'DQA}D: 3896732
— SECRET—

: A| First Generation Technical Viral Defense (U)
! ' . .

|

.)

3 }

. : Editor’s note: This paper was awarded second prize in the Computer Security Category of the 1987 Computer
and Information Scnences Institute Essay Competition. .

I u -~ F

Computer viruses are a form of Trojan horses with a self- propagatmg property. They
can be extremely infectious and virulent when used maliciously in computer systems. Many
" defenses are available to System Security Officers (SSOs which will limit or detect viruses.
- Most methods are easy to implement, yet provide the SSO with a high degree of effective
viral control These defenses include “sealing” the program (by encryption techniques),
: comparmg the pre- and post-fix portions of programs, limiting the domains the executable
code inhabit, and controlling the flow and access rights of programs. Second generation
viral defer{ses will use heuristics to detect viruses, audit the system looking for specific
: viral- mchators or compare the coding style in programs. Standard personnel and

A procedura{ techniques will not be discussed. '

)

INTRODUCTION

S ar o o

; System Security Officers have a wide variety of options to defend against software

o sabotage. | They can institute technical measures to prevent or detect unauthorized

. alteratmns -investigate the backgrounds of their employees, and implement procedures to

o limit opportumtles of introducing malicious code. This paper will discuss the former

E measure: that of compiling a suite of technical means to-limit and detect software

T sabotage pnmarlly that sabotage via computer viruses.

: Computer viruses are a form of Trojan horse. Their mission is usually malicious and
triggered by some event, such as a certain system date or the disappearance of a certain |
name from the payroll database. They have the additional property of being able to copy
themselves from one program to another. When introduced into a system with little or no

" defenses, they can quickly take over the system (obtain full privileges). (5, 9, 13]

, Emph351s on computer viruses as opposed to the general class of Trojan horses was

S chosen for: two reasons: first, because their propagation property makes them potentially

SR more dangerous relative to “ordinary” Trojan horses; [3, 11] and second, because their

‘ propagation property makes:them potentially easier to detect than ordinary Trojan

~ horses. Technical methods which are germane to this problem will be discussed, while

generic personnel and procedural security measures will not. '

DEFINITIONS

- ~i
A computer virus is'a form of TrOJan horse which has the (additional) property of

B bemg able to copy itself to another program, other than the program it inhabits. Both a _
o program “infected” with a virus and a virus-free program are called “hosts.”

eClassiﬁed and approved for release by NSA SECREY
n09-06-2011 pursuantto E.O 13526 '

—SEERET- CRYPTOLOGIC QUARTERLY

A virus has three components [2]: the first is the propagation component, that part
which causes the virus to propagate to other hosts; second is the mission, which is the
ultimate goal of the virus and is usually malicious (delete all files, usurp the system, etc.);
and the third is theitngger mechamsm The trigger d)rects the virus when to execute the
other two components i

ASSUMPTIONS ‘

We assume that the programs used to detect viruses are themselves not infected with
viruses, and that they contain no other form of malicious logic. If this is not assumed, it is
easy to construct scenanos where-they fail. A program which ostentatiously checks for
viruses could be modified such that it would work except when it found a partlcular virus;
in which case the checker would ignore the infection.

|
i
DEFENSIVE CLASSES'
\

Defensive measures will be divided into three classes. The first class attempts to save’

an attribute of a program that is initially “pure.” Then it will periodically recompute and
compare this attribute to check for contamination. A routine in this class cannot
determine if a program is initially infected. The class is entitled “attribute monitors.” '

The second class is called "virus detectors.” A routine in this class can determine
whether a file is initially infected. These routines examine the program by itself or in
relation to other programs to determine whether infection has occurred. The previous
class established a baseline and then checked to ensure that the baseline was still
accurate. Both the first and second class detect viruses in a nondynamic way; that is, they
do not rely on the be:hai)ior of the program during execution to work, rather, they rely on
the appearance. . '

The third class is “execution limitations:” This class imposes a priori controls on
executables to prevent virus propagation. : ')

After discussing some examples under each class, three measures t,hat will require
much innovative work and engineering will be exammed

l
ATTRIBUTE MONITORS
‘ !

