.00029	No	ND	<0.000015	No	ND	<0.000015	No		
9764161-MSE01A	1A	3/12/20	500.86	660	0.0013	No	ND	<0.000050	No	ND	<0.000050	No		
9764162-MSE02	2	3/12/20	465.55	350	0.00076	No	ND	<0.000054	No	ND	<0.000054	No		

Notes:

¹Air sample was not collected on days with rain or when contaminated soil was not disturbed.

Samples analyzed by ALS Environmental

Sample locations are shown on Figure 2-1

mg = milligrams

mg/m³ = milligrams per cubic meter

< = below detection limit

m³ = cubic meters

ug = micrograms

ATTACHMENT 6

RADIOLOGICAL AIR MONITORING RESULTS

Radiological Air Monitoring Results

Gilb	AIR SAMPLE RESULTS - PUBLIC EXPOSURE MONITORING																						
				Project Info	ormation				Effluent Air Concentration					Sampling Period			Color Codes						
Contract / Task Order Number: Project Title / Location:			Gilbane Project Number:						Alpha	Beta	Air	samples co	lected	Value < MDC Valu			Value <	e < 0.1 x Effluent Conc					
N6247	3-17-D-0005	/ F4332	Parcel I	E RA HPNS,	SF, CA	J3	10000400			Rad	ionuclide	Ra-226	Sr-90	between	March 1, 20	20	< 72 hr decay time			Value >	0.1 x Efflu	ent Conc	
	Information effective as of: 3/23/2020								Ef	luent Conc	(µCi/ml)	9.E-13	6.E-12	and	March 31, 2	020	Data reviewed			Value	Value > Effluent Conc		
	Sample Collection											Cour	t Informat	ion				Sample	Results		Inif	tials	
Sample	Sample	Sample	Equip	Ave Flow	Start	End	Elapsed	Volume	Inst	Count	Time	Counting	Gross	Activity	Ne	t dpm	Activity	(µCi/ml)	Effluent	Conc (%)	Count	Data	
Number	Туре	Location	No	Rate (lpm)	Day Time	Date Time	Time (min)	(ml)	No	Date	(min)	Units	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Tech	Reviewer	
AS-0045	Perimeter	MSE01A	PE03	60	3/2/20 7:50	3/2/20 15:46	476	2.9E+07	Α	3/16/20	20	cpm	0.250	4.550	0.6	10.1	1.0E-14	1.6E-13	1.1%	2.7%	DVT	DB	
AS-0046	Perimeter	MSE02	PE04	60	3/2/20 7:00	3/2/20 15:52	532	3.2E+07	Α	3/17/20	20	cpm	0.350	4.100	0.9	8.9	1.3E-14	1.3E-13	1.4%	2.1%	DVT	DB	
AS-0047	Perimeter	MSE01A	PE03	60	3/3/20 7:06	3/3/20 14:15	429	2.6E+07	Α	3/18/20	20	cpm	0.200	3.550	0.5	7.3	8.9E-15	1.3E-13	1.0%	2.1%	DVT	DB	
AS-0048	Perimeter	MSE02	PE04	60	3/3/20 7:00	3/3/20 14:20	440	2.6E+07	Α	3/19/20	20	cpm	0.050	3.800	0.1	8.0	2.2E-15	1.4E-13	0.2%	2.3%	DVT	DB	
AS-0049	Perimeter	MSE01A	PE03	60	3/4/20 5:35	3/4/20 14:45	550	3.3E+07	Α	3/20/20	20	cpm	0.050	3.250	0.1	6.5	1.7E-15	8.9E-14	0.2%	1.5%	DVT	DB	
AS-0050	Perimeter	MSE02	PE04	60	3/4/20 5:40	3/4/20 15:00	560	3.4E+07	Α	3/21/20	20	cpm	0.250	4.500	0.6	10.0	8.5E-15	1.3E-13	0.9%	2.2%	DVT	DB	
AS-0051	Perimeter	MSE01A	PE03	60	3/5/20 5:05	3/5/20 14:05	540	3.2E+07	Α	3/22/20	20	cpm	0.200	3.700	0.5	7.8	7.1E-15	1.1E-13	0.8%	1.8%	DVT	DB	
AS-0052	Perimeter	MSE02	PE04	60	3/5/20 5:00	3/5/20 14:00	540	3.2E+07	Α	3/23/20	20	cpm	0.200	3.500	0.5	7.2	7.1E-15	1.0E-13	0.8%	1.7%	DVT	DB	
AS-0053	Perimeter	MSE01A	PE03	60	3/9/20 6:30	3/9/20 14:30	480	2.9E+07	Α	3/24/20	20	cpm	0.150	4.050	0.4	8.7	6.0E-15	1.4E-13	0.7%	2.3%	DVT	DB	
AS-0054	Perimeter	MSE02	PE04	60	3/9/20 6:00	3/9/20 14:35	515	3.1E+07	Α	3/25/20	20	cpm	0.100	3.050	0.3	6.0	3.7E-15	8.7E-14	0.4%	1.4%	DVT	DB	
AS-0055	Perimeter	MSE01A	PE03	60	3/10/20 5:30	3/10/20 14:30	540	3.2E+07	Α	3/26/20	20	cpm	0.150	4.050	0.4	8.7	5.3E-15	1.2E-13	0.6%	2.0%	DVT	DB	
AS-0056	Perimeter	MSE02	PE04	60	3/10/20 5:26	3/10/20 14:35	549	3.3E+07	Α	3/27/20	20	cpm	0.150	4.150	0.4	9.0	5.2E-15	1.2E-13	0.6%	2.1%	DVT	DB	
AS-0057	Perimeter	MSE01A	PE03	60	3/11/20 5:20	3/11/20 14:45	565	3.4E+07	Α	3/28/20	20	cpm	0.150	4.400	0.4	9.7	5.1E-15	1.3E-13	0.6%	2.1%	DVT	DB	
AS-0058	Perimeter	MSE02	PE04	60	3/11/20 5:15	3/11/20 14:30	555	3.3E+07	A	3/29/20	20	cpm	0.100	4.000	0.3	8.6	3.4E-15	1.2E-13	0.4%	1.9%	DVT	DB	
AS-0059	Perimeter	MSE01A	PE03	60	3/12/20 5:00	3/12/20 14:02	542	3.3E+07	A	3/30/20	20	cpm	0.450	3.600	1.1	7.5	1.6E-14	1.0E-13	1.8%	1.7%	DVT	DB	
AS-0060	Perimeter	MSE02	PE04	60	3/12/20 4:55	3/12/20 14:05	550	3.3E+07	A	3/31/20	20	cpm	0.250	5.150	0.6	11.8	8.7E-15	1.6E-13	1.0%	2.7%	DVT	DB	
ATTACHMENT 7 LABORATORY REPORTS

This page intentionally left blank

07-Jul-2020

Brett Womack Gilbane Company 2730 Shadelands Drive Walnut Creek, CA 94598

Tel: (925) 946-3220 Fax: (925) 946-3292

Re: HPNS Parcel E-2; J310000400-016

Work Order: 2003259

Dear Brett,

ALS Environmental received 16 samples on 06-Mar-2020 10:38 AM for the analyses presented in the following report.

