

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

Air Monitoring Summary Report April 1 to April 30, 2022

Phase IV Non-Time Critical Removal Action, Solid Waste Disposal Area Westside, Installation Restoration Site 12

Former Naval Station Treasure Island

San Francisco, CA

June 2022

DCN: GLBN-0005-F5271-0023

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

Air Monitoring Summary Report April 1 to April 30, 2022

Phase IV Non-Time Critical Removal Action, Solid Waste Disposal Area Westside, Installation Restoration Site 12

Former Naval Station Treasure Island

San Francisco, CA

June 2022

DCN: GLBN-0005-F5271-0023

Prepared for:

Department of the Navy Naval Facilities Engineering Systems Command Southwest BRAC PMO West 33000 Nixie Way, Bldg. 50 San Diego, CA 92147

Prepared by:

Gilbane Federal 1655 Grant Street, Suite 1200 Concord, California 94520

Contract Number: N62473-17-D-0005; Task Order No. N62473-18-F5271

Table of Contents

1.0	Introduction	1-1
2.0	Monitoring Site Locations	2-1
2.1	Dust Monitoring	2-1
2.2	Air Monitoring	2-1
2.3	Radiological Air Monitoring	2-2
3.0	Sampling and Analytical Methods	3-1
3.1	Dust Samples	3-1
3.2	Air Samples	3-1
3.3	Radiological Air Samples	3-2
4.0	Dust Monitoring Results	4-1
5.0	Air Monitoring Results	5-1
6.0	References	6-1

List of Figures

Figure 1 Air and Dust Monitoring Locations IR Site 12 SWDA Westside

Figure 2 Wind Rose IR Site 12 SWDA Westside

List of Tables

Table 1 Dust Monitoring Project Action LevelsTable 2 Air Monitoring Project Screening Criteria

List of Attachments

Attachment 1 PDR Summary Table and Field Forms

Attachment 2 Summary of Air Monitoring and Air Sampling Results

Attachment 3 Radiological Air Monitoring Results

Acronyms and Abbreviations

AMP Air Monitoring Plan

BAAQMD Bay Area Air Quality Management District

BAP(Eq) benzo(a)pyrene equivalency

cfm cubic feet per minute

CFR Code of Federal Regulations

DAC derived air concentration

DCP Dust Control Plan

DTSC Department of Toxic Substances Control

Gilbane Gilbane Federal

HERO Human and Ecological Risk Office

IR Installation Restoration

mg/m³ milligram per cubic meter

Navy U.S. Department of the Navy

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PDR personal data-logging real-time aerosol monitor

PM10 particulate matter less than 10 microns in diameter

PUF polyurethane foam

Ra-226 radium-226

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TLV threshold limit value

TSP total suspended particulates

μg/m³ microgram per cubic meter

USEPA United States Environmental Protection Agency

Work Plan Final Work Plan, Phase IV Non-Time Critical Removal Action,

Solid Waste Disposal Area Westside, Installation Restoration Site 12,

Former Naval Station Treasure Island, San Francisco, California

1.0 Introduction

This Air Monitoring Report was prepared by Gilbane Federal (Gilbane) as requested by the United States Department of the Navy (Navy) under the Radiological Multiple Award Contract (RADMAC II) N62473-12-D-D005, Contract Task Order N6247317F5271. Gilbane is performing dust and air monitoring at Former Naval Station Treasure Island in accordance with the Final Dust Control Plan (DCP) and Air Monitoring Plan (AMP), included as appendices to *Phase IV Non-Time Critical Removal Action Work Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (Work Plan; Gilbane, 2021).

The DCP describes best management practices and procedures to be implemented to minimize dust generation during work activities. Dust monitoring is conducted to ensure that these procedures are effective. Dust monitoring is also conducted to verify that the working environment meets occupational health and safety standards and that workers are safe. The AMP outlines the requirements for prevention of exposure for construction workers to dust and potential airborne chemicals of concern from the work area. The AMP also establishes the conservative project action levels for dust at the work area boundary to protect residents.

This summary report describes the following:

- Dust and air monitoring sampling locations Section 2.0,
- Dust and air monitoring sample collection and analytical methods **Section 3.0**,
- Dust and air monitoring data **Section 4.0**, and,
- Dust and air monitoring results Section 5.0.

This summary report presents the dust and air monitoring test results at Installation Restoration (IR) Site 12 from April 1st through April 30th, 2022 and compares the results with the established action levels included in the Work Plan (Gilbane, 2021). During this reporting period, the Site 12 air monitoring stations (AMSW1 and AMSW2) operated on April 1st, 4th, 5th, 6th, 7th, 12th, 13th, 14th, 15th, 18th, 19th, 21st, 25th, 26th, 27th, 28th, and 29th for earth-moving tasks involving potentially contaminated soil.

During the reporting period, personal data-logging real-time aerosol monitoring (PDR) dust data was collected. Air samples were collected and analyzed for lead, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dioxin [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)], total suspended particulates (TSP), and particulate matter less than 10 microns in diameter (PM10). In addition, air samples were analyzed for radiological gross alpha and beta levels.

Air Monitoring Summary Report #14	
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 1:	2
Former Naval Station Treasure Island, San Francisco, California	

1.0 Introduction

2.0 Monitoring Site Locations

2.1 Dust Monitoring

During earthmoving activities, several PDR stations are set up to monitor real-time airborne dust concentrations. The purpose of the PDR stations is to act as a first line of defense in protecting workers' health, and ultimately the public's health, during field activities. PDR stations are situated immediately adjacent to the current work area locations most likely to generate the greatest volume of airborne dust and are adjusted as necessary due to changes in wind direction and/or work location. Real-time dust monitoring ensures dust levels remain below action levels during fieldwork operations.

The general locations for dust monitors in IR Site 12 are shown on **Figure 1**. Specific locations of each PDR are described in the individual PDR daily data files. Field forms from each location are presented in **Attachment 1** of this report. During earth moving activities at IR Site 12 (i.e., transportation of excavated soil to the radiological screening yard, excavation, and backfilling), one PDR serves as the upwind (background) location and two PDRs are placed in downwind perimeter locations to represent dust generation from onsite activities. The dust monitors are moved to encompass field work whenever the contractor changes operations and are then given a new naming convention. During the April reporting period two different sets of monitoring locations were used (DMW25, DMW26, DMW27) and (DMW28, DMW29, DMW30). Specifically, the upwind PDR stations were DMW25 and DMW28 and the downwind monitors DMW26, DMW27, DMW29, and DMW30. The wind direction for this reporting period was predominately northern compared to previous periods and the dust monitoring locations were adjusted accordingly for this shift.

2.2 Air Monitoring

Air monitoring samples collected using high volume samplers are collected to identify and quantify airborne contaminants and to confirm the results recorded during dust (PDR) monitoring. Air monitoring stations are mobilized to collect air monitoring samples upwind and downwind of work areas. General locations of the IR Site 12 air monitoring stations are shown on **Figure 1**. The locations of the air monitoring stations are determined based on the prevailing wind direction (typically from the southwest) and are modified as needed.

Weather forecasts including wind direction are checked daily with a weather station located at Building 572. The weather station records temperature, pressure, wind speed and direction, etc., every 30 minutes, 24 hours per day. Wind speed is also monitored near the work site during soil excavation and handling to ensure that work is stopped if sustained winds over 25 miles per hour are encountered. No work stoppages due to sustained wind speed exceedances were required during this reporting period. Wind speed and direction data gathered during work hours for this reporting period, presented on a wind rose diagram in **Figure 2**, generally depict the

wind blowing from the South direction at 5-12 miles/hour with gusts up to 15 miles/hour. Detailed weather data is not reported in this document but can be provided upon request.

High volume air monitoring stations remain stationary while sampling is being conducted; however, locations may be adjusted when the wind direction changes and when overall excavation work areas change from one site to another. Each upwind and downwind high-volume monitoring station includes separate monitoring systems for the following:

- TSP collected daily
- PM10 collected daily
- Lead collected daily
- PAHs, PCBs, and dioxin collected on alternating days

2.3 Radiological Air Monitoring

Radiological air samplers are positioned adjacent to excavation work activities for radiologically impacted soil at one upwind and one downwind location during earthmoving activities associated with radiologically impacted soil. The radiological air samplers may be co-located with PDRs or the high-volume samplers.

3.0 Sampling and Analytical Methods

Dust and air samples are collected during earthmoving activities. However, during precipitation events, the dust and air monitoring units may not be operable. An attempt will be made to collect samples and readings regardless of the weather. If dust or air monitors are found to be malfunctioning or nonfunctional, earthmoving activities will stop until monitors can be repaired or replaced. The Site Health and Safety Officer is responsible for monitoring the air and dust monitoring sampling equipment. In rare cases, due to ancillary equipment malfunction such as generator failure during the night, a sample may be collected that represents a period of less than 24 hours. If this situation occurs, a note is added to the sample result data tables indicating why the full sampling period was not achieved. All AMS samplers run approximately 24 hours before the sample is collected however per FCR04 the final set of samples for the week will be collected on the last workday of the week once intrusive activities have finished for the day. These samples will have a runtime of 7-10 hours to cover the full work shift which meets the minimum 4-hour runtime required for lab analysis. Two sets of samples will be sent to the lab for examination on that final workday of the week. The results will be adjusted for the reduced runtime and fully comparable against project screening criteria.

3.1 Dust Samples

The PDR is a high sensitivity photometric monitor with a light-scattering sensing configuration that has been optimized for the measurement of the respirable fraction of airborne dust, smoke, fumes, and mists. PDRs are used to evaluate real-time monitoring of airborne dust concentrations, to determine if there is a need for additional dust control or personal protection.

3.2 Air Samples

Air samples were sampled in accordance with the United States Environmental Protection Agency (USEPA) reference sampling method for PM10, described in 40 Code of Federal Regulations (CFR) 50, Subpart J. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of PM10 collected.

TSP samples were collected with a high-volume (39 to 60 cubic feet per minute [cfm]) air sampler in accordance with USEPA's reference sampling method for TSP, described in Title 40 CFR, Part 50, Subpart B. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of TSP collected. Once the filter weight was determined, the sample was analyzed for lead in accordance with USEPA Method 6020 using inductively coupled mass spectrometry.

Air samples for PCBs, PAHs, and dioxin are collected and analyzed in accordance

with USEPA Methods TO-4A, TO-13, TO-9A, respectively, using TISCH polyurethane (PUF) samplers. The filter media collected from the air samplers is submitted to the analytical laboratory for appropriate analysis.

PCB, PAH, and dioxin samples are collected on alternating days at the downwind and upwind stations during earthmoving activities.

3.3 Radiological Air Samples

Radiological air monitoring is also conducted upwind and downwind on days of earthmoving activities. Radiological samples are collected with a LV-1 low volume air sampler. Air filters are counted on site following a decay period and are compared with public air concentration limits published in 10 CFR Part 20. Radiological air sampling methods and procedures are detailed in Gilbane Radiological Procedure PR-RP-150 Radiological Survey and Sampling (Gilbane, 2016).

The radiological air sample is counted on a Low Background Protean WPC-9950 and analyzed for gross alpha and beta activity. The calculated airborne concentration in microcuries is then compared to the effluent concentration (often but incorrectly refer to as a derived air concentration [DAC] which applies only to occupational exposures) limit specified in Table 2 of Appendix B to 10 CFR 20. The effluent concentration is the concentration of a given radionuclide in air which, if inhaled continuously over the course of a year, results in an exposure equal to the annual regulatory limit specified in 10 CFR 20.1302. The threshold for radiological effluent air monitoring samples is 10 percent of the effluent concentration, which ensures work practices are evaluated and modified as necessary to ensure the limit is not reached.

4.0 Dust Monitoring Results

If dust (PDR) monitoring equipment alarms, the source of exceedance will be determined by evaluating both upwind and downwind dust (PDR) sample locations. If the difference between upwind and downwind concentrations is greater than the action level for a sustained period of 15 minutes, then earthmoving activities will be halted until dust control measures are implemented. These may include, but are not limited to, adding water to the work area during earth moving tasks, evaluation of alternate work procedures or equipment, and/or cessation of the activity that is creating the dust until the PDR readings are below the screening criteria.

