

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

Air Monitoring Summary Report May 1 to May 31, 2022

Phase IV Non-Time Critical Removal Action, Solid Waste Disposal Area Westside, Installation Restoration Site 12

Former Naval Station Treasure Island

San Francisco, CA

July 2022

DCN: GLBN-0005-F5271-0026

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

Air Monitoring Summary Report May 1 to May 31, 2022

Phase IV Non-Time Critical Removal Action, Solid Waste Disposal Area Westside, Installation Restoration Site 12

Former Naval Station Treasure Island

San Francisco, CA

July 2022

DCN: GLBN-0005-F5271-0026

Prepared for:

Department of the Navy Naval Facilities Engineering Systems Command Southwest BRAC PMO West 33000 Nixie Way, Bldg. 50 San Diego, CA 92147

Prepared by:

Gilbane Federal 1655 Grant Street, Suite 1200 Concord, California 94520

Contract Number: N62473-17-D-0005; Task Order No. N62473-18-F5271

Table of Contents

1.0	Introduction	1-1
2.0	Monitoring Site Locations	2-1
2.1	Dust Monitoring	2-1
2.2	Air Monitoring	2-1
2.3	Radiological Air Monitoring	2-2
3.0	Sampling and Analytical Methods	3-1
3.1	Dust Samples	3-1
3.2	Air Samples	3-1
3.3	Radiological Air Samples	3-2
4.0	Dust Monitoring Results	4-1
5.0	Air Monitoring Results	5-1
6.0	References	6-1

List of Figures

Figure 1 Air and Dust Monitoring Locations IR Site 12 SWDA Westside

Figure 2 Wind Rose IR Site 12 SWDA Westside

List of Tables

Table 1 Dust Monitoring Project Action LevelsTable 2 Air Monitoring Project Screening Criteria

List of Attachments

Attachment 1 PDR Summary Table and Field Forms

Attachment 2 Summary of Air Monitoring and Air Sampling Results

Attachment 3 Radiological Air Monitoring Results

This page intentionally left blank.

Acronyms and Abbreviations

AMP Air Monitoring Plan

BAAQMD Bay Area Air Quality Management District

BAP(Eq) benzo(a)pyrene equivalency

cfm cubic feet per minute

CFR Code of Federal Regulations

DAC derived air concentration

DCP Dust Control Plan

DTSC Department of Toxic Substances Control

Gilbane Gilbane Federal

HERO Human and Ecological Risk Office

IR Installation Restoration

mg/m³ milligram per cubic meter

Navy U.S. Department of the Navy

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PDR personal data-logging real-time aerosol monitor

PM10 particulate matter less than 10 microns in diameter

PUF polyurethane foam

Ra-226 radium-226

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TLV threshold limit value

TSP total suspended particulates

μg/m³ microgram per cubic meter

USEPA United States Environmental Protection Agency

Work Plan Final Work Plan, Phase IV Non-Time Critical Removal Action,

Solid Waste Disposal Area Westside, Installation Restoration Site 12,

Former Naval Station Treasure Island, San Francisco, California

This page intentionally left blank.

1.0 Introduction

This Air Monitoring Report was prepared by Gilbane Federal (Gilbane) as requested by the United States Department of the Navy (Navy) under the Radiological Multiple Award Contract (RADMAC II) N62473-12-D-D005, Contract Task Order N6247317F5271. Gilbane is performing dust and air monitoring at Former Naval Station Treasure Island in accordance with the Final Dust Control Plan (DCP) and Air Monitoring Plan (AMP), included as appendices to *Phase IV Non-Time Critical Removal Action Work Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (Work Plan; Gilbane, 2021).

The DCP describes best management practices and procedures to be implemented to minimize dust generation during work activities. Dust monitoring is conducted to ensure that these procedures are effective. Dust monitoring is also conducted to verify that the working environment meets occupational health and safety standards and that workers are safe. The AMP outlines the requirements for prevention of exposure for construction workers to dust and potential airborne chemicals of concern from the work area. The AMP also establishes the conservative project action levels for dust at the work area boundary to protect residents.

This summary report describes the following:

- Dust and air monitoring sampling locations Section 2.0,
- Dust and air monitoring sample collection and analytical methods **Section 3.0**,
- Dust and air monitoring data **Section 4.0**, and,
- Dust and air monitoring results Section 5.0.

This summary report presents the dust and air monitoring test results at Installation Restoration (IR) Site 12 from May 1st through May 31st, 2022 and compares the results with the established action levels included in the Work Plan (Gilbane, 2021). During this reporting period, the Site 12 air monitoring stations (AMSW1 and AMSW2) operated on May 2nd, 3rd, 4th, 5th, 10th, 11th, 12th, 13th, 16th, 17th, 19th, 20th, 24th and 25th for earth-moving tasks involving potentially contaminated soil.

During the reporting period, personal data-logging real-time aerosol monitoring (PDR) dust data was collected. Air samples were collected and analyzed for lead, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dioxin [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)], total suspended particulates (TSP), and particulate matter less than 10 microns in diameter (PM10). In addition, air samples were analyzed for radiological gross alpha and beta levels.

Air Monitoring Summary Report #15
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 12
Former Naval Station Treasure Island, San Francisco, California

1.0 Introduction

This page intentionally left blank

2.0 Monitoring Site Locations

2.1 Dust Monitoring

During earthmoving activities, several PDR stations are set up to monitor real-time airborne dust concentrations. The purpose of the PDR stations is to act as a first line of defense in protecting workers' health, and ultimately the public's health, during field activities. PDR stations are situated immediately adjacent to the current work area locations most likely to generate the greatest volume of airborne dust and are adjusted as necessary due to changes in wind direction and/or work location. Real-time dust monitoring ensures dust levels remain below action levels during fieldwork operations.

The general locations for dust monitors in IR Site 12 are shown on **Figure 1**. Specific locations of each PDR are described in the individual PDR daily data files. Field forms from each location are presented in **Attachment 1** of this report. During earth moving activities at IR Site 12 (i.e., transportation of excavated soil to the radiological screening yard, excavation, and backfilling), one PDR serves as the upwind (background) location and two PDRs are placed in downwind perimeter locations to represent dust generation from onsite activities. The dust monitors are moved to encompass field work whenever the contractor changes operations and are then given a new naming convention. During the May reporting period two different sets of monitoring locations were used (DMW28, DMW29, DMW30) and (DMW31, DMW32, DMW33). Specifically, the upwind PDR stations were DMW28 and DMW31 and the downwind monitors DMW29, DMW30, DMW31, and DMW32. The wind direction for this reporting period was predominately northern compared to previous periods and the dust monitoring locations were adjusted accordingly for this shift.

2.2 Air Monitoring

Air monitoring samples collected using high volume samplers are collected to identify and quantify airborne contaminants and to confirm the results recorded during dust (PDR) monitoring. Air monitoring stations are mobilized to collect air monitoring samples upwind and downwind of work areas. General locations of the IR Site 12 air monitoring stations are shown on **Figure 1**. The locations of the air monitoring stations are determined based on the prevailing wind direction (typically from the southwest) and are modified as needed.

Weather forecasts including wind direction are checked daily with a weather station located at Building 572. The weather station records temperature, pressure, wind speed and direction, etc., every 30 minutes, 24 hours per day. Wind speed is also monitored near the work site during soil excavation and handling to ensure that work is stopped if sustained winds over 25 miles per hour are encountered. No work stoppages due to sustained wind speed exceedances were required during this reporting period. Wind speed and direction data gathered during work hours for this reporting period, presented on a wind rose diagram in **Figure 2**, generally depict the

wind blowing from the South direction at 5-12 miles/hour with gusts up to 16 miles/hour. Detailed weather data is not reported in this document but can be provided upon request.

