Application of the Flask Architectureto the X Window System Server

Eamon F. Walsh
National Information Assurance Research Laboratory
National Security Agency
ewal sh@ycho. nsa. gov

Abstract as GTK or Qt, connect to the X server and issue com-
mands to create and manipulate their GUI [17][18]. The

This paper will outline the progress that has been madgrotocol used by X clients and servers to communicate
on extending the coverage of Security-Enhanced Linuxs extensible, and new command sets have been added to
access controls to the X Window System server, a majosupport shared memory, advanced rendering, hardware-
component of the Linux desktop. This has been accomaccelerated graphics, and other features.
plished by applying the Flask architecture to the X server - gxisting security mechanisms in X mostly involve au-
and extending the reach of SELinux policy to cover X thenticating clients at connection time. Once connected,
server objects. Modifications have been made to botthowever, there are few controls in place to prevent client
SELinux library and the X.Org X server implementa- appjications from engaging in malicious behavior. The
tion in support of this goal. In the SELinux library, im- x nrotocol allows client applications to manipulate win-
proved capabilities for obtaining policy decisions from yows belonging to other clients, including moving them,
the kernel were added. In the X server, a set of genergleading their contents, drawing into them, changing their
security hooks was added, followed by a Flask modulegcys, or listening for keyboard and mouse events be-
which makes use of them. This module extends the eNing sent to them [7]. Clients are also permitted to send
forcement of kernel-based security policy to the X Serverevents, including fabricated keyboard or mouse input, to
in userspace, providing fine-grained access and informasiher clients. Mechanisms exist for arbitrary data trans-
tion flow control to this vital desktop component using fer petween clients, such as by setting and reading win-

the existing SELinux policy store and toolchain. dow properties. Clearly, access controls are needed on
) windows and other X server objects to prevent malicious
1 Introduction behavior and control the flow information between X

The Flask architecture, as currently implemented inclients.
SELinux [5], lacks control over key subsystems of mod- The Linux kernel provides limited support to the X
ern GNU/Linux distributions that are implemented in server, in the form of access to video RAM, but other-
userspace. These subsystems manage security-relevavise has no knowledge of the X server’s internal objects
objects, provide information transfer facilities, or bpth such as windows. To the kernel, X client applications
but for historical or technical reasons are not part of theare simply normal processes which have a socket con-
Linux kernel. Extending the Flask architecture to thesenection to the X server over which opaque data is being
subsystems is necessary to fully secure the desktop sy#ransferred. Current SELinux policy can prevent client
tem. These extensions or “userspace object managersipplications from connecting to the X server entirely, but
are a current area of development activity, involving boththis solution is too coarse-grained from a usability per-
the userspace subsystems themselves and supporting gpective. What is needed are fine-grained controls on
frastructure in the kernel and in the SELinux userspaceandividual X server objects. An application of the Flask
libraries. This paper describes the progress on perhapgrchitecture to the X server itself will provide these con-
the most important userspace subsystem to receive sudtpls, after which SELinux policy can be written for X
attention, the X Window System. objects and the X server made a policy enforcer in the
The X Window System serves as the graphical user insame manner as the kernel.
terface (GUI) foundation for desktops such as GNOME Several steps are required to achieve this goal. A
and KDE [15][16]. A userspace program, the X server,mechanism for obtaining policy decisions in userspace
manages the desktop system'’s display, draws windowsnust be established, and supporting infrastructure must
cursors, and other GUI constructs, delivers mouse antbe provided in the SELinux libraries. Flask object
keyboard events to GUI applications, and provides basiclasses and permissions must be selected to allow natu-
clipboard and drag & drop support. Client applications, ral, comprehensive policy expressions governing X pro-
usually with the help of an X library and a toolkit such tocol operations, including protocol extensions. En-

forcement logic of some form must be implemented in2.2 X Server Security Hooks
the X server and Flask semantics implemented. Finallyge| inux in its current form relies on the Linux Secu-

