
Developing a blueprint
for a science

of cybersecurity

Vol. 19 | No. 2 | 2012

Globe at a Glance | According to the Experts | Pointers

The world’s most extensive case of cyberespionage,

including attacks on US government and UN computers,

was reported at the 2011 Black Hat conference by security

�rm McAfee. Concluding �ve years of investigation, McAfee

analysts were “surprised by the enormous diversity of the

victim organizations and were taken aback by the audacity

of the perpetrators.” Wired magazine recently broke a story

revealing that “a computer virus has infected the cockpits of

America’s Predator and Reaper drones, logging pilots’ every

keystroke as they remotely �y missions over Afghanistan

and other war zones.” These are but two examples of what

have become almost routine reports of failures in system

security. Increasingly, these problems directly a�ect us in

important parts of our daily lives. And even more alarming

is the rapid growth in the breadth and severity of these

spectacular failures.

How are such widespread problems possible after

decades of investment in computer security research and

development? This question has gained the attention of

increasing numbers of security professionals over the past

several years. An emerging view is that these problems

demonstrate that we do not yet have a good understanding

of the fundamental science of security. Instead of fundamental

science, most system security work has focused on developing

ad hoc defense mechanisms and applying variations of the

“attack and patch” strategy that emerged in the earliest days

of computer security. Our national reliance on networked

information systems demands that we approach security

engineering with the same rigor that we expect in other

engineering disciplines. We should expect designers of our

digital infrastructure to have a well understood scienti�c

foundation and advanced analytic tools comparable to those

used in the production of other critical assets such as bridges,

aircraft, power plants, and water puri�cation systems.

The National Security Agency, the National Science

Foundation (NSF), and the Intelligence Advanced Research

Projects Activity jointly responded to this problem by

sponsoring a workshop in November 2008 to consider

whether a robust science of security was possible and to

describe what it might look like. Academic and industry

experts from a broad set of disciplines including security,

economics, human factors, biology, and experimentation met

with government researchers to help lay the groundwork

for potential future initiatives. Since that meeting, a

number of programs focused on security science have

been initiated, along with an e�ort to help build a robust

collaboration community.

This issue of The Next Wave is focused upon the important

topic of security science. Included are articles from six of

the experts who attended the 2008 workshop and have

continued to work in the area of security science. Carl

Landwehr from NSF provides a few historical examples

of the relationship between engineering and science and

shows how these examples might help us understand the

evolution of cybersecurity. Adam Shostack from Microsoft

provides another perspective on how science evolves and

describes some steps he considers necessary to advance

the development of cybersecurity science. Roy Maxion from

Carnegie Mellon University (CMU) calls for greater scienti�c

rigor in the way experimental methods are applied to

cybersecurity. Dusko Pavlovic from Oxford University provides

a unique and unexpected model for security to reason about

what a security science might be. Anupam Datta from CMU

and John Mitchell from Stanford University describe some of

their joint work in one of the core problem areas for security—

how to compose secure systems from smaller building

blocks. Alessandro Chiesa from the Massachusetts Institute of

Technology and Eran Tromer from Tel Aviv University describe

a novel approach based upon probabilistically checkable

proofs to achieve trusted computing on untrusted hardware.

Their insights may lead to new strategies for dealing with

a host of security problems that are currently considered

intractable, including supply chain security.

The capstone article for this issue of The Next Wave,

contributed by Fred Schneider of Cornell University,

methodically constructs a “blueprint” for security science.

Building on his keynote at the 2008 workshop, Schneider

suggests that security science should describe features and

R o b e r t M e u s h a wEditor’s columnG
U

E
S

T

relationships with predictive value rather than create defenses

reactively responding to attacks. Schneider’s blueprint outlines

the foundation for a security science comprising a body of laws

that allow meaningful predictions about system security.

Developing a robust security science will undoubtedly

require a long-term e�ort that is both broad based and

collaborative. It will also demand resources well beyond those

available to any single organization. But even with a generally

acknowledged need for science, the temptation will be to

continue �ghting security �res with a patchwork of targeted,

tactical activities. Good tactics can win a battle but good

strategy wins the war. We need to create a better strategy for

computer security research. As we continue to struggle with

daily battles in cyberspace, we should not forget to pursue the

fundamental science—the fundamental strategy—that will

help to protect us in the future.

Contents

�e Next Wave is published to disseminate technical advancements and
research activities in telecommunications and information technologies.
Mentions of company names or commercial products do not imply
endorsement by the US Government.

Vol. 19 | No. 2 | 2012

2 Cybersecurity: From engineering
to science
Carl Landwehr

6 The evolution of information security
Adam Shostack

13 Making experiments dependable
Roy Maxion

23 On bugs and elephants: Mining for
a science of security
Dusko Pavlovic

30 Programming language methods for
compositional security
Anupam Datta, John Mitchell

40 Proof-carrying data: Secure computation
on untrusted platforms
Alessandro Chiesa, Eran Tromer

47 Blueprint for a science of cybersecurity
Fred Schneider

58 GLOBE AT A GLANCE

60 ACCORDING TO THE EXPERTS

62 POINTERS

Technical Director emeritus

Trusted Systems Research, NSA

2

E
ngineers design and build artifacts—bridges, sewers, cars, airplanes, circuits, software—
for human purposes. In their quest for function and elegance, they draw on the
knowledge of materials, forces, and relationships developed through scienti�c study,

but frequently their pursuit drives them to use materials and methods that go beyond the
available scienti�c basis. Before the underlying science is developed, engineers often invent
rules of thumb and best practices that have proven useful, but may not always work. Drawing
on historical examples from architecture and navigation, this article considers the progress of
engineering and science in the domain of cybersecurity.

C ar l E . L an dwe h r

Cybersecurity: From
engineering to science |

Over the past several years, public interest has in-
creased in developing a science of cybersecurity, o�en
shortened to science of security [1, 2]. In modern
culture, and certainly in the world of research, science
is seen as having positive value. �ings scienti�c are
preferred to things unscienti�c. A scienti�c founda-
tion for developing artifacts is seen as a strength. If
one invests in research and technology, one would like
those investments to be scienti�cally based or at least
to produce scienti�cally sound (typically meaning
reproducible) results.

�is yearning for a sound basis that one might
use to secure computer and communication systems
against a wide range of threats is hardly new. Lampson
characterized access control mechanisms in operat-
ing systems in 1971, over 40 years ago [3]. Five years
later Harrison, Ruzzo, and Ullman analyzed the power
of those controls formally [4]. It was 1975 when Bell
and LaPadula [5], and Walter, et al. [6], published
their respective state-machine based models to specify
precisely what was intended by “secure system.” �ese
e�orts, preceded by the earlier Ware and Anderson

reports [7, 8] and succeeded by numerous attempts to
build security kernel-based systems on these foun-
dations, aimed to put an end to a perpetual cycle of
“penetrate and patch” exercises.

Beginning in the late 1960’s, Djikstra and others de-
veloped the view of programs as mathematical objects
that could and should be proven correct; that is, their
outputs should be proven to bear speci�ed relations
to their inputs. Proving the correctness of algorithms
was di�cult enough; proving that programs written in
languages with informally de�ned semantics imple-
mented the algorithms correctly was clearly infeasible
without automated help.

In the late 1970’s and early 1980’s several research
groups developed systems aimed at verifying proper-
ties of programs. Proving security properties seemed
less di�cult and therefore more feasible than proving
general correctness, and signi�cant research funding
�owed into these veri�cation systems in hopes that
they would enable sound systems to be built.

�is turned out not to be so easy, for several

 The Next Wave | Vol. 19 No. 2 | 2012 | 3

FEATURE

reasons. One reason is that capturing the mean-
ing of security precisely is di�cult in itself. In 1985,
John McLean’s System Z showed how a system might
conform to the Bell-LaPadula model yet still lack
the security properties its designers intended [9]. In
the fall of 1986, Don Good, a developer of veri�ca-
tion systems, wrote in an email circulated widely at
the time: “I think the time has come for a full-scale
redevelopment of the logical foundations of computer
security . . .” Subsequent discussions led to a workshop
devoted to Computer Security Foundations, inaugu-
rated in 1988, that has met annually since then and led
to the founding of �e Journal of Computer Security a
few years later.

All of this is not to say that the foundations for a
science of cybersecurity are in place. �ey are not. But
the idea of searching for them is also not new, and it’s
clear that establishing them is a long-term e�ort, not
something that a sudden infusion of funding is likely
to achieve in a short time.

But lack of scienti�c foundations does not neces-
sarily mean that practical improvements in the state of
the art cannot be made. Consider two examples from
centuries past:

�e Duomo, the Cathedral of Santa Maria Del
Fiore, is one of the glories of Florence. At the time
the �rst stone of its foundations was laid in 1294, the
birth of Galileo was almost 300 years in the future,
and of Newton, 350 years. �e science of mechanics
did not really exist. Scale models were built and used
to guide the cathedral’s construction but, at the time
the construction began, no one knew how to build
a dome of the planned size. Ross King tells the fas-
cinating story of the competition to build the dome,
which still stands atop the cathedral more than 500
years a�er its completion, and of the many innova-
tions embodied both in its design and in the methods
used to build it [10]. It is a story of human innovation
and what might today be called engineering design,
but not one of establishing scienti�c understanding of
architectural principles.

About 200 years later, with the advent of global
shipping routes, the problem of determining the East-
West position (longitude) of ships had become such an
urgent problem that the British Parliament authorized
a prize of £20,000 for its solution. It was expected
that the solution would come from developments

in mathematics and astronomy, and so the Board of
Longitude, set up to administer the prize competition,
drew heavily on mathematicians and astronomers. In
fact, as Dava Sobel engagingly relates, the problem was
solved by the development, principally by a single self-
taught clockmaker named John Harrison, of mechani-
cal clocks that could keep consistent time even in the
challenging shipboard environments of the day [11].

I draw two observations from of these vignettes in
relation to the establishment of a science of cybersecu-
rity. �e �rst is that scienti�c foundations frequently
follow, rather than precede, the development of practi-
cal, deployable solutions to particular problems. I

FIGURE 1. The Duomo, the Cathedral of Santa Maria Del Fiore,
is a story of human innovation and what might today be called
engineering design, but not one of establishing scienti�c under-
standing of architectural principles.

4

Cybersecurity: From engineering to science

claim that most of the large scale so�ware systems on
which society today depends have been developed in a
fashion that is closer to the construction of the Flor-
ence cathedral or Harrison’s clocks than to the model
of speci�cation and proof espoused by Dijkstra and
others. �e Internet Engineering Task Force (IETF)
motto asserting a belief in “rough consensus and
running code” [12] re�ects this fundamentally utili-
tarian approach. �is observation is not intended as
a criticism either of Dijkstra’s approach or that of the
IETF. One simply must realize that while the search
for the right foundations proceeds, construction
will continue.

Second, I would observe that the establishment of
proper scienti�c foundations takes time. As noted ear-
lier, Newton’s law of gravitation followed Brunelleschi
by centuries and could just as well be traced all the
way back to the Greek philosophers. One should not
expect that there will be sudden breakthroughs in
developing a scienti�c foundation for cybersecurity,
and one shouldn’t expect that the quest for scienti�c
foundations will have major near-term e�ects on the
security of systems currently under construction.

What would a scienti�c foundation for cybersecu-
rity look like? Science can come in several forms, and
these may lead to di�erent approaches to a science
of cybersecurity [13]. Aristotelian science was one
of de�nition and classi�cation. Perhaps it represents
the earliest stage of an observational science, and it is
seen here both in attempts to provide a precise charac-
terization of what security means [14] but also in the
taxonomies of vulnerabilities and attacks that pres-
ently plague the cyberinfrastructure.

A Newtonian science might speak in terms of mass
and forces, statics and dynamics. Models of compu-
tational cybersecurity based in automata theory and
modeling access control and information �ow might
fall in this category, as well as more general theories
of security properties and their composability, as in
Clarkson and Schneider’s recent work on hyperprop-
erties [15]. A Darwinian science might re�ect the
pressures of competition, diversity, and selection. Such
an orientation might draw on game theory and could
model behaviors of populations of machines infected
by viruses or participating in botnets, for example.
A science drawing on the ideas of prospect theory
and behavioral economics developed by Kahneman,
Tversky, and others might be used to model risk

perception and decision-making by organizations
and individuals [16].

In conclusion, I would like to recall Herbert Simon’s
distinction of science from engineering in his land-
mark book, Sciences of the Arti�cial [17]:

Historically and traditionally, it has been the
task of the science disciplines to teach about
natural things: how they are and how they work.
It has been the task of the engineering schools
to teach about arti�cial things: how to make
artifacts that have desired properties and how
to design.

From this perspective, Simon develops the idea
that engineering schools should develop and teach a
science of design. Despite the complexity of the arti-
facts humans have created, it is important to keep in
mind that they are indeed artifacts. �e community
has the ability, if it has the will, to reshape them to bet-
ter meet its needs. A science of cybersecurity should
help people understand how to create artifacts that
provide desired computational functions without be-
ing vulnerable to relatively trivial attacks and without
imposing unacceptable constraints on users or on
system performance.

FIGURE 2. Scienti�c foundations frequently follow, rather than
precede, the development of practical, deployable solutions
to particular problems; for example, mechanical clocks were
invented only after determining the longitude of ships had
become such an urgent problem that the British Parliament
authorized a £20,000 prize for its solution.

 The Next Wave | Vol. 19 No. 2 | 2012 | 5

FEATURE

References

[1] Evans D. Workshop report. NSF/IARPA/NSA Work-
shop on the Science of Security; Nov 2008; Berkeley, CA.
Available at: http://sos.cs.virginia.edu/report.pdf

[2] JASON Program O�ce. Science of cyber-security,
2010. McLean (VA): �e Mitre Corporation. Report No.:
JSR-10-102. Available at: http://www.fas.org/irp/agency/
dod/jason/cyber.pdf

[3] Lampson BW. Protection. In: Proceedings of the
Fi�h Princeton Symposium on Information Sciences and
Systems; Mar 1971; Princeton, NJ; p. 437–443. Reprinted
in: Operating Systems Review. 1974;8(1):18–24. DOI:
10.1.1.137.1119

[4] Harrison MA, Ruzzo WL, Ullman JD. Protection
in operating systems. Communications of the ACM.
1976;19(8):461–471. DOI: 10.1145/360303.360333

[5] Walter KG, Ogden WF, Gilligan JM, Schae�er DD,
Schaen SL, Shumway DG. Initial structured speci�ca-
tions for an uncompromisable computer security system,
1975. Hanscom Air Force Base, Bedford (MA): Deputy
for Command and Management Systems, Electronic
Systems Division (AFSC). Report No.: ESD-TR-75-82,
NTIS AD-A022 490.

[6] Bell DE, La Padula L. Secure computer system: Uni-
�ed exposition and multics interpretation, 1975. Hans-
com Air Force Base, Bedford (MA): Deputy for Com-
mand and Management Systems, Electronic Systems
Division (AFSC). Report No.: ESD-TR-75-306, DTIC
AD-A023588. Available at: http://nob.cs.ucdavis.edu/
history/papers/bell76.pdf

[7] Ware W. Security controls for computer systems:
Report of Defense Science Board task force on computer
security, 1970. Washington (DC): �e Rand Coporation
for the O�ce of the Director of Defense Research and
Engineering. Report No.: R609-1. Available at: http://
nob.cs.ucdavis.edu/history/papers/ware70.pdf

[8] Anderson JP. Computer security technology plan-
ning study, 1972. L.G. Hanscom Field, Bedford (MA):
Deputy for Command and Management Systems, HQ
Electronic Systems Division (AFSC). Report No.: ESD-
TR-73-51, Vol. I, NTIS AD-758 206. Available at: http://
nob.cs.ucdavis.edu/history/papers/ande72a.pdf

[9] McLean J. A comment on the ‘Basic Security �eo-
rem’ of Bell and LaPadula. Information Processing Letters.
1985;20(2):6770. DOI: 10.1016/0020-0190(85)90065-1

[10] King R. Brunelleschi’s Dome: How a Renaissance
Genius Reinvented Architecture. New York (NY): Walker
Publishing Company; 2000. ISBN 13: 978-0-802-71366-7

[11] Sobel D. Longitude: �e True Story of a Lone Genius
Who Solved the Greatest Scienti�c Problem of His Time.
New York (NY): Walker Publishing Company; 1995.
ISBN 10: 0-802-79967-1

[12] Ho�man P, Harris S. �e Tao of IETF: A novice’s
guide to the Internet Engineering Task Force. Network
Working Group, �e Internet Society. RFC 4677, 2006.
Available at: http://www.rfc-editor.org/rfc/rfc4677.txt

[13] Cybenko G. Personal communication, Spring, 2010.
Note: I am indebted to George Cybenko for this observa-
tion and the subsequent four categories.

[14] Avizienis A, Laprie JC, Randell B, Landwehr C.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and
Secure Computing. 2004;1(1):11–33. DOI: 10.1109/
TDSC.2004.2

[15] Clarkson MR, Schneider FB. Hyperproperties. Jour-
nal of Computer Security. 2010;18(6):1157–1210. DOI:
10.3233/JCS-2009-0393

[16] Kahneman D, Tversky A. Prospect theory:
An analysis of decision under risk. Econometrica.
1979;47(2):263–291. DOI: 10.2307/1914185

[17] Simon HA. Sciences of the Arti�cial. 3rd ed.
Cambridge (MA): MIT Press; 1996. ISBN 13:
978-0-262-69191-8

About the author

Carl E. Landwehr is an independent consultant in
cybersecurity research. Until recently, he was a senior
research scientist for the Institute for Systems Re-
search at the University of Maryland, College Park.
He received his BS in engineering and applied sci-
ence from Yale University and his PhD in computer
and communication sciences from the University of
Michigan. Following a 23-year research career at the
Naval Research Laboratory, he has for the past decade
developed and managed research programs at the Na-
tional Science Foundation and the Advanced Research
Development Activity/Defense Technology O�ce/
Intelligence Advanced Research Projects Activity. He
is interested in all aspects of trustworthy computing.
In December 2010, he completed a four-year term as
editor in chief of IEEE Security & Privacy Magazine.

6

The evolution of
information security |

A d a m S h o s t a c k

B
efore Charles Darwin wrote his most famous works, The Origin of Species and The Descent of

Man, he wrote a travelogue entitled The Voyage of the Beagle. In it he describes his voyages
through South and Central America. On his journey, he took the opportunity to document

the variety of life he saw and the environments in which it existed. Those observations gave
Darwin the raw material from which he was able to formulate and re�ne his theory of evolution.

Evolution has been called the best idea anyone ever had. That’s in part because of the explanatory
power it brings to biology and in part because of how well it can help us learn in other �elds.
Information security is one �eld that can make use of the theory of evolution. In this short essay,
I’d like to share some thoughts on how we can document the raw material that software and
information technology professionals can use to better formulate and re�ne their ideas around
security. I’ll also share some thoughts on how information security might evolve under a variety of
pressures. I’ll argue that those who adopt ideas from science and use the scienti�c method will be
more successful, and more likely to pass on their ideas, than those who do not.

FEATURE

1. The information security environment

Information security is a relatively new �eld. Some of
the �rst people to undertake systematic analysis are
still working in the �eld. Because the �eld and associ-
ated degree programs are fairly recent, many of those
working in information security have backgrounds or
degrees in other �elds. What’s more, those involved
in information security o�en have a deep curiosity
about the world, leading them to learn about even
more �elds. �us, we have a tremendous diversity
of backgrounds, knowledge, skills, and approaches
from which the information security community can
draw. Between a virtual explosion of niches in which
new ideas can be brought to bear, and many di�erent
organizations to test those ideas, we ought to have a
natural world of mutation, experimentation, and op-
portunities to learn. We should be living in a golden
age of information security. Yet many security experts
are depressed and demoralized. Debora Plunkett, head
of the NSA’s Information Assurance Directorate has
stated, “�ere’s no such thing as ‘secure’ anymore.”
To put a pessimistic face on it, risks are unmeasur-
able, we run on hamster wheels of pain, and budgets
are slashed.

In the real world, evolution has presented us with
unimaginably creative solutions to problems. In the
natural world, di�erent ways of addressing problems
lead to di�erent levels of success. Advantages accumu-
late and less e�ective ways of doing things disappear.
Why is evolution not working for our security prac-
tices? What’s di�erent between the natural world and
information security that inhibits us from evolving
our security policies, practices, and programs?

2. Inhibitors to evolution

Information security programs are obviously not or-
ganisms that pass on their genes to new programs, and
so discussions of how they evolve are metaphorical. I
don’t want to push the metaphor too far, but we ought
to be able to do better than natural organisms because
we can trade information without trading genes. Ad-
ditionally, we have tremendous diversity, strong pres-
sures to change, and even the advantage of being able
to borrow ideas and lessons from each other. So why
aren’t we doing better?

Many challenges of building and operating e�ec-
tive security programs are well known. �ey include

demonstrating business value, scoping, and demon-
strating why something didn’t happen. Let’s focus on
one reason that gets less attention: secrecy. To many
who come to information security from a military
background, the value of secrecy is obvious: the less an
attacker knows, the greater the work and risk involved
in an attack. It doesn’t take a military background to
see that putting a red �ag on top of every mine makes
a mine�eld a lot less e�ective. A mine�eld is e�ective
precisely because it slows down attackers who have to
expose themselves to danger to �nd a way through it.
In information security operations, however, attacks
can be made from a comfy chair on the other side of
the world, with the attacker having �rst torn apart an
exact copy of your defensive system in their lab. (�is
contrast was �rst pointed out by Peter Swire.)

We know that systems are regularly penetrated.
Some say that all of them are. Despite that knowledge,
we persist in telling each other that we’re doing okay
and are secure. Although the tremendously resilient
infrastructures we’ve built work pretty well, we can
and should do better.

For example, take the problem of stack smashing
bu�er over�ows. �e problem was clearly described
in the public literature as early as 1972. According to
Lance Ho�man, it was well known and in�uenced
the design of the data �ags in the main processors of
the Burroughs B5500. �e problem was passed down
repeatedly through the 1980s and 1990s, and was
exploited by the Morris Internet worm and many oth-
ers. It was only a�er Aleph One published his paper
“Smashing the stack for fun and pro�t” in 1996 that
systematic defenses began to be created. �ose defens-
es include StackGuard, safer string handling libraries,
static analysis, and the useful secrecy in operating
system randomization. Until the problem was publicly
discussed, there were no resources for defenses, and
therefore, while the attacks evolved, the defenses were
starved. �e key lesson to take from this problem that
has plagued the industry from 1972 (and is still pres-
ent in too much legacy code) is: keeping the problem
secret didn’t help solve it.

�e wrong forms of secrecy inhibit us from learn-
ing from each other’s mistakes. When we know that
system penetrations are frequent, why do we hide
information about the incidents? �ose of us in opera-
tional roles regularly observe operational problems.
�ose incidents are routinely investigated and the

 The Next Wave | Vol. 19 No. 2 | 2012 | 7

8

The evolution of information security

results of the investigation are almost always closely
held. When we hide information about system failures,
we prevent ourselves from studying those failures. We
restrain our scientists from emulating Darwin’s study
of the variations and pressures that exist. We prevent
the accumulation of data; we inhibit the development
of observational methods; and we prevent scienti�c
testing of ideas.

Let’s consider what scienti�c testing of ideas
means, and then get to a discussion of what ideas we
might test.

3. De�ning the problem

a. What is science?

For the sake of clarity, let me compare and contrast
three approaches to problem solving and learning:
science, engineering, and mathematics. Mathematics
obviously underpins both science and engineering, but
it will be helpful to untangle them a little.

At the heart of science is the falsi�cation of hy-
potheses. Let me take a moment to explain what that
means. A hypothesis is an idea with some predictive
power. Examples include “everything falls at the same
speed” (modulo friction from the air) and “gravity
bends the path of light.” Both of these hypotheses
allow us to predict what will happen when we act.
What’s more, they’re testable in a decisive way. If I
can produce a material that falls faster than another
in a vacuum, we would learn something fundamen-
tal about gravity. Contrast this with derivation by
logic, where disproof requires a complex analysis of
the proof. Science has many tools which center on fal-
sifying hypotheses: the experiment, peer review, peer
replication, publication, and a shared body of results.
But at the heart of all science is the falsi�able hypoth-
esis. Science consists of testable ideas that predict
behavior under a range of circumstances, the welcom-
ing of such tests and, at its best, the welcoming of the
results. For more on the idea of falsi�ability, I recom-
mend Karl Popper’s Conjectures and Refutations.

Science also overlaps heavily with engineering. En-
gineering concerns making tradeo�s between a set of
constraints in a way that satis�es customers and stake-
holders. Engineering can involve pushing boundaries
of science, such as �nding a way to produce lasers with
shorter wavelengths, or pushing the limits of scienti�c

knowledge. For example, when the original Tacoma
Narrows Bridge �nally buckled a little too hard, it
drove new research into the aerodynamics of bridges.

�e scienti�c approach of elimination of falsehood
can be contrasted with mathematics, which constructs
knowledge by logical proof. �ere are elements of
computer security, most obviously cryptography,
which rely heavily on mathematics. It does not devalue
mathematics at all to note that interesting computer
systems demonstrably have properties that are true
but unprovable.

b. What is information security?

