
~pproved for release by NSA on 12-01-2011, Transparency Case# 63853

Problem Encountered with the
Variant Record Construct in Ada

S' l A u 1 .Jr< .)_ ' " EX,J ' ,· I

This paper presents a problem encountered in applying the Ada variant record
construct in the design of the data link layer protocol, It also discusses and demonstrates
possible solutions to this problem.

INTRODL;CTION

To reduce their design complexity, most networks are organized as a series of layers,
with each layer built upon its predecessor. The number of !ayers, the name of each layer,
and the function of each layer may differ from network to network. [n all networks,
however, the purpose of each layer is to off er certain services to the higher layers. The
rules and conventions defining the services in a layer (n) are collectively known as the
"layer n protocol,"

The Open Systems Interconnection <OS[) reference model consists of a seven layer
protocol architecture: application, presentation, session, transport, network, data link,
and physical layers. The X.25 Defense Data Network (DDN) standard protocol [41, with
the International Telephone and Telegraph Consultative Committee (CCITT)
Recommendation X.25 [5], was chosen as the data link layer protocol to be used in a
protocols project initiated in the Computer Network Security Division of the National
Computer Security Center.

The Ada language was chosen for implementing the X.25 protocol for this project.
While applying the Ada variant record construct in this design, an unexpected problem
emerged. This paper describes the problem (the coresident homograph error), methods
explored in search of a solution, and the method found to be the solution to the problem.

BACKGROUND

A record is simply a construct composed of several constructs, A variant record is a
record which has more than one possible structure. Thus, a variant record is only a
special type of record. ln Ada, a record is a composite object; that is, a collection of
possibly different types of components, For example:

type DATE_RECORD is
record

YEAR: INTEGER range 0 .. 4000;
MONTH: MONTH_NAME;

DAY: INTEGER range L31;
end record;

The record is called DATE_RECORD, and YEAR, MONTH, and DAY make up its
component list, The ranges and MONTH_NAME make up the types of each part of the
component list.

61 FOR OFFICIAL USE ONLV

DOCIC; 3~~124

CRYPTOLOGIC QUARTERLY

A variant record is a composite object consisting of a component list. Part of this
component list remains constant while the rest may vary. The variation of the component
list is based on a discriminant, a syntactically distinguished component of a record. For
example:

type DATE_ VARIANT_RECORD is (JULIAN, YEAR_MONTH_DAY);
typeDATE_RECORD(TYPE_OF_DATE:DATE_VARIANT_RECORD)is

record
YEAR: INTEGER range 0 . .4000;
MONTH: MONTH_NAME;
case TYPE_ OF _DATE is

when YEAR_MONTH_DAY= >
DAY: INTEGER range 1 .. 31;

when JULIAN = >
DAY: INTEGER range 1..366;

end case;
end record;

In this example, DATE_RECORD is again the name of the record. The component list
consists of YEAR, MONTH, and TYPE_OF _DATE. The discriminant, TYPE_OF _DATE, may
vary, and DAY type may then change. If TYPE_OF_DATE is to be YEAR_MONTH_DAY
then type DAY will have an integer range of 1 to 31. If TYPE_OF_DATE is to be JULIAN,
then type DAY will have an integer range of 1to366. The variant record clearly allows for
more flexibility in describing ideas that appear structurally similar.

THE PROBLEM

The concept of variant records can easily be applied to packets defined in the CCITT
Recommendation X.25. The X.25 protocol has several types of packets. These packets
have some similarities and some differences. Using the variant record construct to
describe packets that had fields with constant data types and fields with different data
types was preferred. Thus, some parts of the component list remained constant, some
parts changed, and sotne parts kept the same name but changed their types. When
applying this to the previous DATA_ VARIANT_RECORD example, MONTH and YEAR remain
constant, and types for TYPE_ OF _DATE changed, and some of the types for
TYPE_OF_DATE (i.e., DAY:= INTEGER range 1. .. 31) change. Consider the X.25 packet
structure in figure 1.

