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The world’s most extensive case of cyberespionage, 

including attacks on US government and UN computers, 

was reported at the 2011 Black Hat conference by security 

�rm McAfee. Concluding �ve years of investigation, McAfee 

analysts were “surprised by the enormous diversity of the 

victim organizations and were taken aback by the audacity 

of the perpetrators.” Wired magazine recently broke a story 

revealing that “a computer virus has infected the cockpits of 

America’s Predator and Reaper drones, logging pilots’ every 

keystroke as they remotely �y missions over Afghanistan 

and other war zones.” These are but two examples of what 

have become almost routine reports of failures in system 

security. Increasingly, these problems directly a�ect us in 

important parts of our daily lives. And even more alarming 

is the rapid growth in the breadth and severity of these 

spectacular failures. 

How are such widespread problems possible after 

decades of investment in computer security research and 

development? This question has gained the attention of 

increasing numbers of security professionals over the past 

several years. An emerging view is that these problems 

demonstrate that we do not yet have a good understanding 

of the fundamental science of security. Instead of fundamental 

science, most system security work has focused on developing 

ad hoc defense mechanisms and applying variations of the 

“attack and patch” strategy that emerged in the earliest days 

of computer security. Our national reliance on networked 

information systems demands that we approach security 

engineering with the same rigor that we expect in other 

engineering disciplines. We should expect designers of our 

digital infrastructure to have a well understood scienti�c 

foundation and advanced analytic tools comparable to those 

used in the production of other critical assets such as bridges, 

aircraft, power plants, and water puri�cation systems.

The National Security Agency, the National Science 

Foundation (NSF), and the Intelligence Advanced Research 

Projects Activity jointly responded to this problem by 

sponsoring a workshop in November 2008 to consider 

whether a robust science of security was possible and to 

describe what it might look like. Academic and industry 

experts from a broad set of disciplines including security, 

economics, human factors, biology, and experimentation met 

with government researchers to help lay the groundwork 

for potential future initiatives. Since that meeting, a 

number of programs focused on security science have 

been initiated, along with an e�ort to help build a robust 

collaboration community.

This issue of The Next Wave is focused upon the important 

topic of security science. Included are articles from six of 

the experts who attended the 2008 workshop and have 

continued to work in the area of security science. Carl 

Landwehr from NSF provides a few historical examples 

of the relationship between engineering and science and 

shows how these examples might help us understand the 

evolution of cybersecurity. Adam Shostack from Microsoft 

provides another perspective on how science evolves and 

describes some steps he considers necessary to advance 

the development of cybersecurity science. Roy Maxion from 

Carnegie Mellon University (CMU) calls for greater scienti�c 

rigor in the way experimental methods are applied to 

cybersecurity. Dusko Pavlovic from Oxford University provides 

a unique and unexpected model for security to reason about 

what a security science might be. Anupam Datta from CMU 

and John Mitchell from Stanford University describe some of 

their joint work in one of the core problem areas for security—

how to compose secure systems from smaller building 

blocks. Alessandro Chiesa from the Massachusetts Institute of 

Technology and Eran Tromer from Tel Aviv University describe 

a novel approach based upon probabilistically checkable 

proofs to achieve trusted computing on untrusted hardware. 

Their insights may lead to new strategies for dealing with 

a host of security problems that are currently considered 

intractable, including supply chain security.

The capstone article for this issue of The Next Wave, 

contributed by Fred Schneider of Cornell University, 

methodically constructs a “blueprint” for security science. 

Building on his keynote at the 2008 workshop, Schneider 

suggests that security science should describe features and 
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relationships with predictive value rather than create defenses 

reactively responding to attacks. Schneider’s blueprint outlines 

the foundation for a security science comprising a body of laws 

that allow meaningful predictions about system security. 

Developing a robust security science will undoubtedly 

require a long-term e�ort that is both broad based and 

collaborative. It will also demand resources well beyond those 

available to any single organization. But even with a generally 

acknowledged need for science, the temptation will be to 

continue �ghting security �res with a patchwork of targeted, 

tactical activities. Good tactics can win a battle but good 

strategy wins the war. We need to create a better strategy for 

computer security research. As we continue to struggle with 

daily battles in cyberspace, we should not forget to pursue the 

fundamental science—the fundamental strategy—that will 

help to protect us in the future.
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E
ngineers design and build artifacts—bridges, sewers, cars, airplanes, circuits, software—
for human purposes. In their quest for function and elegance, they draw on the 
knowledge of materials, forces, and relationships developed through scienti�c study, 

but frequently their pursuit drives them to use materials and methods that go beyond the 
available scienti�c basis. Before the underlying science is developed, engineers often invent 
rules of thumb and best practices that have proven useful, but may not always work. Drawing 
on historical examples from architecture and navigation, this article considers the progress of 
engineering and science in the domain of cybersecurity. 

C ar l  E .  L an dwe h r

Cybersecurity: From 
engineering to science | 

Over the past several years, public interest has in-
creased in developing a science of cybersecurity, o�en 
shortened to science of security [1, 2]. In modern 
culture, and certainly in the world of research, science 
is seen as having positive value. �ings scienti�c are 
preferred to things unscienti�c. A scienti�c founda-
tion for developing artifacts is seen as a strength. If 
one invests in research and technology, one would like 
those investments to be scienti�cally based or at least 
to produce scienti�cally sound (typically meaning 
reproducible) results. 

�is yearning for a sound basis that one might 
use to secure computer and communication systems 
against a wide range of threats is hardly new. Lampson 
characterized access control mechanisms in operat-
ing systems in 1971, over 40 years ago [3]. Five years 
later Harrison, Ruzzo, and Ullman analyzed the power 
of those controls formally [4]. It was 1975 when Bell 
and LaPadula [5], and Walter, et al. [6], published 
their respective state-machine based models to specify 
precisely what was intended by “secure system.” �ese 
e�orts, preceded by the earlier Ware and Anderson 

reports [7, 8] and succeeded by numerous attempts to 
build security kernel-based systems on these foun-
dations, aimed to put an end to a perpetual cycle of 
“penetrate and patch” exercises. 

Beginning in the late 1960’s, Djikstra and others de-
veloped the view of programs as mathematical objects 
that could and should be proven correct; that is, their 
outputs should be proven to bear speci�ed relations 
to their inputs. Proving the correctness of algorithms 
was di�cult enough; proving that programs written in 
languages with informally de�ned semantics imple-
mented the algorithms correctly was clearly infeasible 
without automated help. 

In the late 1970’s and early 1980’s several research 
groups developed systems aimed at verifying proper-
ties of programs. Proving security properties seemed 
less di�cult and therefore more feasible than proving 
general correctness, and signi�cant research funding 
�owed into these veri�cation systems in hopes that 
they would enable sound systems to be built. 

�is turned out not to be so easy, for several 
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reasons. One reason is that capturing the mean-
ing of security precisely is di�cult in itself. In 1985, 
John McLean’s System Z showed how a system might 
conform to the Bell-LaPadula model yet still lack 
the security properties its designers intended [9]. In 
the fall of 1986, Don Good, a developer of veri�ca-
tion systems, wrote in an email circulated widely at 
the time: “I think the time has come for a full-scale 
redevelopment of the logical foundations of computer 
security . . .” Subsequent discussions led to a workshop 
devoted to Computer Security Foundations, inaugu-
rated in 1988, that has met annually since then and led 
to the founding of �e Journal of Computer Security a 
few years later.

All of this is not to say that the foundations for a 
science of cybersecurity are in place. �ey are not. But 
the idea of searching for them is also not new, and it’s 
clear that establishing them is a long-term e�ort, not 
something that a sudden infusion of funding is likely 
to achieve in a short time.

But lack of scienti�c foundations does not neces-
sarily mean that practical improvements in the state of 
the art cannot be made. Consider two examples from 
centuries past: 

�e Duomo, the Cathedral of Santa Maria Del 
Fiore, is one of the glories of Florence. At the time 
the �rst stone of its foundations was laid in 1294, the 
birth of Galileo was almost 300 years in the future, 
and of Newton, 350 years. �e science of mechanics 
did not really exist. Scale models were built and used 
to guide the cathedral’s construction but, at the time 
the construction began, no one knew how to build 
a dome of the planned size. Ross King tells the fas-
cinating story of the competition to build the dome, 
which still stands atop the cathedral more than 500 
years a�er its completion, and of the many innova-
tions embodied both in its design and in the methods 
used to build it [10]. It is a story of human innovation 
and what might today be called engineering design, 
but not one of establishing scienti�c understanding of 
architectural principles.