Dust monitoring action levels that are implemented on a real-time basis are listed in **Table 1**. PDR data are collected and reviewed each day by the Site Health and Safety Manager. PDR data are included in **Attachment 1**.

Dust monitoring results from April 2022 did not exceed project-specific screening criteria.

Table 1: Dust Monitoring Project Action Levels

Method	Monitoring Location	Monitoring Frequency ^a	Action Level b	Action
PDR	Near Workers' Breathing Zones (typically on equipment)	Periodically ^c	<2.0 mg/m ³ >2.0 mg/m ³	<2.0 mg/m ³ continue work in Level D. Increase dust control (i.e., apply water or other suppression method) and/or upgrade to Level C if concentrations >2.0 mg/m ³ .
	Job Site Perimeter	Continuously	<1.0 mg/m ³ >1.0 mg/m ³	Continue work. STOP work, apply water or other dust suppression methods until levels decrease below 1.0 mg/m ³

Notes:

Only the Health and Safety Manager is authorized to downgrade levels of personal protective equipment.

- Frequency of air monitoring may be adjusted by the project Certified Industrial Hygienist after sufficient characterization of site contaminants has been completed, tasks have been modified, or site controls have proven effective.
- b Five readings exceeding the action level in any 15-minute period or a sustained reading exceeding the action level for five minutes will trigger a response. Action levels represent airborne particulate concentrations in excess of background particulate concentrations.
- c PDR will be monitored a minimum of three times a day.
- < less than
- > greater than

mg/m³ milligrams per cubic meter

PDR personal data-logging real-time aerosol monitor

Table 2: Air Monitoring Project Screening Criteria

Chemicals of Concern	Project Screening Criteria (Threshold Limit Value) µg/m ³	
Lead	1,575	TI Site 12 Subchronic Dust Action Level
TSP	50	TI Site 12 Dust Action Level
PM10	50	BAAQMD Ambient Air Quality Standard
BAP(Eq)	55,330	TI Site 12 Chronic Dust Action Level
PCBsa	NA	TI Site 12 Dust Action Level
Dioxin ^a	1E+07	TI Site 12 Chronic Dust Action Level
Radiological (Ra-226)	10% of DAC ^c	Occupational and public air concentration limits for Ra-226 published in 10 Code of Federal Regulations Part 20.

Notes:

- The dust action level was increased by a factor of 10 to account for the short-term duration of the project relative to the lifetime assumptions incorporated into the toxicity criteria and exposure assumption.
- b BAP(Eq) action level will be ~55 mg/m³ for all excavations
- c Public air concentration limits are commonly referred to as DAC, but are actually Effluent Concentrations from Table 2 for 10 CFR Part 20.

BAAQMD Bay Area Air Quality Management District

BAP(Eq) benzo(a)pyrene equivalency
DAC derived air concentration
mg/m³ milligrams per cubic meter
PCBs polychlorinated biphenyls

PM10 particulate matter smaller than 10 microns in diameter

Ra-226 radium-226

TSP total suspended particulates µg/m³ micrograms per cubic meter

Air Monitoring Summary Report #14
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 12
Former Naval Station Treasure Island, San Francisco, California

4.0 Dust and Air Monitoring Methods

5.0 Air Monitoring Results

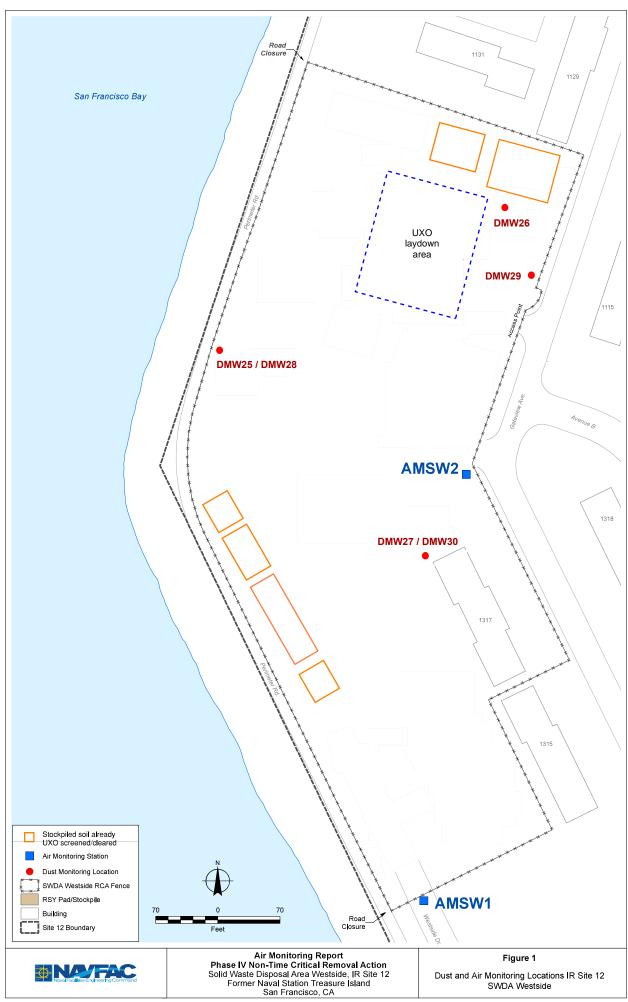
The Human and Ecological Risk Office (HERO) at the request of the California Department of Toxic Substances Control (DTSC) developed dust action levels for community air monitoring for IR Site 12. Sub-chronic and chronic dust action levels as PM10 were calculated for lead, dioxin, benzo(a)pyrene (BAP) equivalency (Eq) by PAHs analysis, and PCBs. As presented in the document *Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (HERO, 2018), the action levels were calculated using the maximum chemicals of concern soil concentrations at IR Site 12.

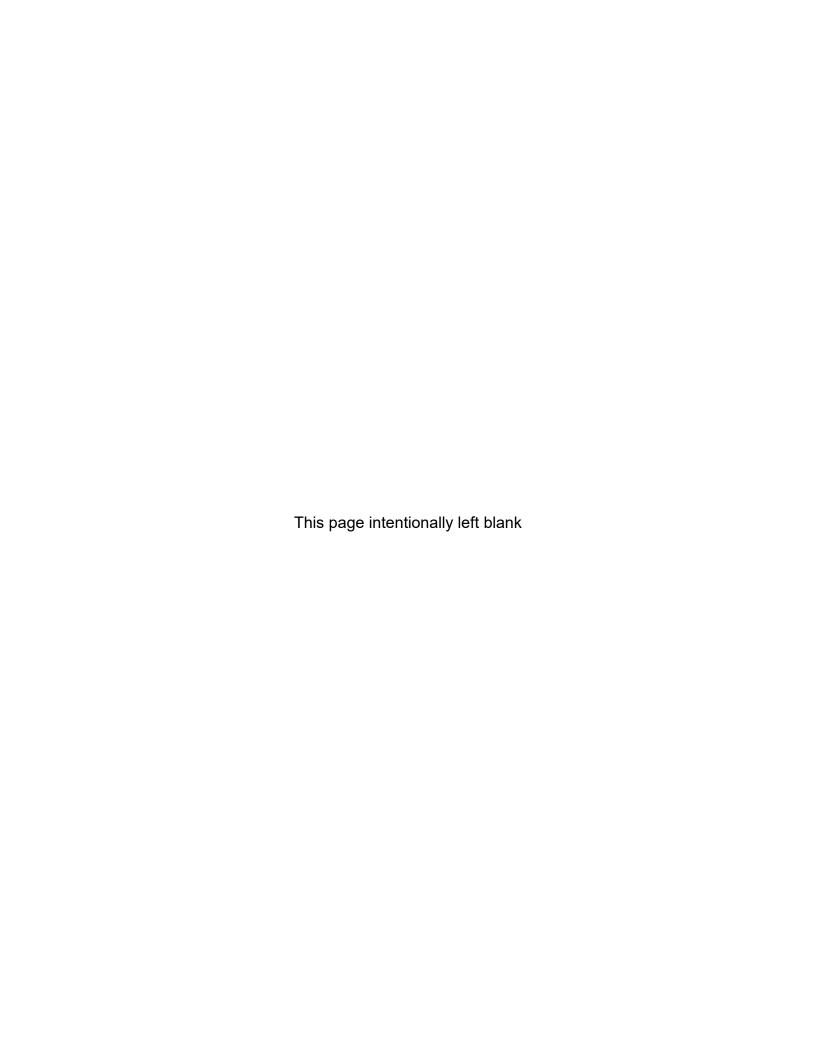
Based on HERO's recommendations, a PM10 dust action level of 50 microgram per cubic meter (ug/m³) will be implemented for all excavation areas at IR Site 12. TSP is expected to be further controlled based on the limit employed for PM10, in accordance with guidance provided by the San Francisco Bay Area Air Quality Management District (BAAQMD), which estimates that PM10 makes up approximately 55 percent of TSP. If it is apparent that project activities are the cause of exceedances, additional control measures will be considered and implemented.

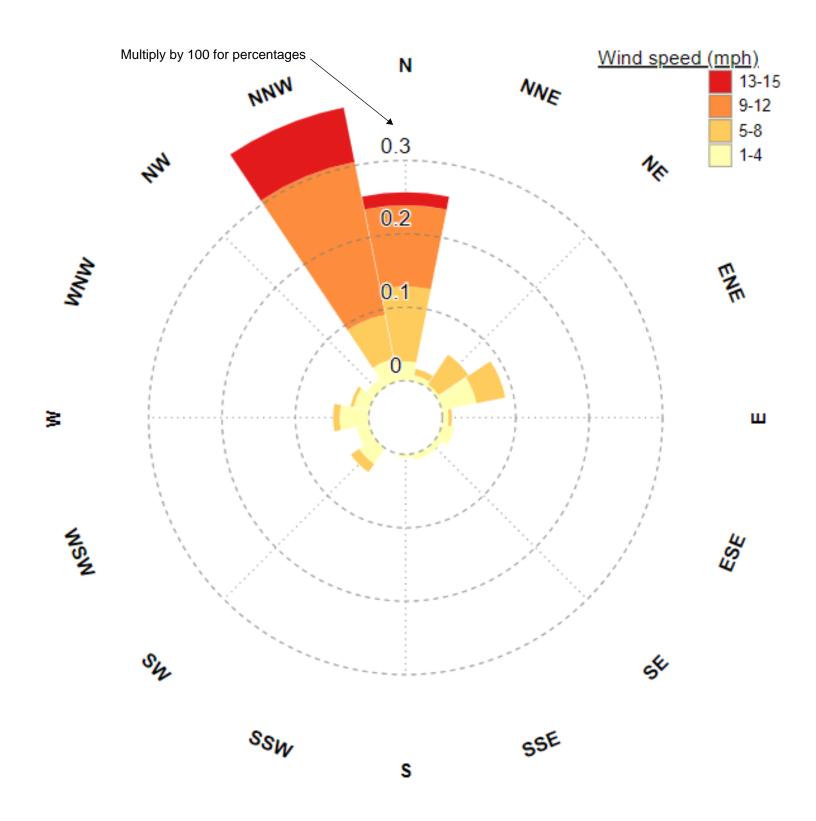
Analytical results from air monitoring samples are compared with the project screening criteria (threshold limit values [TLV]) listed in **Table 2**. Air monitoring results are included in **Attachment 2**. Weather information (including ambient pressure and temperature data) and high-volume air monitoring sample results are presented in **Attachment 2**. Weather information was collected from the weather station at Building 572, Avenue M, Treasure Island, San Francisco, California. Radiological air monitoring results are presented in **Attachment 3**.

PM10 analytical results from April 2022 did not exceed the project-specific screening criteria presented in **Table 2-2**.

