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Abstract  15 

In high tempo, high stakes military applications of Artificial Intelligence (AI) and Machine Learning 16 

(ML), operators need to rapidly understand the strengths and limitations of their AI/ML aides, so that 17 

the combined human + AI team can provide decision superiority. As AI agents become more 18 

sophisticated, operators need transparency in these advanced systems much like the ability to build 19 

mental models of their human collaborators to ultimately judge their appropriate use.  20 

A key challenge in making AI explainable to humans who are not computer or data scientists, and who 21 

do not have the time or tools to understand the inner workings of the AI system, is to map hidden layers 22 

of machine reasoning to semantics that are human interpretable to gain more insight into AI 23 

recommendations so that operators may either have more confidence in AI results or know when to 24 

override it.  To address this challenge of aligning semantics of the machine generated explanation with 25 

human interpretation, we first describe the creation of a surrogate white-box approach as a stand-in, 26 

and subsequently describe the concept of a semantic alignment method. We describe a use case of 27 

Automatic Target Recognition (ATR) and illustrate why current explainer approaches are inadequate 28 

in achieving machine transparency and discuss research needs.    29 
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1 Introduction 30 

The NORAD and U.S. Northern Command (USNORTHCOM) collect and coordinate a worldwide 31 

system of sensors to monitor for aerospace and maritime threats to the United States and Canada. The 32 

network of satellites, ground-based radar, airborne radars, and other assets provide a tremendous 33 

amount of data.  Making sense of this data requires advanced capabilities such as Automatic Target 34 

Recognition (ATR) powered by AI/ML.  However, autonomous systems alone do not provide the value 35 

of human experience and intuition. Further, our adversaries have been monitoring our methods to deter, 36 

compete, and conduct war over the past decades. To ensure information dominance and decision 37 

superiority, there is a need to combine the ingenuity and agility of human expertise with the pattern 38 

recognition and scalable processing power of AI/ML. Human-Autonomy Teaming (HAT) presents 39 

unique challenges. Just like human teams, operators need the ability to continuously assess and reassess 40 

another team member’s performance within different contexts, whether the other team member is 41 

human or digital. Current AI/ML methods lack the inherent mechanisms that human teams have in 42 

order to represent their levels of competence and trustworthiness. Worse, they lack the ability to be 43 

transparent to a human operator. We adopt the National Academies of Sciences (NAS)’s definition of 44 

transparency [1] as “the understandability and predictability of the system” (Endsley, Bolte, and Jones, 45 

2003, p. 146 [2]), including the AI system’s “abilities to afford an operator’s comprehension about an 46 

intelligent agent’s intent, performance, future plans, and reasoning process” (Chen et al., 2014a, p. 2 47 

[3]).  48 

Intelligent systems based on opaque AI/ML methods might hide potential issues inherited by biased 49 

data or lead to adopting decisions that we do not fully understand, or even worse, that violate ethical 50 

principles. Indeed, very often for achieving high performance in prediction, recommendation, and 51 

decision-making support, the adoption of complex models that hide the logic of their internal processes 52 

is required. Such models are often referred to as black box. A large amount of work that aimed at 53 

enabling end users to better understand, trust, and effectively manage artificially intelligent systems 54 

has been conducted under the Defense Advanced Research Projects Agency (DARPA) eXplainable 55 

Artificial Intelligence (XAI) program [4]. The XAI program envisioned three general approaches for 56 

improving explainability while maintaining a high level of learning performance: i) deep explanation 57 

approaches to learn features or representations that can make the inner workings of a deep learning 58 

model more transparent; ii) interpretable model approaches to develop models that are inherently more 59 

explainable and more introspectable for machine learning experts; and iii) model induction approaches 60 

that experiment with any given ML model - such as a black box - to infer an approximate explainable 61 

model.  62 

This work reviews existing methods for explaining black box models with a focus on techniques that 63 

can generate user-intuitive explanations. We describe the work done towards a prototype 64 

implementation for generating explanations for AI/ML models that operate on a single modality of 65 

data and discuss why current explainer approaches are inadequate in achieving machine transparency 66 

and discuss research needs. The use case driving this investigation is Automatic Target Recognition 67 

(ATR) where a human analyst is working with the aid of an AI/ML target recognition algorithm.  68 

This paper is outlined as follows. The rest of this section is dedicated to background and foundational 69 

concepts, and it describes the particular use case we have had in mind while performing this work. 70 

