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Engineering and Graph Theory. 

This paper is divided into three sections. In the first section we discuss Cayley graphs 
and show how they may be used as a tool for the design and analysis of network 
architectures for parallel computers. In the second section we present our research on the 
routing problem. This research can be regarded as a first attempt to find general purpose 
routing algorithms for interconnection networks. In the last section we consider the problem 
of constructing Cayley graphs that meet specific design parameters. 

INTRODUCTION 

One of the most important problems facing technology today is the development of 
scientific supercomputers. Computer science experts believe that future supercomputers 
will be based on large-scale parallel processing. Such a computer will have a system 
consisting of many processors and memories. These machines are commonly known as 
SIMD (single instruction stream - multiple data stream) and MIMD (multiple instruction 
stream - multiple data stream) machines. The Connection Machine and the Goodyear 
MPP are examples of the former, while the NCUBEfren and the BBN Butterfly represent the 
latter class of computer. An essential component of such computers is the interconnection 
network providing communication among the processors and memories of the system. 

The advent of very large scale integration (VLSI) makes it possible to put more 
processors, which are faster and have more memory, on a single chip. Thus, the 
interconnection networks of future multiprocessor computing systems may be very 
complex. Indeed, we are seeing this trend today. The Connection Machine developed by 
Thinking Machines Inc., consists of 216 single-bit processors all working in parallel! 

Interconnection networks are often modeled by graphs. The vertices of the graph 
correspond to processing elements, memory modules, or just switches. The edges 
correspond to communication lines. If communication is one-way, the graph is directed; 
otherwise, the graph is undirected. We point out that a model for the Connection Machine 
is the 12-dimensional binary h~ercube, namely z2

12. The rationale for 212 vertices vs 216 

vertices is that there are 21 chips, each chip having 16 processors. Thus, from a 
communication viewpoint, there are 212 elements. 

Here is an incomplete list of graph properties that a gOod model might possess: simple 
and efficient routing algorithms, small diameter, high connectivity, and small degree. 
Also, one would wish the interconnection network to be as efficient as possible. Ideally one 
wants each processor to send a message and each memory module to receive a message 
with each .. clock tick." One approach to this problem is to design networks with lots of 
switching nodes connected in such a way as to ensure multiple memory-processor paths. 
There is also the "lay-out problem," that is the problem of embedding the graph in a 2 or 3 
dimensional Euclidean space in a manner that can be realized in hardware. Additionally, 
it is desirable that the longest wire link be as short as possible since timing problems arise 
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otherwise. Finding graphs that satisfy these conditions can be a formidable task; in fact, 
the properties of high connectivity and small degree seem to be inversely proportional to 
each other. Consequently, in a particular application, trade-offs must be made. 

Vertex symmetric graphs are especially well suited as models for interconnection 
networks because these graphs have the property that the graph viewed from any vertex 
looks the same. Thus, in such networks the same routing algorithm may be used at each 
processor. Moreover, the symmetry of the graph minimizes congestion, as traffic is 
distributed uniformly over all vertices. (Note that a random graph would satisfy the 
second property but not the first.) 

At the 1986 SIAM international conference on parallel processing, Sheldon Akers and 
BalaKrishnan Krishnamurthy suggested using the theory of groups as a tool to construct 
"good" vertex symmetric interconnection networks. Their main theme was that finite 
groups provide a rich source of interconnection networks and that group structure provides 
an algebraic approach to the design problem. Since that time, there has been an explosion 
of activity directed towards applying group theory to the design of network architectures 
for supercomputers. 

This paper consists of three sections. In the first section we introduce the notation and 
terminology and provide an exposition of this exciting new field. In the second section we 
present our research on the routing problem. Routing is the problem of communicating 
efficiently among the processors and memories. Usually a routing algorithm is network 
dependent, that is, given a network, one must find a routing algorithm for that specific 
network. We present in this paper a routing algorithm for any computer architecture 
satisfying certain properties. Moreover, we demonstrate that our algorithm is extremely 
efficient in many cases. In the third section we consider the problem of constructing 
Cayley graphs that meet specific design parameters. In particular, we present research 
done in support of an effort to study the influence of these parameters on network 
performance. 

1. MATHEMATICAL STRUCTURES FOR COMPUTER NETWORKS 

In this section we discuss Cayley graphs and indicate why they may be good models of 
network architectures for supercomputers. We shall also present an overview of the work 
of Sheldon B. Akers and BalaKrishnan Krishnamurthy. We assume the reader is familiar 
with the basic definitions, concepts, and results of graph theory and group theory as found 
in [5] and [7]. 

Let G be a group and let A be a generating set for G which is closed under inverses. 
The Cavley graph r= f(G, A) is the graph whose vertex set and edge set are 

V=G, E = { {g. h} I hg - l E A} . 

We record some basic facts about Cayley graphs. 

Proposition 1.1. Let A be a ~et of generators for a group G. The Cayley graph r(G, A) has 
the following properties: 

(i) f(G, A) is a connected regular graph of degree equal to the cardinality of A; 
(ii) f(G, A) is a vertex symmetric graph. 
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(i) This follows directly from the definition of a Cayley graph. 