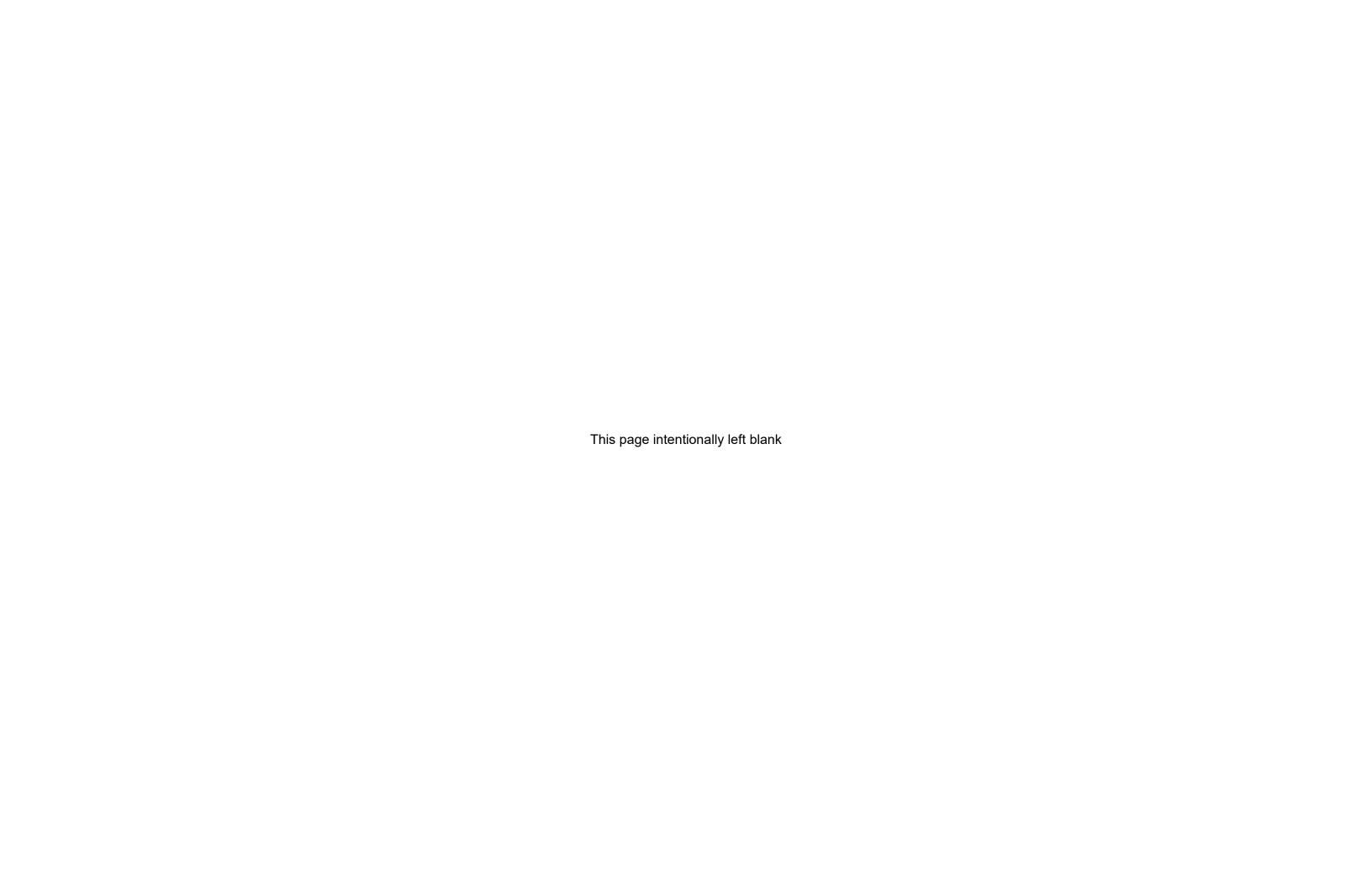
TSP analytical results from April 2022 are presented in **Table 2-3**. The following details any exceedances that occurred during the April reporting period.


- A one-day exceedance of the TSP screening criteria was observed on April 1st at 64.86 ug/m³. The associated PM10 reading (34 ug/m³) and downwind PDR monitors (0.003 mg/m³ and 0.006 mg/m³) were below project limits. The field crew was conducting earth moving operations and accepting clean import fill onsite this day. The morning fog and low hanging marine layer noted in the PDR log presented in **Attachment 1** was not considered a contributing factor to the exceedance. The appropriate parties were contacted when the contractor received the results and the field crew continues to maintain diligent dust control measures.


Metals (lead), PAHs, total PCBs, and dioxin analytical results from April 2022, did not exceed the project-specific screening criteria presented in **Table 2-4** through **Table 2-7**.


6.0 References

- Gilbane, 2016. Radiological Procedure PR-RP-150 Radiological Survey and Sampling. January.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island. San Francisco, California. March.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Air Monitoring Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. March.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Dust Control Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. March.
- HERO, 2018. Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.


FIGURES

ATTACHMENT 1 PDR SUMMARY TABLE AND FIELD FORMS (Provided on CD)

Table 1-1: Personal Data-Logging Real-Time (PDR) Aerosol Montoring Results

DustTrak Unit	IR Site	Date	Maximum ¹ (mg/m³)	Average ¹ (mg/m³)	Delta Between Upwind and Downwind Stations (mg/m³)	Below action level? (0.050 mg/m³) (Yes/No)
DMW25	Site 12		0.039	0.023	NA	Yes
DMW26	Site 12	3/31/2022	0.043	0.026	0.003	Yes
DMW27	Site 12		0.049	0.027	0.004	Yes
DMW25	Site 12		0.048	0.030	NA	Yes
DMW26	Site 12	4/1/2022	0.050	0.033	0.003	Yes
DMW27	Site 12		0.048	0.036	0.006	Yes
DMW25	Site 12		0.029	0.018	NA	Yes
DMW26	Site 12	4/4/2022	0.031	0.020	0.002	Yes
DMW27	Site 12		0.044	0.026	0.008	Yes
DMW25	Site 12		0.037	0.016	NA	Yes
DMW26	Site 12	4/5/2022	0.049	0.018	0.002	Yes
DMW27	Site 12		0.050	0.019	0.003	Yes
DMW28	Site 12		0.031	0.017	NA	Yes
DMW29	Site 12	4/6/2022	0.038	0.026	0.009	Yes
DMW30	Site 12		0.028	0.018	0.001	Yes
DMW28	Site 12		0.028	0.016	NA	Yes
DMW29	Site 12	4/7/2022	0.048	0.025	0.009	Yes
DMW30	Site 12		0.037	0.016	0.000	Yes
DMW28	Site 12		0.018	0.010	NA	Yes
DMW29	Site 12	4/12/2022	0.044	0.017	0.007	Yes
DMW30	Site 12		0.023	0.012	0.002	Yes
DMW28	Site 12		0.011	0.007	NA	Yes
DMW29	Site 12	4/13/2022	0.038	0.016	0.009	Yes
DMW30	Site 12		0.010	0.007	0.000	Yes
DMW28	Site 12		0.010	0.006	NA	Yes
DMW29	Site 12	4/15/2022	0.044	0.020	0.014	Yes
DMW30	Site 12		0.009	0.006	0.000	Yes
DMW28	Site 12		0.010	0.008	NA	Yes
DMW29	Site 12	4/18/2022	0.039	0.012	0.004	Yes
DMW30	Site 12		0.012	0.009	0.001	Yes
DMW28	Site 12		0.012	0.005	NA	Yes
DMW29	Site 12	4/19/2022	0.010	0.005	0.000	Yes
DMW30	Site 12		0.014	0.005	0.000	Yes
DMW28	Site 12		0.015	0.010	NA	Yes
DMW29	Site 12	4/20/2022	0.029	0.012	0.002	Yes
DMW30	Site 12		0.029	0.008	-0.002	Yes
DMW28	Site 12		0.034	0.022	NA	Yes
DMW29	Site 12	4/25/2022	0.050	0.026	0.004	Yes
DMW30	Site 12		0.031	0.025	0.003	Yes
DMW28	Site 12		0.038	0.023	NA	Yes
DMW29	Site 12	4/26/2022	0.048	0.028	0.005	Yes
DMW30	Site 12		0.043	0.029	0.006	Yes
DMW28	Site 12		0.027	0.014	NA	Yes
DMW29	Site 12	4/27/2022	0.041	0.020	0.006	Yes
DMW30	Site 12		0.025	0.017	0.003	Yes
DMW28	Site 12		0.019	0.014	NA	Yes
DMW29	Site 12	4/28/2022	0.044	0.027	0.013	Yes
DMW30	Site 12		0.025	0.018	0.004	Yes
DMW28	Site 12		0.020	0.012	NA	Yes
DMW29	Site 12	4/29/2022	0.046	0.021	0.009	Yes
DMW30	Site 12		0.022	0.016	0.004	Yes

Notes:

bold = results above screening criteria

mg/m³ = milligrams per cubic meter

NA = not applicable

¹ Maximum and average dust readings from daily PDR data downloads. Data are available upon request.

AIR MONITORING LOG

Client Name NAVFAC			Date	3/31	122	
Project No <u>. J310000800 SW</u> E	OA Westside	, Site 12,	Treasure Is	land Page_	/of(_
Logged by TOR			_			
Weather Sunny	60-	50°	<i>F</i>			
In administration of Transaction Decade Transaction II						

	nt Type: <u>Dust</u> on Standards L	Trak II Jsed <u>Factory Calibrated</u>	Zero	ed i	n office
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks
0740	Dmw 25	Upwind Screen Lot 47 Down wind Screen Down Wind	0.027	1280	UXOtailgate.
	Dmw26	Down wha Screen	0.033	2341	
4	DmW27	Down who	0.025	0534	
1130	DMW25		0.019		UXO clear Lot 47 ¢ stak- Pile REA for T& D.
	Dmw26		0.021		Pile REA for
V	Dmw27		0.034		
1500	Dmw25		0.027		,•
	Dmw26		0.028		
V	Dmw27		0.029		
				M	
		-		172	

AIR MONITORING LOG

Client Na	me NAVFAC			[Date	1/1/22	
Project N	lo <u>. J3100008</u>	00 SWI	DA Westside, Sit	e 12, Treasur	e Island Pa	age of	
Logged b	by L	04an	Solivi. ing				
Weather	490	R-64	F. partly	Cloudy.	am haze		_
	nt Type: _Dus			V8			<u> </u>
Calibratio		Jsed_F	actory Calibrated	<u> </u>			= 1
	Dust			Instrument			
Time	Monitoring Station		Location	Reading	Unit	Activities,	
	Number			(mg/m3)	Number	Remarks	
ECI IV	DMW25	.UU	UXO Screening	10 0116	1241	areadings elevate	deven the
0800	/	10:1	OXO Screening	0.046	1200	west has not	egun yex
	DMW26	1.000	fill Paul Ferences	10.047	2341	dustrading	ing eleverted
-	11.1000	eDW	- to the total e	0.043	0534	aveadings elevated with hus not have and with here and here of the general high bead.	95 they're
1315	DMW25		·	0.034		high bead.	195. A The
	DMW26			0.036			
1	DMW27			0.030			
1715	DMW25			0.037		reading 5 5 % 11 5	-day
	DMW26			0.040		weading 5 5xill 5	archite 1
	DMW27			0.034			10,95
7	DIMOCI			0.077			
		_	152				
			4/				
				20			
				50			

