Time Is - Time Was - Time Is Past
Computers for Intelligence

BY HOWARD H. CAMPAIGNE

Unclassified

The "Intelligence" of the sub-title does not mean "military information," which it could very well at a conference* like this, but means rather "adaptive behavior," or "imagination," or "pattern recognition." Frankly, I do not have a single definition for what I mean, but a recurring idea (See Bibliography) has been that some day a machine might be made which exhibited intelligence. Roger Bacon was the first to succeed, it was said, but his machine refused to discuss trivialities with man and then destroyed itself in frustration at man's inability to communicate with it. The story of Roger Bacon is that he succeeded in building an artificial intelligence, probably in the year 1277 or just before that, for that was the year in which he was arrested and imprisoned, charged with "innovations." It was a defense project, the ultimate objective being to build a wall of brass around England. His intelligence was housed in an artificial head. It took him 7 years to build it—about right for a defense project. When it was done, he spent 60 days debugging, mostly overtime. That sounds familiar. This debugging stretch was ended by the irresistible need for sleep, so he left his assistant in charge. That clown could hardly wait for Friar Bacon to fall asleep in order to push the start button. The head said "Time is," and lit the halt light. Some clownish talk and another push on the button elicited "Time was." More irrelevant comments and a button push caused the shout "Time is past," and the machine smashed itself on the floor. That was the end of the project. Clearly the head was about to say that to get support they needed the term a "real time system," but it could not make itself understood. This scene of acute frustration has typified artificial intelligence ever since.

The report on this was written by Robert Greene in 1588, 311 years later, almost a record delay for a progress report. It was typed in 1592 and released in 1630. A bad precedent.

If we are to have a demonstration of intelligence by a machine, we must agree in advance on what constitutes an adequate demonstration. I have talked to some of my colleagues about this, and I despair of ever getting any agreement. By and large there is some

* Read before the MIL-E-CON 8, 16 Sept 1964.
consensus that by an intelligent machine we mean one which exhibits human behavior of some kind. Turing\(^1\) reduced this to a contest with teleprinters (a weapon which computers can use readily) and defined intelligence as the ability to imitate a man. Kelly and Selfridge\(^2\) suggested an even simpler game. But beyond this there is no agreement. Some of my friends would be satisfied that a machine was intelligent if it could outperform some human being. But there are human beings—excepted company whose performance is miserably low, and this standard may already have been met. Others, also my friends, would not admit intelligence in a machine unless it excelled all human beings. If it could do this, then who would be the judge?

If we are to demonstrate intelligence in a machine, we must decide what we mean. To do this we can start at either end; what can a machine do or what can a man do? The latter is not nearly as well understood as one would think. The abilities lumped together under the word “intelligence” are various and not ordinarily distinguished clearly one from another. Occasionally an “idiot savant” appears who demonstrates vividly that intelligence is composite. He can do arithmetic with great ease but is unable to comprehend social relations, or he has great skill in music but none in language, or exhibits some other such striking disparity in abilities. Finding what these abilities are is the unfinished job of the psychologist.

These two approaches are like digging a tunnel by starting at both ends, although in this case we know so little of the mountain that we don’t know that these diggers are even going toward each other, let alone whether they will meet. And if, by accident, they should meet, we don’t know of what use the tunnel will be!

To my mind, the more productive way is to start with the machine and find what limits its ability. Even if such a program has a negative result and shows that intelligence is not achievable by a machine and that man is able to do something of a higher type, it will be useful to know the boundaries. I do not expect this to be the result. I think that as we learn more of what machines can do and more about what is rational behavior by human beings the question will go away.

A useful analogy is the development of flying. For centuries men dreamed of imitating birds. DaVinci made drawings of linkages which would work a wing. DaVinci wrote “A bird is an instrument working according to Mathematical law, which instrument it is

\(^1\) Alan Turing, “Computing Machinery and Intelligence” Mind, 59, New Series 236, October 1950, pp. 433–460.

within the capacity of men to reproduce with all its movements.”
At that time arguments were advanced that “birds are supported
by the hand of God” and “if He meant us to fly, God would have given
us wings.” In the end it was components unknown in nature, the
propeller and the internal combustion engine, that opened the way to
a solution. These components were developed by people more inter­
ested in what could be done with engines than they were in imita­
ting birds. The Wright brothers’ solution was not satisfactory to all
concerned, and interest in ornithopters continued for a while, but now
the question of how closely a man can imitate a bird is dormant.