About 200 years later, with the advent of global 
shipping routes, the problem of determining the East-
West position (longitude) of ships had become such an 
urgent problem that the British Parliament authorized 
a prize of £20,000 for its solution. It was expected 
that the solution would come from developments 

in mathematics and astronomy, and so the Board of 
Longitude, set up to administer the prize competition, 
drew heavily on mathematicians and astronomers. In 
fact, as Dava Sobel engagingly relates, the problem was 
solved by the development, principally by a single self-
taught clockmaker named John Harrison, of mechani-
cal clocks that could keep consistent time even in the 
challenging shipboard environments of the day [11].

I draw two observations from of these vignettes in 
relation to the establishment of a science of cybersecu-
rity. �e �rst is that scienti�c foundations frequently 
follow, rather than precede, the development of practi-
cal, deployable solutions to particular problems. I 

FIGURE 1. The Duomo, the Cathedral of Santa Maria Del Fiore, 
is a story of human innovation and what might today be called 
engineering design, but not one of establishing scienti�c under-
standing of architectural principles.
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claim that most of the large scale so�ware systems on 
which society today depends have been developed in a 
fashion that is closer to the construction of the Flor-
ence cathedral or Harrison’s clocks than to the model 
of speci�cation and proof espoused by Dijkstra and 
others. �e Internet Engineering Task Force (IETF) 
motto asserting a belief in “rough consensus and 
running code” [12] re�ects this fundamentally utili-
tarian approach. �is observation is not intended as 
a criticism either of Dijkstra’s approach or that of the 
IETF. One simply must realize that while the search 
for the right foundations proceeds, construction 
will continue.

Second, I would observe that the establishment of 
proper scienti�c foundations takes time. As noted ear-
lier, Newton’s law of gravitation followed Brunelleschi 
by centuries and could just as well be traced all the 
way back to the Greek philosophers. One should not 
expect that there will be sudden breakthroughs in 
developing a scienti�c foundation for cybersecurity, 
and one shouldn’t expect that the quest for scienti�c 
foundations will have major near-term e�ects on the 
security of systems currently under construction. 

What would a scienti�c foundation for cybersecu-
rity look like? Science can come in several forms, and 
these may lead to di�erent approaches to a science 
of cybersecurity [13]. Aristotelian science was one 
of de�nition and classi�cation. Perhaps it represents 
the earliest stage of an observational science, and it is 
seen here both in attempts to provide a precise charac-
terization of what security means [14] but also in the 
taxonomies of vulnerabilities and attacks that pres-
ently plague the cyberinfrastructure. 

A Newtonian science might speak in terms of mass 
and forces, statics and dynamics. Models of compu-
tational cybersecurity based in automata theory and 
modeling access control and information �ow might 
fall in this category, as well as more general theories 
of security properties and their composability, as in 
Clarkson and Schneider’s recent work on hyperprop-
erties [15]. A Darwinian science might re�ect the 
pressures of competition, diversity, and selection. Such 
an orientation might draw on game theory and could 
model behaviors of populations of machines infected 
by viruses or participating in botnets, for example. 
A science drawing on the ideas of prospect theory 
and behavioral economics developed by Kahneman, 
Tversky, and others might be used to model risk 

perception and decision-making by organizations 
and individuals [16]. 

In conclusion, I would like to recall Herbert Simon’s 
distinction of science from engineering in his land-
mark book, Sciences of the Arti�cial [17]:

Historically and traditionally, it has been the 
task of the science disciplines to teach about 
natural things: how they are and how they work. 
It has been the task of the engineering schools 
to teach about arti�cial things: how to make 
artifacts that have desired properties and how 
to design.

From this perspective, Simon develops the idea 
that engineering schools should develop and teach a 
science of design. Despite the complexity of the arti-
facts humans have created, it is important to keep in 
mind that they are indeed artifacts. �e community 
has the ability, if it has the will, to reshape them to bet-
ter meet its needs. A science of cybersecurity should 
help people understand how to create artifacts that 
provide desired computational functions without be-
ing vulnerable to relatively trivial attacks and without 
imposing unacceptable constraints on users or on 
system performance. 

FIGURE 2. Scienti�c foundations frequently follow, rather than 
precede, the development of practical, deployable solutions 
to particular problems; for example, mechanical clocks were 
invented only after determining the longitude of ships had 
become such an urgent problem that the British Parliament 
authorized a £20,000 prize for its solution. 
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The evolution of  
information security  | 

A d a m  S h o s t a c k

B
efore Charles Darwin wrote his most famous works, The Origin of Species and The Descent of 

Man, he wrote a travelogue entitled The Voyage of the Beagle. In it he describes his voyages 
through South and Central America. On his journey, he took the opportunity to document 

the variety of life he saw and the environments in which it existed. Those observations gave 
Darwin the raw material from which he was able to formulate and re�ne his theory of evolution.

Evolution has been called the best idea anyone ever had. That’s in part because of the explanatory 
power it brings to biology and in part because of how well it can help us learn in other �elds. 
Information security is one �eld that can make use of the theory of evolution. In this short essay, 
I’d like to share some thoughts on how we can document the raw material that software and 
information technology professionals can use to better formulate and re�ne their ideas around 
security. I’ll also share some thoughts on how information security might evolve under a variety of 
pressures. I’ll argue that those who adopt ideas from science and use the scienti�c method will be 
more successful, and more likely to pass on their ideas, than those who do not. 
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1. The information security environment

Information security is a relatively new �eld. Some of 
the �rst people to undertake systematic analysis are 
still working in the �eld.  Because the �eld and associ-
ated degree programs are fairly recent, many of those 
working in information security have backgrounds or 
degrees in other �elds. What’s more, those involved 
in information security o�en have a deep curiosity 
about the world, leading them to learn about even 
more �elds. �us, we have a tremendous diversity 
of backgrounds, knowledge, skills, and approaches 
from which the information security community can 
draw. Between a virtual explosion of niches in which 
new ideas can be brought to bear, and many di�erent 
organizations to test those ideas, we ought to have a 
natural world of mutation, experimentation, and op-
portunities to learn. We should be living in a golden 
age of information security. Yet many security experts 
are depressed and demoralized. Debora Plunkett, head 
of the NSA’s Information Assurance Directorate has 
stated, “�ere’s no such thing as ‘secure’ anymore.” 
To put a pessimistic face on it, risks are unmeasur-
able, we run on hamster wheels of pain, and budgets 
are slashed.

In the real world, evolution has presented us with 
unimaginably creative solutions to problems. In the 
natural world, di�erent ways of addressing problems 
lead to di�erent levels of success. Advantages accumu-
late and less e�ective ways of doing things disappear. 
Why is evolution not working for our security prac-
tices? What’s di�erent between the natural world and 
information security that inhibits us from evolving 
our security policies, practices, and programs?

2. Inhibitors to evolution

Information security programs are obviously not or-
ganisms that pass on their genes to new programs, and 
so discussions of how they evolve are metaphorical. I 
don’t want to push the metaphor too far, but we ought 
to be able to do better than natural organisms because 
we can trade information without trading genes. Ad-
ditionally, we have tremendous diversity, strong pres-
sures to change, and even the advantage of being able 
to borrow ideas and lessons from each other. So why 
aren’t we doing better?

Many challenges of building and operating e�ec-
tive security programs are well known. �ey include 

demonstrating business value, scoping, and demon-
strating why something didn’t happen. Let’s focus on 
one reason that gets less attention: secrecy. To many 
who come to information security from a military 
background, the value of secrecy is obvious: the less an 
attacker knows, the greater the work and risk involved 
in an attack. It doesn’t take a military background to 
see that putting a red �ag on top of every mine makes 
a mine�eld a lot less e�ective. A mine�eld is e�ective 
precisely because it slows down attackers who have to 
expose themselves to danger to �nd a way through it. 
In information security operations, however, attacks 
can be made from a comfy chair on the other side of 
the world, with the attacker having �rst torn apart an 
exact copy of your defensive system in their lab. (�is 
contrast was �rst pointed out by Peter Swire.)

We know that systems are regularly penetrated. 
Some say that all of them are. Despite that knowledge, 
we persist in telling each other that we’re doing okay 
and are secure. Although the tremendously resilient 
infrastructures we’ve built work pretty well, we can 
and should do better. 

