
.·"-

....
i

j ..

\.

3896732

SECRET

A First Generation Technical Viral Defense (U)
I

I
I

.___ _ ____.I- ·······. -.;············· P.L. 86-36

This a1t1cle is classified 888Rl!!l1' ;,; its aati:oty.

Editor's note:
1

This paper was awarded second prize in the Computer Security Ca~gory of the 1987 Computer
and lnformatfon Sciences Institute Essay Competition. ·

I

Computer viruses are a form of Trojan horses with a self-propagating property. They
can be extr~mely infectious and virulent when used maliciously in computer systems. Many
defenses are available to System Security Officers (SSOs which will limit or detect viruses.
Most meth~ds are easy to implement, yet provide the SSO with a high degree of effective
viral control. These defenses include "sealing" the program (by encryption techniques),
comparing the pre- and post-fix portions of programs, limiting the domains the executable
code inhaSit, and controlling the flow and access rights of programs. Second generation
viral defeiises will use heuristics to detect viruses, audit the system looking for specific

. I

viral-indic,ators, or compare the coding style in programf?. Standard personnel and
procedural techniques will not be discussed.

I

I

INTRODUC'f!ON

Systel\l Security Officers have a wide variety of options to defend against software
sabotage. ; They can institute technical measures to prevent or detect unauthorized
alterations,-investigate the backgrounds oftheir employees, and implement procedures to

I

limit opportunities of introducing malicious code. This paper will discuss the former
measure: that of compiling a suite of technical means to 1-imit and detect software
sabOtage, primarily that sabotage via computer viruses.

Compoter viruses are a form of Trojan horse. Their mission is usually malicious and
triggered ~y some event, such as a certain system date or the disappearance of a certain
name from the payroll database. They have the additional property of being able to copy
themselves from one program to another. When introduced into a system with little or no

·.defenses, they can quickly take over the system (obtain full privileges). [5, 9, 13]
Emph~sis on computer viruses as opposed to the general class ·of '.l'rojan horses was

chosen forl two reasons: first, because their propagation property makes them potentially
more dan~erous relative to ''ordinary" Trojan horses; (3, 11] and second, because their
propagati6n property makes· them potentially easier to detect than ordinary 'Trojan
horses. Technical methods which are germane to this problem will be discussed, while
generic pe'rsonnel and procedural security measures will not.

DEFINITIONS

A computer virus is· a form of Trojan horse which has the (additional) property of
, I

being ab!~ to copy itself to another program, other than the program it inhabits. Both a
program "irifected" with a virus and a virus-free program are called "hosts."

eclassified and approved for release by NSA
11 09-06-2011 ursuant to E.O. 13526

SECRET

SECREl' CRYPTOLOGIC QUARTERLY

A virw~ has three components [2]: the first is the propagation component, that part
which causes the virus to propagate to other hosts; second is the mission, which is the
ultimate goal of the virus and is usually malicious (delete all files, usurp ,the system, etc.);
and the third is theltrigger mechanism. The trigger directs the virus when to execute the
other two components. ,.,, · ' ·

ASSUMPTIONS

We assume that the programs used to detect viruses are themselves not infected with
yiruses, and that they contain no other form of malicious logic. If this is riot assumed, it is
easy to construct scenarios where--they fail. A program which ostentatiously checks for
viruses could be mo1dified such that it would work except when it found apa·rticular virus;
in which case the checker would ignore the infection.

DEFENSIVE CLASSES

Defensive measures will be divided into three classes. The first class att~mpts to save
an attribute of a program that is initially "pure." Then it will periodically recompute and
compare _this attribute to check for contamination. A routine in this class cannot
determine if a progr;am is initially infected. The c_lass is entitled "attribute monitors."

The second class is called "virus detectors." A routine in this class ·can determine
whether a file is initially -infected. These routines examine the program by itself or in
relation to other pr6grams to determine whether infection has occurred. The previous
class established a· baseline and then checked to ensure that the baseline Was still
accurate. Both the first and second class detect viruses in a nondynamic way; that is, they
do not rely on the bJhauior of the program during execution to work, rather, they rely on

I

the appearance.
The third class ;is "execution limitations:" This class imposes a priori controls on

executables to preverit virus propagation. · ..
After discussing some examples under each class, three measures that will require

much innovative work and engineering will be examined. .