This is a REVISED REPORT. The Case Narrative provides information discussing the reason for issuing a revised report. The total number of pages in this revision is 14.

If you have any questions regarding these test results, please feel free to contact me.

Sincerely,

Electronically approved by: Rob Nieman

Rob Nieman Project Manager

> ADDRESS 4388 Glendale Milford Rd Cincinnati, OH 45242- | PHONE (513) 733-5336 | FAX (513) 733-5347 ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Work Order	2003259
Project:	HPNS Parcel E-2: J310000400-016
Client:	Gilbane Company

Work Order Sample Summary

Lab Samp ID	<u>Client Sample ID</u>	Matrix	Tag Number	Collection Date	Date Received	<u>Hold</u>
2003259-01	Q0374064-MSE01A	Air		3/3/2020 07:45	3/6/2020 10:38	
2003259-02	9764167-MSE01A	Air		3/3/2020 07:45	3/6/2020 10:38	
2003259-03	Q0374065-MSE02	Air		3/3/2020 08:00	3/6/2020 10:38	
2003259-04	9764168-MSE02	Air		3/3/2020 08:00	3/6/2020 10:38	
2003259-05	Q0374062-MSE01A	Air		3/4/2020 07:46	3/6/2020 10:38	
2003259-06	9764165-MSE01A	Air		3/4/2020 07:46	3/6/2020 10:38	
2003259-07	Q0374063-MSE02	Air		3/4/2020 08:00	3/6/2020 10:38	
2003259-08	9764166-MSE02	Air		3/4/2020 08:00	3/6/2020 10:38	
2003259-09	Q0374076-MSE01A	Air		3/5/2020 07:24	3/6/2020 10:38	
2003259-10	9764179-MSE01A	Air		3/5/2020 07:24	3/6/2020 10:38	
2003259-11	Q0374077-MSE02	Air		3/5/2020 07:43	3/6/2020 10:38	
2003259-12	9764180-MSE02	Air		3/5/2020 07:43	3/6/2020 10:38	
2003259-13	Q0374070-MSE01A	Air		3/5/2020 14:48	3/6/2020 10:38	
2003259-14	9764177-MSE01A	Air		3/5/2020 14:48	3/6/2020 10:38	
2003259-15	Q0374071-MSE02	Air		3/5/2020 15:01	3/6/2020 10:38	
2003259-16	9764178-MSE02	Air		3/5/2020 15:01	3/6/2020 10:38	

Date: 07-Jul-20

Client:Gilbane CompanyProject:HPNS Parcel E-2; J310000400-016Work Order:2003259

Date: 07-Jul-20

Case Narrative

The sample condition upon receipt was acceptable except where noted.

Results relate only to the items tested and are not blank corrected unless indicated.

ALS is an EPA recognized NLLAP laboratory for lead paint, soil, and dust wipe analyses under its AIHA-LAP accreditation.

This report was revised as follows: TSP results were corrected.

ALS Envi

_ **Client:**

Project:

Lab ID:

rironmental		

Anaryticai Kesuit
Collection Date: 2/2/2020 7:45:00 AM

Client Sample ID: Q0374064-MSE01A Analyses			Matrix: AIR			
PM : PM10 40CFR \$	50 APPDIX J		Method: PM10	Air Volume (L): 1661040	Analyst: CS	
Date Analyzed: 3/10/	/2020		Reporting Limit			
		mg/sample	mg/sample	mg/m3		
Particulate as PM10	M10 31 1.0 0.019		0.019			
Lab ID:	2003259-02A		C	Collection Date: 3/3/2020 7:45	:00 AM	
Client Sample ID:	9764167-MSE01A			Matrix: AIR		
Analyses						
TSP 40 CFR 50 APPDX B			Method: TSP	Air Volume (L): 1745450	Analyst: CS	
Date Analyzed: 3/10/2020			Reporting Limit			
		mg/sample	mg/sample	mg/m3		
Total suspended particulate		68	1.0	0.039		
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1745450	Analyst: AZ	
Date Analyzed: 3/12/	/2020 15:48		Reporting Limit			
		µg/sample	µg/sample	mg/m3		
Copper		2,300	25	0.0013		
Lead		ND	25	<0.000014		
Manganese		30	25	0.000017		
Lab ID:	2003259-03A		C	Collection Date: 3/3/2020 8:00	:00 AM	
Client Sample ID:	Q0374065-MSE02		Matrix: AIR			
Analyses						
PM : PM10 40CFR \$	50 APPDIX J		Method: PM10	Air Volume (L): 1629040	Analyst: CS	
Date Analyzed: 3/10/	/2020		Reporting Limit			
		mg/sample	mg/sample	mg/m3		
Particulate as PM10)	22	1.0	0.014		

Date: 07-Jul-20

Work Ord 2003259

S

_

Client:	Gilbane Company
Project:	HPNS Parcel E-2; J310000400-016

Work Order: 2003259 Analytical Results

Lab ID:	2003259-04A		Collection Date: 3/3/2020 8:00:00 AM		
Client Sample ID:	9764168-MSE02		Matrix: AIR		
Analyses					
TSP 40 CFR 50 APF	PDX B		Method: TSP	Air Volume (L): 1664170	Analyst: CS
Date Analyzed: 3/10/2	2020		Reporting Limit	· ····································	,
		mg/sample	mg/sample	mg/m3	
Total suspended pa	rticulate	47	1.0	0.028	
METALS BY EPA M	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1664170	Analyst: AZ
Date Analyzed: 3/12/	2020 15:51		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		240	25	0.00015	
Lead		ND	25	<0.000015	
Manganese		ND	25	<0.000015	
Lab ID:	2003259-05A			Collection Date: 3/4/2020 7:46	:00 AM
Client Sample ID:	Q0374062-MSE01A			Matrix: AIR	
Analyses					
PM : PM10 40CFR 5	50 APPDIX J		Method: PM10	Air Volume (L): 1589830	Analyst: CS
Date Analyzed: 3/10/2	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10		34	1.0	0.021	
Lab ID:	2003259-06A			Collection Date: 3/4/2020 7:46	:00 AM
Client Sample ID:	9764165-MSE01A			Matrix: AIR	
Analyses					
TSP 40 CFR 50 APF	PDX B		Method: TSP	Air Volume (L): 1752790	Analyst: CS
Date Analyzed: 3/10/2	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Total suspended pa	rticulate	70	1.0	0.040	
METALS BY EPA M	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1752790	Analyst: AZ
Date Analyzed: 3/12/2	2020 15:55		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		3,600	25	0.0020	
Lead		ND	25	<0.000014	
Manganese		28	25	0.000016	

Gilbane Company

_

Client:

Project:

vironmenta	al		

HPNS Parcel E-2; J310000400-016

Work Order: 2003259

Date: 07-Jul-20

Analytical Results

Lab ID:	2003259-07A		(Collection Date: 3/4/2020 8:00	:00 AM	
Client Sample ID:	Q0374063-MSE02		Matrix: AIR			
Analyses						
PM : PM10 40CFR 5	50 APPDIX J		Method: PM10	Air Volume (L): 1100190	Analyst: CS	
Date Analyzed: 3/10/	2020		Reporting Limit			
		mg/sample	mg/sample	mg/m3		
Particulate as PM10)	11	1.0	0.0099		
Lab ID:	2003259-08A		(Collection Date: 3/4/2020 8:00	:00 AM	
Client Sample ID:	9764166-MSE02			Matrix: AIR		
Analyses						
TSP 40 CFR 50 APF	PDX B		Method: TSP	Air Volume (L): 1662200	Analyst: CS	
Date Analyzed: 3/10/2020			Reporting Limit			
		mg/sample	mg/sample	mg/m3		
Total suspended pa	rticulate	54	1.0	0.032		
METALS BY EPA M	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1662200	Analyst: AZ	
Date Analyzed: 3/12/	2020 15:59		Reporting Limit			
		µg/sample	µg/sample	mg/m3		
Copper		260	25	0.00016		
Lead		ND	25	<0.000015		
Manganese		ND	25	<0.000015		
Lab ID:	2003259-09A		(Collection Date: 3/5/2020 7:24	:00 AM	
Client Sample ID:	Q0374076-MSE01A			Matrix: AIR		
Analyses						
PM : PM10 40CFR 5	50 APPDIX J		Method: PM10	Air Volume (L): 1628240	Analyst: CS	
Date Analyzed: 3/10/	2020		Reporting Limit			
		mg/sample	mg/sample	mg/m3		
Particulate as PM10)	32	1.0	0.019		

Client:	Gilbane Company
Project:	HPNS Parcel E-2; J310000400-016

Work Order: 2003259 Analytical Results

Lab ID: 2003259-10A Collection Date: 3/5/2020 7:24:00 AM Client Sample ID: 9764179-MSE01A Matrix: AIR Analyses TSP 40 CFR 50 APPDX B Method: TSP Air Volume (L): 1724850 Analyst: CS Date Analyzed: 3/10/2020 **Reporting Limit** mg/sample mg/sample mg/m3 80 1.0 0.046 Total suspended particulate METALS BY EPA METHOD 12 MOD. Method: E12 Analyst: AZ Air Volume (L): 1724850 Date Analyzed: 3/12/2020 16:11 **Reporting Limit** µg/sample µg/sample mg/m3 Copper 3,000 25 0.0018 Lead ND 25 < 0.000014 36 25 0.000021 Manganese Lab ID: 2003259-11A Collection Date: 3/5/2020 7:43:00 AM Client Sample ID: Q0374077-MSE02 Matrix: AIR Analyses PM : PM10 40CFR 50 APPDIX J Method: PM10 Air Volume (L): 1617410 Analyst: CS Date Analyzed: 3/10/2020 **Reporting Limit** mg/sample mg/sample mg/m3 Particulate as PM10 26 1.0 0.016 Lab ID: 2003259-12A Collection Date: 3/5/2020 7:43:00 AM Client Sample ID: 9764180-MSE02 Matrix: AIR Analyses TSP 40 CFR 50 APPDX B Method: TSP Air Volume (L): 1663950 Analyst: CS Date Analyzed: 3/10/2020 **Reporting Limit** mg/sample mg/sample mg/m3 Total suspended particulate 58 1.0 0.035 Method: E12 Analyst: AZ METALS BY EPA METHOD 12 MOD. Air Volume (L): 1663950 Date Analyzed: 3/12/2020 16:15 **Reporting Limit** µg/sample µg/sample mg/m3 Copper 390 25 0.00024 Lead ND 25 < 0.000015 ND 25 < 0.000015 Manganese

Client:

vironmental	

Gilbane Company

Project:	HPNS Parcel E-2; J310	0000400-016		Analytical I	Results
Lab ID:	2003259-13A		(Collection Date: 3/5/2020 2:4	8:00 PM
Client Sample ID: Q0374070-MSE01A				Matrix: AIR	
Analyses					
PM : PM10 40CFR 50 APPDIX J		Method: PM10	Air Volume (L): 505160	Analyst: CS	
Date Analyzed: 3/10/2020			Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10 5.2		5.2	1.0	0.010	
Lab ID:	2003259-14A		(Collection Date: 3/5/2020 2:4	8:00 PM
Client Sample ID: 9764177-MSE01A			Matrix: AIR		
Analyses					
TSP 40 CFR 50 A	PPDX B		Method: TSP	Air Volume (L): 536620	Analyst: CS

	DAD				
Date Analyzed: 3/10/	2020	mg/sample	Reporting Limit mg/sample	mg/m3	
Total suspended particulate		28	1.0	0.053	
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 536620	Analyst: AZ
Date Analyzed: 3/12/	2020 16:19		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		440	25	0.00081	
Lead		ND	25	<0.000047	
Manganese		27	25	0.000051	
Lab ID:	2003259-15A			Collection Date: 3/5/2020 3:01	1:00 PM
Client Sample ID:	Q0374071-MSE02			Matrix: AIR	

Analyses

PM : PM10 40CFR 50 APPDIX J		Method: PM10	Air Volume (L): 495450	Analyst: CS
Date Analyzed: 3/10/2020		Reporting Limit		
	mg/sample	mg/sample	mg/m3	
Particulate as PM10	3.6	1.0	0.0073	

Date: 07-Jul-20

Work Order: 2003259

-

Client:	Gilbane Company
Project:	HPNS Parcel E-2; J310000400-016

Work Order: 2003259

Analytical Results

Lab ID:	2003259-16A		Collection Date: 3/5/2020 3:01:00 PM							
Client Sample ID:	9764178-MSE02			Matrix: AIR						
Analyses										
TSP 40 CFR 50 APPE	DX B		Method: TSP	Air Volume (L): 505490	Analyst: CS					
Date Analyzed: 3/10/20	020	mg/sample	Reporting Limit mg/sample	mg/m3						
Total suspended part	ticulate	12	1.0	0.023						
METALS BY EPA ME	THOD 12 MOD.		Method: E12	Air Volume (L): 505490	Analyst: AZ					
Date Analyzed: 3/12/20	020 16:23	µg/sample	Reporting Limit µg/sample	mg/m3						
Copper		130	25	0.00025						
Lead		ND	25	<0.000049						
Manganese		ND	25	<0.000049						

Date: 07-Jul-20

Client:Gilbane CompanyWork Order:2003259Project:HPNS Parcel E-2; J310000400-016

QC BATCH REPORT

Batch ID:	R175702	Instrument ID BAL2		Metho	d: PM10						
DUP Sample ID: 2003259-01a dup Units: mg/sample Analysis Date: 3/10/2020											
Client ID:	Q0374064-MSE0	1A	Run ID: BAL2	_200310A	Seq	No: 22069	27	Prep Date:		DF: 1	
Analyte		Res	ult PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Particulate	e as PM10	31	.1 1.0	0	0	0		31.4	4 0.96		
The follow	wing samples we	re analyzed in this b	atch:	2003259-01a 2003259-07a 2003259-13a	2003 2003 2003	259-03a 259-09a 259-15a	200 200	03259-05a 03259-11a			