Section 2  is focused on an overview of interpretability methods in use. Section 3 describes the current 71 

prototype implementation for explanation generation and research challenges that need to be addressed 72 

in pursuit of creating detailed, effective, explanations of black box machine learning models. Section 73 
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4  outlines metrics that have been proposed for explainability. Finally, Section 5 contains conclusions, 74 

discussion, and possible future research directions.  75 

1.1 Background and Foundational Concepts 76 

In this section we introduce the definitions of transparency, explanations, and interpretability adopted 77 

in this work. As noted above, we adopt the National Academies of Sciences (NAS)’s definition of 78 

transparency [1] as “the understandability and predictability of the system” (Endsley, Bolte, and Jones, 79 

2003, p. 146 [2]), including the AI system’s “abilities to afford an operator’s comprehension about an 80 

intelligent agent’s intent, performance, future plans, and reasoning process” (Chen et al., 2014a, p. 2 81 

[3]). In other words, a model is transparent if a human can maintain an accurate mental model of how 82 

the AI/ML system works. One way to improve model transparency is to provide valid and 83 

comprehensible explanations to the human. Following the definition in [5] “an explanation is an 84 

“interface” between humans and a decision maker that is at the same time both an accurate proxy of 85 

the decision maker and comprehensible to humans”.  In order to create explanations, interpretability 86 

methods should be leveraged. We adopt Doshi-Velez and Kim’s definition of interpretability as “the 87 

ability to explain or to present in understandable terms to a human” and extend upon it to add “without 88 

any additional machine processing” [6]. In other words, an interpretable model is inherently self-89 

explanatory by an operator knowledgeable of the subject. We view interpretability as a continuum that 90 

examines the extent to which a process or model can be understood by a human without any assistance 91 

(if a user viewed the model alone could they make sense of it? This is discussed further in [37]). An 92 

example of an interpretable system is a rule-based system where heuristics used by the model are 93 

documented and made available to the human interpreter. This understanding of models is critical for 94 

alignment with DoD’s Ethical Principles of Traceable and Reliable Artificial Intelligence [7]. 95 

Interpretability may not be required in all systems, especially those that can complete their tasks 96 

without human intervention [6] (e.g., from toaster to GPS systems). However, creating interpretable 97 

systems is necessary in high stakes safety critical human-in-the-loop systems where the ability to 98 

understand the machine’s reasoning can identify misalignments in objectives and in turn improve a 99 

user’s ability to make appropriate trust-based decisions. 100 

The design of an interpretable system requires taking several factors into account. An important aspect 101 

to consider is the user who is interested in receiving the explanations and why he/she needs an 102 

explanation. Identifying the user group (e.g., decision maker, person affected by the decision, designer 103 

of the system) helps determining the level of details and type of information to include in the 104 

explanation. Another important aspect to consider are the questions that an interpretable system should 105 

answer. Different types of AI / ML systems can answer different types of questions (e.g., why, why 106 

not, what, what if, how, how confident, etc.,). For example, an ML system trained to solve a 107 

classification problem can answer why the model predicts a specific outcome, while a model trained 108 

to solve a decision-making task can explain what caused a specific event, showing causal relationships. 109 

Moreover, an explanation needs to be contextualized according to when the user needs it (e.g., during 110 

onboarding, regular interactions, system errors / malfunctioning, etc.,).  In our current work we focus 111 

on explainable systems for decision makers that need to have answers to why questions during regular 112 

interactions with the system.   113 

Interpretability methods can be classified along several dimensions [8]. An important distinction can 114 

be made based on the type of algorithm it can be applied to. Model-specific approaches are specifically 115 

designed with a model type in mind and therefore they generally require detailed information about the 116 

model; perhaps even require access to the individual parameter weights or other similar details. In 117 

contrast, model-agnostic approaches are designed to operate on any model. They only consider the 118 
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inputs to a model and corresponding outputs. Another important dimension along which to classify 119 

interpretability methods is the scale of interpretation. Global explanations give a high-level overview 120 

of how the model performs over its entire mathematical domain. Generally speaking, global 121 

explanations sacrifice detailed local precision in favor of global perspective. Local explanations instead 122 

are generated for specific examples. They are meant only to be applicable to single predictions of a 123 

model and not to offer insights for how the model might classify other examples. The type or modality 124 

of data that interpretability methods can be used with, is another crucial factor to consider. Modality 125 

refers to a particular way in which information is encoded to be presented to a perception/learning 126 

system. The following are some examples of different modalities of data: RGB image, infrared image, 127 

audio, video, text corpus, GPS trajectory, and time-series sensor data. Typically, models operate on a 128 

single modality of data, but they can also be designed to incorporate many modalities at the same time. 129 