For example, take the problem of stack smashing 
bu�er over�ows. �e problem was clearly described 
in the public literature as early as 1972. According to 
Lance Ho�man, it was well known and in�uenced 
the design of the data �ags in the main processors of 
the Burroughs B5500. �e problem was passed down 
repeatedly through the 1980s and 1990s, and was 
exploited by the Morris Internet worm and many oth-
ers. It was only a�er Aleph One published his paper 
“Smashing the stack for fun and pro�t” in 1996 that 
systematic defenses began to be created. �ose defens-
es include StackGuard, safer string handling libraries, 
static analysis, and the useful secrecy in operating 
system randomization. Until the problem was publicly 
discussed, there were no resources for defenses, and 
therefore, while the attacks evolved, the defenses were 
starved. �e key lesson to take from this problem that 
has plagued the industry from 1972 (and is still pres-
ent in too much legacy code) is: keeping the problem 
secret didn’t help solve it.

�e wrong forms of secrecy inhibit us from learn-
ing from each other’s mistakes. When we know that 
system penetrations are frequent, why do we hide 
information about the incidents? �ose of us in opera-
tional roles regularly observe operational problems. 
�ose incidents are routinely investigated and the 
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results of the investigation are almost always closely 
held. When we hide information about system failures, 
we prevent ourselves from studying those failures. We 
restrain our scientists from emulating Darwin’s study 
of the variations and pressures that exist. We prevent 
the accumulation of data; we inhibit the development 
of observational methods; and we prevent scienti�c 
testing of ideas.

Let’s consider what scienti�c testing of ideas 
means, and then get to a discussion of what ideas we 
might test.

3. De�ning the problem

a. What is science?

For the sake of clarity, let me compare and contrast 
three approaches to problem solving and learning: 
science, engineering, and mathematics. Mathematics 
obviously underpins both science and engineering, but 
it will be helpful to untangle them a little.

At the heart of science is the falsi�cation of hy-
potheses. Let me take a moment to explain what that 
means. A hypothesis is an idea with some predictive 
power. Examples include “everything falls at the same 
speed” (modulo friction from the air) and “gravity 
bends the path of light.” Both of these hypotheses 
allow us to predict what will happen when we act. 
What’s more, they’re testable in a decisive way. If I 
can produce a material that falls faster than another 
in a vacuum, we would learn something fundamen-
tal about gravity. Contrast this with derivation by 
logic, where disproof requires a complex analysis of 
the proof. Science has many tools which center on fal-
sifying hypotheses: the experiment, peer review, peer 
replication, publication, and a shared body of results. 
But at the heart of all science is the falsi�able hypoth-
esis. Science consists of testable ideas that predict 
behavior under a range of circumstances, the welcom-
ing of such tests and, at its best, the welcoming of the 
results. For more on the idea of falsi�ability, I recom-
mend Karl Popper’s Conjectures and Refutations.

Science also overlaps heavily with engineering. En-
gineering concerns making tradeo�s between a set of 
constraints in a way that satis�es customers and stake-
holders. Engineering can involve pushing boundaries 
of science, such as �nding a way to produce lasers with 
shorter wavelengths, or pushing the limits of scienti�c 

knowledge. For example, when the original Tacoma 
Narrows Bridge �nally buckled a little too hard, it 
drove new research into the aerodynamics of bridges.

�e scienti�c approach of elimination of falsehood 
can be contrasted with mathematics, which constructs 
knowledge by logical proof. �ere are elements of 
computer security, most obviously cryptography, 
which rely heavily on mathematics. It does not devalue 
mathematics at all to note that interesting computer 
systems demonstrably have properties that are true 
but unprovable. 

b. What is information security?

Information security is the assurance and reality that 
information systems can operate as intended in a 
hostile environment. We can and should usefully bring 
to bear techniques, lessons, and approaches from all 
sorts of places, but this article is about the intersection 
of science and security. So we can start by �guring out 
what sorts of things we might falsify. One easy target 
is the idea that you can construct a perfectly secure 
system. (Even what that means might be subject to 
endless debate, and not falsi�cation.) Even some of the 
most secure systems ever developed may include �aws 
from certain perspectives. Readers may be able to 
think of examples from their own experience. 

But there are other ideas that might be disproven. 
For example, the idea that computer systems with 
formal proofs of security will succeed in the market-
place can be falsi�ed. It seems like a good idea, but 
in practice, such systems take an exceptionally long 
time to build, and the investment of resources in 
security proofs come at the expense of other features 
that buyers want more. In particular, it turns out that 
there are several probably false hypotheses about such 
computer systems:

 Proofs of security of design relate to the security 
of construction.

 Proofs of security of design or construction 
result in operational security.

 Proofs of security result in more secure systems 
than other security investments.

 Buyers value security above all else.

�ese are small examples but there are much larger 
opportunities to really study our activities and im-
prove their outcomes for problems both technical and 
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human. As any practitioner knows, security is replete 
with failures, which we might use to test our ideas. 
Unfortunately, we rarely do so, opting instead for the 
cold comfort of approaches we know are likely to fail. 

Why is it we choose approaches that o�en fail? 
Sometimes we don’t know a better way. Other times, 
we feel pressure to make a decision that follows 
“standard practice.” Yet other times, we are compelled 
by a policy or regulation that ignores the facts of a 
given case.

4. Putting it all together: A science of 
information security

So what ideas might we test?  At the scale which the 
US government operates networks, almost any pro-
cess can be framed as testable. Take “always keep your 
system up to date” or “never write down a password.” 
Such ideas can be inserted into a sentence like “Or-
ganizations that dedicate X percent of their budget 
to practice Y su�er fewer incidents than those that 
dedicate it to practice Z.”

Let me break down how we can frame this hypothesis: 

1.    �e �rst choice I’ve made is to focus on organiza-
tions rather than individual systems. Individual 
systems are also interesting to study, but it may 
be easier to look to whole organizations. 

2.    �e second choice is to focus on budget. Eco-
nomics is always about the allocation of scarce 
resources. Money not spent on information se-
curity will be spent on other things, even if that’s 
just returning it to shareholders or taxpayers. (As 
a taxpayer, I think that would be just �ne.)

3.    �e third choice is to focus on outcomes. As 
I’ve said before, security is about outcomes, not 
about process (see http://newschoolsecurity.
com/2009/04/security_is_about_outcome/). So 
rather than trying again to measure compliance, 
we look to incidents as a proxy for e�ectiveness. 
Of course, incidents are somewhat dependent 
on attacks being widely and evenly distributed. 
Fortunately, wide distribution of attacks is pretty 
much assured. Even distribution between various 
organizations is more challenging, but I’m con�-
dent that we’ll learn to control for that over time.

4.    �e �nal choice is that of comparisons. We 
should compare our programs to those of other 

organizations, and to their choices of practices.

Of course, comparing one organization to another 
without consideration of how they di�er might be a 
lot like comparing the outcomes of heart attacks in 
40-year-olds to 80-year-olds. Good experimental de-
sign will require either that we carefully match up the 
organizations being compared or that we have a large 
set and are randomly distributing them between con-
ditions. Which is preferable? I don’t know, and I don’t 
need to know today. Once we start evaluating out-
comes and the choices that lead to them, we can see 
what sorts of experiments give us the most actionable 
information and re�ne them from there. We’ll likely 
�nd several more testable hypotheses that are useful.

Each of the choices above can be reframed as a 
testable hypothesis of “does measuring this get us the 
results we want?” If you think the question of, “Do 
organizations that dedicate X percent of their budget 
to practice Y su�er fewer incidents than those that 
dedicate it to practice Z?” is interesting, then, before 
testing any ideas, bringing science to information 
security helps us ask more actionable questions. 

Similarly, we can think about building outcome-
oriented tests for technology. Proof of concept ex-
ploit code can be thought of as disproving the trivial 
hypothesis that, “�is program has no exploitable 
vulnerability of class X.” Since we know that programs 
usually have a variety of �aws associated with the lan-
guages used to construct them, we would expect many 
of those hypotheses to be false. Nevertheless, demon-
stration code can focus attention on a particular issue 
and help get it resolved. But we can aspire to more 
surprising hypotheses. 