In figure 1, PACKET_TYPE_RECORD is a variant record with
GENERAL_FORMAT_IDENTIFIER, LOGICAL_CHANNEL_GROUP _NUMBER, and
LOGICAL_CHANNEL_NUMBER remaining constant. Here, KJND_OF _PACKET changes and
the type for PACKET_TYPE_IDENTIFIER changes, varying from type PENTAD to type
OCTAD. Clearly, these packets have different functions, yet the general structures of the
packets remain basically identical, and some of the same operations are found on different
types of packets. For this reason, a variant record construct best describes the abstraction
of the packet. However, in applying this abstraction a problem was discovered with the
way the author tried to use variant records.

Problems arise if the variant record is allowed to change some parts of the component
list while keeping the names of the components within each part of the list the same. In
Ada, this is called a coresident homograph error. This kind of error would result in the
DATE_VARIANT_RECORD example because the component DAY was named DAY in each

FOR OFPlelAL l::JSE 9NlY 62

DOCID: 3929124

(' PROBLEM ENCOUNTERED WITH THE VARIANT RECORD CONSTRUCT IN ADA
~ .

type PACKET_TYPE_RECORD

(KINDOF _PACKET:KINDS_OF _PACKET_TYPEJ is
record

GENERAL_FORMA T _lDENTJFIER:

LOGICAL_CHANNEL_GROUP _N\.i;\fBER:
LOGICAL_CHANNEL_NUMBER:

case KIND_OF _PACKET is

when DTE REJECT_PACKET = >

TE TRAD;
TETRAD;

OCT AD;

PACKET_RECE[VE_SEQUENCE_NUMBER: TETRAD;

PACKET_ TYPE_IDENTIFIER: PENTAD;

when RESET_REQUEST_PACKET == >
PACKET_TYPE IDENTIFIER: OCTAD;

RESETTING_ CODE: OCT AD;

DIAGNOSTIC CODE: OCTAO;

end case,
end record ;

Fig. l. Example ofX.25 Packet Structure

part of the componenl list. In figure 1, the use of the name PACKET_ TYPE_! DENTIF!ER as
a component of a DTE REJECT PACKET and as a component of a
RESET_REQUEST_PACKET would again result in a coresident homograph error. The rest
of this paper shall examine several different methods which attempt to use Ada variant
records .

THE SOLUTION

The Ada Language Reference Manual (LRM) (3) states that "each of two declarations
is said to be a homograph of the other if both declarations have the same identifier and
overloading is allowed for at most one of the two_" Further, according to the Rationale for
the Design of the Ada Programming Language [6), "a record type with a variant part
specifies several alternative variants of the type." Another name for this occurrence is a
coresident homograph. Clearly, the set of possible record values is the union of the sets of
values possible for the alternative variants. ln other words, the components of the
component list cannot be cal led the same name even if it seems logical to do so.

The following data structure is used to define the contents of the records that are used
in demonstrating the problem and its solution.

63 FQR GFFIEl:AL ~SE ONLY

DOCID· 392Sl24.

Record A

first: integer
second: float

Method 1

CRYPTOLOGIC QUARTERLY

Record B

first: integer
third: float

Record C

fourth: integer

Record D

first: float
third: float

Method 1 shows a logical way to construct the variant record. This method supports
the data abstraction desired in defining the records. It shows the case where there were
four parts to the component list of the variant record and each part contains a component
that is either an integer data type or a float data type. (See figure 2.)

procedure sample_l is
type Q is (A, B, C, D) ;
type Rec (X : Q : = A) is

record
case Xis

when A=>
First Integer;
Second : Float;

whenB= >
First Integer;
Third : Float;

whenC= >
Fourth : = Integer;

when D= >
First
Third

Float;
Float;

end case;
end record;

Foo: Rec (B);
begin

null;
end Sample_l;

**Referencing Mechanism: Foo.First (object name.name of the desired choice of the
record).

Fig. 2. Method I

This method does not work. When trying to verify the semantics of the code, errors
specifying coresident homographs occur. Since the component "first" is referenced in both
choice A and choice B, the component "first" in choice B is a coresident homograph of the
component "first" in choice A. Further, the fact that component "first" was of type float in
choice D and of type integer in choice A was irrelevant. It was the name "first" that gave
rise to the error.