High volume air monitoring stations remain stationary while sampling is being conducted; however, locations may be adjusted when the wind direction changes and when overall excavation work areas change from one site to another. Each upwind and downwind high-volume monitoring station includes separate monitoring systems for the following:

- TSP collected daily
- PM10 collected daily
- Lead collected daily
- PAHs, PCBs, and dioxin collected on alternating days

2.3 Radiological Air Monitoring

Radiological air samplers are positioned adjacent to excavation work activities for radiologically impacted soil at one upwind and one downwind location during earthmoving activities associated with radiologically impacted soil. The radiological air samplers may be co-located with PDRs or the high-volume samplers.

3.0 Sampling and Analytical Methods

Dust and air samples are collected during earthmoving activities. However, during precipitation events, the dust and air monitoring units may not be operable. An attempt will be made to collect samples and readings regardless of the weather. If dust or air monitors are found to be malfunctioning or nonfunctional, earthmoving activities will stop until monitors can be repaired or replaced. The Site Health and Safety Officer is responsible for monitoring the air and dust monitoring sampling equipment. In rare cases, due to ancillary equipment malfunction such as generator failure during the night, a sample may be collected that represents a period of less than 24 hours. If this situation occurs, a note is added to the sample result data tables indicating why the full sampling period was not achieved. All AMS samplers run approximately 24 hours before the sample is collected however per FCR04 the final set of samples for the week will be collected on the last workday of the week once intrusive activities have finished for the day. These samples will have a runtime of 7-10 hours to cover the full work shift which meets the minimum 4-hour runtime required for lab analysis. Two sets of samples will be sent to the lab for examination on that final workday of the week. The results will be adjusted for the reduced runtime and fully comparable against project screening criteria.

3.1 Dust Samples

The PDR is a high sensitivity photometric monitor with a light-scattering sensing configuration that has been optimized for the measurement of the respirable fraction of airborne dust, smoke, fumes, and mists. PDRs are used to evaluate real-time monitoring of airborne dust concentrations, to determine if there is a need for additional dust control or personal protection.

3.2 Air Samples

Air samples were sampled in accordance with the United States Environmental Protection Agency (USEPA) reference sampling method for PM10, described in 40 Code of Federal Regulations (CFR) 50, Subpart J. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of PM10 collected.

TSP samples were collected with a high-volume (39 to 60 cubic feet per minute [cfm]) air sampler in accordance with USEPA's reference sampling method for TSP, described in Title 40 CFR, Part 50, Subpart B. Each sample was collected on a filter over an approximately 24-hour period; the filter was then weighed to determine the amount of TSP collected. Once the filter weight was determined, the sample was analyzed for lead in accordance with USEPA Method 6020 using inductively coupled mass spectrometry.

Air samples for PCBs, PAHs, and dioxin are collected and analyzed in accordance

with USEPA Methods TO-4A, TO-13, TO-9A, respectively, using TISCH polyurethane (PUF) samplers. The filter media collected from the air samplers is submitted to the analytical laboratory for appropriate analysis.

PCB, PAH, and dioxin samples are collected on alternating days at the downwind and upwind stations during earthmoving activities.

3.3 Radiological Air Samples

Radiological air monitoring is also conducted upwind and downwind on days of earthmoving activities. Radiological samples are collected with a LV-1 low volume air sampler. Air filters are counted on site following a decay period and are compared with public air concentration limits published in 10 CFR Part 20. Radiological air sampling methods and procedures are detailed in Gilbane Radiological Procedure PR-RP-150 Radiological Survey and Sampling (Gilbane, 2016).

The radiological air sample is counted on a Low Background Protean WPC-9950 and analyzed for gross alpha and beta activity. The calculated airborne concentration in microcuries is then compared to the effluent concentration (often but incorrectly refer to as a derived air concentration [DAC] which applies only to occupational exposures) limit specified in Table 2 of Appendix B to 10 CFR 20. The effluent concentration is the concentration of a given radionuclide in air which, if inhaled continuously over the course of a year, results in an exposure equal to the annual regulatory limit specified in 10 CFR 20.1302. The threshold for radiological effluent air monitoring samples is 10 percent of the effluent concentration, which ensures work practices are evaluated and modified as necessary to ensure the limit is not reached.

4.0 Dust Monitoring Results

If dust (PDR) monitoring equipment alarms, the source of exceedance will be determined by evaluating both upwind and downwind dust (PDR) sample locations. If the difference between upwind and downwind concentrations is greater than the action level for a sustained period of 15 minutes, then earthmoving activities will be halted until dust control measures are implemented. These may include, but are not limited to, adding water to the work area during earth moving tasks, evaluation of alternate work procedures or equipment, and/or cessation of the activity that is creating the dust until the PDR readings are below the screening criteria.

Dust monitoring action levels that are implemented on a real-time basis are listed in **Table 1**. PDR data are collected and reviewed each day by the Site Health and Safety Manager. PDR data are included in **Attachment 1**.

- On May 20th the downwind PDR DMW32 recorded a reading above project screening criteria. The delta between the upwind and downwind monitors remained below action levels. The field crew continues to maintain diligent dust control measures.
- On May 24th PDR readings were observed above project screening criteria, however the field team documented foggy, hazy, and thick low hanging marine layer conditions presented in **Attachment 1**. In conclusion, field work continued as field activities were not generating visible dust and onsite atmospheric conditions generated elevated PDR data. The delta between downwind and upwind monitors remained below action levels.
- On May 25th the downwind PDR DMW32 recorded a reading above project screening criteria however the field team noted on the dust log presented in **Attachment 1** that the wind was kicking up dust from the clean import soil previously laid in the area. No soil movement occurred this day and the team was simply removing fencing on the opposite side of the site along the western most fence line. The delta between downwind and upwind monitors remained below action levels. Contractor continues to maintain diligent dust control measures including frequent surface soil spraying using the water truck onsite.

Table 1: Dust Monitoring Project Action Levels

Method	Monitoring Location	Monitoring Frequency ^a	Action Level b	Action
PDR	Near Workers' Breathing Zones (typically on equipment)	Periodically ^c	<2.0 mg/m ³ >2.0 mg/m ³	<2.0 mg/m ³ continue work in Level D. Increase dust control (i.e., apply water or other suppression method) and/or upgrade to Level C if concentrations >2.0 mg/m ³ .
	Job Site Perimeter	Continuously	<1.0 mg/m ³ >1.0 mg/m ³	Continue work. STOP work, apply water or other dust suppression methods until levels decrease below 1.0 mg/m ³

Notes:

Only the Health and Safety Manager is authorized to downgrade levels of personal protective equipment.

- Frequency of air monitoring may be adjusted by the project Certified Industrial Hygienist after sufficient characterization of site contaminants has been completed, tasks have been modified, or site controls have proven effective.
- b Five readings exceeding the action level in any 15-minute period or a sustained reading exceeding the action level for five minutes will trigger a response. Action levels represent airborne particulate concentrations in excess of background particulate concentrations.
- c PDR will be monitored a minimum of three times a day.
- < less than
- > greater than

mg/m³ milligrams per cubic meter

PDR personal data-logging real-time aerosol monitor

Table 2: Air Monitoring Project Screening Criteria

Chemicals of Concern	Project Screening Criteria (Threshold Limit Value) µg/m ³							
Lead	1,575	TI Site 12 Subchronic Dust Action Level						
TSP	50	TI Site 12 Dust Action Level						
PM10	50	BAAQMD Ambient Air Quality Standard						
BAP(Eq)	55,330	TI Site 12 Chronic Dust Action Level						
PCBsa	NA	TI Site 12 Dust Action Level						
Dioxin ^a	1E+07	TI Site 12 Chronic Dust Action Level						
Radiological (Ra-226)	10% of DAC ^c	Occupational and public air concentration limits for Ra-226 published in 10 Code of Federal Regulations Part 20.						

Notes:

- The dust action level was increased by a factor of 10 to account for the short-term duration of the project relative to the lifetime assumptions incorporated into the toxicity criteria and exposure assumption.
- b BAP(Eq) action level will be ~55 mg/m³ for all excavations
- c Public air concentration limits are commonly referred to as DAC, but are actually Effluent Concentrations from Table 2 for 10 CFR Part 20.