Lastly, methods for interpretability can be classified based on whether interpretability is achieved by 130 

restricting the complexity of the model (intrinsic) by creating a “white-box” or by applying methods 131 

that analyze the model after training (post-hoc). 132 

In the ATR use case that will be discussed in Section 1.2, local, post-hoc explanation of specific 133 

instances is needed to help operators verify that the identified target is, in fact, the correct one. 134 

Simplistic versions of ATR utilize only a single modality of data (typically RGB images) but being 135 

able to utilize more modalities of information is critical to improving ATR accuracy. In such a system 136 

it is useful to be able to use a model-agnostic explanation algorithm since state-of-the-art algorithms 137 

will be in a constant state of change and could even be proprietary. A model-agnostic approach to 138 

explanations would ensure the explanation system could remain separate and facilitate implementation 139 

in such an architecture and help reduce overall maintenance. 140 

1.2 Use Case for Technology Development 141 

This research is driven by the Automatic Target Recognition use case that involves combining the 142 

capability of an ATR system with the expertise of human operators; the main goal is to improve the 143 

overall target recognition performance by using the strengths of both the human operator and AI/ML 144 

algorithms.  145 

A typical ATR use case can include a variety of sensors from different domains (space, air, and ground 146 

sensors) collecting multi-modal data. Sensor data, for example, can include RGB or Electro Optical 147 

imagery. Because of the shear amount of incoming data, sensor feeds are processed by AI algorithms 148 

to highlight potential targets. AI algorithms could potentially come from different vendors with varying 149 

degrees of accuracy and reliability. Human analysts (e.g., signal and /or geospatial analysts) then 150 

analyze the targeting data generated by the AI systems assessing whether the evidence supports or 151 

contradicts their hypothesis and make the target nominations. 152 

While performing this work, we consider a scenario in which the ATR system must process imagery 153 

data to automatically detect the presence of aircrafts. To this end, we leverage an opensource dataset, 154 

called Rareplanes, consisting of 253 Maxar WorldView-3 satellite scenes spanning 112 locations and 155 

2,142 km^2 with 14,700 hand-annotated aircraft data [9]. Figure 1 is an example of some images from 156 

the Rareplanes dataset with aircrafts identified by red boxes (i.e., bounding boxes). The dataset can be 157 

used to create models that predict the number of engines an aircraft has, the type of wings, the number 158 

of tail fins, or the role (civil/military transport, fighter, et cetera), among other things. A pre-trained 159 

ML model for detecting aircraft role is also included with the dataset [9]. The Rareplanes dataset and 160 

utilities are useful for investigating black box explanations. 161 
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 162 

Figure 1 -- Example images from the Rareplanes dataset.  The top 2 rows show examples of real satellite images, the 163 
bottom 2 rows are synthetic images [9]. 164 

2 Interpretability Methods to Explain Black Box Models 165 

There are many survey papers on the broad topic of explainable AI [10],[11], and the more specific 166 

topic of explanation of black box models [5],[12],[13],[14],[15]. This section provides an overview of 167 

selected interpretability methods available in the literature that are model-agnostic and post-hoc. Here 168 

“model-agnostic” indicates that we want to be able to apply these methods to any generic model that 169 

is encountered (i.e., black box model). And “post-hoc” indicates that we are seeking an explanation of 170 

a prediction that has been made by the black box model. Our current focus is on interpretability 171 

methods acting on imagery data as required by the use case under current consideration (Section 1.2). 172 

However, some of the techniques we describe in the following sections might be suitable for other data 173 

modalities. In Sections 2.1 and 2.2 we provide an overview of methods that yield to different types of 174 

explanations including among others saliency maps, that are the most widespread visual explanation 175 

methods, and concepts attribution.  176 

2.1 Methods based on Saliency Map 177 

Before describing some of the interpretability techniques that can generate post-hoc explanations for 178 

black box models based on imagery data, we provide a definition of saliency map. Given an image that 179 

we want to explain, a saliency map is an image in which a pixel's brightness represents how 180 

salient/important the pixel is [15]. LIME (Local Interpretable Model-agnostic Explanations) [16] and 181 