ATTRIBUTE MONITORS
I

Checksum Routine
I

The first routinJ in this cl.ass is a checksum routine. [I; ll] The check~ftiin rout"ihe
first computes a checksum on a file to be protected. This initial value is stored and access
protected1 if the sy~teril itself cannot provide sufficient control, then th~ checksum is
protected by reducing it to hardcopy or writing the value to write-once media.
Synchronously, or o,n demand, the checksum for the file is recomputed and compared

1. One can not simply access protect the file being checksummed in the same manner. The checksum(s) may
be protected with the same constraints the system would use to protect the password file. This level of
protection cannot be applied to every users' files. Also, the checksumlsl m~t be protected from any write
access, some files may b~ written to from authorized programs, but not by others. The system may not provide
the needed granularity ~f control.

I

SEER ET
. I

28

=;

j
-!

r
ooc:ro: 3896732

l

I
l
1,

1

.....
~; .. : -:;.

'. ·:
I'

;;.· .•'"

,· -,..-. '

-. .: .. ~. . .

!.

A FIRST GENERATION TECHNICAL VIRAL DEFENSE SECRET

I
against the stored value. If the values differ, the SSO knows that the file has been

I .

modified. : If an authorized change to the file is made, the "initial" checksum must be
updated. It is assumed that updates to operational systems will be infrequent and can be
closely co~trolled.

Althoi1gh this scheme (and others below) may be too costly to implement for every
executabl~ or file on the system, it may be used to protect a subset of especially critical
programs.: This subset should include essential operational routines or software develop-

' . ment routines such as translators or compilers, as well as whatever security relevant
programs 1exist, such as the login/password responder or auditor.

It is also possible to store the checksum with the file itself and at run-time recompute
and compare it. This method has the advantage of cat~hing an infected file before it
executes (and potentially infecting others) but the disadvantage of increasiri.g.".the
execution 1overhead. This system may be modified by allowing the owner to specify an
option at ~nvocation time that would cause the checksum to be re.computed and compared .

. Encryption
I

'
I

A method which relies on the pairing of a decryption key with the protected file is a
routine that uses public key encryption techniques.

Publi~ key for asymmetric) encryption uses t~o keys to encrypUdecrypt, where K1
I

< > K2. 1 One of the keys is derivable from the other (say K2 is derivable from K1);
however, giveri K2 by itself, it is extremely hard to derive K1 (see fig.l). K1 is referred to

I

I

I

. .,..,,_
QiWJ$ ~

EASY TO DO

HARD TO DO

Fig. 1. Public and Secret Keys

'*)I K1

...... -.J _ ... ~ .. ~~

as the "s~cret" key, and K2 is the "public" key: When the public key is published anyone
can use it to encrypt a message which only the holder of the secret key can decrypt (see
fig.2), all~wing secrecy, or to decrypt a message which purports to be from the holder of
the secret key (see fig.3); which, if successful, authenticatd; .the message as being sent
from the holder of the secret key. (7, 10)

29

USER 1

PLAINTEXT

USERN

PLAINTEXT
:)ll
I

I

II
t

C:RYPTOLOGIC QUARTERLY

K1

· ~

CIPHER TEXT --·~· ~:1::111111111!11 1 , • PLAINTEXT

.. -~,_ .. ,

CIPHER TEXT

Fig. 2. Private Chmmunication -Anybody Encrypts with K2; Only Holder ofK
1

Can Decrypt

i .

PLAINTEXT

I
. I

CIPHER TEXT

-···--· . _ ~-.•~".:·

USER l

USERN

Fig. 3. Authenticated Communication - Cipher Text Decryptable by Anyone with the Public Key

SEER ET 30

l
l
l

l
I

I: ..

DOCID: 3896732

~. ;_, ,

.. ~.