f6ft 6fflCIAL 1:151! 6NLY 64

oo~~-~-- ~--- - ~-- - -~~~~~~--

PROBLEM ENCOUNTERED WITH THE VARIANT RECORD CONSTRUCT IN ADA

Method 2

Method 2 consists of regrouping the different components of the variant record into
choices with common components extracted. (See figure 3_) Look at records A, B, and C
where component "first" remained an integer data type. In this case, a further case
structure was needed to separate "second" and "third" into the choice A and the choice B.
The component "fourth" was a part of choice C because it was not common to record A or
recordB_

procedure Sample_2 is
type Q is (A, B, C,l ;
type Rec (X: Q:;::: A) is

record
case Xis

whenAIB= >
First [nteger;
case Xis

when A=>
Second

whenB= >
Third

when others= >
null;

end case;
whenC== >

end case;
end record;

Foo: Rec (B);
begin

null:
end Sample_2;

Fourth : [nteger;

**Referencing Mechanism: Foo. First

Float;

Float;

Fig. 3. Method 2

This variant record structure was syntactically and semantically correct as long as
the data types for the A, B, and C choices remained unique to each of the choices.
However, this solution did not consider the instances where the data types were not the
same for more than one of the variant choices. F'or example, consider a case where "first"
was a component of data typ€ integer for choice A and "first" was also a component of data
type float for choice D. This type of variant record structure could not be coded because
the data type of the component "first" does not remain a constant type throughout the
record.

Even if all the data types of the components remained constant, Method 2 still would
not work Consider a data structure consisting of record A with components "first" and
"second," record B with components "second" and "third," and record C with components
"first" and "third." The author regrouped the common components and was left with

65 F6R OFFICIAL USE ONLY

DOC ID: 3!rZ91211

CRYPTOLOGIC QUARTERLY

choices A and B grouped together because they had component "second" in common, but
choice C also had component "first" in common with choice A. Thus, this code could not be
completed because component "first" had already been referenced as a part of choice AIB
and could not be referenced again.

Method3

Method 3 explored the idea of creating just one record containing all of the variant
components. This method would work but would not allow the logical abstraction of the
record to be kept. Moreover, instances could not be coded where the data types of the
components were not the same for more than one of the variant choices. (See figure 4.)

procedure Sample_3 is
type Q is (A, B, C) ;
type Rec (X : Q : =A) is

record

end record;

Foo : Rec (3);
begin

null;
end Sample_3;

First
Second:
Third :
Fourth :

Integer;
Float;
Float;
Integer;

**Referencing Mechanism: Foo.First

Fig. 4. Method 3

Each component within the record could only be one data type and every record
contained every component. Every time choice A, B, or C was called, the entire record was
accessed whether or not it was needed. Further, record D could not be coded because
component "first" had already been declared an integer data type and, therefore, could not
be declared a float data type. This method did not entail the use of the variant record and
necessitated a waste of memory space.

Method4

Method 4 shows the only solution to this naming or coresident homograph problem.
(See figure 5.) With this method, separate records were created for each component
grouping desired, and the data types needed for each component were declared within
each record. Then a variant record was created with choices A, B, C, and D. The data
types of these choices were the component groupings of the previous records.

For example, RECORD_TYPE_A was a record type with components "first" and
"second." Similarly, RECORD_TYPE_B, RECORD_TYPE_C, and RECORD_TYPE_D were
each separate records. A variant record was created with components A, B, C, and D. The
data types of these components were RECORD_TYPE_A, RECORD_TYPE_B,

IPQA QHICIAL l::ISE ONLY 66

PROBLEM ENCOL' NTEREO WITH THE V A.RIANT RECORD CONSTRUCT IN ADA.

procedure Sample_ 4 is
type Q is (A, B, C, D);

type Record_ Type_A is
record

end record;

First
Second :

type Record_ Type_ B is
record

end record ;

Firs t
Third

type Record_Type_ C is
record

integer;
Float;

Integer;
Floa t ;