(ii) We need to show that the automorphism group of the graph rCG, Al acts 
transitively on the vertex set G. For gEG, let ct>,. be the element of Sc defined 
by h418 =hg 'dhEG. If {h, k}EE, then since (kct>1) (k416)- 1=kgg- 1h-1EA, we 
have {/i4»8 , k4>6}EG. Thus the elements 4>6 are permutations of the vertex set 
G which also preserve the incidence relation of the graph r(G, A), hence are 
automorphisms of r. Transitivity follows now by noting that for any two 
elements g, hEG, gct>,..-1h = h. 

Cayley graphs are actually labeled graphs. The edges are labeled by the elements of A. 
An edge {g, h} is labeled by an x E A with an arrow pointing in the direction of h, i.e., 

if and only if hg- 1 =x. 
The Alternating group A4 provides an example to which we refer throughout the 

paper. The permutations 
a=(l, 2) (3, 4), and 

b=(l, 2, 3) 

generate A4. Let A be the set {a, b, b- 1}. Figure 1 is a picture of the Cayley graph r<A4,A). 

Fig. I. Cayley P'BPh l'(A4,A) 
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Notice that this symmetric graph has degree 3. This corresponds to the number of 
distinct generators, namely a, b, and b- 1. Moreover, one can think of the generators as 
"direction signs". Suppose, for example, one is at the vertex labeled b2. You may traverse 
in the direction b to the vertex labeled 1, or you may move in the a direction to the vertex 
labeled ab2, or you may move in the direction b- 1 to the vertex labeled b. 

Since a=a- 1, we have adopted the convention of not assigning an "arrow'' to the edge 
labeled by a. In general, a generator will not be its own inverse as is the case with b. So an 
ed~ with an arrow has two labels; it is labeled bin the direction of the arrow and labeled 
b- in the opposite direction of the arrow. We suppress the b- 1 labeling by convention. 

We note the following about symmetric graphs. The converse of Proposition 1.1 is 
false. That is, not all symmetric graphs are Cayley graphs. The simplest counter-example 
is Petersen's graph below. We leave the proof of our assertion to the interested reader. 
The Petersen graph is not a planar graph, that is where two edges meet is not necessarily a 
vertex. We have indicated the vertices by dots. 

Petersen's Graph 

1.1. The Cayley Graph Model 

We mentioned in the introduction that vertex symmetric graphs make "good" 
interconnection networks. Indeed, most of the computers in service today that are based 
upon large-scale parallel processing have interconnection networks that are vertex 

, symmetric graphs. For example, the Connection Machine has a network architecture that 
1 can be modeled by the 12-dimensional binary hypercube. The 256 X 256 torus-connected 2-
dimensional mesh is the architecture of the MPP at the NASA/Goddard Space Flight 
'Center. Finally, the butterfly network and the cube-connected cycle network are also 
'vertex symmetric graphs that are widely accepted as models for network architectures. 
Our basic working hypothesis is that network architectures should be vertex 
symmetric graphs. The central problem then is to find new symmetric graphs that 
provide superior performance as computer architectures. 

In the previous section we learned how to construct vertex symmetric graphs from 
groups. That is, if A is a generating set for a group G, then by Proposition 1.1, the Cayley 
graph f(G, ~) is a vertex symmetric graph. Thus, finite groups provide an inf"mite source 
of vertex symmetric graphs. In addition, graph theoretic properties are reflected in the 
algebraic structure of the group and vice versa. Over the past 100 years mathematicians 
have developed powerful tools with which to study the internal structure of finite groups. 
Consequently, this vast theory can be used to investigate graph theoretic properties of 
interconnection networks based upon Cayley graphs. 
· This important observation was made by Sheldon Akers and BalaKrishnan 

Krishnamurthy in [l]. Using this group theoretic approach, they found two new families 
of vertex symmetric graphs that they called star graphs and pancake graphs [l]. They also 
showed that these new interconnection networks in many ways were superior to the n­
dimensional binary hypercube and the cube-connected cycle networks. 
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The star and pancake graphs are Cayley graphs. The vertex set of both of these graphs 
is the symmetric group on 0, where '2={1, 2, 3, · · · , n}. So all that remains is to 
de£me the associated generating sets. To that purpose we need some more definitions. A 
permutation on Q is called a transposition provided it interchanges two points and fixes all 
others. For example, the permutation (3, 4) is a transposition. There is a nice way of 
representing a set of transpositions pictorially. Namely, we associate with any set of 
transpositions fl a unique graph called the transposition graph. The vertices of the graph 
are labeled with the symbols {1, 2, 3, · · · , n}. The edge set, E, is defined by ij E E if 
and only if the transposition (i,;1 E fl. For example, the figure below represents the set of 
transpositions {(l, 3), (2, 3), (3, 4)}= /l. 

4 

1 2 

We warn the reader that the above graph is not the Cayley graph determined by fl, but 
just a way of pictorially representing the set fl. The Cayley graph determined by fl in our 
example has 24 vertices and is of degree 3. 