Client: Gilbane Company **QC BATCH REPORT** 2003259 Work Order: **Project:** HPNS Parcel E-2; J310000400-016 Batch ID: R175704 Instrument ID BAL2 Method: TSP DUP Sample ID: 2003259-02a dup Units: mg/sample Analysis Date: 3/10/2020 SeqNo: 2206942 Prep Date: Client ID: 9764167-MSE01A DF: 1 Run ID: BAL2_200310B SPK Ref RPD Ref RPD Control Value Limit Value Limit %REC Analyte Result PQL SPK Val %RPD Qual Total suspended particulate 67.9 1.0 0 0 0 68.2 0.441 2003259-02a The following samples were analyzed in this batch: 2003259-04a 2003259-06a 2003259-08a 2003259-10a 2003259-12a 2003259-14a 2003259-16a

Batch ID: 65547 Instrument ID ICP1 Method: E12

MBLK Client ID:	Sample ID: MBLK-65547-65547	Run ID: ICP1_	200312B	L Se	Jnits: µg/sar qNo: 22094	nple)3	Analysis Prep Date: 3/1	s Date: 3/1 2/2020	2/2020 03: DF: 1	36 PM
Analyte	Res	ult PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Copper	١	ND 25								
Lead	٩	ND 25								
Manganese	١	ND 25								

LCS	Sample ID: LCS-65547-65547				Uni	ts: µg/sar	nple	Analysis	Date: 3/1	2/2020 03:4	10 PM
Client ID:		Run ID: ICP1_200312B			SeqN	SeqNo: 2209404			Prep Date: 3/12/2020 DF: 1		
					SPK Ref		Control	RPD Ref		RPD	
Analyte	Re	esult	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
Copper	39	98.9	25	450	0	88.6	75-125	0			
Lead	42	29.2	25	450	0	95.4	75-125	0			
Manganese	41	11.4	25	450	0	91.4	75-125	0			

LCSD Client ID:	Sample ID: LCSD-65547-65547 Run ID: ICP1_200312B				Units: µg/sample SeqNo: 2209405			Analysis Date: 3/12/2020 03:44 PM Prep Date: 3/12/2020 DF: 1			
Analyte	Res	ult PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Copper	395	5.1 25	450	0	87.8	75-125	398.9	0.964	20		
Lead	4	29 25	450	0	95.3	75-125	429.2	0.0315	20		
Manganese	4	07 25	450	0	90.4	75-125	411.4	1.08	20		

MS Sample ID: 2003259-16A M	Units: µg/sample			Analysis Date: 3/12/2020 04:27 PM						
Client ID: 9764178-MSE02	Run ID: ICP1_200312B		Seq	SeqNo: 2209399			Prep Date: 3/12/2020 D			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Copper	513.9	25	450	0	114	75-125	C)		
Lead	435.6	25	450	0	96.8	75-125	C)		
Manganese	419	25	450	0	93.1	75-125	C)		

MSD Sample ID: 2003259-16A	Units: µg/sample			Analysis Date: 3/12/2020 04:31 PM				31 PM			
Client ID: 9764178-MSE02	Run ID:	ICP1_2	00312B	Seq	lo: 22094	00	Prep Date: 3	/12/202	0	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%R	PD	RPD Limit	Qual
Copper	511.2	25	450	0	114	75-125		0	0	20	
Lead	432.8	25	450	0	96.2	75-125		0	0	20	
Manganese	423.1	25	450	0	94	75-125		0	0	20	
The following samples were analyzed	in this batch:	20 20 20	03259-02A 03259-08A 03259-14A	20032 20032 20032	259-04A 259-10A 259-16A	20 20	03259-06A 03259-12A				

Client: Project: WorkOrder:	Gilbane Company HPNS Parcel E-2; J310000400-016 2003259	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting	Limit
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL	
Acronym	Description	
DUP	Method Duplicate	
Е	EPA Method	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SDL	Sample Detection Limit	
SW	SW-846 Method	
Units Reported	Description	

µg/sample mg/sample

Sample Receipt Checklist

Client Name: <u>GILBANE-WALNUTCREEK</u>		Date/Time I	Received: 06-Mar-20	<u>) 10:38</u>
Work Order: 2003259		Received b	y: <u>DNS</u>	
Checklist completed by H annah Ponder	06-Mar-20 Date	Reviewed by:	R ob Nieman eSignature	10-Mar-20 Date
Matrices: <u>air</u> Carrier name: <u>FedEx</u>				
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No	Not Present	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
Chain of custody present?	Yes 🗸	No		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌		
Temperature(s)/Thermometer(s):	<u>n/a</u>			
Cooler(s)/Kit(s):				
Water - VOA vials have zero headspace?	Yes	No	No VOA vials submitted	\checkmark
Water - pH acceptable upon receipt?	Yes	No	N/A	
pH adjusted? pH adjusted by:	Yes	No 🗌	N/A 🔽	

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		

24-Mar-2020

Kristen Carlyon Gilbane Company 2730 Shadelands Drive Walnut Creek, CA 94598

Tel: (925) 946-3220 Fax: (925) 946-3292

Re: HPNS Parcel E Phase II; J310000400

Work Order: 2003603

Dear Kristen,

ALS Environmental received 16 samples on 13-Mar-2020 10:12 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 14.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

R ob Nieman

Electronically approved by: Rob Nieman

Rob Nieman Project Manager

> ADDRESS 4388 Glendale Milford Rd Cincinnati, OH 45242- | PHONE (513) 733-5336 | FAX (513) 733-5347 ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400
Work Order:	2003603

Work Order Sample Summary

Lab Samp II	<u> Client Sample ID</u>	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
2003603-01	Q0374074-MSE01A	Air		3/10/2020 07:51	3/13/2020 10:12	
2003603-02	9764175-MSE01A	Air		3/10/2020 07:51	3/13/2020 10:12	
2003603-03	Q0374075-MSE02	Air		3/10/2020 08:11	3/13/2020 10:12	
2003603-04	9764176-MSE02	Air		3/10/2020 08:11	3/13/2020 10:12	
2003603-05	Q0374072-MSE01A	Air		3/11/2020 07:54	3/13/2020 10:12	
2003603-06	9764713-MSE01A	Air		3/11/2020 07:54	3/13/2020 10:12	
2003603-07	Q0374073-MSE02	Air		3/11/2020 08:07	3/13/2020 10:12	
2003603-08	9764174-MSE02	Air		3/11/2020 08:07	3/13/2020 10:12	
2003603-09	Q0374060-MSE01A	Air		3/12/2020 07:36	3/13/2020 10:12	
2003603-10	9764163-MSE01A	Air		3/12/2020 07:36	3/13/2020 10:12	
2003603-11	Q0374061-MSE02	Air		3/12/2020 07:56	3/13/2020 10:12	
2003603-12	9764164-MSE02	Air		3/12/2020 07:56	3/13/2020 10:12	
2003603-13	Q0374058-MSE01A	Air		3/12/2020 14:36	3/13/2020 10:12	
2003603-14	9764161-MSE01A	Air		3/12/2020 14:36	3/13/2020 10:12	
2003603-15	Q0374059-MSE02	Air		3/12/2020 14:48	3/13/2020 10:12	
2003603-16	9764162-MSE02	Air		3/12/2020 14:48	3/13/2020 10:12	

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400
Work Order:	2003603

Date: 24-Mar-20

Case Narrative

The sample condition upon receipt was acceptable except where noted.

Results relate only to the items tested and are not blank corrected unless indicated.

ALS is an EPA recognized NLLAP laboratory for lead paint, soil, and dust wipe analyses under its AIHA-LAP accreditation.

