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The sigmage of the Bayes score is derived under the assumption that
the score is normally distributed in right and wrong cases. Asymptot-
ically there is o constant scoring rate-per bit, and that rate is de-
termined. Textlengths needed to attain certain sigmages for common
attacks are calculated i 1] The
authors verify the accuracy of these textlength calculations (given the
validity of the undérlying mathematical model).

1. INTRODUCTION

1t is well known that the sigmage of the approximate Bayes score
for a regularly stepping machine (number of standard deviations
between right and wrong case means) is equal to Va T (a the
expected value of the square of the putative bulges, T the Lextlength),

*Originally 812 Informul No, 283 of 8 September 1970, this paper won Firy Prize in
the 1971 Crvpto-Mathematics Institute Essay Contest. .
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(1) We prove for a lower bound model that the expected value of the
factor in the right case has the form Cb" ., Our model is essentially an
exact model, for although the score on 7' bits is weaker than the Bayes
score on T bits, it is stronger than the Bayes score on 7/2 bits.

(3) We are able to determme o] I

| The value of C'is important, Were it

substanu&lly larger or smaller than 1,]

[fo the textlengths employed in the

(4) Given the usual assumptions about scores being normally
distributed, we have been able to calculate the. sigmage of the Bayes

schel . Before the

asymptotic effect takes place, a better approximation to the sigmage is

given ib}i

o . B s )
&-38 ' ’

accurate (within the mathematical if]vodel that we have sét up).

) SRS L.4.id)

'We' sumﬁm}iza the asymptotic resul{él

{

It is well known

; cheaper to compu\‘.e than the

that the Baycs score will always require less Lextlengt’h than the
core: Our results indicate that the sigmage obtained from a
textlength of T with a core can be at‘tained with a textlength

of approximately| hls regult is especml]y important

for pnmary dttacks where a is small and the required textlength for

coring might not be avallable The Bayes score will never be
score, for thé work involved in
‘calculating the former on a textlength of T is on the order ofEIrather
than T. A measure of -the * eﬁiclency ofIII over Bayes is thus
given by U%T, which our results show to be the constadtltlthis
factor times the work needed to attain a certain sigmage gives
the work needed to attain a certain Bayes sigmage.|

We have not attempted to describe a specific COMSEC situation to
which these results apply for the .following reason,which, in fact

(5) We are able to do something else whichl:l
| and that is to have some control over the accutacy of our estimates
Tt

hin our model there is an exact answer (glven « and T) as to what

the expected value of =
rarily will call £

We are able to convert the statements (4) and (5) into quasi-
practical COMSEC results at the end of section VI, where we list the

te d to achieve certain sigmages for both Bayes and
ith certain assumptions. These tables are presented
WITH five reservations, one of which (the third) is analyzed in section

VII. The significance of the other four is left as the subject for the
further research. In section VII, where the statements we make in I,
(3) are proved, it is also proved that the tables of section VI are quite
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substantially limits the practical value of our findings]|
= |

[The 1mpur|.ant questmn left unanswered

by ths paper, and one which, it is hoped, will be the subject of a
future one, is the extent to which the Bayes scoreﬁl
[ __[Iif, for example, it turns out that for the Bayes score one

| Blenk;n" 7

wewvss[ ] —1

We think of | K/ { as the observations from a sequence of independent
Bernoulli random variables { X, |. We are then asked to choose between
two conflicting hypotheses, H, and H;, where H, is the hypothesis
that Prob[X, = 0] = 1/2forall 1 < ¢t < T. H, is a bit more compli-
cated. We define a probability function P on the set s7 (all T-long

89 ~SECRET-
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sequences from S) so that if Y =} Yi} ¢ S™

“good” as § | in the sense described above. In particular, a common

scoring function, as good as the Bayes factor, isgz(l() = log. S 1 (K)),
commonly called the Bayes score. For the all-important example we

described in our first paragraph, §,(K) = 27 > PLY) - ProblK | Y],
YiS'

|If. would appear from this formula that$ | is

difficult to evaluate; the computations can be arranged, however, so
that their number is on the order of 7* fsee [3])