appropriate policy must be written. The following sec- rity Modules (LSM) project to provide access to key de-
tions will discuss completed and ongoing work in all of ision points throughout the kernel [9]. LSM provides
these areas. general-purpose security hooks and a number of secu-
rity projects besides SELinux have made use of them.
2 Background Since X is a general-purpose windowing system just as
2.1 Library Support L_inux isa general-purp(_)se operating system,_ the provi-
sion of LSM-style security hooks was determined to be
The Flask architecture requires a separation betweethe best method to provide enforcement logic in the X
policy decisions and their enforcement [10]. In the server. These hooks were added by what is now known
SELinux runtime environment, policy decisions are ob- g5 the X Access Control Extension (XACE).
tained from the “security server” which is part of the The development of XACE was simplified by an ex-
kernel [5]. One of the key decisions made in the plan-isting security extension (“Security”) developed by the
ning stages for the X work was to continue using thex consortium in 1996 [12][13]. The Security exten-
kernel security server to obtain policy decisions. This al-sjon provides a simple two-level trust hierarchy for client
lows the existing SELinux policy toolchain to be reused connections, where “untrusted” clients are restricted in
and keeps policy centralized in a single place [8]. HOW-several ways. The two-level trust model is too coarse-
ever, it required the development of supporting infras-grained for general use, but the extension authors had
tructure to allow efficient retrieval of policy decisions conducted an analysis of the core X protocol, identi-
from userspace, as well as notification of significant pol-fying places in which untrusted clients should be re-
icy events such as reloading or invalidation. stricted and introducing checks into the X server code
Thesecurity_conput e av SELinux library call at those places. Much of the XACE development pro-
may be used to obtain policy decisions from the ker-cess consisted of simply replacing those checks with
nel. However, this interface returns raw decision vectorsmore generic callbacks. The Security extension was
rather than a simple yes/no answer, provides no auditthen rewritten to use the new callbacks, maintaining full
ing, and does not cache decisions, requiring a resourcyackwards compatibility.
intensive trap into kernel space on each use. These is- XACE has been accepted into the X.org mainline as of
sues were resolved by porting the existing access vexserver release 1.2. A full discussion of the capabilities
tor cache (AVC) from the kernel into userspace, mak-of XACE is beyond the scope of this paper [11], and
ing it a part of the SELinux library. The userspace AVC the set of hooks may change slightly as work progresses
usessecurity._conput e.av internally but provides (referto Section 5.2). However, two specific areas where
an improved interface to the user, including automaticXACE provides coverage are worth discussing in detail,
logging and caching of decisions in the same manner agecause they together provide the basis for nearly all of
the kernel AVC. the enforcement activity of the Flask module discussed
The security_conpute_av call allows syn- inthe nextsection.
chronous retrieval of policy decisions, but some policy The first of the two areas is control over access to X
events, such as policy reloads, are asynchronous. Theerver resources. Most X server objects or “resources,”
userspace AVC must be made aware of these events including windows, pixmaps, cursors, fonts, and col-
order to discard any cached decisions that may havermaps, are assigned unique ID numbers and stored to-
been rendered invalid. The existirggl i nuxfs in- gether in a large hash table. The ID numbers include
terface being insufficient for asynchronous communica-space for a client index number, allowing resources to
tion, a new, netlink-based interface was introduced. Anbe assigned a client “owner,” usually the client respon-
SELinux message family was created along with messible for creating the resource. The resource system is
sage types for enforcement mode changes and policgxtensible, allowing X protocol extensions to create new
reloads. The userspace AVC was then enhanced to ligesource types for objects that they introduce [1]. Clients
ten for these messages, optionally on a dedicated backefer to resources by ID number when making protocol
ground thread, updating its cached decisions as appraequests; the request handling code then calls a lookup
priate. function to retrieve a pointer to the object itself. An
The userspace AVC is substantially complete, and haXACE hook is present in the lookup code. The hook
been a part of the SELinux library (libselinux) since ver- includes as parameters the resource ID (from which the
sion 1.8. However, userspace object manager support iolient owner and type of resource can be ascertained) and
libselinux is not yet complete; refer to Section 5.1 for a the client on whose behalf the lookup is being made [13].
discussion of the proposed labeling interface. This important hook allows security modules to vet any

and all resource lookups.
The second of the two areas is control over the X pro-

cluding window and pixmap objects, are supported.
However, many resource types do not include a

tocol dispatch table. Briefly, X protocol requests includedevPr i vat es field in their structure definitions. Mi-
major and minor codes. The major code specifies thenor objects such as individual window properties, and
protocol extension, with the first several major codes re-ephemeral objects such as event messages are likewise
served for “core” X protocol requests. Major codes arenot supported. Extending the reach of the devPrivates
assigned to extensions dynamically, but extensions haveechanism to these objects is a priority; refer to Sec-
fixed names which can be checked to determine whichion 5.2.