_

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400

Work Order: 2003603

Analytical Results

Lab ID:	2003603-01A		C	Collection Date: 3/10/2020 7:5	1:00 AM
Client Sample ID:	00374074-MSE01A		Matrix: AIR		
	2007.071.002000				
Analyses					
PM : PM10 40CFR :	50 APPDIX J		Method: PM10	Air Volume (L): 1601770	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10)	4.5	1.0	0.0028	
Lab ID:	2003603-02A		(Collection Date: 3/10/2020 7:5	1:00 AM
Client Sample ID:	9764175-MSE01A			Matrix: AIR	
Analyses					
ISP 40 CFR 50 API			Method: ISP	Air Volume (L): 1690530	Analyst: CS
Date Analyzed: 3/17/	2020	<i>,</i> .	Reporting Limit	4.0	
		mg/sample	mg/sample	mg/m3	
Total suspended pa	articulate	38	1.0	0.022	
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1690530	Analyst: AZ
Date Analyzed: 3/23/	2020 14:54		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		2,700	25	0.0016	
Lead		ND	25	<0.000015	
Manganese		ND	25	<0.000015	
Lab ID:	2003603-03A		C	Collection Date: 3/10/2020 8:1	1:00 AM
Client Sample ID: Q0374075-MSE02				Matrix: AIR	
Analyses					
PM : PM10 40CFR 5	50 APPDIX J		Method: PM10	Air Volume (L): 1587430	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10)	3.1	1.0	0.0020	
L					

Date: 24-Mar-20

-

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400

Work Order: 2003603

Analytical Results

Lab ID:	2003603-04A		C	Collection Date: 3/10/2020 8:1	1:00 AM
Client Sample ID:	9764176-MSE02		Matrix: AIR		
Analyses					
TSP 40 CFR 50 APF	PDX B		Method: TSP	Air Volume (L): 1616850	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Total suspended particulate		20	1.0	0.013	
METALS BY EPA M	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1616850	Analyst: AZ
Date Analyzed: 3/23/	2020 14:58		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		520	25	0.00032	
Lead		ND	25	<0.000015	
Manganese		ND	25	<0.000015	
Lab ID:	2003603-05A		C	Collection Date: 3/11/2020 7:5	4:00 AM
Client Sample ID:	Q0374072-MSE01A			Matrix: AIR	
Analyses					
PM : PM10 40CFR 5	50 APPDIX J		Method: PM10	Air Volume (L): 1655510	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10		4.3	1.0	0.0026	
Lab ID:	2003603-06A		C	Collection Date: 3/11/2020 7:5	4:00 AM
Client Sample ID:	9764713-MSE01A			Matrix: AIR	
Analyses					
TSP 40 CFR 50 APP	PDX B		Method: TSP	Air Volume (L): 1753540	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Total suspended pa	rticulate	52	1.0	0.029	
METALS BY EPA M	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1753540	Analyst: AZ
Date Analyzed: 3/23/	2020 15:19		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		3,000	25	0.0017	
Lead		ND	25	<0.000014	
Manganese		38	25	0.000022	

_

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400

Work Order: 2003603

Analytical Results

Lab ID:	2003603-07A		C	Collection Date: 3/11/2020 8:0	7:00 AM
Client Sample ID:	O0374073-MSE02		Matrix: AIR		
Analyza					
Anaryses					
PM : PM10 40CFR :	50 APPDIX J		Method: PM10	Air Volume (L): 1634100	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10)	4.5	1.0	0.0028	
Lab ID:	2003603-08A		0	Collection Date: 3/11/2020 8:0	7:00 AM
Client Sample ID:	9764174-MSE02			Matrix: AIR	
Analyses					
TSP 40 CFR 50 API	PDX B		Method: TSP	Air Volume (L): 1662490	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Total suspended pa	articulate	33	1.0	0.020	
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1662490	Analyst: AZ
Date Analyzed: 3/23/	2020 15:23		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		1,000	25	0.00061	
Lead		ND	25	<0.000015	
Manganese		ND	25	<0.000015	
Lab ID:	2003603-09A		(Collection Date: 3/12/2020 7:3	6:00 AM
Client Sample ID:	Q0374060-MSE01A	L		Matrix: AIR	
Analyses					
PM : PM10 40CFR :	50 APPDIX J		Method: PM10	Air Volume (L): 1634300	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10)	12	1.0	0.0076	

Date: 24-Mar-20

-

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400

Work Order: 2003603

Analytical Results

Lab ID:	2003603-10A		(Collection Date: 3/12/2020 7:3	6:00 AM
Client Sample ID:	9764163-MSE01A		Matrix: AIR		
Analyses					
TSP 40 CFR 50 API	PDX B		Method: TSP	Air Volume (L): 1726810	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		·
		mg/sample	mg/sample	mg/m3	
Total suspended particulate		57	1.0	0.033	
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1726810	Analyst: AZ
Date Analyzed: 3/23/	2020 15:27		Reporting Limit		-
		µg/sample	µg/sample	mg/m3	
Copper		2,200	25	0.0012	
Lead		ND	25	<0.000014	
Manganese		28	25	0.000016	
Lab ID:	2003603-11A		(Collection Date: 3/12/2020 7:5	6:00 AM
Client Sample ID:	Q0374061-MSE02			Matrix: AIR	
Analyses					
PM : PM10 40CFR \$	50 APPDIX J		Method: PM10	Air Volume (L): 1623960	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Particulate as PM10)	10	1.0	0.0064	
Lab ID:	2003603-12A		(Collection Date: 3/12/2020 7:5	6:00 AM
Client Sample ID:	9764164-MSE02			Matrix: AIR	
Analyses					
TSP 40 CFR 50 API	PDX B		Method: TSP	Air Volume (L): 1653020	Analyst: CS
Date Analyzed: 3/17/	2020		Reporting Limit		
		mg/sample	mg/sample	mg/m3	
Total suspended pa	articulate	36	1.0	0.022	
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 1653020	Analyst: AZ
Date Analyzed: 3/23/	2020 15:31		Reporting Limit		
		µg/sample	µg/sample	mg/m3	
Copper		480	25	0.00029	
Lead		ND	25	<0.000015	
Manganese		ND	25	<0.000015	

_

Date: 24-Mar-20

Client:Gilbane CompanyProject:HPNS Parcel E Phase II; J310000400

Analytical Results

Work Order: 2003603

Lab ID:	2003603-13A		Collection Date: 3/12/2020 2:36:00 PM				
Client Sample ID:	Q0374058-MSE01A		Matrix: AIR				
Analyses							
			Method: PM10	Air Volume (I.): 472590	Analyst: CS		
Date Analyzed: 3/17/	2020		Poporting Limit	All Volume (L). 472390			
	2020	mg/sample	mg/sample	ma/m3			
Particulate as PM10)	12	1.0	0.026			
Lab ID:	2003603-14A		C	Collection Date: 3/12/2020 2:3	36:00 PM		
Client Sample ID:	9764161-MSE01A			Matrix: AIR			
Analyses							
TSP 40 CFR 50 APP	PDX B		Method: TSP	Air Volume (L): 500860	Analyst: CS		
Date Analyzed: 3/17/	2020		Reporting Limit				
		mg/sample	mg/sample	mg/m3			
Total suspended pa	rticulate	17	1.0	0.034			
METALS BY EPA N	IETHOD 12 MOD.		Method: E12	Air Volume (L): 500860	Analyst: AZ		
Date Analyzed: 3/23/	2020 15:42		Reporting Limit				
		µg/sample	µg/sample	mg/m3			
Copper		660	25	0.0013			
Lead		ND	25	<0.000050			
Manganese		ND	25	<0.000050			
Lab ID:	2003603-15A		C	Collection Date: 3/12/2020 2:4	48:00 PM		
Client Sample ID:	Q0374059-MSE02			Matrix: AIR			
Analyses							
PM : PM10 40CFR \$	50 APPDIX J		Method: PM10	Air Volume (L): 456560	Analyst: CS		
Date Analyzed: 3/17/	2020		Reporting Limit				
		mg/sample	mg/sample	mg/m3			
Particulate as PM10)	11	1.0	0.025			