Meszar3 said “any mental process which can be adequately repro­
duced by automatic systems is not thinking.” Since then we have
had the following demonstrations: theorem proving by Gelernter,
checkers playing by Samuel, music composition by Hiller and
Isaacson, assembly line balancing by Tonge in 1961, designing motors
by Gold in 1959, and freshman calculus by Slagle in 1961.

Minsky4 has listed, as clearly as the muddled state of the art per­
mits, operations which must be performable by any thinking machine.
He describes these as search, pattern recognition, learning, planning,
and induction. The order cited is that of increasing sophistication,
that is to say, of decreasing understanding. There have been re­
spectable demonstrations of each of these except the last, induction.
Search has been implemented and written about by a great number
of investigators; the simplest of the concepts, it still furnishes much
discussion and is not to be disposed of in the near future.5 Pattern
recognition here means matching against a prototype; this is being
done commercially as in the reading of checks written with magnetic
ink, although the limitations on the technique are not well understood.
Learning is here restricted to adaptive behavior, which in its simplest
form can be easily demonstrated, but which titilates us in our limited
ability to generalize; in its most general form it would solve all of our
problems. If we equate adaptive behavior with learning and if we
assume no limit on learning (why should it be limited?), then, as I. J. Good says, this is the last invention man will ever have to make.
What Minsky calls “planning,” I would call “reformulation.” Dem­

3 J. Meszar, “Switching Systems as Mechanized Brains,” Bell Telephone
Record, February 1953.
4 Marvin Minsky, “Steps Toward Artificial Intelligence,” Proc IRE, 49,
5 For example, C. E. Shannon, “Programming a Computer to Play Chess,”
6 Alan Newell, J. C. Shaw and H. A. Simon, “Empirical explorations of the
who show a way of finding pertinent intermediate goals. The last in his list is induction; this is the 64 question as we see it today; no demonstrations have been made that I know of. Another name for induction is jumping to conclusions.

Newell says "if ever a fully capable intelligent program is realized, it will be recognized by noting that it can get along without any programmer at all."

Minsky says "Almost any problem can be converted into a problem of finding a chain between two terminal expressions in some formal system."

Let me go over Minsky's list again, this time looking toward the directions in which these techniques, if we had them, would generalize. The problem of search, listed by Minsky as the first step in his program toward artificial intelligence, has great generality and has had many contributions from many sources. Hill climbing, the method of steepest descent, heuristic methods, all are attempts to find ways to exploit the structure of the space being searched. Basic as this technique is, it still may be of complete generality, for any solution can be stated in terms of a choice of paths. If one thinks of search as analogous to a man exploring territory, then the amount he can see at one time is the important parameter. Crossing the plains toward a distinctive peak in daylight is different from thrashing through the jungle in the dark.

The term "pattern recognition" could be interpreted to mean the perception of similarities in previously undigested data. In this broad sense it is very much like, perhaps equivalent to, induction. It was not used in this sense by Minsky. In the narrower sense of recognizing a resemblance to a prototype it still is powerful in categorizing concepts.

"Learning" too is often used more broadly than Minsky used it. A device which was adaptive in the broadest sense could accommodate to any situation, barring a catastrophe. The biological ecological system of evolution may be doing just this. The analogy between evolution and learning is a striking one but also painful because of the slow reaction of the first. Evolution is a blind search. The ecological system is searching in parallel, of course, but each species is trying to solve its own problems alone. If one thinks of the genetic possibilities as a space with as many dimensions as there are genes and

as many points on each axis as there are alleles, then each individual’s heritage can be represented by a point in this space. In the case of a monosexual species (if there are any), each strain is making its own path. Bisexual species advance in a herd, each specimen being at a point in the genetic space. A herd can split, of course, but the splitting is limited by the fact that each species is at a local maximum, or trap. When dislodged from its cul-de-sac, a species mutates fairly rapidly and generally toward what seems like conscious direction, uphill perhaps, a phenomenon noticed long ago by geneticists and called “orthogenesis.”

By “planning” Minsky means the substitution of intermediate goals as means to an ultimate goal. This is akin to reformulation, if not the same, a step which I am sure is essential to human problem solving. Our experience in scientific research is that once a question has been properly put, the answer generally follows in short order. A researcher spends more effort wrestling with questions than he does with answers. Those questions which seem to be well put but for which no answer has yet been found are famous, such as the four colored map problem. This substitution of goals has been demonstrated by Newell, Simon and Shaw. In the context of searching through a graph, it is easily seen that the intermediate goal is an island of great value. If one had a problem which required the determination of six parameters, each with forty possible values, then a blind search would be faced with four billion places to look. If a sub-goal can be found so that three parameters can be determined first and then the other three, we find that only 2 x 64,000 places need be searched, or 128,000. The existence of the sub-goal is worth a factor of 32,000. The existence of such goals depends on the structure of the problem, of course.

