

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

Air Monitoring Summary Report December 1 to December 31, 2021

Phase IV Non-Time Critical Removal Action, Solid Waste Disposal Area Westside, Installation Restoration Site 12 Former Naval Station Treasure Island San Francisco, CA February 2022

DCN: GLBN-0005-F5271-0020

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

Air Monitoring Summary Report December 1 to December 31,2021

Phase IV Non-Time Critical Removal Action, Solid Waste Disposal Area Westside, Installation Restoration Site 12 Former Naval Station Treasure Island San Francisco, CA February 2022

DCN: GLBN-0005-F5271-0020

Prepared for:

Department of the Navy Naval Facilities Engineering Systems Command Southwest BRAC PMO West 33000 Nixie Way, Bldg. 50 San Diego, CA 92147

Prepared by:

Gilbane Federal 1655 Grant Street, Suite 1200 Concord, California 94520

Contract Number: N62473-17-D-0005; Task Order No. N62473-18-F5271

DCN: GLBN-0005-F5271-0020

Table of Contents

1.0	Introduction	1-1
2.0	Monitoring Site Locations	2-1
2.1	Dust Monitoring	2-1
2.2	Air Monitoring	2-1
2.3	Radiological Air Monitoring	2-2
3.0	Sampling and Analytical Methods	3-1
3.1	Dust Samples	3-1
3.2	Air Samples	3-1
3.3	Radiological Air Samples	3-2
4.0	Dust Monitoring Results	4-1
5.0	Air Monitoring Results	5-1
6.0	References	6-1

List of Figures

Figure 1 Air and Dust Monitoring Locations IR Site 12 SWDA Westside

Figure 2 Wind Rose IR Site 12 SWDA Westside

List of Tables

Table 1 Dust Monitoring Project Action LevelsTable 2 Air Monitoring Project Screening Criteria

List of Attachments

Attachment 1 PDR Summary Table and Field Forms

Attachment 2 Summary of Air Monitoring and Air Sampling Results

Attachment 3 Radiological Air Monitoring Results

Acronyms and Abbreviations

AMP Air Monitoring Plan

BAAQMD Bay Area Air Quality Management District

BAP(Eq) benzo(a)pyrene equivalency

cfm cubic feet per minute

CFR Code of Federal Regulations

DAC derived air concentration

DCP Dust Control Plan

DTSC Department of Toxic Substances Control

Gilbane Federal

HERO Human and Ecological Risk Office

IR Installation Restoration

mg/m³ milligram per cubic meter

Navy U.S. Department of the Navy

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PDR personal data-logging real-time aerosol monitor

PM10 particulate matter less than 10 microns in diameter

PUF polyurethane foam

Ra-226 radium-226

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TLV threshold limit value

TSP total suspended particulates

μg/m³ microgram per cubic meter

USEPA United States Environmental Protection Agency

Work Plan Final Work Plan, Phase IV Non-Time Critical Removal Action,

Solid Waste Disposal Area Westside, Installation Restoration Site 12,

Former Naval Station Treasure Island, San Francisco, California

1.0 Introduction

This Air Monitoring Report was prepared by Gilbane Federal (Gilbane) as requested by the United States Department of the Navy (Navy) under the Radiological Multiple Award Contract (RADMAC II) N62473-12-D-D005, Contract Task Order N6247317F5271. Gilbane is performing dust and air monitoring at Former Naval Station Treasure Island in accordance with the Final Dust Control Plan (DCP) and Air Monitoring Plan (AMP), included as appendices to *Phase IV Non-Time Critical Removal Action Work Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (Work Plan; Gilbane, 2021).

The DCP describes best management practices and procedures to be implemented to minimize dust generation during work activities. Dust monitoring is conducted to ensure that these procedures are effective. Dust monitoring is also conducted to verify that the working environment meets occupational health and safety standards and that workers are safe. The AMP outlines the requirements for prevention of exposure for construction workers to dust and potential airborne chemicals of concern from the work area. The AMP also establishes the conservative project action levels for dust at the work area boundary to protect residents.

This summary report describes the following:

- Dust and air monitoring sampling locations Section 2.0,
- Dust and air monitoring sample collection and analytical methods **Section 3.0**,
- Dust and air monitoring data Section 4.0, and,
- Dust and air monitoring results Section 5.0.

This summary report presents the dust and air monitoring test results at Installation Restoration (IR) Site 12 from December 1st through December 31st, 2021 and compares the results with the established action levels included in the Work Plan (Gilbane, 2021). During this reporting period, the Site 12 air monitoring stations (AMSW1 and AMSW2) operated on December, 1st, 2nd, 3rd, 6th, 7th, 8th, 9th, and 10th for earth-moving tasks involving potentially contaminated soil. The air monitoring stations were shut down for the remainder of the month as operationally the crew was receiving clean import backfill soil and not performing earth-moving tasks involving potentially contaminated soil. Dust monitoring using the PDR stations continued through the duration of the month while the field team acquired clean import soil and began grading.

During the reporting period, personal data-logging real-time aerosol monitoring (PDR) dust data was collected. Air samples were collected and analyzed for lead, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dioxin [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)], total suspended particulates (TSP), and particulate matter less than 10 microns in diameter (PM10). In addition, air samples were analyzed for radiological gross alpha and beta levels.

Air Monitoring Summary Report #10	
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 1:	2
Former Naval Station Treasure Island, San Francisco, California	

1.0 Introduction

2.0 Monitoring Site Locations

2.1 Dust Monitoring

During earthmoving activities, several PDR stations are set up to monitor real-time airborne dust concentrations. The purpose of the PDR stations is to act as a first line of defense in protecting workers' health, and ultimately the public's health, during field activities. PDR stations are situated immediately adjacent to the current work area locations most likely to generate the greatest volume of airborne dust and are adjusted as necessary due to changes in wind direction and/or work location. Real-time dust monitoring ensures dust levels remain below action levels during fieldwork operations.

The general locations for dust monitors in IR Site 12 are shown on **Figure 1**. Specific locations of each PDR are described in the individual PDR daily data files. Field forms from each location are presented in **Attachment 1** of this report. During earth moving activities at IR Site 12 (i.e., transportation of excavated soil to the radiological screening yard, excavation, and backfilling), one PDR serves as the upwind (background) location (DMW7, DMW13, DMW16, DMW19) and two PDRs are placed in downwind perimeter locations (DMW8, DMW9, DMW14, DMW15, DMW17, DMW18, DMW20, DMW21).

2.2 Air Monitoring

Air monitoring samples collected using high volume samplers are collected to identify and quantify airborne contaminants and to confirm the results recorded during dust (PDR) monitoring. Air monitoring stations are mobilized to collect air monitoring samples upwind and downwind of work areas. General locations of the IR Site 12 air monitoring stations are shown on **Figure 1**. The locations of the air monitoring stations are determined based on the prevailing wind direction (typically from the southwest) and are modified as needed.

Weather forecasts including wind direction are checked daily with a weather station located at Building 572. The weather station records temperature, pressure, wind speed and direction, etc., every 30 minutes, 24 hours per day. Wind speed is also monitored near the work site during soil excavation and handling to ensure that work is stopped if sustained winds over 25 miles per hour are encountered. No work stoppages due to sustained wind speed exceedances were required during this reporting period. Wind speed and direction data gathered during work hours for this reporting period, presented on a wind rose diagram in **Figure 2**, generally depict the wind blowing between the South and West directions at 3-6 miles/hour with gusts up to 10 miles/hour. Detailed weather data is not reported in this document but can be provided upon request.

High volume air monitoring stations remain stationary while sampling is being conducted; however, locations may be adjusted when the wind direction changes and

when overall excavation work areas change from one site to another. Each upwind and downwind high-volume monitoring station includes separate monitoring systems for the following:

- TSP collected daily
- PM10 collected daily
- Lead collected daily
- PAHs, PCBs, and dioxin collected on alternating days

2.3 Radiological Air Monitoring

Radiological air samplers are positioned adjacent to excavation work activities for radiologically impacted soil at one upwind and one downwind location during earthmoving activities associated with radiologically impacted soil. The radiological air samplers may be co-located with PDRs or the high-volume samplers.

3.0 Sampling and Analytical Methods

Dust and air samples are collected during earthmoving activities. However, during precipitation events, the dust and air monitoring units may not be operable. An attempt will be made to collect samples and readings regardless of the weather. If dust or air monitors are found to be malfunctioning or nonfunctional, earthmoving activities will stop until monitors can be repaired or replaced. The Site Health and Safety Officer is responsible for monitoring the air and dust monitoring sampling equipment. In rare cases, due to ancillary equipment malfunction such as generator failure during the night, a sample may be collected that represents a period of less than 24 hours. If this situation occurs, a note is added to the sample result data tables indicating why the full sampling period was not achieved. All AMS samplers run approximately 24 hours before the sample is collected however per FCR04 the final set of samples for the week will be collected on the last workday of the week once intrusive activities have finished for the day. These samples will have a runtime of 8-10 hours to cover the full work shift which meets the minimum 4-hour runtime required for lab analysis. Two sets of samples will be sent to the lab for examination on that final workday of the week. The results will be adjusted for the reduced runtime and fully comparable against project screening criteria.

3.1 Dust Samples

The PDR is a high sensitivity photometric monitor with a light-scattering sensing configuration that has been optimized for the measurement of the respirable fraction of airborne dust, smoke, fumes, and mists. PDRs are used to evaluate real-time monitoring of airborne dust concentrations, to determine if there is a need for additional dust control or personal protection.

3.2 Air Samples

Air samples were sampled in accordance with the United States Environmental Protection Agency (USEPA) reference sampling method for PM10, described in 40 Code of Federal Regulations (CFR) 50, Subpart J. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of PM10 collected.

TSP samples were collected with a high-volume (39 to 60 cubic feet per minute [cfm]) air sampler in accordance with USEPA's reference sampling method for TSP, described in Title 40 CFR, Part 50, Subpart B. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of TSP collected. Once the filter weight was determined, the sample was analyzed for lead in accordance with USEPA Method 6020 using inductively coupled mass spectrometry.

Air samples for PCBs, PAHs, and dioxin are collected and analyzed in accordance

with USEPA Methods TO-4A, TO-13, TO-9A, respectively, using TISCH polyurethane (PUF) samplers. The filter media collected from the air samplers is submitted to the analytical laboratory for appropriate analysis.

PCB, PAH, and dioxin samples are collected on alternating days at the downwind and upwind stations during earthmoving activities.

3.3 Radiological Air Samples

Radiological air monitoring is also conducted upwind and downwind on days of earthmoving activities. Radiological samples are collected with a LV-1 low volume air sampler. Air filters are counted on site following a decay period and are compared with public air concentration limits published in 10 CFR Part 20. Radiological air sampling methods and procedures are detailed in Gilbane Radiological Procedure PR-RP-150 Radiological Survey and Sampling (Gilbane, 2016).