-

Client:	Gilbane Company
Project:	HPNS Parcel E Phase II; J310000400

Work Order: 2003603

Analytical Results

Lab ID:	2003603-16A		Collection Date: 3/12/2020 2:48:00 PM				
Client Sample ID:	9764162-MSE02		Matrix: AIR				
Analyses							
TSP 40 CFR 50 APP	DX B		Method: TSP	Air Volume (L): 465550	Analyst: CS		
Date Analyzed: 3/17/2	2020		Reporting Limit				
		mg/sample	mg/sample	mg/m3			
Total suspended par	ticulate	6.6	1.0	0.014			
METALS BY EPA M	ETHOD 12 MOD.		Method: E12	Air Volume (L): 465550	Analyst: AZ		
Date Analyzed: 3/23/2	2020 15:46		Reporting Limit				
		µg/sample	µg/sample	mg/m3			
Copper		350	25	0.00076			
Lead		ND	25	<0.000054			
Manganese		ND	25	<0.000054			

QC BATCH REPORT

Batch ID: R175971	Instrument ID BAL2		Method	: PM10						
DUP Sample ID: Client ID: Q0374074-MSE	2003603-01a dup 01A Run	ID: BAL2_2	200317A	Ur Seq	its: mg/sa No: 22115	mple 58	Analys Prep Date:	is Date: 3/1	7/2020 DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Particulate as PM10	4.6	1.0	0	0	0		4.	5 2.2		
The following samples w	ere analyzed in this batch	20 20 20	03603-01a 03603-07a 03603-13a	2003 2003 2003	603-03a 603-09a 603-15a	20 20	03603-05a 03603-11a			

Client: Work Order: Project:	Gilbane Company 2003603 HPNS Parcel E Ph	nase II; J31000	00400					QCI	BATC	H REF	ORT
Batch ID: R175972	Instrument ID	BAL2		Method	: TSP						
DUP Sample ID: 2003603-02A DUP Client ID: 9764175-MSE01A Run ID		PUP Run ID:	BAL2_	Units: mg/sample 3AL2_200317B SeqNo: 2211566		mple 66	Analysis Date: 3/17/2020 Prep Date: DF: 1		7/2020 DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total suspended pa	rticulate	38	1.0	0	0	0		37.8	0.528		
The following sam	ples were analyzed ir	n this batch:	2 2 2	2003603-02A 2003603-08a 2003603-14a	20036 20036 20036	603-04a 603-10a 603-16a	20 20	03603-06a 03603-12a			

Batch ID: 65702 Instrument ID ICP3 Method: E12 MBLK Sample ID: MBLK-65702-65702 Units: µg/sample Analysis Date: 3/23/2020 02:43 PM Client ID: SeqNo: 2216091 Prep Date: 3/19/2020 DF: 1 Run ID: ICP3_200323A SPK Ref RPD Ref RPD Control Value Limit Value Limit %REC Analyte Result PQL SPK Val %RPD Qual ND Copper 25 Lead ND 25 ND Manganese 25 LCS Sample ID: LCS-65702-65702 Units: µg/sample Analysis Date: 3/23/2020 02:47 PM Client ID: Run ID: ICP3_200323A SeqNo: 2216092 Prep Date: 3/19/2020 DF: 1 RPD **RPD** Ref SPK Ref Control Limit Value Value Limit %RPD Qual Analyte Result PQL SPK Val %REC Copper 499 25 450 0 75-125 0 111 25 Lead 450 0 114 75-125 0 514.8 450 0 Manganese 500 25 0 111 75-125

LCSD	Sample ID: LCSD-65702-6570	2			Ur	nits: µg/sa	nple	Analysis	Date: 3/23	/2020 02:	51 PM
Client ID:		Run ID:	ICP3_2	200323A	Seq	No: 22160	93	Prep Date: 3/19	/2020	DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Copper		502.6	25	450	0	112	75-125	499	0.719	20	
Lead		498.6	25	450	0	111	75-125	514.8	3.2	20	
Manganese		484.6	25	450	0	108	75-125	500	3.11	20	
The followin	ng samples were analyzed in th	is batch:	2	003603-02A 003603-08A	2003 2003	603-04A 603-10A	20 20	03603-06A 03603-12A			

2003603-16A

2003603-14A

Note: See Qualifiers Page for a list of Qualifiers and their explana
--

-

_

Client: Project: WorkOrder:	Gilbane Company HPNS Parcel E Phase II; J310000400 2003603	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Repo	orting Limit
Е	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL	
Acronym	Description	
DUP	Method Duplicate	
Е	EPA Method	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SDL	Sample Detection Limit	
SW	SW-846 Method	
<u>Units Reporte</u>	d Description	

µg/sample mg/sample

Sample Receipt Checklist

Client Name: <u>GILBANE-WALNUTCREEK</u>		Date/Time	Received: <u>13-Mar-20</u>	<u>10:12</u>
Work Order: 2003603		Received b	y: DNS	
Checklist completed by Stephanie H arrington	13-Mar-20 Date	Reviewed by:	R ob Nieman ^{eSignature}	17-Mar-20 Date
Matrices: Carrier name: <u>FedEx</u>				
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌		
Temperature(s)/Thermometer(s):				
Cooler(s)/Kit(s):				
Water - VOA vials have zero headspace?	Yes	No 🗌	No VOA vials submitted	
Water - pH acceptable upon receipt?	Yes	No 🗌	N/A	
pH adjusted? pH adjusted by:	Yes 🗌	No 🗌	N/A 🗹	

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		

Laboratory Analysis Report

Job ID: 20030565

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : HPNS Parcel E Phase II J310000400

Report To :	Client Name:	Gilbane	Total Number of Pages:	5
	Attn:	Brett Womack	P.O.#. :	
	Client Address:	1655 Grant Street, Suite 1200	Date Received :	03/06/2020 09:45
	City, State, Zip:	Concord, California, 94520	Sample Collected By :	

A&B Labs has analyzed the following samples...