I ' ·"

>. ,.

. . -.•.. . ·: .. .

A FIRST GENERATION TECHNICAL VIRAL DEFENSE SEE:A~:r

The ~ethod involves encrypting an executable using K1 (the secret key). Then K1 is
destroyed. K2 (the public key) is published for everyone to use to decrypt the executable
file for use.2 As long as no one has K1, it is impossible for a virus to infect the executable
(see fig.4) . The virus cannot write directly to the executable without being decoded to

.•. :·u':r-,,.. · •

I

I
I

Ki

l ~·~
. . , -~~-·-

PROGRAM IS ENCRYPTED WITH THE SECRET KEY

K2

~
· --USER!

11~- USERN

t
PROGRAM IS DECRYPTED WITH THE }?UBLIC KEY

AND PROVIDED TO THE·USER

Fig. 4. Programs Encrypted with Secret and Pubiit·K~ys
I , .

gibberish (see fig. 5), because the executable is encrypted a nd will be decrypted to run. [f

the virud decrypts the file and then attaches itself and writes the corrupt version back out,
the OS will decrypt it into meaningless bits whenever anyone attempts exe~ution3 (see

' ~
2. There coulO:be an operating system service such t hat whenever someone requests an encrypted program be
executedi the operating system would first decrypt the executable with the matching public key.
3. Obvioi.lsly, the operating system must not have a Trojan horse which allows th,e decrypting of protected
executables to be bypassed. Otherwise, the virus would decrypt the execut:able, insert itself, and .. write the
executable back to memory, flagging the OS not to decrypt it to execute. .···

I

31 SECIU!!T

SECRET
I

I
I

CRYPTOLOGIC QUARTERLY

fig.6). The virus fcannot use K2 for encryption purposes, and it cannot derive K1 to
reencrypt the execµtable properly. .

Fig. 5. Plain Te:x!t Virus is Decoded into Random Bits when Program is Decrypted to Execute

1 Fig.6. Plain Text ProgramNirus Pair Fares No Better

A key-per-executable or one key for all executables are two alternative methods to.use
(see fig. 7). If key-per-executable is chosen, installation of the encrypted executable and
the list of public keys must be protected like the checksums were protected. Otherwise, a
virus would decrypt the executable, insert itself, obtain a publidsecret key-pair, encrypt
the infected versio~, then write out the. new "good" public key into its spot on the public
key list. Of course 'if the other method is used, a new executable or a change. to any of the
protected ones will necessitate decrypting a.n e?Cecutables ail.dThen reencrYl>ting them
with the new secret key. The new executable cannot just be encrypted and added because
K1 was destroyed. :1r the key was not destroyed, sufficient precautions must be taken to
guard an unauthorized user from obtaining it to undetectably insert viruses.

A compromise fuethod would be to group files and have a key per n files. Files which
are almost guaranteed not to change could have their own key. This guarantees that no
more than n files must be decrypted/reencrypted to add a file or change an existing one.·

I

Other routines in this class may focus on saving file characteristics such as length (in
bytes), samplings from known positions, or date-and-time-of-last-change. Although a
clever virus can "optimize" a program so that the length does not change, such an attack
would be detected through the checksum protection method. · .

I

32

l

!
I
i
I

l,
. I'

· ·: · . m · :o:.•1~ic: ;;a :;1c ;·o __ uc=:;·_ ,;,_;w:;::.:..c+"> " A'.3-:C""4- ::C- ::;;r::a: !>'. ";.-:" ''' ~" ::S;<it; -tf1"l · ·!Cl;. ,oe; .<ez.r) ·· ":"-' ... -.·A""~;·x;,,.,c:., .. ,2.< .. :;:o,.. •. ,.~ . ,w.•;:>1 ... _ L'"J,., 4,':.....,;S\Y-i~,.,.,~"':aµc::cs.;z~ :r.>- 1 ,,~J,i. ::C:: -.lf • ~ . . · ' -r~.-:- .::=-"" ~ -: ·

'.~t;tt'.:~~:<·(.~~' . ·~,·_!.,'' <> ::: . ,. ,, ·'
~- ;- ,·, .