The radiological air sample is counted on a Low Background Protean WPC-9950 and analyzed for gross alpha and beta activity. The calculated airborne concentration in microcuries is then compared to the effluent concentration (often but incorrectly refer to as a derived air concentration [DAC] which applies only to occupational exposures) limit specified in Table 2 of Appendix B to 10 CFR 20. The effluent concentration is the concentration of a given radionuclide in air which, if inhaled continuously over the course of a year, results in an exposure equal to the annual regulatory limit specified in 10 CFR 20.1302. The threshold for radiological effluent air monitoring samples is 10 percent of the effluent concentration, which ensures work practices are evaluated and modified as necessary to ensure the limit is not reached.

4.0 Dust Monitoring Results

If dust (PDR) monitoring equipment alarms, the source of exceedance will be determined by evaluating both upwind and downwind dust (PDR) sample locations. If the difference between upwind and downwind concentrations is greater than the action level for a sustained period of 15 minutes, then earthmoving activities will be halted until dust control measures are implemented. These may include, but are not limited to, adding water to the work area during earth moving tasks, evaluation of alternate work procedures or equipment, and/or cessation of the activity that is creating the dust until the PDR readings are below the screening criteria.

Dust monitoring action levels that are implemented on a real-time basis are listed in **Table 1**. PDR data are collected and reviewed each day by the Site Health and Safety Manager. PDR data are included in **Attachment 1**.

On December 1st, 2nd, 6th, and 21st PDR readings were observed above project screening criteria, however, the delta between the upwind and downwind monitors remained below action levels. On these days the field team documented foggy, hazy, and or thick low hanging marine layer conditions presented in **Attachment 1**. On the days mentioned above elevated or high readings were noted during setup before any intrusive activities had begun. In conclusion, field work continued as field activities were not generating visible dust and onsite atmospheric conditions generated elevated PDR data. On December 3rd dust levels were detected above action limits however no atmospheric conditions were noted on filed documentation. Field work continued as no visible dust generation was documented and the delta between the upwind and downwind PDR stations was well below project dust action limits.

Table 1: Dust Monitoring Project Action Levels

Method	Monitoring Location	Monitoring Frequency ^a	Action Level b	Action
PDR	Near Workers' Breathing Zones (typically on equipment)	Periodically ^c	<2.0 mg/m ³ >2.0 mg/m ³	<2.0 mg/m ³ continue work in Level D. Increase dust control (i.e., apply water or other suppression method) and/or upgrade to Level C if concentrations >2.0 mg/m ³ .
	Job Site Perimeter	Continuously	<1.0 mg/m ³ >1.0 mg/m ³	Continue work. STOP work, apply water or other dust suppression methods until levels decrease below 1.0 mg/m ³

Notes:

Only the Health and Safety Manager is authorized to downgrade levels of personal protective equipment.

- Frequency of air monitoring may be adjusted by the project Certified Industrial Hygienist after sufficient characterization of site contaminants has been completed, tasks have been modified, or site controls have proven effective.
- b Five readings exceeding the action level in any 15-minute period or a sustained reading exceeding the action level for five minutes will trigger a response. Action levels represent airborne particulate concentrations in excess of background particulate concentrations.
- c PDR will be monitored a minimum of three times a day.
- < less than
- > greater than

mg/m³ milligrams per cubic meter

PDR personal data-logging real-time aerosol monitor

Table 2: Air Monitoring Project Screening Criteria

Chemicals of Concern	Project Screening Criteria (Threshold Limit Value) µg/m ³	Basis	
Lead	1,575	TI Site 12 Subchronic Dust Action Level	
TSP	50	TI Site 12 Dust Action Level	
PM10	50	BAAQMD Ambient Air Quality Standard	
BAP(Eq)	55,330	TI Site 12 Chronic Dust Action Level	
PCBsa	NA	TI Site 12 Dust Action Level	
Dioxina	1E+07	TI Site 12 Chronic Dust Action Level	
Radiological (Ra-226)	10% of DAC ^c	Occupational and public air concentration limits for Ra-226 published in 10 Code of Federal Regulations Part 20.	

Notes:

- The dust action level was increased by a factor of 10 to account for the short-term duration of the project relative to the lifetime assumptions incorporated into the toxicity criteria and exposure assumption.
- b BAP(Eq) action level will be ~55 mg/m³ for all excavations
- c Public air concentration limits are commonly referred to as DAC, but are actually Effluent Concentrations from Table 2 for 10 CFR Part 20.

BAAQMD Bay Area Air Quality Management District

BAP(Eq) benzo(a)pyrene equivalency
DAC derived air concentration
mg/m³ milligrams per cubic meter
PCBs polychlorinated biphenyls

PM10 particulate matter smaller than 10 microns in diameter

Ra-226 radium-226

TSP total suspended particulates µg/m³ micrograms per cubic meter

Air Monitoring Summary Report #10
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 12
Former Naval Station Treasure Island, San Francisco, California

4.0 Dust and Air Monitoring Methods

5.0 Air Monitoring Results

The Human and Ecological Risk Office (HERO) at the request of the California Department of Toxic Substances Control (DTSC) developed dust action levels for community air monitoring for IR Site 12. Sub-chronic and chronic dust action levels as PM10 were calculated for lead, dioxin, benzo(a)pyrene (BAP) equivalency (Eq) by PAHs analysis, and PCBs. As presented in the document *Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (HERO, 2018), the action levels were calculated using the maximum chemicals of concern soil concentrations at IR Site 12.

Based on HERO's recommendations, a PM10 dust action level of 50 microgram per cubic meter (ug/m³) will be implemented for all excavation areas at IR Site 12. TSP is expected to be further controlled based on the limit employed for PM10, in accordance with guidance provided by the San Francisco Bay Area Air Quality Management District (BAAQMD), which estimates that PM10 makes up approximately 55 percent of TSP. If it is apparent that project activities are the cause of exceedances, additional control measures will be considered and implemented.

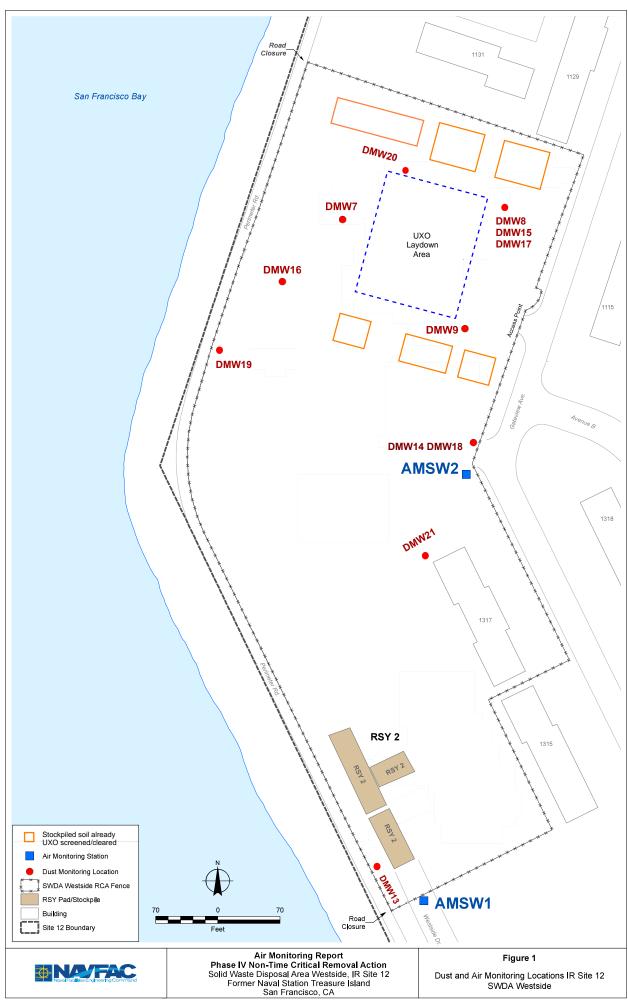
Analytical results from air monitoring samples are compared with the project screening criteria (threshold limit values [TLV]) listed in **Table 2**. Air monitoring results are included in **Attachment 2**. Weather information (including ambient pressure and temperature data) and high-volume air monitoring sample results are presented in **Attachment 2**. Weather information was collected from the weather station at Building 572, Avenue M, Treasure Island, San Francisco, California. Radiological air monitoring results are presented in **Attachment 3**.

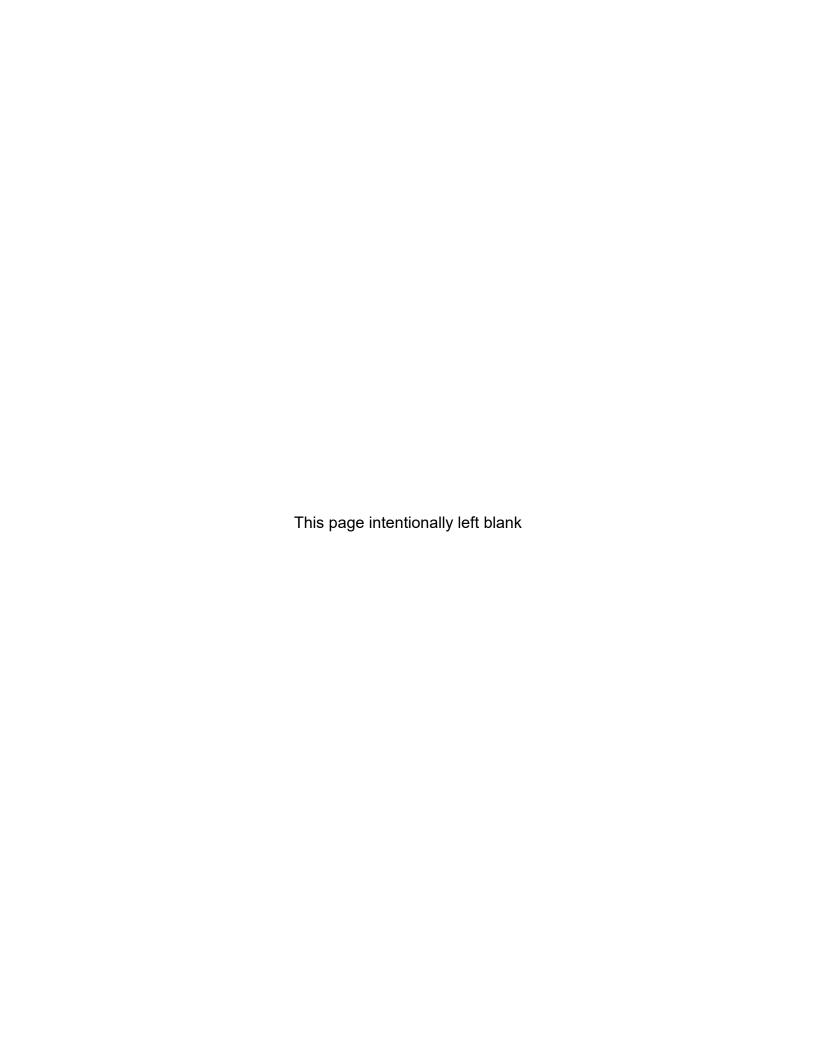
PM10 analytical results from December 2021 did not exceed the project-specific screening criteria presented in **Table 2-2**.