Information security is the assurance and reality that
information systems can operate as intended in a
hostile environment. We can and should usefully bring
to bear techniques, lessons, and approaches from all
sorts of places, but this article is about the intersection
of science and security. So we can start by �guring out
what sorts of things we might falsify. One easy target
is the idea that you can construct a perfectly secure
system. (Even what that means might be subject to
endless debate, and not falsi�cation.) Even some of the
most secure systems ever developed may include �aws
from certain perspectives. Readers may be able to
think of examples from their own experience.

But there are other ideas that might be disproven.
For example, the idea that computer systems with
formal proofs of security will succeed in the market-
place can be falsi�ed. It seems like a good idea, but
in practice, such systems take an exceptionally long
time to build, and the investment of resources in
security proofs come at the expense of other features
that buyers want more. In particular, it turns out that
there are several probably false hypotheses about such
computer systems:

 Proofs of security of design relate to the security
of construction.

 Proofs of security of design or construction
result in operational security.

 Proofs of security result in more secure systems
than other security investments.

 Buyers value security above all else.

�ese are small examples but there are much larger
opportunities to really study our activities and im-
prove their outcomes for problems both technical and

 The Next Wave | Vol. 19 No. 2 | 2012 | 9

FEATURE

human. As any practitioner knows, security is replete
with failures, which we might use to test our ideas.
Unfortunately, we rarely do so, opting instead for the
cold comfort of approaches we know are likely to fail.

Why is it we choose approaches that o�en fail?
Sometimes we don’t know a better way. Other times,
we feel pressure to make a decision that follows
“standard practice.” Yet other times, we are compelled
by a policy or regulation that ignores the facts of a
given case.

4. Putting it all together: A science of
information security

So what ideas might we test? At the scale which the
US government operates networks, almost any pro-
cess can be framed as testable. Take “always keep your
system up to date” or “never write down a password.”
Such ideas can be inserted into a sentence like “Or-
ganizations that dedicate X percent of their budget
to practice Y su�er fewer incidents than those that
dedicate it to practice Z.”

Let me break down how we can frame this hypothesis:

1. �e �rst choice I’ve made is to focus on organiza-
tions rather than individual systems. Individual
systems are also interesting to study, but it may
be easier to look to whole organizations.

2. �e second choice is to focus on budget. Eco-
nomics is always about the allocation of scarce
resources. Money not spent on information se-
curity will be spent on other things, even if that’s
just returning it to shareholders or taxpayers. (As
a taxpayer, I think that would be just �ne.)

3. �e third choice is to focus on outcomes. As
I’ve said before, security is about outcomes, not
about process (see http://newschoolsecurity.
com/2009/04/security_is_about_outcome/). So
rather than trying again to measure compliance,
we look to incidents as a proxy for e�ectiveness.
Of course, incidents are somewhat dependent
on attacks being widely and evenly distributed.
Fortunately, wide distribution of attacks is pretty
much assured. Even distribution between various
organizations is more challenging, but I’m con�-
dent that we’ll learn to control for that over time.

4. �e �nal choice is that of comparisons. We
should compare our programs to those of other

organizations, and to their choices of practices.

Of course, comparing one organization to another
without consideration of how they di�er might be a
lot like comparing the outcomes of heart attacks in
40-year-olds to 80-year-olds. Good experimental de-
sign will require either that we carefully match up the
organizations being compared or that we have a large
set and are randomly distributing them between con-
ditions. Which is preferable? I don’t know, and I don’t
need to know today. Once we start evaluating out-
comes and the choices that lead to them, we can see
what sorts of experiments give us the most actionable
information and re�ne them from there. We’ll likely
�nd several more testable hypotheses that are useful.

Each of the choices above can be reframed as a
testable hypothesis of “does measuring this get us the
results we want?” If you think the question of, “Do
organizations that dedicate X percent of their budget
to practice Y su�er fewer incidents than those that
dedicate it to practice Z?” is interesting, then, before
testing any ideas, bringing science to information
security helps us ask more actionable questions.

Similarly, we can think about building outcome-
oriented tests for technology. Proof of concept ex-
ploit code can be thought of as disproving the trivial
hypothesis that, “�is program has no exploitable
vulnerability of class X.” Since we know that programs
usually have a variety of �aws associated with the lan-
guages used to construct them, we would expect many
of those hypotheses to be false. Nevertheless, demon-
stration code can focus attention on a particular issue
and help get it resolved. But we can aspire to more
surprising hypotheses.

5. Next steps

Having laid out some of the challenges that face infor-
mation security and some of what we will gain as we
apply the scienti�c method, here is what we need to do
to see those bene�ts:

1. Robust information sharing (practices and
outcomes). We need to share information
about what organizations are doing to protect
their information and operations, and how
those protections are working. Ideally, we will
make this information widely available so that
people of di�erent backgrounds and skills can
analyze it. �rough robust and broad debate,

10

The evolution of information security

we’re more likely to overcome groupthink and
inertia. Fortunately, the federal government
already shares practice data in reports from
the O�ce of the Inspector General and the
Government Accountability O�ce. Outcome
reporting is also available, in the form of data
sent to the US Computer Emergency Readiness
Team (US-CERT). �e Department of Veterans
A�airs publishes the information security
reports it sends to Congress. Expanding on
this information publication will accelerate our
ability to do science.

2. Robust hypothesis testing. With the availability
of data, we need to start testing some hypotheses.
I suggest that nothing the information security
community could do would make millions
of people happier faster and at less risk than
reducing password requirements. Testing
to see if password complexity requirements
have any impact on outcomes could allow
many organizations to cut their help desk
and password reset requirements at little cost
to security.

3. Fast reaction and adaptation. Gunnar Peterson
has pointed out that as technologies evolved
from �le transfer protocol (FTP) to hypertext
transfer protocol (HTTP) to simple object access
protocol (SOAP), security technologies have
remained “�rewalls and SSL.” It can seem like
the only static things in security are our small
toolbox and our depression. We need to ensure
that innovations by attackers are understood
and called out in incident responses and that
these innovations are matched by defenders

in ways that work for each organization and
its employees.

�ere are objections to these ideas of data sharing
and testing. Let me take on two in particular.

�e �rst objection is “�is will help attackers.” But
information about defensive systems is easily discov-
ered. For example, as the DEF CON 18 Social Engi-
neering contest made irrefutable, calling employees
on the phone pretending to be the help desk reveals all
sorts of information about the organization. “Train-
ing and education” were clearly not e�ective for those
organizations. If you think your training works well,
please share the details, and perhaps someone will
falsify your belief. My hypothesis is that every organi-
zation of more than a few hundred people has a great
deal of information on their defenses which is easily
discovered. (As if attackers need help anyway.)

�e second objection is that we already have
information-sharing agreements. While that is true,
they generally don’t share enough data or share the
data widely enough to enable meaningful research.

Information security is held back by our lack of
shared bodies of data or even observations. Without
such collections available to a broad community of re-
search, we will continue along today’s path. �at’s not
acceptable. Time a�er time, the scienti�c approach has
demonstrated e�ectiveness at helping us solve thorny
problems. It’s time to bring it to information security.
�e �rst step is better and broader sharing of infor-
mation. �e second step is testing our ideas with that
data. �e third step will be to apply those ideas that
have passed the tests, and give up on the superstitions
which have dogged us. When we follow Darwin and

Robust information sharing Robust hypothesis testing Fast reaction and adaptation

 The Next Wave | Vol. 19 No. 2 | 2012 | 11

FEATURE

Further reading

Aleph One. 1996. Smashing the stack for fun and pro�t.
Phrack. 1996;7(49). Available at: http://www.phrack.org/
issues.html?issue=49&id=14#article

Anderson JP. Computer security technology planning
study, 1972. L.G. Hanscom Field, Bedford (MA): Deputy
for Command and Management Systems, HQ Electronic
Systems Division (AFSC). Report No.: ESD-TR-73-51,
Vol. I, NTIS AD-758 206. Available at: http://nob.
cs.ucdavis.edu/history/papers/ande72a.pdf

Ho�man L. Personal communication, but see also the
Burroughs tribute page available at: http://web.me.com/
ianjoyner/Ian_Joyner/Burroughs.html

Popper K. Conjectures and Refutations: �e Growth of
Scienti�c Knowledge. London: Routledge; 1963. ISBN 13:
978-0-710-01966-0

Swire P. A model for when disclosure helps security:
What is di�erent about computer and network security?
Journal on Telecommunications and High Technology
Law. 2004;3(1):163–208.

Zorz Z. NSA considers its networks compromised. Help
Net Security. 2010 Dec 17. Available at: http://www.net-
security.org/secworld.php?id=10333

his naturalist colleagues in documenting the variety of
things we see, we will be taking an important step out
of the muck and helping information security evolve.

About the author

Adam Shostack is a principal program manager on
the Microso� Usable Security team in Trustworthy
Computing. As part of ongoing research into clas-
sifying and quantifying how Windows machines get
compromised, he recently led the drive to change
Autorun functionality on pre-Win7 machines; the
update has so far improved the protection of nearly
500 million machines from attack via universal se-
rial bus (USB). Prior to Usable Security, he drove the
Security Development Lifecycle (SDL) �reat Modeling
Tool and Elevation of Privilege: �e �reat Model-
ing Game as a member of the SDL core team. Before
joining Microso�, Adam was a leader of successful
information security and privacy startups and helped
found the Common Vulnerabilities and Exposures list,
the Privacy Enhancing Technologies Symposium, and
the International Financial Cryptography Association.
He is coauthor of the widely acclaimed book, �e New
School of Information Security.

12

Information security and privacy continue to grow in importance as threats proliferate, privacy
erodes, and attackers �nd new sources of value. Yet the security of information systems and the
privacy o�ered by them depends on more than just technology. Each requires an understanding
of the incentives and trade-o�s inherent to the behavior of people and organizations. As society’s
dependence on information technology has deepened, policymakers have taken notice. Now more
than ever, careful research is needed to characterize accurately threats and countermeasures, in both
the public and private sectors.

The Workshop on the Economics of Information Security (WEIS) is the leading forum for
interdisciplinary scholarship on information security and privacy, combining expertise from the
�elds of economics, social science, business, law, policy, and computer science. Prior workshops have
explored the role of incentives between attackers and defenders of information systems, identi�ed
market failures surrounding Internet security, quanti�ed risks of personal data disclosure, and assessed
investments in cyber-defense. The 2012 workshop will build on past e�orts using empirical and
analytic tools not only to understand threats, but also to strengthen security and privacy through
novel evaluations of available solutions.

WEIS encourages economists, computer scientists, legal scholars, business school researchers,
security and privacy specialists, as well as industry experts to submit their research and participate by
attending the workshop.

Contact: If you have any questions, please contact info@weis2012.econinfosec.org and respond to the
automatic veri�cation message. Your message will be forwarded to the organizers.

WORKSHOP INFORMATION

Location: Berlin, Germany

Venue: Berlin Brandenburg Academy of Sciences (BBWA)

Host: DIW Berlin

IMPORTANT DATES

Submission due: 24 February 2012

Noti�cation of acceptance: 13 April 2012

Final paper due: 1 June 2012

Workshop: 25–26 June 2012

11th Annual

Workshop on the Economics of Information Security

WEIS 2012
Berlin, Germany

 The Next Wave | Vol. 19 No. 2 | 2012 | 13

Making experiments
dependable |

R o y M a x i o n *

A
bstract. In computer science and computer
security we o�en do experiments to establish or
compare the performance of one approach vs.

another to some problem, such as intrusion detec-
tion or biometric authentication. An experiment is
a test or an assay for determining the characteristics
of the item under study, and hence experimentation
involves measurements.

Measurements are susceptible to various kinds of
error, any one of which could make an experimental
outcome invalid and untrustworthy or undependable.
�is paper focuses on one kind of methodological er-
ror—confounding—that can render experimental out-
comes inconclusive, but o�en without the investigator
knowing it. Hence, valuable time and other resources
can be expended for naught. We show examples from
the domain of keystroke biometrics, explaining several
di�erent examples of methodological error, their con-
sequences, and how to avoid them.

1. Science and experimentation

You wouldn’t be surprised if, in a chemistry experi-
ment, you were told that using dirty test tubes and
beakers (perhaps contaminated with chemicals from a
past procedure) could ruin your experiment, making
your results invalid and untrustworthy. While we don’t
use test tubes in cyber security, the same admonition
applies: keep your experiments clean, or the contami-
nation will render them useless.

Keeping your glassware clean is part of the chem-

lab methodology that helps make experimental mea-

surements dependable, which is to say that the mea-

surements have minimal error and no confounding

variables. In cyber security we also need measure-
ments that are dependable and error-free; undepend-
able measurements make for undependable values
and analyses, and for invalid conclusions. A rigorous
experimental methodology will help ensure that mea-
surements are valid, leading to outcomes in which we
can have con�dence.

A particularly insidious form of error is the con-
found—when the value of one variable or experi-
mental phenomenon is confounded or in�uenced by
the value of another. An example, as above, would be
measuring the pH of a liquid placed in contaminated
glassware where the in�uence of the contaminant on
pH varied with the temperature of the liquid being
measured. �is is a confound, and to make things
worse, the experimenter would likely be unaware of its
presence or in�uence. �e resulting pH values might
be attributed to the liquid, to the temperature, or to
the contaminant; they cannot be distinguished (with-
out further experimentation). Similar measurement
error can creep into cyber security experiments, mak-
ing their measures similarly invalid.

�is article describes some of the issues to be con-
sidered, and the rationales for decisions that need to
be made, to ensure that an experiment is valid—that
is, that outcomes can be attributed to only one cause
(no alternative explanations for causal relations), and
that experimental results will generalize beyond the
experimental setting.

In the sections to follow, we �rst consider the hall-
marks of a good experiment: repeatability, reproduc-
ibility and validity. �en we focus on what is arguably
the most important of these—validity. We examine
a range of threats to validity, using an experiment in

* �e author is grateful for support under National Science Foundation grant number CNS-0716677. Any opinions, �ndings, conclu-
sions or recommendations expressed in this material are those of the author, and do not necessarily re�ect the views of the National
Science Foundation.

C . B . Jo n e s a n d J . L . L l o y d (E d s .) : Fe s t s c h r i f t R a n d e l l , L N C S 6 8 7 5 , p p. 3 4 4 – 3 5 7 , 2 0 1 1 . | © S p r i n g e r- Ve r l a g
B e r l i n He i d e l b e r g 2 0 1 1 | R e p u b l i s h e d w i t h k i n d p e r m i s s i o n o f S p r i n g e r S c i e n c e + B u s i n e s s Me d i a .

14

Making experiments dependable

keystroke biometrics to provide examples. �e experi-
ment is laid out �rst, and is then critiqued; remedies
for the violations are suggested. We close by sug-
gesting simple ways to avoid the kinds of problems
described here.

2. Hallmarks of a good experiment

�ere are clear di�erences between experiments that
are well-designed and those that are not. While there
may be many details that are di�erent between the
two, the main ones usually reduce to issues of repeat-
ability (sometimes called reliability), reproducibility
and validity. While our main focus here will be on
validity, we will �rst look brie�y at what each of the
other terms means, just to put them all in context.

Repeatability refers to the variation in repeated
measurements taken by a single person or instrument
on the same item and under the same conditions; we
seek high agreement, or consistency, from one mea-
sured instance to another [9]. �at is, the experiment
can be repeated in its entirety, and the results will be
the same every time, within measurement error. For
example, if you measure the length of a piece of string
with a tape measure, you should get about the same
result every time. If an experiment is not repeatable,
even by the same person using the same measuring
apparatus, then there is a risk that the measurement
is wrong, and hence the outcome of the experiment
may be wrong, too; but no one will realize it, and so
erroneous values will be reported (and assumed to be
correct by readers).

Reproducibility relates to the agreement of experi-
mental results with independent researchers using
similar but physically di�erent test apparatus, and
di�erent laboratory locations, but trying to achieve
the same outcome as was reported in a source ar-
ticle [9]. Measurements should yield the same results
each time they are taken, irrespective of who does
the measuring. Using the length-of-string example, if
other people can measure that same piece of string in
another setting using a similar measuring device, they
should get about the same result as the �rst group did.
If they don’t, then the procedure is not reproducible;
it can’t be replicated. Reproduction (sometimes called
replication) allows an assessment of the control on the
operating conditions of the measurement procedure,
i.e., the ability to reset the conditions to some desired

state. Ultimately, replication re�ects how well the pro-
cedure was operationalized.

Note that reproducibility doesn’t mean hitting
return and analyzing the same data set again with
the same algorithm. It means conducting the entire
experiment again, data collection and all. If an experi-
ment is not reproducible, then it cannot be replicated
by others in a reliable way. �is means that no one will
be able to verify that the experiment was done cor-
rectly in the �rst place, hence placing an air of untrust-
worthiness on the original results. Reproducibility
hinges on operational de�nitions for the measures and
procedures employed in the course of the experi-
ment. An operational de�nition de�nes a variable or
a concept in terms of the procedures or operations
used to measure it. An operational de�nition is like a
recipe or set of detailed instructions for describing or
measuring something.

Validity relates to the logical well-groundedness of
how the experiment is conducted, as well as the extent
to which the results will generalize to circumstances
beyond those in the laboratory. �e next section ex-
pands on the concept of validity.

3. Validity

What does the term valid mean? Drawing from a stan-
dard dictionary, when some thing or some argument
or some process is valid, it is well-grounded or justi�-
able; it is logically correct; it is sound and �awlessly
reasoned, supported by an objective truth.

FIGURE 1. Hallmarks of a good experiment.

 The Next Wave | Vol. 19 No. 2 | 2012 | 15

FEATURE

To conduct an experiment that was anything other
than valid, in the above sense, would be foolish, and
yet we see such experiments all the time in the litera-
ture. Sometimes we can see the �aws (which some
would call threats to validity) directly in the experi-
ment, and sometimes we can’t tell, because authors do
not report the details of how their experiments were
conducted. Generally speaking, there are two kinds of
validity—internal and external. Conceptually, these
are pretty simple.

Internal validity. In most experiments we are trying to
�nd out if A has a given e�ect on B, or if A causes B.
To claim that A indeed causes B, the experiment must
not o�er any alternative causes nor alternative expla-
nations for the outcome; if this is case, then the experi-
ment is internally valid [8]. An alternative explanation
for an experimental outcome can be due, for example,
to confounded variables that have not been controlled.

For example, suppose we want to understand the
cause of errors in programming. We recruit students
in university programming classes (one class uses C,
and the other uses Java). We ask all the students to
write a program that calculates rocket trajectories.
�e results indicate that C programmers make more
programming errors, and so we conclude that the C
programming language is a factor in so�ware errors.
Drawing such a conclusion would be questionable,
because there are other factors that could explain
the results just as well. Suppose, for example, that
the Java students were more advanced (juniors, not
sophomores) than the C students. �e outcome of
the experiment could be due to the experience level
of the students, just as much as it could be due to the
language. Since we can’t distinguish distinctly be-
tween experience level and language, we say that the
experiment confounds two factors—language and
experience—and is therefore not valid. Note that it can
sometimes be quite di�cult to ensure internal valid-
ity. Even if all the students are at the same experience
level, if they self-selected Java vs C it would still allow
for a confound in that a certain kind of student might
be predisposed to select Java, and a di�erent kind of
student might be predisposed to select C. �e two
di�erent kinds of students might be di�erentially good
at one language or the other. �e remedy for such an
occurrence would be to assign the language-student
pairs randomly.

External validity. In most experiments we hope that
the �ndings will apply to all users, or all so�ware,
or all applications. We want the experimental �nd-
ings to generalize from a laboratory or experimental
setting to a much broader setting. To the extent that
a study’s �ndings generalize to a broader population
(usually taken to be “the real world”), the experiment
is externally valid [8]. If the �ndings are limited to the
conditions surrounding the study (and not to broader
settings), then the experiment lacks external validity.
Another way to think about this is that external valid-
ity is the extent to which a causal relationship holds
when there are variations in participants, settings
and other variables that are di�erent from the narrow
ranges employed in the laboratory.

Referring back to our earlier example, suppose we
were to claim that the experiment’s outcome (that
the C language promotes errors) generalizes to a set
of programmers outside the experimental environ-
ment—say, in industry. �e generalization might not
hold, perhaps because the kind of problem presented
to the student groups was not representative of the
kinds of problems typically encountered in industry.
�is is an example of an experiment not generalizing
beyond its experimental conditions to a set of condi-
tions more general; it’s not externally valid.

Trade-o� between internal and external validity. It
should be noted that not all experiments can be valid
both internally and externally at the same time; it
depends on the purpose of the experiment whether
we seek high internal or high external validity. Typi-
cally there is a trade-o� in which one kind of validity
is sacri�ced for the other. For example, laboratory
experiments designed to answer a very focused ques-
tion are o�en more internally valid than externally
valid. Once a research question seems to have been
settled (e.g., that poor exception handling is a major
cause of so�ware failure), then a move to a broader,
more externally valid, experiment would be the right
thing to do.

4. Example domain—keystroke biometrics

In this section we introduce the domain from
which we draw concrete examples of experimental
invalidities—keystroke biometrics.

Keystroke biometrics, or keystroke dynamics, is

16

Making experiments dependable

the term given to the procedure of measuring and
assessing a user’s typing style, the characteristics of
which are thought to be unique to a person’s physiol-
ogy, behavior, and habits. �e idea has its origin in the
observation that telegraph operators have distinctive
patterns, called �sts, of keying messages over telegraph
lines. One notable aspect of �sts is that they emerge
naturally, as noted over a hundred years ago by Bryan
& Harter, who showed that operators are distinc-
tive due to the automatic and unconscious way their
personalities express themselves, such that they could
be identi�ed on the basis of having telegraphed only a
few words [1].

�ese measures of key presses and key releases,
based largely on the timing latencies between key-
strokes, are compared to a user pro�le as part of a
classi�cation procedure; a match or a non-match can
be used to decide whether or not the user is authenti-
cated, or whether or not the user is the true author of
a typed sequence. For a brief survey of the keystroke
literature, see [7].

We use keystroke dynamics as an example here
for two reasons. First, it’s easy to understand—much
easier, for example, than domains like network proto-
cols. If we’re going to talk about �aws and invalidities
in experiment design, then it’s better to talk about
an experiment that’s easily understood; the lessons
learned can be extended to almost any other domain
and experiment. Second, keystroke dynamics shares
many problems with other cyber-security disciplines,
such as intrusion detection. Examples are classi�cation
and detection accuracy; selection of best classi�er or
detector; feature extraction; and concept dri�, just to
name a few. Again, problems solved in the keystroke
domain are very likely to transfer to other domains
where the same type of solution will be e�ective.

4.1. What is keystroke dynamics good for?

Keystroke dynamics is typically thought of as an
example of the second factor in two-factor authentica-
tion. For example, for a user to authenticate, he’d have
to know not only his own password (the �rst factor),
but he would also have to type the password with a
rhythm consistent with his own rhythm. An impos-
tor, then, might know your password, but would not
be able to replicate your rhythm, and so would not be

allowed into the system. Another application, along a
similar line, would be continuous re-authentication,
in which the system continually checks to see that
the typing rhythm matches that of the logged-in user,
thereby preventing, say, insiders from masquerading
as you. A third application would be what forensics
experts call questioned-document analysis, which asks
whether a particular user typed a particular document
or parts of it. Finally, keystroke rhythms could be used
to track terrorists from one cyber café to another,
or to track a predator from one chat-room session
to another.

4.2. How does keystroke dynamics work?

�e essence of keystroke dynamics is that timing data
are collected as a typist enters a password or other
string. Each keystroke is timestamped twice; once on
its downstroke and once on its upstroke. From those
timings we can compute the amount of time that a key
was held down (hold time) and the amount of time
it took to transition from one key to the next (transi-
tion latency). �e hold times and the latencies are
called features of the typed password, and for a given
typing instance these features would be grouped into
a feature vector. For a 10-character password there
would be eleven hold times and ten latencies if we
include the return key.a If a typist enters a password
many times, then the several resulting feature vectors
can be assembled into a template which represents the
central tendency of the several vectors. Each typist will
have his or her own such template. �ese templates are
formed during an enrollment period, during which
legitimate users provide typing samples; these samples
form the templates. Later, when a user wishes to log
in, he types the password with the implicit claim that
the legitimate user has typed the password. �e key-
stroke dynamics system examines the feature vector of
the presently-typed password, and classi�es it as either
belonging to the legitimate user or not. �e classi�er
operates as an anomaly detector; if the rhythm of the
typed password is a close enough match to the stored
template, then the user is admitted to the system. �e
key aspect of this mechanism is the detector. In ma-
chine learning there are many such detectors, distin-
guished by the distance metrics that they use, such as
Euclidean, Manhattan and Mahalanobis, among others
[4]. Any of these detectors can be used in a keystroke

a. �ere are two kinds of latencies—keydown to keydown and keyup to keydown. Some researchers use one or the other of these, and
some researchers use both. In our example we would have 31 features if we used both.

 The Next Wave | Vol. 19 No. 2 | 2012 | 17

dynamics system; under some circumstances, some
detectors work better than others, but it is an open
research question as to which classi�er is overall best.

5. A typical keystroke experiment

In this section we discuss several aspects of conduct-
ing a study in keystroke dynamics, we show what can
go wrong, and we share some examples of how (in)
validity can a�ect the outcome of a real experiment.
We will discuss some examples and experimental �aws
that are drawn from the current literature, although
not all of the examples are drawn from a single paper.