Checksum Routine
L

~

The first routiné in this class is a checksum routine. [1; 11] The checksum routine -

first computes a checksum on a file to be protected. This initial value is stored and access
protected’ if the system itself cannot provide sufficient control, then the checksum is
protected by reducing it to hardcopy or writing the value to write-once media.
Synchronously, -or on demand, the checksum for the file is recomputed and compared

1. One can not simply aécess protect the file being checksummed in the same manner. The checksum(s) may
be protected with the same constraints the system would use to protect the password file. This level of
protection cannot be applied to every users’ files. Also, the checksum(s) must be protected from any write
access, some files may bef written to from authorized programs, but not by others. The system may not provide
the needed granularity of control.

28

;
't

st 15 Sstesnats S P Al St Denab P

)

o b P e A

P ' |

DOCID: 3896732 |
=)) I A FIRST GENERATION TECHNICAL VIRAL DEFENSE —SECRET—
o ; ;
: I - o
. ~ against the stored value. If the values differ, the SSO knows that the file has been
: modified. ! If an authorized change to the file is made, the “initial” checksum must be
updated. It is assumed that updates to operational systems will be infrequent and can be
d closely controlled.
% : Although this scheme (and others below) may be too costly to implement for every
) executablé or file on the system, it may be used to protect a subset of especially critical
programs This subset should include essential operational routines or software develop-
ment routines such as translators or compilers, as well as whatever security relevant
programs |exxst, such as the login/password responder or auditor.
[t is also possible to store the checksum with the file itself and at run-time recompute
and compare it. This method has the advantage of catching an infected file before it
" executes (and potentially infecting -others) but the disadvantage of increasing-the
5 execution'overhead. This system may be modified by allowing the owner to specify an
%5 . % optionat invocation time that would cause the checksum to be recomputed and compared.

1 . Encryptio'n

; A method which relies on the pairing of a decryptlon key with the protected file is a

N routine that uses public key encryption techniques.

L Public key (or asymmetric) encryption uses two keys to encrypt/decrypt where K;

B © - <> Kg. | One of the keys is derivable from the other (say K. is derivable from K;);
e 7w however, giveri Ko by itself, it is extremely hard to derive K| (see fig.1). K is referred to

£ .
i i Kl K2
|
; o EASY TO DO
L _
B
5 Kz Ky
HARD TO DO

e
! Fig. 1. Public and Secret Keys
I
| . 5
as the "s_écret” key, and Ko is the “public” key: When the public key is published anyone
can use itI to encry'pt a message which only the holder of the secret key can decrypt (see
fig.2), allowmg secrecy, or to decrypt a message which purports to be from the holder of

the secret key (see fig.3); which, if successful, authentxcates the message as being sent
from the holder of the secret key. [7, 10]

USER 1
PLAINTEXT

USER N

PLAINTEXT

Fig.2. Private CLomﬁunication - Anybody Encrypts with Ky; Only Holder of K, Can Decrypt

PLAINTEXT '—?

i
|
i

Fig.3. Authenticated Communication - Cipher T

'

I

|

I

K2

==~ CIPHER TEXT

CIPHER TEXT

30

Ko

w==p> PLAINTEXT

=g USER 1

e ° 9 90

USER N

ext Decryptable by Anyone with the Public Key

i

it

o S a il

o it i -

5 G g Midod iy gUNsiion s gans o
S i i AN, S A e i

DOCID: 3896732 |

A FIRST GENERATION TECHNICAL VIRAL DEFENSE —SEEREF——

The method involves encrypting an executable using K (the secret key). Then K; is
destroyed. Kg (the public key) is published for everyone to use to decrypt the executable
file for use.? As long as no one has K, it is impossible for a virus to infect the executable
(see fig.4). The virus cannot write directly to the executable without being decoded to

T T

K

o) i PROGRAM ISENCRYPTED WITH THE SECRET KEY

Ka

Ko

! ; PROGRAM IS DECRYPTED WITH THE PUBLIC KEY
o ' : AND PROVIDED TO THE-USER

e Fig.4. Programs Encrypted with Secret and Pubtheys

| - ; :
gibberish (see fig. 5), because the executable is encrypted and will be decrypted to run. If
the v1rus decrypts the file and then attaches itself and writes the corrupt version back out,
the 0S will decrypt it into meaningless bits whenever anyone attempts executlon (see

2. There couldbe an operating systein service such that whenever someone requests an encrypted program be
e executed, the operating system would first decrypt the executable with the mabchmg public key.