The transposition graphs that determine the generating set for the star and pancake 
graphs are 

*
n 2 

• 1 
6 3 

5 4 

Transposition graph for the star graph 

1 2 3 n 

Transposition graph for the pancake graph 

S. Akers and B. Krishnamurthy found these networks to be superior to the binary n.­
cube when measured by their degree, diameter, and connectivity. In fact, they found that 
star graphs not only possess maximum connectivity but provide minimal degradation of 
performance in the presence of (a tolerable number of) faults. For a detailed discussion of 
this see "The Fault Tolerance of Star Graphs" [2]. Table 1 (reproduced directly from [l]) 
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shows that star graphs, when measured solely by degree and diameter, are superior to the 
binary n-cube. 

Table 1. A Comparison 

The binary hypercube The star graph 

Size Degree Diameter Size Degree Diameter 
n n 

2n n n n n-1 L(3/2)(n-1)J 

7 128 7 7 5 120 4 6 

8 256 8 8 6 720 5 7 

9 512 9 9 6 720 5 7 

10 1024 10 10 7 5040 6 9 

11 2048 11 11 7 5040 6 9 

12 4096 12 12 7 5040 6 9 

One obvious drawback of both star and pancake graphs, since their vertex set has 
cardinality n!, is that they are extremely sparse. In fact, there are only nine of each type 
within a range of three million vertices! 

We end this section with a discussion of two design issues that suggest "good" 
interconnection networks should be large graphs of small degree and small diameter. 

The first design issue is to design a network with transmission delays as small as 
possible. Since the maximum number of links used to transmit any single message is the 
diameter of the graph, one would think one should make the diameter of the graph as 
small as possible. · 

A general rule of thumb for the total cost of a supercomputer is that two thirds of the 
total cost is due to the processor and memory modules and one third of the cost is the 
network itself. It is estimated that as much as one third of the network cost is related to 
the total number of wires; this cost includes the expense of driving messages at very high 
rates through the wires. Let r be an interconnection network with n vertices and e edges. 
If r is a vertex symmetric graph of degree d, one easily computes that 

nd 
e- -- 2 . 

Thus, decreasing the degree of a vertex symmetric graph decreases the total number of 
wires used to connect the processors, effectively decreasing the total cost. We also mention 
that it appears that the lay-out problem is easier to solve for low degree networks. 

We now present some evidence that Cayley graphs of nonabelian groups and in 
particular, Cayley graphs Qf the nonabelian simple groups, may provide the best 
interconnection networks, at least in the sense of producing graphs of small degree and 
diameter. 
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Our first piece of evidence is a result of P. McKenzie; see [9] for details. 

Proposition 1.2. Let G be a permutation group on a set SJ of cardinality n. Suppose l:i. is a 
set of permutations that generate GJ. all of which move at most k points. Then the diameter 
of r(G, .6.) is bounded above by 2(kn)i1:k. 

L. Babai, W.M. Kantor, and A. Lubotzky, [4], have a result that suggests that the 
simple groups may be a rich source of large Cayley graphs of small degree and diameter. 
They prove: 

Proposition 1.3. Every nonabelian finite simple group has a set .6. of S7 generators such 
that the resulting Cayley graph has diameter on the order of log2IGI. 

This suggests the following conjecture that may be found in [3]. 

Conjecture. There exists a constant c such that for every nonabelian finite simple group 
G, the diameter of every Cayley graph of G is bounded above by a number that is on the 
order of (log2IGl>c. 

The binary n-cube has size 2" and diameter log2 (2") = n, but its degree is n. The above 
theorems suggest that the finite simple groups should produce Cayley graphs comparable 
with the n-cube but of very small degree. In fact, if the conjecture is true, one would expect 
to find Cayley graphs of these groups with much smaller degree and diameter than the 
corresponding n-cube of the same size. 

2. THE ROUTING PROBLEM 

Routing is the problem of communicating efficiently among the processors and 
memories of an interconnection network. Graph theoretically this problem is equivalent 
to finding paths between pairs of vertices. 

The task of finding paths from one vertex to another in a graph has been extensively 
studied and there exist many algorithms for this purpose. Dijkstra's algorithm, for 
example, finds the shortest paths between any pair of vertices. This algorithm can be used 
in any graph (directed or undirected). The problem with all of these algorithms is that 
they require an excessive amount of overhead. That is, too much of the computer's 
resources must be allocated to routing. · 

The solution at the moment is to design routing algorithms for each specific network. 
These special purpose algorithms usually only apply to the interconnection network they 
were intended for. For example, the routing algorithm used in the Connection Machine 
depends totally on the geometry of the 12-dimensional binary n-cube and is completely 
different from the routing algorithm used in the MPP. 

The main purpose of this section is to present our own research on this problem. Our 
research can be regarded as a first attempt to find general purpose routing 
algorithms for interconnection networks. Specifically, we present a routing algorithm 
for any Cayley graph of a permutation group satisfying certain properties. Moreover, we 
will demonstrate that our algorithm in many cases is extremely efficient. In addition, we 
shall present some promising new interconnection topologies. 