To test which of the two hypotheses is true, a scoring function S
(from 87 to the reals) is proposed and a threshold U is set so that H, is
accepted ifg (K) » U and H, is accepted ifg (K) < U 'There are,
of course, two possibilities for error: we may accept H, when H, is true
(type 11 error) or accept H, when H, is true (type [ error). The cele-
brated Neyman-Pearson Lemma (sec, e.g., |2], p. 65) suggests that the
“best” score is

g (K) = '—_EmblKlHOl

rob| K |H, |
in the following sense: if 87 is some other scoring function, and
thresholds U, and U, are chosen for the respective scores so that the
probabilities of type [ error = «, then the probability of a type I error

usingg‘ is less than or equal to that ug;ngS 2. What these thresholds
are, and how small the probabilities of type II error then become,
depend on knowledge of the distribution of the scoring function.

The scoring function § , is commonly called the Bayes factor, since
in order to obtain a posteriori odds in favor of H, from the a priori odds,

one multiplies byS . (1K b (in particular,
Prob{Ho{K] S, (K - Prob| /1y ])
ProblH, (K] ' Prob[H, |
A unigue “best” scoring function does not exist. In fact, it is easy to see

that if f is monotonic increasing. the composite of f with S‘, is as

SEeRET 90
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proposed a third score, an approximation to the Bayes score which we
hereafter refer to as the I:i;cqre, The Dcore S is defined

as

where

CEC 1.400d)

=t}

- (t-:—l) @

_I.f many hypotheses H, are to be tested, the compﬁta.tiorf'
- -0 P,
. t=n e B
can be done as a one-time job for everv 1< r < T, and the number of
computations to evaluate thelflscore is on' the order of 7. In

some applications this factor c: e reduced to log: T, [5] and in
others the| might reduce the cost of
calculating the score, [ ]
[

— Jcould substanb_ially reduce the cost of

caleulating the Bayes factor and score. [6]

A great deal is known ahout themcore. It can be shown that
as T becomes large, the score ally distributed, [7] with
parameters .

H, true, mean = k o T2
standard deviation

H, true, mean =0
standard deviation

91 —SECRET
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numberm also the number of standard deviations between
the means; this it is easy to derive the probability of a type

1L error fo i

[I. THE UNDILATED BAYES FACTOR

Our intention was to calculate mean and standard deviation of the.
Bayes factor, but this is complicated by the peculiar nature of the
probability function P. It is possible that the techniques we emplay
in sections IV and V could be modified to apply to the exact Bayes
factor, but the calculations would certainly be more cumbersome.
For this reason we propose a fourth and fifth score, which we shall
define shortly. We do not expect that these scores should ever be
calculated for an actual key stream and hypothesis Ho, for the work
would be comparable to the work in calculating the exact Bayes factor,
and we know with certainty that the exact Bayes factor is the better
score; however, the scores which we will introduce are closer in spirit
to the Bayes score than is thecore_. and we will be at least
partially successful in calculating their means and variances.

WA ()
wd e
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[ ]

Uurnotation is awkward in that the second usage of m depends on the
Y currently being summed over, but the typist has already been over-
worked and the meaning of m here and later Id always be clear
from conLexLl This suggests that

" wedefine a newscore §, by

which we callv the) F)nyes factor, and
\ .00 = 10g. §.(K),

the| Bayes scire. § . is intuitively a weaker scori cti

because it ignores the effect|

lit is formally weaker because of

I
“the Neyman-Pearson Lemma,

IV. EXPECTED VALUE OF THE BAYES FACTOR

% Fio_rh this point on the terms Bayes factor and Bayes score will refer
to the actor and score, and we set N = 7/2. If H, is true,

then for each 1 < ¢ < N, Prob[K,, = 0| = 1/2, so

andEls.iK,I].#‘l.