. ·-.;
., .

.. ;··: .. . _ .. ·

ONE KEY PAIR FOR ALL EXECUTABLES

ONE KEY PAIR FOR EACH EXECUTABLE

Fig. 7. Key Pairs for Executables

0
0
(}
H.....,,
0

!!CREI CRYPTOLOGIC QUARTERLY

. '
VIRUS DETECTORS'.

I

Pre-/Post-fix Testor
'
I

The first viru,s detect~i;:,,relies on the virus always appending itself either to the front
or end of a prograim. A sin:iple virus willlikely insert itself at the beginning of a program.
This is the simple~st action that ensurei»that the virus will be run before the host program.
If the virus appeqds itself to the end of a ,program, execution assurance is more difficult .
The virus must either depend on control falling through the host to the virus , or. cod.e at
the top of the hos~ must Q.e changed or added to cause execution ofthe virus .

The benefit to the . SSO is that a ·simple program can examine a number of files to ·
determin~_jf.th.e, prst o: last_ n bytes are i~entical. lf'such. a ch:cker de~er--mines that
several programs have identical pre-fixes, it can assume. tha:t a virus has infected them
all. The checker ~must be intelligent. enough to discount standard headings or pre-fixes

. I . ' ,
before it starts to examine the code. · ·

Pre- and post~fix checkers will evolve into something more sophisticated. Succeeding
checkers must haye even more inte iligence built in. If a virus knew that only the first 20 ·
bytes were compared, it could create its o~n "unique" header by inserting a jump
instruction to the ;"real" viral code, followed by 15 random bytes. A "smart" checker could
detect that the first few bytes were alike in several different programs, and have the

I

ability to compare, an arlJitrary number of bytes, even shifting sequences between one file
and another. 1

As ~iruses aie designed to be more sophisticated, checkers wii'l have to rely on
statist1cal techniques to detect viruses. A very smart virus programmer might concoct a
scheme where the virus apportions itself up into 20 byte chunks, with a 10 byte chunk
being random bit$ (perhaps get clock value and insert) . It would know enough to jump
around these ran4om pool$ and to insert "new" values each time it propagates. That way

. a checker would hot find more than IO bytes alike out of 20. But if the' checker has
I ,

sampled clean executables and knows that 15 percent of a small target subpart (some
section of code mi~us standard headers) is a reasonable amount of identical code to find in
different programs, a 50 percent figure may be enough to trigger an alarm. The virus is
then forced to hare more random bytes~ but that takes up more space which further
increases the risk of detection; and one or two instructions would start showing up in some
unnatural regularity (the jump instruction). This see-saw battle will continue as
checkers and viruses become more sophisticated.

An advantage! that the simple pre~ and post-fix checker shares with the checksum
routine is .that it can work on object files quite handily. Humans have enough trouble
reading high-levei source code, let alone machine code. A program that can examine
these types of fil~s can be a useful tool. A disadvantage of the pattern matcher (the
"smarter" pre-/po~t-fix checker). is that it can take even more CPU tirp.e than the
checksum~routfoe . . ·

Run in background mode, the pattern matcher acts to detect viruses . Once a virus is
found., it can be used to find other hosts infected by that virus by looking in the sarhe
(relative) place for· the same bytes in the other hosts .

EXECUTION LIMITATIONS
I
I

Th~ next metHods discussed will be used primarily to prevent viruses from infecting
files, as opposed to

1
the above methods which were used to detect infections (except for the

encryption method). .
I

34

DOCID: 3896732

I,

r;
r. .
II
'·
1,

'1

. ~ l ·

·. · ":'-

, .. ~ ..

' ' ;.-

. ; ,: ..

~:;' .-> . .