All of the groups we study in this section will be permutation groups. In light of 
Cayley's theorem we have lost no generality. 
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2.1. Two Equivalent Problems 

In this section we establish the fact that routing in a Cayley graph is equivalent to a 
special type of factoring in the underlying group. 

We first look at an example. Consider the Cayley graph of the permutation group A4 
in figure 2. Suppose one wishes to send a message from the vertex labeled 1 to the vertex 
labeled bab. There are many different paths that lead from 1 to bab. In figure 2 we have 
indicated three paths from 1 to bab. From the definition of a Cayley graph and the fact 
that the vertex labeled 1 is the identity, the path 1 yields ab- 1a = bab, path 2 yields the 
obvious factorization of bab, namely bab itself, and path 3 yields &- 1abab- 1=bab. Thus, 
we have three different factorizations of the element bab. The point is that any path from 
1 to bab produces a factorization of babas a product of elements of the set A={a, b, b- 1 }. 

,-----------------------------... 
\ path 1 4 

\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
~ I ..... ~~~~~~........_',, ,,~.,...=--~~~~~~......, 

............ ! __ ~~~~--_,, ........ 

Fig. I. Cayley graph of tbe permutation group A4 

The converse of this is also true. Namely, any factorization of bab as a "word" in the 
generators { a, b, b- 1 } produces a path from 1 to bab. We record and prove this easy but 
important fact about Cayley graphs. 

Proposition 2.1. Factoring elements in G as "words" in the generators is equivalent to 
routing in the Cayley graph r(G, A) . 

Proof. First suppose we possess an algorithm A that can produce a path between any pair 
of vertices in our Cayley graph f(G, ~). Also suppose thatg is an arbitrary element ofG. 
Apply algorithm A to produce a path from the identity vertex 1 to the vertex labeled g. 
Suppose this path is 1, 81' 8281' • • • , (s, · · · s2s1). By the definition of a Cayley 
graph it follows that g is the product 81• • • 8281, and thus we have factored g as a 
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"word" in the generating set {a, b, b- 1 }. Next assume we have a factoring algorithm F 
that can express any element g of G as a product of elements a, b, and b- 1. Let x and y be 
two vertices of the Cayley graph r(G, 6.) and set g=yx- 1. Now apply the factoring 
algorithm F to produce st · · · 8281 =g. Clearly x, s1x, (s2s1)x, · · · ,(st · · · s2s1) 
x = y is a path from x toy. 

The problem of factoring in the context of permutation groups has been studied 
extensively. In fact, if the generating permutations satisfy certain properties then an 
extremely efficient factoring algorithm does exist. This is the topic of the next section. 

2.2. Factoring in Permutation Groups 

Let n be a finite set. Recall that G is said to be a permutation group if G is a subgroup 
of S0 (the symmetric group on 0). Since G can be very large even when n is relatively 
small, group theorists often describe permutation groups by defining them as the group 
generated by a set of permutations. In general, for an arbitrary generating set 6. of G, it 
can be very difficult and computationally prohibitive to determine the order of G or to test 
an arbitrary permutation for membership in Gas well as factoring such a permutation as a 
word in the generating set A. This caused Charles Sims to introduce the fundamental 
concepts of base and strong generating set [14]. 

A base for a group G ~ S0 is defined to be an ordered subset B ~ n with bg= b, 
\JbEB~g=e, the identity permutation. Heuristically, a base is a large enough subset of Q 
that any permutation of G is completely determined by its action on the base. A set of 
generators 6. of G is said to be a set of strong generators with respect to B = {a1 ,a2, • • • , 

~} provided 6. contains a set of generators for the stabilizing sequence of subgroups Ga1, 

~al}.2 , • • • , Ga1 • • • ar Here Ga1 • • • a 11 is the subgroup {g E G I aig= ai, 1 s i 

We remark that our generic example of a Cayley graph (figure 1) provides us a first 
example. Here the generating set A= {a, b, b- 1 } is a set of strong generators with respect 
to the base B={4, 1}. To see this, one checks that G4 equals the subgroup generated by b, 
and G 4 1 is the identity subgroup. Thus A contains a set of generators for the stabilizing 
sequence G4, G41 . It is also immediate that the only permutation of A4 that fixes both 1 
and 4 is the idenlity. 

Given a base and strong generating set relative to this base, the above questions are 
easy to answer. In particular, if the base is small relative to n the Sims algorithm is 
extremely efficient. In the next section we will present a brief description of this 
algorithm. 

2.3. The Sims Factoring Algorithm 

Let G be a permutation group with strong generators A and base B as defined in 
section 2.2. Also set Gi to be the stabilizer subgroup Ga1a2 · · · ai-l'where G1 is 
understood to be G. 

Proposition 2.2. Let ui be a complete set of coset representatives of Gi+ 1 in G~. Then 
every element ofG has a unique representation of the form U ,,u b _ 1 ···U1, Ui E U'. 