Next suppose that H, is true and létl ]

| et} ]« S . For1 <t < N we say that the pair of sequences

1Y} and {Z, | match at ¢ if] |

93 ARERRT—
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[ Jpecause LiNkN) = Ofor k = 1, this together with (1)

the sequences | ¥:} and | Z |

n Prob|K., =0[= {1+ /2
and| If there is no
match-at ¢, then

[~ron-1]if we are willing to assume that E[.. ] = U, we gel thal i eitner
case| Betting b = 1 + El¢], it follows

N
that E[[] (1 + (=)=t Z# ¢)| = b*, where k is the number of
t-1

matches between | ¥, and [Z}. If we let p(N, k) be the probability
that a pair of randomly selected elements of $¥ will have & matches,
then EO 1.4.1c)

’ : EO 1.4.:{d}

We devote the rest of this section to the calculation of the right hand |

expression, which we denote by E(N,b). i
Let (U V)¢ S¥ x 8%, withU =(U,,...,U.)and V = Vi, Vo)

Let Q(N,k) = number of elements (U, V) with Iexact]y }Iz matchfs, sor

[N — 1 long sequences. Hence

LNRD = @N-1LEDfor1 <1< N—1 1)

yields

We next define a triangular array of integers, M(L1), for 0 < i<
as follows:

M(0,0) =1 5
M(03) =0

o1
ML) =2 M@Gi-1. (3)

=i

—SEGREL 94

Some values of M(l,i) are 5
il 0 1 2 3 4 5 6 T - 8 2 10

0 1
1 0 1
2 0 1 1 P.L. 85-3¢
3 0 2 2 1
4 0 5 5 3 1
5 0 14 14 9 4 1
6 0 42 42 28 14 5 1
7 0 132 132 90 48 20 6 1
8 0 429 429 297 165 75 27 7 1
9 0 1430 1430 1001 572 275 110 35 8 1
10 0 4862 4862 3432 2002 1001 429 154 44 9 1.

The importance of the M(},i) is that

| o

.We.prove this by induction on N. The result is trivial for N = 0. For
N = 1it becomes

Since the result clearly holds for { = N and [ = 0, we may assume
1 =!{< N — |and argue that

Let us count the @(N,k) pairs of N sequences with & matches in
terms of their initial bits. There are

. Adding these together and applying (4), we get fork > 1

95 T SECRE—
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or translating into “p* notation

This last formula is also valid only for & > 1. If we give p((),.ki its - ]
natural interpre'.ation| we can frivially

generalize the above formula to all k by writing

(5)

In fact, since

1=3 p(N.K)

it follows that|

We next find a closed form expression for M(1,i), which we for nota-
tional simplicity refer to as M(:). The M(i) possess a convolution
property -

M@ =3 M() MG ~)). G}

To prove (6), we observe from (3) that

M) = M(I-1.i—1) + M(+1,D)
Using this, we can prove by induction that

181<4i22

'
M(Li+D) =3 M§+1,i+) 21,21 n
I
Now, by repeated use of this equation, we get
=
M@y = MiE-1)+ 2 M(Gi-1)
i=2
to2
=M)M@GE-1) + Y MG+1j+1) M(G+1i-1)
i1
(since M(j,j) = 1)
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—1

=MUOMGE-1) + ... + MU MG P.L. B&-36

+ X MU+Lj+D MG+1i-1)

s=1

=M MGE—1) +. .. + M) MG
iica

+ I MGHLHD T Mlkicl=1)  (by @)
= MOOMG-1) + .+ M) M(i—0)

=it

+ Z (Z' MU+1J+!)> M(k,i—1—1)

=MLY ME-1) +... + MO M(3i—)

-t

+ ‘Z M(k,I4-R) M(k,i~1—1) (by(6))

=M Mi-1) +. .. + MU+ Mi—{-1)

=4 li-y

+ .Z Mk+1,E+14+1) - M(R+1,i—((+1))
=g

=M MGE-1)+ ... + M(i—1) M(1),

Formula (6) having been verified, it follows that the power series

—M(i)
) 2.4
which converges in some open neighborhood about the origin, has the

property that [g(x) = 1 — x, so it follows from the generalized bi-
nomial theorem, since g(x) = (1-x)'""?, that

#z%—l)”’( 1?2) . (8)

x,

40 =1+

Recalling that the ay appearing in (5) had the property

EG 1

EO(QI).