extension is assigned to a given major code [7]. The mi-

nor code, by convention, specifies the individual reques8 Flask M odule

within the protocol extension. All incoming requests are
dispatched through an array indexed by major code, cong
taining function pointers to request handlers. For core,
protocol requests, the request handler processes the r
guest immediately. For extension protocol requests, b
convention, the request handler switches on the mino
code, calling a second handler which performs the spe-
cific request. i
XACE fills the server’s dispatch array entirely with
calls to an XACE intercept function. This function calls
an XACE hook, allowing security modules to examine
and potentially reject all incoming requests before they
are dispatched to the actual request handlers. Using ®
the published protocol specifications, security module
authors can write code to parse the incoming requests,
checking resource ID numbers, flags, and other parame-
ters. This powerful capability is used extensively by the
Flask module.

2.3 X Server State Storage

XACE does not provide a mechanism for attaching state
(labels) to X server objects. This mechanism is provided
through a separate subsystem, devPrivates, which was
originally intended for device driver writers to use for
storing private data [1]. Certain server objects possess
adevPri vat es field, which points to a dynamically
allocated array of generic value/pointer unions. At ini-
tialization time, drivers, extensions, and other modules
can register for a slot in this array, and can additionally
specify an amount of memory which will be allocated
and referred to by the generic pointer in that slot. When
object instances are created, the registrations are used to
allocate the array and any extra space requested. In this
way, devPrivates provides the ability to hang extra data
from certain server objects.

The objects supported by devPrivates include the
client structure itself, which is the main structure crelate
when a new client connection is made. Device-related
structures, including the ScreenRec object which repre-
sents a single screen, and the DevicelntRec object which
represents an input device, are also supported. The Ex-
tensionEntry structure that represents each protocol ex-

The first step in the development of a Flask module for
was to determine the appropriate set of object classes
and permissions for X. In 2003, Kilpatrick, Salamon,
&hd Vance described a set of object classes and permis-
%iong for use in securing the core X protocol [4]. This
Setis the one in use today, with the following deviations:

A GC object class was introduced, representing
graphics contexts, one of the basic server resource
types. This class was added mainly for complete-
ness, so that all the base resource types would be
covered.

A Property object class was introduced, represent-
ing named window properties. Objects of this class
are meant to be labeled with a type derived from the
name, so that for example, the standakdCLASS
property would be labeledmpr operty_t. The
class works in conjunction with thehpr op per-
mission on the window class to allow fine-grained
control over which properties client applications
can read and write on given windows.

e An Extension object class was introduced, repre-

senting named X protocol extensions. Like the
property class, objects of this class are meant to be
labeled with a type derived from the name. For ex-
ample, theXxKEYBOARD and Xl nput extensions
would be labeled nput _ext _t . Client applica-
tions are denied use of any protocol requests be-
longing to an extension unless they have tise
permission on that extension, and may not query
the extension’s existence unless they possess the
guery permission. Restricting entire extensions at
atime is coarse-grained, but is a useful mechanism
particularly for extensions that have not yet been
analyzed to determine what fine-grained checks to
perform on each protocol request.

e Several permissions were added to the Win-

dow object to control certain core protocol re-
guests; these aset f ocus,transpar ent ,and

nmousenot i on. Having the transparent permis-
sion allows clients to create windows with no back-
ground or otherwise unfilled so that windows be-

tensions is supporteq (this support was addeq as pa.ll‘t of 1The full list of classes and permissions is not enumerateel it
the XACE work). Finally, some resource objects, in- can be found in reference [4].