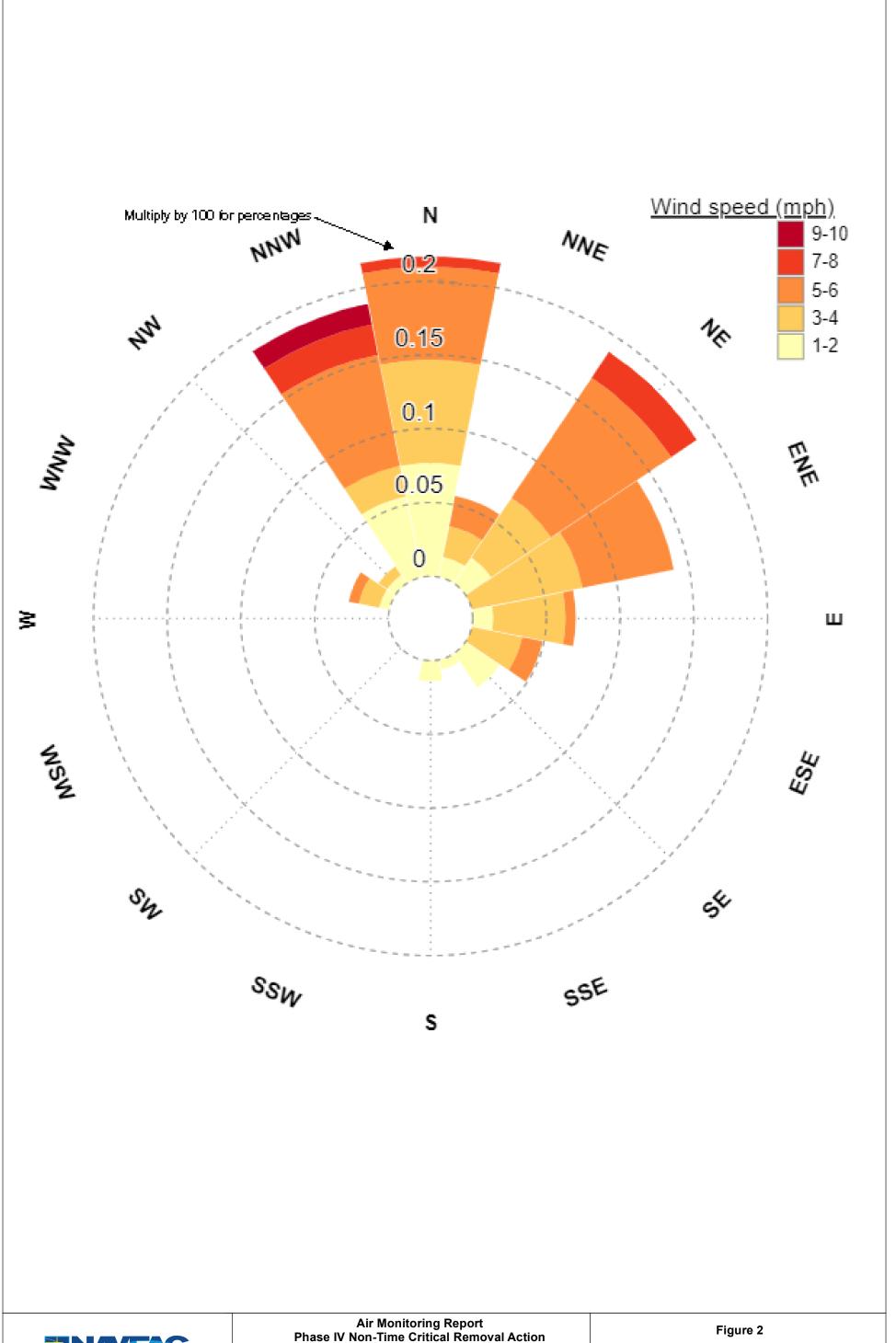
TSP analytical results from December 2021 did not exceed project-specific screening criteria presented in **Table 2-3**.

Metals (lead), PAHs, total PCBs, and dioxin analytical results from December 2021, did not exceed the project-specific screening criteria presented in **Table 2**.

On December 7th, 2021 the field team documented a generator malfunction at the upwind AMSW1 air sampler. It was determined that the GFCI had tripped overnight due to a rain event ultimately shutting off the AMS stations overnight. The breaker was reset when field personnel arrived onsite the next morning and the stations operated according to design. The sample media runtime ran greater than the four hour minimum so the samples were sent for analysis. The results were adjusted for the smaller runtime which makes the data accurate and valid.

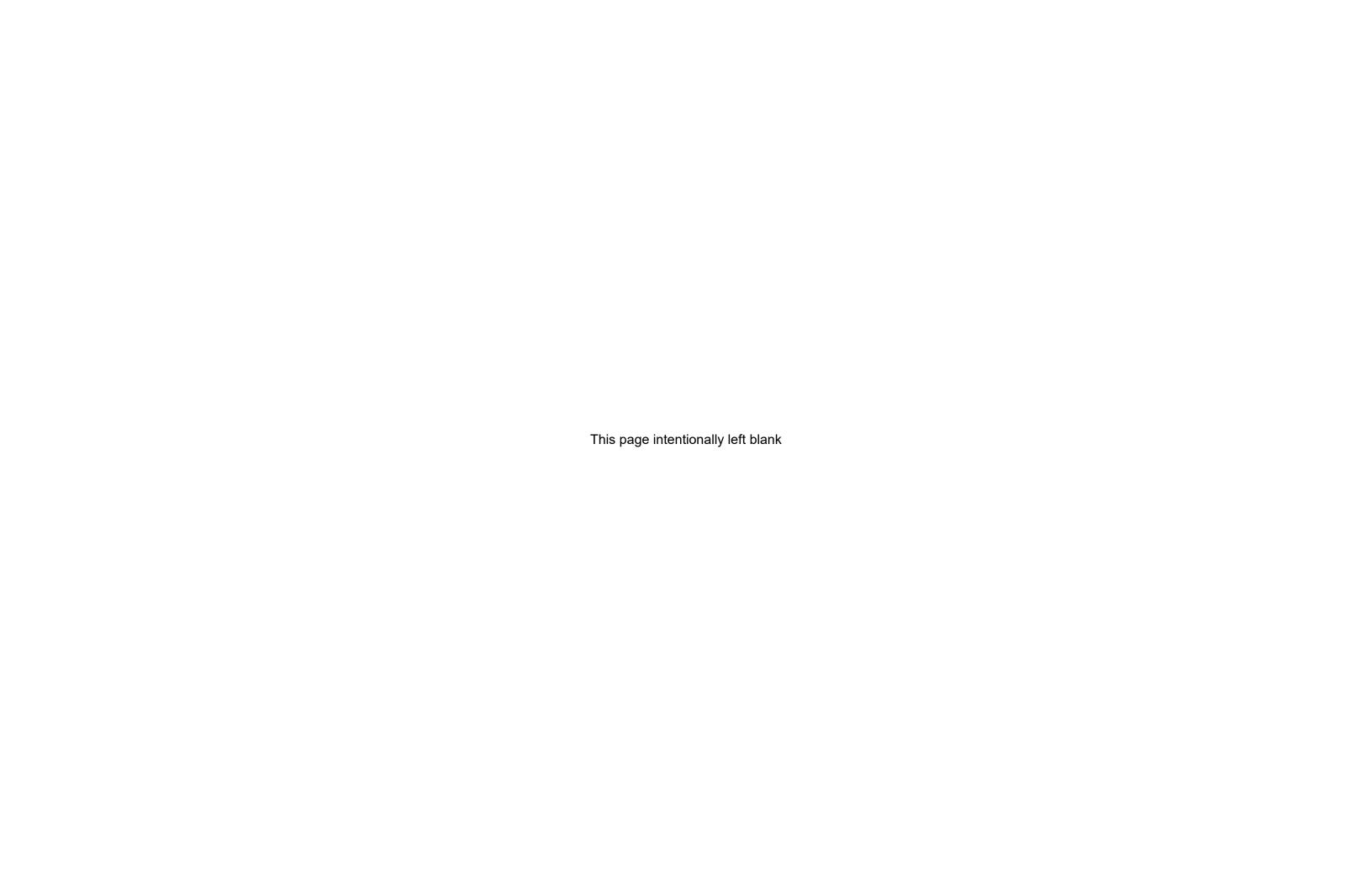

6.0 References


- Gilbane, 2016. Radiological Procedure PR-RP-150 Radiological Survey and Sampling. January.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island. San Francisco, California. March.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Air Monitoring Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. March.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Dust Control Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. March.
- HERO, 2018. Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.