AIR MONITORING LOG

Client Na	ame <u>NAVFAC</u>	·		Date L	1/4/22		
Project N	lo <u>. J3100008</u>	00 SWDA Westside, Sit	te 12, Treasur	e Island Pa	age of		
Logged b	oy <i>lega</i>	il schwing		- 10101110	.900,		
Weather	4801	F-58°F. Martly	Closely.				
	nt Type: <u>Dus</u>					-	
Calibration	on Standards I	Used_Factory Calibrated	d				
	Dust		Instrument				
Time	Monitoring	Location	Reading	Unit	Activities,		
	Station Number		(mg/m3)	Number	Remarks		
0000		auw uso sergening of		(00			
0800	DMW25	IMPOCT Hill 1	10.000	1280	mob setup		
	DMW26	DW Rail Screening aven	0.018	2341			
-	DMW27	'DW L	0.017	0534			
1300	DMW 25		0.018		· Yearn in lo	1	
-	DMW26		0.018	0018	15 1400 247	ansing.	
-	DMWZT		0.024	,			
17/0	DMW25		0.023		otean wraffing	of far	teday
	DWM56		0.025				
	DMWZT		0.022				
						1	
						1	
		1					
			, ,				
			7/1	/			
			4	25			

AIR MONITORING LOG Instrument Type: _Dust Trak II Calibration Standards Used Factory Calibrated Dust Instrument Monitoring Unit Activities. Time Location Reading Station Number Remarks (mg/m3)Number · mob /setup DW lad screening 0.016 1280 0800 DMW25 0.016 DMW26 DMWZ7 DW 0.015 2341 ouxo finished . No frag distage 1345 DMW25 0.026 0.025 DMW26 DMW27 0.027 · Lilit wroffing of for day. 1520 0.026 DMW25 * Collect readings. 0.025 DMW26 0.029 DAW27

AIR MOI	VITORING L	<u>og</u>		1	.1/1
Client Na	me <u>NAVFAC</u>		D	ate	116/22
Project N	o <u>. J31000080</u>	0 SWDA Westside, Site	e 12, Treasure	Island Pag	geof
Logged b	y togai	1 Echwing			
Weather_	52°F-70	s°F. Sunny,			
Instrumer	nt Type: <u>Dust</u>	Trak II			
Calibratio	n Standards U	Ised Factory Calibrated	<u> </u>		
Time	Dust Monitoring Station	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks

Calibratio	n Standards U	Jsed <u>Factory Calibrated</u>				
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
0400	DMW28	OUN Juport fill Pud govering aven	0.025	1280	·mob (setup	
	DMW29	DW work.	0.024	0534		
F	DMW30	-DW	0.020	2341		8
1330	DMW28		0.027		· Midday readi	My.
	DMW29		0.017		- Lean working.	
*	DMW30		0.022			
1530	DMW28		0.012		· Site security.	
	DMW29		0.016		· Site security.	
+	DMW30		0.014			
					1	
·		1 -				
		45	/			
			5///			
			6/-			
			1			
				- 2: 1		

UIL	ogine .					
	NITORING L					
	ame <u>NAVFAC</u>			Date		
Project N	lo <u>. J3100008</u>	00 SWDA Westside, Site	e 12, Treasur	<u>e Island</u> Pa	igeof	
Logged I	54 6	80°F. Ernny.				
Instrume	nt Type: _Dus	t Trak II				
		Used Factory Calibrated	d			-
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
0800	DMW28	Part Five ening aver	0.020	1280	· mobilize	
	DMW 29	DW al	0.020	0534	userof.	
	DMW30	·DW	0.019	2341		
1200	DMW28		0.015		smidday.	
	DMWZ9		0.016			
187	DMW30		0.019			, -
1545	DMW28		0.017		e of wraffing of for	today
	DMW29		0.018			
	DMW30		0.020			
		15-				
		× (4/.			
			1/2			
				7		

	CIL	vaine										
		NITORING L				1//12/						
	AIR MONITORING LOG Client Name NAVFAC Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of N											
	Logged by Logari Schwing											
	Weather 42°F-53°F. Audy.											
		Instrument Type:Dust Trak II Calibration Standards UsedFactory Calibrated										
	Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks						
	0500	DMW245	Lad Screening	0.016	1280	osite setup						
		DAWZ9	DW avenwork,	0.019	2341							
	7	DMW30	DW }	0.014	0534	·mob	1					
	1355	DHW28		0.009		· Team was Ling	while reading					
		Dumsd		0.010								
	•	DMW30		0.010								
	1525	DMW28		0.009		op finished to	r today,					
		OMW29		0.016]					
1		DMU30		0.009]					
			153									
				/ /								
				12								
				No.								

U	0	-	n	e
The same of the same of			and the	-

AIR MONITORING LOG Client Name NAVFAC Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of 1 Logged by Logan Kilowing 42°F-55°F. MOSHY cloudy. Weather_ Instrument Type: Dust Trak II Calibration Standards Used Factory Calibrated Dust Instrument Monitoring Unit Activities. Time Location Reading Station Number Remarks (mg/m3) Number DW Trea Op · Mobilize. 0800 0.010 0.009 DW 0.010 0534 300 0.007 odustlevets wither on Lighting 0.007 0.006 SMW30 of finished for day. 0.008 MW78 · Coilect metels 0.013 DMW291 0.008 DMW30

U	10	1 1	-
		-	

AIR MO	NITORING L	_OG			11 - 1	
	ame <u>NAVFAC</u>			Date	4/15/22	
Project N	lo <u>. J3100008</u>	00 SWDA Westside,	Site 12, Treasu	rololond De	agel_ofl_	
Logged b	ру	30 Schwing	_	. 1		
Weather	9,	ogen Schwing 2°F-55°F/SU	uny. PM U	lind		_
	nt Type: _Dus	t Frak II Used <u>Factory Calibra</u>	to al			 1
Cambratic	Dust	Used_ <u>Factory Calibra</u>	tea		T	manufacture of the second of t
Time	Monitoring	Location	Instrument	Unit	Activities,	
111110	Station	Location	Reading (mg/m3)	Number	Remarks	
1000	Number	OU Duper +fil	1		1000/150/2	
0800	DMW28	fact screening	4 0:00	1280	· Mobilize / Se	Jup
	DMW29	DW alter FEFRE	0.009	2341		
1	DMW30	DW +	0.00	0534		1.
1210	DMW28		0.007		· Mid-day rea	dings
	DMW29		0.011		hilit on 1	Jich
	DMU130		0.005			
1515	DMU28		0.008		of walking	of for soday
	DMW29		0.010		"Site seluris	Z.
	DMW30		0.006			7
	V) 14000 70		0.000			-
						_
						1
		125				-
			1//			_
			1/5/			
			153			
			1			
						1
						1
						1
						1
						-
						J

AIR MONITORING LOG

		,
Client Name NAVFAC	Date 4/15	/ 72
Project No. J310000800 SWDA Westside, Site 12, Treas	Date	90
Logged by TR	re Island Page /	_of
Weather_Sunny 49- 1025		
Weather Johny 79- 62		

Instrument Type: Dust Trak II

instrument Type: _Dust Trak II		
Calibration Standards Used Factory Calibrated	7	
Factory Calibrated	· leroed in	ald ic a

Calibrati	on Standards I	Used_Factory Calibrate	d, Zero	ed in	oldice
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)	1	Activities, Remarks
0755			0.014	1280	setup bring
	Dmw29	Import fill	0.012	2341	1111017
4	DMW30	Import fill down wind in part fill	0.013	0534	
0910	Dmw 28		0.016		moved around
	DMW29		0.019		
V	DMW30		0.013		
1200	PMW28		0.015	7.5	
	Pmw29		0.019		
11150	Pmw30		0.018		
1400	Dmw28		0.017		nove concrete debris
	DmW29		0,015		
V	Dmw30		0.011		
			\		
)		
			1/10/-	2	
			11/0/4		
				- 7A	
				J	

ellipaine

AIR MC	UNITORING L	<u>_OG</u>			/ /
Client N	ame NAVFAC	00 SWDA Westside, S		Date 4/	19/22
Project I	No <u>. J3100008</u>	00 SWDA Westside, S	ite 12. Treasu	re Island P	age 1 of 1
Logged	Dy				
Weather	Cloud	19 51-10	00+	SUNNY (efternoon.
Instrume	ent Type: <u>Dus</u>	t Trak II	-	2011.17	0,10,110017
Calibrati	on Standards I	Used_Factory Calibrate	ed, Zero	sed i	noffice
	Dust		1		
Time	Monitoring	Location	Instrument Reading	Unit	Activities,
	Station Number		(mg/m3)	Number	Remarks
CED		Maritan	(g)		
0800	Dmw28.	Emport.	0.011	1280	setuptor
	DMW29	Down wind	0.009	0534	setup for import fill material
1	Pmw3C	Downwind	0.014	2341	
1245	Dmw28		0.004		import clean
	DMW29		0.005		771(.
V	DMW30		0.004		
1430	Dm w28		0.104		
	Dm W29		0.006		
	DMW30		0.005		
				1/2	
				×	
				4/	19/22
				7	

AIR MO	NITORING L	<u>0G</u>			
	me NAVFAC			Date 4/	20/22
Project N	o <u>. J3100008</u> 0	0 SWDA Westsid	e, Site 12, Treasu	ure Island Pa	ige) of)
Logged b	y TR				90
Weather_	Sunny	50-65	POF		
	nt Type: _Dust				
Calibratio	n Standards U	sed Factory Calib	orated 2-ex	oed in	- obtice
Time	Dust Monitoring		Instrumen	it Unit	Activities

Calibration	on Standards l	Jsed_Factory Calibrated	1 2 ero	ed is	2 oblice
Time	Dust Monitoring Station Number	Location	Instrument Reading (mg/m3)		Activities, Remarks
0800	DMU28	Up wind	0.019	1280	Begin 7 & D
	mw29	downwind D	0.014	0534	
1	DNW30	down wind	0.012	2341	
1215	DMW28		0.017		continue
	Dmw29		0.019		
V	DMW30		0.015		
1400	Dmw28		0.020		continue T&D
1	Dmw 29		0.018		
La V	Dmw30		0.012		
				,	
		1			
			\rightarrow		
				The	
				The last of the la	
				W)	
					20

Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page of Logar Schwing Weather USOF 66°F, Mostly Sunny. Instrument Type: Dust Trak II Calibration Standards Used Factory Calibrated Dust Instrument Monitoring Unit Activities, Time Location Reading Station Number Remarks (mg/m3) Number operation Karolabory 0.029 oschop iprep DMW28 0800 D/m 29 0.032 -DW 0.030 DMW30 1DW · Kilit Pinishing for today. · Gilect readings / lest readings · Collect monitors / folks offsite for day. DMW28 1320 0.014 DMW29 0.014 0.016 DMW30

AIR MONITORING LOG

	me NAVEAC			-	Date4/	1/1/23		
	me NAVFAC		74 Wastaida Ci					
Loggod b	0. 331000060	JU SVVL	DA Westside, Si	te 12, Treasure	<u>e Island</u> Pa	geof(_	_	
Mosther	1/4/00	5001	Schwing &	men L	1078 W	1 AM		
Instrumo	at Tunai Dua	75 /	- Cloudy X	N()UVI.	PISC 1	1 71-1		
	nt Type: <u>Dus</u> on Standards I		actory Calibrate	d				
Cambratic	Dust	J360_1	actory Calibrate	T T	14115			
	Monitoring			Instrument	Unit	Activities,		
Time	Station		Location	Reading	Number	Remarks		
	Number			(mg/m3)				
2500	DMW295	1VW	Tradiver of	0.037	1280	· reactings So	weather his	474
		DW	1,44.00	0.040	2341	* Hazt, min's destruction	- Mar elil. vag	950
						*Heze, marin	18 18 10 hogx	1/20 mg
2110		DW		0.037	0534	161	215 Hoyle	~~ ? ?√.
1340	DMW25			0.021		2m.cl-day rea	Wing 5	
	DMW79			0.018				
4	DAW30			0.024				
1530	DMW16			0.019		of finished	For today.	
	DMW79			0.020				
	DMW30			0.026				
	191100 70			0.020				
			100	-				
			1	4/				
				1/2				
					27			
		*****			2			