5. Next steps

Having laid out some of the challenges that face infor-
mation security and some of what we will gain as we 
apply the scienti�c method, here is what we need to do 
to see those bene�ts:

1.    Robust information sharing (practices and 
outcomes). We need to share information 
about what organizations are doing to protect 
their information and operations, and how 
those protections are working. Ideally, we will 
make this information widely available so that 
people of di�erent backgrounds and skills can 
analyze it. �rough robust and broad debate, 
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we’re more likely to overcome groupthink and 
inertia. Fortunately, the federal government 
already shares practice data in reports from 
the O�ce of the Inspector General and the 
Government Accountability O�ce. Outcome 
reporting is also available, in the form of data 
sent to the US Computer Emergency Readiness 
Team (US-CERT). �e Department of Veterans 
A�airs publishes the information security 
reports it sends to Congress. Expanding on 
this information publication will accelerate our 
ability to do science.

2.    Robust hypothesis testing. With the availability 
of data, we need to start testing some hypotheses. 
I suggest that nothing the information security 
community could do would make millions 
of people happier faster and at less risk than 
reducing password requirements. Testing 
to see if password complexity requirements 
have any impact on outcomes could allow 
many organizations to cut their help desk 
and password reset requirements at little cost 
to security.

3.    Fast reaction and adaptation. Gunnar Peterson 
has pointed out that as technologies evolved 
from �le transfer protocol (FTP) to hypertext 
transfer protocol (HTTP) to simple object access 
protocol (SOAP), security technologies have 
remained “�rewalls and SSL.” It can seem like 
the only static things in security are our small 
toolbox and our depression. We need to ensure 
that innovations by attackers are understood 
and called out in incident responses and that 
these innovations are matched by defenders 

in ways that work for each organization and 
its employees.

�ere are objections to these ideas of data sharing 
and testing. Let me take on two in particular. 

�e �rst objection is “�is will help attackers.” But 
information about defensive systems is easily discov-
ered. For example, as the DEF CON 18 Social Engi-
neering contest made irrefutable, calling employees 
on the phone pretending to be the help desk reveals all 
sorts of information about the organization. “Train-
ing and education” were clearly not e�ective for those 
organizations. If you think your training works well, 
please share the details, and perhaps someone will 
falsify your belief. My hypothesis is that every organi-
zation of more than a few hundred people has a great 
deal of information on their defenses which is easily 
discovered. (As if attackers need help anyway.)

�e second objection is that we already have 
information-sharing agreements. While that is true, 
they generally don’t share enough data or share the 
data widely enough to enable meaningful research.

Information security is held back by our lack of 
shared bodies of data or even observations. Without 
such collections available to a broad community of re-
search, we will continue along today’s path. �at’s not 
acceptable. Time a�er time, the scienti�c approach has 
demonstrated e�ectiveness at helping us solve thorny 
problems. It’s time to bring it to information security. 
�e �rst step is better and broader sharing of infor-
mation. �e second step is testing our ideas with that 
data. �e third step will be to apply those ideas that 
have passed the tests, and give up on the superstitions 
which have dogged us. When we follow Darwin and 

Robust information sharing Robust hypothesis testing Fast reaction and adaptation
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his naturalist colleagues in documenting the variety of 
things we see, we will be taking an important step out 
of the muck and helping information security evolve. 
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Making experiments 
dependable  |  

R o y  M a x i o n *

A
bstract. In computer science and computer 
security we o�en do experiments to establish or 
compare the performance of one approach vs. 

another to some problem, such as intrusion detec-
tion or biometric authentication. An experiment is 
a test or an assay for determining the characteristics 
of the item under study, and hence experimentation 
involves measurements. 

Measurements are susceptible to various kinds of 
error, any one of which could make an experimental 
outcome invalid and untrustworthy or undependable. 
�is paper focuses on one kind of methodological er-
ror—confounding—that can render experimental out-
comes inconclusive, but o�en without the investigator 
knowing it. Hence, valuable time and other resources 
can be expended for naught. We show examples from 
the domain of keystroke biometrics, explaining several 
di�erent examples of methodological error, their con-
sequences, and how to avoid them. 

1. Science and experimentation 

You wouldn’t be surprised if, in a chemistry experi-
ment, you were told that using dirty test tubes and 
beakers (perhaps contaminated with chemicals from a 
past procedure) could ruin your experiment, making 
your results invalid and untrustworthy. While we don’t 
use test tubes in cyber security, the same admonition 
applies: keep your experiments clean, or the contami-
nation will render them useless. 

Keeping your glassware clean is part of the chem-

lab methodology that helps make experimental mea-

surements dependable, which is to say that the mea-

surements have minimal error and no confounding 

variables. In cyber security we also need measure-
ments that are dependable and error-free; undepend-
able measurements make for undependable values 
and analyses, and for invalid conclusions. A rigorous 
experimental methodology will help ensure that mea-
surements are valid, leading to outcomes in which we 
can have con�dence. 

A particularly insidious form of error is the con-
found—when the value of one variable or experi-
mental phenomenon is confounded or in�uenced by 
the value of another. An example, as above, would be 
measuring the pH of a liquid placed in contaminated 
glassware where the in�uence of the contaminant on 
pH varied with the temperature of the liquid being 
measured. �is is a confound, and to make things 
worse, the experimenter would likely be unaware of its 
presence or in�uence. �e resulting pH values might 
be attributed to the liquid, to the temperature, or to 
the contaminant; they cannot be distinguished (with-
out further experimentation). Similar measurement 
error can creep into cyber security experiments, mak-
ing their measures similarly invalid. 

�is article describes some of the issues to be con-
sidered, and the rationales for decisions that need to 
be made, to ensure that an experiment is valid—that 
is, that outcomes can be attributed to only one cause 
(no alternative explanations for causal relations), and 
that experimental results will generalize beyond the 
experimental setting. 

In the sections to follow, we �rst consider the hall-
marks of a good experiment: repeatability, reproduc-
ibility and validity. �en we focus on what is arguably 
the most important of these—validity. We examine 
a range of threats to validity, using an experiment in 
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keystroke biometrics to provide examples. �e experi-
ment is laid out �rst, and is then critiqued; remedies 
for the violations are suggested. We close by sug-
gesting simple ways to avoid the kinds of problems 
described here. 

2. Hallmarks of a good experiment 

�ere are clear di�erences between experiments that 
are well-designed and those that are not. While there 
may be many details that are di�erent between the 
two, the main ones usually reduce to issues of repeat-
ability (sometimes called reliability), reproducibility 
and validity. While our main focus here will be on 
validity, we will �rst look brie�y at what each of the 
other terms means, just to put them all in context. 

Repeatability refers to the variation in repeated 
measurements taken by a single person or instrument 
on the same item and under the same conditions; we 
seek high agreement, or consistency, from one mea-
sured instance to another [9]. �at is, the experiment 
can be repeated in its entirety, and the results will be 
the same every time, within measurement error. For 
example, if you measure the length of a piece of string 
with a tape measure, you should get about the same 
result every time. If an experiment is not repeatable, 
even by the same person using the same measuring 
apparatus, then there is a risk that the measurement 
is wrong, and hence the outcome of the experiment 
may be wrong, too; but no one will realize it, and so 
erroneous values will be reported (and assumed to be 
correct by readers). 

Reproducibility relates to the agreement of experi-
mental results with independent researchers using 
similar but physically di�erent test apparatus, and 
di�erent laboratory locations, but trying to achieve 
the same outcome as was reported in a source ar-
ticle [9]. Measurements should yield the same results 
each time they are taken, irrespective of who does 
the measuring. Using the length-of-string example, if 
other people can measure that same piece of string in 
another setting using a similar measuring device, they 
should get about the same result as the �rst group did. 
If they don’t, then the procedure is not reproducible; 
it can’t be replicated. Reproduction (sometimes called 
replication) allows an assessment of the control on the 
operating conditions of the measurement procedure, 
i.e., the ability to reset the conditions to some desired 

state. Ultimately, replication re�ects how well the pro-
cedure was operationalized. 

Note that reproducibility doesn’t mean hitting 
return and analyzing the same data set again with 
the same algorithm. It means conducting the entire 
experiment again, data collection and all. If an experi-
ment is not reproducible, then it cannot be replicated 
by others in a reliable way. �is means that no one will 
be able to verify that the experiment was done cor-
rectly in the �rst place, hence placing an air of untrust-
worthiness on the original results. Reproducibility 
hinges on operational de�nitions for the measures and 
procedures employed in the course of the experi-
ment. An operational de�nition de�nes a variable or 
a concept in terms of the procedures or operations 
used to measure it. An operational de�nition is like a 
recipe or set of detailed instructions for describing or 
measuring something. 