Proof. We proceed by induction on the cardinality, b, of the base B. If B={a1}, then 
a1g=a1 implies that g is the identity so U1 =G and there is nothing to show, as g=g is a 
factorization. So suppose b > 1 and a1g=x1 E n. Since G is transitive on the orbit that 
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contains a1 and U1 is a complete set of coset representatives of Ga1 in G, there is a unique 
cosetrepresentative U1. E U1 withalul .=x .. Seta2=aulj- 1, A2 =A n G2 andB2 =B-{al}. 
It is immediate from tli'e definitions thit d2 is strongly generated with base B2 and strong 
generating set b.2• Since g2 E G2 and B2 have cardinality b-1, g2 has a unique 
representation o~the form Ubl! b- 1 · · • U 2 by induction. The resu~t is now immediate. 

Since b. n G' generates G', any ~set representative Ui E U' can be represented as a 
"word" in the strong generators b. n G1

• The Sims algorithm factors each group element as 
a unique product of coset representatives. But these coset representatives, ui, are chosen 
such that they have minimal length as words in the strong generators. This forces the 
Sims coset representatives to satisfy the right Schreier property. That is, if xy E ui then xE 
ui (for a discussion of this see [8]). 

We now define a family of labeled graphs, r ., 1 s i s b, analogous to the transposition ' . graphs of section 1. These graphs will be helpful in understanding the Sims cosets U'. For 
each base ~int "i' definer~ to be the graph whose vertex set Vi is the set { a;1 E 0 I for 
somegE G'}. SetE,=0, U'=0,P=identitysubgroupand V-={ai}. We define theedge 
set Ei inductively as follows: 

Step i: If V* = V . stop 
' For each x E b. n Gi and each w E P set z = wx, 

End; 

Set i=i+l 

Goto step i. 

Ifa,z f V* setE;=E; U {a;w,a;W%}, 

SetP=P-{w} U {W% }, and set ui = U' U { wx} 

Since Gi acts transitively on the vertex set V. and fl n Gi generates G', the algorithm ' . terminates with a connected tree ri. The Sims coset representatives are the set~ U', 
1 sis b. The reader will observe that there is a one to one correspondence between U' and 
the set of all paths in r, beginning with the base point ai" This observation allows the 
cosets to be stored in a very efficient way. To that purpose, define F; to be an l.Ol-long 
vector; set the ith component of Fi to be zero and if x. f Vi set the jth coordinate ~ be 
negative 1. Next suppose that xj E Vi and uij is the uni~ue coset representative in U' that 
maps ai to xi' and suppose further that ujj = ws 11 where s 11 is the kth strong generator, then 
assign the jth com~nent of Fi to be It. The reader will observe that all the coset 
representatives of U' can be recovered from Fi" These vectors are called Schreier vectors. 
Thus we see the storage requirement for the Sims algorithm is minimal. It must store the 
strong generators as permutations on 0. It also must store the Schreier vectors. The 
number of these vectors is exactly the cardinality of the base B. Thus the memory 
requirement is Cl.6.I + IBI) integer arrays of dimension IOI. An easy calculation shows that 
the number of lookups needed to factor any permutation in G as a product of strong 
generators is bounded by 

I I 
1 + IBI CIOI + 1) 

0 ( 2 ). 

Thus the number oflookups is on the order oflOl3. 
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. Given a permutation g E Git is a unique product of the form U6U6_ 1 · · • Ul' U. E 
U'. Each Ui corresponds to a path in ri. This path is the Sims factorization of Ui as a wJrd 
in the strong generators. The algorithm first examines the image a1g of the first base 
point a1 under g. Since this determines a unique path in r 1 from a1 to a1 g, U 1 is this fath. 
The factorization of U 1 is obtained via the Schreier vector F 1. Now observe gU 1 - E G2 

which is strongly generated bl fl. n G2. Thus we proceed inductively to recover U2 as a 
word in the generators fl. n G . We continue in this way to recover each of the U. in the 
factorization of g. 

1 

Suppose G is a permutation group on Q with IGI =N, where N is much larger than IOI. 
Suppose further that G has a Set of strong generators fl. with respect to some base B. Then 
by Proposition 2.1 the Sims factoring algorithm provides an excellent routing 
algorithm for the Cayley graph r(G, 4.). Moreover, we envision each node in the 
graph to have its own identical algorithm. Thus no global information is needed to 
route. 

We will illustrate the Sims algorithm with our cannonical example, A4. Recall in 
section 2.2 that A 4 has a strong generating set fl.={ a, b, b- 1 } with respect to the base 
B={ 4, 1} where a=(l, 2)(3, 4), b=(l, 2, 3) and b- 1 =Cl, 3, 2). The trees r 1 and r 2 and the 
Schreier vectors F1 and F2 associated with the base points 4 and 1 appear in figures 3 and 
4. 