SHAP (Shapley Additive Explanation) [17] are model-agnostic approaches that provide explanations 182 

of a model prediction by ranking the importance of individual features to a specific prediction, 183 

although, as it will be explained below, they accomplish this in slightly different ways. For imagery 184 
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data, feature importance can be represented through a saliency map that highlights the contribution of 185 

each pixel at the prediction.  186 

LIME creates a local, linear, surrogate model around the example for which an explanation is being 187 

created. The linear model is created by feeding perturbed versions of the example to the black box 188 

model and observing the outputs. For images, the perturbation of the input is achieved by dividing the 189 

examples into super-pixel regions, which are groups of neighboring pixels with similar color and 190 

brightness. Then a collection of synthetic images is created by replacing random super-pixels of the 191 

original image with a uniform, possibly neutral, color. The coefficients of the linear model reflect the 192 

importance of each feature to the ultimate prediction.  193 

SHAP decomposes the prediction for a given example into the contribution from each individual 194 

feature. To estimate the contribution of each feature, perturbed versions of the example are fed to the 195 

black box model, and the corresponding outputs are observed. This decomposition is not based on 196 

linearizing, and so the parameter rankings are consistent with the original model.  197 

In this section we also give an overview of GRADCAM (Gradient-weighted Class Activation Map) 198 

that is a post-hoc local explainer for image data [18] that differently from LIME and SHAP is model 199 

specific. As it will be explained in Section 3.1 to address the challenge of aligning semantics of the 200 

machine generated explanation with human interpretation, we describe the creation of a surrogate 201 

white-box approach as a stand-in. Towards that end we built a simple prototype that uses the inputs 202 

and outputs of a black box model to train a second explainer model. This second model would serve 203 

as a surrogate for the black box model, but since it is not black box other algorithms can be used to 204 

produce explanations. GRADCAM, based on gradient information of a Convolutional Neural Network 205 

(CNN), assigns each neuron a saliency value for the decision of interest and backpropagates this 206 

information to the last convolutional layer of the CNN. 207 

Approaches like LIME and SHAP generate low-level explanations that in case of imagery inputs are 208 

expressed as the presence/absence of pixels that were most important to make a particular decision. 209 

However, for AI-aided decision-making systems, the human-in-the-loop that must evaluate the AI 210 

decision, usually a domain-expert without technical knowledge in AI, prefers high-level and concept-211 

based explanations that can easily understand and reason with. Such high-level and concept-based 212 

explanations are more familiar to humans and more aligned with the human’ internal representation of 213 

the decision-making problem. Section 2.2 will provide an overview of relevant methods that generate 214 

concept-based explanations. 215 

2.2 Methods based on Concept Attribution  216 

In this section we review some of the most relevant methods that generate explanations based on 217 

concept attribution. Here concept attribution refers to the ability of a method to quantify how much a 218 

concept has contributed to a particular class prediction. Concept-based explanations have the stated 219 

goal of using concepts that are “meaningful”, “coherent”, and have “importance” [20]. Here 220 

meaningful is defined as having intrinsic meaning to a human; coherent indicates that examples of 221 

concepts should be similar to each other and distinct from other concepts; importance signifies that the 222 

presence of a concept is necessary to true prediction from examples in a certain class. 223 

TCAV (Testing with Concept Activation Vector) [19] quantifies the degree to which hand-selected 224 

concepts are important to a classification result. Every concept is represented by a Concept Activation 225 

Vector (CAV) that is built by interpreting post-hoc a neural network’s internal state in terms of such 226 

hand-selected concepts. However, approaches like TCAV require a human to provide hand-labeled 227 
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examples of concepts. This might introduce human bias in the explanation process by failing to choose 228 

the right concepts. Moreover, methods like TCAV that can only leverage concepts that are already 229 

labeled and identified by humans, have limited power in discovering other relevant attributes [20]. 230 

ACE (Automated Concept-based Explanation) [20] is an evolution of TCAV that instead of human-231 

labeled concept data, can automatically discover concepts by breaking up images into segments (e.g., 232 

super-pixels) and by seeing which ones are clustered in the representation space. Then, like in TCAV, 233 

ACE quantifies how much these clusters contributed to the prediction of a class. 234 

Similarly to ACE, ConceptSHAP [21] targets having concepts consistently clustered to certain 235 

coherent spatial regions. For each discovered concept an importance score is defined from a set of 236 