neath it show through. Another new permissionthese objects. The Flask module treats this client the
ext ensi onevent was added to control permis- same way as regular clients, but uses the context of the X
sions for sending events defined by protocol exten-server process as the starting point for computing labels.
sions. This is likely too coarse-grained to cover all The property and extension object classes are not as-
such event types, but can serve as a fallback fosociated with a particular client, but rather are labeled
those events which have not been categorized int@ased on the name of the object instance as described

the other event-sending permissions. above. When labeling these objects, the Flask module
e A few other miscellaneous permissions werecombines the user and role fields from a base context
added. with a type looked up from the name. The base context

The next step was to begin implementing the Flaskused for extensions is that of the server process, and the
module as an extension to the X server. Extensions mak@ne used for properties is that of the client object owning
use of internal X server API's to initialize themselves, the window to which the property is attached. The type-
obtain a major code and provide a dispatch handler fof0-name mapping is kept in a configuration file read by
new protocol requests, and register callbacks for varithe Flask module on startup, although ideally this infor-
ous events, including XACE hooks. Extensions can beMation would be maintained as part of the SELinux pol-
built as loadable modules provided that they rely only oniCY configuration in the same manner as the éintexts
the published API's and do not change the core X serveflatabase, which serves a similar purpose.
code; the Flask module meets these requirements. All Also at initialization time, the Flask module regis-
loading and initialization of extensions occurs before theters callbacks on XACE hooks, the major one being the
server begins accepting client connections; clients candispatch intercept hook described above. After this is
not interfere with this process. done, initialization is complete and the X server pro-

One of the first operations performed in the mod-Ceeds into its dispatch loop, waiting for client requests
ule initialization code is to register for space in serverto arrive. For the most part, the permissions on each
objects through the devPrivates mechanism describe@bject class correspond closely to the core protocol re-
above. Of the eleven X object classes, ten correspon@luests involving that class, and this is reflected in the
directly to internal objects, and ideally all instances of dispatch-oriented structure of the module’s enforcement
those objects would carry labels. However, due to thecode.
current limitations of devPrivates, many of the objectsin For example, suppose @hangeW ndowAttri -
guestion, including resource objects such as font, cursolut es request arrives at the server. This request con-
and color, do not have devPrivates support and canndains the resource ID of a window along with new win-
be directly labeled. For the time being, the Flask mod-dow attributes to be set. The XACE dispatch inter-
ule maintains a list of labels attached to the main clientcept hook calls the Flask module callback, which drops
object, one for each object class. The trouble with thisthrough a switch statement to the ChangeWindowAt-
scheme is that it limits to one label all objects of a giventributes handler. That handler parses the incoming re-
class belonging to a given client. Thus it is not currentlyquest, first determining the context of the client mak-
possible for a client to have, for example, two windows ing the request (the source), then extracting the window
of different types. ID and from it determining the client owner of the re-

When a new client connection is made, the Flask modsource. The list of labels in the owner’s client structure
ule is notified via a client state callback. The callbackis consulted to determine the context of the window (the
function obtains the security context of the new clienttarget). Finally, a call t@vc_has_per mis made, pass-
by calling theget peer con SELinux library callonthe ing the source and target contexts, window class value,
client's socket descriptor (if the connection is from a re-and theset at t r permission. If the result is a denial,
mote machine, a default context is used). Then, succes{ACE returns aBadAccess error to the client, other-
sive security_conput e_creat e library calls are wise the request continues on to its “real” handler. All
used to determine labels for each of the client's objectof the core protocol requests are handled in this manner,
classes and these are stored in the list attached to trend extension protocol requests will likely be handled in
client structure. Once devPrivates support is availablethe same manner.
this step will be performed at object creation time, and The Flask module also includes preliminary support
the label will be stored with the object. for window labeling. Via an XACE hook, a callback

A peculiar conceptin the X serveris that of the “serverfunction is called whenever new windows are created.
client” The X server itself owns resources and otherThat callback function sets a property on the window
objects, notably the root windows on each screen. Acontaining the window’s security context, and in the fu-
fake client object called the server client is present adure additional properties may be added to communicate
a stub in the resource system to server as the owner afther contexts, such as that of the client connection own-

0 # App can use cut buffers
1 allow app_t cut_buffer_property_t:property { read write };
2 allow app_t root_window_t:window { listprop chprop };

Figure 1: Example cut buffer access policy.

i # App can capture window contents
1 allow app_t domain:drawable copy;
App can create windows with no background

o= [

allow app_t self:window transparent;
Figure 2: Example screen capture policy.