BAAQMD Bay Area Air Quality Management District

BAP(Eq) benzo(a)pyrene equivalency
DAC derived air concentration
mg/m³ milligrams per cubic meter
PCBs polychlorinated biphenyls

PM10 particulate matter smaller than 10 microns in diameter

Ra-226 radium-226

TSP total suspended particulates µg/m³ micrograms per cubic meter

Air Monitoring Summary Report #15
Phase IV NTCRA, SWDA Westside, Installation Restoration Site 12
Former Naval Station Treasure Island, San Francisco, California

4.0 Dust and Air Monitoring Methods

This page intentionally left blank

5.0 Air Monitoring Results

The Human and Ecological Risk Office (HERO) at the request of the California Department of Toxic Substances Control (DTSC) developed dust action levels for community air monitoring for IR Site 12. Sub-chronic and chronic dust action levels as PM10 were calculated for lead, dioxin, benzo(a)pyrene (BAP) equivalency (Eq) by PAHs analysis, and PCBs. As presented in the document *Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California* (HERO, 2018), the action levels were calculated using the maximum chemicals of concern soil concentrations at IR Site 12.

Based on HERO's recommendations, a PM10 dust action level of 50 microgram per cubic meter (ug/m³) will be implemented for all excavation areas at IR Site 12. TSP is expected to be further controlled based on the limit employed for PM10, in accordance with guidance provided by the San Francisco Bay Area Air Quality Management District (BAAQMD), which estimates that PM10 makes up approximately 55 percent of TSP. If it is apparent that project activities are the cause of exceedances, additional control measures will be considered and implemented.

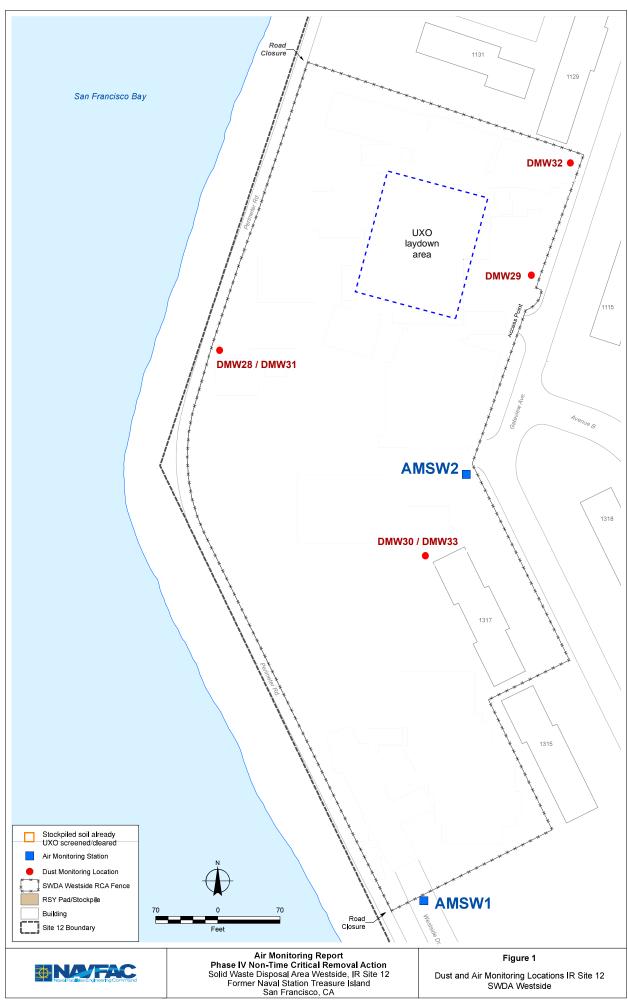
Analytical results from air monitoring samples are compared with the project screening criteria (threshold limit values [TLV]) listed in **Table 2**. Air monitoring results are included in **Attachment 2**. Weather information (including ambient pressure and temperature data) and high-volume air monitoring sample results are presented in **Attachment 2**. Weather information was collected from the weather station at Building 572, Avenue M, Treasure Island, San Francisco, California. Radiological air monitoring results are presented in **Attachment 3**.

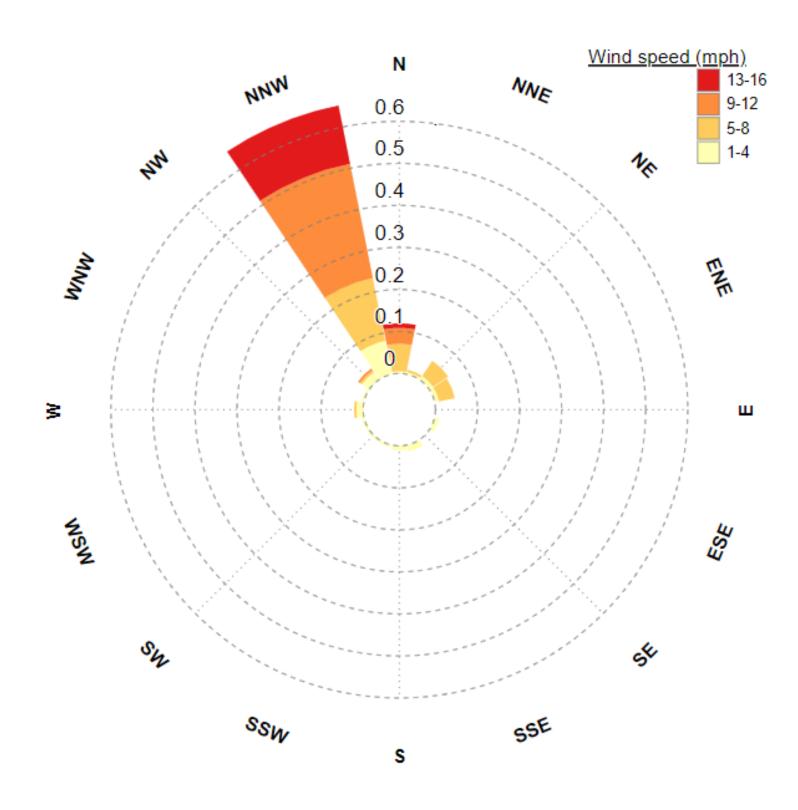
PM10 analytical results from May 2022 did not exceed the project-specific screening criteria presented in **Table 2-2**.

TSP analytical results from May 2022 did not exceed the project-specific screening criteria presented in **Table 2-3**.

Metals (lead), PAHs, total PCBs, and dioxin analytical results from May 2022, did not exceed the project-specific screening criteria presented in **Table 2-4** through **Table 2-7**.

This page intentionally left blank


6.0 References


- Gilbane, 2016. Radiological Procedure PR-RP-150 Radiological Survey and Sampling. January.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island. San Francisco, California. March.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Air Monitoring Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. March.
- Gilbane, 2021. Phase IV Non-Time Critical Removal Action Work Plan, Dust Control Plan, Solid Waste Disposal Area Westside, Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. March.
- HERO, 2018. Dust Action Levels for Installation Restoration Site 12, Former Naval Station Treasure Island, San Francisco, California. September.