Concept vectors (Cs) by utilizing Shapley values. 237 

StylEx [22] introduces a method for automatically discovering visual interpretable attributes and use 238 

them for counterfactual explanations. Counterfactual explanations provide alternative inputs, where a 239 

small set of attributes is altered, and the different classification outcomes are observed. For each 240 

discovered attribute, StylEx generates a counterfactual example showing how manipulating such 241 

attribute affects the classifier prediction (Had the input 𝑥 been ¬𝑥 then the classifier output would have 242 

been ¬𝑦 instead of 𝑦). To generate visual counterfactual explanations StylEx leverages a StyleGAN 243 

[23] trained to discover classifier-related attributes. 244 

The concept-based explanation literature presented in this section is lacking in some respects. On one 245 

hand, techniques like TCAV require resources to generate human hand-labeled examples of concepts 246 

and its discovery power is rather limited. On the other hand, techniques like ACE and StylEx can 247 

automatically discover relevant concepts but there is no guarantee that such concepts will be human 248 

interpretable. Research related to such methods have only found evidence that the discovered concepts 249 

tend to be meaningful to people.  250 

Relative to the literature described in Sections 2.1 and 2.2, there are still many research challenges that 251 

need to be addressed in pursuit of creating user-intuitive and effective explanations of black box 252 

machine learning models. Section 3 discusses key areas requiring further investigation for improving 253 

the quality of model-agnostic explanations. 254 

3 Toward User-Intuitive Explanations 255 

Treating the model as a black box while producing explanations is convenient because it allows the 256 

predictive and explanation systems to be entirely decoupled. However, most black box explanation 257 

methods are currently reliant on the inherent interpretability of the features that they use. That is, they 258 

assume that the semantics of the explanations are aligned with human interpretations. The ease of 259 

interpreting the explanation is directly related to the extent to which the features are interpretable. This 260 

may work generally, but in performance-critical applications a more intentional selection of 261 

semantically meaningful features is desirable, perhaps necessary. Such an approach would help ensure 262 

that produced explanations would be more meaningful to an operator. To address this challenge of 263 

aligning semantics of the machine generated explanation with human interpretation, we first describe 264 

the creation of a surrogate white-box approach as a stand-in (Section 3.1), and subsequently describe 265 

the concept of a semantic alignment method (Section 3.2) based on a neuro-symbolic approach. 266 

3.1 Creating a Surrogate White Box Model 267 
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Methods like LIME and SHAP reviewed in Section 2.1 are limited to ranking feature importance 268 

(although “features” can be quite a flexible concept). One way to address this is to use the inputs and 269 

outputs of the black box model to train a second explainer model. This second model would serve as a 270 

surrogate for the black box model, but since it is not black box other algorithms can be used to produce 271 

explanations. 272 

A simple prototype of this system was created to investigate the possibilities. The main goal was to 273 

create a white-box model based on outputs from the black box model. This was done in the following 274 

way: first, we used labeled training data from the Rareplanes dataset; specifically, images of aircraft 275 

along with their classification of how many engines they have (an integer 0 through 4). This set of 276 

images was then used to train a convolutional neural network (CNN) to use those cropped images and 277 

classify the number of engines. Finally, a white-box, model-aware, explanation method known as 278 

Grad-CAM [18] was used to produce saliency maps illustrating the regions of images that were most 279 

influential for making a classification. This process is depicted in Figure 2. 280 

 281 

Figure 2 -- Diagram illustrating the training process for the surrogate model as well as an example of how the model 282 
could be used after being deployed. 283 

The surrogate white box model used for this prototype was based on the VGG-16 model originally 284 

designed for the ImageNet dataset [24]. The architecture of the original VGG-16 model is shown in 285 

Figure 3; for our prototype specialized model a modified version of the VGG-16 model was created 286 

(Figure 4). In essence convolutional layers 1-4 were “frozen” (kept their weights from being trained 287 

on ImageNet). The 5th convolutional layer had its weights re-trained on the surrogate training data set 288 

discussed in Figure 2. The final fully connected layers had their sizes changed to better fit the specific 289 

classification problem. Note that this description highlights what we did for the prototype system that 290 

we built and is not meant to be generally prescriptive for future work; it simply demonstrates that it is 291 

possible to build a surrogate white box model as a means to utilize different non-black box explanation 292 

generation algorithms. 293 
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 294 