Air Monitoring Summary Report #10
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 12
Former Naval Station Treasure Island, San Francisco, California

6.0 References

FIGURES



Wind Rose IR Site 12 SWDA Westside

ATTACHMENT 1 PDR SUMMARY TABLE AND FIELD FORMS (Provided on CD)

Table 1-1: Personal Data-Logging Real-Time (PDR) Aerosol Montoring Results

DustTrak Unit	IR Site	Date	Maximum ¹ (mg/m³)	Average ¹ (mg/m³)	Delta Between Upwind and Downwind Stations (mg/m³)	Below action level? (0.050 mg/m³) (Yes/No)
DMW7	Site 12		0.112	0.075	NA	Yes
DMW8	Site 12	12/1/2021	0.108	0.077	0.002	Yes
DMW9	Site 12		0.117	0.077	0.002	Yes
DMW16	Site 12		0.157	0.076	NA	Yes
DMW17	Site 12	12/2/2021	0.161	0.088	0.012	Yes
DMW18	Site 12		0.149	0.079	0.003	Yes
DMW16	Site 12		0.064	0.039	NA	Yes
DMW17	Site 12	12/3/2021	0.066	0.039	0.000	Yes
DMW18	Site 12		0.074	0.044	0.005	Yes
DMW16	Site 12		0.120	0.098	NA	Yes
DMW17	Site 12	12/6/2021	0.128	0.101	0.003	Yes
DMW18	Site 12		0.125	0.097	-0.001	Yes
DMW7	Site 12		0.035	0.024	NA	Yes
DMW8	Site 12	12/7/2021	0.036	0.025	0.001	Yes
DMW9	Site 12		0.040	0.026	0.002	Yes
DMW7	Site 12		0.034	0.012	NA	Yes
DMW8	Site 12		0.038	0.013	0.001	Yes
DMW9	Site 12	40/0/0004	0.040	0.011	-0.001	Yes
DMW13	Site 12	12/8/2021	0.006	0.005	NA	Yes
DMW14	Site 12		0.002	0.001	-0.004	Yes
DMW15	Site 12		0.004	0.003	-0.002	Yes
DMW16	Site 12		0.009	0.005	NA	Yes
DMW17	Site 12	12/9/2021	0.009	0.006	0.001	Yes
DMW18	Site 12		0.015	0.007	0.002	Yes
DMW16	Site 12		0.008	0.005	NA	Yes
DMW17	Site 12	12/10/2021	0.009	0.006	0.001	Yes
DMW18	Site 12	,	0.008	0.006	0.001	Yes
DMW19	Site 12		0.013	0.009	NA NA	Yes
DMW20	Site 12	12/13/2021	0.021	0.012	0.003	Yes
DMW21	Site 12	12/10/2021	0.015	0.014	0.005	Yes
DMW19	Site 12		0.004	0.002	NA	Yes
DMW10	Site 12	12/14/2021	0.004	0.003	0.001	Yes
DMW21	Site 12	12/14/2021	0.012	0.003	0.001	Yes
DMW19	Site 12		0.008	0.005	NA	Yes
DMW20	Site 12	12/15/2021	0.008	0.005	0.000	Yes
DMW21	Site 12	121 1012021	0.007	0.005	0.000	Yes
	Site 12		0.009	0.008	NA	Yes
DMW19 DMW20	Site 12	12/16/2021	0.011	0.003	0.003	Yes
DMW21	Site 12	121 1012021	0.019	0.006	0.003	Yes
DMW19	Site 12	12/17/2024	0.023	0.015	NA 0.005	Yes
DMW20	Site 12	12/17/2021	0.029	0.020	0.005	Yes
DMW21	Site 12		0.030	0.019	0.004	Yes
DMW19	Site 12	40/00/000	0.032	0.027	NA 0.004	Yes
DMW20	Site 12	12/20/2021	0.034	0.028	0.001	Yes
DMW21	Site 12		0.039	0.027	0.000	Yes
DMW19	Site 12		0.047	0.035	NA	Yes
DMW20	Site 12	12/21/2021	0.055	0.045	0.010	Yes
DMW21	Site 12		0.049	0.043	0.008	Yes

bold = results above screening criteria
mg/m³ = milligrams per cubic meter
NA = not applicable

1 Maximum and average dust readings from daily PDR data downloads. Data are available upon request.

AIR MONITORING LOG Client Name NAVFAC Date 12/1/2 J Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of AM Fog. Afternoon Hazellingering fog. Logan Schwing Weather Instrument Type: Dust Trak II Calibration Standards Used_Factory Calibrated **Dust** Instrument Monitoring Unit Activities. Time Location Reading Station Number Remarks (mg/m3) Number , no war kas of nou · 1) W uxo gortening 0.098 2845 0800 DMM_ reading elevated continues to starting gam DMW9 0.097 2726 · Fdse poskive from 0.099 ow Uxu horeeving DMW 234 1000 0.058 DMUS hand scanning dert 0.056 DMWB MMS9 0.060 13/0 DMW-Lonch. 0.094 · lingering haze 0.094 DMW9 0.093 · team on break still elevated needings from haze 1505 DMW 0.051 DMW8 0.055 . 40 dust or was thappening DMW19 0.054

	AIR MO	NITORING L	.OG				1 1	
		me NAVFAC				Date /	2/2/21	
	Project N	lo <u>. J31000080</u>	00 SWDA W	estside, Site	e 12, Treasure	e Island Pa	gel_ofl	
	Logged b	V Lege	m 7chwing	7				
	Weather	nt Type: _Dus	Trok II	nick Ti	1 tog. C	155:1946	ed after lun	= 4 ,
		on Standards U		v Calibrated	1			_
		Dust	1 4010	y Cambrate		1		ī
	Time	Monitoring Station	Loca	ation	Instrument Reading	Unit	Activities,	
		Number			(mg/m3)	Number	Remarks	
	0400	DMW16	· UW UXO ?	thaving,	0.143	2845	· extremely thick	Fog /marine
		DMW17	·DW		0.150	2341	· extremely thick 18xes on ist · readings high w the working	hen 40 our
		DMW18	IDW	1	0.147	2726	· False positive fi	our Fog.
1500	1300	'DMW16			0.018		Jean win We	* *.
		DMW17			0.018		* Fog has dissipa	ed.
		DMWCS			0.020		reading 5 lock and Frue to a	tine how
]	1700	DMW16			0.019		-of finishing	7.7
		DNWIT			0.022			
		DWMR			0.023			
7								
				-				
				,				
				6	,			
			· · ·		10/	/		
					12/2	/_		
						2/		

							ASS.	

AIR MONITORING LOG Date 17. Client Name NAVFAC Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page Logged by Logan Schwing Weather 48 F-53 F. Cloudy, Instrument Type: Dust Trak II Calibration Standards Used Factory Calibrated Dust Instrument Monitoring Unit Activities. Time Location Reading Station Number Remarks (mg/m3) Number 6 UW UXO Screening Daw 16 0800 0.028 2845 DMWIT 0.030 2726 4 DW UXO Soveening 0.033 DMW18 2341 DMW16 1305 · Lunch. 0.027 DMW 17 0.02 0,031 DMWIS wraffing of Ar Loday DMWID 0.025 700 0.027 0.028 DMWIS

An year on the					1- 10		
	NITORING L	<u>og</u>		. 7			
Client Name NAVFAC Date 12/97 2							
Project / No. T.I. Westside Phase IV NTCRA / J310000800 Page of t							
Logged b		CON-	10141 (
	53-	Trok II	very f	999	9		
Calibratio	nt Type: <u>Dust</u> n Standards I	Jsed_ Factory Calibrated	17000		affice.		
Calibratio	Dust	Jseu_ ractory Cambrated	r I	am	97710		
T:	Monitoring		Instrument	Unit	Activities		
Time	Station	Location	Reading (mg/m3)	Number	Remarks		
	Number		(mg/ms)				
0750	Dmw16	clearpud impurit	1110,073	2845	very foggy.		
Ţ.	DMWIT	Dunion JX D Clear out myset Dunion XXO	0.089	2341	, , ,		
*	Dmw18	Deservice xo	0.077	2726			
1000	Dmw16		0.104		WXO techson break. Very		
	DMWIT		0.110		foggy. Zero		
6	Dmw18		0.102				
1400	DMWILE		0.094		very foggy		
	DMW17		0.115				
6	DMW18		0.112				
				782			
	,			1	7		
				122	16/21		

	NITORING L			14		
Client Name NAVFAC Date 1217 21						
Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of						
	y Logo	an schwing	D. Alve	1. 1.1		
Weather_		48°F-58°F.	1917170	loudy.		_
	nt Type: <u>Dus</u>					_
Calibratio	Dust	Jsed_ <u>Factory Calibrated</u>			T	=
Time	Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
0800	DMWT	of Istockliling	0.036	2845	isite preplisatif	
	DMW8	DW UKO SCHOENING		2726	: No west 95 of no	a.
1	DMW9	Dw uxo screening	0.039	2341]
1305	DMW7	,	0.024		non-introlive.	
	DMW8		0.027			
16.0	DMW9		0.026		oof wropping of for	Violare
1600	DMW7		0.019		and muchting of tex	pary,
	DMWB		0.024			
	omwig		0.020			
	`					
						kr
		- 45	12/1			0
		X	1///			
				 		
-						

AIR MONITORING LOG

	ame <u>NAVFAC</u>			Date	12/8/21		
Project N	Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of						
Logged	Logged by Logan Graving						
Weather	4601	-54°F. Cloudy,	DM drizz	IP AM	Some haze /+	200	
Instrume	nt Type: <u>Dus</u>	t Trak II				-/ '	
		Jsed_Factory Calibrate	d			_	
	Dust					ī	
Time	Monitoring	l and!	Instrument	Unit	Activities,		
I IIIIe	Station	Location	Reading	Number	Remarks		
	Number		(mg/m3)		- Torrianto		
0500	DMW7		0.044	2845	· Fog Causing Som	schaffigh	
	DMW8		0.047	2341	reading 5	1	
-	DMW9		0.045	2726	The well as of	dow.	
1000	DMW7		0.017		· about to start stockpoling.	1	
	DMW8		0.018			1	
	DMW9		0.017				
1400	DMW13		0.004	2845	Mean finished 57	ockfilling	
	DMW14		0.006	2726	having 25425	11 10	
100	DMW15		0.006	2341	Pad line du	Hak's.	
1630	DMW13		0.003		· of weeffing of for	today.	
<u> </u>	DAW14		0.005		, de-mob.		
	DMW15		0.004				
						E	
		100					
			12/4/				
			12/10/12	2/			

AIR MONITORING LOG

Client Name NAVFAC	Date /2/9/2/
Project No. J310000800 SWDA Westside, Site 12, Tr	reasure Island Page of
Logged by Logan 5 Churing	
Weather 44°F-55°F. Sunny	No Fog
Instrument Type: Dust Trak II	

Calibration	Standards	Used_	Factory	Calibrated

Calibration	on Standards U	Jsed <u>Factory Calibrated</u>			
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
0800	DMW16	W uxo screening of	0.005	2845	prep
	DMWIT	· DW uxo screening	0.007	2341	
	DWMIS	· DW UXO Screening	0.007	2726	,
1445	DWM19		0.007		exeam on brest.
	DMWIT		0.006		12
	DWM18		0.008		
1630	DMW16		0.005		· of wasting up,
	DMWIT		0.005		
-	DWMIS		0.007		
			5		
			12	/ ,	
			61	9/2	
				(1)	
					,

AIR MONITORING LOG Date _ 12 Client Name NAVFAC Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page Logged by Logan Schwing Weather 49°F - 59°F. Sunny Instrument Type: Dust Trak II Calibration Standards Used_Factory Calibrated **Dust** Instrument Monitoring Unit Activities, Time Location Reading Station Number Remarks (mg/m3) Number NUW UXOSCIERING OP K · site Prep 0800 2845 DMW/6 DMW17 · bw ,2341 0.008 DAW18 · DW 2726 · lunch, DMW16 1310 0.004 · non-intrustut 0,007 DMWIT DMWIS 0,006 o of walling up for today 1630 0.004 DMW16 0.005 DMWIT 0.005 DAW 18