Client Sample ID MSE01A - 030220	Sample Collection Date & Time 3/2/2020 15:49	Matrix Cassette	A&B Job Sample ID 20030565.01
MSE02 - 030220	3/2/2020 15:56	Cassette	20030565.02
MSE01A - 030320	3/3/2020 15:40	Cassette	20030565.03
MSE02 - 030320	3/3/2020 15:47	Cassette	20030565.04
MSE01A - 030420	3/4/2020 15:45	Cassette	20030565.05
MSE02 - 030420	3/4/2020 15:50	Cassette	20030565.06
MSE01A - 030520	3/5/2020 14:49	Cassette	20030565.07
MSE02 - 030520	3/5/2020 14:59	Cassette	20030565.08

5-(

Released By: Senthilkumar Sevukan Title: Assistant Lab Manager Analyst:

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Any TWA calculations are based on client supplied data not lab observation.

ANALYSIS OF AIRBORNE FIBER SAMPLING SAMPLING PERFORMED BY CLIENT ANALYSIS CONDUCTED BY A & B ENVIRONMENTAL SERVICES, INC. AIHA Lab Accreditation # 101470 TDH PLM/PCM Lab License # 300080

Date 3/13/2020

Job ID: 20030565 Analytical Method: NIOSH 7400-I2-Aug1994

Client: Gilban	e		Project: HPI	NS Parcel E I	Phase II .	J3100004(00				ļ	Attn: Br	ett Woma	ck	
A&B Sample ID	Client Sample ID	Collected Date	Area/Person	Flow Rate L/m	Time On	Time Off	Total Time (min)	Volume (Liters)	Total Fields	Total Fibers	F/mm2	Fiber/cc	8 Hour TWA	Analysis Date	Analyzed By
20030565.01	MSE01A - 030220	03/02/2020	Area	2			476	952	100	13.5	17.197	0.007		03/13/20	Habedi
20030565.02	MSE02 - 030220	03/02/2020	Area	2			461	922	100	23.0	29.299	0.012		03/13/20	Habedi
20030565.03	MSE01A - 030320	03/03/2020	Area	2			468	936	100	11.0	14.013	0.006		03/13/20	Habedi
20030565.04	MSE02 - 030320	03/03/2020	Area	2			462	924	100	11.5	14.650	0.006		03/13/20	Habedi
20030565.05	MSE01A - 030420	03/04/2020	Area	2			475	950	100	11.0	14.013	0.006		03/13/20	Habedi
20030565.06	MSE02 - 030420	03/04/2020	Area	2			464	928	100	11.0	14.013	0.006		03/13/20	Habedi
20030565.07	MSE01A - 030520	03/05/2020	Area	2			441	882	100	18.5	23.567	0.010		03/13/20	Habedi
20030565.08	MSE02 - 030520	03/05/2020	Area	2			432	864	100	10.0	12.739	0.006		03/13/20	Habedi

Detection limit of this method is estimated at 7 f/mm2 (5.5 fibers per 100 fields)

Sample Condition Checklist

A&B	B JobID : 20030565 Date Received : 03/06/2020 Time Received : 9:4					:45AM				
Clien	Client Name : Gilbane									
Tem	perature : 18.8-0.3cf=18.5°C	Sample pH :	n/a							
Ther	mometer ID : 1709629	pH Paper ID	: n/a							
Pers	ervative :									
		Che	ck Point	ts				Yes	No	N/A
1.	Cooler seal present and signed.									х
2.	Sample(s) in a cooler.								Х	
3.	If yes, ice in cooler.								х	
4.	. Sample(s) received with chain-of-custody.						Х			
5.	C-O-C signed and dated.						Х			
6.	6. Sample(s) received with signed sample custody seal.						Х			
7.	7. Sample containers arrived intact. (If no comment).					Х				
•	Matrix Water Soil Liquid Sludge Solid Cassette Tube Bulk Badge F					Food	Oth	er		
*										
8.				\checkmark						
8. 9.	Sample(s) were received in appropr	iate container(s) .					□ x		
8. 9. 10.	: Sample(s) were received in appropr Sample(s) were received with prope	iate container(r preservative	□ s).	V				□ X		X
8. 9. 10. 11.	: Constraints of the second se	iate container(s).					x x x x		X
8. 9. 10. 11. 12.	: Control Cont	iate container(□ s).					x x x x x		X
8. 9. 10. 11. 12. 13.	: Control Cont	iate container(r preservative es found.	S).					 x x x x x x x x x 		X
8. 9. 10. 11. 12. 13. 14.	: Control Cont	iate container(r preservative es found. yses requested	□ s).					 X 		X
8. 9. 10. 11. 12. 13. 14. 15.	: Control Cont	iate container(r preservative es found. yses requested	s).					 X X<		X
8. 9. 10. 11. 12. 13. 14. 15. 16.	: Construction of the second s	iate container(r preservative es found. yses requested old time.	□ s).					 X X<		x
 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 	: Image: Constraint of the second	iate container(or preservative es found. yses requested old time.	□ s).					 X X<		X
 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18 	: Control of the second	iate container(ir preservative es found. yses requested old time.	□ s).					 X X<		x
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18 Com	: Control of the second state of the second st	iate container(r preservative es found. yses requested old time. b-out	s).					 X X<		x
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18 Com	: Constructions taken to reso	iate container(in preservative es found. yses requested old time. ib-out lve discrepance	ies/probl	▼ 				 X X<		x

Received by : VHernandez

JMontemayor / 03/06/2020

								Time: 10 days	Turnaround
	Temp-18.8°C-0.3=1852 1709/029/14						aneco.com :co.com	kcarlyon@gilb ktom@gilbane	Send Results to:
5	10 apr.n.s.	X	de	T					
	3/21 1.20 GENEX 3/5/10/1630		-	1				ructions:	Snecial Ins
	Date: Time: Received By/ Attiliation: Date: Time:	/Affiliation:	shed By	Relinqui	 		Ş	14 Leon	Signature:_
	Courier/Airbill No.: FcdEX/ 7779 1637 1222	eth R. Leonard	er: Kenn	Sample				: K. LEONARD	Sampled B
X		X	۲	ZY	Z	1407	312120	- CUU	MSEDC
		~	-		>	1		07520	ての大手
6	···· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	*	*	4	4	ILLING	3/2/20	- 030520	MSEDIA
	1, 1, 464 min	X				1550	3420	030420	MSE02
	····· ··· ··· ··· ··· ···	Х				1545	34720	- 030420	MSEDIA
	In in Hb2 min	X				1547	332120	030320	MSEO2.
	····· ··· ··· ··· ··· ··· ··· ··· ···· ··· ··· ··· ··· ··· ··· ··· ····	X				1540	2 2 2	- 030320	MSEOLA
Page	nim 19h vin	_ X)	_	_		1556	32220	030220	MJE02
e 4 of	Total Flow: 476 min	AR X	٢	Z,>	Z.	1549	3 2 20	-030220	MSEDIA
5	It Fwy, Ste. 100 Contact Name: Shantall Carpenter Page: 1 _ of _ 1 TX 77029 Phone: 713-453-6060 Phone: 713-453-6060 Special Instructions/Comments Special Instructions/Comments	Sample Matrix Houston, FILT TER Sample Matrix Houston, FILT TER NONE FILT TER	No. of Containers	Sample Depth (bottom)	Sample Depth (top)	Time 0, CA 9412	Date	nple ID	Project Man Site Locatio
	RIshe Date: 05 MARLHZSZO	A	-	0400	131000	E Dhace II	HDNIC Darce		
	Chain-Of-Custody		ays	T: 5 D	TA			Dane	G
	COC# 1/2-030520-2	20030565		6	5	inε	Monitor	t ID: Air N	Ever

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Laboratory Analysis Report

Job ID: 20031147

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : HPNS Parcel E Phase II 1310000400

Report To :	Client Name:	Gilbane	Total Number of Pages:	5
	Attn:	Brett Womack	P.O.#. :	
	Client Address:	1655 Grant Street, Suite 1200	Date Received :	03/13/2020 12:50
	City, State, Zip:	Concord, California, 94520	Sample Collected By :	Kenneth R. Leonard

A&B Labs has analyzed the following samples...