Figure 3 -- Diagram showing the layout of the VGG-16 architecture [24]. 295 

 296 

Figure 4 -- Surrogate white box model reuses the architecture from the original VGG-16 model. Layers ‘conv1’, ‘conv2’, 297 
‘conv3’, and ‘conv4’, were left unmodified (i.e., “frozen”). The ‘conv5’ layer kept the same structure, but the weights were 298 
modified after training on the labeled images discussed. Layers, ‘fc6’ and ‘fc7’ had their size changed; ‘fc8’ was removed, 299 
and the final ‘softmax’ layer was changed to accommodate the 0-4 engine classification output of the Rareplanes dataset. 300 

We then applied the Grad-CAM explanation method to produce saliency maps illustrating the regions 301 

of images that were most influential for making a classification. It is important to note that while we 302 

used Grad-CAM in this prototype, it is also possible to apply a host of other explanation methods. This 303 

serves as a proof of concept that it’s possible to train a surrogate white box model that enables the 304 

application of non black box explanation algorithms to explain the decisions of a black box model. 305 

Figure 5, and Figure 6 contain  example explanations of a surrogate white-box model trained to mimic 306 

the Rareplanes classifications of the number of engines as illustrated in Figure 2. Examples in Figure 307 

5 generally demonstrate promising behavior, those in Figure 6 highlight some of the existing 308 

limitations. Figure 7, and Figure 8 contain results from similar surrogate models created to explain the 309 

role of the aircraft, and to classify the number of tail fins respectively.  310 
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 311 

Figure 5 -- Selected Grad-CAM results from the surrogate white box model. The images uniformly indicate that the 312 
important areas for classifying the number of engines are the wings, tail, and engines of a plane. 313 
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 314 

Figure 6 -- Selected results from Grad-CAM analysis of the surrogate model. These images represent unexpected results 315 
sometimes given by the algorithm. In (a) we see that sometimes the gradient is not very informative. The images in (b) 316 
highlight that sometimes the algorithm focused on too many features, or seemingly irrelevant features. Sometimes the 317 
gradient was at the edge of an image with almost not overlap on the plane (c). Finally, at other times the model seems to 318 
focus primarily on a single wing (d). 319 

 320 
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 321 

Figure 7 – Example explanations for prediction of civil role. The Rareplanes dataset has very few military aircraft (and 322 
thus has poor performance) so we don’t display those results. 323 

 324 
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 325 

Figure 8 – Example explanations for a surrogate white-box classifier that predicts the number of tail fins. This surrogate 326 
model doesn’t seem to be working correctly. Notice that there are few images that have hot-spots where GradCAM shows 327 

a high gradient.  328 

3.2 Semantically Aligning the Explanation Model: A Neuro-symbolic Approach 329 

Current machine learning methods can provide high classification accuracy but low human 330 

interpretability because the intermediary “hidden” layers are abstract statistical transformations. 331 

Indeed, in ML-aided decision-making tasks, the human-in-the-loop, usually a domain-expert without 332 

technical ML knowledge, prefers high-level concept-based explanations instead of low-level 333 

explanations based on model features. In order to create meaningful explanations for a black box 334 

model, that can align with user’ internal representation of the problem, concept-based explanations can 335 

be leveraged. However, as discussed in Section 2.2 current methods based on concept attribution either 336 

require resources to generate hand-labeled examples of concepts or, in case such attributes can be 337 

automatically discovered, there is no guarantee that such concepts will be human interpretable.  Most 338 

recently neuro-symbolic AI has been proposed as tool for achieving more explainable, transparent, and 339 

trustworthy systems. The neuro-symbolic approach is mostly motivated by the complementary 340 

strengths of sub-symbolic computations (i.e., data-driven AI) and symbolic representations (i.e., 341 

knowledge-driven AI) that could lead to designing hybrid, more intelligent AI systems [25][24]. More 342 

specifically, the neuro-symbolic approach offers more explainable, transparent and trustworthy 343 

systems by complementing sub-symbolic approaches and their ability to deal with large amounts of 344 

data, to handle noise, and to capture the richness of perceptual data, with symbolic methods, allowing 345 

to encode knowledge in the form of language-like, structured propositions that can be endlessly 346 

recombined to allow high-level reasoning across tasks and domains [26].  347 
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Knowledge graphs have been proposed as tools to support the explanation of machine learning models 348 