This page intentionally left blank

FIGURES

This page intentionally left blank

Wind Rose IR Site 12 SWDA Westside

ATTACHMENT 1 PDR SUMMARY TABLE AND FIELD FORMS (Provided on CD)

This page intentionally left blank

Table 1-1: Personal Data-Logging Real-Time (PDR) Aerosol Montoring Results

DustTrak Unit	IR Site	Date	Maximum ¹ (mg/m³)	Average ¹ (mg/m³)	Delta Between Upwind and Downwind Stations (mg/m³)	Below action level? (0.050 mg/m³) (Yes/No)
DMW28	Site 12		0.020	0.010	NA	Yes
DMW29	Site 12	5/2/2022	0.021	0.010	0.000	Yes
DMW30	Site 12		0.027	0.013	0.003	Yes
DMW28	Site 12		0.015	0.008	NA	Yes
DMW29	Site 12	5/3/2022	0.023	0.010	0.002	Yes
DMW30	Site 12		0.048	0.014	0.006	Yes
DMW28	Site 12		0.029	0.017	NA	Yes
DMW29	Site 12	5/4/2022	0.036	0.026	0.009	Yes
DMW30	Site 12		0.041	0.024	0.007	Yes
DMW28	Site 12		0.019	0.011	NA	Yes
DMW29	Site 12	5/6/2022	0.021	0.013	0.002	Yes
DMW30	Site 12		0.020	0.012	0.001	Yes
DMW28	Site 12		0.017	0.009	NA NA	Yes
DMW29	Site 12	5/9/2022	0.017	0.011	0.002	Yes
DMW30	Site 12	0,0,00	0.018	0.011	0.002	Yes
DMW28	Site 12		0.011	0.006	NA	Yes
DMW29	Site 12	5/10/2022	0.047	0.019	0.013	Yes
DMW30	Site 12	0, 10, 2022	0.023	0.009	0.003	Yes
DMW28	Site 12		0.023	0.010	NA	Yes
DMW29	Site 12	5/11/2022	0.027	0.011	0.001	Yes
DMW30	Site 12	0/11/2022	0.013	0.009	-0.001	Yes
DMW28	Site 12		0.010	0.006	NA	Yes
DMW29	Site 12	5/12/2022	0.018	0.009	0.003	Yes
DMW30	Site 12	0/12/2022	0.008	0.007	0.003	Yes
DMW28	Site 12		0.017	0.008	NA	Yes
DMW29	Site 12	5/13/2022	0.039	0.017	0.009	Yes
DMW30	Site 12	3/13/2022	0.039	0.017	0.009	Yes
DMW28	Site 12		0.019	0.010	NA	Yes
DMW29	Site 12	5/16/2022	0.017	0.008	0.003	Yes
DMW30	Site 12	3/10/2022	0.043	0.017	0.003	Yes
DMW31	Site 12		0.043	0.017	0.009 NA	Yes
DMW32	Site 12	5/19/2022	0.020	0.021	0.013	Yes
DMW33	Site 12	3/19/2022	0.030	0.023	0.002	Yes
DMW31	Site 12		0.030	0.023	NA	Yes
DMW32	Site 12	5/20/2022	0.017	0.010	0.010	Yes
DMW33	Site 12	312012022		0.020	0.000	Yes
DMW33	Site 12		0.014	0.010	0.000 NA	
		5/24/2022	0.053		0.020	Yes
DMW32 DMW33	Site 12 Site 12	J12412U2Z	0.085	0.050 0.033		Yes
DMW31	Site 12		0.053		0.003 NA	Yes
		5/25/2022	0.037	0.023		Yes
DMW32	Site 12	312312022	0.066	0.047 0.031	0.024 0.008	Yes
DMW33	Site 12		0.042			Yes
DMW31	Site 12	EIGEIGOGG	0.008	0.006	NA 0.001	Yes
DMW32	Site 12	5/26/2022	0.015	0.007	0.001	Yes
DMW33	Site 12		0.010	0.007	0.001	Yes
DMW31	Site 12	E/24/2022	0.032	0.020	NA 0.004	Yes
DMW32	Site 12	5/31/2022	0.032	0.024	0.004	Yes
DMW33 Notes:	Site 12		0.047	0.028	0.008	Yes

Notes:

bold = results above screening criteria

mg/m³ = milligrams per cubic meter

NA = not applicable

¹ Maximum and average dust readings from daily PDR data downloads. Data are available upon request.

一旦のかり

Client Name NAVFAC AIR MONITORING LOG

Project / No

T.I. Westside Phase IV NTCRA / J310000800

Date Page of

Weather Sunny Instrument Type: Dust Trak II
Calibration Standards Used Factory Calib

		III - Openson and the second of the second o		8		1430	4		1230	—		0800	Time	
				DMW30	Dmw29	DMW 28	Dmw30	Pmw29	Dmw28	DMW30	pmw29	DMW28	Monitoring Station Number	Dust
										DIMW30 Dimin Will a	Downwind TAD	TAD.	Location	
	7			0.025	0.020	0,0)9	0.017	0.01.3	2009	800,0	0.005	0.004	Reading (mg/m3)	
55									_	0534	234	1280	Unit	9
					en man spip op des s	finishing TAD			antinoe TBD		erest en	THE DE FOR	Activities Remarks	The second section of the section of the second section of the section of

CHIEF IN

AIR MONITORING LOG

Project / No_ Logged by __ Weather____ Client Name NAVFAC T.I. Westside Phase IV NTCRA / J310000800 TUR Date Page

Weather Sunny Instrument Type: Dust Trak II 700F

Dust	Calibration Standards Used
	d Factory Calibrated , Zevo
()	calibrated in office

				/	(1500	(1200	8	-	0800		3
					D12W 30	Dmw 29	Dmw 28	Dm W30	Dmw29	DMW28	DMW30	Dmw29	Dmw28	Station Number	Dust Monitoring
										(dewr with	25	grading a	COASO	
					6.017	0.015	6.014	6.012	0.011	0.013	0.006	0.005	0.004	(mg/m3)	Instrument
1/3/	X										0534	2341	1280	Number	Unit
22						J	continue on			continue 1, no			set up for	Remarks	Activities

Project No. <u>J310000800 SWDA Westside, Site 12, Treasure Island</u> Page Client Name NAVFAC Date

Logged by Weather___ 65°F. Soun man, any ener up 18425

Souny.

Instrument Type: Dust Trak II

т т	 	_		 			- Introduction -											
										4-		1310	4		0845		Time	Calibratio
										10 mm 30	15 MUDICA	25 mag	5MW30	DMW29	DMW28	Number	Monitoring	Calibration Standards Used
													MQ.	WO.	WU C		Location	- 11
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										variation and			Factory Calibrated
			4	7						810.0	0.625	0.017	0.031	0.020	750.0	(mg/m3)	Instrument Reading	
			75										0534	1482	1280	ואמווסמו	Unit	
											· grab dust menitors	wo were truts		Spriking C 274.	· low hanging masine l	Delilaiks	Activities,	
											5,75	ts. of winding		こうない かんりい	y musine level present in			_1

Calibration Standards Used Factory Calibrated	Instrument Type: Dust Trak II	Weather 5/6-60°F. Cloudy. Fog /low hunging warring lares,	Logged by Logan Schwing	Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page (of (Client Name NAVFAC Date 5/6/22
---	-------------------------------	---	-------------------------	--	--------------------------------

				l.					\$		15/20	-		1310	4		5800	Time
									0 MW30	0 MW 29	DAMU28	DMW30	DMW29	DMW28	02 mma	DMW29	DMW28	Dust Monitoring Station Number
															- DW	DWO	"UW Site (leams)	Location
			<i>(</i>		2				40000	40000	0.004	0,014	0,013	110.0	8000	0.009	80000	Instrument Reading (mg/m3)
		A	16/2	1//							l				0534	2341	1280	Unit
					10						In buildram			, M. p-p, m.			· Janidom.	Activities, Remarks

	1, proof 1, 309-1, Ch,	Weather
	Logar Schwing	Logged by
Page of (10000800 SWDA Westside, Site 12, Treasure Island Page	Project No. <u>J310000800</u>
5/9/27	AVFAC Date	Client Name NAVFAC

2	:	Instrument	Dust
			Calibration Standards Used Factory Calibrated
			Instrument Type: Dust Trak II

$\overline{}$		_		_	_	 			 												
	-								1	4		15/5	4		(115			0806		Time	Calibratic
				l						D MW30	DMW29	DAW18	D MUSO	DM W29	1 MW 18	DAMBO	Bringa	DMW28	Number	Monitoring Station	Calibration Standards Osed
					7											· DW	1 DW	· UW Jander Tyredin	1011	Location	Sed_Facioty_callbrated
			10	5/	5					8000	010.0	0.008	0.012	6.011	0.012	0.014	1100	010.0 him	(mg/m3)	Instrument Reading	
		*	5													0534	2341	1280		Unit	
												of may no	9		, W.M-96,	, ,		Joxas		Activities,	