AIR MONITORING LOG Client Name NAVFAC Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page Logar Schwing Cloudy. Heavy rain Weather_ Instrument Type: _Dust Trak II Calibration Standards Used Factory Calibrated

Calibratic	on Standards U	Jsed_Factory Calibrated			
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
13/0	DMW 19	ow clearing Igrubbing	0.005	2845	· Team didn't star busking until al lunch. ~ 1315
	DMWZO	·DW '	0.010	2341	lunch. ~ 1315
	DMWZI	· DW 1	0.008	2726	
1510	DMW19		0.006		of wraffing of fe
	DMWZO		0.006		· Heavy rain .
	DMW21		0.007		
· · ·					
		155			
		13	,		
			7/		
			4/3/	<u> </u>	
			7	•	
			X		
					-
	_				
		1			

AIR MONITORING LOG

Client Name NAVFAC	Date 12/14/21
Project No. J310000800 SWDA Westside, Site 12, Tre	easure Island Page of
Logged by Logged Schwing	
Weather LI30+-550F. Sunny Mos	tly.
Instrument Type:Dust Trak II	

Calibratio	on Standards l	Jsed Factory Calibrated			
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
0800	DMW19	ow elearing (grubbi	70,002	2845	15exp
	DMW20	- DW Clearing grubbin	90,002	2341	
	DMW21	· DN Clearing grabbin	90.003	2726	_
300	DMW19		0,002		invasping of lunce
	DMW20	V-158	0.003		
-	DMW21		0.002		
1510	DMW19		0,003		·OV finished for da
	SMW20		0.002		
1	DMMSI		0.004		
<u> </u>					
		65/			
			121		
			4/14		
				21	
				~	
		30.7			

AIR MONITORING LOG Client Name NAVFAC Date 12/15/21 Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of

Weather 420F-536F. Cloudy sain intermittent

Instrument Type: _Dust Trak II

	n Standards U	Jsed_Factory Calibrated				-
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
0800	DMW19	DW Clearing grothing	0.005	2845	· mobilize	
	DMW20	DW Clearing grown	90.005	2726		35
17	DMW21	· DW Clearing lgrobbing	0,007	2341		
1245	DMW19		0.004		. Team wraping up	
	DMW20		0.004			
	DMW21		0.006			,
1500	DMW19		0.004		. of wrapfing of fev	Hed4
	DMW20		0.008		rain.	
	DMW2[0.007			
			*			
						i.
		450				
		Q /1) / /			
		4	115/	-		
			121			

AIR MONITORING LOG

	ıme <u>NAVFAC</u>			Date \	2/16/21	
Project N	lo <u>. J3100008</u> (00 SWDA Westside, Site	e 12, Treasur	e Island Pa	age \ of \	
Logged b	by Lo	yan schwing				
Weather		45°F-57°F.	Some C	louds K	Sun.	
	nt Type: <u>Dus</u>					<u> </u>
Calibratio	n Standards U	Jsed Factory Calibrated				_
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
0800	DMW19	in all along lesting	0.004	2845	· MObilize,	
	DMW20	ibw grubbing clearing	0.000	2341		
	DMWZI	· Dw grubbily/clearing	0.006	2726		
1120	DMW19		0.001		= Team With, my w	1. Te rending 1
	DMW20		0.004			
	DMW21		0.003			
1355	DMW 9		0.006		of wrapping up	for today.
	DMW20		0.008			
V	DMW21		0.007			
		1//				
		25	15 /			
			4/1/1			
			6/	2 ,		
	-					

	AIR MO	NITORING L	.OG			1011.		
	Client Na	me <u>NAVFAC</u>		[Date	12/17/21		
	Project N	lo <u>. J31000080</u>	00 SWDA Westside, Sit	e 12, Treasur	e Island Pa	age of		
	Logged b	11 600	an schwing					
	Weather 39%- 51°F. FUMY.							
		nt Type: _Dus						
	Calibratic		Jsed <u>Factory Calibrated</u>	1	T			
	Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks		
	0800	DMW19	DW Clearing grobbing	0.020	2845	omobilize		
		(1)	DW Clearing Igrating	0.024	2341			
	1225	DMWZI	· BW Creating Grand	0.000	2726	64		
	\335	DMW19		0.008		· year working during		
		DMWZO		0.013				
١ :	121505	DMW21		0.020		inf finishing for tolar		
1515	Pizlish	DMW19		0.007				
		DMW 20		0.009		for weekend		
		DMW21		0.009				
			450					
-								
}			4	/17/				
}				17	/			
-								
-								
-								

		s remines				
		NITORING L				
	Client Na	ame NAVFAC	stside Phase IV NTCRA		ate / a	120/21
	Project /	No. T.I. We	stside Phase IV NTCRA	A / J31000080) Pa	age) of /
	Logged	by	101			
	Instrumo	ent Type: Dus	fly cloudy	- 5 7	- 43	Andre di till disklamations in par standing etterpring till sindergrægste til glittings from symmethetes still des
			Jsed_Factory Calibrate	d '2	2 1 2 5	10000
		Dust	l detery Camprate	Tero	neter	IN OFFICE.
	Time	Monitoring	l man milion	Instrument	Unit	Activities
		Station	Location	Reading (mg/m3)	Number	
		Number	11010 mil AF			
	0800	pmw 19	upwind of import fill	0.025	2845	·mobilization
		Dmw20	import fill	0.032		
	6	DMW21	down wind import fill downwind import fill	0.033		TO STANDARD POR STANDARD STANDARD STANDARD
	1245	Dmw 19		0.030		Moving mport
		pmwzo		0,031		A CONTRACT OF THE PROPERTY OF
	1	pmwzl		0.031		
	1415	Dmw19		0.029		· moving in port
		Dmwzo		0.032		
	-	DMW21		0.032		
0						
5						
				7	0	
				/		and the state of the above the state of the
					12/20	121
					/	

h	2	n	0
			5

	ONITORING L lame NAVFAC		г	Date 1	2/21/21	
Project	No. <u>J3100008</u>	00 SWDA Westside, Sit	e 12. Treasure	e Island Pa	ge of	
Logged	by	9 SWDA Westside, Sit		<u> </u>	gc	
Weathe	r	39°F-51°F, VI	M vain,	AM haz	el toy.	_
instrume	ent Type: <u>Dus</u>	t I rak II				_
Calibrati	Dust	Jsed Factory Calibrated	<u> </u>		T T	-
Time	Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
0500	DMW19	is turer + fill	0.042	2845	·s.te sexp	-
	DMW20	1DW	0.046	2341	readings high d no work yet	ring Se tup.
	DWM51	i Doug &	0.047	2726	Head will Contin	I welking
1700	DMW19		0.033		Fog Still lingeri	
	DWMSO		0,043] ′
	DMW21		0.044		team done wer	kinglmoving di
						(c) 1530
		$\searrow \triangleleft$				
			1-			
			2/	/		
				-//		
				(7)		
				7		

ATTACHMENT 2 SUMMARY OF AIR MONITORING AND AIR SAMPLING RESULTS (Provided on CD)

This page intentionally left blank

Table 2-1: Ambient Pressure and Temperature Monitoring Results

Table 2 117 timble it 1 1000 and a 10 inportation in office in graduate							
Sample Date	Ambient Pressure (inches of Hg)	Ambient Temperature (°F)	Ambient Temperature (°K)				
12/1/2021	30.10	58.26	287.74				
12/2/2021	30.09	59.17	288.24				
12/3/2021	30.10	54.33	285.56				
12/3/2021	30.12	53.44	285.06				
12/7/2021	30.05	51.29	283.87				
12/8/2021	30.03	54.40	285.59				
12/9/2021	29.98	52.90	284.76				
12/10/2021	30.08	51.27	283.86				
12/10/2021	30.22	52.60	284.59				

Weather data collected from weather station at Building 572, Avenue M, Treasure Island, San Francisco, CA

°F = Degrees Fahrenheit

Hg = mercury

°K = Degrees Kelvin

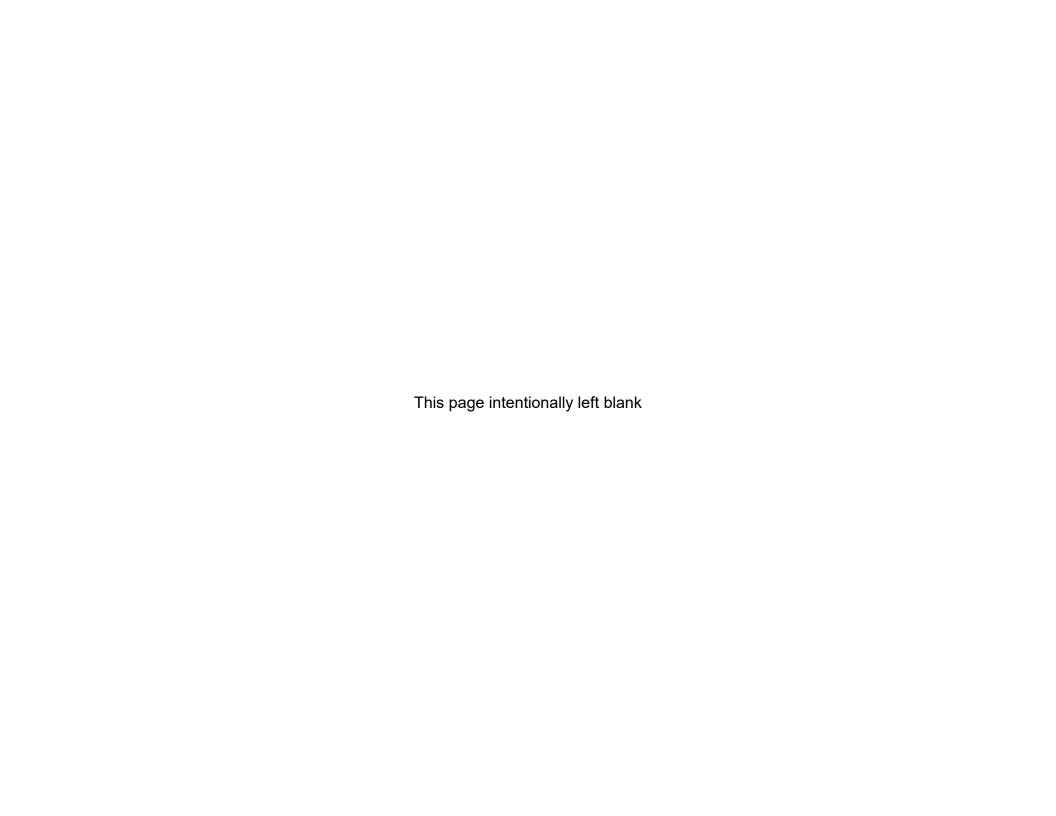


Table 2-2: Particulate Matter Smaller than Ten Microns (PM10)