2 - 3. Obviously, the operating system must not have a Trojan horse which allows the decrypting of prot,ect,ed
executables to be bypassed. Otherwise, the virus would decrypt the executable, insert itself, and write the
executable back to memory, flagging the OS not to decrypt it to execute.

: CRYPTOLOGIC QUARTERLY
|

fig.6). The virusicannot use Ky for encryption purposes, and it cannot derive K to

reencrypt the executable properly.

N .

i\
\\ A

Fig.5. Plain Text Virus is Decoded into Random Blts when Program is Decrypted to Execute

Z

N

W

i Fig.6. Plain Text Program/erus Pair Fares No Better

’///
2

v

A key-per-executable or one key for all executables are two alternative methods to'use
(see fig.7). If key-per-executable is chosen, installation of the encrypted executable and

the list of public keys must be protected like the checksums were protected. Otherwise,a -

virus would decrypt the executable, insert itself, obtain a'public/secret key-pair, encrypt
the infected version, then write out the new "good” public key into its spot on the public
key list. Of course if the other method is used, a new executable or a change to any of the
" protected ones will necessitate decrypting all executables and then reencryptmg them

with the new secret key. The new executable cannot just be encrypted and added because
K1 was destroyed. 'If the key was.not destroyed, sufficient precautions must be taken to
guard an unauthorized user from obtaining it to undetectably insert viruses.

A compromise method would be to group files and have a key per n files. Files which
are almost guaranteed not to change could have their own key. This guarantees that no
more than n files must be decrypted/reencrypted to add a file or change an existing one.-

Other routines i m this class may focus on saving file characteristics such as length (in
~ bytes), samplmgs from known positions, or date-and-time-of-last-change. Although a

clever virus can “optimize” a program so that the length does not change, such an attack
would be detected through the checksum protection method.

—SECRET— : _ 32

R B e

IR

it

e

i i B a2

;._.._,;.:.*__L.v:‘mm;:‘;;.s_-:z.w;_.:

o A A e e Lo o

T R T (RIS T

© o o o

N\

e B

ONE KEY PAIR FOR ALL EXECUTABLES

LS

ine

\

KN

Kz

\

K2~

ONE KEY PAIR FOR EACH EXECUTABLE

Fig.7. Key Pairs for Executables

TEYTVE

Y T ATy T L -

ISNEJIA TVYIA TYDINHOIL NOLLVHINID LSHId V

arooda

cEL968E ¢

—SECRET - CRYPTOLOGIC QUARTERLY

'
1
o
|

VIRUS DETECTORS;
Pre -/Post-ﬁx Testor

The first v1rus detector relies on the virus always appending 1tself either to the front
or end of a program. A simple virus will likely insert itself at the beginning of a program.
This is the simplest action that ensures:that the virus will be run before the host program.
If the virus appends itself to the end of a program, execution assurance is more difficult.
The virus must either depend on control falling through the host to the virus, or code at
the top of the host must be changed or added to cause execution of the virus.

"The benefit to the SSO is that a simiple program can examine a number of files to’

determine if the first or last n bytes are identical. If such a checker determines that
several programs‘ have identical pre-fixes, it can assume that a virus has infected them
all. The checker‘must be intelligent enough to discount standard headmgs or pre-fixes
before it starts to examine the code.