1 

F
1 

= (2,3, l,OJ 

Fig. 3. Schrier vector with base point 4 

2 

1 

F
2 
= (0,2,3-1) 

Fig. 4. Schrier vector with base point 1 

To illustrate this algorithm we factor the permutation g= (1, 3, 4) E A4. First note that 
g moves the base point 4 to the point 1. So we look up position 1 in the Schreier vector F 1 to 
rmd generator number 2 which is b. Now we compute the image of 4 under gb- 1 = (1, 2) (3 
4). Since this is 3, we look at position 3 of F 1 which is generator 1. Next we see that gb-f 
a-1 fixes the base points 4 and 1. Because { 4, 1 } is a base, gb- 1a - l is the identity and we 
have obtained the factorization, namely g= ab. 
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2.4. Strongly Generated Cayley Graphs 

In this section we shall provide some examples ofCayley graphs whose generat.ors are 
a set of strong generat.ors for the underlying group. We call such a graph a strongly 
generated Cayley graph. We remark that by the previous section such graphs have a 
built-in routing algorithm. But first we obtain an upper bound for the diameter of any 
Cayley graph that can be given by our representation. Let r(G, !'.\)be a Cayley graph with 
Ga subgroup of S0 . 

Suppose IDI = n, IAI = m and l:l is a set of strong generators .for G with respect t.o some 
base B with cardinality b. ~lso let B={al' a2, • • • , <;,}. G'=Ga1a2 · • • ai-l• and ni 
be the cardinality of the set U'. Then we have 

Proposition 2.1. The diameter of f(G, 6) is bounded by 

b 

I <ni -1). 
i = 1 

Proof. Any g E G can be written as a unique product f.!b Ub-l · · · U1, where U . is a 
coset representative ofGi+l in Gi..,; It suffices t.o show that Ui is the product of at most

1
(nl-

1) members of A. Now each u E u· has a minimal representation as the product of say llu) 
members of AnGi. So we define the length of u t.o be l(u) and set L=max {l(u) I uE~. 
Next pick u* E ui with the length of u* equal L. Then by the right Schreier property, cP 
must have at least L coset representatives of length at least one. Consequently, Ui must 
have cardinality at least L + 1. Since the cardinality of cP is ni, the theorem follows. 

We introduce a new definition. We define the algorithmic diameter of any Cayley 
graph r(G, A) that can be represented by our methods to be the length of the longest 
fact.orization given by the Sims algorithm. We remark that our definition may be base 
dependent. 

Example 2.1. The Star graph 

In section 1.1 we found that the star graph networks discovered by Sheldon Akers and 
BalaKrishnan Krishnamurthy had many desirable properties as models for 
interconnection networks. The reader can check from the transposition graph derming the 
generating set for the star graph in section 1.1 that!'.\={ (1, 2), (1, 3), (1, 4), · · ·, (1,n)} 
is the generating set for the underlying group. If one lets B={2, 3, 4,. · ·, n} it is easy 
to check that A is a set of strong generat.ors. Thus the star graph is a strongly generated 
Cayley graph and consequently our algorithm may be used to route in this family of 
networks. The authors in [1] calculate the diameter of this family to be 

It would be ofinterest t.o compare this with the algorithmic diameter. 

Proposition 2.2. The algorithmic diameter of the star graph is bounded above by 2n-3. 

Proof. Let G be the ~derlying group of the star graph on n points. Define G' =Ch a, 
... , i, i ::::!: 2, (that is. G' is the point stabilizer of the points 2 through i) a~d set al to ~ G 
itself. Also let U' denote the Sims coset representatives of G' in G'- 1. Since G' is 
isomorphic to the symmetric group on n-i+ I letters, itlollows that cP consists of n-i+2 
cosets. The permutation (1, i) (1, t), t:::!:(i+ 1) maps the P.Oint i t.o the point t. Thus these n­
i permutations are distinct coset representatives of U' and have length at most 2. Since 
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the permutation (1, i) and the identity are both members of rP, it follows that all members 
of lP have length at most 2. In the case when i= n there is exactly one coset representative 
namely (1, n). So the algorithmic bound is 

s ( ;:.,
2 

2 ) + 1 = 2n-3. 
'= 1 

Example 2.2. The Pancake graphs 

The pancake graphs defined in section 1 are strongly generated Cayley graphs. We 
leave it as an exercise to the reader to check that the set { (1, 2), (2, 3), (3, 4), · · ·, (n-1, 
n) } is a set of strong generators with respect to the base {1, 2, 3, · · ·, n- 1}. 

Example 2.3. The Mathieu group M 11 

The sporadic simple group M 11 of order 7920 has a permutation representation of 
degree 12. It can be shown that the set ~={a1 , a2, • • ·, a8} (see table 3 for a definition 
of these permutations) is a set of strong generators for this group on the base {1, 2, 3, 4}. 
Also see table 2 for a Jist of the four Schreier vectors. A calculation shows that the Cayley 
graph r(M11 , ~) has diameter 7, average diameter 5.25, algorithmic diameter 12, and 
average algorithmic diameter 7.2. Thus this graph of size 7920 has degree 8 and diameter 
7. This compares very well with the corresponding hypercube of the same degree that has 
diameter 8, and 256 vertices! 