Location ID	Sampling Period (Hours)	Sample Date	Particulate Matter Less Than 10 Microns in Diameter (ug/m³)	Delta between Downwind and Upwind Stations (ug/m³)	PM10 Exceedance? (Yes/No)
		Screening	Criteria		50
	23.34	12/01/2021	30	NA	NA
	23.47	12/02/2021	40	NA	NA
	21.47	12/03/2021	24	NA	NA
	7.31	12/03/2021	19	NA	NA
AMSW1	9.74*	12/07/2021	33	NA	NA
	24.08	12/08/2021	14	NA	NA
	23.44	12/09/2021	8.7	NA	NA
	21.1	12/10/2021	9.8	NA	NA
	6.85	12/10/2021	4.9	NA	NA
	23.63	12/01/2021	31	1	No
	23.76	12/02/2021	43	3	No
	21.98	12/03/2021	26	2	No
	7.35	12/03/2021	23	4	No
AMSW2	23.53	12/07/2021	40	7	No
	24.4	12/08/2021	16	2	No
	23.82	12/09/2021	8	-0.7	No
	21.56	12/10/2021	13	3.2	No
	7.0	12/10/2021	30	25.1	No

ug/m3 = micrograms per cubic meter

NA = Not applicable

PM10 = particulate matter less then 10 microns in diameter

bold = result above screening criteria

^{* =} generator/sampler malfunction

Table 2-3: Total Suspended Particulates Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Total Suspended Particulate (ug/m³)	Delta Between Downwind and Upwind Stations (ug/m³)	TSP Exceedance? (Yes/No)
		Screening Criteria			50
	20.01	12/01/2021	45.2137	NA	NA
	22.66	12/02/2021	55.2229	NA	NA
	20.8	12/03/2021	35.2547	NA	NA
	7.29	12/03/2021	31.221	NA	NA
AMSW1	9.75*	12/07/2021	46.4543	NA	NA
	24.07	12/08/2021	20.9864	NA	NA
	23.46	12/09/2021	12.6545	NA	NA
	21.11	12/10/2021	15.0202	NA	NA
	6.83	12/10/2021	12.6875	NA	NA
	23.63	12/01/2021	42.3224	-2.8913	No
	23.77	12/02/2021	52.2834	-2.9395	No
	21.97	12/03/2021	39.7679	4.5132	No
	7.37	12/03/2021	37.2325	6.0115	No
AMSW2	23.54	12/07/2021	57.5265	11.0722	No
	24.42	12/08/2021	24.4737	3.4873	No
	23.82	12/09/2021	15.224	2.5695	No
	21.56	12/10/2021	22.3354	7.3152	No
	7.01	12/10/2021	41.9641	29.2766	No

J = estimated value

ug/m³ = micrograms per cubic meter

NA = Not applicable

TSP = total suspended particulate

bold = results above screening criteria

^{* =} generator/sampler malfunction

Table 2-4: Lead by EPA 6020 Monitoring Results

	<u> </u>			
Location ID	Sampling Period (Hours)	Sample Date	Lead (ug/m³)	Lead Exceedance? (Yes/No)
	Screenin	g Criteria		1,575
	23.34	12/01/2021	0.0039	No
	23.47	12/02/2021	0.0047	No
	21.47	12/03/2021	0.002	No
	7.31	12/03/2021	0.0033	No
AMSW1	9.74*	12/07/2021	0.0024	No
	24.08	12/08/2021	0.0013	No
	23.44	12/09/2021	0.00082	No
	21.1	12/10/2021	0.0012	No
	6.85	12/10/2021	0.0017 J	No
	23.63	12/01/2021	0.0045	No
	23.76	12/02/2021	0.0062	No
	21.98	12/03/2021	0.0022	No
	7.35	12/03/2021	0.0024	No
AMSW2	23.53	12/07/2021	0.0034	No
	24.4	12/08/2021	0.0021	No
	23.82	12/09/2021	0.00074	No
	21.56	12/10/2021	0.0019	No
	7.0	12/10/2021	0.005	No
Notoci				

bold = results above screening criteria

J = indicates an estimated value

ug/m³ = micrograms per cubic meter

^{* =} generator/sampler malfunction

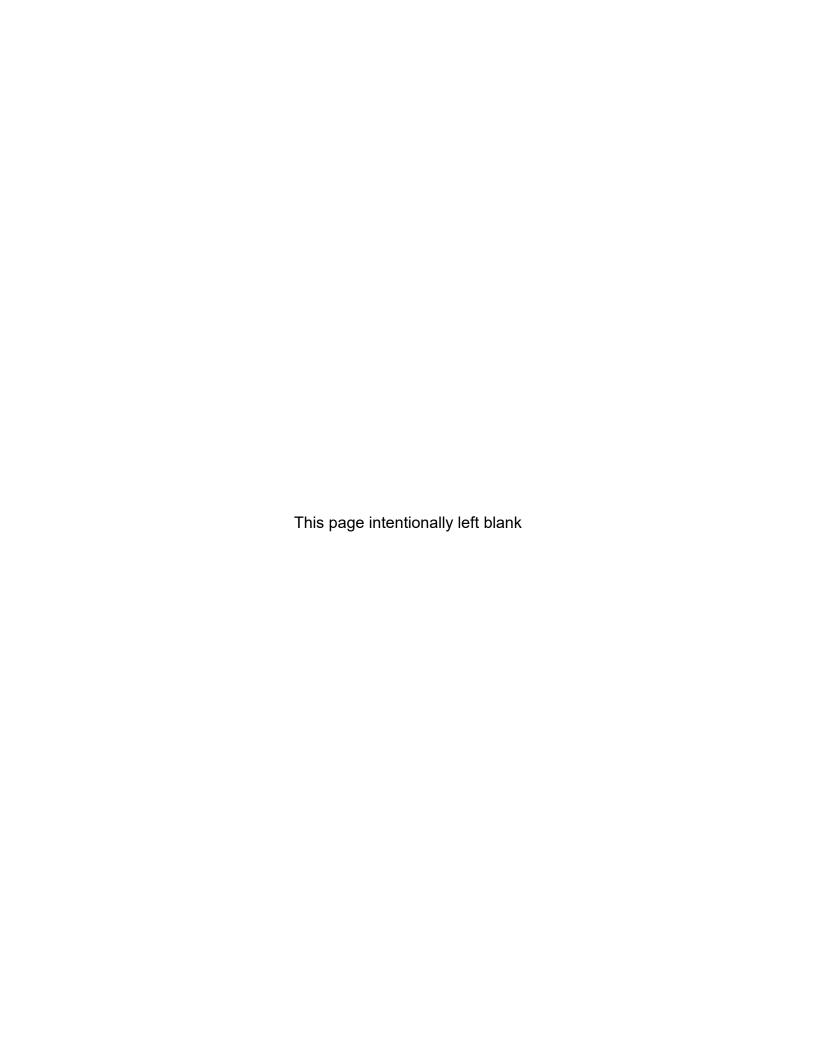


Table 2-5: Polycyclic Aromatic Hydrocarbons by TO-13 Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	BAP(Eq) Exceed- ance? (Yes/No)	BAP(Eq)	2-Methyl-naph thalene (ug/m³)	Acenaph- thene (ug/m³)	Acenaph- thylene (ug/m³)	Anthracene (ug/m³)	Benzo(a) anthracene (ug/m³)	Benzo(a) pyrene (ug/m³)	Benzo(b) fluoran- thene (ug/m³)	Benzo(g,h,i) perylene (ug/m³)	Benzo(k) fluoran- thene (ug/m³)	Chrysene (ug/m³)	Dibenz(a,h)anth racene (ug/m³)	Fluoran- thene (ug/m3)	Fluorene (ug/m3)	Indeno (1,2,3- c,d) pyrene (ug/m3)	Naph- thalene (ug/m3)	Phenan- threne (ug/m3)	Pyrene (ug/m3)
	Screening	Criteria ¹		55,330	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
AMSW1	23.5	12/02/2021	No	0	0.0052	0.00065	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	0.00044 J	0.0008	< 0.00055	0.012	0.0012	0.0003 J
	9.76*	12/07/2021	No	0	0.0096	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	0.00069 J	< 0.0012	0.013	0.00095 J	< 0.0012
	21.12	12/10/2021	No	0	0.0017	0.00025 J	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	0.00026 J	< 0.0006	0.0056	0.00046 J	< 0.0006
AMSW2	23.77	12/02/2021	No	0	0.0054	0.00061	< 0.00052	0.00036 J	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	< 0.00052	0.0012	0.0011	< 0.00052	0.012	0.0045	0.00074
	23.54	12/07/2021	No	0	0.009	0.0005	< 0.00047	0.00049	< 0.00047	< 0.00047	< 0.0017	< 0.00047	< 0.00047	< 0.00047	< 0.00047	0.00097	0.001	< 0.00047	0.011	0.0039	0.00066
	21.57	12/10/2021	No	0	0.0022	0.00026 J	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	0.0003 J	0.00037 J	< 0.00056	0.0063	0.0011	< 0.00056

NA = Not applicable

NE = None established

BAP(Eq) = Benzo(a)pyrene equivalency

J = estimated value

ug/m³ = micrograms per cubic meter

bold = results above screening criteria

* = PUF sampler/generator malfunction

¹ The dust action level was adjusted by a factor of 10 to account for the short-term duration of the project.