Pre- and post-fix checkers will evolve into something more sophisticated. Succeeding
checkers must hayve even more intelligence built i in. Ifa vrrus knew that only the first 20
bytes were compared it could create its own “unique” header by inserting a jump

instruction to the [‘real” viral code, followed by 15 random bytes. A ' ‘smart” checker could -

detect that the first few bytes were alike in several different programs, and have the
ability to compare an arbitrary number of bytes, even shifting sequences between one file
and another. i :

As viruses are designed to be more sophisticated, checkers will have to rely on
statistical techniques to detect viruses. A very smart virus programmer might ¢oncoct a
scheme where the virus apportions itself up into 20 byte chunks, with a 10 byte chunk
being random bxts (perhaps get clock value and insert). It would know enough to jump
around these random pools and to insert “new” values each time it propagates. That way

.a checker would not find more than 10 bytes alike out of 20. But if the’ checker has
sampled clean executables and knows that 15 percent of a small target subpart (some
section of code minus standard headers) is a reasonable amount of identical code to find in
different programs a 50 percent figure may be enough to trigger an alarm. The virus is
then forced to haye more random bytes, but that takes up more space which further
increases the risk of detection; and oné or two instructions would start showing up in some
unnatural regularity (the jump instruction). This see-saw battle will continue as

checkers and viruses become more sophisticated.

An advantagel that the simple pre- and post-fix checker shares with the checksum

routine is that it can work on object files quite handily. Humans have enough trouble
reading high-level source code, let alone machine code. A program that can examine
these types of files can be a useful tool. A disadvantage of the pattern matcher (the
“smarter” pre-/post-fix checker) is that it can. take even more CPU txme than the
checksum routine.

Run in background mode, the pattern matcher acts to detect viruses. Once a virus is
found, it can be used to find other hosts infected by that virus by looking in the sarme
(relative) place for-the same bytes in the other hosts.

I
EXECUTION LIMITATIONS
|

The next met.h;ods discussed will be used primarily to prevent viruses from infecting

files, as opposed to the above methods whxch were used to detect mfectlons (except for the
encryption method).

—SECRET— 34

|
|
|
|
|

¢

d
3
B
b

5 e e et
g pea e e o sk s R

o

T R . O [O i L

r

DOCID: 3896732 |

!

A FIRST GENERATION TECHNICAL VIRAL DEFENSE —SECRET——

i
Access Controls
I
These routines try to ensure that executables are never written too dlrectly or, if so,
then only by a selected group of files. The easiest way to accomplish this, is to set the
pr1v1leges for executables to execute only. In Unix the privileges would look like
--x--x--x, depending on who was given execute rights. Of course, the file may need to be
(deleted or the program modified and recompiled, all of which potentially allow infection to
. . .oceur. -And if one program normally writes to an executable, this allows any program
i {with sxmllar privileges) to write to the executable. There are several methods that could
L obviate the protection of this scheme. A user could delete dn-executable and then rename
, one ofhls.own that is infected with the name of the deleted file. If the user knows the path
3" " thatthe system searches to execute thé file, he may be ableto insert a like-named file into
-k “ thepath structure such that it is found before the OS gets to the “real” program.

' o ~ If the'file to be protected is a user file it may be more appropriate to allow the user to
determine who, if anyone, may execute or even write to it. This may be accomplished by
the use of .User Defined Domains [12] or domain/type enforced systems [4].. The idea
behind these two systems is to allow only needed, prespecified access to files.

These systems can constrain unauthorized access but allow those actions that are
otherw1se required. - If the user has a program which writes into an executable, that fact

" . can be ericoded within these schemes as permissable, while still denying other files the
right to write into that executable. The granularity of access control may be taken all the
way down to a program level. That is, one could specify precisely which programs had
access to another. Most popular discretionary accéss schemes allow the granularity to be
specified at the user level; one can indicate which users are allowed access but cannot
specify which programs of that user are allowed accessand which are not.

The use of the domain/type enforcer can further restrict the ability to contaminate
executables by restricting those subjects which have the privilege to create executables.
SSOs may wish to-tightly control this right, granting it only to compilers or other system
routines which take some file and transform it to an executable object. Further, they

o would have to control who could access these transformers.