Walkthrough. Let’s walk through a typical experiment
in keystroke dynamics, and we’ll point out some errors
that we’ve observed in the literature, why they’re er-
rors, how to correct them, and what the consequences
might be if they’re le� uncorrected. Note that the
objective of the experiment is to discriminate among
users on the basis of their typing behavior, not on the
basis of their typing behavior plus, possibly unspeci-
�ed, other factors; the typing behavior needs to be iso-
lated from other factors to make the experiment valid.

A typical keystroke dynamics experiment would
test how well a particular algorithm can determine
that a user, based on his typing rhythm, is or is not
who he claims to be. In a keystroke biometric system,
a user would present himself to the system with his
login ID, thereby claiming to be the person associ-
ated with the ID. �e system veri�es this claim by two
means: it checks that the password typed by the user
is in fact the user’s password; and it checks that the
password is typed with the same rhythm with which
the legitimate user would type it. If these two factors
match the system’s stored templates for the user, then
the user is admitted to the system.

Checking that the correct password is o�ered is old
hat; checking that its typing rhythm is correct is an-
other matter. �is is typically done by having the user
“enroll” in the biometric component of the system. For
di�erent biometric systems the enrollment process is
di�erent, depending on the biometric being used; for
example, if a �ngerprint is used, then the user needs to
present his �ngerprint to the system so that the system
can encrypt and store it for later matching against
a user claiming to be that person who enrolled. For
keystroke biometric systems, the process is similar;

the user types his password several times so that
the system can form a pro�le of the typing rhythm
for later matching. �e biometric system’s detection
algorithm is tested in two ways. In the �rst test, sample
data from the enrolled user is presented to the system;
the system should recognize that the user is legitimate.
�e second test determines whether the detector can
recognize that an impostor is not the claimed user.
�is would be done by presenting the impostor’s login
keystroke sequence to the system, posing as a legiti-
mate user. Across a group of legitimate users and im-
postors, the percentage of mistakes, or errors, serves as
a gauge of how good the keystroke biometric system
is. Several details concerning exactly how these tests
are done can have enormous e�ects on the outcome.
We turn now to those details.

What can go wrong? �ere are several parts of an
experiment where things can go wrong. Most experi-
ments measure something; the measuring apparatus
can be �awed, producing �awed measurements. If the
measurements are �awed, then the data will be �awed,
and any analytical results and conclusions will be
cast into doubt. �e way that something is measured
can be unsound; if you measure code complexity by
counting the number of lines, you’ll get a numeri-
cal outcome, but it may not be an accurate re�ection
of code complexity. �e way or method of taking
measurements is the biggest source of error in most
experiments. Compounding that error is the lack of
detail with which the measurement methodology
is reported, o�en making it di�cult to determine
whether or not something went wrong. We turn now
to speci�c examples of methodological problems.

Clock resolution and timing. Keystroke timings are
based on operating-system calls to various timers. In
the keystroke literature we see di�erent timers being
used by di�erent researchers, with timing accura-
cies o�en reported to several decimal places. But it’s
not the accuracy (number of decimal places) of the
timing that’s of overriding importance; it’s the resolu-
tion. When keystroke dynamics systems are written
for Windows-based machines (e.g., Windows XP),
it’s usually the tick timer, or Windows-event clock [6]
that’s used; this has a resolution of 15.625 milliseconds
(ms), corresponding to 64 updates per second. If done
on a Unix system, the resolution is about 10 millisec-
onds. On some Windows systems the resolution can

FEATURE

18

Making experiments dependable

be much �ner if the QPC timer is used. �e reason
that timing resolution matters is not because people
type as fast as one key every 15 milliseconds (66 keys
per second); it’s because the time between keystrokes
can di�er by less than 15 milliseconds. If some typists
make key-to-key transitions faster than other ones,
but the clock resolution is unable to separate them,
then detection accuracy could su�er. One paper has
reported a 4.2% change in error rate due to exactly this
sort of thing [3]. A related issue is how you know what
your clock resolution is. It’s unwise to simply read this
o� the label; better to perform a calibration. A related
paper explained how this is done in a keystroke dy-
namics environment [5]. A last word on timing issues
concerns how the timestamping mechanism actually
works; if it’s subject to in�uence from the scheduler,
then things like system load can change the accuracy
of the timestamps.

�e e�ect of clock resolution and timing is that they
can interact with user rhythms as a confound. If dif-
ferent users type on di�erent machines whose timing
resolutions di�er, then any distinctions made among
users, based on timing, could be due to di�erences in
user typing rhythms (timings) or they could be due to
di�erences in clock resolutions. Moreover, since sys-
tem load can in�uence keystroke timing, it’s possible
that rhythmic di�erences attributed to di�erent users
would be due to load di�erences, not to user di�erenc-
es. Hence we would not be able to claim distinctive-
ness based on user behavior, because this cannot be
separated from timing errors induced by clock resolu-
tion and system load. If the purpose of the experiment
is to di�erentiate amongst users on the basis of typing
rhythm, then the confounds of clock resolution and
system load must be removed. �e simplest way to
achieve this is to ensure that the experimental systems
use the same clock, with the same resolution (as high
as possible), and have the same operating load. �is is
possible in the laboratory by using a single system on
which to collect data from all participants.

Keyboards. Experiments in keystroke dynamics
require people to type, of course, and keyboards on
which to do that typing. Most such experiments re-
ported in the literature allow subjects to use whatever
keyboard they want; a�er all, in the real world people
do use whatever keyboard they prefer. Consequently,
this approach has a lot of external validity. Unfortu-
nately, the approach introduces a serious confound,

too—a given keyboard, by its shape or character lay-
out, is likely to in�uence a user’s typing behavior. Dif-
ferent keyboards, such as standard, ergonomic, laptop,
kinesis, natural, kinesis maxim split and so forth will
shape typing in a way that’s peculiar to the keyboard
itself. In addition to the shape of the keyboard, the key
pressures required to make electrical contact di�er
from one keyboard to another. �e point is that not
all keyboards are the same, with the consequence that
users may type the same strings di�erently, depend-
ing on the keyboard and its layout. In the extreme, if
everyone in the experiment used a di�erent keyboard,
you wouldn’t be able to separate the e�ect of the key-
boards from the e�ect of typing rhythm; whether your
experimental results showed good separation of typists
or not, you wouldn’t know if the results were due to
the typists’ di�erences or to the di�erences among the
keyboards. Hence you would not be able to con-
clude that typing rhythms di�er among typists. �is
confound can be removed from the experiment by
ensuring that all participants use the same (or perhaps
same type of) keyboard. �e goal of the experiment
is to determine distinctiveness amongst typists based
on their individual rhythms, not on the basis of the
keyboards on which they type.

Stimulus items—what gets typed. Participants in
keystroke biometrics experiments need to type some-
thing—the stimulus item in the experiment. While
there are many kinds of stimuli that could be consid-
ered (e.g., passwords, phrases, paragraphs, transcrip-
tions, free text, etc.), we focus on short, password-like
strings. �ere are two fundamental issues: string
contents and string length.

String contents. By contents we mean simply the char-
acters contained in the password being typed. Two
contrasting examples would be a strong password,
characterized by containing shi� and punctuation
characters, as opposed to a weak password, charac-
terized by a lack of the aforementioned special char-
acters. It’s easy to see that if some users type strong
passwords, and other users type weak passwords, then
any discrimination amongst users may not be solely
attributable to di�erences among users; it may be at-
tributable to intrinsic di�erences between strong and
weak passwords that cause greater rhythmic variability
in one or the other. �e reason may be that strong
passwords are hard to type, and weak ones aren’t. So
we may be discriminating not on the basis of user

 The Next Wave | Vol. 19 No. 2 | 2012 | 19

FEATURE

rhythm, but on the basis of typing di�culty which, in
turn, is in�uenced by string content. To eliminate this
confound, the experimenter should not allow users to
choose their own passwords; the password should be
chosen by the experimenter, and should be the same
for each user.

String length. If users are le� to their own devices to
choose passwords, some may choose short strings,
while others choose longer strings. If this happens,
as it has in experiments where passwords were self-
selected, then any distinctiveness detected amongst
users cannot be attributed solely to di�erences among
user typing rhythms; the distinctions could have been
caused by di�erences in string lengths that the users
typed, or by intrinsic characteristics that cause more
variability in one length than in another. So, we don’t
know if the experimental results are based on user
di�erences or on length di�erences. To remove this
confound, the experimenter should ensure that all
participants type same-length strings.

Typing expertise and practice. Everyone has some
amount of typing expertise, ranging roughly from low
to high. Expertise comes from practice, and the more
you practice, the better you get. �is pertains to typ-
ing just as much as it pertains to piano playing. Two
things happen when someone has become practiced
at typing a password. First, the total amount of time
to type the password decreases; second, the time
variation with which particular letter pairs (digrams)
are typed diminishes. It takes, on average, about 214
repetitions of a ten-character password to attain a
level of expertise such that typing doesn’t change by
more than 1 millisecond on average (less than 0.1%)
over the total time (about 3–5 seconds) taken to type
a password. At this level of practice it can be safely
assumed that everyone’s typing is stable; that is, it’s
not changing signi�cantly. Due to this stability, it is
safe to compare typists using keystroke biometrics.
A classi�er will be able to distinguish among a group
of practiced typists, and will have a particular success
rate (o�en in the region of 95–99%).

But what if, as in some studies, the level of exper-
tise among the subjects ranges from low to high, with
some people very practiced and others hardly at all?
If practiced typists are consistent, with low variation
across repeated typings, but unpracticed typists are
inconsistent with high variability, then it would be
relatively easy for a classi�er to distinguish users in

such groups from one another. �is could make clas-
si�cation outcomes more optimistic than they really
are, making them misleading at best. In one study
25 people were asked to type a password 400 times.
Some people in the study did this, but others typed
the password only 150 times, putting a potentially
large expertise gap between these subjects. No matter
what the outcome if everyone had been at the same
level of expertise, it’s easy to see that the classi�cation
results would likely be quite di�erent than if there was
a mixture of practice levels among the subjects. �is
is an example of a lack of internal validity, where the
confound of di�erential expertise or practice is operat-
ing. �ere is no way that the classi�er results can be
attributed solely to users’ typing rhythms alone; they
are confounded with level of practice.

Instructions to typists. In any experiment there needs
to be a protocol by which the experiment is carried
out. �is protocol should be followed assiduously, lest
errors creep into the experiment whilst the researcher
is unaware. Here we give two examples in which in-
structions to subjects are important.

First, in our own experience, we had told subjects to
type the password normally, as if they were logging in
to their own computer. �is should be straightforward
and simple, but it’s not. We discovered that some sub-
jects were typing with extraordinary quickness. When
we asked those people if that’s how they typed every
day, they said no—they thought that the purpose of
our experiment was to see who could type the fastest
or the most accurately, even though we had never said
that. �is probably happened because we are a univer-
sity laboratory, and it’s not unusual in university ex-
periments (especially in psychology) to have their true
intentions disguised from the participant; otherwise
the participant may game the experiment, and hence
ruin it. People in our experiment assumed that we had
a hidden agenda (we didn’t), and the people respond-
ed to what they thought was the true agenda by typing
either very quickly or very carefully or both. When
we discovered this, we changed our instructions to tell
subjects explicitly that there was no hidden agenda,
and that we really meant it when we said that we were
seeking their normal, everyday typing behavior. A�er
the instructions were changed to include this, we no
longer observed the fast and furious typing behavior
that had drawn our attention in the �rst place. If we
had not done this, then we would have le� an internal

20

Making experiments dependable

invalidity in the experiment; our results would have
been confounded with normal typing by some and
abnormally fast typing by others. Naturally, a classi-
�er would be able to distinguish between fast and slow
typists, thereby skewing the outcomes unrealistically.

Second, if there is no written protocol by which
to conduct an experiment, and by which to instruct
participants as to what they are being asked to do,
there is a tendency for the experimenter to ad lib the
instructions. While this might be �ne, what can hap-
pen in practice is that the experimenter will become
aware of a slightly better way to word or express the
instructions, and will slightly alter the instructions for
the next subject. �is might slightly improve things for
that subject. However, for the subject a�er that, the in-
structions might change again, even if ever so slightly.
As this process continues, there will come a point at
which some of the later subjects are receiving instruc-
tions that are quite di�erent from those received by
the earlier subjects. �is means that two di�erent
sets of instructions were issued to subjects, and these
subjects may have responded in two di�erent ways,
leading to a confound. Whatever the classi�cation
outcomes might be, they cannot be attributed solely
to di�erences in user typing rhythms; they might have
been due to di�erences in instructions as well, and we
can’t tease them apart. Hence it is important not only
to have clear instructions, but also to have them in
writing so that every subject is exposed to exactly the
same set of instructions.

6. What’s the solution for all
these problems?

All of the problems discussed so far are examples of
threats to validity, and internal validity in particular.
�e confounds we’ve identi�ed can render an experi-
ment useless, and in those circumstances not only
has time and money been wasted, but any published
results run a substantial risk of misleading the reader-
ship. For example, if a study claims 99.9% correct clas-
si�cation of users typing passwords, that’s pretty good;
perhaps we can consider the problem solved. But if
that 99.9% was achieved because some confound, such
as typing expertise, arti�cially enhanced the results,
then we would have reached an erroneous conclusion,
perhaps remaining unaware of it. �is is a serious
research error; in this section we o�er some ways to

avoid the kinds of problems caused by invalidity.

Control. We use the term “control” to mean that
something has been done to mitigate a potential bias
or confound in an experiment. For example, if an
experimental result could be explained by more than
one causal mechanism, then we would need to control
that mechanism so that only one cause could be attrib-
uted to the experimental outcome. As an example, the
length of the password should be controlled so that ev-
eryone types a password of the same length; that way,
length will not be a factor in classifying typing vectors.
A second example would be to control the content of
the password, most simply by having every partici-
pant type the same password. In doing this, we would
be more certain that the outcome of the experiment
would be in�uenced only by di�erences in people’s
typing rhythms, and not by password length or
content. Of course while e�ecting control in this way
makes the experiment internally valid, it doesn’t re�ect
how users in the real world choose their passwords;
certainly they don’t all have the same password. But
the goal of this experiment is to determine the extent
to which individuals have unique typing rhythms, and
in that case tight experimental control is needed to
isolate all the extraneous factors that might confound
the outcome. Once it’s determined that people really
do have unique typing rhythms that are discriminable,
then we can move to the real world with con�dence.

Repeatability and reproducibility (again). We earlier
mentioned two important concepts: repeatability—the
extent to which an experimenter can obtain the same
measurements or outcomes when he repeats the ex-
periment in his own laboratory—and reproducibility,
which strives for the same thing, but when di�erent
experimenters in other laboratories, using similar but
physically di�erent apparatus, obtain the same results
as the original experimenters did. If we strive to make
an experiment repeatable, it means that we try hard to
make the same measures each time. To do this suc-
cessfully requires that all procedures are well de�ned
so that they can be repeated exactly time a�er time.
Such de�nitions are sometimes called operational
de�nitions, because they specify a measurement in
terms of the speci�c operations used to obtain it. For
example, when measuring people’s height, it’s im-
portant that everyone do it the same way. An opera-
tional de�nition for someone’s height would specify
exactly the procedure and apparatus for taking such

 The Next Wave | Vol. 19 No. 2 | 2012 | 21

FEATURE

measurements. �e procedure should be written so
that it can be followed exactly every time. Repeatabil-
ity can be ensured if the experiment’s measurements
and procedures are operationally de�ned and fol-
lowed assiduously. Reproducibility can be ensured by
providing those operational details when reporting the
experiment in the literature, thereby enabling others
to follow the original procedures.

Discovering confounds. �ere is no easy way to
discover the confounds lurking in an experimental
procedure. It requires deep knowledge of the domain
and the experiment being conducted, and it requires
extensive thought as to how various aspects of the
experiment may interact. One approach is to trace the
signal of interest (in our case, the keystroke timings
and the user behaviors) from their source to the point
at which they are measured or manifested. For key-
stroke timings, the signal begins at the scan matrix in
the keyboard, traveling through the keyboard encoder,
the keyboard-host interface (e.g., PS2, USB, wireless,
etc.), the keyboard controller in the operating sys-
tem (which is in turn in�uenced by the scheduler),
and �nally to the timestamping mechanism, which is
in�uenced by the particular clock being used. At each
point along the way, it is important to ask if there are
any possible interactions between these waypoints and
the integrity of the signal. If there are, then these are
candidates for control. For example, keyboard signals
travel di�erently through the PS2 interface than they
do through the USB interface. �is di�erence suggests
that only one type of keyboard interface be used—ei-
ther PS2 or USB, but not both. Otherwise, part of the
classi�cation accuracy would have to be attributed to
the di�erent keyboard interfaces. A similar mapping
procedure would ask about aspects of the experi-
ment that would in�uence user typing behavior. We
have already given the example of di�erent types of
keyboards causing people to type di�erently. Counter-
ing this would be done simply by using only one type
of keyboard.

Method section. A method section in a paper is the
section in which the details are provided regarding
how the experiment was designed and conducted.
Including a method section in an experimental
paper has bene�ts that extend to both reader and
researcher. �e bene�t to the reader is that he can see
exactly what was done in the experiment, and not
be le� to wonder about details that could a�ect the

outcome. For example, saying how a set of experi-
ment participants was recruited can be important; if
some were recruited outside the big-and-tall shop, it
could constitute a bias in that these people are likely
to have large hands, and large-handed people might
have typing characteristics that make classi�cation
arti�cially e�ective or ine�ective. If this were revealed
in the method section of a paper, then a reader would
be aware of the potential confound, and could moder-
ate his expectations on that basis. If the reader were a
reviewer, the confound might provoke him to ask the
author to make adjustments in the experiment.

For the experimenter the method section has two
bene�ts. First, the mere act of writing the method sec-
tion can reveal things to the experimenter that were
not previously obvious. If, in the course of writing
the section, the experimenter discovers an egregious
bias or �aw in the experiment, he can choose another
approach, he can relax the claims made by the paper,
or he can abandon the undertaking to conduct the
experiment again under revised and more favor-
able circumstances. If the method section is written
before the experiment is done—as a sort of planning
exercise—the �aws will become apparent in time for
the experimental design to be modi�ed in a way that
eliminates the �aw or confound. �is will result in a
much better experiment, whose outcome will stand
the test of time.

Pilot studies. Perhaps the best way to check your work
is to conduct a pilot study—a small-scale preliminary
test of procedures and measurement operations—to
shake any unanticipated bugs out of an experiment,
and to check for methodological problems such as
confounded variables. Pilot studies can be very e�ec-
tive in revealing problems that, at scale, would ruin
an experiment. It was through a pilot study that we
�rst understood the impact of instructions to sub-
jects, and subsequently adjusted our method to avoid
the problems encountered (previously discussed). If
there had been no pilot, we would have discovered
the problem with instructions anyway, but we could
not have changed the instructions in the middle of
the experiment, because then we’d have introduced
the confound of some subjects having heard one set
of instructions, and other subjects having heard a dif-
ferent set; the classi�cation outcome could have been
attributed to the di�erences in instructions as well as
to di�erences amongst typists.

22

Making experiments dependable

7. Conclusion

We have shown how several very simple oversights in
the design and conduct of an experiment can result
in confounds and biases that may invalidate experi-
mental outcomes. If the details of an experiment are
not fully described in a method section of the paper,
there is a risk that the �aws will never be discovered,
with the consequence that we come away thinking that
we’ve learned a truth (that isn’t true) or we’ve solved
a problem (that isn’t really solved). Other researchers
may base their studies on �awed results, not know-
ing about the �aws because there was no information
provided that would lead to a deep understanding of
how the experiment was designed and carried out.
Writing a method section can help experimenters
avoid invalidities in experimental design, and can
help readers and reviewers determine the quality of
the undertaking.

Of course there are still other things that can go
wrong. For example, even if you have ensured that
your methods and measurements are completely
valid, the chosen analysis procedure could be inap-
propriate for the undertaking. At least, however, you’ll
have con�dence that you won’t be starting out with
invalid data.

While the confounding issues discussed here apply
to an easily-understood domain like keystroke bio-
metrics, they were nevertheless subtle, and have gone
virtually unnoticed in the literature for decades. Your
own experiments, whether in this domain or another,
are likely to be just as susceptible to confounding and
methodological errors, and their consequences just
as damaging. We hope that this paper has raised the
collective consciousness so that other researchers will
be vigilant for the presence and e�ects of method-
ological �aws, and will do their best to identify and
mitigate them.

Richard Feynman, the 1965 Nobel Laureate in
physics, said, “�e principle of science, the de�nition
almost, is the following: �e test of all knowledge is
experiment. Experiment is the sole judge of scienti�c
‘truth’” [2]. Truth is separated from �ction by dem-
onstration—by experiment. In doing experiments,
we want to make claims about the results. For those
claims to be credible, the experiments supporting
them need �rst to be free of the kinds of methodologi-
cal errors and confounds presented here.

About the author

Roy Maxion is a research professor in the Computer
Science and Machine Learning Departments at
Carnegie Mellon University (CMU). He is also
director of the CMU Dependable Systems Labora-
tory where the range of activities includes computer
security, behavioral biometrics, insider detection,
usability, and keystroke forensics as well as general
issues of hardware/so�ware reliability. In the interest
of the integrity of experimental methodologies, Dr.
Maxion teaches a course on Research Methods for Ex-
perimental Computer Science. He is on the editorial
boards of IEEE Security & Privacy and the Interna-
tional Journal of Biometrics, and is past editor of IEEE
Transactions on Dependable and Secure Computing
and IEEE Transactions on Information Forensics and
Security. Dr. Maxion is a Fellow of the IEEE.

References

[1] Bryan, W.L., Harter, N.: Studies in the physiology and
psychology of the telegraphic language. Psychological Re-
view 4(1), 27–53 (1897)

[2] Feynman, R.P., Leighton, R.B., Sands, M.: �e Feynman
Lectures on Physics, vol. 1, p. 1–1. Addison-Wesley,
Reading (1963)

[3] Killourhy, K., Maxion, R.: �e e�ect of clock resolu-
tion on keystroke dynamics. In: Lippmann, R., Kirda, E.,
Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp.
331–350. Springer, Heidelberg (2008)

[4] Killourhy, K.S., Maxion, R.A.: Comparing anomaly-
detection algorithms for keystroke dynamics. In: IEEE/IFIP
International Conference on Dependable Systems and Net-
works (DSN 2009), pp. 125–134. IEEE Computer Society
Press, Los Alamitos (2009)

[5] Maxion, R.A., Killourhy, K.S.: Keystroke biometrics
with number-pad input. In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
2010), pp. 201–210. IEEE Computer Society Press, Los
Alamitos (2010)

[6] Microso� Developer Network: EVENTMSG struc-
ture (2008), http://msdn2.microso�.com/en-us/library/
ms644966(VS.85).aspx

[7] Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A
key to user identi�cation. IEEE Security and Privacy 2(5),
40–47 (2004)

[8] Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental
and Quasi-Experimental Designs for Generalized Causal
Inference. Houghton Mi�in, Boston (2002)

[9] Taylor, B.N., Kuyatt, C.E.: Guidelines for evaluating and
expressing the uncertainty of NIST measurement results.
NIST Technical Note, 1994 Edition 1297, National Insti-
tute of Standards and Technology (NIST), Gaithersburg,
Maryland 20899-0001 (September 1994)

 The Next Wave | Vol. 19 No. 2 | 2012 | 23

1. On security engineering

A number of blind men came to an elephant.
Somebody told them that it was an

elephant. �e blind men asked, “What is the
elephant like?” and they began to touch its body.
One of them said: “It is like a pillar.” �is blind
man had only touched its leg. Another man
said, “�e elephant is like a husking basket.”
�is person had only touched its ears. Similarly,
he who touched its trunk or its belly talked of
it di�erently.

~Ramakrishna Paramahamsa~

Security means many things to many people. For a
so�ware engineer, it o�en means that there are no
bu�er over�ows or dangling pointers in the code. For
a cryptographer, it means that any successful attack on
the cypher can be reduced to an algorithm for com-
puting discrete logarithms or to integer factorization.
For a diplomat, security means that the enemy can-
not read the con�dential messages. For a credit card
operator, it means that the total costs of the fraudulent
transactions and of the measures to prevent them
are low, relative to the revenue. For a bee, security
means that no intruder into the beehive will escape
her sting . . .

Is it an accident that all these di�erent ideas go
under the same name? What do they really have in
common? �ey are studied in di�erent sciences,
ranging from computer science to biology, by a wide
variety of di�erent methods. Would it be useful to
study them together?

1.1. What is security engineering?

If all avatars of security have one thing in common, it
is surely the idea that there are enemies and potential

On bugs and elephants:
Mining for science of security

D u s k o P a v l o v i c

attackers out there. All security concerns, from compu-
tation to politics and biology, come down to averting
the adversarial processes in the environment that are
poised to subvert the goals of the system. �ere are,
for instance, many kinds of bugs in so�ware, but only
those that the hackers use are a security concern.

In all engineering disciplines, the system guaran-
tees a functionality, provided that the environment
satis�es some assumptions. �is is the standard
assume-guarantee format of the engineering correct-
ness statements. Such statements are useful when the
environment is passive so that the assumptions about
it remain valid for a while. �e essence of security en-
gineering is that System and Environment face o� as
opponents, and Environment actively seeks to invali-
date System’s assumptions.