4.
4.
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D OC I D : 3 8 3 8 6109})?049 by induction that

For N = 1, (10) is clear. Assume it holds for N — 1. Then

(10)

(by (9))
EQ ).4,.{e)
EO 1.4./d!

(by (9))

(by induction hypothesis)

(by, (8)).

Combining (5), (8) and (10) we get that, for N > 0,k = 0

11)

We now let h(x,y) be the power series in two indeterminants de-
fined by h(x,y) = ) p(N,k) x*y" (which converges in the region

|x| < ly| ). It follows from (11) and the fact that 3 <

i=u

= (1—x)"* that

1/.2) (—1)" x'

|

8(x,y) = hixy) — /4 xyh(x,y) + (1-0)"" = 1) (Alx,y) — 1)

+ Vaxh(xy) =2 gnex" y*
=

has the property that

gnva =0 k=0
/2 :
Brno = —2N( ;V) (-D¥, N0

——GEGREL 98
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But ZNZN( N) (-1 x —721:ZN( N)( DY x
d
= —2 o [ VI =x] 2\/1_1__; so we gel that h(x,y) — 1/4xyh(x,y)

+ (N1 —x = 1) (h(x,y) = 1) + 1/4 x h(x.y) — \Exzzisaconstant,

which is in fact 1, since the last four summands have a zero constant
term. Solving for h, we get that

1

(Y

h(x,y)=

x(y—1)
4V1 —x

171_IZ(L71)2
4

1+

= 2 o
h(x,y) — zh(x,y) — x* (3'4—1) hix,y) =1+ :%%): »

Even more important, h(x,b) = 3" E(N,b) x™ .
N

Let
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b able to estimate the accuracy of the
We here prove (13). It is obvious that

=172 - — —1 .
vergenceoflz_lo( i) (-0 )that};m > ( ; ) (~o7")

=N

22
= 0. Finally, pick some 8 withg—’ < 63 < 6:. Then
}

the series on the right hand side converges, and since

- 3 © B2 < 6165, lim of the right hand side is 0.
Since (1—6x) "' = 3 8" 2", comparing coefficients yields Now
=
Ef 1.4.12)y, VARIANCE OF THE BAYES FACTOR
B 1.4, (d)
® Recalling the definition ofg «(K), we see that gf(K) is equal to
Let us look at the factor| Eh the third term.

We first take up the case where H; is true. Then if Z and Z’ match at

we can rewrite our previous equation, getting

and otherwise the expected value is 1/4. It follows that the value of
E[S i (K)]is given by

From (12) it is easy to see that I:Fn the sense that the
percentage error goes to 0 as N getsTarge. More precisely:

(13)

(In section 7 we will prove the stronger rasult

(14)

_SEGREF— 100 101 _SEERET
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We have illustrated by this argument that the variance of the score
when H, is true equals the mean of the score when Hy is true. This
is actually true in general for any score of the form Prob |K|H.] /
Probl[K |H: ] and can be proved by an elementary argument (see,
eg.[9).

Next we do the case where H, is true.l

It follows from this and (a)~(¢) that

where k is the number of matches among ¥, Z and Z’ (if the three
sequences match at ¢ this counts as three matches), and thus

where g(N, k) is the probability that three N-long sequences chosen at
random will have exactly & matches. The authors have been unable to
calculate the density function g; the problem seems similar to that
of calculating the function p of chapter IV, but involves three-
dimensional arrays rather than the two-dimensional array M(,j ).

Without doing any hard work we can get a lower bound on the
variance. Let A be the random variable representing the number of
matches between the first two sequences, B the number of matches
between the first and third, D the number of matches between the
second and third._A, B and D are identically distributed but patentl
not independent.

i

The authors have been unable to come up with a useful upper bound. :

_SECREF 102
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bound turns out to be useless for the considerations made in the
following section; so the existence of an effective upper bound is still
open. .