L This defense narrows the vulnerability of the system greatly and allows the SSO to
R concentrate his attention and efforts. With protected executables, virus ériginators are

s ; forced to examine other levels of the system for their attacks. One way this can be.done is

<" toinfect at the source code level. Then the originator has only-to corrupt the executable

o (to forcelrecompllatlon) or wait until some other change is made and the program re-

compiled for the viral propagation to be efTected ' -

Flow Models

A Flowf model protection can-be: used as a defense against viruses. One way of it
BT impleme}ﬁtingﬂow control would be to “tag” information with a number which represents :
: the number of processes which have “touched” it (“flow distance” [5]). Processes have a
preset threshold of “shareability.” Once information has been touched so many times it

will exceed this threshold and be rejected. This policy, at best, only limits the damage

that can be done through a virus which sequentially spreads. If program A is infected,

every other program in the system can be corrupted from it and thus become infected
themselves This policy limits those infections which. are spread through long chains of
contamination, where program A infects program B which infects program C and so on.’

A smartl virus- could void the flow limit (if it were known) by. building the same 11m1t
minus one into its propagatlon trlgger T) T '

—SECRET o CRYPTOLOGIC QUARTERLY

Another way of limiting flow is to tag information with the names of users who have
touched-it (“flow list” [5]). ‘Then users may indicate who they wish to share with and also
condition sharing on the number of names that appear in the list. If one user knows that

the person across' the hall regularly brings in freeware, he may not- accept any
information that has been touched by the freeware user.

Flow model protection is just a way of limiting or conditioning the accesses allowed to

executables. Systems that allow users-to set the privileges to their executables provide

mechanisms for hmltmg viruses (as noted above), since viruses. can only explmt the -

privileges that they naturally obtain (excepting any security flows that can be actively
- exploited). If the virus is allowed to change accesses while still under program control,
this will not affect them very much. If the OS requires a trusted path? connection to
change privileges, the system-is-more secure. Regrettably, flow model protection is a

prime example of aisecurity/functionality trade off. The more securé the system in terms -

of this model, the less sharing (functionality) is possible. Conversely, the more sharmg
allowed, the less secunty is added by flow controls.

Labeling J

Labeling certain executables at the lowest level -1 [1] on a system which has

mandatory security wilk also prevent those executables from being infected from viruses

- at higher levels. 'I‘hxs works because mandatory security prevents any subject from

~ writing to an object which has a lower classification level than the subject. Thus if the -

executable has a level which i is less than everyone else’s, nobody can:write to it. But this

- method requires that each executable be downgraded to be protected, as well as requiring

the data that these executables use be at the same lowest -1 level. This is a counter-

intuitive method of using levels to protect information. Also, all of the executables

downgraded to that level must be virus-free, as they could potentially write to each other:
ROMs '

. Installation on a read-only device will allow SSOs to- use the physical qualities of the
medium to prevent 'writing to executables. Of course, this method ificurs problems if the
executables must be modified. It must then be possible to write another executable which
will be. executed instead of the old version. But if this is possible, then it may also be
possible for someone to create a contaminated version of the executable and write it out to
be executed instead of the “correct” version. The goal of keeping development systems
separate from operational ones is much the same here; ROMs are generally “safer.”
Naturally, the original source code and the compiler must be protected from
contamination as well as the transition to executable code and the underlying microcode.

- e - gt

FUTURE DEFENSES : Sk

Future defenses (also called second generation defenses) are those which, in general,
utilize “artificial in;telligence” programming techniques. The methods discussed include -
[
4. "A mechanism by which a person at a terminal can communicate directly with the Trusted Computing

Base. This mechamsm can only be activated by the person or the Trusted Computing Base and cannot be

imitated by untrusted software.” DoD Trusted Computer System Evaluation Criteria DoD 5200.28-STD,
December 1985. ' '

F 36
!
|

|

R e e

2
33,

L ke S

Py

s s sl

o Gt

DOCID: 3896732 |
j . AFIRST GENERATION TECHNICAL VIRAL DEFENSE —SECRET

3
'

-a progra}m which examines other programs and determines whether malicious software is

imbedded within it, a very smart audit program which looks for viral activity in the '
. system activity, and a program which examines other programs and looks for changes in

the coding style which would indicate a change of authorship.