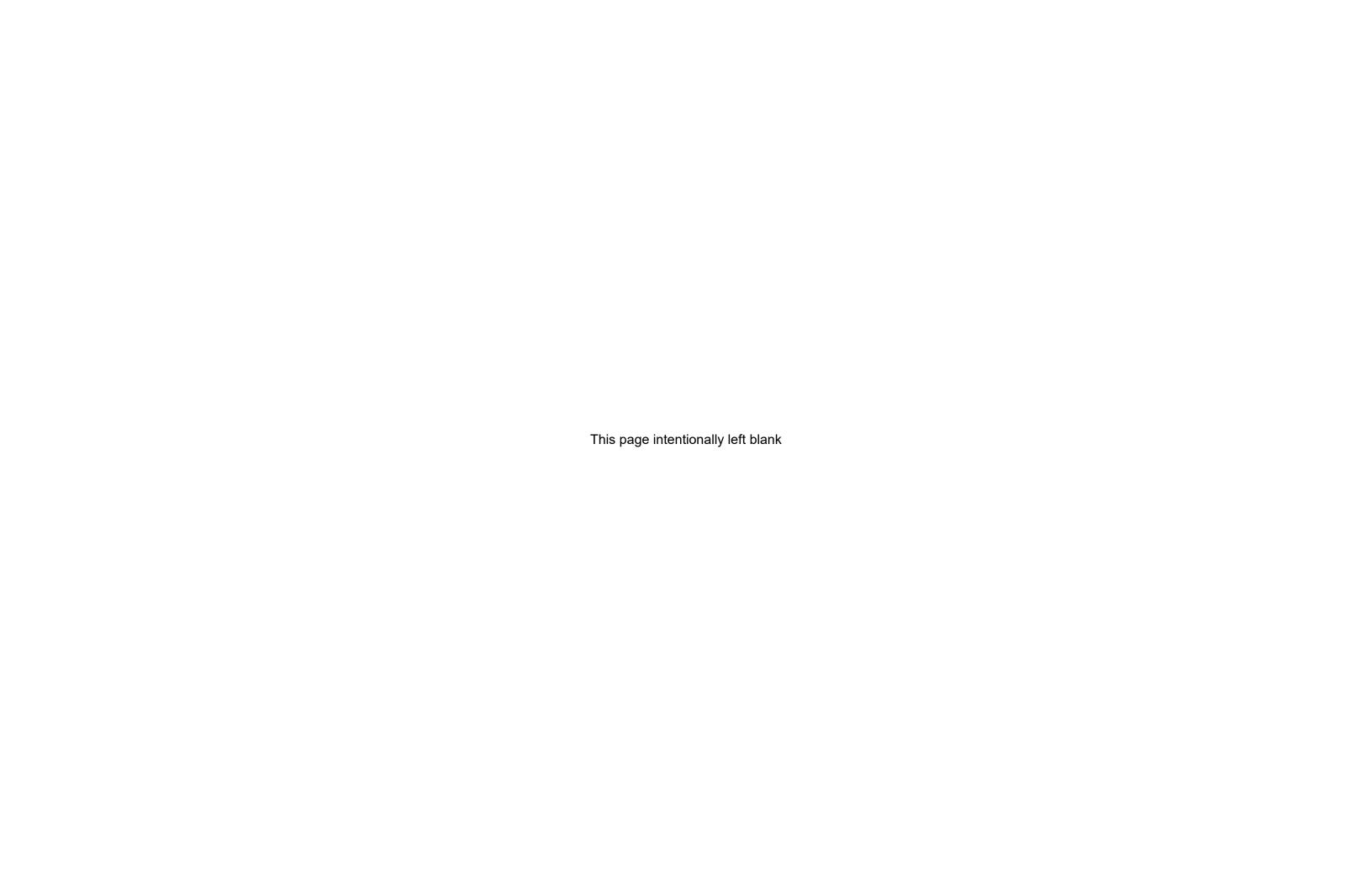


Table 2-6: Polychlorinated Biphenyls by TO-4A Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Total PCB Exceedance? (Yes/No)	Total PCB	PCB-1016 (Aroclor 1016) (ug/m³)	PCB-1221 (Aroclor 1221) (ug/m³)	PCB-1232 (Aroclor 1232) (ug/m³)	PCB-1242 (Aroclor 1242) (ug/m³)	PCB-1248 (Aroclor 1248) (ug/m³)	PCB-1254 (Aroclor 1254) (ug/m³)	PCB-1260 (Aroclor 1260) (ug/m³)
	Screen	ing Criteria		NE							
	21.49	12/03/2021	NA	0	< 0.00082	< 0.00082	< 0.00082	< 0.00082	< 0.00082	< 0.00082	< 0.00082
AMSW1	24.04	12/08/2021	NA	0	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077
	6.79	12/10/2021	NA	0	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026
	21.99	12/03/2021	NA	0	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078
AMSW2	24.39	12/08/2021	NA	0	< 0.00065	< 0.00065	< 0.00065	< 0.00065	< 0.00065	< 0.00065	< 0.00065
	7.00	12/10/2021	NA	0	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022

NA = Not applicable

NE = None established

PCB = polychlorinated biphenyl

ug/m³ = micrograms per cubic meter

< = nondetected less than associated reporting limit

J = estimated value

* = sampler/generator malfunction

Table 2-7: Dioxin as 2,3,7,8-TCDD by TO-9A Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	2,3,7,8-Tetrachlorodibenzo-p- dioxin (ug/m³)	Dioxin Exceedance? (Yes/No)
	S	Screening Criteria	a	10,000,000 ug/m³
	23.35	12/01/2021	< 0.00000002	No
AMSW1	7.23	12/03/2021	< 0.00000006	No
	23.42	12/09/2021	< 0.00000002	No
	23.62	12/01/2021	< 0.00000002	No
AMSW2	7.34	12/03/2021	< 0.0000006	No
	23.81	12/09/2021	< 0.00000002	No

J = estimated value

ug/m³ = micrograms per cubic meter

< = nondetected less than associated reporting limit

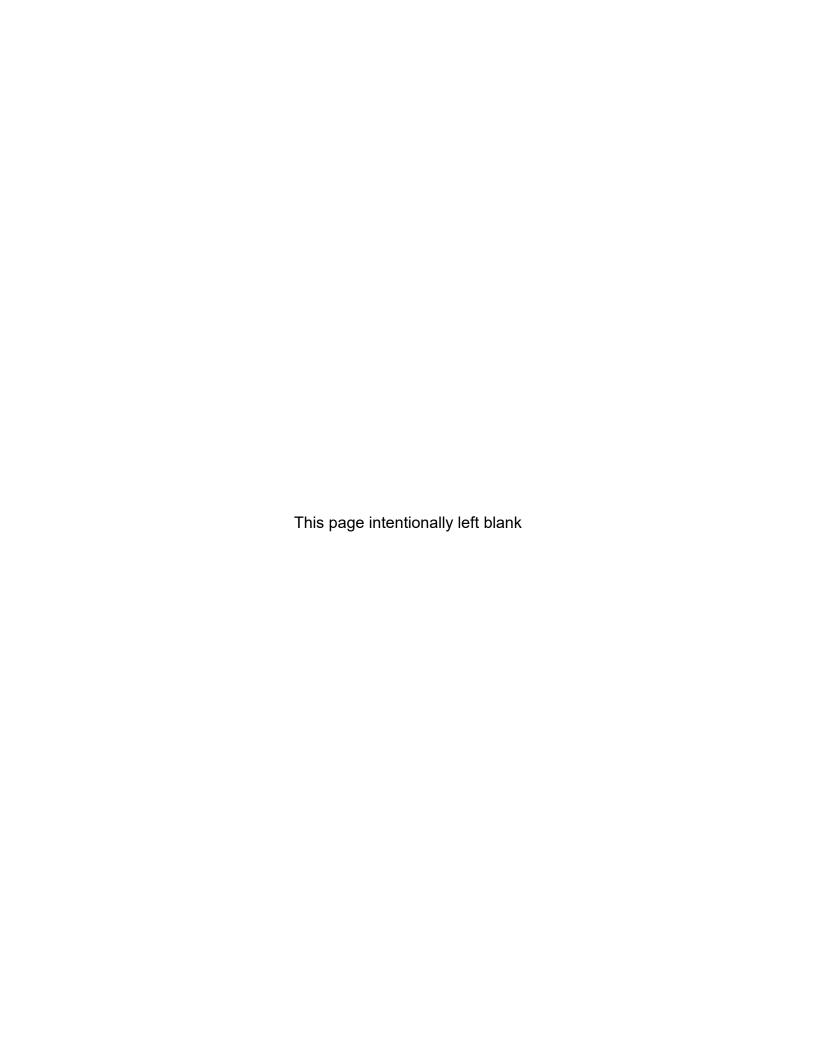
bold = results above screening criteria

ATTACHMENT 3 RADIOLOGICAL AIR MONITORING RESULTS (Provided on CD)

Attachment 3

This page intentionally left blank

AIR SAMPLING EQUIPMENT


					Project In	formation		Fffer	ctive as of	31 Jan 20	22		
	rask Oruc	i	Project Tit	le / Locatio					Project Number:				
Niimhar N62	473-17-D-(0005	-			easure Isla	nd SE CA			J310000800			
		ffluent Air					, ,		Sampling Equipment				
Equip		Air Sample		Serial	Cal Due	Equip		Air Sample	<u> </u>				
Number		Make/Mode		Number	Date	Number		Make/Mode		Date			
PE01	-	LV-1	1	4532	5/20/21	BZ01		viake/ivioue	žI	Number	Date		
PE02		LV-1		4360	5/20/21	BZ01							
PE03		LV-1		4352	4/20/22	BZ02							
PE03		LV-1											
		LV-I		4300	4/20/22	BZ04							
PE05						BZ05							
PE06						BZ06							
PE07						BZ07							
PE08						BZ08							
PE09						BZ09							
PE10						BZ10							
PE11						BZ11							
PE12						BZ12							
PE13						BZ13							
PE14						BZ14							
PE15						BZ15							
PE16						BZ16							
PE17						BZ17							
PE18						BZ18							
PE19						BZ19							
PE20						BZ20							
				Samp	ole Counti	ng Instrun	nents						
Inst	Model	Serial	Cal Due	Count Ti	me (min)	Backgrou	nd (cpm) ^a	Abs Ct Eff	(cnts/dis)b	MDC (dpn	n/sample) ^c		
Number	Number	Number	Date	Bkgrd	Source	Alpha	Beta	Alpha	Beta	Alpha	Beta		
Α	Protean	615068	9/15/21	1	1	0.0	1.1	0.352	0.355	15.4	29.0		
В	Protean	9085100	10/5/21	1	1	0.0	1.2	0.356	0.352	15.2	29.9		
С	Protean	9085100	10/1/22	1	1	0.0	1.2	0.359	0.355	15.1	29.6		
D													
Е													
Notes		!				!							