Recalling tha{:llet us calculate more explicitly the means

and variances we have derived for small «. We have

Summariéing the results of sections 4 and 5 (the _reader should check
tHiat the C and ;" corresponding to b’ are approximately the same as
those corresponding to b), we get

mean of s . . 1
variance of § 4 upper bound) 5

since E | §1())] dominates (E [ S(K).

V1. SIGMAGE OF THE BAYES SCORE

1t has become part of the COMSEC folklore that log factors tend to
be normally distributed, especially if scoring rates per bit are constant
and low. For a further discussion of this principle, see [9]. Throughout
the rest of this section, we assume that s,s is normally distributed
when either Hy or H, is true. We seek the mean and standard devia-
tion in the two cases.

103 —SECREF
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T.et »” and o’ be the mean and standard deviation of S .. 1t follows
from the form of the moment generating function of a normal distribu-
tion (again, see [3]) that

07
nu = -
H #+ 2

In{a’)* = 2 + 25°.

We have seen t i ' =1 and
when Hy is true

taneous equations, we get: o A

H, true J :

H, true

For very large T this gives us the sigmag referred to in

section 1. The effec! ng a posjll ve number, is to keep the

sigmage greater tha:

Since there is a constant scoring rate per bit asymptotically, there

[Solving the simul:

ig little advantage when T is large[ - ]
I | We have calculated mean and. |

variance Jor the score in the second case. We can approximate the first
case by saying that the score we are deriving

SreRer_ 104
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To conclude this section we present tables which give for common
values of « the textlength needed to attain certain sigmages using
the formulas -

The reader should understand the following reservations before using
these tables: 3,

The textlength needed to attain a certain sigmage[ |
| ayes score is greater than that needed for the true Bayes

score, but not more than twice as much.

(2) The values we have listed in the Bayes column are only lower
bounds for the textlength needed within the mathematical model we
have set up, due to the independence assumption which we made at
the end of section V.

(3) The values listed in the Bayes column are accurate only to the
extent to which the error term discussed in the next section is smail.

(4) We have assumed that the Bayes score is normally distributed.

10a “SECREF
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TABLE 2

Irespectively. are similar to tables I and

TIT"Tn section VII it will be shown that all entries in our tables are
accurate to +0.1¢ (that is, the Bayes textlength which we purport to
giverise to a sigmage of n does indeed give rise to a sigmage of n +0.1).
Note that were an entry for 1o in the Bayes column computed, it would

. have heen a negative textlength; this absurdity can be explained by

the property that

VHl. ACCURACY

: We have seen in section IV that:We will prove in
this section that

and in fact get an upper bound for F(N).
We refer to équation (12) in section IV. Since {8; | < 1, itisclear that

We next estimate-
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By comparing [EQ 1.4.(c)
5 m 1 JEO 1.4, (d)

(’") — (=TI (1——k ) as)
n A=1 i

with Weierstrass's infinite product expansion for the reciprocal of thé
gamma function

1 1] ( x ) -+ (5 = Euler’s constant)
—_— 1+4—-) e ¢
o e LUy ;
and taking x = —m —1 it is easily seen that

: m. RNt LA .
',31“( n) N
In particular 1
.

i F 41/2) o L L W (1-1/26).16)
=0 ("n ) ¥ - v = i, ;!
It is clear that | ( _1/_2 ) ‘ decreases as i becomes larger!;_‘ sO

{5 2

Hence,
Nt 1 1
VR ]] (17_) £ by (16),
X1 2k

and

Next we estimate

T SECRET—

Although the series does not converge, by Taylor's theorem with a
remainder we can write

where

( ~1/2

Ry = —
(1 - yo—n)l,zﬂvu

for some y with0 < y < 1. Since

we niged only estimate /¥ Ry . We have

[65. Ry | =

(by 16)

sing| |This proves that

and thus that

F‘(MTO(\T;V).

By using formula (12) and our previous estimates we can get a more
precige upper bound for F(N), namely:

109 _SEeReT
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