·: --:. ··. ·;, .
. ' . ' ~

: It :~~-1~ · ~ • . •

.,l ,'

. I

I

Access C~ntrols
I
I

A FIRST GENERATION TECHNICAL VIRAL DEFENSE 5~Cft!T

These routines try to ensure that ex:ecutables are never written too directly or, if so,
then only! by a selected group of files. The easiest way to accomplish this, is to set the

· · privileges for executables to execute only. In Unix the privileges would look like
--x--x--x, tlepending on who was given execute rights. Of course, the file may need to be
deleted o~ the program modified and recompiled, all of which potentially allow infection to

. occur . . An9 if one program normally writes to an executable, this allows any program
(with simiiJar privileges) to write to the executable. There are several methods that could
obviate the protection of this scheme. A user could delete ah executable and then rename
one of his: own that is infected with the name of the deleted file . If the user knows the p~th

·- that the s~stem searches to· execute tlHdile, he may be ableto insert a like-named file into
· · the path structure such that it is found before the OS gets to the "real" program.

If the: file to be protected is a user file it may be rnore ~ppropriate to allow the user to
determine who, if.anyone, may execute or even write to it. This may be accomplished by
the use df .User Defined Domains [12] or domain/type enforced systems [4] .. The idea
behind t~ese two systems is to allow only needed, prespecified access to files .

These systems can constrain unauthorized access but allow those actions that are
otherwis~ required. · If the user has a program which writes into ah executable, that fact
can be ericoded within these schemes as permissahle; while still denying other files the
right to write into that executable. The granuladty ofaccess control may be taken all the
way ·down to a program level . That is, one could specify precisely which programs had
access to another. Most popular disctetion·ary access schemes allow the granularity to be
specified ;at the user level; one can indicate which users are allowed access but cannot
specify which programs of that u_ser are allowed access and which are not.

The .use of.the domaih/type enforcer can further restrict the ability to contaminate
executables by restricting those subjects which have the privilege to create executables.
SSOs may wish .to tightly control this right, granting it only to compilers or other system
routines :which take some file and transform it to an executable object. Further, they
would haye to control who could access these transformers.

· . . - This defense narrows the vulnerability of the system greatly and allows the SSO to
concentr~te his attention and efforts. With protected executables, virus originators are
forced to '.examine other levels of the system for their attacks. One way this can be .done is
to infect ht the source code level. Then the originator has only to corrupt the executable
(to fo:ce

1

recompil_ation) or wa~t until some other change is made and the program re-
comp1ledfor the viral propagat10n to be effected. .

Flow Mol/,els

Flow: model protection can~be ' used as a defense against viruses. One way of
implemeh.tingflow control would be to "tag" information with a number which represents

I

the number of processes which have "touched" it ("flow distance" [5]) . Processes have a
preset threshold of "shareability." Once information has been touched so many times it
will exce,ed this threshold and be rejected. This policy, at best, only limits the damage
that can ,be done through a virus which sequentially spreads. If program A is· infected,
every other program in the system can be corrupted from it and thus become 'infected
themsel~es . This policy limits those infections which~ are spread through long chains of
contamiDation, .where program A infects program. B which infects program C and so on .. ·
A smart1 virus-could void the flow limit (if it were known) by. building the same limit
minus one into its propagation trigger .

35

S!CREI CRYPTOLOGIC QUARTERLY

Another way of limiting flow is to tag information with the names of users who have
touched it'{''flow list" [5]). Then users may indieate who they wish to share with and also
condition sharing on the number of names that appear in the list. If one usei: knows that
the person a.cross' the hall regularly brings in freeware , he may not accept any
information that has been touched by the freeware user. · ·

Flow model pro~ection isjust a way of limitiI1g or conditioning the accesses allowed to
executables. SysteplS that allow users to set the privileges to their executables provide
mechanisms for limiting vfruses (as noted above), since viruses. can only exploit the
privileges that they naturally obt~in (e;iccepting any security flows that can be actively
exploited). If the v;irus is allowed to change accesses while still under program control,
this will not affect'. .them very much. If the OS requires a trusted path4 connection to
change privileges, :the syste·m-.. is .. more secure. Regrettably, flow model protection is a
prime example of a : security/functionality trade off. The more secur~ the system in term,s
of this model, the less sharing (functionality) is possible. Conversely, the more sharin,g
allowed, the less security is added by flow controls. · ·