[26],[27],[28]. In the context of image classification tasks, early work focused on manually creating an 349 

ontology capturing spatial concepts, colors, textures, and their relationships, and incorporating it in an 350 

object recognition classifier [29]. The domain knowledge captured in the ontology was leveraged to 351 

foster model transparency acting as a user-friendly intermediate between the classifier and the end-user 352 

[29]. Most recently, existing large-scale and open-source knowledge graphs, such as OpenCyc1, 353 

ConceptNet2 and DBpedia3, have been embedded in machine learning models to increase model 354 

transparency [30],[31],[32]. For example, background knowledge from ConceptNet was leveraged to 355 

explain objects in images with associated sentences in the form of captions [33]. A sentence-based 356 

image retrieval problem was leveraged to demonstrate that keywords in the captions that did not have 357 

a visual detector available, could be explained by leveraging the concepts and relations in the 358 

knowledge graph connected to such keywords.  359 

Most of the neuro-symbolic approaches proposed so far do require a manual step of extracting 360 

knowledge sources. Indeed, one open challenge in knowledge-based explainable systems is the ability 361 

to automatically extract knowledge from graphs. In current approaches the identification of the correct 362 

portion of information in the graph to generate explanations requires using a human expert.  363 

4 Metrics for Explanation Evaluation 364 

This section describes relevant metrics that can be leveraged for measuring the effectiveness of the 365 

explanations generated by the techniques described in the previous sections of this report. For our 366 

purposes, the effectiveness of explanations must be assessed by evaluating how helpful the explanation 367 

is to the human end user. Such assessment requires human-in-the-loop experiments based on a variety 368 

of metrics and fall under the category of Human-grounded Metrics [34]. 369 

The DARPA XAI program formulated a model of explanation inspired by psychological principles 370 

[35]. The model describes the process underlying the interaction between a human end user and an 371 

explainable AI system as an opportunity to introduce metrics for assessing the human + AI system 372 

performance. Following the DARPA XAI model, initial instructions on how to use an AI system enable 373 

a human end-user to form an early mental model of the task and the AI system. As the end-user starts 374 

using the AI system, explanations are generated to help the human refine his/her mental model. This 375 

in turn should take to better performance of the human + AI system, and to the establishment of 376 

appropriate trust and reliance in the AI system. To evaluate the performance of the human + AI system, 377 

five measurement categories were proposed in [35].  378 

The “Goodness Criteria” provides a means to assess the goodness of explanations, based on factors 379 

revolving around clarity and precision. A “goodness checklist” that can be used to either design 380 

“goodness” into the explanations, or to evaluate the a-priori goodness of the explanations that the 381 

system generates is described.  382 

The “Test of Satisfaction” enables the assessment of whether users are satisfied by the received 383 

explanations. This is an a-posteriori judgment of explanations that leverages terms such as 384 

understandability, feeling of satisfaction, sufficiency of detail, completeness, usefulness, accuracy, and 385 

trustworthiness, included into a Likert scale for review and evaluation.  386 

 
1 http://www.cyc .com /opencyc /a 
2 http://conceptnet .io/ 
3 https://www.dbpedia .org 
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The “Test of Understanding” gives information on how well users understand the AI systems (i.e., 387 

mental model). Methods to elicit human users’ mental models, resulting in data that can be easily 388 

scored, categorized, or analyzed are described. The intent of such methods is to provide some sort of 389 

structure or “scaffolding” that supports the user in explaining their reasoning process while solving a 390 

task. Examples of eliciting users’ mental models include a “Retrospection Task” for which probe 391 

questions are presented to participants about their reasoning just after the reasoning task has been 392 

performed (e.g., “Can you describe the major components or steps in the [software system, 393 

algorithm]?”). Another example of eliciting users’ mental models is a “Prediction Task” during which 394 

users are presented with test-cases, and they are asked to predict the results and then explain why they 395 

thought they would obtain those results (e.g., “What will the [software system, algorithm] do next?”, 396 

“How do I intervene?”). In a “Self-explanation Task” users express their own understanding by 397 

generating self-explanations. This helps learners to refine their knowledge. Last, a “Think-aloud 398 

Solving Task” participants think aloud while they solve a task. 399 

The “Test of Performance provides information on how the human-AI system perform with the intent 400 

to understand if there is an improvement in the user’s decision and task performance. According to this 401 

model, the user performance will improve as a result of receiving satisfying explanations, and it will 402 

be a function of the quality of his/her mental model. 403 

 404 

The last measurement proposed in the DARPA XAI program is about “Appropriate Trust and 405 