Validity relates to the logical well-groundedness of 
how the experiment is conducted, as well as the extent 
to which the results will generalize to circumstances 
beyond those in the laboratory. �e next section ex-
pands on the concept of validity. 

3. Validity 

What does the term valid mean? Drawing from a stan-
dard dictionary, when some thing or some argument 
or some process is valid, it is well-grounded or justi�-
able; it is logically correct; it is sound and �awlessly 
reasoned, supported by an objective truth. 

FIGURE 1. Hallmarks of a good experiment. 
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To conduct an experiment that was anything other 
than valid, in the above sense, would be foolish, and 
yet we see such experiments all the time in the litera-
ture. Sometimes we can see the �aws (which some 
would call threats to validity) directly in the experi-
ment, and sometimes we can’t tell, because authors do 
not report the details of how their experiments were 
conducted. Generally speaking, there are two kinds of 
validity—internal and external. Conceptually, these 
are pretty simple. 

Internal validity. In most experiments we are trying to 
�nd out if A has a given e�ect on B, or if A causes B. 
To claim that A indeed causes B, the experiment must 
not o�er any alternative causes nor alternative expla-
nations for the outcome; if this is case, then the experi-
ment is internally valid [8]. An alternative explanation 
for an experimental outcome can be due, for example, 
to confounded variables that have not been controlled. 

For example, suppose we want to understand the 
cause of errors in programming. We recruit students 
in university programming classes (one class uses C, 
and the other uses Java). We ask all the students to 
write a program that calculates rocket trajectories. 
�e results indicate that C programmers make more 
programming errors, and so we conclude that the C 
programming language is a factor in so�ware errors. 
Drawing such a conclusion would be questionable, 
because there are other factors that could explain 
the results just as well. Suppose, for example, that 
the Java students were more advanced (juniors, not 
sophomores) than the C students. �e outcome of 
the experiment could be due to the experience level 
of the students, just as much as it could be due to the 
language. Since we can’t distinguish distinctly be-
tween experience level and language, we say that the 
experiment confounds two factors—language and 
experience—and is therefore not valid. Note that it can 
sometimes be quite di�cult to ensure internal valid-
ity. Even if all the students are at the same experience 
level, if they self-selected Java vs C it would still allow 
for a confound in that a certain kind of student might 
be predisposed to select Java, and a di�erent kind of 
student might be predisposed to select C. �e two 
di�erent kinds of students might be di�erentially good 
at one language or the other. �e remedy for such an 
occurrence would be to assign the language-student 
pairs randomly. 

External validity. In most experiments we hope that 
the �ndings will apply to all users, or all so�ware, 
or all applications. We want the experimental �nd-
ings to generalize from a laboratory or experimental 
setting to a much broader setting. To the extent that 
a study’s �ndings generalize to a broader population 
(usually taken to be “the real world”), the experiment 
is externally valid [8]. If the �ndings are limited to the 
conditions surrounding the study (and not to broader 
settings), then the experiment lacks external validity. 
Another way to think about this is that external valid-
ity is the extent to which a causal relationship holds 
when there are variations in participants, settings 
and other variables that are di�erent from the narrow 
ranges employed in the laboratory. 

Referring back to our earlier example, suppose we 
were to claim that the experiment’s outcome (that 
the C language promotes errors) generalizes to a set 
of programmers outside the experimental environ-
ment—say, in industry. �e generalization might not 
hold, perhaps because the kind of problem presented 
to the student groups was not representative of the 
kinds of problems typically encountered in industry. 
�is is an example of an experiment not generalizing 
beyond its experimental conditions to a set of condi-
tions more general; it’s not externally valid. 

Trade-o� between internal and external validity. It 
should be noted that not all experiments can be valid 
both internally and externally at the same time; it 
depends on the purpose of the experiment whether 
we seek high internal or high external validity. Typi-
cally there is a trade-o� in which one kind of validity 
is sacri�ced for the other. For example, laboratory 
experiments designed to answer a very focused ques-
tion are o�en more internally valid than externally 
valid. Once a research question seems to have been 
settled (e.g., that poor exception handling is a major 
cause of so�ware failure), then a move to a broader, 
more externally valid, experiment would be the right 
thing to do. 

4. Example domain—keystroke biometrics 

In this section we introduce the domain from 
which we draw concrete examples of experimental 
invalidities—keystroke biometrics. 

Keystroke biometrics, or keystroke dynamics, is 
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the term given to the procedure of measuring and 
assessing a user’s typing style, the characteristics of 
which are thought to be unique to a person’s physiol-
ogy, behavior, and habits. �e idea has its origin in the 
observation that telegraph operators have distinctive 
patterns, called �sts, of keying messages over telegraph 
lines. One notable aspect of �sts is that they emerge 
naturally, as noted over a hundred years ago by Bryan 
& Harter, who showed that operators are distinc-
tive due to the automatic and unconscious way their 
personalities express themselves, such that they could 
be identi�ed on the basis of having telegraphed only a 
few words [1]. 

�ese measures of key presses and key releases, 
based largely on the timing latencies between key-
strokes, are compared to a user pro�le as part of a 
classi�cation procedure; a match or a non-match can 
be used to decide whether or not the user is authenti-
cated, or whether or not the user is the true author of 
a typed sequence. For a brief survey of the keystroke 
literature, see [7]. 

We use keystroke dynamics as an example here 
for two reasons. First, it’s easy to understand—much 
easier, for example, than domains like network proto-
cols. If we’re going to talk about �aws and invalidities 
in experiment design, then it’s better to talk about 
an experiment that’s easily understood; the lessons 
learned can be extended to almost any other domain 
and experiment. Second, keystroke dynamics shares 
many problems with other cyber-security disciplines, 
such as intrusion detection. Examples are classi�cation 
and detection accuracy; selection of best classi�er or 
detector; feature extraction; and concept dri�, just to 
name a few. Again, problems solved in the keystroke 
domain are very likely to transfer to other domains 
where the same type of solution will be e�ective. 

4.1. What is keystroke dynamics good for? 

Keystroke dynamics is typically thought of as an 
example of the second factor in two-factor authentica-
tion. For example, for a user to authenticate, he’d have 
to know not only his own password (the �rst factor), 
but he would also have to type the password with a 
rhythm consistent with his own rhythm. An impos-
tor, then, might know your password, but would not 
be able to replicate your rhythm, and so would not be 

allowed into the system. Another application, along a 
similar line, would be continuous re-authentication, 
in which the system continually checks to see that 
the typing rhythm matches that of the logged-in user, 
thereby preventing, say, insiders from masquerading 
as you. A third application would be what forensics 
experts call questioned-document analysis, which asks 
whether a particular user typed a particular document 
or parts of it. Finally, keystroke rhythms could be used 
to track terrorists from one cyber café to another, 
or to track a predator from one chat-room session 
to another. 

4.2. How does keystroke dynamics work? 

�e essence of keystroke dynamics is that timing data 
are collected as a typist enters a password or other 
string. Each keystroke is timestamped twice; once on 
its downstroke and once on its upstroke. From those 
timings we can compute the amount of time that a key 
was held down (hold time) and the amount of time 
it took to transition from one key to the next (transi-
tion latency). �e hold times and the latencies are 
called features of the typed password, and for a given 
typing instance these features would be grouped into 
a feature vector. For a 10-character password there 
would be eleven hold times and ten latencies if we 
include the return key.a If a typist enters a password 
many times, then the several resulting feature vectors 
can be assembled into a template which represents the 
central tendency of the several vectors. Each typist will 
have his or her own such template. �ese templates are 
formed during an enrollment period, during which 
legitimate users provide typing samples; these samples 
form the templates. Later, when a user wishes to log 
in, he types the password with the implicit claim that 
the legitimate user has typed the password. �e key-
stroke dynamics system examines the feature vector of 
the presently-typed password, and classi�es it as either 
belonging to the legitimate user or not. �e classi�er 
operates as an anomaly detector; if the rhythm of the 
typed password is a close enough match to the stored 
template, then the user is admitted to the system. �e 
key aspect of this mechanism is the detector. In ma-
chine learning there are many such detectors, distin-
guished by the distance metrics that they use, such as 
Euclidean, Manhattan and Mahalanobis, among others 
[4]. Any of these detectors can be used in a keystroke 

a. �ere are two kinds of latencies—keydown to keydown and keyup to keydown. Some researchers use one or the other of these, and 
some researchers use both. In our example we would have 31 features if we used both.
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dynamics system; under some circumstances, some 
detectors work better than others, but it is an open 
research question as to which classi�er is overall best. 