Labeling

Labeling certain executables at the lowest level -1 [l] on a system which has
mandatory security win also prevent those executables from being infected frorrf viruses

·· at higher levels. This works because mandatory security prevents any subject from
writing to an object which has a lower classification level than the· subject. Thus if the ·

. executable has a lei el which i.s less than ~veryone else's, nobody can' write to it. But this
· method requires th~t each executable be downgraded to be protected,' as well as requi~ing
the data that thes~ executables use be at the same lowest -1 leveL This is a counter~
intuitive method of using levels to protect information. Also, all of the executables
downgraded to that! level must be virus-free, as they could potentially write to each other.

RO Ms

Installation on ~ .read-only device w111 allow SSOs to use the physical qualities of the
medium to prevent :writing to executables. Of course, this method incurs problerns if the
executables must be modified. It must then be possible to write another executable which

. I . .

will be. executed instead of the old version. But if this is possible/ then i~ may also be
possible for someone to create a contamin,ated version of the executable and write it out to
be executed instea4 of the "correct" .version. The goal of keeping development systems
separate from oper'ational ones is much the same here; ROMs are ·generally "safer-."
Naturally, the ohginal source code and the compiler must be protected from
contamination as wbH as the transition to executable code and the underiying microcode.

I .

,.,, - ~ ·· · ··~~

FUTURE DEFENSES ' f.

I

Futur~ defense!? (also ca.lied second generation defenses) are those which, in general,
utilize "artificial in~elligence" programming techniques. The methods discussed include ·

I
4. "A mechanism by which a person at a terminal can communicate directly with the Trusted Computing
Base. This mechanis~ can orily ·be activated by the person or the Trusted Computi.ng Base and cannot be
imitated by untrusted :software." DoD Trusted Computer System Evaluation Criteria OoD 5200.28-ST,D,
December 1985. ·

36

,. _l

..~t ..

l

l .. : ..
j .,

. j

·~
1
-~

..)

DOC ID: . 38967 32

....

I.

i . '
~ ·,

~ ''

.,

t.

. {
I

l ... ,\,

'1 ~· .

I
,;.·,,.·

' ' '

: ,·

:
1
~ :~tt ';

:-·~ :)f;7· :-: '
·.h· "'·~·{'. "' "

-;1 :., ~·~ •. h;' ~;,~.

A FIRST GENERATION TECHNICAL VIRAL DEFENSE 5~CREI

;
·a progr~m which examines other programs and determines whether malicious software is
imbedd~d within it, a very smart audit program which looks for viral activity in the
system ~ctivity, and a program which examines other programs and looks for changes in
the coding style which would indicate a change of authorship.

Virus Filter ·
I

We peliey-e that the task of writing a computer program which would examine other
,progralljlS and determine whether or not the examinee is infected with a virus is

.. impossiple. However, it is possible to detect certain types .of viruses in certain
environments as well as locate sections of code which look "suspicious." The program that
does thi~ must know'a lot about what viruses look like and also be cognizant of the system
environment within which it is oper:ating.

To ~rite this program, instructions and usage must be resea~ched. Viruses have ·
certain properties which many (if not most) other programs do not For example, many

: -viruses will need to call system routines to find the names of execi,1tabie .files to infect,
,whereas many user programs already know which programs that they will access. The

. ~implem~ntation of these properties should show up in the instructions of the virus.
Moreov~r, the clustering (appearance in close ,proximity) of these instructions; as in a

. ·virus wnich appends or inserts itself in to to, would be a significant fingerprint: A normal
.us.er program may have many of the same instructions ~hat a virus does.but is more likely
to have them spread throughout. . .

This program would attempt to locate viral-like code, assign. some value as to the
· perceived likelihood of it being a virus, and then pass that information (and the section[s]

of suspi~ious code) back to. a user for any final decision or action_
I .