Virus Filter
| 3
We believe that the task of writing a computer program which would examine other
programs and determine whether or not the examinee is infected with a virus is
~.impossible. However, it is possible to detect certain types of viruses in certain
environments as well as locate sections of code which look “suspicious.” The program that
does this must know-a lot about what viruses look like and also be cognizant of the system ~
environment within which it is operating. c
To write this program, instructions and usage must be researched Vlruses have-
-certain properties which many (if not most) other programs do not. For example, many
.-viruses will need to call system routines to find the names of executable files to infect,
. :whereas many user programs already know which programs that they will access. The
‘;1mplementatlon of these properties should show up. in the instructions of the virus.
Moreover, the clustering (appearance in close proximity) of these instructions; as in a
- virus which appends or inserts itself in toto, would be a significant fingerprint: A normal
_ .. .user program may have many of the same instructions that a virus does-but is more likely .
- to have them spread throughout.
o This program would attempt to locate viral-like code, assign some value as fo the
- - percelved likelihood. of it being a virus, and then pass that information (and the section[s]
of susp1c1ous code) back to a user for any final decision or action.

. \
Au_ditor !

B T

. ; o The audlt routine would determme when a program(s) was suspicious by examining
their behavior. It may sample the global system staté to establish-whether viruses had-
mfected‘programs Certain viruses may be easily detected- through their behavior from a -

. single program, where the effects of others may not be seen except through an
..aggregation. The auditor would also be comparing and analyzing behavior through time,
since viruses may construct their triggers to mask:their propagatxon properties. [2]
. Anauditor which uses templates of user activity and ‘then compares current actions .
. against | this template has already been proposed. (6, 8] An authorized user may spend
- most of his time doing “real” work or computing, where. a masquerader may spend an
o inordinate amount of time browsing through directories or checking statuses. An

- . implementation of this type of auditor could simply sound an alert when the compared

o difference was-great enough, or it could provide more - ‘information to the SS@ to»more

closely predlct exactly what type of attack is (or has) occurred. :

e Author Qhecker

& 1 _ _ o :

.. The last second generation viral defense is a program which examines code and then
' tries to answer questions such as “how many authors does this program have?” and

P -“where does one author’s code end and another’s begin?”+ Certain: techniques exist to
) answer these questions for noncomputer-like documents. Such techniques would look at

: .such items as the length of sentences or paragraphs, the tense and inflection; the use and -

type of certain grammatical characteristics or ploys, not to mention simple handwriting

analysis. A program could be constructed to examine source code with s1m11ar intentions.

i
|
[
1
|
\
|

f
—SEEREF— : CRYPTOLOGIC QUARTERLY .

\

Perhaps it-would examme indentation, the 1 use of comments, loop construction, or even
characteristics of variable names.

- As system routmes transform the source code in preparatmn for machine execution,
such analysis would become 'more difficult, although not impossible. Once the source code
is verified to be unlnfected thé object code (source code run through the compiler) needs to
be tested. Here, certain of the above characteristics cannot be used. The compiler would
strip out comments for instance, but the basic structure of the program would remain. If

a program is optimized, that would increase the amount of personal characteristics -

filtered out (or masked) decreasmg the conﬁdence level of finding and identifying
dxfferences ‘

i
/
! TN st £t
|
1
|
{

CONCLUSIONS

Certain measures may be undertaken to provide SSOs with some assurance that

programs or executables cannot undetectably be infected with computer viruses. These
measures rely upon the changes that must occur for infection to take place. - Once the

_ protection of the routines and the data that they require (the list of checksums or the list
of public keys) is assured these routines provide a high degree of assurance that viral
activity will be prevented or detected Other, more sophisticated mechanisms are p0551ble
but require further research before implementation,

i iin S AN it

oA Lo r R

e b e B S P

DOCID: 3896732 |

‘ A FIRST GENERATION TECHNICAL VIRAL DEFENSE —SEERET—
|
|

(
REFERENCES

o | - 5 .
t (1 | | “The Susceptibility of Multics to Viral Attacks,” Cryptologic
Quarterly, Fall 1985.
1

s (21 | ' | “Computer Virus
C % Organization: A Definitive Taxonomy and Anatomy of Computer V1ruses
Cryptologlc Quarterly, Fall 1986.