ing each window. The property name begins with anhere.
_SELI NUX prefix and it can be protected from modifi-
cation via SELinux policy. Window managers can be 42 Screen Capture

modified to display the property contexts alongside or inThe policy in Figure 2 allows a client application to cap-
lieu of the normal window title; Figure 4 (located on the ture screen contents.

last page) shows a screen shot of a modifieenthat Line 1 by itself allows the domain to use the
does this. Secure window labeling is discussed furtheGet | nage and CopyAr ea core protocol requests on
in Section 5.4. all application windows, allowing their contents to be
. captured. This is the mechanism used by the GIMP
4 Policy application’s window capture feature. However, there

In the following sections, sample policy is presented toiS @ “back door” method for capturing contents: cre-
address some different security goals in X. Some asateé @ window with no background, which causes the
sumptions are made in the policy fragments: windows beneath it to show through, and then copy its
I contents [12]. Line 3 allows the application to create
* Some type definitions and other statements A%uch no-background windows; denying this permission
or_mtted to save space. . . would prevent their creation.
¢ Wlndow ObJ%CtS are labeled directly with the own- The three capture methods described here are the only
. I‘Pt?epr(?;ri‘is;urgﬂn:::nfile that maps extension andones the author is aware of'in the core protocol.'Ther(.e
property names to the associated types is no ay be other methods ava'llat.)le through extenglons; it
shown s hoped that theopy permission will cover all direct
' capture methods whiler anspar ent will cover any
The policy fragments are meant to be examples and argdirect methods such as alpha blending or translucency,
not comprehensive. As with all SELinux policy, all ac- which are becoming common.
tions not explicitly allowed are denied. The examples)
thus consist of allow rules expressing the actions whictd-3 Window Managers

we wish to permit. Window managers in X are regular client applications
. that control the surroundings and placement of other

4.1 Clipboard Access windows on the screen. Window “decorations” such as
The policy in Figure 1 allows a client application to ac- title bars, borders, and resize handles are drawn by the
cess the cut buffers, which consist of 8 properties on thavindow manager. Window managers have a great deal
root window. They are intended for use as a simple 8-of control over other application windows, reparenting,
slot clipboard [3]. moving, hiding, and resizing them as necessary. Because

Line 1 grants the domain access to cut buffer prop-of this, it would be beneficial to run window managers
erties, while line 2 allows reading and writing of prop- in a separate domain from regular clients. Refer to Fig-
erties on the root window. Removing tledapr op and ure 3.
wr i t e permissions would permit reading from the clip- Line 1 allows the domain to access X protocol exten-
board only. sions designed specifically for window managers. Line

X Windows provides another clipboard mechanism,4 grants access to window manager related properties
selections, which is more complex than cut buffers. Pol-while line 5 grants permission to read and write proper-
icy coverage of selections is possible but not coveredies on any application window; together these two lines

{0 # Extensions

allow wm_t windowmgr_ext_t:xextension use;

[

Properties
allow wm_t wm_property_t:property { read write };
allow wm_t domain:window { listprop chprop };

LM ol L2l

7 # Windows

8 allow wm_t domain:drawable getattr;

0 allow wm_t root_window_t:window { enumerate setattr };
1) allow wm_t domain:window { enumerate getattr setattr };
11 allow wm_t domain:window { map unmap move ctrllife };

12 allow wm_t domain:window { windowchangeevent clientcomevent };

14 allow wo_t domain:window { chparent chetack };

14

15 # Input

10 allow wm_t domain:window setfocus;

17 allow wm_t root_window_t:window setfocus;

15 allow wm_t xserver_domain:xinput setfocus;

19 allow wm_t xserver_domain:xinput warppointer;

20 allow wm_t xserver_domain:xserver { grab ungrab };

21 allow wm_t xserver_domain:xinput { activegrab passivegrab ungrab };

Figure 3: Example window manager domain policy.