AIR MO	NITORING L	<u>og</u>			1		
Client Na	me NAVFAC				ate4	27/22	
Project N	o <u>. J31000080</u>	00 SWDA Wes	tside, Site	e 12, Treasure	Island Pa		
Logged b	y Loga	en Schwa	ng	/.			
Weather_			5uny	. Wind	<u> </u>		-
	nt Type: <u>Dust</u>						_
Calibratio	T	Jsed_Factory (Calibrated			· ·	=
Time	Dust Monitoring Station Number	Location	ſ	Instrument Reading (mg/m3)	Unit Number	Activities, Remarks	
750	DMUICE	NW TAD	Inpat of	0.025	1280	· SEXUPTADPI	Pef.
	DMW29	·DW		0.033	2341]
	DMW30	· Dru .		0.021	0534		
340	DMWZ8			0,020		·m,·delay,	1
	Dhwzg			0.025		· truck having	mesent
1	DMW30			0.014]
1515	DMW28			0.016		cop wraffing v	P for today
	Dnw29			0.019	-	,	1
77	DMW30			0.021		-	1
		N 10.7				21	
							1
<u> </u>			15				
				3//			
				(5)			
					D7		
			-				

AIR MONITORING LOG Client Name NAVFAC Date Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page \ Logan John: 19 Logged by 46F-57°F, Suny, Windy Weather Instrument Type: _Dust Trak II Calibration Standards Used Factory Calibrated Dust Instrument Monitoring Unit Activities, Time Location Reading Station Number Remarks (mg/m3) Number · setup / mobilize ·UW 0,018 0740 Wes 234/ 0,019 DMW2 ·DW 0534 DMWZU 0.020 · mid-day readings 1225 DNWIS 0.013 DWWD 0.024 DMW30 0.013 of for Lodge. wrapping 520 0.019 DOWNS Dawza 0.020 naw30 0.017

	AIR MC	NITORING I	LOG			. / /					
	Client N	ame NAVFAC)		Date 1	1/29/22					
	Project I	Client Name NAVFAC Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page 1 of 1									
	Logged by										
	Weather Sunny Slightly Cloudy 51- 66° F Instrument Type: Dust Trak II										
Instrument Type: Dust Trak II											
	Calibrati	on Standards	Used Factory Calibra	ted, Zevo	ed in	ortice	_				
	Time	Dust Monitoring Station Number	Location	Instrumen Reading (mg/m3)		Activities, Remarks					
	0800	DMW28	Downwind +	0.016	1280	Setup & mobilize					
		DMW29	Down wing	0.017							
	- 1	Dmw30	TAD/impor	+0.022	- 0534						
100	1130	DMW28		0.017		continue TE	Pr 11				
		Dmw29		0.013							
	\	DMW30		0.016							
-	1345	DMW28		0.010		continue Ta	5 4				
		Dmw29		0.013		1	201				
		Dmw 30		0.012	-						
							$\overline{}$				
			-				-				
ľ											
							-				
r							-				
r							\dashv				
r							_				
F							_				
H											
_					TR		_				
-					1.	*//					
_						7)81	-				
_						122	_				
							\exists				

ATTACHMENT 2 SUMMARY OF AIR MONITORING AND AIR SAMPLING RESULTS (Provided on CD)

This page intentionally left blank

Table 2-1: Ambient Pressure and Temperature Monitoring Results

Sample Date	Ambient Pressure (inches of Hg)	Ambient Temperature (°F)	Ambient Temperature (°K)
04/01/2022	29.93	53.12	284.88
04/01/2022	29.96	56.55	286.79
04/05/2022	30.17	54.91	285.88
04/06/2022	30.14	55.57	286.24
04/07/2022	30.09	61.15	289.34
04/07/2022	30.10	71.38	295.03
04/13/2022	30.24	50.06	283.18
04/14/2022	30.18	52.74	284.67
04/15/2022	30.05	51.64	284.06
04/19/2022	30.05	55.15	286.01
04/21/2022	29.94	57.31	287.21
04/26/2022	30.04	55.42	286.16
04/27/2022	29.99	54.02	285.38
04/28/2022	30.02	53.13	284.89
04/29/2022	30.12	53.13	284.89
04/29/2022	30.16	53.76	285.24

Weather data collected from weather station at Building 572, Avenue M, Treasure Island, San Francisco, CA

°F = Degrees Fahrenheit

Hg = mercury

°K = Degrees Kelvin

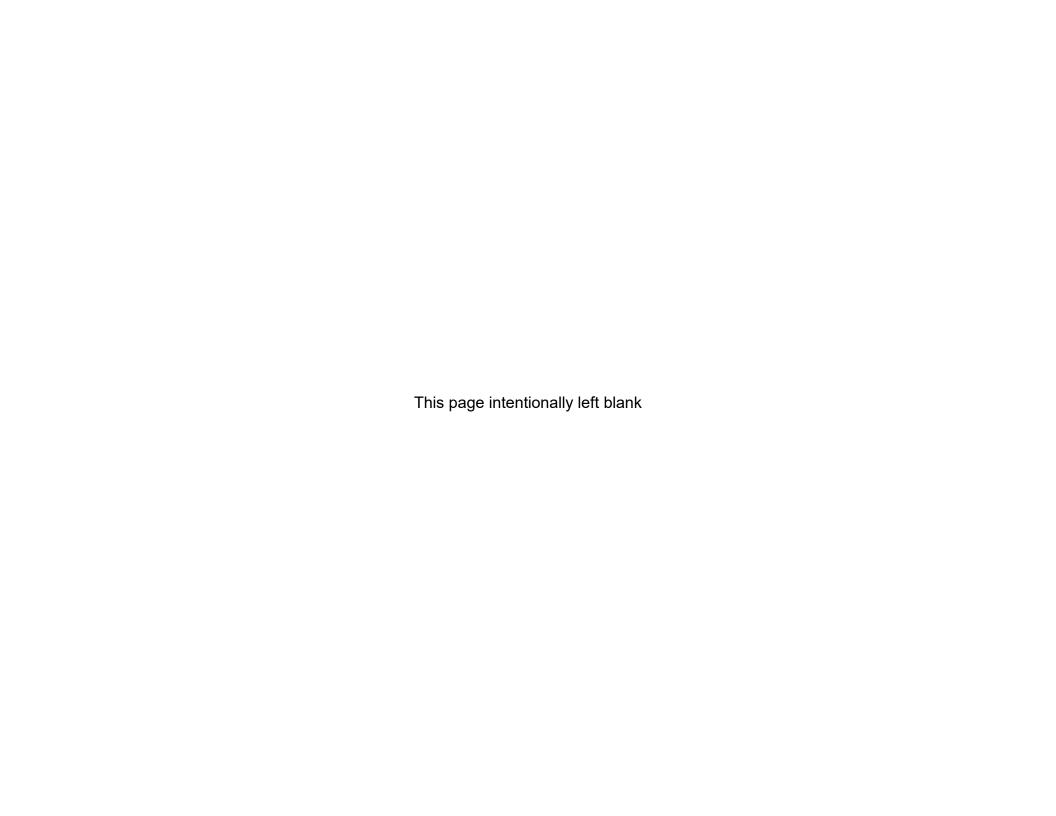


Table 2-2: Particulate Matter Smaller than Ten Microns (PM10)

Location ID	Sampling Period (Hours)	Sample Date	Particulate Matter Less Than 10 Microns in Diameter (ug/m³)	Delta between Downwind and Upwind Stations (ug/m³)	PM10 Exceedance? (Yes/No)
		Screening	g Criteria		50
	20.8	04/01/2022	35	NA	NA
	7.82	04/01/2022	40	NA	NA
	23.16	04/05/2022	25	NA	NA
	21.82	04/06/2022	62	NA	NA
	21.54	04/07/2022	41	NA	NA
	7.4	04/07/2022	28	NA	NA
	23.79	04/13/2022	15	NA	NA
	20.36	04/14/2022	12	NA	NA
AMSW1	6.96	04/15/2022	9.9	NA	NA
	23.6	04/19/2022	9	NA	NA
	25.34	04/21/2022	14	NA	NA
	24.65	04/26/2022	28	NA	NA
	21.5	04/27/2022	23	NA	NA
	23.8	04/28/2022	20	NA	NA
	22.88	04/29/2022	19	NA	NA
	6.7	04/29/2022	20	NA	NA
	20.65	04/01/2022	49	14	No
	8.09	04/01/2022	74	34	No
	23.78	04/05/2022	43	18	No
	21.89	04/06/2022	54	-8	No
	21.98	04/07/2022	38	-3	No
	7.44	04/07/2022	58	30	No
	23.62	04/13/2022	20	5	No
AMCMA	20.72	04/14/2022	13	1	No
AMSW2	6.8	04/15/2022	6.7	-3.2	No
	24.05	04/19/2022	17	8	No
	25.69	04/21/2022	23	9	No
	25.3	04/26/2022	31	3	No
	21.9	04/27/2022	34	11	No
	24.26	04/28/2022	43	23	No
	23.16	04/29/2022	42	23	No
	6.58	04/29/2022	32	12	No

ug/m3 = micrograms per cubic meter

NA = Not applicable

PM10 = particulate matter less then 10 microns in diameter

* = generator/sampler malfunction

bold = result above screening criteria

Table 2-3: Total Suspended Particulates Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Total Suspended Particulate (ug/m³)	Delta Between Downwind and Upwind Stations (ug/m³)	TSP Exceedance? (Yes/No)
		Screening Criteria			50
	20.8	04/01/2022	47.5194	NA	NA
	7.82	04/01/2022	54.7718	NA	NA
	23.17	04/05/2022	70.5599	NA	NA
	21.8	04/06/2022	170.814	NA	NA
	21.53	04/07/2022	106.7307	NA	NA
	7.38	04/07/2022	52.6034	NA	NA
	23.79	04/13/2022	23.2592	NA	NA
A B 4 C \ A / 4	20.32	04/14/2022	22.3327	NA	NA
AMSW1	6.97	04/15/2022	15.5242	NA	NA
	23.62	04/19/2022	19.593	NA	NA
	25.36	04/21/2022	18.1198	NA	NA
	24.64	04/26/2022	33.5958	NA	NA
	21.48	04/27/2022	36.5363	NA	NA
	23.78	04/28/2022	33.2994	NA	NA
	22.87	04/29/2022	33.2614	NA	NA
	6.69	04/29/2022	36.6255	NA	NA
	20.66	04/01/2022	72.5768	25.0574	No
	8.11	04/01/2022	119.6351	64.8633	Yes
	23.79	04/05/2022	77.0424	6.4825	No
	21.9	04/06/2022	79.7008	-91.1132	No
	22.02	04/07/2022	54.755	-51.9757	No
	7.49	04/07/2022	81.323	28.7196	No
	23.61	04/13/2022	35.2013	11.9421	No
A B 4 O VA / O	20.73	04/14/2022	22.7502	0.4175	No
AMSW2	6.79	04/15/2022	14.5385	-0.9857	No
	24.03	04/19/2022	33.055	13.462	No
	25.68	04/21/2022	42.3792	24.2594	No
	25.28	04/26/2022	35.9143	2.3185	No
	21.9	04/27/2022	49.8569	13.3206	No
	24.26	04/28/2022	63.631	30.3316	No
	23.15	04/29/2022	67.6512	34.3898	No
	6.58	04/29/2022	66.2656	29.6401	No