Security is thus an adversarial process. In all engi-
neering disciplines, failures usually arise from some
engineering errors. In security, failures arise in spite of
compliance with the best engineering practices of the
moment. Failures are the �rst-class citizens of security.
For all major so�ware systems, we normally expect
security updates, which usually arise from attacks and
o�en inspire them.

1.2. Where did security engineering

come from?

�e earliest examples of security technologies are
found among the earliest documents of civilization.
Figure 1, on the following page, shows security tokens
with a tamper protection technology from almost
6,000 years ago. Figure 2 depicts the situation where
this technology was probably used. Alice has a lamb
and Bob has built a secure vault, perhaps with multiple
security levels, spacious enough to store both Bob’s
and Alice’s assets. For each of Alice’s assets deposited

24

On bugs and elephants: Mining for science of security

in the vault, Bob issues a clay token with an inscrip-
tion identifying the asset. Alice’s tokens are then
encased into a bulla—a round, hollow envelope of
clay—that is then baked to prevent tampering. When
she wants to withdraw her deposits, Alice submits
her bulla to Bob; he breaks it, extracts the tokens,
and returns the goods. Alice can also give her bulla
to Carol, who can also submit it to Bob to withdraw
the goods, or pass it on to Dave. Bullae can thus be
traded and facilitate an exchange economy. �e tokens
used in the bullae evolved into the earliest forms of
money; and the inscriptions on them led to the earliest

numeral systems, as well as to Sumerian cuneiform
script, which was one of the earliest alphabets. Secu-
rity thus predates literature, science, mathematics, and
even money.

1.3. Where is security engineering going?

�rough history, security technologies evolved gradu-
ally, serving the purposes of war and peace, protecting
public resources and private property. As computers
pervaded all aspects of social life, security became
interlaced with computation, and security engineering
came to be closely related with computer science. �e
developments in the realm of security are nowadays
inseparable from the developments in the realm of
computation. �e most notable such development is,
of course, cyberspace.

A brief history of cyberspace. In the beginning, engi-
neers built computers and wrote programs to control
computations. �e platform of computation was the
computer, and it was used to execute algorithms and
calculations, allowing people to discover, for example,
fractals, and to invent compilers that allowed them to
write and execute more algorithms and more calcula-
tions more e�ciently. �en the operating system be-
came the platform of computation, and so�ware was
developed on top of it. �e era of personal comput-
ing and enterprise so�ware broke out. And then the
Internet happened, followed by cellular networks, and
wireless networks, and ad hoc networks, and mixed
networks. Cyberspace emerged as the distance-free

FIGURE 2. To withdraw her sheep from Bob’s secure vault, Alice
submits a tamper-proof token, like those shown in �gure 1.

FIGURE 1. Tamper protection (bulla envelope with 11 plain and
complex tokens inside) from the Near East, circa 3700–3200 BC.
(The Schøyen Collection MS 4631. ©The Schøyen Collection,
Oslo and London. Available at: www.schoyencollection.com.)

 The Next Wave | Vol. 19 No. 2 | 2012 | 25

FEATURE

space of instant, costless communication. Nowadays,
so�ware is developed to run in cyberspace.

�e Web is, strictly speaking, just a so�ware system,
albeit a formidable one. A botnet is also a so�ware
system. As social space blends with cyberspace, many
social (business, collaborative) processes can be use-
fully construed as so�ware systems that run on social
networks as hardware. Many social and computational
processes become inextricable. Table 1 summarizes
the crude picture of the paradigm shi�s that led to this
remarkable situation.

TABLE 1. Paradigms of computation

Ancient
Times

Middle
Ages

Modern
Times

Platform computer operating
system

network

Applications Quicksort,
compiler

MS Word,
Oracle

WWW,
botnets

Requirements correctness,
termination

liveness,
safety

trust,
privacy

Tools programming
languages

speci�cation
languages

scripting
languages

But as every person got connected to a computer,
and every computer to a network, and every net-
work to a network of networks, computation became
interlaced with communication and ceased to be
programmable. �e functioning of the web and of
web applications is not determined by the code in the
same sense as in a traditional so�ware system; a�er
all, web applications do include the human users as a
part of their runtime. �e fusion of social and compu-
tational processes in cybersocial space leads to a new
type of information processing, where the purposeful
program executions at the network nodes are supple-
mented by spontaneous data-driven evolution of
network links. While the network emerges as the new
computer, data and metadata become inseparable, and
a new type of security problems arises.

A brief history of cybersecurity. In early computer
systems, security tasks mainly concerned sharing of
the computing resources. In computer networks, se-
curity goals expanded to include information protec-
tion. Both computer security and information security
essentially depend on a clear distinction between
the secure areas and the insecure areas, separated
by a security perimeter. Security engineering caters

for computer security and for information security
by providing the tools to build the security perim-
eter. In cyberspace, the secure areas are separated
from the insecure areas by the “walls” of cryptogra-
phy, and they are connected through the “gates” of
cryptographic protocols.

But as networks of computers and devices spread
through physical and social spaces, the distinctions
between the secure and the insecure areas become
blurred. And in such areas of cybersocial space, where
information processing does not yield to program-
ming and cannot be secured by cryptography and
protocols, security cannot be assured by engineer-
ing methodologies alone. �e methodologies of data
mining and classi�cation, needed to secure such areas,
form a bridge from information science to a putative
security science.

2. On security science

It is the aim of the natural scientist to discover
mathematical theories, formally expressed as
predicates describing the relevant observations
that can be made of some [natural] system.
. . . �e aim of an engineer is complementary
to that of the scientist. He starts with a
speci�cation, formally expressible as a predicate
describing the desired observable behaviour.
�en . . . he must design and construct a
product that meets that speci�cation.

~Tony Hoare~

�e preceding quote was the �rst paragraph in one
of the �rst papers on formal methods for so�ware
engineering, published under the title “Programs
are predicates.” Following this slogan, so�ware has
been formalized by logical methods and viewed as
an engineering task ever since. But computation
evolved, permeated all aspects of social life, and came
to include not just the purposeful program executions,
but also spontaneously evolving network processes.
Data and metadata processing became inseparable. In
cyberspace, computations are not localized at network
nodes, but also propagate with nonlocal data �ows
and with the evolution of network links. While the
local computations remain the subject of so�ware
engineering, network processes are also studied in the
emerging so�ware and information sciences, where
the experimental validation of mathematical models

26

On bugs and elephants: Mining for science of security

has become the order of the day. Modern so�ware
engineering is therefore coupled with an empiric so�-
ware science, as depicted in �gure 3. In a similar way,
modern security engineering needs to be coupled with
an empiric security science.

2.1. Why security science?

Conjoining cyber, physical, and social spaces by net-
works gives rise to new security problems that com-
bine computational, physical, and social aspects. �ey
cross the boundaries of the disciplines where security
was studied before, and require new modeling tools,
and a new, uni�ed framework, with a solid scienti�c
foundation, and empiric methods to deal with the
natural and social processes on which security now
depends. In many respects, a scienti�c foundation for
the various approaches to security would have been
bene�cial even before; but now it became necessary.

Let us have a closer look at the paradigm shi� to
postmodern cybersecurity in table 2. It can be il-
lustrated as the shi� from �gure 4 to �gure 5. �e
fortress in �gure 4 represents the static, architectural
view of security. A fortress consists of walls and gates
separating the secure area within from the insecure
area outside. �e boundary between these two areas
is the security perimeter. �e secure area may be
further subdivided into areas of higher security and
areas of lower security. �ese intuitions extend into
cyberspace, where crypto systems and access controls
can be viewed as the walls, preventing the undesired
tra�c; whereas, authentication protocols and authori-
zation mechanisms can be construed as the gates, al-
lowing the desired tra�c. But as every fortress owner
knows, the walls and the gates are not enough for
security; you also need weapons, soldiers, and maybe
even some detectives and judges. �ey take care of the
dynamic aspects of security. Dynamic security evolves

through social processes, such as trust, privacy, repu-
tation, or in�uence. �e static and dynamic aspects
depend on each other. For example, the authentication
on the gates is based on some credentials intended to
prove that the owner is honest. �ese credentials may
be based on some older credentials, but down the line
a �rst credential must have resulted from a process of
trust building or from a trust decision, whereby the
principal’s honesty was accepted with no credentials.
�e word credential has its root in Latin credo, which
means “I believe.”

�e attacks mostly studied in security research can
be roughly divided into cryptanalytic attacks and pro-
tocol attacks. �ey are the cyber versions of the simple
frontal attacks on the walls and the gates of a fortress.
Such attacks are static in the sense that the attack-
ers are outside, the defenders inside, and the two are
easily distinguished. �e dynamic attacks come about
when some attackers penetrate the security perimeter
and attack from within, as in �gure 5. �ey may even
blend with the defenders and become spies. Some
of them may build up trust and in�ltrate the fortress
earlier, where they wait as moles. Some of the insiders
may defect and become attackers. �e traitors and the
spies are the dynamic attackers; they use the vulner-
abilities in the process of trust. To deter them, all
cultures reserve for the breaches of trust the harshest
punishments imaginable; Dante, in his description of
Hell, places the traitors into the deepest, Ninth Circle.
As a dynamic attack, treason was always much easier
to punish than to prevent.

In cybersecurity, a brand new line of defense
against dynamic attacks relies on predictive analytics,
based on mining the data gathered by active or passive

TABLE 2. Paradigms of security

Middle
Ages

Modern
Times

Postmodern
Times

Space computer
center

cyberspace cybersocial
space

Assets computing
resources

information public and
private
resources

Requirements availability,
authorization

integrity,
con�dentiality

trust, privacy

Tools locks, tokens,
passwords

cryptography,
protocols

mining and
classi�cation

Speci�cation

 Software

Engineering:
Implement,
synthesize

Science:
Analyze,

learn

FIGURE 3. Conceptualization loop: The life cycle of computation.

Engineering:
implement,
synthesize

Science:
analyze,
learn

 The Next Wave | Vol. 19 No. 2 | 2012 | 27

FEATURE

FIGURE 4. Static security: Multilevel architecture. (Illustration by Mark Burgess at
www.markburgess.co.uk.)

observations, network probes, honeypots, or direct
interactions. It should be noted that the expanding
practices of predictive modeling are not engineering
methodologies, geared toward building some speci�ed
systems, but the �rst simple tools of a security science,
recognizing security as a process.

2.2. What is security science?

Although the security environment maliciously de�es
any system’s assumptions that it can, security engi-
neering still pursues its tasks strictly within the frame-
work of the assume-guarantee methods. Indeed, to
engineer a system, we must frame an environment for
it; to guarantee system behavior, we must assume the
environment behavior; to guarantee system security,
we must specify an attacker model. �at is the essence
of the engineering approach. Following that approach,
the cryptographic techniques of security engineering
are based on the �xed assumption that the environ-
ment is computationally limited and cannot solve
certain hard problems. (Defy that, Environment!)

But sometimes, as we have seen, it is not realistic
to assume even that there is a clear boundary between
the system and the environment. Such situations have
become pervasive with the spread of networks sup-
porting not only social, commercial, and collaborative
applications, but also criminal and terrorist organiza-
tions. When there is a lot going on, you cannot be sure

FIGURE 5. Security dynamics: Threats within.

who is who. In large networks, with
immense numbers of processes,
the distinction between the sys-
tem and the environment becomes
meaningless, and the engineering
assume-guarantee approach must be
supplemented by the analyze-adapt
approach of science. �e task of the
analyze-adapt approach of science
is to recover the distinction between
system and environment—whenever
possible, albeit as a dynamic vari-
able—and to adaptively follow its
evolution. Similar situations, where
engineering interventions are inter-
leaved with scienti�c analyses, arise
not only in security—where they
elicit security science to support
security engineering—but also, for
example, in the context of health—
where they elicit medical science to

support health care. And just as health is not achieved
by isolating the body from the external world, but by
supporting its internal defense mechanisms, security is
not achieved by erecting fortresses, but by supporting

28

On bugs and elephants: Mining for science of security

dynamic defenses, akin to the immune response.
While security engineering provides blueprints and
materials for static defenses, it is the task of security
science to provide guidance and adaptation methods
for dynamic defenses.

In general, science is the process of understanding
the environment, adapting the system to it, chang-
ing the environment by the system, adapting to these
changes, and so on. Science is thus an ongoing dialog
of the system and the environment, separated and
conjoined along the ever-changing boundaries. Dy-
namic security, on the other hand, is an ongoing battle
between the ever-changing teams of attackers and
defenders. Only scienti�c probing and analyses of this
battle can tell who is who at any particular moment.

In summary, if security engineering is a family of
methods to keep the attackers out, security science is
a family of methods to catch the attackers once they
get in.

It may be interesting to note that these two families
of methods, viewed as strategies in an abstract security
game, turn out to have opposite winning odds. It is
o�en observed that the attackers only need to �nd one
attack vector to enter the fortress, whereas the defend-
ers must defend all attack vectors to prevent them. But
when the battle switches to the dynamic mode and the
defense moves inside, then the defenders only need to
�nd one marker to recognize and catch the attackers;
whereas, the attackers must cover all their markers.
�is strategic advantage is also the critical aspect of
the immune response, where the invading organisms
are purposely sampled and analyzed for chemical
markers. In security science, this sampling and analy-
ses take the form of data mining.

2.3. Where to look for security science?

�e germs of a scienti�c approach to security, with
data gathering, statistical analyses, and experimental
validation, are already present in many intrusion de-
tection and antivirus systems, as well as in spam �lters
and some �rewalls. Such systems use measurable
inputs and have quanti�able performance and model
accuracy and thus conform to the basic requirements
of the scienti�c method. �e collaborative processes
for sharing data, comparing models, and retesting
and unifying results complete the social process of
scienti�c research.

However, a broader range of deep security problems
is still awaiting applications of a broader range of pow-
erful scienti�c methods that are available in this realm.
At least initially, the statistical methods of security sci-
ence will need to be borrowed from information sci-
ence. Security, however, imposes special data analysis
requirements, some of which have been investigated in
the existing work and led to novel approaches. In the
long run, security science will undoubtedly engender
its own domain-speci�c data analysis methods.

In general, security engineering solutions are based
on security infrastructure: Internet protocol security
(IPSec) suites, Rivest-Shamir-Adleman (RSA) systems,
and elliptic curve cryptography (ECC) provide typi-
cal examples. In contrast, security science solutions
emerge where the available infrastructure does not
su�ce for security. �e examples abound—a mobile
ad hoc network (MANET), for example, is a network
of nodes with no previous contacts, direct or indirect,
and thus no previous infrastructure. Although ad-
vanced MANET technologies have been available for
more than 15 years, secure MANETs are still a bit of
a holy grail. Device pairing, social network security,
and web commerce security also require secure ad hoc
interactions akin to the social protocols that regulate
new encounters in social space. Such protocols are
invariably incremental and accumulating, analyzing
and classifying the data from multiple channels until
a new link is established or aborted. Powerful data-
mining methods have been developed and deployed in
web commerce and �nancial security, but they are still
awaiting systematic studies in noncommercial security
research and systematic applications in noncommer-
cial security domains.

3. Summary

Security processes are distributed, subtle, and com-
plex, and there are no global observers. Security is like
an elephant, and we are like the blind men touching
its body. For the cryptographers among us, the secu-
rity elephant consists of elliptic curves and of integers
with large factors. Many so�ware engineers among us
derive their view of the security elephant entirely from
their view of the so�ware bugs �ying around it.

Beyond and above all of our partial views is the
actual elephant—people cheating each other, stealing
secrets and money, forming online gangs and terror-
ist networks. �ere is a whole wide world of social

 The Next Wave | Vol. 19 No. 2 | 2012 | 29

FEATURE

processes of attacking and defending the assets by
methods beyond the reach of security engineering.
Such attacks and fraud cannot be debugged or pro-
grammed away; they cannot be eliminated by cryp-
tography, protocols, or policies. Security engineer-
ing defers such attacks to the marginal notes about
“social engineering.”

However, since these attacks nowadays evolve in
networks, the underlying social processes can be
observed, measured, analyzed, understood, validated,
and even experimented with. Security can be im-
proved by security science, combining and re�ning the
methods of information sciences, social sciences, and
computational sciences.

Acknowledgements

Just like security, science of security also means many
things to many people. I have presented one view of
it, not because it is the only one I know, but mainly
because it is the simplest one that I could think of,
and maybe the most useful one. But some of my good
friends and collaborators see it di�erently, and I am
keeping an open mind. I am grateful to Brad Martin

and Robert Meushaw for interesting conversations
and, above all, for their initiative in this area.

About the author

Dusko Pavlovic is a professor of information security
at Royal Holloway, University of London. He received
his PhD in mathematics at the Utrecht University
in 1990. His interests evolved from research in pure
mathematics and theoretical computer science,
through so�ware design and engineering, to problems
of security and network computation. He worked in
academia in Canada, the United Kingdom, and the
Netherlands, and in so�ware research and develop-
ment in the United States. Besides the chair in infor-
mation security at Royal Holloway, he currently holds
a chair in security protocols at University of Twente,
and a visiting professorship at University of Oxford.
His research projects are concerned with extending
the mathematical methods of security beyond the
standard cryptographic models toward capturing the
complex phenomena that arise from physical, eco-
nomic, and social aspects of security processes.

30

1. Introduction

Compositional security is a well-recognized scienti�c
challenge [1]. Contemporary systems are built up
from smaller components, but even if each compo-
nent is secure in isolation, a system composed of
secure components may not meet its security require-
ments—an adversary may exploit complex interac-
tions between components to compromise security.
Attacks using properties of one component to subvert
another have shown up in practice in many di�erent
settings, including network protocols and infrastruc-
ture [2, 3, 4, 5, 1], web browsers and infrastructure
[6, 7, 8, 9, 10], and application and systems so�ware
and hardware [11, 12, 13].

A theory of compositional security should iden-
tify relationships among systems, adversaries, and

Programming language
methods for compositional
security |

A n u p a m D a t t a a n d
J o h n C . M i t c h e l l

D
ivide-and-conquer is an important paradigm in computer
science that allows complex software systems to be
built from interdependent components. However,

there are widely recognized di�culties associated with
developing divide-and-conquer paradigms for computer
security; we do not have principles of compositional security
that allow us to put secure components together to produce
secure systems. The following article illustrates some of the
problems and solutions we have explored in recent research on
compositional security, compares them to other approaches
explored in the research community, and describes important
remaining challenges.

properties, such that pre-
cisely de�ned operations
over systems and adversaries
preserve security properties. It
should explain known attacks,
predict previously unknown attacks,
and inform design of new systems.
�e theory should be general—it should
apply to a wide range of systems, adver-
saries, and properties. Guided by these
desiderata, we initiated an investigation of
compositional security in the domain of security
protocols with the Protocol Composition Logic (PCL)
project [14, 15, 16]. Building on these results, we then
developed general secure composition principles
that transcend speci�c application domains (for ex-
ample, security protocols, access control systems, web

 The Next Wave | Vol. 19 No. 2 | 2012 | 31

FEATURE

platform) in the Logic of Secure Systems (LS2) proj-
ect [17]. �ese theories have been applied to explain
known attacks, predict previously unknown attacks,
and inform the design of practical protocols and

so�ware systems [12, 4, 18, 3, 19, 20, 21].

In both projects, we addressed two basic
problems in compositional security: non-

destructive and additive composition.

Nondestructive composition
ensures that if two system compo-

nents are combined, then neither
degrades the security properties

of the other. �is is particular-
ly complicated when system

components share state.
For example, if an alter-
native mode of operation
is added to a protocol,
then some party may
initiate a session in
one mode and simul-
taneously respond to
another session in
another mode, using
the same public key
(an example of shared
state) in both. Unless
the modes are de-
signed not to interfere,
there may be an attack
on the multimode
protocol that would not
arise if only one mode
were possible. In a simi-

lar example, new attacks
became possible when

trusted computing systems
were augmented with a new

hardware instruction that
could operate on protected reg-

isters (an example of shared state)
previously accessible only through a

prescribed protocol [12].

Additive composition supports a combina-
tion of system components in a way that accumulates
security properties. Combining a basic key exchange
protocol with an authentication mechanism to
produce a protocol for authenticated key exchange

provides one example of additive composition [15].
Systematically adding cryptographic operations to
basic authentication protocols to provide additional
properties such as identity protection provides anoth-
er example of additive composition [22].

Both additive and nondestructive compositions are
important in practice. If we want a system with the
positive security features of two components, A and B,
we need nondestructive composition conditions to be
sure that we do not lose security features we want, and
we need additive composition conditions to make sure
we get the advantages of A and B combined.

Before turning to a high-level presentation of tech-
nical aspects of nondestructive and additive composi-
tion in PCL and LS2, we present two concrete ex-
amples that illustrate how security properties fail to be
preserved under composition (that is, both examples
are about the failure of nondestructive composition).
We also compare our composition methods to three
related approaches—compositional reasoning for cor-
rectness properties of systems [23, 24], the universal
composability framework [25, 26], and a re�nement
type system for compositional type-checking of secu-
rity protocols [27]. Finally, we describe directions for
future work.

2. Two examples

While these protocol examples are contrived, the
phenomena they illustrate are not: It is possible for
one component of a system to expose an interface to
the adversary that does not a�ect its own security but
compromises the security of other components. Later,
we will describe two general principles of composi-
tional security that could be used to design security
protocols and other kinds of secure so�ware systems
while avoiding the kind of insecure interaction illus-
trated by these examples.

Example 1: Authentication failure. �e following two
protocols use digital signatures. �e �rst protocol
provides one-way authentication when used in isola-
tion; however, this property is not preserved when the
second protocol is run concurrently.

 Protocol 1.1. Alice generates a fresh random
number r and sends it to Bob. Upon receiving
such a message, Bob replies to the sender of the
message (as recorded in the message) with his
signature over the fresh random number and

32

Programming language methods for compositional security

the sender’s name—that is, if Bob receives the
message with the random number r from sender
A, then Bob replies with his signature over r and
A. �is protocol guarantees a form of one-way
authentication: A�er sending the �rst message
to Bob and then receiving Bob’s second message,
Alice is guaranteed that Bob received the �rst
message that she sent to him and then sent the
second message and intended it for her.

 Protocol 1.2. Upon receiving any message m, Bob
signs it with his private signing key and sends it
out on the network.

When the two protocols are run concurrently,
protocol 1.1 no longer provides one-way authentica-
tion: Alice cannot be certain that Bob received her
�rst message and intended the signed message for her
as part of the execution of this protocol; it could very
well be that Bob produced the signature as part of
protocol 1.2 in response to an adversary M who inter-
cepted Alice’s message and used it to start a session of
protocol 1.2 with Bob.

Example 2: Secrecy failure. Using network protocols
as an illustration, here are two secure, unidirectional
protocols for communication between Alice and Bob.
Both involve public key cryptography, in which two
di�erent keys are used for encryption and decryption,
and the encryption key may be distributed publicly.

 Protocol 2.1. In this protocol, for communication
from Alice to Bob, Alice sends a message to Bob
by encrypting it with Bob’s public encryption
key. As part of each message, in order to make
our example illustrate the general point, Alice
also reveals her secret decryption key, making
public-key encryption to Alice insecure.

 Protocol 2.2. �is protocol is the same as the pre-
vious one (that is, protocol 2.1), but in reverse:
Bob communicates to Alice by encrypting mes-
sages using Alice’s public key and revealing his
own private decryption key.

Both protocol 2.1 and 2.2 are secure when used by
themselves: If Bob sends Alice a message encrypted
with Alice’s public key, then only Alice can decrypt
and read the message. However, it should be clear that
composing these two protocols to communicate be-
tween Alice and Bob in both directions is completely
insecure because when Alice sends Bob a message,

she leaks her private key, and when Bob communi-
cates to Alice, he leaks his private key. A�er at least
one message in each direction, both public keys have
been leaked and any eavesdropper on the network can
decrypt and read all the messages.

3. Two principles of secure composition

In the following, we describe two principles of se-
cure composition, and we use these principles to
explain the examples of insecure composition in the
previous section.

3. 1. Principle 1: Preserving invariants of

system components

�e central idea behind this principle is that the
security property of a system component is preserved
under composition if every other component respects
invariants used in the proof of security of the com-
ponent in the face of attack. In example 1, the only
relevant invariant for the authentication property of
protocol 1.1 is of the following form: “If an honesta
principal signs a message of the form < r, A >, then he
must have previously received r in a message with A as
the identi�er for the sender.” �is invariant is not pre-
served by protocol 1.2, as demonstrated by the attack
described in the previous section, leading to a failure
of nondestructive composition.

To illustrate the generality of this principle, we
brie�y discuss a published analysis of the widely de-
ployed Trusted Computing Group (TCG) technology
using this principle [12], and we discuss the conse-
quent discovery of a real incompatibility between an
existing standard protocol for attesting the integrity
of the so�ware stack to a remote party and a newly
added hardware instruction. Machines with trusted
computing abilities include a special, tamper-proof
hardware called the Trusted Platform Module or
TPM, which contains protected append-only registers
to store measurements (that is, hashes) of programs
loaded into memory and a dedicated coprocessor
to sign the contents of the registers with a unique
hardware-protected key. �e protocol in question,
called Static Root of Trust Measurement (SRTM),
uses this hardware to establish the integrity of the
so�ware stack on a machine to a trusted remote third

a. A principal is honest if he does not deviate from the steps of the protocol.