Fourth : Integer;
end record;

type Record_ Type_ D is
record

end record;

First
Th ird

type Rec (X : Q : = A) is
record

case Xis
when A=>

Float;
Float;

A : Record_ Type_A;
when B= >

B : Record_ Type_B;
whenC= >

C : Record_Type_C;
whenD= >

D : Record_ Type_D;
end case;

end record;

Foo : Rec (B);
begin

null;
end Sample_ 4;

.. Referencing Mechanism: Foo.B.First

Fig. 5 . Method 4

67 FOR OFFICIAL l:lSE ONLY

CRYPTOLOGIC QUARTERLY

RECORD_TYPE_C, and RECORD_TYPE_D, which were the names of the previously created
records. To access component "first" with data type integer and component "second" with
data type float, choice A first had to be selected from the variant record. Choice A, in turn,
had component A with data type RECORD_TYPE_A. When data type RECORD_TYPE_A

was referenced, a record RECORD_TYPE_A was found with components "first" and
"second."

Ideally, the name of a component reflects the abstract definition of its usage. The
"first" components could have differing data types yet still represent the same logical
thing, but each variant version of the record is defined by two record types. Changing a
data type for any choice required referencing the underlying record structure. Thus,
another level of indirection has been added, and all of the referencing mechanisms have to
reflect the two record types.

CONCLUSION

The naming or coresident homograph problem has presented some problems in
implementing the Ada variant record. The wording of the variant record description in
the Ada Language Reference Manual is ambiguous. The actual implementation of the
variant record is counter-intuitive. When the author began to code the design, she was
not even a ware of the possibility of a problem. This unpredictable error can only be found
when the variant record is actually implemented.

Fortunately, the compiler detected the error very early in the development process.
The Ada Compiler Validation Capability test suite [2) does contain a test (#B82COIA)
which insures that every validated Ada compiler will deal with the variant record
construct error in exactly the same way.

The idea of a variant record is to be able to access one component or another
regardless of which choice is referenced. Method 1 could actually work if Ada did not
disallow it. The compiler knows which variant record component is being accessed
without the extra record construct that is necessary in Ada (see Appendix for prooO. As
described in this paper, Method 4 can be used for variant records and allows the record
structures to be easily understood by reading the source code. The only undesired trait is
the extra level of indirection. The Ada Language Reference Manual should
unambiguously highlight the way that the variant record construct works. The manual's
current definition of a variant record is not sufficient to entail its proper usage.

FOR OFFICIAL tJ51!! 6NLV 68

DOCIO: 3929124

PROBLEM ENCOUNTERED WITH THE VARIANT RECORD CONSTRUCT IN ADA

'.

BIBLIOGRAPHY

[1) Booch, G. Software Engineering with Ada. Department of Computer Science,
USAF Academy, Colorado, 1983.

[2] Data & Analysis Center for Software. Revisions to the Compiler Implementer's
Guide. Griffiss AFB, New York, July 1984.

[3) Department of Defense. Ada Joint Program Office. Reference Manual for the Ada
Programming Language. ANSI/MIL-STD-1815A-1983 . Washington, D.C.,
October 1983, Sec. 8.3.

[4) Defense Communications Agency. Defense Data Network Program Management
Office. Defense Data Network X .25 Host Interface Specification. Washington, D.C.,
December 1983.

[5) International Telephone and Telegraph Consultative Committee (CCITT).
"Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for Terminals Operating in the Packet Mode on Public Data
Networks," Recommendation X.25, 1980.

69 F0R 0FFICIAL t:J5f ONLY

UNCLASSIFIED CRYPTOLOGIC QUARTERLY

[6) Rationale for the Design of the Ada Programming Language. SIGPLAN Notices,
Vol. 14, No. 6, New York: Association for Computing Machinery, Inc., June 1979.

[7] Stallings, W. Data and Computer Communications. New York : Macmillan
Publishing Co., 1985.

[81 Tanenbaum, A. Computer Networks . Englewood Cliffs, New Jersey: Prentice­
Hall, 1981 .

UNCLASSIFIED 70