J = estimated value

ug/m³ = micrograms per cubic meter

NA = Not applicable

TSP = total suspended particulate

bold = results above screening criteria

* = generator/sampler malfunction

Table 2-4: Lead by EPA 6020 Monitoring Results

Screening Criteria 1,575	Location ID	Sampling Period (Hours)	Sample Date	Lead (ug/m³)	Lead Exceedance? (Yes/No)		
AMSW1 7.82 04/01/2022 0.0024 No 23.16 04/05/2022 0.005 No 21.82 04/06/2022 0.013 No 21.54 04/07/2022 0.007 No 7.4 04/07/2022 0.0035 No 23.79 04/13/2022 0.0013 No 20.36 04/14/2022 0.0013 No 6.96 04/15/2022 0.0022 J No 23.6 04/19/2022 0.001 No 25.34 04/21/2022 0.001 No 24.65 04/26/2022 0.001 No 24.65 04/26/2022 0.001 No 22.88 04/29/2022 0.001 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 20.65 04/01/2022 0.0011 No 20.65 04/01/2022 0.0011 No 20.65 04/01/2022 0.0011 No 23.78 04/05/2022 0.0011 No 23.78 04/05/2022 0.0037 No 8.09 04/01/2022 0.0037 No 8.09 04/01/2022 0.0037 No 23.78 04/05/2022 0.0037 No 23.78 04/05/2022 0.0039 No 21.89 04/06/2022 0.0051 No 21.89 04/07/2022 0.0039 No 21.89 04/07/2022 0.0039 No 21.89 04/07/2022 0.0039 No 21.89 04/07/2022 0.0025 No 23.62 04/13/2022 0.0025 No 24.05 04/19/2022 0.0025 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0051 No 24.26 04/28/2022 0.0051 No 24.26 04/28/2022 0.0052 No					1,575		
AMSW2 23.16 04/05/2022 0.005 No 21.82 04/06/2022 0.013 No 21.54 04/07/2022 0.007 No 7.4 04/07/2022 0.0035 No 23.79 04/13/2022 0.0013 No 20.36 04/14/2022 0.0011 No 6.96 04/15/2022 0.0012 No 23.6 04/19/2022 0.0011 No 24.65 04/26/2022 0.0011 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 23.79 04/06/2022 0.0011 No 24.65 04/06/2022 0.0011 No 25.34 04/21/2022 0.0011 No 21.5 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 21.89 04/05/2022 0.0013 No 21.89 04/06/2022 0.0033 No 21.89 04/06/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0051 No 23.62 04/13/2022 0.0097 No 23.62 04/13/2022 0.0029 No 24.05 04/19/2022 0.0025 No 25.3 04/26/2022 0.0026 No 24.26 04/27/2022 0.0061 No 24.26 04/27/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No 04/29/2022 0.0065 No 04/29/2022 0.0065 No 04/29/2022 0.0065 No 04/29/2022 0.0065 No 04/29/2022 0.0066 No 04/29/2022 0.0066 No 04/29/2022 0.0061 No					No		
AMSW1 21.82 04/06/2022 0.013 No 21.54 04/07/2022 0.007 No 7.4 04/07/2022 0.0035 No 23.79 04/13/2022 0.0013 No 20.36 04/14/2022 0.0013 No 6.96 04/15/2022 0.0011 No 23.6 04/19/2022 0.0011 No 24.65 04/26/2022 0.0011 No 24.65 04/26/2022 0.0011 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 20.65 04/01/2022 0.0011 No 20.65 04/01/2022 0.0011 No 21.89 04/01/2022 0.0011 No 21.89 04/06/2022 0.0011 No 21.98 04/07/2022 0.0051 No 21.99 04/07/2022 0.0039 No AMSW2 AMSW2 AMSW2 AMSW2 AMSW2 AMSW2 DAMS		7.82	04/01/2022	0.0024	No		
AMSW1 21.54					No		
AMSW1 AMSW1 T.4 04/07/2022 0.0035 No 23.79 04/13/2022 0.0013 No 20.36 04/14/2022 0.0011 No 6.96 04/15/2022 0.0022 J No 23.6 04/19/2022 0.0011 No 25.34 04/21/2022 0.0011 No 24.65 04/26/2022 0.0018 No 21.5 04/27/2022 0.0011 No 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0011 No 20.65 04/01/2022 0.0011 No 20.65 04/01/2022 0.0037 No 20.65 04/01/2022 0.0037 No 23.78 04/05/2022 0.0013 No 21.89 04/06/2022 0.0011 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 23.62 04/13/2022 0.0025 No 24.05 04/19/2022 0.0025 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0052 No		21.82	04/06/2022	0.013	No		
AMSW1 23.79		21.54	04/07/2022	0.007	No		
AMSW1 20.36 04/14/2022 0.001 No 6.96 04/15/2022 0.0022 J No 23.6 04/19/2022 0.001 No 25.34 04/21/2022 0.001 No 24.65 04/26/2022 0.0018 No 21.5 04/27/2022 0.0011 No 22.88 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0011 No 20.65 04/01/2022 0.0037 No 20.65 04/01/2022 0.0037 No 23.78 04/05/2022 0.0037 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 7.44 04/07/2022 0.0029 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0025 No 24.05 04/19/2022 0.0026 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		7.4	04/07/2022	0.0035	No		
AMSW1 6.96 04/15/2022 0.0012 J No 23.6 04/19/2022 0.001 No 25.34 04/21/2022 0.001 No 24.65 04/26/2022 0.0018 No 21.5 04/27/2022 0.0012 No 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0011 No 20.65 04/01/2022 0.0037 No 20.65 04/01/2022 0.0037 No 23.78 04/05/2022 0.0013 No 21.89 04/06/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 21.98 04/13/2022 0.0029 No 20.72 04/14/2022 0.0025 No 24.05 04/19/2022 0.0026 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0051 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No		23.79	04/13/2022	0.0013	No		
AMSW2 6.96 04/15/2022 0.0022 J No 23.6 04/19/2022 0.001 No 25.34 04/21/2022 0.001 No 24.65 04/26/2022 0.0018 No 21.5 04/27/2022 0.0012 No 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0011 No 20.65 04/01/2022 0.0037 No 23.78 04/05/2022 0.001 No 23.78 04/05/2022 0.0051 No 21.98 04/07/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 21.98 04/07/2022 0.0039 No 21.98 04/07/2022 0.0051 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0029 No 24.05 04/19/2022 0.0025 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0061 No	ΔΜς\Λ/1	20.36	04/14/2022	0.001	No		
AMSW2 25.34 04/21/2022 0.001 No 24.65 04/26/2022 0.0018 No 21.5 04/27/2022 0.0012 No 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0023 J No 20.65 04/01/2022 0.0037 No 8.09 04/01/2022 0.0037 No 23.78 04/05/2022 0.001 No 21.89 04/05/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0025 No 24.05 04/19/2022 0.0025 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0051 No 24.26 04/19/2022 0.0025 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0061 No	AIVIOVI	6.96	04/15/2022	0.0022 J	No		
AMSW2 24.65 04/26/2022 0.0018 No 21.5 04/27/2022 0.0012 No 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0023 J No 20.65 04/01/2022 0.0037 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0013 No 20.65 04/13/2022 0.0051 No 21.98 04/07/2022 0.0051 No 21.98 04/07/2022 0.0051 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0025 J No 24.05 04/19/2022 0.0026 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 23.16 04/29/2022 0.0061 No 23.16 04/29/2022 0.0052 No		23.6	04/19/2022	0.001	No		
AMSW2 21.5 04/27/2022 0.0012 No 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0023 J No 20.65 04/01/2022 0.0037 No 8.09 04/01/2022 0.001 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 24.05 04/15/2022 0.0025 J No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		25.34	04/21/2022	0.001	No		
AMSW2 23.8 04/28/2022 0.0011 No 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0023 J No 20.65 04/01/2022 0.0037 No 8.09 04/01/2022 0.001 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0052 No		24.65	04/26/2022	0.0018	No		
AMSW2 22.88 04/29/2022 0.0011 No 6.7 04/29/2022 0.0023 J No 20.65 04/01/2022 0.0037 No 8.09 04/01/2022 0.01 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 24.05 04/15/2022 0.0025 J No 24.05 04/19/2022 0.0026 No 25.69 04/21/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 24.26 04/28/2022 0.0052 No		21.5	04/27/2022	0.0012	No		
AMSW2 6.7 04/29/2022 0.0023 J No 20.65 04/01/2022 0.0037 No 8.09 04/01/2022 0.01 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 24.05 04/19/2022 0.0025 J No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		23.8	04/28/2022	0.0011	No		
AMSW2 20.65		22.88	04/29/2022	0.0011	No		
AMSW2 8.09 04/01/2022 0.01 No 23.78 04/05/2022 0.0083 No 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 24.05 04/15/2022 0.0025 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 23.16 04/29/2022 0.0052 No		6.7	04/29/2022	0.0023 J	No		
AMSW2 23.78		20.65	04/01/2022	0.0037	No		
AMSW2 21.89 04/06/2022 0.0051 No 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 24.05 04/15/2022 0.0025 J No 24.05 04/19/2022 0.0026 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0061 No 24.26 04/28/2022 0.0052 No 23.16 04/29/2022 0.0052 No		8.09	04/01/2022	0.01	No		
AMSW2 21.98 04/07/2022 0.0039 No 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.002 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		23.78	04/05/2022	0.0083	No		
AMSW2 7.44 04/07/2022 0.0097 No 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.002 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0052 No 23.16 04/29/2022 0.0052 No		21.89	04/06/2022	0.0051	No		
AMSW2 23.62 04/13/2022 0.0029 No 20.72 04/14/2022 0.0013 No 6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.002 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		21.98	04/07/2022	0.0039	No		
AMSW2 20.72 04/14/2022 0.0013 No 6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.002 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		7.44	04/07/2022	0.0097	No		
AMSW2 6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.002 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		23.62	04/13/2022	0.0029	No		
6.8 04/15/2022 0.0025 J No 24.05 04/19/2022 0.002 No 25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No	AMCIAIO	20.72	04/14/2022	0.0013	No		
25.69 04/21/2022 0.0026 No 25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No	AIVISVVZ	6.8	04/15/2022	0.0025 J	No		
25.3 04/26/2022 0.0056 No 21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		24.05	04/19/2022	0.002	No		
21.9 04/27/2022 0.0017 No 24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		25.69	04/21/2022	0.0026	No		
24.26 04/28/2022 0.0061 No 23.16 04/29/2022 0.0052 No		25.3	04/26/2022	0.0056	No		
23.16 04/29/2022 0.0052 No		21.9	04/27/2022	0.0017	No		
		24.26	04/28/2022	0.0061	No		
6.58 04/29/2022 0.0046 No		23.16	04/29/2022	0.0052	No		
		6.58	04/29/2022	0.0046	No		