I

Auditor:

_.: The audit routine would determine when a program(s) was suspicious by examining
their behavior. It may sample the global system st~te to establishwhether viruses had
infected lprograms. Certain viruses may be easily detected-tl:it-'~ugh their behavior from a
single P,rogram, where the effects of oth~rs may not be' seen except through an

.. aggregation. The auditor would also be comparing and analyzing behavior through time,
since vi~uses may construct their triggers to mask:th¢ir prqpagation properties. (:2]
, An auditor which uses templates of user activity and then comparesctirren.t actions
~gainst ~his template has already been proposed. (6, 81 An authorized user may spend
most of .his time doing "real" work or computiri'g, where. a masquerader may spend an
ino~dinate amount of time browsing through direcWries or checking statuses. An

. implementation of this type of auditor could simply so~_nd an alert wh¢n tl;le .co111pared
differen~e was-gr-eat enough, or it could provide, more Information to the ~SQ"to~more
closely ,redict exactly what type of attack is (or h,as) occurred.

Author Checker
I

I

The last second generation viral defense is a program which examines code and then
tries to .answer questions such as "how many authors does this program have?" and
-~where does one author's code end and another's begin?"••' Certain techniques exist to
answer these questions for noncomputer-like documents. Such techniques would look at

'such items as the length of sentences or paragraphs, the tense and inflection; the use and '
type of certain grammatical characteristics or ploys, not to mention simple ha,ndwriting
analysis: A program could be constructed to examine source code with similar'intentions.

I.
I

I

I

37 SECRET

SECRET (.";RYPTOLOGIC QUARTERLY

I
. . I . .

Perhaps it-would e~amine indentation, the use of comments, loop construction, or even
characteristics of variable ri.ames.

As ~ystem routibes transform the source code in preparation for machine execution,
such analysis wouldi become·~ore difficult, although not impossible. Once the source code
is verified to be unitjfected, th'e object code (source code run through the compiler) needs to
be tested. Here, certain of the above characteristics cannot be used. The c'ompiler would
strip out comments,' for instance, but the basic structure of the program would. remain. If
a program is optimized, that would increase th~ amount of personal characteristics
filtered out (or ma~ked), decreasing the confidence level of finding and identifying
differences. '

CONCLUSIONS

Certain measutes may be undert~ken to provide SSOs with some assurance that
programs or execut~bles cannot undetectably be infected with computer viruses. These
measures rely upori," the changes that must occur for infection to take place. · Once the
protection of the routines and the data that they require (the list of checksums or the list
of public keys) is assured, these routines provide a high degree of assuranc'e that viral

. . I , .

activity will be prevented or detected. Other, more sophisticated mechanisms are poss!ble
but require further research before implem.entation ,

. I

SECREI 38

. .

'

1
I
1 .,

l
I
I

I

r
DOC!D: 3896732

J.

.., .

·.'>;;'

. .',

.·. -·

. -";,·\: ~- .\;, •. •J..:,

;:~i

A FIRST GENERATION TECHNICAL VIRAL DEFENSE SEERl!f

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

.__ ______ _.I ··The Susceptibility of Multics to Viral Attacks," Cryptologic
Qf¥Lrterly, Fall 1985.

L"Computer Virus
.__0_11.,..ig_a_n_i-za-t-. i_o_n_: _A_D_e_fi_1_n-it-i-ve_T_a_x_o ... n_o_m-.... -y-a_n_d_A_n_a_t_o_m_. -y-o-_f_C_o ... mput~r Viruses,"

Cryptologic Quarterly, Fall 1986. · ····... \ .
I .,

"Why use 'a: Virus Instead pf a Trojan Horse?'' Informal
·· TechriicalNote, 1987:·

. .;,·,,:- -~ ·~-

I
I ' ' • --. • ··-. \,

Boebert, Earl and Richard Kai_n. "A PracticalAlter11ative to Hierarchical Integrity
Policies," Proceedings of the 8th National ·NB.SlNC$C Computer 'Security
Conference, 1985.