5. A typical keystroke experiment 

In this section we discuss several aspects of conduct-
ing a study in keystroke dynamics, we show what can 
go wrong, and we share some examples of how (in)
validity can a�ect the outcome of a real experiment. 
We will discuss some examples and experimental �aws 
that are drawn from the current literature, although 
not all of the examples are drawn from a single paper. 

Walkthrough. Let’s walk through a typical experiment 
in keystroke dynamics, and we’ll point out some errors 
that we’ve observed in the literature, why they’re er-
rors, how to correct them, and what the consequences 
might be if they’re le� uncorrected. Note that the 
objective of the experiment is to discriminate among 
users on the basis of their typing behavior, not on the 
basis of their typing behavior plus, possibly unspeci-
�ed, other factors; the typing behavior needs to be iso-
lated from other factors to make the experiment valid. 

A typical keystroke dynamics experiment would 
test how well a particular algorithm can determine 
that a user, based on his typing rhythm, is or is not 
who he claims to be. In a keystroke biometric system, 
a user would present himself to the system with his 
login ID, thereby claiming to be the person associ-
ated with the ID. �e system veri�es this claim by two 
means: it checks that the password typed by the user 
is in fact the user’s password; and it checks that the 
password is typed with the same rhythm with which 
the legitimate user would type it. If these two factors 
match the system’s stored templates for the user, then 
the user is admitted to the system. 

Checking that the correct password is o�ered is old 
hat; checking that its typing rhythm is correct is an-
other matter. �is is typically done by having the user 
“enroll” in the biometric component of the system. For 
di�erent biometric systems the enrollment process is 
di�erent, depending on the biometric being used; for 
example, if a �ngerprint is used, then the user needs to 
present his �ngerprint to the system so that the system 
can encrypt and store it for later matching against 
a user claiming to be that person who enrolled. For 
keystroke biometric systems, the process is similar; 

the user types his password several times so that 
the system can form a pro�le of the typing rhythm 
for later matching. �e biometric system’s detection 
algorithm is tested in two ways. In the �rst test, sample 
data from the enrolled user is presented to the system; 
the system should recognize that the user is legitimate. 
�e second test determines whether the detector can 
recognize that an impostor is not the claimed user. 
�is would be done by presenting the impostor’s login 
keystroke sequence to the system, posing as a legiti-
mate user. Across a group of legitimate users and im-
postors, the percentage of mistakes, or errors, serves as 
a gauge of how good the keystroke biometric system 
is. Several details concerning exactly how these tests 
are done can have enormous e�ects on the outcome. 
We turn now to those details. 

What can go wrong? �ere are several parts of an 
experiment where things can go wrong. Most experi-
ments measure something; the measuring apparatus 
can be �awed, producing �awed measurements. If the 
measurements are �awed, then the data will be �awed, 
and any analytical results and conclusions will be 
cast into doubt. �e way that something is measured 
can be unsound; if you measure code complexity by 
counting the number of lines, you’ll get a numeri-
cal outcome, but it may not be an accurate re�ection 
of code complexity. �e way or method of taking 
measurements is the biggest source of error in most 
experiments. Compounding that error is the lack of 
detail with which the measurement methodology 
is reported, o�en making it di�cult to determine 
whether or not something went wrong. We turn now 
to speci�c examples of methodological problems. 

Clock resolution and timing. Keystroke timings are 
based on operating-system calls to various timers. In 
the keystroke literature we see di�erent timers being 
used by di�erent researchers, with timing accura-
cies o�en reported to several decimal places. But it’s 
not the accuracy (number of decimal places) of the 
timing that’s of overriding importance; it’s the resolu-
tion. When keystroke dynamics systems are written 
for Windows-based machines (e.g., Windows XP), 
it’s usually the tick timer, or Windows-event clock [6] 
that’s used; this has a resolution of 15.625 milliseconds 
(ms), corresponding to 64 updates per second. If done 
on a Unix system, the resolution is about 10 millisec-
onds. On some Windows systems the resolution can 

FEATURE
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be much �ner if the QPC timer is used. �e reason 
that timing resolution matters is not because people 
type as fast as one key every 15 milliseconds (66 keys 
per second); it’s because the time between keystrokes 
can di�er by less than 15 milliseconds. If some typists 
make key-to-key transitions faster than other ones, 
but the clock resolution is unable to separate them, 
then detection accuracy could su�er. One paper has 
reported a 4.2% change in error rate due to exactly this 
sort of thing [3]. A related issue is how you know what 
your clock resolution is. It’s unwise to simply read this 
o� the label; better to perform a calibration. A related 
paper explained how this is done in a keystroke dy-
namics environment [5]. A last word on timing issues 
concerns how the timestamping mechanism actually 
works; if it’s subject to in�uence from the scheduler, 
then things like system load can change the accuracy 
of the timestamps. 

�e e�ect of clock resolution and timing is that they 
can interact with user rhythms as a confound. If dif-
ferent users type on di�erent machines whose timing 
resolutions di�er, then any distinctions made among 
users, based on timing, could be due to di�erences in 
user typing rhythms (timings) or they could be due to 
di�erences in clock resolutions. Moreover, since sys-
tem load can in�uence keystroke timing, it’s possible 
that rhythmic di�erences attributed to di�erent users 
would be due to load di�erences, not to user di�erenc-
es. Hence we would not be able to claim distinctive-
ness based on user behavior, because this cannot be 
separated from timing errors induced by clock resolu-
tion and system load. If the purpose of the experiment 
is to di�erentiate amongst users on the basis of typing 
rhythm, then the confounds of clock resolution and 
system load must be removed. �e simplest way to 
achieve this is to ensure that the experimental systems 
use the same clock, with the same resolution (as high 
as possible), and have the same operating load. �is is 
possible in the laboratory by using a single system on 
which to collect data from all participants. 

Keyboards. Experiments in keystroke dynamics 
require people to type, of course, and keyboards on 
which to do that typing. Most such experiments re-
ported in the literature allow subjects to use whatever 
keyboard they want; a�er all, in the real world people 
do use whatever keyboard they prefer. Consequently, 
this approach has a lot of external validity. Unfortu-
nately, the approach introduces a serious confound, 

too—a given keyboard, by its shape or character lay-
out, is likely to in�uence a user’s typing behavior. Dif-
ferent keyboards, such as standard, ergonomic, laptop, 
kinesis, natural, kinesis maxim split and so forth will 
shape typing in a way that’s peculiar to the keyboard 
itself. In addition to the shape of the keyboard, the key 
pressures required to make electrical contact di�er 
from one keyboard to another. �e point is that not 
all keyboards are the same, with the consequence that 
users may type the same strings di�erently, depend-
ing on the keyboard and its layout. In the extreme, if 
everyone in the experiment used a di�erent keyboard, 
you wouldn’t be able to separate the e�ect of the key-
boards from the e�ect of typing rhythm; whether your 
experimental results showed good separation of typists 
or not, you wouldn’t know if the results were due to 
the typists’ di�erences or to the di�erences among the 
keyboards. Hence you would not be able to con-
clude that typing rhythms di�er among typists. �is 
confound can be removed from the experiment by 
ensuring that all participants use the same (or perhaps 
same type of) keyboard. �e goal of the experiment 
is to determine distinctiveness amongst typists based 
on their individual rhythms, not on the basis of the 
keyboards on which they type. 

Stimulus items—what gets typed. Participants in 
keystroke biometrics experiments need to type some-
thing—the stimulus item in the experiment. While 
there are many kinds of stimuli that could be consid-
ered (e.g., passwords, phrases, paragraphs, transcrip-
tions, free text, etc.), we focus on short, password-like 
strings. �ere are two fundamental issues: string 
contents and string length. 