-

: < [3] | | “Why Use & Vn‘us Instead of a Tro.]an Horse"” Informal
-~ " Techhical Note 1987 el TR, T

4] Boebert Earl and Richard Kain. "A Pract1cal Alternatwe to errarchlcal Integrlty
" . Policies,” Proceedzngs of the 8th Natlonal NBS/NCSC Computer Securtty'
Conference, 1985. .

RN R DR

[5] .Cohen Fred “Computer Viruses,” Proceedlngs. of the 7th National NBS/NCSC’R .
' Computer Secunty Conference 1984. A PL 16-36

[61 Denmng, Dorothy. “An Intrusmn—Detectlon Model Proceedmgs of the 1986 IEEE
: Symposmm on Security and Prwacy, 7-9 April 1986.

[7]' ‘o lefie Whitfield and Martin E Heéllinan, “New Duectlons in Cryptology,” IEEE -
Transactwns on Informatwn Theory, Vol. IT- 22 No. 6, November 197 6

o
¥

TR T

[8] Halme Lawrence R and John Van Horne. “Automated Analysis of Computer
System Audit Trails for Security Purposes,” Proceedmgs of the 9th National
NI‘BS/NCSC Computer Security Conference, 1986 ‘
[91 Karger Paul and Roger Schell. “Multlcs Securlty Evaluatlon Vulnerablhty
Analys18 ” ESD- TR 74-193 Vol 11, Ju:ne 1974. :

[10] -Rlvest R.L., A. Shamlr and L Adleman “A Method for Ob'taming Digital
Signatures and Public Key Cryptosystems ”CACM, Vol 21, No. 2, February 1978.

T _ [11] "Computer Virus Infectlons » Cryptologtc Quarterly, Fall 1985.

[12] Sl%lith, Terry ' A. “User Definable Domains as a Mechanisin for Implementmg the
e Least Privilege Principle,” Proceedings of the 9th National NBS/NCSC Computer
Security Conference, 1986, s v

[13] Thompson,Ken. “Reflections on Trusting Tru‘st;” CACM, Vol. 27 , No. 8, August
1984. o -

B e O R

—SEEREF- F - - .CRYPTOLOGIC QUARTERLY

Appendix

| # Viral Defenses and System Security (U)

=]

The effectiveness of these defenses will vary dependmg on the securlty of the system
they inhabit. An Al system should be able to adequately protect a list of keys, for
instance, where a D? system may not. There are two questions to answer when examining
viral defenses and system security: one, is a specific viral defense necessary in an A1l (or
above some level) system” and two would a defense do any good in a D (or below some
level) system? - -

The answer to both'is yes. There is already {1} a papér whick detalls a vulnerability in
a B2 level system It is. obvious that without specific mechanisms which can be used to
defeat viruses, a system built to-an A1 level of security is still vulnerable to viruses. This
vulrierability is probably not the risk of disclosure but that of integrity or denial of
service. . That is, a system built to Al with no additional security functionality ‘is
susceptlble to certam classes of computer viruses. However, it is true that an A1l system

_provides the assurance that when viral defenses are added they are much less likely to be

subverted. !

A D level system may stiil beneﬁt from the addition of viral defenses There are three
ways that defenses may be used. First, it may be announced that they are being installed.
Although this would allow a cognizant viral designer to create. “defense-resistant”
viruses, any zmported viruses stand a good chance of being caught. Second, defenses may
be added surreptltlously Whereas this incurs the limitations of depending on secrecy
instead of strength for security, it is- arguably better than announcing its emplacement.
The third method requires the SSO to logout all users from the system, perform: a
shutdown, boot the 0S from a phy31ca11y protected medium, and then perform: the check-

for viruses. Of course, this-last is: only applicable to those defenses which dttempt to ferret d

out viruses from the appearance of the host program and could not work for those. whlch
rely on the programs behavior to detect viruses. :

An SSO° may find either of the first two methods adequate in a benign’environment,
but must 1mplement the last if warranted. It may also be reasonable to use method one or

two durmg the month but at the end of the month effect the more secure sweep

N

1. See DoD TCSEC DoD 5200.28- STD
2. Ibid. |

SEERET " 40