We next demonstrate our routing algorithm. A computation shows that the 
permutations x=(l, 12, 11)(2, 7, 3, 6, 4, 5)(9, 10) and y=(2, 8, 11, 4, 12, 5, 7, 9, 3, 10, 6) are 
elements of M 11 . We desire to calculate a path from x toy. From Proposition 2.1, we see 
that we need only factor yx- 1=(1, 11, 6, 5, 2, 8, 12, 4)(3, 9, 7, 10) as a word in the strong 
generators. Note that this permutation moves the first base point 1 to 11. As in our 
example, we look at position 11 in F 1~hich is generator 2. Thus we proceed from x in the 
"direction" of a2 to the vertex a 2x. We now need to calculate a path from ar toy. But this 
is equivalent to factoring yx- 1a2 -

1. We proceed inductively. The algorithm 
terminates when we have to factor the identity element. At this point, we have factored 
yx- 1 and have generated a path from x toy. 

Table I. The Schreier vectors for M
11 

F1=(0,3,1,8,8,8,5,7,6,7,2,4) 

F2=(-1, 0, 6, 7, 3, l, 4, 5, 4, 7, 7, 7) 

F3 =C-1, -1, 0, 4, 7,6,4,8,8,6, 7,8) 

F4 =(-l, -1, -1,0, 7, 7, -1,8, -1, -1, 7,8> 

The reader will note that in our example the algorithm uniquely factored yx- 1 as a 
product of the generators, thus producing a unique path from x to y. This is always the 
case. In fact, given any group element x, routing from x defines a spanning tree rooted at x. 
The spanning tree rooted at the identity for our cannonical example A4 appears in figure 5. 

47 UNCLASSIFIED 



DOCID: 3929129 

UNCLASSIFIED CRYPTOLOGIC QUARTERLY 

Table 3. Stron1 generators ror M 11 

a
1

=<2,6)(3, 5)(4, 7)(9, 10) 

a
2

=11,11}(3, 5)(2, 7)(4, 6) 

all =(2, 5)(3, 6)(4, 7)(11, 12) 

a, =(3,4)(7, 6)(8, 9)(11, 12) 

a
5 

=(2, 8)(4, 9)(5, 6)(11, 7) 

a,. =<8, 5)(3, 6)(4, 10)(11, 9) 

a.,=(8, 11)(4, 6)(10, 7)(5, 12) 

a
8
=Ul, 5)(12, 6)(4,8)(9, 10) 

1 

ns. 5. Spanning tree ror E:m:ample A4 

2.5. An,. Alternate Path" Algorithm 

In the previous section we computed a path between two elements of the group M11. 
Recall that at each step we computed which generator should be applied. That is, we 
traverse the edge labeled by this generator in the Cayley graph. It may happen that we 
will be unable to traverse this edge due to network loading. For this reason, a simple rule 
for choosing an alternate next edge, thus an alternate path, is desirable. Our idea is to 
modify our algorithm to produce alternate paths. 

The present algorithm routes on a spanning tree of the Cayley graph. This spanning 
tree is uniquely determined by the given ordered base f'or which the generators are strong 
generators. If there were another base for these generators, then the algorithm 
implemented with respect to this base would route on a different spanning tree, hence 
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producing alternate paths. Thus our idea is to find generators that are strong with respect 
to many bases. We could then switch between spanning trees when necessary. Usually 
this is not possible. However, if we have the luxury of increasing the number of generators 
(thus increasing the degree of the Cayley graph) it can be accomplished. We illustrate by 
referring to A 4 again. Figure 6 is the new Cayley graph obtained by adding the generators 
c=(2, 4, 3) and c- 1=(2, 3, 4) to the original generating set for A4 . This expanded 
generating set is a strong generating set with respect to the ordered base {1, 2}. The 
spanning tree determined by this new choice of base and strong generators is shown in 
figure 7. Notice that this tree and that of figure 5 have only three edges in common. In 
this way we have constructed alternate spanning trees for many strongly generated 
Cayley graphs, including the Cayley graph of M11 presented in this paper. The reader 
should also observe that the generating sets for the star graphs, respectively the pancake 
graphs, (see section 1) are strong generators with respect to (n-1)! bases. 

The main conclusion of this section is that permutation groups represented by a set of 
strong generators produce Cayley graphs with an automatic routing algorithm built in, 
namely the Sims factoring algorithm. 

n1. 8. New Cayley graph obtained by adclin1 the generators 
c = (I, 4, 3) and c - l = (I, 3, 4) to the original generating set for~ 
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Fig. 7. Spannirg tree obtained by adding the generators 
c = (I, 4, 3) and c - = (2, 3, 4) to the original generating set for A4 

3. DESIGNING "OPTIMAL" NETWORKS 

It is believed that the degree of an interconnection network for a large scale, shared 
memory high performance MIMD machine must be smaJl. For example, Pittelli and 
Smitley of SRC feel that due to limitations in present day technology, it is not possible to 
build any of the networks that they have studied if the degree exceeds 6 [11). Thus in a 
search for Cayley graph models we must look for groups that are generated by only a few 
elements. Given that the degree of a network is fixed, it is conjectured that the average 
diameter is the predominant factor in determining the network performance [ 11 ]. 