I

Cohen, Fred. "Computer Viruses," Proceedings, of the 7th National NBS/NCSQ\
C<)mputer Security Conference, 1984. ·

I

DJnning, Dorothy. "An Intrusion-Detection MOdel," Proceedings of the 19S6JEEE
Symposium on Security an4 Privacy, 7-9 April 1986 .

Dillie, Whitfield and Martin E. Hellman. "New Directions in Cryptology~" IEEE ·
Triansaction8 on Information Theory, Vol. IT-22, No. 6, November 1976.

Halme, Lawrence R, and John Van Horne. ~"Au~m~ted Analysis of Cqmputer
S~stem Audit Trails for Security Purposes/' Proceedings of the 9th National
NBS!NCSC Computer Security Conference, 1986.

I . // ,

K~rger, Paul and Roger Schell. "Multics Security Evaluation: Vulnerability
Analysis," ESD-TR-74~1~3 Vol. II, June 1974. . .

[10] Rivest, R.L., A. Shamir~ and L. Adleman. .."A M~thoci for Obtaining Digital
Signatures and Public KeyCryptOsystems," CACM, Vol. 21 .• No. 2, Februal-y 1978.

[11] ..._ ______ t·computer Virus Infections," Cryptologic Q~rterly, Fall 1985.

[12] sipith, Terry· A. "User Definable Domains as a Mechanism for Implementing the
Least Privilege Principle," Proceedings of the 9th National' NBBINCSC Computer
Security Conference, 1986.

I

[13] Thompson,:Ken. "Reflections on Trusting Trust," CACM, Vol. 27, No. 8, August
1984. .

'I 39 SECRE'f

fl.L. 8 6 -36

SECRE.f . CRYPTOLOGIC QUARTERLY

Appendix

> Viral Defenses and System Security (U)

The effectivepess of these defenses will vary depending ori the- security .of the system
they inhabit. An A 11 system should be able to adequately protect a list of keys, for
instance, where~· D 2 sys'tem may not: There are two questions to answer when examining
viral defenses and system security: one, is a specific vfraTdefense necessary in an Al (or
above sorrie level) system? and two, would a defense do any good in a D (or below some
level) system? . .

The .ans..;,er tp both is yes.· Ther~ is already [lJ a paper whichdetails a vulnerability in
a B2 level system. It is obvious that without specific mechanisms which can be used to
defeat viruses, a System built to an Al level of·secu~ity is still vulnerable to viruses. This

. I ·. .

vuliieMbility is pro})ably not the· risk of disclosure but that of integrity or denial · of
service . . That is, a system built to Al ·with no additional security functionality is
susceptible to ceftain class.es of computer viruses. However, it is true that an Al system

, provides the assurance that when viral defenses are added they are much less likely to be
subverted. 1

AD level system may still benefit from the addition of viral defenses. There are three
ways that defens~s may be used. First, it may be announced that they are being installed .
Although this would allow a cognizant viral designer to create '.'defense-resistant"
viruses, any imported viruses stand a good chance of being caught. Second, defenses may
be ad~ed surrep~itiously. Whereas this incurs the limitations of depending on secrec,y
instead of strength for security, it is arguably better than announcing its: emplacement.
The third me.thou requires U;ie SSO to logout all users from the system, perform· a
shutdown, .boot the OS from a physically protected medium, and then perform the check.
for viruses: Of cotirse, this lastis only applicable to those defenses which attempt to ferret ·
out viru'ses from ~he appearance of the host program and could' not' work fot those which
rely on th~ programs be ha vi or to detect viruses. , , , , ·,

An $$0 ·m~y :find either of the first · two methods adequate in a benigri' environment,
but must {mpiement the last if warranted. It may also be reasonable to use method one or
two during t~e m9nth but at the end of the month effect the more secure sweep.

1. See DoD TCSEC QoD 5200.28-STD.
2. Ibid. I

I
.§EER!I 40

.)~

:>! ,i
'.~
,.

:;.!
i ~

.1 ,,
,,,I

f.
}~~
:I

·:1
~I ,,
,1
. !-

·;.
· ~i .,,
']
::1

'.~
·.1

~
'. j
;1
1 . .,

.. ,I
j