		7	
		44.5- 55° E. Emny	Weather
	(of Schwing	Logged by
of -	d_Page_ ∖	Project No. J310000800 SWDA Westside, Site 12, Treasure Island	Project No.
0/22	5/1	NAVFAC Date	Client Name NAVFAC

Instrument Type: Dust Trak II
Calibration Standards Used Factory Calibrated

		_	_	 	_	 	 	k											
								*		1500	-		1145	-		03500)		Time	
	-							Ogmin a	DMW29	DMW28	DMW30	DMUJ29	DMW28	DMW30	DMW29	DMW28	Number	Monitoring	Dust
			/		9								•	"DW"	Dw Importain	1 do 4/4 ma.		Location	
		5	55					610.0	110'0	0,007	p00,0	0.010	0.010	0.005	800,0	0,006	(mg/m3)	Instrument Reading	- 11
	122													1650	(h£2	1280	Nulliber	Unit	
										of tinished to			und for lunch.			dox 25.	Hernarks	Activities,	
										X									

Client Name NAVFAC Date 0 / 11 / 2 7
Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page) of)
Logged by Logar Schwing
Weather 44°F-57°F 5000
Instrument Type: Dust Trak II
Calibration Standards Used Factory Calibrated

-	 _	_	 						-	7 .									
										-		1450	4 %		1145	4		0740	Time
							/			DMW 30	DMW29	DMW28	STANDARD MW30	1) Mulze	DMW28	DMW30	Drwng Prung	9-7-MMG	Dust Monitoring Station Number
						1							MW30			DW.	- Dw	11,3+ mount	Location
				////	5/	,				0.015	0.00%	0.009	0,008	8000	0.007	0.007	0,010	0.013	Instrument Reading (mg/m3)
			7	/27												0534	2341	1280	Unit Number
												paysing to,			· Michaly,	5		· Texp Judb	Activities, Remarks

		1				
		(42)				
	ř.	1.5/				
		7	7	1		
					/	
			0.007		88 (MMS)	
			0.009		BZMMC	
for keles.	of without for		0.006		Banna	1500
			800.0		05mmg	4
			800,0		DMW29	
	- Mid-day		0,005		DMW28	1150
	· Mob.	17250	800.0	DW.	DMW30	-
19 42 June 2	50.1.	1482	8000	· DW	DMWZ9	
however -	ing TXD bedr	1280 1	2000	11,7 Light MA.	DMW/25	0000
			(mg/m3)		Number	
	Activities,	Unit	Reading	Location	Monitoring Station	Time
			1	- 11	Dust	
•				Jsed Factory Calibrated	ब्र ।	Calibratic
			200	<u>-</u>	ŀ	Instrument Type:
			(but')	Gar Thomas	Wed	Logged by Weather
	geof	e Island Page	Treasu	0 SWDA Westside, Site 12,	lc	Project No.
	5/12/22	Date			me NAVFAC	Client Name
	1			06	AIR MONITORING LOG	AIR MO

Client Name NAVFAC	Date	5/13/22
Project No. J310000800 SWD	Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page \ of \	Page of
Logged by Login >	Chilling	
Weather 4805-62°	Sound.	
Instrument Type: Dust Trak II		
Calibration Standards Head Eactory Calibrated	octony Calibrated	

				1500		1310	4		0730	Time
		DAW 30	DMWZA	DMW28	DMW29	Daw28	DMW30	Dmw29	Dawy &	Dust Time Monitoring Station Number
							o Dw	De mar	trant af wo.	Location
		0.00%	0.025	0.009	0,015	0.009	0.017	0,013	4100	Instrument Reading (mg/m3)
							0534	234	1280	Unit Number
			1	of finishing co					·MCb.	Activities, Remarks
 -			ye.	8						

AIR MONITORING LOG Client Name NAVFAC

Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page_ Logged by Date

Logged by

Weather_

Instrument Type: Dust Trak II

								/.	(1430	<u> </u>		1230	(0800	Time		Calibratio
									DMW30	Dmw29	DMW28	DMW30	DMW29	DMWZ8	DMW30		Dmw28	[Dust Monitoring	Calibration Standards Used
															Davin wind	Down who	18 7 X	Location		sed Factory Calibrated
									0.019	810.0	0.011	0.016	0.015	0.013	0.010	0.012	0.016	Reading (mg/m3)	5	+ Zerocd
	7	A	1/16/2												2341	0534	1280	Number	n H	تم
			7								TADTrucks			TAD trucks		-	SETUPBE	Remarks	Activities	the office.

S HOGING

AIR MONITORING LOG Client Name NAVFAC

Project / No. T.I. Westside Phase IV NTCRA / J310000800 Date Page

Logged by Weather____ Instrument Type: Dust/Trak II Sunny 22

O

Calibration Standards Used Factory Calibrated

	1 1					-				1											
											~		1500	<		1300	←		0800	Time	
											Dm w33	DM W32	DMW31	DM W 33	DMW 32	Dmw31	Dmw33	Dm W32	Dmw31	Monitoring Station Number	Dust
																	Dmw33 dwn wha	downward	npmindo	Location	
											0,025	0,035	0.028	0.021	0.025	0.022	0.043	0.031	0,022	Reading (mg/m3)	
		2//5	4	X	,												2341	0534	1280	Unit Number	
	70	V72											FINISH TAP			TAD			Begin TAD	Activities Remarks	

AIR MONITORING LOG

017 0800 Weather Sunny Instrument Type: Dust Trak II Calibration Standards Used_Factory Calibrated Logged by Project No. J310000800 SWDA Westside, Site 12, Treasure Island Client Name NAVFAC W 0 0 Dm W31 Dm w 33 Dmw32 Dmw33 Dmw 32 DMW31 Monitoring Station DMW31 bmw32 Pm W33 Number Dust down wine downwind Location Q B U 080 0.02 0.020 Instrument Reading (mg/m3) 0.010 022 012 0 rock Date 05 Number 1280 Unit 40 _Page Finish JP Remarks Activities, <u>`</u> J JAD TAI)

AIR MONITORING LOG

me NAVFAC o. J310000800 SWDA Westside, Site 12,	Date re Island	5724/22 Page 1 of	1/22 1_of_1	'
Logged by Logar Schwing		,		
Weather 487-67°F/ Simy, AM he	have 1	Mew,'s	AM have I new in a layour	1
Instrument Type: Dust Trak II				
Calibration Standards Used Factory Calibrated				
Dust		-		

		O Residence	
		Time 0730	Calibratic
		Nontoring Station Number Number DMW31 DMW31 DMW31 DMW31 DMW31 DMW32 DMW32 DMW32 DMW32	Dust Dust
		Location OW TRD Aparties	sed <u>Factory Calibrated</u>
	Z H	Reading (mg/m3) 0.054 0.059 0.050 0.036 0.030 0.033	Instrument
		Unit Number 1280 0534 234	
		Activities, Remarks Remarks Reacting high he has begun his has been with west will that westings have some a down somewhat heze	
9		narks marks while the the entrue of the seed with the the them on the them on the them on the them of the them the	

cilbane

AIR MONITORING LOG

Client Name NAVFAC

Date 5/25/23

Logged by Weather____ Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page 508-67"F. Logue 5 chwing Emmy. windy. Jerry <u>'</u>oָ

Calibration Standards Used Factory Calibrated

Instrument Type: _Dust Trak II

									4		1445	4		1115	4		0300	Time
							/		Dain 33	DMW32	120mgs	DMW33	DMW 32	DMM 51	DMW33	DMW 32	DMW31	Dust Monitoring Station Number
															100	SW .	0000 Site / leanup	
				\\ 7	35				0.033	H200	710.0	0,030	0.043	0.026	0.037	4400	0.039	Instrument Reading (mg/m3)
		Ś	3/	,											1452	17550	1280	Unit Number
		100									· last readings	V : Sm, Direct	be blowing, No	in yould 2 smuct			1600gint 1:34 mix	Activities, Remarks
												No so y meremand	are is doing	liveached high			the no work	

Project No. J310000800 SWDA Westside, Site 12, Treasure Island AIR MONITORING LOG
Client Name NAVFAC Date _Page_