 The Next Wave | Vol. 19 No. 2 | 2012 | 33

party. �e protocol works by requiring each program
to store, in the protected registers, the hash of any
program it loads. �e hash of the �rst program loaded
into memory, usually the boot loader, is stored in the
protected registers by the booting �rmware, usually
the basic input/output system (BIOS). �e integrity of
the so�ware stack of a machine following this protocol
can be proved to a third party by asking the coproces-
sor to sign the contents of the protected registers with
the hardware-protected key, and sending the signed
hashes of loaded programs to the third party. �e
third party can compare the hashes to known ones,
thus validating the integrity of the so�ware stack.

Note that the SRTM protocol is correct only if so�-
ware that has not already been measured cannot ap-
pend to the protected registers. Indeed, this invariant
was true in the hardware prescribed by the initial TCG
standard and, hence, this protocol was secure then.
However, a new instruction, called latelaunch,
added to the standard in a later extension allows an
unmeasured program to be started with full access to
the TPM. �is violates the necessary invariant- and
results in an actual attack on the SRTM protocol:
A program invoked with latelaunch may add
hashes of arbitrary programs to the protected registers
without actually loading them. Since the program is
not measured, the remote third party obtaining the
signed measurements will never detect its presence.
An analysis of the protocol using the method outlined
here discovered this incompatibility between the
SRTM protocol and the latelaunch instruction.
In the analysis, the TPM instruction set, including
latelaunch, were modeled as interfaces available
to programs. �e invariant can be established for all
interfaces except latelaunch, thus leading to failure

of a proof of correctness of SRTM with latelaunch
and leading to discovery of the actual attack.

�is composition principle is related to the form
of assume-guarantee reasoning initially proposed
by Jones for reasoning about correctness properties
of concurrent programs [23]. However, one di�er-
ence is that, in contrast to Jones’ work, we consider
preservation of properties of system components
under composition in the presence of an active ad-
versary whose exact program (or invariants) is not
known. A�er sketching the technical approach in the
next sections, we will explain how we address this
additional complexity.

3.2. Principle 2: Secure rely-guarantee

reasoning

Inductive security properties (that is, properties which
hold at a point of time if and only if they have held
at all prior points of time) require a di�erent form of
compositional reasoning that builds on prior work on
rely-guarantee reasoning for correctness properties
of programs [23, 24].

Suppose we wish to prove that property φ holds
at all times. First, we identify a set S = {T

1
,…, T

n
} of

trusted components relevant to the property and local
properties Ψ

T1
,…,Ψ

Tn
 of these components, satisfying

the following conditions:

(1) If φ holds at all time points strictly before any
given time point, then each of Ψ

T1
,…,Ψ

Tn
 holds

at the given time point.

(2) If φ does not hold at any time, then at least one
of Ψ

T1
,…,Ψ

Tn
 must have been violated strictly

before that time.

34

Programming language methods for compositional security

�e rely-guarantee principle states that under these
conditions, if φ holds initially, then φ holds forever.

We return to example 2 to illustrate the application
of this principle. In order to prove the secrecy of the
encrypted message, it is necessary to prove that the
private decryption key is known only to the associated
party. If protocol 2.1 (or protocol 2.2) were to run in
isolation, the relevant decryption key would indeed
be known only to the associated party (Alice or Bob).
�is can be proved using the rely-guarantee reasoning
technique described above and noting that the recipi-
ent of the encrypted message never sends out his or
her private decryption key and that the other party
cannot send it out (assuming that it has not already
been sent out). However, when the two protocols are
composed in parallel, the proof no longer works be-
cause the sender in one protocol is the recipient in the
other; thus, we can no longer prove that the recipient’s
private decryption key is not sent out on the network.
Indeed, the composition attack arises precisely be-
cause the recipient’s private decryption key is sent out
on the network.

Another application of the rely-guarantee technique
is in proofs of secrecy of symmetric keys generated in
network protocols. We explain one instance here—
proving that the so called authentication key (AKey)
generated during the Kerberos V protocol (a widely
used industry standard) becomes known only to three
protocol participants [17, 18]: the client authenticated
by the key, the Kerberos authentication server (KAS)
that generates the key, and the ticket granting server
(TGS) to whom the key authenticates the client. At
the center of this proof is the property that whenever
any of these three participants send out the AKey onto
the (unprotected) network, it is encrypted with other
secure keys. Proving this property requires induction
because, as part of the protocol, the client blindly for-
wards an incoming message to the TGS. Consequently,
the client’s outgoing message does not contain the un-
encrypted AKey because the incoming message does
not contain the unencrypted AKey in it. �e latter fol-
lows from the inductive hypothesis that any network
adversary could not have had the unencrypted AKey
to send to the client.

Formally, the rely-guarantee framework is instanti-
ated by choosing φ to be the property that any mes-
sage sent out on the network does not contain the un-
encrypted AKey. �e properties Ψ

T
, for components

T of the client, KAS, and the TGS model the require-
ment that the respective components do not send out
the AKey unencrypted. �en, the proof of condition
(2) of the rely-guarantee framework is trivial, and
condition (1) follows from an analysis of the programs
of the client, the KAS, and the TGS. �e �rst of these,
as mentioned earlier, uses the assumption that φ holds
at all points in the past. Note that the three programs
are analyzed individually, even though the secrecy
property relies on the interactions between them, that
is, the proof is compositional.

4. Protocol Composition Logic

Protocol Composition Logic (PCL) [14, 15, 16] is a
formal logic for proving security properties of network
protocols that use public and symmetric key cryptog-
raphy. �e system has several parts:

 A simple programming language for de�ning
protocols by writing programs for each role

of the protocol. For example, the secure sock-
ets layer (SSL) protocol can be modeled in this
language by writing two programs—one for the
client role and one for the server role of SSL.
Each program is a sequence of actions, such as
sending and receiving messages, decryption, and
digital signature veri�cation. �e operational
semantics of the programming language de-
�ne how protocols execute concurrently with a
symbolic adversary (sometimes referred to as the
Dolev-Yao adversary) that controls the network
but cannot break the cryptographic primitives.

 A pre/postcondition logic for describing the
starting and ending security conditions for

protocol. For example, a precondition might
state that a symmetric key is shared by two
agents, and a postcondition might state that
a new key exchanged using the symmetric
key for encryption is only known to the same
two agents.

 Modal formulas, denoted θ[P]
X

, for stating
that if a precondition θ holds initially, and a
protocol thread X completes the steps P, then
the postcondition will be true afterwards irre-
spective of concurrent actions by other agents

and the adversary. Typically, security proper-
ties of protocols are speci�ed in PCL using such
modal formulas.

 The Next Wave | Vol. 19 No. 2 | 2012 | 35

FEATURE

A formal proof system for deriving true modal

formulas about protocols. �e proof system
consists of axioms about individual protocol
actions and inference rules that yield assertions
about protocols composed of multiple steps.

One of the important ideas in PCL is that although
assertions are written only using the steps of the
protocol, the logic is sound in a strong sense: Each
provable assertion involving a sequence of actions
holds in any protocol run containing the given actions
and arbitrary additional actions by a malicious adver-
sary. �is approach lets us prove security properties
of protocols under attack while reasoning only about
the actions of honest parties in the protocol, thus
signi�cantly reducing the size of protocol proofs in
comparison to other proof methods, such as Paulson’s
Inductive Method [28].

Intuitively, additive combination is achieved using
modal formulas of the form θ[P]

A
. For example, the

precondition θ might assert that A knows B’s public
key, the actions P allow A to receive a signed message
and verify B’s signature, and the postcondition may
say that B sent the signed message that A received.
�e importance of modal formulas with before-a�er
assertions is that we can combine assertions about
individual protocol steps to derive properties of a se-
quence of steps: If [P]

A
Ψ and Ψ[P']

A
θ, then [PP']

A
θ.

For example, an assertion assuming that keys have
been successfully distributed can be combined with
steps that do key distribution to prove properties of a
protocol that distributes keys and uses them.

We ensure one form of nondestructive combination
using invariance assertions, capturing the �rst compo-
sition principle described in Section 3. �e central as-
sertion in our reasoning system, Γ [P]

A
Ψ, says that

in any protocol satisfying the invariant Γ, the before-
a�er assertion [P]

A
Ψ holds in any run (regardless of

any actions by any dishonest attacker). Typically, our
invariants are statements about principals that follow
the rules of a protocol, as are the �nal conclusions.
For example, an invariant may state that every honest
principal maintains secrecy of its keys, where honest
means simply that the principal only performs actions
that are given by the protocol. A conclusion in such a
protocol may be that if Bob is honest (so no one else
knows his key), then a�er Alice sends and receives
certain messages, Alice knows that she has communi-
cated with Bob. Nondestructive combination occurs

when two protocols are combined and neither violates
the invariants of the other.

PCL also supports a specialized form of secure
rely-guarantee reasoning about secrecy properties,
capturing the second composition principle in Section
3. In order to prove that the network is safe (that is, all
occurrences of the secret on the network appear under
encryption with a set of keys κ not known to the
adversary), the proof system requires us to prove that
assuming that the network is safe, all honest agents
only send out “safe” messages, that is, messages from
which the secret cannot be extracted without knowing
the keys in the set κ [18].

�ese composition principles have been applied to
prove properties of a number of industry standards
including SSL/TLS, IEEE 802.11i, and Kerberos V5.

5. Logic of Secure Systems

�e Logic of Secure Systems (LS2) (initially presented
in [12]) builds on PCL to develop related composition
principles for secure systems that perform network
communication and operations on local shared
memory as well as on associated adversary models.
�ese principles have been applied to study industrial
trusted computing system designs. �e study uncov-
ered an attack that arises from insecure composition
between two remote attestation protocols (see [12]
for details). A natural scienti�c question to ask is
whether one could build on these results to develop
general secure composition principles that transcend
speci�c application domains, such as network proto-
cols and trusted computing systems. Subsequent work
on LS2 [17], which we turn to next, answers exactly
this question.

Two goals drove the development of LS2. First, we
posit that a general theory of secure composition must
enable one to �exibly model and parametrically reason
about di�erent classes of adversaries. To develop such
a theory, we view a trusted system in terms of the in-
terfaces its various components expose: Larger trusted
components are built by connecting interfaces in the
usual ways (client-server, call-return, message-passing,
etc.). �e adversary is con�ned to some subset of the
interfaces, but its program is unspeci�ed and can call
those interfaces in ways that are not known a priori.
Our focus on interface-con�ned adversaries thus
provides a generic way to model di�erent classes of

36

Programming language methods for compositional security

adversaries in a compositional setting. For example,
in virtual machine monitor-based secure systems,
we model an adversarial guest operating system by
con�ning it to the interface exposed by the virtual
machine monitor. Similarly, adversary models for web
browsers, such as the gadget adversary (an attractive
vector for malware today that leverages properties
of Web 2.0 sites), can be modeled by con�ning the
adversary to the read and write interfaces for frames
guarded by the same-origin policy as well as by frame
navigation policies [7]. �e network adversary model
considered in prior work on PCL and the adversary
against trusted computing systems considered in the
initial development of LS2 are also special cases of this
interface-con�ned adversary model. At a technical
level, interfaces are modeled as recursive functions in
an expressive programming language. Trusted com-
ponents and adversaries are also represented using
programs in the same programming language. Typi-
cally, we assume that the programs for the trusted
components (or their properties) are known. However,
an adversary is modeled by considering all possible
programs that can be constructed by combining calls
to the interfaces to which the adversary is con�ned.

Our second goal was to develop compositional rea-
soning principles for a wide range of classes of inter-
connected systems and associated interface-con�ned
adversaries that are described using a rich logic. �e
approach taken by LS2 uses a logic of program speci�-
cations, employing temporal operators to express not
only the states and actions at the beginning and end of
a program, but also at points in between. �is expres-
siveness is crucial because many security properties of
interest, such as integrity properties, are safety prop-
erties [29]. LS2 supports the two principles of secure
composition discussed in the previous section in the
presence of such interface-con�ned adversaries. �e
�rst principle follows from a proof rule in the logic,
and the second principle follows from �rst-order rea-
soning in the logic. We refer the interested reader to
our technical paper for details [17].

6. Related work

We compare our approach to three related approach-
es—compositional reasoning for correctness proper-
ties of systems [23, 24], the Universal Composability

(UC) framework [25, 26], and a re�nement type
system for compositional type-checking of security
protocols [27].

�e secure composition principles we developed are
related to prior work on rely-guarantee reasoning for
correctness properties of programs [23, 24]. However,
the prior work was developed for a setting in which
all programs are known. In computer security, how-
ever, it is unreasonable to assume that the adversary’s
program is known a priori; rather, we model adversar-
ies as arbitrary programs that are con�ned to certain
system interfaces as explained earlier. We prove invari-
ants about trusted programs and system interfaces
that hold irrespective of concurrent actions by other
trusted programs and the adversary. �is additional
generality, which is crucial for the secure composition
principles, is achieved at a technical level using novel
invariant rules. �ese rules allow us to conclude that
such invariants hold by proving assertions of the form
θ[P]

x
 over trusted programs or system interfaces;

note that because of the way the semantics of the
modal formula is de�ned, the invariants hold irrespec-
tive of concurrent actions by other trusted programs
and the adversary, although the assertion only refers
to actions of one thread X.

Recently, Bhargavan et al. developed a type system
to modularly check interfaces of security protocols,
implemented the system, and applied it to analysis of
secrecy properties of cryptographic protocols [27].
�eir approach is based on re�nement types (that is,
ordinary types quali�ed with logical assertions), which
can be used to specify program invariants and pre-
and postconditions. Programmers annotate various
points in the model with assumed and asserted facts.
�e main safety theorem states that all programmer
de�ned assertions are implied by programmer as-
sumed facts in a well-typed program.

However, a semantic connection between the
program state and the logical formulas representing
assumed and asserted facts is missing. In contrast,
we prove that the inference systems of our logics of
programs (PCL and LS2) are sound with respect to
trace semantics of the programming language. Our
logic of programs may provide a semantic founda-
tion for the work of Bhargavan et al. and, dually, the
implementation in that work may provide a basis for

 The Next Wave | Vol. 19 No. 2 | 2012 | 37

FEATURE

mechanizing the formal system in our logics of pro-
grams. Bhargavan et al.’s programming model is more
expressive than ours because it allows higher-order
functions. We intend to add higher-order functions to
our framework in the near future.

While all the approaches previously discussed
involve proving safety properties of protocols and
systems modeled as programs, an alternative approach
to secure composition involves comparing the real
protocol (or system) whose security we are trying
to evaluate to an ideal functionality that is secure by
construction and prove that the two are equivalent
in a precise sense. Once the equivalence between the
real protocol and the ideal functionality is established,
the composition theorem guarantees that any larger
system that uses the real protocol is equivalent to the
system where the real protocol is replaced by the ideal
functionality.

�is approach has been taken in the UC framework
for cryptographic protocols [25, 26] and is also related
to the notion of observational equivalence and simula-
tion relations studied in the programming languages
and veri�cation literature [30, 31]. When possible,
this form of composition result is indeed very strong:
Composition is guaranteed under no assumptions
about the environment in which a component is used.
However, components that share state and rely on one
another to satisfy certain assumptions about how that
state is manipulated cannot be compositionally ana-
lyzed using this approach; the secure rely-guarantee
principle we develop is better suited for such analyses.
One example is the compositional security analysis of
the Kerberos protocol that proceeds from proofs of its
constituent programs [18].

7. Future work

�ere are several directions for further work on this
topic. First, automating the compositional reason-
ing principles we presented is an open problem.
Rely-guarantee reasoning principles have already
been automated for functional veri�cation of realistic
systems. We expect that progress can be made on this
problem by building on these prior results. Second,
while sequential composition of secure systems is

an important step forward, a general treatment of
additive composition that considers other forms of
composition is still missing. �ird, it is important to
extend the compositional reasoning principles pre-
sented here to support analysis of more re�ned models
that consider, for example, features of implementation
languages such as C. Finally, a quantitative theory
of compositional security that supports analysis of
systems built from components that are not perfectly
secure would be a signi�cant result.

About the authors

Anupam Datta is an assistant research professor
at Carnegie Mellon University. Dr. Datta’s research
focuses on foundations of security and privacy. He
has made contributions toward advancing the scien-
ti�c understanding of security protocols, privacy in
organizational processes, and trustworthy so�ware
systems. Dr. Datta has coauthored a book and over 30
publications in conferences and journals on these top-
ics. He serves on the Steering Committee of the IEEE
Computer Security Foundations Symposium (CSF),
and has served as general chair of CSF 2008 and as
program chair of the 2008 Formal and Computational
Cryptography Workshop and the 2009 Asian Comput-
ing Science Conference. Dr. Datta obtained MS and
PhD degrees from Stanford University and a BTech
from the Indian Institute of Technology, Kharagpur,
all in computer science.

John C. Mitchell is the Mary and Gordon Crary
Family Professor in the Stanford Computer Sci-
ence Department. His research in computer secu-
rity focuses on trust management, privacy, security
analysis of network protocols, and web security. He
has also worked on programming language analysis
and design, formal methods, and other applications
of mathematical logic to computer science. Professor
Mitchell is currently involved in the multiuniversity
Privacy, Obligations, and Rights in Technology of
Information Assessment (PORTIA) research project
to study privacy concerns in databases and informa-
tion processing systems, and the National Science
Foundation Team for Research in Ubiquitous Secure
Technology (TRUST) Center.

38

Programming language methods for compositional security

References

[1] Wing JM. A call to action: Look beyond the horizon.
IEEE Security & Privacy. 2003;1(6):62–67. DOI: 10.1109/
MSECP.2003.1253571

[2] Asokan N, Niemi V, Nyberg K. Man-in-the-middle in
tunnelled authentication protocols. In: Christianson B, Cris-
po B, Malcolm JA, Roe M, editors. Security Protocols 11th
International Workshop, Cambridge, UK, April 2-4, 2003,
Revised Selected Papers. Berlin (Germany): Springer-Verlag;
2005. p. 28–41. ISBN 13: 978-354-0-28389-8

[3] Kuhlman D, Moriarty R, Braskich T, Emeott S, Tripuni-
tara M. A correctness proof of a mesh security architecture.
In: Proceedings of the 21st IEEE Computer Security Founda-
tions Symposium; Jun 2008; Pittsburgh, MA. p. 315–330.
DOI: 10.1109/CSF.2008.23

[4] Meadows C, Pavlovic D. Deriving, attacking and
defending the GDOI protocol. In: Proceedings of the Ninth
European Symposium on Research in Computer Security;
Sep 2004; Sophia Antipolis, France. p. 53–72. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1
12.3254&rep=rep1&type=pdf

[5] Mitchell JC, Shmatikov V, Stern U. Finite-state analysis
of SSL 3.0. In: Proceedings of the Seventh Conference on
USENIX Security Symposium; Jan 1998; San Antonio, TX. p.
16. Available at: http://www.usenix.org/publications/library/
proceedings/sec98/mitchell.html

[6] Barth A, Jackson C, Mitchell JC. Robust defenses
for cross-site request forgery. In: Proceedings of the
15th ACM Conference on Computer and Communica-
tions Security; Oct 2008; Alexandria, VA. p. 75–88. DOI:
10.1145/1455770.1455782

[7] Barth A, Jackson C, Mitchell JC. Securing frame com-
munication in browsers. In: Proceedings of the 17th USENIX
Security Symposium; Jul 2008; San Jose, CA. p. 17–30.
Available at: http://www.usenix.org/events/sec08/tech/
full_papers/barth/barth.pdf

[8] Chen S, Mao Z, Wang YM, Zhang M. Pretty-bad-proxy:
An overlooked adversary in browsers’ HTTPS deployments.
In: Proceedings of the 30th IEEE Symposium on Security
and Privacy; May 2009; Oakland, CA. p. 347–359. DOI:
10.1109/SP.2009.12

[9] Jackson C, Barth A. ForceHTTPS: Protecting high-
security web sites from network attacks. In: Proceedings
of the 17th International Conference on World Wide Web;
Apr 2008; Beijing, China. p. 525–534. Available at: http://
www2008.org/papers/pdf/p525-jacksonA.pdf

[10] Jackson C, Barth A, Bortz A, Shao W, Boneh D.
Protecting browsers from DNS rebinding attacks. In:
Proceedings of the 14th ACM Conference on Computer and

Communications Security; Oct 2007; Alexandria, VA. p.
421–431. DOI: 10.1145/1315245.1315298

[11] Cai X, Gui Y, Johnson R. Exploiting Unix �le-system
races via algorithmic complexity attacks. In: Proceedings
of the 30th IEEE Symposium on Security and Privacy; May
2009; Oakland, CA; p. 27–41. DOI: 10.1109/SP.2009.10

[12] Datta A, Franklin J, Garg D, Kaynar D. A logic of
secure systems and its application to trusted computing. In:
Proceedings of the 30th IEEE Symposium on Security and Pri-
vacy; May 2009; Oakland, CA. p. 221–236. DOI: 10.1109/
SP.2009.16

[13] Tsafrir D, Hertz T, Wagner D, Da Silva D. Portably
solving �le TOCTTOU races with hardness ampli�cation.
In: Proceedings of the Sixth USENIX Conference on File
and Storage Technologies; Feb 2008; San Jose, CA. p. 1–18.
Available at: http://www.usenix.org/events/fast08/tech/
tsafrir.html

[14] Datta A, Derek A, Mitchell JC, Pavlovic D. A deriva-
tion system and compositional logic for security protocols.
Journal of Computer Security. 2005;13(3):423–482. Available
at: http://seclab.stanford.edu/pcl/papers/ddmp-jcs05.pdf

[15] Datta A, Derek A, Mitchell JC, Roy A. Pro-
tocol composition logic (PCL). Electronic Notes in
�eoretical Computer Science. 2007;172:311–358. DOI:
10.1016/j.entcs.2007.02.012

[16] Durgin N, Mitchell JC, Pavlovic D. A compositional
logic for proving security properties of protocols. Jour-
nal of Computer Security. 2003;11(4):677–721. Available
at: http://www-cs-students.stanford.edu/~nad/papers/
comp-jcs205.pdf

[17] Garg D, Franklin J, Kaynar DK, Datta A. Compo-
sitional system security with interface-con�ned adver-
saries. Electronic Notes in �eoretical Computer Science.
2010;265:49–71. DOI: 10.1016/j.entcs.2010.08.005

[18] Roy A, Datta A, Derek A, Mitchell JC, Seifert JP.
Secrecy analysis in protocol composition logic. In: Okada
M, Satoh I, editors. Advances in Computer Science – ASIAN
2006: Secure So�ware and Related Issues, 11th Asian Com-
puting Science Conference, Tokyo, Japan, December 6-8,
2006. Berlin (Germany): Springer-Verlag; 2007. p. 197–213.

[19] Butler KRB, McLaughlin SE, McDaniel PD. Kells:
A protection framework for portable data. In: Proceed-
ings of the 26th Annual Computer Security Applications
Conference; Dec 2010; Austin, TX. p. 231–240. DOI:
10.1145/1920261.1920296

[20] Kannan J, Maniatis P, Chun B. Secure data preserv-
ers for web services. In: Proceedings of the Second USENIX
Conference on Web Application Development; Jun 2011;
Portland, OR. p. 25–36. Available at: http://www.usenix.org/
events/webapps11/tech/�nal_�les/Kannan.pdf

[21] He C, Sundararajan M, Datta A, Derek A, Mitchell JC.
A modular correctness proof of IEEE 802.11i and TLS. In:
Proceedings of the 12th ACM Conference on Computer
and Communications Security; Nov 2005; Alexandria, VA.
p. 2–15. DOI: 10.1145/1102120.1102124

[22] Datta A, Derek A, Mitchell JC, Pavlovic D. Abstrac-
tion and re�nement in protocol derivation. In: Proceedings
of 17th IEEE Computer Security Foundations Workshop;
Jun 2004; Paci�c Grove, CA. p. 30–45. DOI: 10.1109/
CSFW.2004.1310730

[23] Jones CB. Tentative steps toward a development
method for interfering programs. ACM Transactions on
Programming Languages and Systems. 1983;5(4):596–619.
DOI: 10.1145/69575.69577

[24] Misra J, Chandy KM. Proofs of networks of pro-
cesses. IEEE Transactions on So�ware Engineering.
1981;7(4):417–426. DOI: 10.1109/TSE.1981.230844

[25] Canetti R. Universally composable security: A new
paradigm for cryptographic protocols. In: Proceedings of
the 42nd IEEE Symposium on the Foundations of Computer
Science; Oct 2001; Las Vegas, NV. p. 136–145. DOI: 10.1109/
SFCS.2001.959888

[26] P�tzmann B, Waidner M. A model for asynchronous
reactive systems and its application to secure message
transmission. In: IEEE Symposium on Security and Privacy;
May 2001; Oakland, CA. p. 184–200. DOI: 10.1109/
SECPRI.2001.924298

[27] Bhargavan K, Fournet C, Gordon AD. Modular veri�-
cation of security protocol code by typing. In: Proceedings of
the 37th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages; Jan 2010; Madrid, Spain.
p. 445–456. DOI: 10.1145/1706299.1706350

[28] Paulson L. Proving properties of security protocols by
induction. In: Proceedings of 10th IEEE Computer Security
Foundations Workshop; Jun 1997; Rockport, MA. p. 70–83.
DOI: 10.1109/CSFW.1997.596788

[29] Alpern B, Schneider FB. Recognizing safety and live-
ness. Distributed Computing. 1987;2(3):117–126. DOI:
10.1007/BF01782772

[30] Canetti R, Cheung L, Kaynar DK, Liskov M, Lynch
NA, Pereira O, Segala R. Time-bounded task-PIOAs: A
framework for analyzing security protocols. In: Proceed-
ings of the 20th International Symposium on Distributed
Computing; Sep 2006; Stockholm, Sweden. p. 238–253. DOI:
10.1007/11864219_17

[31] Kϋsters R, Datta A, Mitchell JC, Ramanathan A. On the
relationships between notions of simulation-based security.
Journal of Cryptology. 2008;21(4):492–546. DOI: 10.1007/
s00145-008-9019-9

40

W
hen running software applications and services, we rely on the underlying
execution platform: the hardware and the lower levels of the software stack.
The execution platform is susceptible to a wide range of threats, ranging from

accidental bugs, faults, and leaks to maliciously induced Trojan horses. The problem is
aggravated by growing system complexity and by increasingly pertinent outsourcing
and supply chain consideration. Traditional mechanisms, which painstakingly validate all
system components, are expensive and limited in applicability.