J = indicates an estimated value

ug/m³ = micrograms per cubic meter

bold = results above screening criteria

^{* =} generator/sampler malfunction

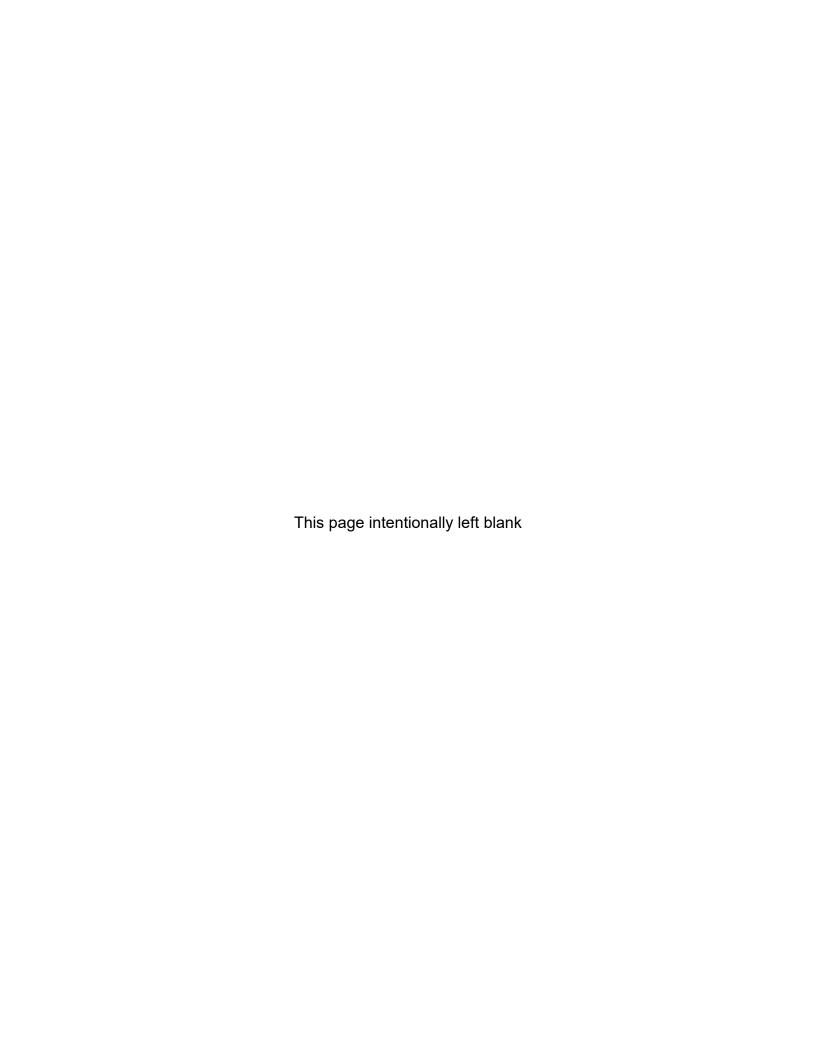


Table 2-5: Polycyclic Aromatic Hydrocarbons by TO-13 Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	BAP(Eq) Exceed- ance? (Yes/No)	BAP(Eq)	2-Methyl-naph- thalene (ug/m³)	Acenaph- thene (ug/m³)	Acenaph- thylene (ug/m³)	Anthracene (ug/m³)	Benzo(a) anthracene (ug/m³)	Benzo(a) pyrene (ug/m³)	Benzo(b) fluoran- thene (ug/m³)	Benzo(g,h,i) perylene (ug/m³)	Benzo(k) fluoran- thene (ug/m³)	Chrysene (ug/m³)	Dibenz(a,h)anth racene (ug/m³)	Fluoran- thene (ug/m3)	Fluorene (ug/m3)	Indeno (1,2,3- c,d) pyrene (ug/m3)	Naph- thalene (ug/m3)	Phenan- threne (ug/m3)	Pyrene (ug/m3)
	Screening	Criteria ¹		55,330	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
AMSW1	20.81	04/01/2022	No	0	0.0023	0.00036 J	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	0.00029 J	< 0.0007	0.0064	0.00053 J	< 0.0007
	21.73	04/06/2022	No	0	0.0021	0.00056 J	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	0.00026 J	0.0004 J	< 0.00064	0.0048	0.00073	< 0.00064
	23.73	04/13/2022	No	0	< 0.0012	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	0.0015	0.00027 J	< 0.0006
	23.63	04/19/2022	No	0	0.0013	0.00033 J	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	0.00027 J	< 0.00059	0.0084	0.00051 J	< 0.00059
	25.36	04/21/2022	No	0	0.0011	0.00027 J	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	0.00023 J	< 0.00055	0.006	0.00039 J	< 0.00055
	6.69	04/29/2022	No	0	< 0.0041	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	0.0045	< 0.0021	< 0.0021
AMSW2	20.65	04/01/2022	No	0	0.0022	0.00032 J	< 0.00062	< 0.00062	< 0.00062	< 0.00062	< 0.00062	< 0.00062	< 0.00062	< 0.00062	< 0.00062	0.00046 J	0.0004 J	< 0.00062	0.007	0.0015	0.00029 J
	21.9	04/06/2022	No	0	0.0014	0.00026 J	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	0.00033 J	0.00034 J	< 0.0006	0.0031	0.0011	< 0.0006
	23.63	04/13/2022	No	0	< 0.0011	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	< 0.00056	0.00022 J	< 0.00056	< 0.00056	0.00077 J	0.00085	< 0.00056
	24.06	04/19/2022	No	0	0.0012	0.00026 J	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	0.00061	0.00043 J	< 0.00059	0.0075	0.002	0.00036 J
	25.69	04/21/2022	No	0	0.0011	0.00021 J	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.00057	0.00039 J	< 0.0005	0.0052	0.0018	0.00032 J
	6.58	04/29/2022	No	0	< 0.0039	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	0.0045	< 0.0019	< 0.0019

¹ The dust action level was adjusted by a factor of 10 to account for the short-term duration of the project.

NA = Not applicable

NE = None established

BAP(Eq) = Benzo(a)pyrene equivalency

J = estimated value

UJ = Nondetected at an estimated reporting limit

ug/m3 = micrograms per cubic meter

bold = results above screening criteria

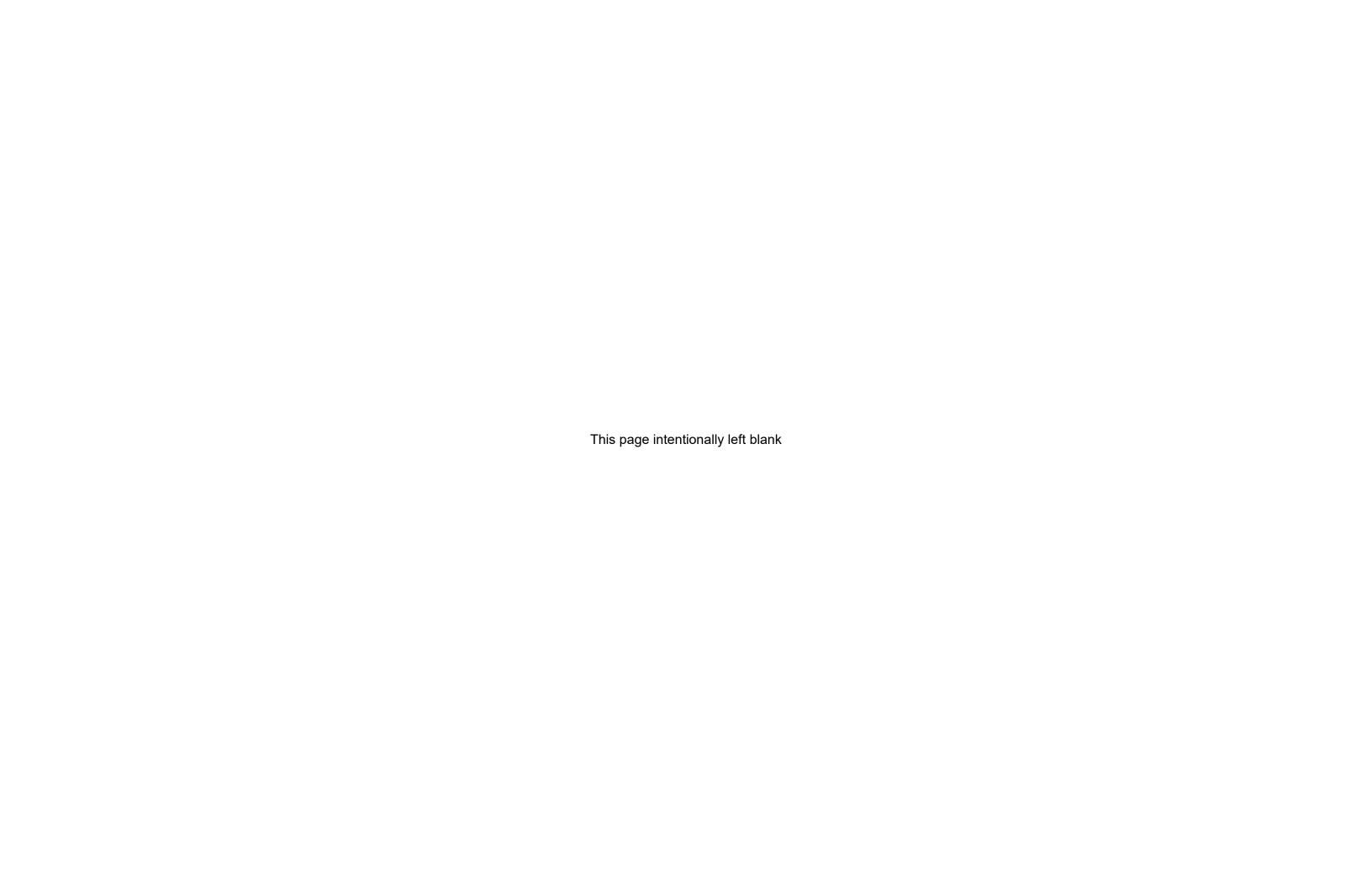


Table 2-6: Polychlorinated Biphenyls by TO-4A Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Total PCB Exceedance? (Yes/No)	Total PCB	PCB-1016 (Aroclor 1016) (ug/m³)	PCB-1221 (Aroclor 1221) (ug/m³)	PCB-1232 (Aroclor 1232) (ug/m³)	PCB-1242 (Aroclor 1242) (ug/m³)	PCB-1248 (Aroclor 1248) (ug/m³)	PCB-1254 (Aroclor 1254) (ug/m³)	PCB-1260 (Aroclor 1260) (ug/m³)
	Screen	ing Criteria		NE							
	7.76	04/01/2022	NA	0	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024
	21.47	04/07/2022	NA	0	< 0.00087	< 0.00087	< 0.00087	< 0.00087	< 0.00087	< 0.00087	< 0.00087
AMSW1	20.28	04/14/2022	NA	0	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019
	21.42	04/27/2022	NA	0	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
	22.44	04/29/2022	NA	0	< 0.00085	< 0.00085	< 0.00085	< 0.00085	< 0.00085	< 0.00085	< 0.00085
	8.03	04/01/2022	NA	0	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021
	21.95	04/07/2022	NA	0	< 0.00081	< 0.00081	< 0.00081	< 0.00081	< 0.00081	< 0.00081	< 0.00081
AMSW2	20.73	04/14/2022	NA	0	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017
	21.91	04/27/2022	NA	0	< 0.00084	< 0.00084	< 0.00084	< 0.00084	< 0.00084	< 0.00084	< 0.00084
	23.17	04/29/2022	NA	0	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008

NA = Not applicable

NE = None established

PCB = polychlorinated biphenyl

ug/m³ = micrograms per cubic meter

< = nondetected less than associated reporting limit

J = estimated value

^{* =} sampler/generator malfunction

Table 2-7: Dioxin as 2,3,7,8-TCDD by TO-9A Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	2,3,7,8-Tetrachlorodibenzo-p- dioxin (ug/m³)	Dioxin Exceedance? (Yes/No)
	S	10,000,000 ug/m ³		
	23.19	04/05/2022	< 0.00000002	No
	7.31	04/07/2022	< 0.0000007	No
AMSW1	6.97	04/15/2022	< 0.0000008	No
	24.64	04/26/2022	< 0.0000002	No
	23.73	04/28/2022	< 0.0000002	No
	23.78	04/05/2022	< 0.0000002	No
	7.39	04/07/2022	< 0.0000006	No
AMSW2	6.82	04/15/2022	< 0.00000007	No
	25.32	04/26/2022	< 0.00000002	No
	24.27	04/28/2022	< 0.00000002	No

J = estimated value

UJ = Nondetected at an estimated reporting limit

ug/m³ = micrograms per cubic meter

< = nondetected less than associated reporting limit

bold = results above screening criteria

^{* =} generator / sampler malfunction

ATTACHMENT 3 RADIOLOGICAL AIR MONITORING RESULTS (Provided on CD)