Logged by Weather___ raps 13.34 Thuing

Instrument Type: _Dust Trak II
Calibration Standards Used Factory Calibrated

_																				
										/		4		13/0	4		0300		Time	
					1				/			SEMM C	DIMUS 32	DIMM 51	DMW33	DAW32	(2 mm C	Number	Monitoring	Dust
						7	757							-	e DW	* Du)	Smay 24% MA.		Location	
				/(62/97	/11/	/					0.007	0.011	0.004	0.013	0,007	0.007	(mg/m3)	Reading	- 11
															h659	1462	1280		Unit	
														My dr brilliann 800			of the setup land	nellains	Activities,	
														12			0			

Client Name NAVFAC	NAVFAC	Date	5	1/8	5
Project No.	Project No. J310000800 SWDA Westside, Site 12, Treasure Island Page	easure Island	Page	of	-
Logged by	Jogan Halvery		, ,	ļ	
Weather	46-64°F. Franx				
Instrument 7	Instrument Type: Dust Trak II				

							1510			1346	4		v300	Time	Calibrati
					MW33	Jam M.	DMW31	DMW33	52 MWC1	1 Smins	DMW33	DMW32	DMW)31	Monitoring Station Number	Dust Dust
											P MG.	, Swg.	opinion that mos	Location	Used Factory Calibrated
	4				0.026	0.025	0.023	0.623	0.626	210,0	0.630	0.026	0,036	Reading (mg/m3)	III.
	22										0534	1452	1286	Unit Number	
						Site semmity	Mann wither 100					· Setul.	Azzynyom.	Activities, Remarks	
/							U								

ATTACHMENT 2 SUMMARY OF AIR MONITORING AND AIR SAMPLING RESULTS (Provided on CD)

This page intentionally left blank

Table 2-1: Ambient Pressure and Temperature Monitoring Results

Sample Date	Ambient Pressure (inches of Hg)	Ambient Temperature (°F)	Ambient Temperature (°K)
5/3/2022	30.03	56.15	286.57
5/4/2022	29.97	55.71	286.32
5/5/2022	29.99	52.33	284.44
5/11/2022	30.21	51.63	284.06
5/12/2022	30.28	53.13	284.89
5/13/2022	30.29	54.61	285.71
5/13/2022	30.22	61.78	289.69
5/17/2022	30.05	54.75	285.79
5/20/2022	29.89	60.86	289.18
5/20/2022	29.84	59.74	288.56
5/25/2022	29.81	60.95	289.23

Weather data collected from weather station at Building 572, Avenue M, Treasure Island, San Francisco, CA

°F = Degrees Fahrenheit

Hg = mercury

°K = Degrees Kelvin

Table 2-2: Particulate Matter Smaller than Ten Microns (PM10)

Location ID	Sampling Period (Hours)	Sample Date	Particulate Matter Less Than 10 Microns in Diameter (ug/m³)	Delta between Downwind and Upwind Stations (ug/m³)	PM10 Exceedance? (Yes/No)
		Screening	Criteria		50
	24.71	05/03/2022	23	NA	NA
	22.12	05/04/2022	29	NA	NA
	23.55	05/05/2022	16	NA	NA
	22.36	05/11/2022	12	NA	NA
	23.19	05/12/2022	13	NA	NA
AMSW1	22.99	05/13/2022	13	NA	NA
	6.77	05/13/2022	11	NA	NA
	24.40	05/17/2022	19	NA	NA
	22.06	05/20/2022	32	NA	NA
	6.42	05/20/2022	26	NA	NA
	24.71	05/25/2022	52	NA	NA
	25.23	05/03/2022	32	9	No
	22.52	05/04/2022	55	26	No
	23.52	05/05/2022	57	41	No
	23.26	05/11/2022	36	24	No
	23.64	05/12/2022	33	20	No
AMSW2	23.12	05/13/2022	24	11	No
	6.44	05/13/2022	16	5	No
	24.94	05/17/2022	31	12	No
	23.04	05/20/2022	39	7	No
	6.02	05/20/2022	45	19	No
	24.20	05/25/2022	68	16	No

ug/m3 = micrograms per cubic meter

NA = Not applicable

PM10 = particulate matter less then 10 microns in diameter

bold = result above screening criteria

^{* =} generator/sampler malfunction

Table 2-3: Total Suspended Particulates Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Total Suspended Particulate (ug/m³)	Delta Between Downwind and Upwind Stations (ug/m³)	TSP Exceedance? (Yes/No)
		Screening Criteria			50
	24.73	05/03/2022	38.6558	NA	NA
	22.11	05/04/2022	37.898	NA	NA
	23.57	05/05/2022	29.4059	NA	NA
	22.35	05/11/2022	31.1608	NA	NA
	23.18	05/12/2022	22.745	NA	NA
AMSW1	22.96	05/13/2022	21.299	NA	NA
	6.75	05/13/2022	22.5605	NA	NA
	24.41	05/17/2022	35.4307	NA	NA
	22.08	05/20/2022	48.4464	NA	NA
	6.44	05/20/2022	42.8623	NA	NA
	24.71	05/25/2022	84.8544	NA	NA
	25.25	05/03/2022	48.0569	9.4011	No
	22.50	05/04/2022	79.2314	41.3334	No
	23.52	05/05/2022	67.3791	37.9732	No
	23.25	05/11/2022	49.4627	18.3019	No
	23.65	05/12/2022	43.7285	20.9835	No
AMSW2	23.16	05/13/2022	41.0792	19.7802	No
	6.47	05/13/2022	33.6049	11.0444	No
	24.94	05/17/2022	53.7554	18.3247	No
	22.03	05/20/2022	39.5577	-8.8887	No
	6.01	05/20/2022	76.037	33.1747	No
	24.21	05/25/2022	96.3289	11.4745	No

J = estimated value

ug/m³ = micrograms per cubic meter

NA = Not applicable

TSP = total suspended particulate

bold = results above screening criteria

^{* =} generator/sampler malfunction

Table 2-4: Lead by EPA 6020 Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Lead (ug/m³)	Lead Exceedance? (Yes/No)
	Screenin			1,575
	24.71	05/03/2022	0.0013	No
	22.12	05/04/2022	0.00052 J	No
	23.55	05/05/2022	0.00063 J	No
	22.36	05/11/2022	0.0011	No
	23.19	05/12/2022	0.0014	No
AMSW1	22.99	05/13/2022	0.0013	No
	6.77	05/13/2022	0.0025 J	No
	24.4	05/17/2022	0.00053 J	No
	22.06	05/20/2022	0.0014	No
	6.42	05/20/2022	0.0025 J	No
	24.71	05/25/2022	0.0032	No
	25.23	05/03/2022	0.0027	No
	22.52	05/04/2022	0.0057	No
	23.52	05/05/2022	0.011	No
	23.26	05/11/2022	0.0048	No
	23.64	05/12/2022	0.0029	No
AMSW2	23.12	05/13/2022	0.0024	No
	6.44	05/13/2022	0.0036	No
	24.94	05/17/2022	0.0017	No
	23.04	05/20/2022	0.0021	No
	6.02	05/20/2022	0.0062	No
	24.2	05/25/2022	0.0047	No

J = indicates an estimated value

ug/m³ = micrograms per cubic meter

bold = results above screening criteria

^{* =} generator/sampler malfunction

Table 2-5: Polycyclic Aromatic Hydrocarbons by TO-13 Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	BAP(Eq) Exceed- ance? (Yes/No)	BAP(Eq)	2-Methyl-naph thalene (ug/m³)	Acenaph- thene (ug/m³)	Acenaph- thylene (ug/m³)	Anthracene (ug/m³)	Benzo(a) anthracene (ug/m³)	Benzo(a) pyrene (ug/m³)	thene (ug/m³)	Benzo(g,h,i) perylene (ug/m³)	thene (ug/m³)	Chrysene (ug/m³)	Dibenz(a,h)anth racene (ug/m³)	Fluoran- thene (ug/m3)	Fluorene (ug/m3)	Indeno (1,2,3- c,d) pyrene (ug/m3)	Naph- thalene (ug/m3)	Phenan- threne (ug/m3)	Pyrene (ug/m3)
	Screening	Criteria ¹		55,330	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
AMSW1	23.56	05/05/2022	No	0	0.00089 J	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	0.0027	0.00032 J	< 0.00059
	22.94	05/13/2022	No	0	0.0017	0.00037 J	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	< 0.00059	0.00026 J	< 0.00059	0.0049	0.00057 J	< 0.00059
	22.05	05/20/2022	No	0	0.0014 J+	0.00042 J	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	0.00035 J	< 0.00063	0.0038	0.00063	< 0.00063
AMSW2	23.52	05/05/2022	No	0	0.00066 J	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055	0.0019	0.00041 J	< 0.00055
	23.09	05/13/2022	No	0	0.0016	0.0003 J	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053	0.00036 J	0.00035 J	< 0.00053	0.0041	0.0012	< 0.00053
	23.04	05/20/2022	No	0	0.0015 J+	0.00041 J	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	0.00051 J	0.00049 J	< 0.0006	0.0039	0.0019	0.00026 J

¹ The dust action level was adjusted by a factor of 10 to account for the short-term duration of the project.