What if the platform assurance
problem is just too hard? Do we have
any hope of securely running software
when we cannot trust the underlying
hardware, hypervisor, kernel, libraries,
and compilers?

This article will discuss a potential
approach for doing just so: conducting
trustworthy computation on untrusted
execution platforms. The approach,
proof-carrying data (PCD), circumnavi-

gates the threat of faults and
leakage by reasoning solely
about properties of a computa-
tion’s output data, regardless
of the process that produced
it. In PCD, the system designer
prescribes the desired proper-
ties of the computation’s out-
puts. These properties are then
enforced using cryptographic
proofs attached to all data �ow-
ing through the system and
veri�ed at the system perimeter
as well as internal nodes.

 The Next Wave | Vol. 19 No. 2 | 2012 | 41

FEATURE

1. Introduction

Integrity of data, information �ow control, and fault
isolation are three examples of security properties
of which attainment, in the general case and under
minimal assumptions, is a major open problem. Even
when particular solutions for speci�c cases are known,
they tend to rely on platform trust assumptions (for
example, the kernel is trusted, the central processing
unit is trusted), and even then they cannot cross trust
boundaries between mutually untrusting parties. For
example, in cloud computing, clients are typically
interested in both integrity [1] and con�dentiality [2]
when they delegate their own computations to the
untrusted workers.

Minimal trust assumptions and very strong cer-
ti�cation guarantees are sometimes almost a basic
requirement. For example, within the information
technology supply chain, faults can be devastating
to security [3] and hard to detect; moreover, hard-
ware and so�ware components are o�en produced in
faraway lands from parts of uncertain origin where
it is hard to carry out quality assurance in case trust
is not available [4]. �is all implies risks to the users
and organizations [5, 6, 7, 8].

2. Goals

In order to address the aforementioned problems, we
propose the following goal:

Goal. A compiler that, given a protocol for a
distributed computation and a security property
(in the form of a predicate to be veri�ed at every
node of the computation), yields an augmented
protocol that enforces the security property.

We wish this compiler to respect the original
distributed computation (that is, the compiler should
preserve the computation’s communication graph, dy-
namics, and e�ciency). �is implies, for example, that
scalability is preserved: If the original computation can
be jointly conducted by numerous parties, then the
compiler produces a secure distributed computation
that has the same property.

3. Our approach

We propose a generic solution approach, proof-
carrying data (PCD), to solve the aforementioned

problems by de�ning appropriate checks to be per-
formed on each party’s computation and then letting
parties attach proofs of correctness to each message.
Every piece of data �owing through a distributed
computation is augmented by a short proof string
that certi�es the data as compliant with some desired
property. �ese proofs can be propagated and ag-
gregated “on the �y,” as the computation proceeds.
�ese proofs may be between components of a single
platform or between components of mutually un-
trusting platforms, thereby extending trust to any
distributed computation.

But what “properties” do we consider? Certainly
we want to consider the property that every node
carried out its own computation without making any
mistakes. More generally, we consider properties that
can be expressed as a requirement that every step in
the computation satis�es some compliance predicate
C computable in polynomial time; we call this notion
C-compliance. �us, each party receives inputs that
are augmented with proof strings, computes some
outputs, and augments each of the outputs with a
new proof string that will convince the next party (or
the veri�er of the ultimate output) that the output is
consistent with a C-compliant computation. See �gure
1 for a high-level diagram of this idea.

For example, C could simply require that each
party’s computation was carried out without errors.
Or, C could require that not only each party’s com-
putation was carried out without errors, but also that
the program run by each party carried a signature
valid under the system administrator’s public key; in
such a case, the local program supplied by each party
would be the combination of the program and the
signature. Or, C could alternatively require that each
party’s computation involved a binary produced by

Final
veri�er

Accept
or

Reject

m
1 , π

1

m 2
, π 2

m
3

, π
3

m 4
, π 4

m
5 , π

5 m 6
, π 6

m
7 , π

7

FIGURE 1. A distributed computation in which each party sends
a message m

i
 that is augmented with a short proof π

i
. The �nal

veri�er inspects the computation’s outputs in order to decide
whether they are “compliant” or not.

42

Proof-carrying data: Secure computation on untrusted platforms

a compiler prescribed by the system administrator,
which is known to perform certain tests on the code to
be compiled (for example, type safety, static analysis,
dynamic enforcement). Note that a party’s local pro-
gram could be a combination of code, human inputs,
and randomness.

To formalize the above, we de�ne and construct
a PCD scheme: A cryptographic primitive that fully
encapsulates the proof system machinery and pro-
vides a simple but very general “interface” to be used
in applications.a

Our construction does require a minimal trusted
setup: Every party should have black-box access to
a simple signed-input-and-randomness functional-
ity, which signs every input it receives along with
some freshly-generated random bits. �is is similar to
standard functionality of cryptographic signing tokens
and can also be implemented using Trusted Platform
Module chips or a trusted party.

3.1. Our results

We introduce the generic approach of PCD for secur-
ing distributed computations and describing the
cryptographic primitive of PCD schemes to capture
this approach:

Theorem (informal). PCD schemes
can be constructed under standard
cryptographic assumptions, given
signed-input-and-randomness tokens.

3.2. The construction and its practicality

We do not rely on the traditional notion of a proof; in-
stead, we rely on computationally sound proofs. �ese
are proofs that always exist for true theorems and can
be found e�ciently given the appropriate witness. For
false theorems, however, we only have the guarantee
that no e	cient procedure will be able to write a proof
that makes us accept with more than negligible prob-
ability. Nonetheless, computationally sound proofs
are just as good as traditional ones, for we are not
interested in being protected against infeasible attack
procedures, nor do we mind accepting a false theorem
with, say, 2-100 probability.

�e advantage of settling for computationally sound
proofs is that they can be much shorter than the com-
putation to which they attest and can be veri�ed much
more quickly than repeating the entire computation.
To this end, we use probabilistically checkable proofs
(PCPs) [11, 12], which originate in the �eld of com-
putational complexity and its cryptographic exten-
sions [9, 13, 14].

While our initial results establish theoretical foun-
dations for PCD and show their possibility in prin-
ciple, the aforementioned PCPs are computationally
heavy and are notorious for being e�cient only in the
asymptotic sense, and they are not yet of practical rel-
evance. Motivated by the potential impact of a practi-
cal PCD scheme, we have thus taken on the challenge
of constructing a practical PCP system, in an ongoing
collaboration with Professor Eli Ben-Sasson and a
team of programmers at the Technion.

4. Related approaches

Cryptographic tools. Secure multiparty computation
[15, 16, 17] considers the problem of secure function
evaluation; our setting is not one function evaluation,
but ensuring a single invariant (that is, C-compli-
ance) through many interactions and computations
between parties.

Platforms, languages, and static analysis. Integ-
rity can be achieved by running on suitable fault-
tolerant systems. Con�dentiality can be achieved
by platforms with suitable information �ow control
mechanisms following [18, 19] (for example, at the
operating-system level [20, 21]). Various invariants
can be achieved by statically analyzing programs and
by programming language mechanisms such as type
systems following [22, 23]. �e inherent limitation of
these approaches is that the output of such computa-
tion can be trusted only if one trusts the whole plat-
form that executed it; this renders them ine�ective in
the setting of mutually untrusting distributed parties.

Run-time approaches. In proof-carrying code (PCC)
[24], the code producer augments the code with for-
mal, e�ciently checkable proofs of the desired prop-
erties (typically, using the aforementioned language
or static analysis techniques); PCC and PCD are

a. PCD schemes generalize the “computationally-sound proofs” of Micali [9], which consider only the “one-hop” case of a single prover
and a single veri�er and also generalize the “incrementally veri�able computation” of Valiant [10], which considers the case of an a-priori
�xed sequence of computations.

 The Next Wave | Vol. 19 No. 2 | 2012 | 43

FEATURE

complementary techniques, in the sense that PCD can
enforce properties expressed via PCC. Dynamic analy-
sis monitors the properties of a program’s execution
at run-time (for example, [25, 26, 27]). Our approach
can be interpreted as extending dynamic analysis to
the distributed setting, by allowing parties to (implic-
itly) monitor the program execution of all prior parties
without actually being present during the executions.
�e Fabric system [28] is similar to PCD in motiva-
tion, but takes a very di�erent approach: Fabric aims
to make maximal use of distributed-system given trust
constraints, while PCD creates new trust relations.

5. The road onward

We envision PCD as a framework for achieving secu-
rity properties in a nonconventional way that cir-
cumvents many di�culties with current approaches.
In PCD, faults and leakage are acknowledged as an
expected occurrence, and rendered inconsequential
by reasoning about properties of data that are inde-
pendent of the preceding computation. �e system
designer prescribes the desired properties of the
computation’s output; proofs of these properties are at-
tached to the data �owing through the system and are
mutually veri�ed by the system’s components.

We have already shown explicit constructions of
PCD, under standard cryptographic assumptions, in
the model where parties have black-box access to a
simple hardware token. �e theoretical problem of
weakening this requirement, or formally proving that
it is (in some sense) necessary, remains open. In recent
work, we show how to resolve this problem in the case
of a single party’s computation [29].

As for practical realizations, since there is evidence
that the use of PCPs for achieving short proofs is
inherent [30], we are tackling head-on the challenge of
making PCPs practical. We are also studying devising
ways to express the security properties, to be enforced
by PCD, using practical programming languages such
as C++.

In light of these, as real-world practicality of PCD
becomes closer and closer, the task of compliance
engineering becomes an exciting direction. While PCD
provides a protocol compiler to ensure any compliance

predicate in a distributed computation, �guring out
what are useful compliance predicates in this or that
setting is a problem in its own right.

We already envision problem domains where we
believe enforcing compliance predicates will come
a long way toward securing distributed systems in a
strong sense:

 Multilevel security. PCD may be used for in-
formation �ow control. For example, consider
enforcing multilevel security [31, Chap. 8.6] in
a room full of data-processing machines. We
want to publish outputs labeled “nonsecret,” but
are concerned that they may have been tainted
by “secret” information (for example, due to
bugs, via so�ware side channel attacks [32] or,
perhaps, via literal eavesdropping [33, 34, 35]).
PCD then allows you to reduce the problem of
controlling information �ow to the problem of
controlling the perimeter of the information
room by ensuring that every network packet
leaving the room is inspected by the PCD veri�er
to establish it carries a valid proof.

 IT supply chain and hardware Trojans. Using
PCD, one can achieve fault isolation and ac-
countability at the level of system components
(for example, chips or so�ware modules) by
having each component augment every output
with a proof that its computation, including all
history it relied on, was correct. Any fault in the
computation, malicious or otherwise, will then
be identi�ed by the �rst nonfaulty subsequent
component. Note that even the PCD veri�ers
themselves do not have to be trusted except for
the very last one.

 Distributed type safety. Language-based type-
safety mechanisms have tremendous expressive
power, but are targeted at the case where the
underlying execution platform can be trusted to
enforce type rules. �us, they typically cannot
be applied across distributed systems consist-
ing of multiple mutually untrusting execution
platforms. �is barrier can be surmounted by
using PCD to augment typed values passing
between systems with proofs for the correctness
of the type.

44

Proof-carrying data: Secure computation on untrusted platforms

E�orts to understand how to think about com-
pliance in concrete problem domains are likely to
uncover common problems and corresponding
design patterns [36], thus improving our overall abil-
ity to correctly phrase desired security properties as
compliance predicates.

We thus pose the following challenge: Given a
genie that grants every wish expressed as a compliance
predicate on distributed computations, what compli-
ance predicates would you wish for in order to achieve
the security properties your system needs?

Acknowledgments

�is research was partially supported by the Check
Point Institute for Information Security, the Israeli
Centers of Research Excellence program (center No.
4/11), the European Community’s Seventh Frame-
work Programme grant 240258, the National Science
Foundation (NSF) grant NSF-CNS-0808907, and the
Air Force Research Laboratory (AFRL) grant FA8750-
08-1-0088. Views and conclusions contained here are
those of the authors and should not be interpreted as
necessarily representing the o�cial policies or en-
dorsements, either express or implied, of AFRL, NSF,
the US government or any of its agencies.

About the authors

Alessandro Chiesa is a second-year doctoral student
in the �eory of Computation group in the Com-
puter Science and Arti�cial Intelligence Laboratory
(CSAIL) at Massachusetts Institute of Technology
(MIT). He is interested in cryptography, complexity
theory, quantum computation, mechanism design,
algorithms, and security. He can be reached at MIT
CSAIL, alexch@csail.mit.edu.

Eran Tromer is a faculty member at the School of
Computer Science at Tel Aviv University. His research
focus is information security, cryptography, and
algorithms. He is particularly interested in what hap-
pens when cryptographic systems meet the real world,
where computation is faulty and leaky. He can be
reached at Tel Aviv University, tromer@cs.tau.ac.il.

References

[1] Ferdowsi A. S3 data corruption? Amazon Web Ser-
vices (discussion forum). 2008 Jun 22. Available at:
https://forums.aws.amazon.com/thread.jspa?threadID=
22709&start=0&tstart=0

[2] Ristenpart T, Tromer E, Shacham H, Savage S. Hey, you,
get o� of my cloud! Exploring information leakage in third-
party compute clouds. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security; Nov
2009; Chicago, IL. p. 199–212. Available at: http://cseweb.
ucsd.edu/~hovav/dist/cloudsec.pdf

[3] Biham E, Shamir A. Di�erential fault analysis of secret
key cryptosystems. In: Kaliski BS Jr., editor. Advances in
Cryptology—CRYPTO ’97 (Proceedings of the 17th Annual
International Cryptology Conference; Aug 1997; Santa
Barbara, CA). LNCS, 1294. London (UK): Springer-Verlag;
1997. p. 513–525. DOI: 10.1007/BFb0052259

[4] Collins DR. Trust, a proposed plan for trusted integrated
circuits. Paper presented at a conference; Mar 2006; p.
276–277. Available at: http://oai.dtic.mil/oai/oai?verb=getR
ecord&metadataPre�x=html&identi�er=ADA456459

[5] Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar
B. Trojan detection using IC �ngerprinting. In: Proceedings
of the 2007 IEEE Symposium on Security and Privacy; May
2007; Oakland, CA. p. 296–310. DOI: 10.1109/SP.2007.36

[6] Biham E, Carmeli Y, Shamir A. Bug attacks. In: Wagner
D, editor. Advances in Cryptology—CRYPTO 2008 (Pro-
ceedings of the 28th Annual International Cryptology
Conference; Aug 2008; Santa Barbara, CA). LNCS, 5157.
Berlin (Germany): Springer-Verlag; 2008. p. 221–240. DOI:
10.1007/978-3-540-85174-5_13

[7] King ST, Tucek J, Cozzie A, Grier C, Jiang W, Zhou
Y. Designing and implementing malicious hardware. In:
Proceedings of the First USENIX Workshop on Large-Scale
Exploits and Emergent �reats; Apr 2008; San Francisco,
CA. p. 1–8. Available at: http://www.usenix.org/events/
leet08/tech/full_papers/king/king.pdf

[8] Roy JA, Koushanfar F, Markov IL. Circuit CAD tools as
a security threat. In: Proceedings of the First IEEE Inter-
national Workshop on Hardware-Oriented Security and
Trust; Jun 2008; Anaheim, CA. p. 65–66. DOI: 10.1109/
HST.2008.4559052

[9] Micali S. Computationally sound proofs. SIAM Journal
on Computing. 2000;30(4):1253–1298. DOI: 10.1137/
S0097539795284959

[10] Valiant P. Incrementally veri�able computation or

 The Next Wave | Vol. 19 No. 2 | 2012 | 45

FEATURE

proofs of knowledge imply time/space e�ciency. In: Canetti
R, editor. �eory of Cryptography (Proceedings of the Fi�h
�eory of Cryptography Conference; Mar 2008; New York,
NY). LNCS, 4948. Berlin (Germany): Springer-Verlag; 2008.
p. 1–18. DOI: 10.1007/978-3-540-78524-8_1

[11] Babai L, Fortnow L, Levin LA, Szegedy M. Check-
ing computations in polylogarithmic time. In: Proceed-
ings of the 23rd Annual ACM Symposium on �eory of
Computing; May 1991; New Orleans, LA. p. 21–32. DOI:
10.1145/103418.103428

[12] Ben-Sasson E, Sudan M. Simple PCPs with poly-log
rate and query complexity. In: Proceedings of the 37th An-
nual ACM Symposium on �eory of Computing; May 2005;
Baltimore, MD. p. 266–275. DOI: 10.1145/1060590.1060631

[13] Kilian J. A note on e�cient zero-knowledge proofs and
arguments. In: Proceedings of the 24th Annual ACM Sym-
posium on �eory of Computing; May 1992; Victoria, BC,
Canada. p. 723–732. DOI: 10.1145/129712.129782

[14] Barak B, Goldreich O. Universal arguments and
their applications. In: Proceedings of the 17th IEEE An-
nual Conference on Computational Complexity; May 2002;
Montreal, Quebec , Canada. p. 194–203. DOI: 10.1109/
CCC.2002.1004355

[15] Goldreich O, Micali S, Wigderson A. How to play ANY
mental game. In: Proceedings of the 19th Annual ACM Sym-
posium on �eory of Computing; May 1987; New York, NY.
p. 218–229. DOI: 10.1145/28395.28420

[16] Ben-Or M, Goldwasser S, Wigderson A. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation. In: Proceedings of the 20th Annual ACM Sym-
posium on �eory of Computing; May 1988; Chicago, IL. p.
1–10. DOI: 10.1145/62212.62213

[17] Chaum D, Crépeau C, Damgård I. Multiparty uncondi-
tionally secure protocols. In: Proceedings of the 20th Annual
ACM Symposium on �eory of Computing; May 1988;
Chicago, IL. p. 11–19. DOI: 10.1145/62212.62214

[18] Denning DE, Denning PJ. Certi�cation of programs
for secure information �ow. Communications of the ACM.
1977;20(7):504–513. DOI: 10.1145/359636.359712

[19] Myers AC, Liskov B. A decentralized model for
information �ow control. In: Proceedings of the 16th
ACM SIGOPS Symposium on Operating Systems Prin-
ciples; Oct 1997; Saint-Malo, France. p. 129–142. DOI:
10.1145/268998.266669

[20] Krohn M, Yip A, Brodsky M, Cli�er N, Kaashoek MF,
Kohler E, Morris R. Information �ow control for standard

OS abstractions. In: Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles; Oct 2007; Ste-
venson, WA. p. 321–334. DOI: 10.1145/1294261.1294293

[21] Zeldovich N, Boyd-Wickizer S, Kohler E, Mazières D.
Making information �ow explicit in HiStar. In: Proceedings
of the Seventh USENIX Symposium on Operating Systems
Design and Implementation; Nov 2006; Seattle, WA. p.
19–19. Available at: http://www.usenix.org/event/osdi06/
tech/full_papers/zeldovich/zeldovich.pdf

[22] Andrews GR, Reitman RP. An axiomatic approach to
information �ow in programs. ACM Transactions on Pro-
gramming Languages and Systems. 1980;2(1):56–76. DOI:
10.1145/357084.357088

[23] Denning DE. A lattice model of secure information
�ow. Communications of the ACM. 1976;19(5):236–243.
DOI: 10.1145/360051.360056

[24] Necula GC. Proof-carrying code. In: Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages; Jan 1997; Paris, France. p.
106–119. DOI: 10.1145/263699.263712

[25] Nethercote N, Seward J. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In: Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation; Jun 2007; San Diego,
CA. p. 89–100. DOI: 10.1145/1250734.1250746

[26] Suh GE, Lee JW, Zhang D, Devadas S. Secure pro-
gram execution via dynamic information �ow tracking.
In: Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems; Oct 2004; Boston, MA. p. 85–96. DOI:
10.1145/1024393.1024404

[27] Kiriansky V, Bruening D, Amarasinghe SP. Secure
execution via program shepherding. In: Proceedings of the
11th USENIX Security Symposium; Aug 2002; San Francisco,
CA. p. 191–206. Available at: http://www.usenix.org/pub-
lications/library/proceedings/sec02/full_papers/kiriansky/
kiriansky_html/index.html

[28] Liu J, George MD, Vikram K, Qi X, Waye L, Myers AC.
Fabric: A platform for secure distributed computation and
storage. In: Proceedings of the 22nd ACM SIGOPS Sympo-
sium on Operating Systems Principles; Oct 2009; Big Sky,
MT. p. 321–334. DOI: 10.1145/1629575.1629606

[29] Bitansky N, Canetti R, Chiesa A, Tromer E. From
extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. Cryptology ePrint
Archive. 2011;Report 2011/443. Available at: http://eprint.
iacr.org/2011/443

[30] Rothblum GN, Vadhan S. Are PCPs inherent in ef-
�cient arguments? In: Proceedings of the 24th IEEE Annual
Conference on Computational Complexity; Jul 2009; Paris,
France. p. 81–92. DOI: 10.1109/CCC.2009.40

[31] Anderson RJ. Security Engineering: A Guide to Building
Dependable Distributed Systems. 2nd ed. Indianapolis (IN):
Wiley Publishing; 2008. ISBN: 978-0-470-06852-6

[32] Brumley D, Boneh D. Remote timing attacks are
practical. Computer Networks: �e International Jour-
nal of Computer and Telecommunications Networking.
2005;48(5):701–716.

[33] LeMay M, Tan J. Acoustic surveillance of physically
unmodi�ed PCs. In: Proceedings of the 2006 International
Conference on Security and Management; Jun 2006; Las

Vegas, NV. p. 328–334. Available at: http://ww1.ucmss.com/
books/LFS/CSREA2006/SAM4311.pdf

[34] Asonov D, Agrawal R. Keyboard acoustic emanations.
In: Proceedings of the 2004 IEEE Symposium on Security and
Privacy; May 2004; Oakland, CA. p. 3–11. DOI: 10.1109/
SECPRI.2004.1301311

[35] Tromer E, Shamir A. Acoustic cryptanalysis: On nosy
people and noisy machines. Presentation at: Eurocrypt 2004
Rump Session; May 2004; Interlaken, Switzerland. Available
at: http://people.csail.mit.edu/tromer/acoustic

[36] Gamma E, Helm R, Johnson R, Vlissides J. Design
Patterns: Elements of Reusable Object-Oriented So�ware.
Boston (MA): Addison-Wesley Longman Publishing Co.,
Inc.; 1995. ISBN: 9780201633610

Proof-carrying data: Secure computation on untrusted platforms

 The Next Wave | Vol. 19 No. 2 | 2012 | 47

1. Introduction

A secure system must defend against all possible at-
tacks—including those unknown to the defender. But
defenders, having limited resources, typically develop
defenses only for attacks they know about. New kinds
of attacks are then likely to succeed. So our growing
dependence on networked computing systems puts at
risk individuals, commercial enterprises, the public
sector, and our military.

�e obvious alternative is to build systems whose
security follows from �rst principles. Unfortunately,
we know little about those principles. We need a
science of cybersecurity (see box 1) that puts the con-
struction of secure systems onto a �rm foundation
by giving developers a body of laws for predicting the
consequences of design and implementation choices.
�e laws should

 transcend speci�c technologies and attacks, yet
still be applicable in real settings,

 introduce new models and abstractions, thereby
bringing pedagogical value besides predictive
power, and

 facilitate discovery of new defenses as well as de-
scribe non-obvious connections between attacks,
defenses, and policies, thus providing a better
understanding of the landscape.

�e research needed to develop this science
of cybersecurity must go beyond the search for

vulnerabilities in deployed systems and beyond the de-
velopment of defenses for speci�c attacks. Yet, use of a
science of cybersecurity when implementing a system
should not be equated with implementing absolute
security or even with concluding that security requires
perfection in design and implementation. Rather, a
science of cybersecurity would provide—independent
of speci�c systems—a principled account for tech-
niques that work, including assumptions they require
and ways one set of assumptions can be transformed
or discharged by another. It would articulate and or-
ganize a set of abstractions, principles, and trade-o�s
for building secure systems, given the realities of the
threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it
to describe a body of knowledge. To many, it connotes knowl-
edge obtained by systematic experimentation, so they take that
process as the de�ning characteristic of a science. The natural
sciences satisfy this de�nition.