String contents. By contents we mean simply the char-
acters contained in the password being typed. Two 
contrasting examples would be a strong password, 
characterized by containing shi� and punctuation 
characters, as opposed to a weak password, charac-
terized by a lack of the aforementioned special char-
acters. It’s easy to see that if some users type strong 
passwords, and other users type weak passwords, then 
any discrimination amongst users may not be solely 
attributable to di�erences among users; it may be at-
tributable to intrinsic di�erences between strong and 
weak passwords that cause greater rhythmic variability 
in one or the other. �e reason may be that strong 
passwords are hard to type, and weak ones aren’t. So 
we may be discriminating not on the basis of user 
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rhythm, but on the basis of typing di�culty which, in 
turn, is in�uenced by string content. To eliminate this 
confound, the experimenter should not allow users to 
choose their own passwords; the password should be 
chosen by the experimenter, and should be the same 
for each user. 

String length. If users are le� to their own devices to 
choose passwords, some may choose short strings, 
while others choose longer strings. If this happens, 
as it has in experiments where passwords were self-
selected, then any distinctiveness detected amongst 
users cannot be attributed solely to di�erences among 
user typing rhythms; the distinctions could have been 
caused by di�erences in string lengths that the users 
typed, or by intrinsic characteristics that cause more 
variability in one length than in another. So, we don’t 
know if the experimental results are based on user 
di�erences or on length di�erences. To remove this 
confound, the experimenter should ensure that all 
participants type same-length strings. 

Typing expertise and practice. Everyone has some 
amount of typing expertise, ranging roughly from low 
to high. Expertise comes from practice, and the more 
you practice, the better you get. �is pertains to typ-
ing just as much as it pertains to piano playing. Two 
things happen when someone has become practiced 
at typing a password. First, the total amount of time 
to type the password decreases; second, the time 
variation with which particular letter pairs (digrams) 
are typed diminishes. It takes, on average, about 214 
repetitions of a ten-character password to attain a 
level of expertise such that typing doesn’t change by 
more than 1 millisecond on average (less than 0.1%) 
over the total time (about 3–5 seconds) taken to type 
a password. At this level of practice it can be safely 
assumed that everyone’s typing is stable; that is, it’s 
not changing signi�cantly. Due to this stability, it is 
safe to compare typists using keystroke biometrics. 
A classi�er will be able to distinguish among a group 
of practiced typists, and will have a particular success 
rate (o�en in the region of 95–99%). 

But what if, as in some studies, the level of exper-
tise among the subjects ranges from low to high, with 
some people very practiced and others hardly at all? 
If practiced typists are consistent, with low variation 
across repeated typings, but unpracticed typists are 
inconsistent with high variability, then it would be 
relatively easy for a classi�er to distinguish users in 

such groups from one another. �is could make clas-
si�cation outcomes more optimistic than they really 
are, making them misleading at best. In one study 
25 people were asked to type a password 400 times. 
Some people in the study did this, but others typed 
the password only 150 times, putting a potentially 
large expertise gap between these subjects. No matter 
what the outcome if everyone had been at the same 
level of expertise, it’s easy to see that the classi�cation 
results would likely be quite di�erent than if there was 
a mixture of practice levels among the subjects. �is 
is an example of a lack of internal validity, where the 
confound of di�erential expertise or practice is operat-
ing. �ere is no way that the classi�er results can be 
attributed solely to users’ typing rhythms alone; they 
are confounded with level of practice. 

Instructions to typists. In any experiment there needs 
to be a protocol by which the experiment is carried 
out. �is protocol should be followed assiduously, lest 
errors creep into the experiment whilst the researcher 
is unaware. Here we give two examples in which in-
structions to subjects are important. 

First, in our own experience, we had told subjects to 
type the password normally, as if they were logging in 
to their own computer. �is should be straightforward 
and simple, but it’s not. We discovered that some sub-
jects were typing with extraordinary quickness. When 
we asked those people if that’s how they typed every 
day, they said no—they thought that the purpose of 
our experiment was to see who could type the fastest 
or the most accurately, even though we had never said 
that. �is probably happened because we are a univer-
sity laboratory, and it’s not unusual in university ex-
periments (especially in psychology) to have their true 
intentions disguised from the participant; otherwise 
the participant may game the experiment, and hence 
ruin it. People in our experiment assumed that we had 
a hidden agenda (we didn’t), and the people respond-
ed to what they thought was the true agenda by typing 
either very quickly or very carefully or both. When 
we discovered this, we changed our instructions to tell 
subjects explicitly that there was no hidden agenda, 
and that we really meant it when we said that we were 
seeking their normal, everyday typing behavior. A�er 
the instructions were changed to include this, we no 
longer observed the fast and furious typing behavior 
that had drawn our attention in the �rst place. If we 
had not done this, then we would have le� an internal 
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invalidity in the experiment; our results would have 
been confounded with normal typing by some and 
abnormally fast typing by others. Naturally, a classi-
�er would be able to distinguish between fast and slow 
typists, thereby skewing the outcomes unrealistically. 

Second, if there is no written protocol by which 
to conduct an experiment, and by which to instruct 
participants as to what they are being asked to do, 
there is a tendency for the experimenter to ad lib the 
instructions. While this might be �ne, what can hap-
pen in practice is that the experimenter will become 
aware of a slightly better way to word or express the 
instructions, and will slightly alter the instructions for 
the next subject. �is might slightly improve things for 
that subject. However, for the subject a�er that, the in-
structions might change again, even if ever so slightly. 
As this process continues, there will come a point at 
which some of the later subjects are receiving instruc-
tions that are quite di�erent from those received by 
the earlier subjects. �is means that two di�erent 
sets of instructions were issued to subjects, and these 
subjects may have responded in two di�erent ways, 
leading to a confound. Whatever the classi�cation 
outcomes might be, they cannot be attributed solely 
to di�erences in user typing rhythms; they might have 
been due to di�erences in instructions as well, and we 
can’t tease them apart. Hence it is important not only 
to have clear instructions, but also to have them in 
writing so that every subject is exposed to exactly the 
same set of instructions. 

6. What’s the solution for all 
these problems? 

All of the problems discussed so far are examples of 
threats to validity, and internal validity in particular. 
�e confounds we’ve identi�ed can render an experi-
ment useless, and in those circumstances not only 
has time and money been wasted, but any published 
results run a substantial risk of misleading the reader-
ship. For example, if a study claims 99.9% correct clas-
si�cation of users typing passwords, that’s pretty good; 
perhaps we can consider the problem solved. But if 
that 99.9% was achieved because some confound, such 
as typing expertise, arti�cially enhanced the results, 
then we would have reached an erroneous conclusion, 
perhaps remaining unaware of it. �is is a serious 
research error; in this section we o�er some ways to 

avoid the kinds of problems caused by invalidity. 

Control. We use the term “control” to mean that 
something has been done to mitigate a potential bias 
or confound in an experiment. For example, if an 
experimental result could be explained by more than 
one causal mechanism, then we would need to control 
that mechanism so that only one cause could be attrib-
uted to the experimental outcome. As an example, the 
length of the password should be controlled so that ev-
eryone types a password of the same length; that way, 
length will not be a factor in classifying typing vectors. 
A second example would be to control the content of 
the password, most simply by having every partici-
pant type the same password. In doing this, we would 
be more certain that the outcome of the experiment 
would be in�uenced only by di�erences in people’s 
typing rhythms, and not by password length or 
content. Of course while e�ecting control in this way 
makes the experiment internally valid, it doesn’t re�ect 
how users in the real world choose their passwords; 
certainly they don’t all have the same password. But 
the goal of this experiment is to determine the extent 
to which individuals have unique typing rhythms, and 
in that case tight experimental control is needed to 
isolate all the extraneous factors that might confound 
the outcome. Once it’s determined that people really 
do have unique typing rhythms that are discriminable, 
then we can move to the real world with con�dence. 

Repeatability and reproducibility (again). We earlier 
mentioned two important concepts: repeatability—the 
extent to which an experimenter can obtain the same 
measurements or outcomes when he repeats the ex-
periment in his own laboratory—and reproducibility, 
which strives for the same thing, but when di�erent 
experimenters in other laboratories, using similar but 
physically di�erent apparatus, obtain the same results 
as the original experimenters did. If we strive to make 
an experiment repeatable, it means that we try hard to 
make the same measures each time. To do this suc-
cessfully requires that all procedures are well de�ned 
so that they can be repeated exactly time a�er time. 
Such de�nitions are sometimes called operational 
de�nitions, because they specify a measurement in 
terms of the speci�c operations used to obtain it. For 
example, when measuring people’s height, it’s im-
portant that everyone do it the same way. An opera-
tional de�nition for someone’s height would specify 
exactly the procedure and apparatus for taking such 



 The Next Wave | Vol. 19 No. 2 | 2012 | 21

FEATURE

measurements. �e procedure should be written so 
that it can be followed exactly every time. Repeatabil-
ity can be ensured if the experiment’s measurements 
and procedures are operationally de�ned and fol-
lowed assiduously. Reproducibility can be ensured by 
providing those operational details when reporting the 
experiment in the literature, thereby enabling others 
to follow the original procedures. 