grant access to window manager related properties (antbcol, not an internal API such as in Windows, nor can

only those properties) on all application windows. An X events used to configure individual text fields or other

example of such a property would B&LNANE. widgets as in done in the shatter attack. However, there
Lines 8-13 grant extensive control over applicationis aSendEvent protocol request which allows clients

windows, including the ability to move, hide, and repar- to send arbitrary events, including fabricated keyboard

ent them, change the stacking order, and send notificeand mouse input or other unexpected notification nor-

tion messages of these activities to clients. Lines 16-2Inally generated only by the server.

grant permission to change the input focus to any win- In Kilpatrick et. al., the various core protocol events

dow, move the mouse cursor, and create “grabs” on thevere grouped into rough categories which are expressed

server, which are used to redirect or temporarily inter-as permission bits on the window object class [4]. Thus,

rupt input events. sending aKeyPr ess event to a window requires the
The power required by window managers warrantsi nput event permission on that window. In Figure 3,

a thorough review of any candidate before admitting itline 12, the window manager domain is granted permis-

to the domain. However, the limited number of suchsion to send events from two different categories to all

programs in common desktop use should make this application windows.

tractable task. In this manner, SELinux policy may be used to con-

trol the sending of events. In the future, however, the

4.4 Events category model may be discarded in favor of X events as

Another area of concern is the malicious sending of Xa distinct object class, labeled based on the event name

events to windows belonging to other clients. This sort(or number) in a similar manner to the property class.

of behavior enables the “shatter” attack which has been

demonstrated on Microsoft Windows systems. This at-5 Future Work

tack involves sending malicious configuration events to .

window owned by a privileged process, causing a buffeqrs'l Library Interfaces

overflow that allows arbitrary code to be run as the priv- As discussed previously, the property and extension ob-

ileged user. [6]. ject classes are labeled with a type that is derived from
It should be noted that X events are part of a wire pro-the name of the object. Types are defined in the SELinux

policy, but currently, the mapping from names to typesextension of the Flask module’s coverage to additional

is kept in a configuration file that is part of the X.org extensions, it is unlikely that the current set of object

code base and installed as part of the X server. The Xlasses and permissions will remain unchanged. Pol-

Flask module must load this file and parse its contentscy development itself also reveals areas in which the set

on server startup, and the parsing code constitutes a largeeeds refinement.

part of the module at present. Providing MLS support for X is an area that has not
The X server is not the only instance of a userspaceyet been seriously investigated. Because of data trans-

object manager needing a string to type mapping. Thder mechanisms within the X server, notably the clip-

D-Bus daemon uses such a mapping to label D-Budoard, an MLS desktop system will almost certainly re-

messaging channels from their names, and the file conguire support within X and other desktop layers.

texts configuration consists essentially of such a map-

ping with regular expression matching semantics. In5.4 Trusted Labeling & Input

general it is likely that there will be a need for more r,q hreliminary labeling scheme discussed in Section 6
such mappings as more userspace object managers gfies on the window manager to obtain the label from
developed. .)) a property attached to each window and display it in the
The author is developing a standard mechanism fo{,inqow's decoration. This scheme is subject to spoofing
use in querying such mappings, which would be a part of 4 cks, since a malicious client application could recre-
libselinux and store the mapping data in the policy con-5e \indow decorations itself, misleading or confusing
figuration in a similar manner to the fileontexts data. e yser.
This would work well with a modular policy that ships A more secure method would be to reserve an area
policy modules with each application, and would allow of the screen for displaying labels. This area would
userspace object manager code to call a streamlined ARJe ot jimits to client drawing; the server itself would
instead of having to load and parse configuration data ORe responsible for drawing thé labels as the input focus
a per-manager basis. This “labeling API"is a work in changes from window to window. This scheme is em-
progress anq_earl_y version_s of it have been posted to thﬁloyed by Solaris Trusted Extensions for X [2].
SELinux mailing list for review. Secure input, input event labeling, and trusted path are
5.2 Security Hooks areas that need addressing. However, the input subsys-
_ tems in the X.org X server are in a state of churn as new
As the XACE framework matures through use in the X ¢4 res are added. For example, recently improved de-
community, the set of security hooks it provides will \;ce hotplugging support was added, which has resulted
likely change to meet the needs of new and existing X, qeep changes to the server. Other proposals on the ta-
server extensions and drivers, as well as other projectfq jnciude support for multiple concurrent mouse point-
which may find it useful. For example, it is possible thaters and new ways for selecting input focus on windows

the Solaris Trusted Extensions for X may make use ok e in 3D environments. This author does not plan to