Experimentation helps in forming and then a�rming
theories or laws that are intended to o�er veri�able predictions
about man-made and natural phenomena. It is but a small step
from science as experimentation to science as laws that ac-
curately predict phenomena. The status of the natural sciences
remains una�ected by changing the de�nition of a science in
this way. But computer science now joins. It is the study of what
processes can be automated e�ciently; laws about speci�cation
(problems) and implementations (algorithms) are a comfortable
way to encapsulate such knowledge.

Blueprint for a science
of cybersecurity |

F r e d B . S c h n e i d e r

48

�e �eld of cryptography comes close to exem-
plifying the kind of science base we seek. �e focus
in cryptography is on understanding the design and
limitations of algorithms and protocols to compute
certain kinds of results (for example, con�dential or
tamperproof or attributed) in the presence of certain
kinds of adversaries who have access to some, but not
all, information involved in the computation. Cryp-
tography, however, is but one of many cybersecurity
building blocks. A science of cybersecurity would have
to encompass richer kinds of speci�cations, comput-
ing environments, and adversaries. Peter Neumann [1]
summarized the situation well when he opined about
implementing cybersecurity, “If you think cryptog-
raphy is the answer to your problem, then you don’t
know what your problem is.”

An analogy with medicine can be instructive for
contemplating bene�ts we might expect from a sci-
ence of cybersecurity. Some health problems are best
handled in a reactive manner. We know what to do
when somebody breaks a �nger, and each year we
create a new in�uenza vaccine in anticipation of the
�u season to come. But only a�er making signi�cant
investments in basic medical sciences are we start-
ing to understand the mechanisms by which cancers
grow, and a cure seems to require that kind of deep
understanding. Moreover, nobody believes disease will
someday be a “solved problem.” We make enormous
strides in medical research, yet new threats emerge
and old defenses (for example, antibiotics) lose their
e�ectiveness. Like good health, cybersecurity is never
going to be a “solved problem.” Attacks coevolve with
defenses and in ways to disrupt each new task that is
entrusted to our networked systems. As with medical
problems, some attacks are best addressed in a reactive
way, while others are not. But our success in develop-
ing all defenses will bene�t considerably from having
laws that constitute a science of cybersecurity.

�is article gives one perspective on the shape of
that science and its laws. Subjects that might be char-
acterized in laws are discussed in section 2. �en, sec-
tion 3 illustrates by giving concrete examples of laws.
�e relationship that a science of cybersecurity would
have with existing branches of computer science is
explored in section 4.

If you think
cryptography is the

answer to your problem,
then you don’t know

what your problem is.

-PETER NEUMANN

 The Next Wave | Vol. 19 No. 2 | 2012 | 49

FEATURE

2. Laws about what?

In the natural sciences, quantities found in nature are
related by laws: E = mc2, PV = nRT, etc. Continuous
mathematics is used to specify these laws. Continuous
mathematics, however, is not intrinsic to the notion
of a scienti�c law—predictive power is. Indeed, laws
that govern digital computations are o�en most con-
veniently expressed using discrete mathematics and
logical formulas. Laws for a science of cybersecurity
are likely to follow suit because these, too, concern
digital computation.

But what should be the subject matter of these laws?
To be deemed secure, a system should, despite attacks,
satisfy some prescribed policy that speci�es what the
system must do (for example, deliver service) and
what it must not do (for example, leak secrets). And
defenses are the means we employ to prevent a system
from being compromised by attacks. �is account
suggests we strive to develop laws that relate attacks,
defenses, and policies.

For generality, we should prefer laws that relate
classes of attacks, classes of defenses, and classes of
policies, where the classi�cation exposes essential
characteristics. �en we can look forward to hav-
ing laws like “Defenses in class enforce policies in
class despite attacks from class A” or “By compos-
ing defenses from class ' and class ", a defense is
constructed that resists the same attacks as defenses
from class .” Appropriate classes, then, are crucial for
a science of cybersecurity to be relevant.

2.1. Classes of attacks

A system’s interfaces de�ne the sole means by which an
environment can change or sense the e�ects of system
execution. Some interfaces have clear embodiment
to hardware: the keyboard and mouse for inputs, a
graphic display or printer for outputs, and a network
channel for both inputs and outputs. Other hardware
interfaces and methods of input/output will be less
apparent, and some are quite obscure. For example,
Halderman et al. [2] show how lowering the operating
temperature of a memory board facilitates capture of
secret cryptographic keys through what they term a

cold boot attack. �e temperature of the environment
is, in e�ect, an input to a generally overlooked hard-
ware interface. Most familiar are interfaces created
by so�ware. �e operating system interface o�en
provides ways for programs to communicate overtly
through system calls and shared memory or covertly
through various side channels (such as battery level or
execution timings).

Since (by de�nition) interfaces provide the only
means for in�uencing and sensing system execution,
interfaces necessarily constitute the sole avenues for
conducting attacks against a system. �e set of in-
terfaces and the speci�c operations involved is thus
one obvious basis for de�ning classes of attacks. For
example, we might distinguish attacks (such as SQL-
injections) that exploit overly powerful interfaces
from attacks (such as bu�er over�ows) that exploit
insu�ciently conservative implementations. Another
basis for de�ning classes of attacks is to characterize
the information or e�ort required for conducting the
attack. With some cryptosystems, for instance, e�-
cient techniques exist for discovering a decryption key
if samples of ciphertext with corresponding plaintext
are available for that key, but these techniques do not
work when only ciphertext is available.

A given input might cause some policies to be
violated but not others. So whether an input consti-
tutes an attack on a given system could depend on the
policy that system is expected to enforce. �is depen-
dence suggests that classes of attacks could be de�ned
in terms of what policies they compromise. �e de�ni-
tion of denial-of-service attacks, for instance, equates
a class of attacks with system availability policies.

For attacks on communications channels, cryptog-
raphers introduce classi�cations based on the compu-
tational power or information available to the attacker.
For example, Dolev-Yao attackers are limited to read-
ing, sending, deleting, or modifying �elds in messages
being sent as part of some protocol execution [3]. (�e
altered tra�c confuses the protocol participants, and
they unwittingly undertake some action the attacker
desires.) But it is not obvious how to generalize these
attack classes to systems that implement more com-
plex semantics than message delivery and that provide

50

Blueprint for a science of cybersecurity

operations beyond reading, sending, deleting, or
modifying messages.

Finally, the role of people in a system can be a basis
for de�ning classes of attacks. Security mechanisms
that are inconvenient will be ignored or circumvented
by users; security mechanisms that are di�cult to
understand will be misused (with vulnerabilities intro-
duced as a result). Distinct classes of attacks can thus
be classi�ed according to how or when the human
user is fooled into empowering an adversary. Phishing
attacks, which enable the� of passwords and ultimate-
ly facilitate identity the�, are one such class of attacks.

2.2. Classes of policies

Traditionally, the cybersecurity community
has formulated policies in terms of three kinds
of requirements:

 Con�dentiality refers to which principals are al-
lowed to learn what information.

 Integrity refers to what changes to the system
(stored information and resource usage) and to
its environment (outputs) are allowed.

 Availability refers to when must inputs be read
or outputs produced.

�is classi�cation, as it now stands, is likely to be
problematic as a basis for the laws that form a science
of cybersecurity.

One problem is the lack of widespread agree-
ment on mathematical de�nitions for con�dentiality,
integrity, and availability. A second problem is that
the three kinds of requirements are not orthogonal.
For example, secret data can be protected simply by
corrupting it so that the resulting value no longer
accurately conveys the true secret value, thus trading
integrity for con�dentiality.a As a second example, any
con�dentiality property can be satis�ed by enforcing
a weak enough availability property, because a system
that does nothing cannot be accessed by attackers to
learn secret information.

Contrast this state of a�airs with trace properties,
where safety (“no ‘bad thing’ happens”) and liveness
(“some ‘good thing’ happens”) are orthogonal classes.
(Formal de�nitions of trace properties, safety, and
liveness are given in box 2 for those readers who are
interested.) Moreover, there is added value when re-
quirements are formulated in terms of safety and live-
ness, because safety and liveness are each connected to
a proof method. Trace properties, though, are not ex-
pressive enough for specifying all con�dentiality and
integrity policies. �e class of hyperproperties [5], a
generalization of trace properties, is. And hyperprop-
erties include safety and liveness classes that enjoy the
same kind of orthogonal decomposition that exists
for trace properties. So hyperproperties are a promis-
ing candidate for use in a science of cybersecurity.

BOX 2. Trace properties, safety, and liveness

A speci�cation for a sequential program would characterize for
each input whether the program terminates and what outputs it
produces. This characterization of execution as a relation is inad-
equate for concurrent programs. Lamport [6] introduced safety
and liveness to describe the more expressive class of speci�ca-
tions that are needed for this setting. Safety asserts that no “bad
thing” happens during execution and liveness asserts that some
“good thing” happens.

A trace is a (possibly in�nite) sequence of states; a trace prop-

erty is a set of traces, where each trace in isolation satis�es some
characteristic predicate associated with that trace property.
Examples include partial correctness (the �rst state satis�es the
input speci�cation, and any terminal state satis�es the output
speci�cation) and mutual exclusion (in each state, the program
for at most one process designates an instruction in a critical
section). Not all sets of traces de�ne trace properties. Informa-

tion �ow, which stipulates a correlation between the values
of the two variables across all traces, is an example. This set of
traces does not have a characteristic predicate that depends
only on each individual trace, so the set is not a trace property.

FIGURE 1. Phishing attacks, which enable theft of passwords
and ultimately facilitate identity theft, can be classi�ed ac-
cording to how the human user is fooled into empowering
the adversary.

a. Clarkson and Schneider [4] use information theory to derive a law that characterizes the trade-o� between con�dentiality and integrity
for database-privacy mechanisms.

 The Next Wave | Vol. 19 No. 2 | 2012 | 51

FEATURE

Every trace property is either safety, liveness, or the con-
junction of two trace properties—one that is safety and one
that is liveness [7]. In addition, an invariance argument su�ces
for proving that a program satis�es a trace property that is
safety; a variant function is needed for proving a trace property
that is liveness [8]. Thus, the safety-liveness classi�cation for
trace properties comes with proof methods beyond o�ering
formal de�nitions.

Any classi�cation of policies is likely to be associ-
ated with some kind of system model and, in particu-
lar, with the interfaces the model de�nes (hence the
operations available to adversaries). For example, we
might model a system in terms of the set of possible
indivisible state transitions that it performs while
operating, or we might model a system as a black
box that reads information streams from some chan-
nels and outputs on others. Sets of indivisible state
transitions are a useful model for expressing laws
about classes of policies enforced by various operating
system mechanisms (for example, reference monitors
versus code rewriting) which themselves are con-
cerned with allowed and disallowed changes to system
state; stream models are o�en used for quantifying
information leakage or corruption in output streams.
We should expect that a science of cybersecurity will
not be built around a single model or around a single
classi�cation of policies.

2.3. Classes of defenses

A large and varied collection of di�erent defenses can
be found in the cybersecurity literature.

Program analysis and rewriting form one natural
class characterized by expending the e�ort for deploy-
ing the defense (mostly) prior to execution. �is class
of defenses, called language-based security, can be fur-
ther subdivided according to whether rewriting occurs
(it might not occur with type-checking, for example)
and according to the work required by the analysis
and/or the rewriting. �e undecidability of certain
analysis questions and the high computation costs
of answering others is sometimes a basis for further
distinguishing conservative defenses—those analysis
methods that can reject as being insecure programs
that actually are secure, and those rewriting methods
that add unnecessary checks.

Run-time defenses have, as their foundation, only a
few basic mechanisms:

 Isolation. Execution of one program is somehow
prevented from accessing interfaces that are as-
sociated with the execution of others. Examples
include physically isolated hardware, virtual
machines, and processes (which, by de�nition,
have isolated memory segments).

 Monitoring. A reference monitor is guaranteed to
receive control whenever any operation in some
speci�ed set is invoked; it further has the capac-
ity to block subsequent execution, which it does
to prevent an operation from proceeding when
that execution would not comply with what-
ever policy is being enforced. Examples include
memory mapping hardware, processors having
modes that disable certain instructions, operat-
ing system kernels, and �rewalls.

 Obfuscation. Code or data is transmitted or
stored in a form that can be understood only
with knowledge of a secret. �at secret is kept
from the attacker, who then is unable to abuse,
understand, or alter in a meaningful way the
content being protected. Examples include data
encryption, digital signatures, and program
transformations that increase the work factor
needed to cra� attacks.

Obviously, a classi�cation of run-time defenses could
be derived from this taxonomy of mechanisms.

Another way to view defenses is in terms of trust
relocation. For example, by running an application

FIGURE 2. A �rewall is an example of a reference monitor.

52

Blueprint for a science of cybersecurity

under control of a reference monitor, we relocate trust
in that application to trust in the reference monitor.
�is trust-relocation view of defenses invites discovery
of general laws that govern how trust in one compo-
nent can be replaced by trust in another.

We know that it is always possible for trust in an
analyzer to be relocated to a proof checker—sim-
ply have an analyzer that concludes P also generate
a proof of P. Moreover, this speci�c means of trust
relocation is attractive because proof checkers can be
simple, hence easy to trust; whereas, analyzers can
be quite large and complicated. �is suggests a re-
lated question: Is it ever possible to add defenses and
transform one system into another, where the latter
requires weaker assumptions about components be-
ing trusted? Perhaps trust is analogous to entropy in
thermodynamics—something that can be reversed
only at some cost (where “cost” corresponds to the
strength of the assumptions that must be made)? Such
questions are fundamental to the design of secure
systems, and today’s designers have no theory to help
with answers. A science of cybersecurity could provide
that foundation.

3. Laws already on the books

Attacks coevolve with defenses, so a system that
yesterday was secure might no longer be secure
tomorrow. You can then wonder whether yesterday’s
science of cybersecurity would be made irrelevant by
new attacks and new defenses. �is depends on the
laws, but if the classes of attacks, defenses, and poli-
cies are wisely constructed and su�ciently general,
then laws about them should be both interesting and
long-lived. Examples of extant laws can provide some
con�rmation, and two (developed by the author) are
discussed below.

3.1. Law: Policies and reference monitors

A developer who contemplates building or modifying
a system will have in mind some class of policies that
must be enforced. Laws that characterize what poli-
cies are enforced by given classes of defenses would be
helpful here. Such laws have been derived for vari-
ous defenses. Next, we discuss a law [9] concerning
reference monitors.

�e policy enforced by a reference monitor is the
set of traces that correspond to executions in which
the reference monitor does not block any operation.
�is set is a trace property, because whether the refer-
ence monitor blocks an operation in a trace depends
only on the contents of that trace (speci�cally, the pre-
ceding operations in that trace). Moreover, this trace
property is safety; the set of �nite sequences that end
in an operation the reference monitor blocks consti-
tutes the “bad thing.” We conclude:

Law. All reference monitors enforce trace
properties that are safety.

�is law, for example, implies that a reference mon-
itor cannot enforce an information �ow policy, since
(as discussed in box 2) information �ow is not a trace
property. However, the law does not preclude using a
reference monitor to enforce a policy that is stronger
and, by being stronger, implies that the information
�ow policy also will hold. But a stronger policy will
deem insecure some executions the information �ow
policy does not. So such a reference monitor would
block some executions that would be allowed by a
defense that exactly enforces information �ow. �e
system designer is thus alerted to a trade-o�—employ-
ing a reference monitor for information �ow policies
brings overly conservative enforcement.

�e above law also suggests a new kind of run-time
defense mechanism [10]. For every trace property ψ
that is safety, there exists an automaton m

ψ
 that accepts

the set of traces in ψ [8].

Automaton m
ψ
 is a reference monitor for ψ because,

by de�nition, it rejects traces that violate ψ. So if code
M

ψ
 that simulates m

ψ
 is invoked before every instruc-

tion in some given program S, then the result will be
a new program that behaves just like S except it halts
rather than executing an instruction that violates
policy ψ. �is is depicted in �gure 3, where invoca-
tion M

ψ
(x) simulates the transition that automaton

m
ψ
 makes for input symbol x and repeatedly returns

OK until automaton m
ψ
 would reject the sequence of

inputs it has processed. �us, the statement

if M
ψ
(“S

1
”) ≠ OK then halt (1)

in �gure 3 immediately prior to a program statement
S

i
 causes execution to terminate if next executing

 The Next Wave | Vol. 19 No. 2 | 2012 | 53

FEATURE

b. �ere is also experimental evidence [11] that distinct versions built by independent teams nevertheless share vulnerabilities.

S
i
 would violate the policy de�ned by automaton

m
ψ
—that is, if executing S

i
 would cause policy ψ to

be violated.

S
1

if M
ψ
(“S

1
”) ≠ OK then halt

S
2

S
1

S
3

if M
ψ
(“S

2
”) ≠ OK then halt

S
4

S
2

… …

original inlined reference monitor

FIGURE 3. Inlined reference monitor example

Such inlined reference monitors can be more e�-
cient at run-time than traditional reference monitors,
because a context switch is not required each time an
inlined reference monitor is invoked. However, an
inlined reference monitor must be installed separately
in each program whose execution is being monitored;
whereas, a traditional reference monitor can be writ-
ten and installed once and for all. �e per-program
installation does mean that inlined reference monitors
can enforce di�erent policies on di�erent programs,
an awkward functionality to support with a single
traditional reference monitor. And per-program in-
stallation also means that code (1) inserted to simulate
m

ψ
 can be specialized and simpli�ed, thereby allow-

ing unnecessary checks to be eliminated for inlined
reference monitors.

3.2. Law: Attacks and obfuscators

We de�ne a set of programs to be diverse if all imple-
ment the same functionality but di�er in their imple-
mentation details. Diverse programs are less prone
to having vulnerabilities in common, because attacks
o�en depend on memory layout and/or instruction
sequence speci�cs. But building multiple distinct ver-
sions of a program is expensive.b So system implemen-
tors have turned to mechanical means for creating sets
comprising diverse versions of a given program.

For mechanically generated diversity to work as a
defense, not only must implementations di�er (so they
have few vulnerabilities in common), but the di�er-
ences must be kept secret from attackers. For example,

bu�er over�ow attacks are generally written relative to
some speci�c run-time stack layout. Alter this layout
by rearranging the relative locations of variables as
well as the return address on the stack, and an input
designed to perpetrate an attack for the original stack
layout is unlikely to succeed. But if the new stack
layout were known by the adversary, then cra�ing an
attack again becomes straightforward.

Programs to accomplish such transformations have
been called obfuscators. An obfuscator τ takes two in-
puts—a program S and a secret key K—and produces
a morph, which is a program τ(S, K) whose semantics
is equivalent to S but whose implementation di�ers
from S and from morphs generated with other keys.
K speci�es which exact transformations are applied in
producing morph τ(S, K). Note that since S and τ are
assumed to be publicly known, knowledge of K would
enable an attacker to learn implementation details for
successfully attacking morph τ(S, K).

Di�erent classes of transformations are more or
less e�ective in defending against the various di�erent
classes of attacks. �is correspondence is important
when designing a set of defenses for a given threat
model, but knowing the speci�c correspondences is
not the same as knowing the overall power of mechan-
ically generated diversity as a defense. �at defensive
power for programs written in a C-like language has
been partially characterized in a set of laws [12]. Each
Obfuscator Law establishes, for a speci�c (common)
type system T

i
 and obfuscator τ

i
 pair, what is the rela-

tionship between two sets of attacks—those blocked
when type system T

i
 is enforced versus those that

cause execution of a morph τ
i
 (S, K) to abort for some

secret key K.

�e Obfuscator Laws do not completely quantify
the di�erence between the e�ectiveness of type-check-
ing and obfuscation. But the laws are noteworthy for
a science of cybersecurity because they circumvent
the di�cult problem of reasoning about attacks not
yet invented. Laws about classes of known attacks risk
irrelevance as new attacks are discovered. By formulat-
ing the Obfuscator Laws in terms of a relation between
sets of attacks, the need to identify or enumerate
individual attacks is avoided. To wit, the class of at-
tacks that type-checking defends against is not known
and not given, yet the power of obfuscation to defend

54

Blueprint for a science of cybersecurity

against an attack can now be meaningfully conveyed
relative to the power of type-checking.

4. The science in context

A science of cybersecurity would build on knowledge
from several existing areas of computer science. �e
connections to formal methods, fault-tolerance, and
experimental computer science are nuanced; they are
discussed below. However, cryptography, information
theory, and game theory are also likely to be valuable
sources of abstractions and laws. Finally, the physical
sciences surely have a role to play—not only in matters
of physical security but also for understanding un-
conventional interfaces to real devices that attackers
might exploit (as exempli�ed by the cold boot attacks
mentioned in section 2.1).

Formal methods. Attacks are possible only because
a system we deploy has �aws in its implementation,
design, speci�cation, or requirements. Eliminate the
�aws and we eliminate the need to deploy defenses.
But even when the systems on which we rely aren’t
being attacked, we should want con�dence that they
will function correctly. �e presence of �aws under-
mines that con�dence. So cybersecurity is not the only
compelling reason to eliminate �aws.

�e focus of formal methods research is on meth-
ods for gaining con�dence in a system by using
rigorous reasoning, including programming logics
and model checkers.c �is work has been remarkably
successful with small systems or small speci�cations. It
is used by companies like Microso� to validate device
drivers and Intel to validate chip designs. It is also
the engine behind strong type-checking in modern
programming languages (for example, Java and C#)
and various code-analysis tools used in security audits.
Further developments in formal methods could serve
a science of cybersecurity well. However, to date, work
in formal methods has been based on trace properties
or something with equivalent expressive power. �is
foundation allows mathematically elegant character-
izations for whether a program satis�es a speci�cation
and for justifying stepwise re�nement of programs.
But trace properties are not adequately expressive for
specifying all con�dentiality, integrity, and availabil-
ity policies, and stepwise re�nement is not sound for

these richer policies. (A mathematical justi�cation of
this limitation is provided in box 3 for the interested
reader.) So the foundations of today’s formal meth-
ods would have to be changed to something with the
expressiveness of hyperproperties—no small feat.

BOX 3. Satis�es and re�nement

A program S can be modeled as a trace property Σ
S
 containing

all sequences of states that could arise from executing S, and
a speci�c execution of S satis�es a trace property P if the trace
modeling that execution is in P. Thus, S satis�es P if and only if
Σ

S
 P holds.

We say that a program S' re�nes S, denoted S' S, when S'
resolves choices left unspeci�ed by S. For example, a program
that increments x by 1 re�nes a program that merely speci�es
that x be increased. A re�nement S' of S thus exhibits a subset of
the executions for S: S' S holds if and only if Σ

S'
 Σ

S
 holds.

Notice that “satis�es” is closed under re�nement. If S' re�nes
S and S satis�es P, then S' satis�es P. Also, if we construct S' by
performing a series of re�nements S' S

1
, S

1
 S

2
, . . . , S

n
 S and

S satis�es P then we are guaranteed that S' will satisfy P too. So
programs can be constructed by stepwise re�nement.

With richer classes of policies, “satis�es” is unfortunately not
closed under re�nement. As an example, consider two pro-
grams. Program S

x=y
 is modeled by trace property Σ

x=y
 contain-

ing all traces in which x = y holds in all states; program S* is
modeled by Σ

S*
 containing all sequences of states. We have that

Σ
x=y

 Σ
S*

 holds, so by de�nition S
x=y

 S*. However, program S*
enforces the con�dentiality policy that no information �ows
between x and y, whereas (re�nement) S

x=y
 does not. Satis�es for

the con�dentiality policy is not closed under re�nement, and
stepwise re�nement is not sound for deriving programs that
satisfy this policy.

Byzantine fault-tolerance. A system is considered
fault-tolerant if it will continue operating correctly
even though some of its components exhibit faulty
behavior. Fault-tolerance is usually de�ned relative
to a fault model that de�nes assumptions about what
components can become faulty and what kinds of
behaviors faulty components might exhibit. In the
Byzantine fault model [13], faulty components are per-
mitted to collude and to perform arbitrary state transi-
tions. A real system is unlikely to experience such
hostile behavior from its faulty components, but any
faulty behavior that might actually be experienced is,
by de�nition, allowed with the Byzantine fault model.
So by building a system that works for the Byzantine

c. Other areas of so�ware engineering are concerned with gaining con�dence in a system through the use of experimentation (for ex-
ample, testing) or management (for example, strictures on development processes).

 The Next Wave | Vol. 19 No. 2 | 2012 | 55

FEATURE

fault model, we ensure that the system can tolerate
all behaviors that in practice could be exhibited by its
faulty components.

�e basic recipe for implementing such Byzantine
fault-tolerance is well understood. We assume that the
output of every component is a function of the preced-
ing sequence of inputs. Each component that might
fail is replaced by 2t + 1 replicas, where these replicas
all receive the same sequence of inputs. Provided that
t or fewer replicas are faulty, then the majority of the
2t + 1 will be correct. �ese correct replicas will gener-
ate identical correct outputs, so the majority output
from all replicas is una�ected by the behaviors of
faulty components.

A faulty component in the Byzantine fault model
is indistinguishable from a component that has been
compromised and is under control of an attacker. We
might thus conclude that if a Byzantine fault-tolerant
system can tolerate t component failures, then it also
could resist as many as t attacks—we could get se-
curity by implementing Byzantine fault-tolerance.
Unfortunately, the argument oversimpli�es, and the
conclusion is unsound:

 Replication, if anything, creates more opportuni-
ties for attackers to learn con�dential informa-
tion. So enforcement of con�dentiality is not
improved by the replication required for imple-
menting Byzantine fault-tolerance. And storing
encrypted data—even when a di�erent key is
used for each replica—does not solve the prob-
lem if replicas actually must themselves be able
to decrypt and process the data they store.