Notes

^a background values obtained from instrument set-up worksheet

^b absolute counting efficiency = 4π efficiency calculated as ratio of measured count rate and contained activity [total dpm] of source (see IN-RP-141, *Alpha/Beta Scaler Instrument Set-Up and Operation*)

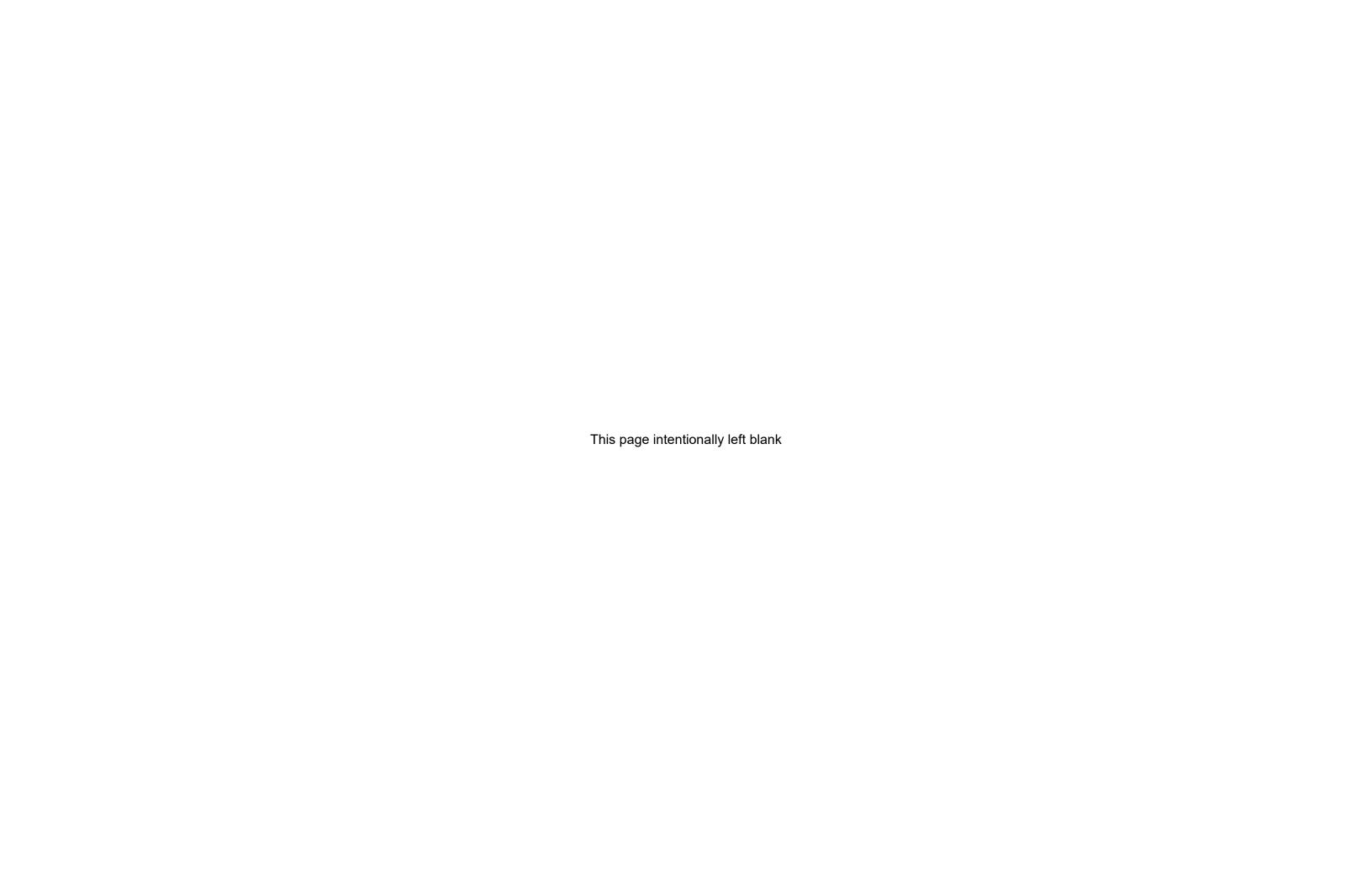
^c MDC calculated using the Stapleton approximation (see IN-RP-141, Alpha/Beta Scaler Instrument Set-Up and Operation)

AIR SAMPLE RESULTS - PUBLIC EXPOSURE MONITORING

Project Information							Effluent Air Concentration			Sampling Period			Color Codes										
Contract /	Contract / Task Order Number: Project Title / Location: Gilbane Project Number:								Alpha Beta			Air samples collected			Value < MDC Value < 0.1 x Effluent C				ent Conc				
N6	2473-17-D-00	005	IR Site	12 RD/R	A, Treasure Is	sland, SF, CA	J3	10000800		Radionuclide Ra-226 Sr-9			Sr-90	between 22 Mar 2021		21	< 72 hr decay time			Value > 0.1 x Effluent Conc			
			Inforr	mation ef	fective as of:	31 Jan 2022				Ef	fluent Conc	(μCi/ml)	9.E-13	6.E-12	and	10 Dec 202	21	Da	Data reviewed Value > Effluent Con				Conc
				S	Sample Colle	ction							Count	Informatio	n				Sample Results Initial				tials
Sample	Sample	Sam		Equip	Ave Flow	Start	End	Elapsed	Volume	Inst	Count	Time	Counting		Activity	Net		Activity	. ,		Conc (%)	Count	Data
Number	Type	Locat	ion	No	Rate (lpm)	Day Time	Date Time	Time (min)	(ml)	No	Date	(min)	Units	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Tech	Reviewer
AS-0327	Perimeter	Upwi	nd	PE03	60	12/1/21 7:25	12/1/21 17:05	580	3.5E+07	С	12/10/21	1	cpm	0.05	6.35	0.1	14.5	1.8E-15	1.9E-13	0.2%	3.1%	DB	CB
AS-0328	Perimeter	Downy		PE04	60	12/1/21 7:30	12/1/21 17:02	572	3.4E+07	С	12/10/21	1	cpm	0.25	7.15	0.7	16.8	9.1E-15	2.2E-13	1.0%	3.7%	DB	CB
AS-0329	Perimeter	Upwi		PE03	60	12/2/21 7:20	12/2/21 17:05	585	3.5E+07	С	12/10/21	1	cpm	0.00	5.90	0.0	13.2	0.0E+00	1.7E-13	0.0%	2.8%	DB	CB
AS-0330	Perimeter	Downy	vind	PE04	60	12/2/21 7:25	12/2/21 17:10	585	3.5E+07	С	12/10/21	1	cpm	0.20	6.55	0.6	15.1	7.1E-15	1.9E-13	0.8%	3.2%	DB	CB
AS-0331	Perimeter	Upwi	nd	PE03	60	12/3/21 7:25	12/3/21 17:15	590	3.5E+07	С	12/10/21	1	cpm	0.25	4.65	0.7	9.7	8.9E-15	1.2E-13	1.0%	2.1%	DB	CB
AS-0332	Perimeter	Downy	vind	PE04	60	12/3/21 7:30	12/3/21 17:10	580	3.5E+07	С	12/10/21	1	cpm	0.25	5.55	0.7	12.3	9.0E-15	1.6E-13	1.0%	2.6%	DB	CB
AS-0333	Perimeter	Upwi	nd	PE03	60	12/6/21 8:08	12/6/21 17:10	542	3.3E+07	С	12/17/21	1	cpm	0.30	3.70	0.8	7.0	1.2E-14	9.8E-14	1.3%	1.6%	DB	CB
AS-0334	Perimeter	Downy	vind	PE04	60	12/6/21 8:14	12/6/21 17:15	541	3.2E+07	С	12/17/21	1	cpm	0.25	4.55	0.7	9.4	9.7E-15	1.3E-13	1.1%	2.2%	DB	CB
AS-0335	Perimeter	Upwi	nd	PE03	60	12/7/21 7:20	12/7/21 17:20	600	3.6E+07	С	12/17/21	1	cpm	0.10	5.70	0.3	12.7	3.5E-15	1.6E-13	0.4%	2.6%	DB	CB
AS-0336	Perimeter	Downy	vind	PE04	60	12/7/21 7:25	12/7/21 17:22	597	3.6E+07	С	12/17/21	1	cpm	0.00	4.65	0.0	9.7	0.0E+00	1.2E-13	0.0%	2.0%	DB	CB
AS-0337	Perimeter	Upwi	nd	PE03	60	12/8/21 6:55	12/8/21 16:05	550	3.3E+07	C	12/17/21	1	cpm	0.10	4.10	0.3	8.2	3.8E-15	1.1E-13	0.4%	1.9%	DB	CB
AS-0338	Perimeter	Downy	vind	PE04	60	12/8/21 7:00	12/8/21 16:08	548	3.3E+07	С	12/17/21	1	cpm	0.10	2.95	0.3	4.9	3.8E-15	6.8E-14	0.4%	1.1%	DB	CB
AS-0339	Perimeter	Upwi	nd	PE03	60	12/9/21 6:40	12/9/21 17:10	630	3.8E+07	С	12/17/21	1	cpm	0.15	3.55	0.4	6.6	5.0E-15	7.9E-14	0.6%	1.3%	DB	CB
AS-0340	Perimeter	Downy	vind	PE04	60	12/9/21 6:45	12/9/21 17:15	630	3.8E+07	С	12/17/21	1	cpm	0.20	4.15	0.6	8.3	6.6E-15	9.9E-14	0.7%	1.7%	DB	СВ
AS-0341	Perimeter	Upwi	nd	PE03	60	12/10/21 6:17	12/10/21 17:05	648	3.9E+07	С	12/17/21	1	cpm	0.25	3.95	0.7	7.7	8.1E-15	9.0E-14	0.9%	1.5%	DB	CB
AS-0342	Perimeter	Downy	vind	PE04	60	12/10/21 6:20	12/10/21 17:08	648	3.9E+07	С	12/17/21	1	cpm	0.15	3.65	0.4	6.9	4.8E-15	8.0E-14	0.5%	1.3%	DB	CB
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				
													cpm			#N/A	#N/A	#N/A	#N/A				

CFM to LPM Converter	Sample	Counting		
1 cfm = 28.316846592 lpm	Types	Units		
Enter cfm: 2.1	Perimeter	cnts		
lpm: 60.0	Effluent	cpm		

10 CFR 20 Appendix B Table 2 Effluent Concentrations (listed in order of most to least restrictive radionuclide)


		Column 1
Alpha-Emit	Retention	Air
Radionuclic	Class	(μCi/ml)
Th-232	W	4.E-15
Pu-239/240	W	2.E-14
Am-241	W	2.E-14
U-233/234	Υ	5.E-14
U-235	Υ	6.E-14
U-238	Υ	6.E-14
Ra-226	W	9.E-13
(TBD)	(TBD)	(TBD)

		Column 1
Beta-Emitti	Retention	Air
Radionuclic	Class	(μCi/ml)
Sr-90	Υ	6.E-12
Eu-152	W	3.E-11
Eu-154	W	3.E-11
Co-60	Υ	5.E-11
Cs-137	D	2.E-10
(TBD)	(TBD)	(TBD)

Color Legend
No exceedance above regulatory criteria
Elevated however no exceedance above regulatory criteria
Exceedance above regulatory criteria

^{*} Effluent concentration is a regulatory number from the NRC considered protective of the public

IN-RP-152 (Aug 2021) Page 1 of 1