Client Sample ID MSE01A-030920	Sample Collection Date & Time 3/9/2020 15:58	Matrix Cassette	A&B Job Sample ID 20031147.01
MSE02-030920	3/9/2020 15:53	Cassette	20031147.02
MSE01A-031020	3/10/2020 15:33	Cassette	20031147.03
MSE02-031020	3/10/2020 15:30	Cassette	20031147.04
MSE01A-031120	3/11/2020 15:53	Cassette	20031147.05
MSE02-031120	3/11/2020 16:02	Cassette	20031147.06
MSE01A-031220	3/12/2020 14:39	Cassette	20031147.07
MSE02-031220	3/12/2020 14:49	Cassette	20031147.08

5-(

Released By: Senthilkumar Sevukan Title: Assistant Lab Manager Analyst:

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Any TWA calculations are based on client supplied data not lab observation.

ANALYSIS OF AIRBORNE FIBER SAMPLING SAMPLING PERFORMED BY CLIENT ANALYSIS CONDUCTED BY A & B ENVIRONMENTAL SERVICES, INC. AIHA Lab Accreditation # 101470 TDH PLM/PCM Lab License # 300080

Date 3/20/2020

Job ID: 20031147 Analytical Method: NIOSH 7400-I2-Aug1994

Client: Gilban	е		Project: HPNS Parcel E Phase II 1310000400						Attn: Brett Womack						
A&B Sample ID	Client Sample ID	Collected Date	Area/Person	Flow Rate L/m	Time On	Time Off	Total Time (min)	Volume (Liters)	Total Fields	Total Fibers	F/mm2	Fiber/cc	8 Hour TWA	Analysis Date	Analyzed By
20031147.01	MSE01A-030920	03/09/2020	Area	2			436	872	100	13.5	17.197	0.008		03/20/20	Habedi
20031147.02	MSE02-030920	03/09/2020	Area	2			412	824	100	18.0	22.930	0.011		03/20/20	Habedi
20031147.03	MSE01A-031020	03/10/2020	Area	2			453	906	100	12.0	15.287	0.006		03/20/20	Habedi
20031147.04	MSE02-031020	03/10/2020	Area	2			430	860	100	18.0	22.930	0.010		03/20/20	Habedi
20031147.05	MSE01A-031120	03/11/2020	Area	2			473	946	100	13.0	16.561	0.007		03/20/20	Habedi
20031147.06	MSE02-031120	03/11/2020	Area	2			470	940	100	14.0	17.834	0.007		03/20/20	Habedi
20031147.07	MSE01A-031220	03/12/2020	Area	2			414	828	100	12.5	15.924	0.007		03/20/20	Habedi
20031147.08	MSE02-031220	03/12/2020	Area	2			404	808	100	17.0	21.656	0.010		03/20/20	Habedi

Detection limit of this method is estimated at 7 f/mm2 (5.5 fibers per 100 fields)

Sample Condition Checklist

A&B	&B JobID : 20031147 Date Received : 03/13/2020 Time Received : 12							2:50PM			
Clien	t Name : Gilbane										
Tem	perature : 24.9-0.3CF=24.6°C	Sample pH :	N/A								
Ther	Thermometer ID : 1709629 pH Paper ID : N/A										
Pers	servative :										
	Check Points								No	N/A	
1.	. Cooler seal present and signed.									х	
2.	2. Sample(s) in a cooler.								Х		
3.	3. If yes, ice in cooler.									х	
4.	4. Sample(s) received with chain-of-custody.										
5.	5. C-O-C signed and dated.							Х			
6.	6. Sample(s) received with signed sample custody seal.								Х		
7.	7. Sample containers arrived intact. (If no comment).										
8	Matrix Water Soil Liqui	d Sludge	Solid	Cassette	Tube	Bulk	Badge	Food	Oth	er	
0.				\checkmark]	
9.	9. Sample(s) were received in appropriate container(s).										
	Sample(s) were received in appropri	ate container(s)).					Х			
10.	Sample(s) were received in appropri Sample(s) were received with prope	ate container(s) • preservative).					X		x	
10. 11.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled.	ate container(s) preservative).					x _ x		x	
10. 11. 12.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's	ate container(s) r preservative).					x x x x		X	
10. 11. 12. 13.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottl	ate container(s) r preservative es found.).					X X X X X		X	
10. 11. 12. 13. 14.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottle Sample volume is sufficient for analysis	ate container(s) r preservative es found. ses requested.).					x x x x x x x x		X	
10. 11. 12. 13. 14. 15.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottl Sample volume is sufficient for analy Samples were received within the ho	ate container(s) • preservative es found. ses requested. Id time.).					X X X X X X X X X X X X		X	
10. 11. 12. 13. 14. 15. 16.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottle Sample volume is sufficient for analy Samples were received within the ho VOA vials completely filled.	ate container(s) r preservative es found. ses requested. Id time.).					X X X X X X X X		X	
10. 11. 12. 13. 14. 15. 16. 17.	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottle Sample volume is sufficient for analy Samples were received within the ho VOA vials completely filled. Sample accepted.	ate container(s) r preservative es found. ses requested. Id time.).					X X X X X X X X X X		x 	
10. 11. 12. 13. 14. 15. 16. 17. 18	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottle Sample volume is sufficient for analy Samples were received within the ho VOA vials completely filled. Sample accepted. Has client been contacted about su	es found. ses requested. Id time.).					X X X X X X X X X		x 	
10. 11. 12. 13. 14. 15. 16. 17. 18 Com	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottl Sample volume is sufficient for analy Samples were received within the ho VOA vials completely filled. Sample accepted. Has client been contacted about su ments : Include actions taken to resol	ate container(s) r preservative es found. ses requested. Id time. b-out ve discrepancies).	em:				X X X X X X X X X X X X X X		X X X	
10. 11. 12. 13. 14. 15. 16. 17. 18 Com	Sample(s) were received in appropri Sample(s) were received with prope All samples were logged or labeled. Sample ID labels match C-O-C ID's Bottle count on C-O-C matches bottle Sample volume is sufficient for analy Samples were received within the ho VOA vials completely filled. Sample accepted. Has client been contacted about su ments : Include actions taken to resol	ate container(s) r preservative es found. ses requested. Id time. b-out ve discrepancies).	em:				X X X X X X X X		x x	

Received by : AOballe

Check in by/date : AArnett / 03/13/2020

Page 4 of 5

:Isdal sint gnitning this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in

Bervice Guide apply. Your right to recover from FedEx for any loss, lange with the carrent set including interest of \$100 per package, whether the carrent fedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your sectual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. Service Guide.