Indeed, a recent study by Pittelli and Smitley provides experimental evidence of this 
[12, 13). In this section we discuss our contribution to this study. Specifically we were 
asked to design Cayley graphs to be used in their simmulation. To study the innate 
performance characteristics of these graphs, it was decided that they would be evaluated 
at an artificially high 100% message injection rate, and also every node would be a 
processor or a memory module. Due to real world constraints it was decided that the 
graphs should have approximately 1024 vertices, be of degree s 6, and have an average 
diameter s 7.5. The importance of average diameter in determining network 
performance was supported by the fact that the graphs found by us had the smallest 
average diameter and out performed all other graphs evaluated in the study. Table 4 lists 
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the graphs evaluated in the study except for the degree 10 binary hypercube that has been 
included for comparative purposes. The fi.rst five graphs are popular parallel processor 
networks while the last three are our constructions. We will return to this table 
momentarily. 

Table4 

Graph Vertices Degree Diameter Avg. 
Diameter 

Hypercube 1024 10 10 5.0 

Toroid 1024 4 32 16.0 
(32 X32) 

Toroid 1024 6 16 8.0 
(8X8X16) 

Butterfly 1024 4 10 6.6 
(128 XS) 

Super Toroid 1024 4 12 6.8 

SSl PSL(2, 13) 1092 4 9 6.2 

882 1024 5 8 5.2 
Subgp. of M24 

SS3 1024 6 7 4.5 
Subgp. ofS1s 

The nature of this work was experimental as well as theoretical. We would use group 
theoretic insight to construct candidate Cayley graphs with the appropriate size and 
degree. We would then calculate the average diameter of the graph. The software package 
CAYLEY, developed at the University of Sydney, greatly enhanced our ability to examine 
many Cayley graphs. 

Heuristically speaking, since we want to construct graphs with low average diameter 
we require the generators to have as few "short" relations as possible. The general idea is 
that if we pick an initial point in the Cayley graph f(G, A), applying the generators to this 
point will give us deg (I') new vertices in the graph. We repeat the process for each of the 
new points found except that now, due to relations of the form aa - l, we can pick up at 
most deg (I'}-1 new vertices with each application. Whenever application of a generator 
branches back to a previously "found" point, it is due to some relation on the generators. 
Low average diameter graphs should have very little of this branching back phenomenon 
occurring in the early stages of the process. Hence the Cayley graph should look locally 
like a tree everywhere. Clearly, abelian groups can not fit this description. 

We remind the reader that since our Cayley graphs are undirected, the generating set 
A, defining the graph must be closed under inversion. Thus if xE A, x -1 does also. To keep 
the degree of the Cayley graphs low, we tried to pick generating sets that consisted 
entirely of involutions, i.e. generators that were their own inverses (x=x-1). This seemed 
to be a good idea and in fact we found that of all our constructions, the Cayley graphs with 
the lowest average diameters had generating sets satisfying this property. 
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At the end of section 1 we presented some evidence (Propositions 1.2 and 1.3) that 
suggested that simple groups "may provide the best interconnection networks, at least in 
the sense of small degree and diameter." In example 2.3 we saw that the Mathieu group 
M 1 with its average diameter of 5.25, is a prime example supporting this suggestion. 
wh\1e simple groups do seem to have desirable average diameters, the sparse distribution 
of the orders of the simple groups makes it unlikely that there will be many of these 
suitable for use as realistic interconnection network models. Indeed, PSL(2, 13) is the only 
simple group appearing in table 4. To overcome this difficulty we looked elsewhere for 
another source of suitable groups. We did not have to look far. Recently O'Brien has 
shown that there are 56,092 groups of order 256 (10). The number of groups of order 1024 
is unknown but is probably in the millions, thus a plethora of potential Cayley graphs of 
the required size awaited our investigation. Since abelian groups have nilpotence class 1, 
our first intuition was to construct graphs from maximal nilpotence class groups; however, 
we soon found that we could construct graphs of superior average diameter from groups of 
lesser class such as a Sylow..:2 subgroup of the Mathieu group M24 (SS2). This was also the 
case for our other graphs that were constructed from a subgroup of the Sylow-2 subgroup of 
Sis (SS3). We also point out that maximal nilpotence class groups seem to require a large 
number of generators, thus increasing the degree of the graph. 
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Fig. 8. Performance without queues 
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Finally we present (courtesy of Pittelli and Smitley) the experimental results alluded 
to earlier~ The reader should consult references [12] and (13) for the specific details of the 
assumptions and optimizations underlying their network model. Performance is 
measured in terms of average round trip delay (the number of clock ticks for a message to 
travel from a processor to a memory module and back) versus average throughput (the 
average number of messages entering or leaving the network at any instant of time). 
Figure 8 is the performance plot obtained when the switch nodes have no link queues so 
that performance is more directly related to the properties of the graph defining the 
network. The performance gained by adding link queues can be seen in figure 9. In any 
case the reader should note that PSL(2, 13) outperformed the other degree 4 graphs by a 
statistically significant margin, as was the case for our degree 5 and 6 graphs also. In fact, 
before being driven into saturation, PSL(2, 13) sustained 12.5% more network traffic than 
the next best candidate, a butterfly architecture, and 75% better than the bench mark 2-d 
mesh. 
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