NA = Not applicable

NE = None established

BAP(Eq) = Benzo(a)pyrene equivalency

J = estimated value

UJ = Nondetected at an estimated reporting limit

ug/m3 = micrograms per cubic meter

bold = results above screening criteria

Table 2-6: Polychlorinated Biphenyls by TO-4A Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	Total PCB Exceedance? (Yes/No)	Total PCB	PCB-1016 (Aroclor 1016) (ug/m³)	PCB-1221 (Aroclor 1221) (ug/m³)	PCB-1232 (Aroclor 1232) (ug/m³)	PCB-1242 (Aroclor 1242) (ug/m³)	PCB-1248 (Aroclor 1248) (ug/m³)	PCB-1254 (Aroclor 1254) (ug/m³)	PCB-1260 (Aroclor 1260) (ug/m³)
	Screening Criteria			NE							
	22.04	05/04/2022	NA	0	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
AMCIAIA	23.19	05/12/2022	NA	0	< 0.00083	< 0.00083	< 0.00083	< 0.00083	< 0.00083	< 0.00083	< 0.00083
AMSW1	24.42	05/17/2022	NA	0	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077
	24.65	05/25/2022	NA	0	< 0.00079	< 0.00079	< 0.00079	< 0.00079	< 0.00079	< 0.00079	< 0.00079
	22.53	05/04/2022	NA	0	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
AMOMO	23.65	05/12/2022	NA	0	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074
AMSW2	24.94	05/17/2022	NA	0	< 0.00072	< 0.00072	< 0.00072	< 0.00072	< 0.00072	< 0.00072	< 0.00072
	24.20	05/25/2022	NA	0	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077	< 0.00077

NA = Not applicable

NE = None established

PCB = polychlorinated biphenyl

ug/m³ = micrograms per cubic meter

< = nondetected less than associated reporting limit

J = estimated value

* = sampler/generator malfunction

Table 2-7: Dioxin as 2,3,7,8-TCDD by TO-9A Monitoring Results

Location ID	Sampling Period (Hours)	Sample Date	2,3,7,8-Tetrachlorodibenzo-p- dioxin (ug/m³)	Dioxin Exceedance? (Yes/No)
	S	Screening Criteria	а	10,000,000 ug/m ³
	24.70	05/03/2022	< 0.00000002	No
AMSW1	22.31	05/11/2022	< 0.00000002	No
AIVIOVVI	6.65	05/13/2022	< 0.00000008	No
	6.43	05/20/2022	< 0.00000008	No
	25.22	05/03/2022	< 0.00000002	No
AMSW2	23.27	05/11/2022	< 0.00000002	No
AIVIOVVZ	6.41	05/13/2022	< 0.00000008	No
	6.02	05/20/2022	< 0.00000008	No

J = estimated value

UJ = Nondetected at an estimated reporting limit ug/m³ = micrograms per cubic meter

< = nondetected less than associated reporting limit

bold = results above screening criteria

^{* =} generator / sampler malfunction

ATTACHMENT 3 RADIOLOGICAL AIR MONITORING RESULTS (Provided on CD)

This page intentionally left blank

AIR SAMPLING EQUIPMENT

CIID	ane						Alf	SAMI	PLING	EQUIP	MENI
					Project In	formation		Effe	ctive as of:	30 Jun 20	22
Contract /	Task Orde	r Number:	Project Tit	le / Locatio	n:				Gilbane P	roject Num	ber:
N62	473-17-D-0	0005		IR Site 12	RD/RA, Tr	easure Isla	nd, SF, CA	ı		31000080	0
Р	Perimeter/E	ffluent Air	Sampling	ampling Equipment Breathing Zone Air Sampling Equipment							
Equip	,	Air Sample	r	Serial	Cal Due	Equip		Air Sample	r	Serial	Cal Due
Number	I	Make/Mode	el	Number	Date	Number	I	Make/Mode	el	Number	Date
PE01		LV-1		4532	5/20/21	BZ01					
PE02		LV-1		4360	5/20/21	BZ02					
PE03		LV-1		4352	4/20/22	BZ03					
PE04		LV-1		4300	4/20/22	BZ04					
PE05		LV-1		4299	6/9/22	BZ05					
PE06		LV-1		4313	6/9/22	BZ06					
PE07						BZ07					
PE08						BZ08					
PE09						BZ09					
PE10						BZ10					
PE11						BZ11					
PE12						BZ12					
PE13						BZ13					
PE14						BZ14					
PE15						BZ15					
PE16						BZ16					
PE17						BZ17					
PE18						BZ18					
PE19						BZ19					
PE20						BZ20					
	•			Sam	ple Counti	ng Instrun	nents				
Inst	Model	Serial	Cal Due	Count T	ime (min)	Backgrou	ind (cpm) ^a	Abs Ct Eff	(cnts/dis)	MDC (dpn	n/sample) ^c
Number	Number	Number	Date	Bkgrd	Source	Alpha	Beta	Alpha	Beta	Alpha	Beta
Α	Protean	615068	9/15/21	1	1	0.0	1.1	0.352	0.355	15.4	29.0
В	Protean	9085100	10/5/21	1	1	0.0	1.2	0.356	0.352	15.2	29.9
С	Protean	9085100	10/1/22	1	1	0.0	1.2	0.359	0.355	15.1	29.6
D	Protean	9085101	10/1/22	1	1	0.0	1.2	0.315	0.355	17.2	29.6
Е											
Notos											

Notes

^a background values obtained from instrument set-up worksheet

^b absolute counting efficiency = 4π efficiency calculated as ratio of measured count rate and contained activity [total dpm] of source (see IN-RP-141, *Alpha/Beta Scaler Instrument Set-Up and Operation*)

MDC calculated using the Stapleton approximation (see IN-RP-141, Alpha/Beta Scaler Instrument Set-Up and Operation)