Induction is the reasoning from a part to the whole, the predicting of new events from past events. To do this predicting, one needs a model of the world, or of the relevant parts of the world. The construction of the mathematical model from a sample is the step we do not understand. It is jumping to a conclusion, which, up to now, machines do not do so well. The most formal kind of induction, mathematical induction, is a special case of deduction, an operation done very well and commonly by machines. Perhaps there is little difference between the two kinds of reasoning, and our fears of the unknown are not justified.

When I started this paper, I meant to work toward specifying a machine or computer useful in experiments on artificial intelligence. If we are going to experiment with thinking computers, what kind of

9 Newell, Shaw and Simon, op. cit.
machines would we like? Software improvements are a necessity, but a number of other things suggest themselves.

One is speed. If our computer could explore our game of chess to the very end, then, of course, it would have insight; but this is impossible with chess and with many other problems, because of the tremendously ramified argument. Chess has been quoted as having 10^{120} positions, and if only a millionth of these were relevant and if they could be disposed of at a million a second, it would take 3×10^{100} years to exhaust them. So speed by itself will not do much; it will take software.

Another is parallelism. Selfridge10 has described an organization resembling a situation room which has a big board on which the latest data is available to all, and which can be continually updated by each of a large number of demons: pandemonium. Such an organization might have advantages in learning. There is reason to think that the human brain may be a little like this, a committee of slow components. The programming of such an organization is almost unexplored.

An alternative is that of distributed logic, an assemblage of data-manipulating equipment, especially memory, each of which can do some of the essential processes such as sensing and combining. Thus the logic, instead of being concentrated in the accumulator or control, would be everywhere. A content addressed memory is a kind of distributed logic; with this, one can do many complex operations, such as sorting, almost painlessly. Improvements in software have more to offer.

But a useful thinking machine must have flexible input-output, an effective interface with men. Like Bacon's head, if it cannot get through to us, it might as well not exist. And we too have our language problems and need to have the very best of aids in stating problems to the device and reorganizing the thinking of our machine. This is the area which needs most improvement, the easy interchange of information between man and machine.

Buchman also has characterized the various properties of an intelligent machine in a different but very clear way.11 He says that such a machine must be adaptive, self-organizing, or learning. By "adaptive" he means stable in a changing environment; by "self-organizing" he means effective in a radically changing environment;

and by "learning" he means increasingly effective in a stable environment.

I must comment on a statement I have seen that soon the chess champion will be a machine! This is fatuous. Bicycles are not used in the Olympic footraces; if they were, a cyclist would be world champion. When the rules of chess are amended to prohibit mechanical aids, that will be a clue that one of our subgoals is being approached.

May I suggest that Turing's test with the game of bridge might be effective? Played by teletype, it would be the task of each player to identify the machine among the three other players. Or if bridge is too much work to program, then a series of checkers games, where a man plays alternately with a champion and with Samuel's superlative checker program, the man's task being to name which is which. This could be implemented readily because Samuel's part is done.

If a thinking machine can be built, then it must be done; it is a matter of self-respect. Just as a man must be put on the moon, just as Mount Everest had to be climbed, just as the poles had to be visited, just as a flying machine had to be made no matter what the arguments against it, so a machine must be made which can think.

Taube has said "... The proper man-machine relation is one of complementation . . ." 12 I do not gain-say this; I agree. But the demonstration must be made nevertheless. Seashore's story illustrates the state of the art.

BIBLIOGRAPHY ON EXTENDING SCOPE OF COMPUTERS

"Bibliography on Biological and Artificial Intelligence," Jet Propulsion Laboratory, California Technical Literature Search No. 254 and Supplement.

Margaret Milligan, "Machines are Smarter Than I Am!" Data Processing Digest, October 1959.

UNCLASSIFIED

UNCLASSIFIED

54

Herbert A. Simon, "The Heuristic Compiler," RAND, Santa Monica, RM-3588 PR.

N. Sluckin, Minds and Machines, Penguin.

Donald N. Streeter, and Kumpati S. Narendra, A Self-organizing Control System Based on Correlation Techniques and Selective Reinforcement, Technical Report