 Physically separated components connected only
by narrow bandwidth channels are generally
observed to exhibit uncorrelated failures. But
physically separated replicas still will share many
of the same vulnerabilities (because they will use
the same code) and, therefore, will not exhibit
independence to attacks. If a single attack might
cause any number of components to exhibit
Byzantine behavior, then little is gained by toler-
ating t Byzantine components.

What should be clear, though, is that mechanically
generated diversity creates a kind of independence
that can be a bridge from Byzantine fault tolerance to

attack tolerance. �e Obfuscation Laws discussed in
section 3.2 are a �rst step in this direction.

Experimental computer science. �e code for a
typical operating system can �t on a disk, and all of the
protocols and interconnections that comprise the In-
ternet are known. Yet the most e�cient way to under-
stand the emergent behavior of the Internet is not to
study the documentation and program code—it is to
apply stimuli and make measurements in a controlled
way. Computer systems are frequently too complex
to admit predictions about their behaviors. So just as
experimentation is useful in the natural sciences, we
should expect to �nd experimentation an integral part
of computer science.

Even though we might prefer to derive our cyberse-
curity laws by logical deduction from axioms, the va-
lidity of those axioms will not always be self-evident.
We o�en will work with axioms that embody approxi-
mations or describe models, as is done in the natural
sciences. (Newton’s laws of motion, for example, ig-
nore friction and relativistic e�ects.) Experimentation
is the way to gain con�dence in the accuracy of our
approximations and models. And just as experimenta-
tion in the natural sciences is supported by laborato-
ries, experimentation for a science of cybersecurity
will require test beds where controlled experiments
can be run.

Experimentation in computer science is somewhat
distinct from what is called “experimental computer
science” though. Computer scientists validate their
ideas about new (hardware or so�ware) system de-
signs by building prototypes. �is activity establishes
that hidden assumptions about reality are not being
overlooked. Performance measurements then demon-
strate feasibility and scalability, which are otherwise
di�cult to predict. And for artifacts that will be used
by people (for example, programming languages and
systems), a prototype may be the only way to learn
whether key functionality is missing and what novel
functionality is useful.

Since a science of cybersecurity should lead to new
ideas about how to build systems and defenses, the
validation of those proposals could require building
prototypes. �is activity is not the same as engineering
a secure system. Prototypes are built in support of a

56

Blueprint for a science of cybersecurity

science of cybersecurity expressly to allow validation
of assumptions and observation of emergent behav-
iors. So, a science of cybersecurity will involve some
amount of experimental computer science as well as
some amount of experimentation.

5. Concluding remarks

�e development of a science of cybersecurity could
take decades. �e sooner we get started, the sooner we
will have the basis for a principled set of solutions to
the cybersecurity challenge before us. Recent new fed-
eral funding initiatives in this direction are a key step.
It’s now time for the research community to engage.

Acknowledgments

An opportunity to deliver the keynote at a work-
shop organized by the National Science Foundation
(NSF), NSA, and the Intelligence Advanced Research
Projects Activity on Science of Security in Fall 2008
was the impetus for me to start thinking about what
shape a science of cybersecurity might take. �e
feedback from the participants at that workshop as
well as discussions with the other speakers at a sum-
mer 2010 Jasons meeting on this subject was quite
helpful. My colleagues in the NSF Team for Research
in Ubiquitous Secure Technology (TRUST) Science
and Technology Center have been a valuable source
of feedback, as have Michael Clarkson and Riccardo
Pucella. I am grateful to Carl Landwehr, Brad Martin,
Bob Meushaw, Greg Morrisett, and Pat Muoio for
comments on an earlier dra� of this paper.

Funding

�is research is supported in part by NSF grants
0430161, 0964409, and CCF-0424422 (TRUST), Of-
�ce of Naval Research grants N00014-01-1-0968 and
N00014-09-1-0652, and a grant from Microso�. �e
views and conclusions contained herein are those of
the author and should not be interpreted as necessar-
ily representing the o�cial policies or endorsements,
either expressed or implied, of these organizations or
the US Government.

About the author

Fred B. Schneider joined the Cornell University
faculty in 1978, where he is now the Samuel B. Eckert
Professor of Computer Science. He also is the chief
scientist of the NSF TRUST Science and Technol-
ogy Center, and he has been professor at large at the
University of Tromso since 1996. He received a BS
from Cornell University (1975) and a PhD from Stony
Brook University (1978).

Schneider’s research concerns trustworthy systems,
most recently focusing on computer security. His early
work was in formal methods and fault-tolerant distrib-
uted systems. He is author of the graduate textbook
On Concurrent Programming, coauthor (with David
Gries) of the undergraduate text A Logical Approach
to Discrete Math, and the editor of Trust in Cyberspace,
which reports �ndings from the US National Research
Council’s study that Schneider chaired on information
systems trustworthiness.

A fellow of the American Association for the
Advancement of Science, the Association for Com-
puting Machinery, and the Institute of Electrical and
Electronics Engineers, Schneider was granted a DSc
honoris causa by the University of Newcastle-upon-
Tyne in 2003. He was awarded membership in Norges
Tekniske Vitenskapsakademi (the Norwegian Acad-
emy of Technological Sciences) in 2010 and the US
National Academy of Engineering in 2011. His survey
paper on state machine replication received a Special
Interest Group on Operating Systems (SIGOPS) Hall
of Fame Award.

Schneider serves on the Computing Research As-
sociation’s board of directors and is a council member
of the Computing Community Consortium, which
catalyzes research initiatives in the computer sciences.
He is also a member of the Defense Science Board and
the National Institute for Standards and Technology
Information Security and Privacy Advisory Board.
A frequent consultant to industry, Schneider co-
chairs Microso�’s Trustworthy Computing Academic
Advisory Board.

Dr. Schneider can be reached at the Department
of Computer Science at Cornell University in Ithaca,
New York 14853.

 The Next Wave | Vol. 19 No. 2 | 2012 | 57

References

[1] Kolata G. �e key vanishes: Scientist outlines unbreak-
able code. New York Times. 2001 Feb 20. Available at: http://
www.nytimes.com/2001/02/20/science/the-key-vanishes-
scientist-outlines-unbreakable-code.html

[2] Halderman JA, Schoen SD, Heninger N, Clarkson W,
Paul W, Calandrino JA, Feldman AJ, Appelbaum J, Felten,
EW. Lest we remember: Cold boot attacks on encryption
keys. In: Proceedings of the 17th USENIX Security Sympo-
sium; July 2008; p. 45–60. Available at: http://www.usenix.
org/events/sec08/tech/full_papers/halderman/halderman.
pdf

[3] Dolev D, Yao AC. On the security of public key
protocols. IEEE Transactions on Information �eory.
1983;29(2):198–208. DOI: 10.1109/TIT.1983.1056650

[4] Clarkson M, Schneider FB. Quanti�cation of integrity.
In: Proceedings of the 23rd IEEE Computer Security Founda-
tions Symposium; Jul 2010; Edinburgh, UK, p. 28–43. DOI:
10.1109/CSF.2010.10

[5] Clarkson M, Schneider FB. Hyperproperties. Journal of
Computer Security. 2010;18(6):1157–1210.

[6] Lamport L. Proving the correctness of multiprocess
programs. IEEE Transactions on So�ware Engineering.
1977;3(2):125–143. DOI: 10.1109/TSE.1977.229904

[7] Alpern B, Schneider FB. De�ning liveness. Infor-
mation Processing Letters. 1985;21(4):181–185. DOI:
10.1016/0020-0190(85)90056-0

[8] Alpern B, Schneider FB. Recognizing safety and liveness.
Distributed Computing. 1987;2(3):117–126. DOI: 10.1007/
BF01782772

[9] Schneider, FB. Enforceable security policies. ACM
Transactions on Information and System Security.
2000;3(1):30–50. DOI: 10.1145/353323.353382

[10] Erlingsson U, Schneider, FB. IRM enforcement of Java
stack inspection. In: Proceedings of the 2000 IEEE Sympo-
sium on Security and Privacy; May 2000; Oakland, CA; p.
246–255. DOI: 10.1109/SECPRI.2000.848461

[11] Knight JC, Leveson NG. An experimental evalua-
tion of the assumption of independence in multiversion
programming. IEEE Transactions on So�ware Engineering.
1986;12(1):96–109.

[12] Pucella R, Schneider FB. Independence from ob-
fuscation: A semantic framework for diversity. Journal of
Computer Security. 2010;18(5):701–749. DOI: 10.3233/
JCS-2009-0379

[13] Lamport L, Shostak R, Pease M. �e Byzantine generals
problem. ACM Transactions on Programming Languages.
1982;4(3):382–401. DOI: 10.1145/357172.357176

58

United States

17.55%

3

United Kingdom

38.54%

1

Netherlands

18.33%

2

France

2.66%

6

Norway

3.72%

5

Canada

0.44%

14

Brazil

0.27%

17

Italy

0.14%

21

Luxembourg

0.07%

25

GLOBE AT A GLANCE
Sources of malware

Malware, short for “malicious software,” includes computer viruses, worms, and Trojan
horses, and can spread using various methods, including worms sent through email and
instant messages, Trojan horses dropped from websites, and virus-infected �les downloaded
from peer-to-peer connections.a This map shows the top 25 geographical sources of
malware from August of 2011 through October of 2011. Data was provided by Symantec.

 The Next Wave | Vol. 19 No. 2 | 2012 | 59

Sweden

6.57%

4

Hong Kong

2.60%

7

Australia

2.35%

8

India

1.95%

9

Japan

0.51%

13

Germany

0.66%

10

Austria

0.61%

11

Malaysia

0.55%

12

Switzerland

0.40%

15

Singapore

0.34%

16

United Arab Emirates

0.21%

18

China

0.16%

19

South Africa

0.16%

20

Denmark

0.12%

22

Republic of Korea

0.12%

23

Vietnam

0.10%

24

GLOBE

Percentage of Malware Sources

Lower Higher
a. http://us.norton.com/security_response/malware.jsp

The “McAfee threats report: Second quarter 2011”

found the following malware trends:b

 Malware has increased 22 percent from 2010
to 2011.

 By the end of 2011, McAfee Labs expects to
have 75 million samples of malware.

 Fake antivirus software continues to grow
and has even begun to climb aboard a new
platform—the Mac.

 For-pro�t mobile malware has increased,
including simple short message service (SMS)-
sending Trojans and complex Trojans that use
exploits to compromise smartphones.

 Android is becoming the third-most targeted
platform for mobile malware.

 Rootkits, also known as “stealth malware,” are
growing in popularity. A rootkit is code that
hides malware from operating systems and
security software.

Cybercrime

60

The “Norton by Symantec cybercrime report 2011” revealed the following statistics based on surveys
conducted between February 6, 2011 and March 14, 2011 of 19,636 individuals (including children) from

24 countries:a

a. The full report can be accessed at www.symantec.com/content/en/us/home_homeo�ce/html/cybercrimereport/

b. The full report can be accessed at www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011

The Georgia Institute of Technology’s Cyber
Security Summit on October 11, 2011 resulted in

the “Emerging cyber threats report 2012.”

d The key points
include the following:

Mobile threats

 Mobile applications rely increasingly on the brows-
er, presenting unique challenges to security in terms
of usability and scale.

 Expect compound threats targeting mobile devices
to use SMS, email and the mobile Web browser to
launch an attack, then silently record and steal data.

 While USB �ash drives have long been recognized
for their ability to spread malware, mobile phones
are becoming a new vector that could introduce
attacks on otherwise-protected systems.

 Encapsulation and encryption for sensitive portions
of a mobile device can strengthen security.

Botnets

 Botnet controllers build massive information pro-
�les on their compromised users and sell the data to
the highest bidder.

 Advanced persistent adversaries query botnet op-
erators in search of already compromised machines
belonging to their attack targets.

The IBM X-Force’s “2011 Mid-year trend and risk
report” evidences that mobile malware is on the rise.c

Their report highlights the following points:

 The �rst half of 2011 saw an increased level of
malware activity targeting the latest generation of
smart devices, and the increased number of vulner-
ability disclosures and exploit releases targeting
mobile platforms seen in 2010 continues into 2011,
showing no signs of slowing down.

 Mobile devices are quickly becoming a malware
platform of choice. This malware increase is based
on premium SMS services that can charge users, a
rapidly increasing rate of user adoption, and un-
patched vulnerabilities on the devices.

 Two popular methods of malware distribution mod-
els are to create infected versions of existing market

software and to publish software that claims to be a
crack, patch, or cheat for some other software.

 Besides sending SMS messages, Android malware
has been observed collecting personal data from
the phone and sending it back to a central server.
This information could be used in phishing attacks
or for identity theft. We have also seen Android mal-
ware that has the ability to be remotely controlled
by a remote command and control server—just like
a bot that infects a Windows desktop machine.

 Enterprise security management of mobile
endpoint devices will struggle to handle massive
expansion. One solution may be the convergence
of endpoint security con�guration management to
incorporate all these new devices.

 Bad guys will borrow techniques from Black Hat
Search Engine Optimization to deceive current
botnet defenses like dynamic reputation systems.

Information security

 Security researchers are currently debating whether
personalization online could become a form of
censorship.

 Attackers are performing search engine optimi-
zation to help their malicious sites rank highly in
search results.

 The trend in compromised certi�cate authorities
exposes numerous weaknesses in the overall trust
model for the Internet.

Advanced persistent threats

 Advanced persistent threats will adapt to security
measures until malicious objectives are achieved.

 Human error, lack of user education, and weak
passwords are still major vulnerabilities.

 Cloud computing and computer hardware may
present new avenues of attack, with all malware
moving down the stack.

 Large, �at networks with perimeter defenses at the
Internet ingress/egress point break down quickly in
the face of advanced persistent threats.

EXPERTS

 The Next Wave | Vol. 19 No. 2 | 2012 | 61

c. The full report can be accessed at www-935.ibm.com/services/us/iss/xforce/trendreports/

d. The full report can be accessed at www.gtisc.gatech.edu/doc/emerging_cyber_threats_report2012

62

New forensics tool exposes

online activity

Stanford University researchers, led by Elie
Bursztein, have developed so�ware that bypasses
the encryption on a personal computer’s hard drive
to reveal the websites a user has visited and whether
he/she has any data stored in the cloud. Other than
Microso�, Bursztein and his team are the only ones
to discover how to decrypt the �les. �eir free, open-
source so�ware—O�ine Windows Analysis and
Data Extraction (OWADE)—runs on a Windows
operating system and was introduced at the Black
Hat 2011 security conference in August. OWADE
can enable, for example, a law enforcement agent to
reconstruct a suspect’s online activity by extracting
sensitive data stored by Windows, the browsers, and
instant messaging so�ware from the computer’s hard
drive. For more information, visit www.newscientist.
com/article/mg21128285.300-new-forensics-tool-
can-expose-all-your-online-activity.html. �e white
paper can be downloaded from elie.im/talks/beyond-
�les-recovery-OWADE-cloud-based-forensic.

Combating next-generation

computer viruses

Dr. Kevin Hamlen of the University of Texas
at Dallas’ Cyber Security Research Center has
discovered a new method to predict the actions
of computer viruses. Dr. Hamlen’s research uses
advanced algorithms based on programming-
language research to predict and interrupt the
actions of malware programs in the microseconds
before those programs begin to execute and mutate.
His method builds upon existing computing
capabilities and features already programmed

into most central processing unit chips
currently used in various popular

devices, such as laptops. �is
research could give way to new,

proactive antivirus programs.
For more information, visit

www.afcea.org/signal/
articles/templates/

Signal_Article_Template.
asp?articleid=2754&

zoneid=329.

Applying a new mathematical framework to cybersecurity

A team of researchers from the Stevens Institute of Technology and the
City University of New York, led by Dr. Antonio Nicolosi, is applying a new
mathematical paradigm to cryptography to secure the Internet. Dr. Nicolosi’s
team was awarded a grant from the National Science Foundation to support
the development of new cryptographic tools and protocols and to promote
collaboration between the cryptography and group-theory research
communities. �e team is applying recent developments in combinatorial
group therapy (CGT)—a mathematical framework sensitive to the order of
operations in an equation—to cybersecurity. Cybersecurity depends upon
the quanti�able hardness of a small number of mathematical equations
available in cryptographic methodologies; because CGT is sensitive to the
order of operations, it is an e�ective method to generate new quanti�able
mathematical equations that can be used to enhance cybersecurity.
Dr. Nicolosi believes that CGT could also improve authentication protocol e�ciency. Both undergraduate and
graduate students will be participating in building the systems used to test the equations. For more information, visit
www.stevens.edu/news/content/applying-new-mathematics-robust-cryptography-and-safer-internet.

 The Next Wave | Vol. 19 No. 2 | 2012 | 63

POINTERS

Measuring the e�ects of a

Wi-Fi attack

Dr. Wenye Wang and a team of researchers at North
Carolina State University have developed a method
to measure the e�ects of di�erent types of wireless-
�delity (Wi-Fi) attacks on a network; this method
will be helpful in developing new cybersecurity
technologies. �e researchers examined two
Wi-Fi attack models—a persistent attack and an
intermittent attack—and compared how these
attacks are a�ected by di�erent conditions, such as
the number of users. �ey developed a metric called
an order gain, which measures the probability of an
attacker having access to a Wi-Fi network versus
the probability of a legitimate user having access to
the same network. For example, if a user has an 80
percent chance of accessing a network, and other
users have the remaining 20 percent, the order gain
is four. �is metric is useful in determining which
attacks cause the most disruption. �e researchers
suggested that system administrators focus their
countermeasures on persistent attacks that target
networks with large numbers of users because this
yields the largest order gain. For more information,
visit news.ncsu.edu/releases/wmswangordergain/.

Enhanced security for sensitive data in cloud computing

A team of researchers from North Carolina State
University (NCSU) and IBM have developed a new
technique to better protect sensitive data in cloud
computing while preserving the system’s performance.
Cloud computing uses hypervisors—programs that
create a virtual workspace, or cloud, in which di�erent
operating systems can run in isolation from one another.
In cloud computing, a common concern is that attackers
could take advantage of vulnerabilities in the hypervisor
to steal or corrupt sensitive data from other users in the
cloud. �e new technique, Strongly Isolated Computing
Environment (SICE), addresses this concern by isolating
sensitive information and workload from the rest of
the functions performed by the hypervisor. Dr. Peng Ning, professor of computer science at NCSU and one of the
researchers on the project, says, “…our approach relies on a so�ware foundation called the Trusted Computing
Base, or TCB, that has approximately 300 lines of code, meaning that only these 300 lines of code need to be trusted
in order to ensure the isolation o�ered by our approach. Previous techniques have exposed thousands of lines of
code to potential attacks. We have a smaller attack surface to protect.” Additionally, testing indicated that the SICE
framework used only about three percent of the system’s performance on multicore processors that do not require
direct network access. For more information, visit news.ncsu.edu/releases/wmsningsice/.

An app that

logs the

keystrokes

on your

smartphone

Hao Chen and
Liang Cai of the
University of California, Davis, have created an
application that records what you type on your
Android smartphone. Also called keylogging,
criminals can use this method to steal your
passwords, logins, and other private information. �e
application uses the smartphone’s motion sensors to
detect vibrations that result from tapping the screen,
and it doesn’t have to be visible on the screen to
work. Chen and Cai say that the application correctly
guesses over 70 percent of keystrokes on a virtual
numerical keypad like those used in calculator
applications. �ey expect the accuracy to be even
higher on tablet devices due to tablets’ larger size
and resulting movement from tapping the screen.
For more information, visit www.newscientist.com/
article/mg21128255.200-smartphone-jiggles-reveal-
your-private-data.html.

64

Automated tool defeats CAPTCHA on popular websites

Stanford University researchers Elie Bursztein, Matthieu Martin,
and John C. Mitchel created an automated tool, Decaptcha,
that deciphers text-based antispam tests used by many popular
websites. Completely Automated Public Turing test to tell
Computers and Humans Apart (CAPTCHA) is a security
mechanism used by many websites to block spam bots from
registering for an account or posting a comment; it consists
of a challenge, such as typing distorted text, that only humans
are supposed to be able to solve. Decaptcha uses algorithms to
clean up image background noise and to break text strings into
individual characters for easier recognition. �e researchers ran
the tool against 15 popular websites and found that it was able to
beat Visa’s Authorize.net payment gateway 66 percent of the time,
Blizzard (i.e., World of Warcra�, Starcra� II, and Battle.net) 70
percent of the time, eBay 43 percent of the time, and Wikipedia
25 percent of the time. Of the tested websites, Decaptcha could
not break CAPTCHAs on Google or reCAPTCHA. (See table 1
for more results.) To download the paper describing this research,
“Text-based CAPTCHA strengths and weaknesses,” visit elie.im/
publication/text-based-Captcha-strengths-and-weaknesses.

TABLE 1. Results of Decaptcha testing

Website Decaptcha’s Solving Rate

Megaupload 93%

CAPTCHA.net 73%

NIH 72%

Blizzard 70%

Authorize.net 66%

eBay 43%

Reddit 42%

Slashdot 35%

Wikipedia 25%

Digg 20%

CNN 16%

Baidu 5%

Skyrock 2%

Google 0%

reCAPTCHA 0%

Secure cloud computing

service for US researchers

On November 2, 2011, Indiana
University (IU) and Penguin Computing
announced a partnership to o�er US
researchers access to a secure cloud
computing service. �e service remains
secure because it is run by a group
of computers owned by Penguin and
housed in IU’s secure state-of-the-art

data center. In addition to IU, initial
users of the service include the University

of Virginia, the University of California,
Berkeley, and the University of Michigan.

�e service will next be available for
purchase to researchers at other US institutions

of higher education and federally funded
research centers. For more information, visit
ovpitnews.iu.edu/news/page/normal/20208.html.

Vulnerabilities

found in top Google

Chrome extensions

Security researchers Adrienne Porter Felt, Nicholas
Carlini, and Prateek Saxena at the University of Califor-
nia, Berkeley, conducted a review of 100 Google Chrome

extensions, including the 50 most popular ones, and found
that 27 percent of them contain one or more JavaScript injec-
tion vulnerabilities. �is vulnerability can allow an attacker,
via the web or an unsecure Wi-Fi hotspot, to take complete

control of an extension and gain access to a user’s private
data. �e researchers also reported that seven of the vulner-

able extensions were used by 300,000 people or more.
�ey sent vulnerability warnings to all the relevant

developers. For more information, visit www.
informationweek.com/news/security/

vulnerabilities/231602411.

 The Next Wave | Vol. 19 No. 2 | 2012 | 65

POINTERS

Internet privacy tools are di�cult for most users

Researchers from the Carnegie Mellon CyLab Usable
Privacy and Security Laboratory conducted a usability
study of nine Internet privacy tools and found that they
were confusing and ine�ective for most nontechnical us-
ers. �e researchers evaluated the use of privacy settings
in two popular browsers, Internet Explorer 9 and Mozil-
la Firefox 5, as well as three tools that set opt-out cookies
to prevent websites from displaying advertisements, and
four tools that block certain sites from tracking user
activity. �e major �ndings include the following:

 Users can’t distinguish between trackers. Users
are unfamiliar with companies that track their
behavior, so tools that ask them to set opt-out or
blocking preferences on a per-company basis are
ine�ective. Most users just set the same preferences for every company on a list.

Inappropriate defaults. �e default settings of privacy tools and opt-out sites are inappropriate for users;
they generally do not block tracking. A user must manually adjust the settings of these tools to activate their
capability to block tracking.

 Communication problems. �e tools provide instructions and guidance that are either too simplistic to
inform a user’s decision, or too technical to be understood.

 Need for feedback. Many of the tools do not provide feedback to let users know that the tool is
actually working.

 Users want protections that don’t break things. Users had di�culty determining when the tool they were
using caused parts of websites to stop working. Subscribing to a Tracking Protection List (TPL) that blocks
most trackers except those necessary for sites to function can solve this problem, but participants were
unaware of the need to select a TPL or didn’t know how to choose one.

 Confusing interfaces. �e tools su�ered from major usability �aws. For example, some users mistook
registration pages for opt-out pages, and some users did not realize they needed to subscribe to certain
features of the tools.

To download the technical report describing this research, “Why Johnny can’t opt out: A usability evaluation of tools
to limit online behavioral advertising,” visit www.cylab.cmu.edu/research/techreports/2011/tr_cylab11017.html.

“Split-manufacturing” microprocessors to protect intellectual property

�e Intelligence Advanced Research Project Agency (IARPA) is working toward developing a “split-manufacturing”
process for microprocessor chips to ensure their design is secure and protected. In split-manufacturing, chip
fabrication is split into two processes: front-end-of-line (FEOL) and back-end-of-line (BOEL). �e FEOL process
involves the fabrication of transistor layers in o�shore foundries, and the BOEL process involves the fabrication
of metallizations in trusted US facilities. According to IARPA, those working on the FEOL process will not have
access to information about the design intention of the chips. �is split process is intended to prevent malicious
circuitry as well as protect the intellectual property of the chip design. Sandia National Laboratories will coordinate
all FEOL and BEOL processes, and the University of Southern California Information Sciences Institute will
carry out the fabrication runs. For more information, visit www.informationweek.com/news/government/
enterprise-architecture/231902147.

FSC
logo

iN053748