AIR SAMPLE RESULTS - PUBLIC EXPOSURE MONITORING

														AIN SA	IVIPLE	KESUL	.15 - P	OBLIC	EXPU	JUKE	VICIVII	OKING
			P	roject Inforn	nation				Effluent Air Concentration Sampling Period						Color Codes							
Contract /	Task Order N		Title / Locat			Gilbane Project I	Number:					Alpha	Beta Air samples collected			ected	Value < MDC Value <			0.1 x Efflu	ent Conc	
N6:	2473-17-D-00	05 IR S	Site 12 RD/R	A, Treasure I	sland, SF, CA	J3	10000800			Rad	ionuclide	Ra-226	Sr-90	between 22 Mar 2021			< 72 hr decay time			Value > 0.1 x Effluent Conc		
		lı	nformation ef	fective as of:	30 Jun 2022				Eff	luent Conc	(μCi/ml)	9.E-13	6.E-12	and	24 May 20	22	Data reviewed Value >				> Effluent Conc	
			;	Sample Colle	ction							Count l	nformatio	on			Sample Results			Initials		tials
Sample	Sample	Sample	Equip	Ave Flow	Start	End	Elapsed	Volume	Inst	Count	Time	Counting	Gross	Activity	Net	dpm	Activity	(µCi/ml)	*Effluent	Conc (%)	Count	Data
Number	Туре	Location	No	Rate (lpm)	Day Time	Date Time	Time (min)	(ml)	No	Date	(min)	Units	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Tech	Reviewe
AS-459	Perimeter	Upwind	PE03	60	5/2/22 5:25	5/2/22 15:20	595	3.6E+07	D	6/2/22	1	cpm	0.45	4.70	1.4	9.9	1.8E-14	1.2E-13	2.0%	2.1%	DB	CB
AS-460	Perimeter	Downwind	PE04	60	5/2/22 5:30	5/2/22 15:15	585	3.5E+07	D	6/2/22	1	cpm	0.35	5.10	1.1	11.0	1.4E-14	1.4E-13	1.6%	2.3%	DB	CB
AS-461	Perimeter	Upwind	PE03	60	5/3/22 5:18	5/3/22 14:53	575	3.4E+07	D	6/2/22	1	cpm	0.10	4.40	0.3	9.0	4.1E-15	1.2E-13	0.5%	2.0%	DB	CB
AS-462	Perimeter	Downwind	PE04	60	5/3/22 5:15	5/3/22 15:00	585	3.5E+07	D	6/2/22	1	cpm	0.30	4.25	1.0	8.6	1.2E-14	1.1E-13	1.4%	1.8%	DB	CB
AS-463	Perimeter	Upwind	PE03	60	5/4/22 5:05	5/4/22 13:25	500	3.0E+07	D	6/2/22	1	cpm	0.30	4.05	1.0	8.0	1.4E-14	1.2E-13	1.6%	2.0%	DB	CB
AS-464	Perimeter	Downwind	PE04	60	5/4/22 5:00	5/4/22 13:20	500	3.0E+07	D	6/2/22	1	cpm	0.05	3.05	0.2	5.2	2.4E-15	7.8E-14	0.3%	1.3%	DB	CB
AS-465	Perimeter	Upwind	PE03	60	5/10/22 5:15	5/10/22 15:08	593	3.6E+07	D	6/2/22	1	cpm	0.25	3.95	0.8	7.7	1.0E-14	9.8E-14	1.1%	1.6%	DB	CB
AS-466	Perimeter	Downwind	PE04	60	5/10/22 5:10	5/10/22 15:00	590	3.5E+07	D	6/2/22	1	cpm	0.35	4.20	1.1	8.5	1.4E-14	1.1E-13	1.6%	1.8%	DB	CB
AS-467	Perimeter	Upwind	PE03	60	5/11/22 5:10	5/11/22 14:55	585	3.5E+07	D	6/2/22	1	cpm	0.25	3.60	0.8	6.8	1.0E-14	8.7E-14	1.1%	1.4%	DB	CB
AS-468	Perimeter	Downwind	PE04	60	5/11/22 5:15	5/11/22 15:00	585	3.5E+07	D	6/2/22	1	cpm	0.30	3.95	1.0	7.7	1.2E-14	9.9E-14	1.4%	1.7%	DB	CB
AS-469	Perimeter	Upwind	PE03	60	5/12/22 5:10	5/12/22 15:00	590	3.5E+07	D	6/2/22	1	cpm	0.20	4.55	0.6	9.4	8.1E-15	1.2E-13	0.9%	2.0%	DB	CB
AS-470	Perimeter	Downwind	PE04	60	5/12/22 5:05	5/12/22 15:05	600	3.6E+07	D	6/2/22	1	cpm	0.10	4.30	0.3	8.7	4.0E-15	1.1E-13	0.4%	1.8%	DB	CB
AS-471	Perimeter	Upwind	PE03	60	5/13/22 5:10	5/13/22 14:00	530	3.2E+07	D	6/2/22	1	cpm	0.05	3.85	0.2	7.5	2.2E-15	1.1E-13	0.2%	1.8%	DB	CB
AS-472	Perimeter	Downwind	PE04	60	5/13/22 5:05	5/13/22 14:05	540	3.2E+07	D	6/2/22	1	cpm	0.15	3.90	0.5	7.6	6.6E-15	1.1E-13	0.7%	1.8%	DB	CB
AS-473	Perimeter	Upwind	PE03	60	5/16/22 5:10	5/16/22 14:50	580	3.5E+07	D	6/2/22	1	cpm	0.15	4.70	0.5	9.9	6.2E-15	1.3E-13	0.7%	2.1%	DB	CB
AS-474	Perimeter	Downwind	PE04	60	5/16/22 5:15	5/16/22 14:45	570	3.4E+07	D	6/2/22	1	cpm	0.05	4.20	0.2	8.5	2.1E-15	1.1E-13	0.2%	1.9%	DB	CB
AS-475	Perimeter	Upwind	PE03	60	5/19/22 5:10	5/19/22 15:15	605	3.6E+07	D	6/2/22	1	cpm	0.25	3.85	0.8	7.5	9.8E-15	9.3E-14	1.1%	1.5%	DB	CB
AS-476	Perimeter	Downwind	PE04	60	5/19/22 5:15	5/19/22 15:08	593	3.6E+07	D	6/2/22	1	cpm	0.15	4.85	0.5	10.3	6.0E-15	1.3E-13	0.7%	2.2%	DB	CB
AS-477	Perimeter	Upwind	PE03	60	5/20/22 5:15	5/20/22 14:30	555	3.3E+07	D	6/2/22	1	cpm	0.35	4.05	1.1	8.0	1.5E-14	1.1E-13	1.7%	1.8%	DB	CB
AS-478	Perimeter	Downwind	PE04	60	5/20/22 5:20	5/20/22 14:40	560	3.4E+07	D	6/2/22	1	cpm	0.45	4.20	1.4	8.5	1.9E-14	1.1E-13	2.1%	1.9%	DB	СВ
AS-479	Perimeter	Upwind	PE03	60	5/24/22 5:10	5/24/22 14:30	560	3.4E+07	D	6/2/22	1	cpm	0.25	4.80	0.8	10.1	1.1E-14	1.4E-13	1.2%	2.3%	DB	СВ
AS-480	Perimeter	Downwind	PE04	60	5/24/22 5:15	5/24/22 14:35	560	3.4E+07	D	6/2/22	1	cpm	0.05	3.90	0.2	7.6	2.1E-15	1.0E-13	0.2%	1.7%	DB	CB
												cpm			#N/A	#N/A	#N/A	#N/A				
												cpm			#N/A	#N/A	#N/A	#N/A				

CFM to LPM (Converter
1 cfm = 28.3168	46592 lpm
Enter cfm:	2.1
lpm:	60.0

Sample
Types
Perimeter
Effluent
Lillacit

Counting	
Units	
cnts	
com	

10 CFR 20 Appendix B Table 2 Effluent Concentrations (listed in order of most to least restrictive radionuclide)

		Column 1
Alpha-Emitting	Retention	Air
Radionuclide	Class	(μCi/ml)
Th-232	W	4.E-15
Pu-239/240	W	2.E-14
Am-241	W	2.E-14
U-233/234	Υ	5.E-14
U-235	Υ	6.E-14
U-238	Υ	6.E-14
Ra-226	W	9.E-13
(TBD)	(TBD)	(TBD)

U-238	Υ	6.E-14
Ra-226	W	9.E-13
(TBD)	(TBD)	(TBD)
		Column 1
Beta-Emitting	Retention	Air
Radionuclide	Class	(μCi/ml)
Sr-90	Υ	6.E-12
Eu-152	W	3.E-11
Eu-154	W	3.E-11
Co-60	Υ	5.E-11

D

2.E-10

(TBD) (TBD)

Cs-137

(TBD)

Color Legend
No exceedance above regulatory criteria
Elevated however no exceedance above regulatory criteria
Exceedance above regulatory criteria

^{*} Effluent concentration is a regulatory number from the NRC considered protective of the public

IN-RP-152 (Aug 2021) Page 1 of 1