XACE to assist in an upstreaming to X.org [2]. XACE g4y the X input model in depth until development has
hooks that were introduced to support the legacy extenzaied down.

sions Security and Appgroup may be removed, and oth-

ers may be move_d out of XACE and made a part of 0ther6 Conclusion

X server mechanisms, such as the commonly used client

state callback [1]. Application of the Flask architecture to the X server is
As discussed in Section 2.3, the devPrivates state stof key security development that provides a foundation

age mechanism must be extended to additional servePr securing the Linux desktop. Vigorous work on the

structures to support full labeling of server objects andProjects described in this paper and in other userspace

resources. Another problem with devPrivates is that thedbject manager and desktop-related areas is expected in

mechanism is not consistent from object type to objecthe coming months of 2007.

type. For example, the devPrivates support for the col- As mentioned, the XACE framework has been ac-

ormap object includes an initialization callback function cepted into the X.org mainline for release 1.2 of the X

while other objects do not. Work is necessary to unify server. The current, tentative target for acceptance of the

and extend this important supporting interface. Flask module is release 1.3, which is scheduled for mid-

2007.
5.3 Policy

The author is preparing patches which will add support
for X to the Reference Policy. However, in light of the
continuing work on the supporting infrastructure and the

e 2
. uger_u:system r:unconfined_t

- " ﬂ =
. user_u:system r:unconfined_t

Figure 4: Screen capture of simple labeling demonstration

References [9] S. Smalley, C. Vance, and W. Salamon. “Imple-

[1] S. Angebranddt et. al. “Definition of the Porting mentmg SELinux as a Linux Secunt_;ll L\)/llodule..
Layer for the X v11 Sample Server” X Consor- NAI Labs Report #01-043 (2001). Available URL:
tium, Inc, and X.org Foundation (2004). ELEE é; ‘r’;]WN nsa. gov/selinux/info/

[2] G. Faden. “Solaris Trusted Extensions
Architectural Overview.” Sun Microsys-
tems white paper (2006). Available URL:
http://opensol ari s. org/ os/
conmuni ty/ security/ projects/tx/.

"[10] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. “The Flask Security
Architecture: System Support for Diverse Security
Policies” InProc. 8th USENIX Conference (Secu-
rity Symposium) 1999.

[11] E. Walsh. “X Access Control Extension Specifica-
tion.” X.org Foundation (2006).
[4] D. Kilpatrick, W. Salamon, and C. Vance. “Se- [12] D. Wiggins. “Security Extension Specification:
curing the X Window System with SELinux.” Version 7.1.” X Consortium, Inc. (1996).
NAI Labs Report #03-006 (2003). Available URL.:
http://ww. nsa. gov/ sel i nux/i nf o/
docs.cfm

[3] J. Gettys et. al. “Xlib - C Language X Interface.”
The Open Group (1996).

[13] D. Wiggins. “Security Extension Server Design
(Draft Version 3.0).” X Consortium, Inc. (1996).

[14] The X.org Foundation. Available URIht t p: / /

[5] P. Loscocco and S. Smalley, “Integrating Flexible VWY, X. OF g.

Support for Security Policies into the Linux Oper-)
ating System.” InProc. 10th USENIX Conference [15] GNOME: The Free Software Desktop Project.
(FREENIX Track) 2001. Available URL:ht t p: / / www. gnone. or g.

[6] C. Paget. “Exploiting design flaws in the Win32 [16] }(/ DeSktEE Environment. Available URIht t p:
API for privilege escalation.” (2002). wwy. kde. org.

+: it. i :
[7] R. Scheifler. “X Window System Protocol.” X Con- (7] StTth' //T,,lh,ew ;Stll\l(/lpor1;;oolk|t Available URL
sortium, Inc. (2004). ' ' ' '

o)) [18] Qt: Trolltech. Available URL:htt p:// waw.
[8] S. Smalley. “Configuring the SELlnl_Jx Policy.” trol | tech. con products/qt.
NAI Labs Report #02-007 (2002). Available URL.:
http://ww. nsa. gov/ sel i nux/i nf o/
docs. cfm