This page intentionally left blank

AIR SAMPLING EQUIPMENT

GIID	alle									LQUIF	
			1			formation		Effe	ctive as of:		
		r Number:	-							roject Num	
	473-17-D-(RD/RA, Tr					J31000080	
P		ffluent Air		Equipme					Sampling I	Equipment	
Equip		Air Sample		Serial	Cal Due	Equip		Air Sample		Serial	Cal Due
Number	I	Make/Mode	el	Number	Date	Number	I	Make/Mode	el	Number	Date
PE01		LV-1		4532	5/20/21	BZ01					
PE02		LV-1		4360	5/20/21	BZ02					
PE03		LV-1		4352	4/20/22	BZ03					
PE04		LV-1		4300	4/20/22	BZ04					
PE05		LV-1		4299	6/9/22	BZ05					
PE06		LV-1		4313	6/9/22	BZ06					
PE07						BZ07					
PE08						BZ08					
PE09						BZ09					
PE10						BZ10					
PE11						BZ11					
PE12						BZ12					
PE13						BZ13					
PE14						BZ14					
PE15						BZ15					
PE16						BZ16					
PE17						BZ17					
PE18						BZ18					
PE19						BZ19					
PE20						BZ20					
				Sam	ple Counti	ng Instrun	nents				
Inst	Model	Serial	Cal Due	Count T	ime (min)	Backgrou	ind (cpm) ^a	Abs Ct Eff	(cnts/dis)b	MDC (dpn	n/sample) ^c
Number	Number	Number	Date	Bkgrd	Source	Alpha	Beta	Alpha	Beta	Alpha	Beta
Α	Protean	615068	9/15/21	1	1	0.0	1.1	0.352	0.355	15.4	29.0
В	Protean	9085100	10/5/21	1	1	0.0	1.2	0.356	0.352	15.2	29.9
С	Protean	9085100	10/1/22	1	1	0.0	1.2	0.359	0.355	15.1	29.6
D	Protean	9085101	10/1/22	1	1	0.0	1.2	0.315	0.355	17.2	29.6
Е											
Notos	•				•			•			

Notes

^a background values obtained from instrument set-up worksheet

^b absolute counting efficiency = 4π efficiency calculated as ratio of measured count rate and contained activity [total dpm] of source (see IN-RP-141, *Alpha/Beta Scaler Instrument Set-Up and Operation*)

MDC calculated using the Stapleton approximation (see IN-RP-141, Alpha/Beta Scaler Instrument Set-Up and Operation)

-	-		
	ш		6

AIR SAMPLE RESULTS - PURLIC EXPOSURE MONITORING

Cilba	ane													AIR S	AMPLE	RESU	LTS - F	PUBLIC	EXPO	SURE	MONIT	ORING
				roject Inform	nation					Effluent	Air Cor	centration		Sa	npling Per	iod		Color Codes				
Contract /	Task Order N	lumber: Project	Title / Locati	on:		Gilbane Project N	lumber:		Alpha Beta			Airs	amples coll	ected	Value < MDC			Value <	Value < 0.1 x Effluent Conc			
N6	2473-17-D-00	105 IR S	Site 12 RD/R	A, Treasure Is	sland, SF, CA	J3	10000800		Radionuclide Ra-226 Sr-90			between	between 22 Mar 2021		< 72 hr decay time			Value > 0.1 x Effluent Conc				
		Ir		fective as of:					E	fluent Conc	(μCi/ml)	9.E-13	6.E-12	and	24 May 20	22	D	ata reviewe	-	Value	e > Effluent	
			,	Sample Colle	ction							Count	Informatio	n				Sample	Results		Init	tials
Sample	Sample	Sample	Equip	Ave Flow	Start	End	Elapsed	Volume	Inst	Count	Time	Counting	Gross	Activity	Net	dpm	Activity	(µCi/ml)	*Effluent	Conc (%)	Count	Data
Number	Type	Location	No	Rate (lpm)	Day Time	Date Time	Time (min)	(ml)	No	Date	(min)	Units	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Tech	Reviewer
AS-431	Perimeter	Upwind	PE03	60	4/1/22 5:30	4/1/22 16:45	675	4.1E+07	С	4/29/22	- 1	cpm	0.15	4.55	0.4	9.4	4.6E-15	1.0E-13	0.5%	1.7%	DB	CB
AS-432	Perimeter	Downwind	PE04	60	4/1/22 5:35	4/1/22 16:50	675	4.1E+07	С	4/29/22	- 1	cpm	0.25	4.80	0.7	10.1	7.7E-15	1.1E-13	0.9%	1.9%	DB	CB
AS-433	Perimeter	Upwind	PE03	60	4/4/22 4:45	4/4/22 17:05	740	4.4E+07	С	4/29/22	-1	cpm	0.35	5.45	1.0	12.0	9.9E-15	1.2E-13	1.1%	2.0%	DB	CB
AS-434	Perimeter	Downwind	PE04	60	4/4/22 4:50	4/4/22 17:00	730	4.4E+07	С	4/29/22	1	cpm	0.10	4.10	0.3	8.2	2.9E-15	8.4E-14	0.3%	1.4%	DB	CB
AS-435	Perimeter	Upwind	PE03	60	4/5/22 5:00	4/5/22 17:05	725	4.3E+07	С	4/29/22	1	cpm	0.15	5.00	0.4	10.7	4.3E-15	1.1E-13	0.5%	1.8%	DB	CB
AS-436	Perimeter	Downwind	PE04	60	4/5/22 5:05	4/5/22 17:00	715	4.3E+07	С	4/29/22	1	cpm	0.40	4.65	1.1	9.7	1.2E-14	1.0E-13	1.3%	1.7%	DB	CB
AS-437	Perimeter	Upwind	PE03	60	4/6/22 5:00	4/6/22 17:00	720	4.3E+07	С	4/29/22	1	cpm	0.20	4.95	0.6	10.6	5.8E-15	1.1E-13	0.6%	1.8%	DB	CB
AS-438	Perimeter	Downwind	PE04	60	4/6/22 5:05	4/6/22 17:05	720	4.3E+07	С	4/29/22	1	cpm	0.15	4.40	0.4	9.0	4.4E-15	9.4E-14	0.5%	1.6%	DB	CB
AS-439	Perimeter	Upwind	PE03	60	4/7/22 5:00	4/7/22 17:05	725	4.3E+07	С	4/29/22	1	cpm	0.10	5.40	0.3	11.8	2.9E-15	1.2E-13	0.3%	2.0%	DB	CB
AS-440	Perimeter	Downwind	PE04	60	4/7/22 5:05	4/7/22 17:00	715	4.3E+07	С	4/29/22	1	cpm	0.25	4.35	0.7	8.9	7.3E-15	9.3E-14	0.8%	1.6%	DB	CB
AS-441	Perimeter	Upwind	PE03	60	4/12/22 7:15	4/12/22 17:05	590	3.5E+07	С	4/29/22	1	cpm	0.25	4.70	0.7	9.9	8.9E-15	1.3E-13	1.0%	2.1%	DB	CB
AS-442	Perimeter	Downwind	PE04	60	4/12/22 7:05	4/12/22 17:00	595	3.6E+07	С	4/29/22	1	cpm	0.20	3.80	0.6	7.3	7.0E-15	9.2E-14	0.8%	1.5%	DB	CB
AS-443	Perimeter	Upwind	PE03	60	4/13/22 5:00	4/13/22 17:05	725	4.3E+07	С	4/29/22	1	cpm	0.25	4.60	0.7	9.6	7.2E-15	9.9E-14	0.8%	1.7%	DB	CB
AS-444	Perimeter	Downwind	PE04	60	4/13/22 5:05	4/13/22 17:00	715	4.3E+07	С	4/29/22	1	cpm	0.35	3.95	1.0	7.7	1.0E-14	8.1E-14	1.1%	1.4%	DB	CB
AS-445	Perimeter	Upwind	PE03	60	4/18/22 5:00	4/18/22 17:05	725	4.3E+07	С	4/29/22	1	cpm	0.30	4.20	0.8	8.5	8.7E-15	8.8E-14	1.0%	1.5%	DB	CB
AS-446	Perimeter	Downwind	PE04	60	4/18/22 5:05	4/18/22 17:00	715	4.3E+07	С	4/29/22	1	cpm	0.10	5.20	0.3	11.3	2.9E-15	1.2E-13	0.3%	2.0%	DB	CB
AS-447	Perimeter	Upwind	PE03	60	4/20/22 7:00	4/20/22 15:28	508	3.0E+07	С	4/29/22	1	cpm	0.25	5.40	0.7	11.8	1.0E-14	1.7E-13	1.1%	2.9%	DB	CB
AS-448	Perimeter	Downwind	PE04	60	4/20/22 7:05	4/20/22 15:32	507	3.0E+07	С	4/29/22	1	cpm	0.20	3.10	0.6	5.4	8.2E-15	7.9E-14	0.9%	1.3%	DB	CB
AS-449	Perimeter	Upwind	PE03	60	4/25/22 7:00	4/25/22 13:35	395	2.4E+07	D	6/2/22	1	cpm	0.40	4.40	1.3	9.0	2.4E-14	1.7E-13	2.7%	2.9%	DB	CB
AS-450	Perimeter	Downwind	PE04	60	4/25/22 7:05	4/25/22 13:00	355	2.1E+07	D	6/2/22	1	cpm	0.45	3.95	1.4	7.7	3.0E-14	1.6E-13	3.4%	2.7%	DB	CB
AS-451	Perimeter	Upwind	PE03	60	4/26/22 7:00	4/26/22 13:35	395	2.4E+07	D	6/2/22	- 1	cpm	0.35	3.95	1.1	7.7	2.1E-14	1.5E-13	2.3%	2.5%	DB	CB
AS-452	Perimeter	Downwind	PE04	60	4/26/22 7:05	4/26/22 13:30	385	2.3E+07	D	6/2/22	- 1	cpm	0.35	4.50	1.1	9.3	2.2E-14	1.8E-13	2.4%	3.0%	DB	CB
AS-453	Perimeter	Upwind	PE03	60	4/27/22 5:25	4/27/22 15:00	575	3.4E+07	D	6/2/22	- 1	cpm	0.30	2.80	1.0	4.5	1.2E-14	5.9E-14	1.4%	1.0%	DB	CB
AS-454	Perimeter	Downwind	PE04	60	4/27/22 5:20	4/27/22 14:55	575	3.5E+07	D	6/2/22	1	cpm	0.25	4.40	0.8	9.0	1.0E-14	1.2E-13	1.2%	2.0%	DB	CB
AS-455	Perimeter	Upwind	PE03	60	4/28/22 5:20	4/28/22 15:17	597	3.6E+07	D	6/2/22	1	cpm	0.50	3.50	1.6	6.5	2.0E-14	8.1E-14	2.2%	1.4%	DB	CB
AS-456	Perimeter	Downwind	PE04	60	4/28/22 5:15	4/28/22 15:20	605	3.6E+07	D	6/2/22	1	cpm	0.20	4.15	0.6	8.3	7.9E-15	1.0E-13	0.9%	1.7%	DB	CB
AS-457	Perimeter	Upwind	PE03	60	4/29/22 5:15	4/29/22 15:00	585	3.5E+07	D	6/2/22	1	cpm	0.10	5.25	0.3	11.4	4.1E-15	1.5E-13	0.5%	2.4%	DB	CB
AS-458	Perimeter	Downwind	PE04	60	4/29/22 5:20	4/29/22 14:50	570	3.4E+07	D	6/2/22	- 1	cpm	0.15	2.60	0.5	3.9	6.3E-15	5.2E-14	0.7%	0.9%	DB	CB

CFM to LPM Convert	er Sample
1 cfm = 28.316846592 lp	om Types
Enter cfm: 2.1	Perimeter
lpm: 60.0	D Effluent

Types	Unit
Perimeter	cnt
Effluent	cpn

10 CFR 20 Appendix B Table 2 Effluent Concentrations (listed in order of most to least restrictive radionuclide) Column 1

		Column 1
Alpha-Emitting	Retention	Air
Radionuclide	Class	(µCi/ml)
Th-232	W	4.E-15
Pu-239/240	W	2.E-14
Am-241	W	2.E-14
U-233/234	Y	5.E-14
U-235	Y	6.E-14
U-238	Y	6.E-14
Ra-226	W	9.E-13
(TBD)	(TBD)	(TBD)

Color Legend		
	No exceedance above regulatory criteria	
	Elevated however no exceedance above regulatory criteria	
	Exceedance above regulatory criteria	

^{*} Effluent concentration is a regulatory number from the NRC considered protective of the public

		Column 1
Beta-Emitting	Retention	Air
Radionuclide	Class	(μCi/ml)
Sr-90	Y	6.E-12
Eu-152	W	3.E-11
Eu-154	W	3.E-11
Co-60	Y	5.E-11
Cs-137	D	2.E-10
(TBD)	(TBD)	(TBD)

Page 1 of 1