Reliance” providing information on whether the user's trust and reliance on the AI system are 406 

appropriate. Currently, the assessment of trust in such systems is predominantly done via human self-407 

reported behavior. However, rather than looking at scales for measuring interpersonal trust, the interest 408 

here was in scales designed to assess human trust in AI systems. Typical scales include questions to 409 

assess trust (e.g., “Do you trust the machine’s outputs?”) and reliance (e.g., “Would you follow the 410 

machine advice?”). Other available scales are highly specific to the context and application of interest 411 

(e.g., assistive robotic technology for elderly). A trust scale that incorporates items from other relevant 412 

scales and that might be used in the XAI context has been defined in [35]. According to the outcome 413 

of the XAI Program, trust assessment should be a repeat measure that requires multiple measures taken 414 

over time and integrated for overall evaluations of human user + system performance. 415 

4.1 Future Research Needs 416 

For the research described in Section 3, new effective evaluation metrics based on trustworthiness and 417 

acceptance will need to be defined. Future research directions in this area can incorporate technologies 418 

for continuous monitoring and automatic assessment of human trust in AI systems. Indeed, trust 419 

depends on time-varying factors that can influence the human decision-making process during 420 

interactions with AI systems [36]; the intended user should learn under what conditions the system 421 

fails and it succeeds in accomplishing the user’s goals [7]. Further, trust may also be built or calibrated 422 

“on the job” as operation time increases, facilitated by the incorporated continuous monitoring and 423 

automatic assessment technologies. Interesting directions to explore include leveraging 424 

psychophysiological measurements to collect data that, when used as input to classification algorithms, 425 

map continuous data to a categorical trust level. 426 

5 Conclusion 427 

This work has focused on methods for making AI/ML models, leveraged by Automatic Target 428 

Recognition systems for example, more interpretable to human operators by employing AI explainer 429 

generation technologies. In ATR it is necessary for the human operator to be able to verify that 430 
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identified targets meet the necessary criteria; user-intuitive and accurate explanations will help them 431 

to do so. Model-agnostic and post-hoc algorithms were identified as promising technologies. There are 432 

still several technical challenges that exist before this technology can be considered capable of meeting 433 

all desired characteristics. Approaches like LIME and SHAP generate low-level explanations that in 434 

case of imagery inputs are expressed as the presence/absence of pixels that were most important to 435 

make a particular decision. However, for AI-aided decision-making systems, the human-in-the-loop 436 

that must evaluate the AI decision, usually a domain-expert without technical knowledge in AI, prefers 437 

high-level and concept-based explanations that can easily understand and reason with. Such high-level 438 

and concept-based explanations are more familiar to humans and more aligned with the human’ internal 439 

representation of the decision-making problem. The concept-based literature has made significant 440 

progress in methods that can automatically discover relevant concepts and quantify how much such 441 

concepts contribute to a particular class prediction. However, there are still challenges that need to be 442 

addressed. On one hand, techniques like TCAV require resources to generate human hand-labeled 443 

examples of concepts and its discovery power is rather limited. Techniques like ACE and StylEx can 444 

automatically discover relevant concepts but there is no guarantee that such concepts will be human 445 

interpretable. Research related to such methods have only found evidence that the discovered concepts 446 

tend to be meaningful to people. To address this challenge of aligning semantics of the machine 447 

generated explanation with human interpretation, we describe the concept of a semantic alignment 448 

method and approaches that can be leveraged for that. Recently neuro-symbolic AI has been proposed 449 

as tool for achieving more explainable, transparent, and trustworthy systems. The neuro-symbolic 450 

approach is mostly motivated by the complementary strengths and weaknesses of sub-symbolic 451 

computations (i.e., data-driven AI) and symbolic representations (i.e., knowledge-driven AI) that could 452 

lead to designing hybrid, more intelligent AI systems. We also describe relevant metrics that can be 453 

leveraged for measuring the effectiveness of the explanations generated by the techniques described in 454 

this work. For our purposes, the effectiveness of explanations must be assessed by evaluating how 455 

helpful the explanation is to the human end user. Such assessment requires human-in-the-loop 456 

experiments based on a variety of metrics and fall under the category of Human-grounded Metrics. For 457 

the research described in this work, new effective evaluation metrics based on trustworthiness and 458 

acceptance will need to be defined. Future research directions in this area can incorporate technologies 459 

for continuous monitoring and automatic assessment of human trust in AI systems.  460 
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