Discovering confounds. �ere is no easy way to 
discover the confounds lurking in an experimental 
procedure. It requires deep knowledge of the domain 
and the experiment being conducted, and it requires 
extensive thought as to how various aspects of the 
experiment may interact. One approach is to trace the 
signal of interest (in our case, the keystroke timings 
and the user behaviors) from their source to the point 
at which they are measured or manifested. For key-
stroke timings, the signal begins at the scan matrix in 
the keyboard, traveling through the keyboard encoder, 
the keyboard-host interface (e.g., PS2, USB, wireless, 
etc.), the keyboard controller in the operating sys-
tem (which is in turn in�uenced by the scheduler), 
and �nally to the timestamping mechanism, which is 
in�uenced by the particular clock being used. At each 
point along the way, it is important to ask if there are 
any possible interactions between these waypoints and 
the integrity of the signal. If there are, then these are 
candidates for control. For example, keyboard signals 
travel di�erently through the PS2 interface than they 
do through the USB interface. �is di�erence suggests 
that only one type of keyboard interface be used—ei-
ther PS2 or USB, but not both. Otherwise, part of the 
classi�cation accuracy would have to be attributed to 
the di�erent keyboard interfaces. A similar mapping 
procedure would ask about aspects of the experi-
ment that would in�uence user typing behavior. We 
have already given the example of di�erent types of 
keyboards causing people to type di�erently. Counter-
ing this would be done simply by using only one type 
of keyboard. 

Method section. A method section in a paper is the 
section in which the details are provided regarding 
how the experiment was designed and conducted. 
Including a method section in an experimental 
paper has bene�ts that extend to both reader and 
researcher. �e bene�t to the reader is that he can see 
exactly what was done in the experiment, and not 
be le� to wonder about details that could a�ect the 

outcome. For example, saying how a set of experi-
ment participants was recruited can be important; if 
some were recruited outside the big-and-tall shop, it 
could constitute a bias in that these people are likely 
to have large hands, and large-handed people might 
have typing characteristics that make classi�cation 
arti�cially e�ective or ine�ective. If this were revealed 
in the method section of a paper, then a reader would 
be aware of the potential confound, and could moder-
ate his expectations on that basis. If the reader were a 
reviewer, the confound might provoke him to ask the 
author to make adjustments in the experiment. 

For the experimenter the method section has two 
bene�ts. First, the mere act of writing the method sec-
tion can reveal things to the experimenter that were 
not previously obvious. If, in the course of writing 
the section, the experimenter discovers an egregious 
bias or �aw in the experiment, he can choose another 
approach, he can relax the claims made by the paper, 
or he can abandon the undertaking to conduct the 
experiment again under revised and more favor-
able circumstances. If the method section is written 
before the experiment is done—as a sort of planning 
exercise—the �aws will become apparent in time for 
the experimental design to be modi�ed in a way that 
eliminates the �aw or confound. �is will result in a 
much better experiment, whose outcome will stand 
the test of time. 

Pilot studies. Perhaps the best way to check your work 
is to conduct a pilot study—a small-scale preliminary 
test of procedures and measurement operations—to 
shake any unanticipated bugs out of an experiment, 
and to check for methodological problems such as 
confounded variables. Pilot studies can be very e�ec-
tive in revealing problems that, at scale, would ruin 
an experiment. It was through a pilot study that we 
�rst understood the impact of instructions to sub-
jects, and subsequently adjusted our method to avoid 
the problems encountered (previously discussed). If 
there had been no pilot, we would have discovered 
the problem with instructions anyway, but we could 
not have changed the instructions in the middle of 
the experiment, because then we’d have introduced 
the confound of some subjects having heard one set 
of instructions, and other subjects having heard a dif-
ferent set; the classi�cation outcome could have been 
attributed to the di�erences in instructions as well as 
to di�erences amongst typists. 
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7. Conclusion 

We have shown how several very simple oversights in 
the design and conduct of an experiment can result 
in confounds and biases that may invalidate experi-
mental outcomes. If the details of an experiment are 
not fully described in a method section of the paper, 
there is a risk that the �aws will never be discovered, 
with the consequence that we come away thinking that 
we’ve learned a truth (that isn’t true) or we’ve solved 
a problem (that isn’t really solved). Other researchers 
may base their studies on �awed results, not know-
ing about the �aws because there was no information 
provided that would lead to a deep understanding of 
how the experiment was designed and carried out. 
Writing a method section can help experimenters 
avoid invalidities in experimental design, and can 
help readers and reviewers determine the quality of 
the undertaking. 

Of course there are still other things that can go 
wrong. For example, even if you have ensured that 
your methods and measurements are completely 
valid, the chosen analysis procedure could be inap-
propriate for the undertaking. At least, however, you’ll 
have con�dence that you won’t be starting out with 
invalid data. 

While the confounding issues discussed here apply 
to an easily-understood domain like keystroke bio-
metrics, they were nevertheless subtle, and have gone 
virtually unnoticed in the literature for decades. Your 
own experiments, whether in this domain or another, 
are likely to be just as susceptible to confounding and 
methodological errors, and their consequences just 
as damaging. We hope that this paper has raised the 
collective consciousness so that other researchers will 
be vigilant for the presence and e�ects of method-
ological �aws, and will do their best to identify and 
mitigate them. 

Richard Feynman, the 1965 Nobel Laureate in 
physics, said, “�e principle of science, the de�nition 
almost, is the following: �e test of all knowledge is 
experiment. Experiment is the sole judge of scienti�c 
‘truth’” [2]. Truth is separated from �ction by dem-
onstration—by experiment. In doing experiments, 
we want to make claims about the results. For those 
claims to be credible, the experiments supporting 
them need �rst to be free of the kinds of methodologi-
cal errors and confounds presented here. 
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1. On security engineering

A number of blind men came to an elephant. 
Somebody told them that it was an 

elephant. �e blind men asked, “What is the 
elephant like?” and they began to touch its body. 
One of them said: “It is like a pillar.” �is blind 
man had only touched its leg. Another man 
said, “�e elephant is like a husking basket.” 
�is person had only touched its ears. Similarly, 
he who touched its trunk or its belly talked of 
it di�erently.

~Ramakrishna Paramahamsa~

Security means many things to many people. For a 
so�ware engineer, it o�en means that there are no 
bu�er over�ows or dangling pointers in the code. For 
a cryptographer, it means that any successful attack on 
the cypher can be reduced to an algorithm for com-
puting discrete logarithms or to integer factorization. 
For a diplomat, security means that the enemy can-
not read the con�dential messages. For a credit card 
operator, it means that the total costs of the fraudulent 
transactions and of the measures to prevent them 
are low, relative to the revenue. For a bee, security 
means that no intruder into the beehive will escape 
her sting . . .

Is it an accident that all these di�erent ideas go 
under the same name? What do they really have in 
common? �ey are studied in di�erent sciences, 
ranging from computer science to biology, by a wide 
variety of di�erent methods. Would it be useful to 
study them together?

1.1. What is security engineering?

If all avatars of security have one thing in common, it 
is surely the idea that there are enemies and potential 
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attackers out there. All security concerns, from compu-
tation to politics and biology, come down to averting 
the adversarial processes in the environment that are 
poised to subvert the goals of the system. �ere are, 
for instance, many kinds of bugs in so�ware, but only 
those that the hackers use are a security concern.

In all engineering disciplines, the system guaran-
tees a functionality, provided that the environment 
satis�es some assumptions. �is is the standard 
assume-guarantee format of the engineering correct-
ness statements. Such statements are useful when the 
environment is passive so that the assumptions about 
it remain valid for a while. �e essence of security en-
gineering is that System and Environment face o� as 
opponents, and Environment actively seeks to invali-
date System’s assumptions.

Security is thus an adversarial process. In all engi-
neering disciplines, failures usually arise from some 
engineering errors. In security, failures arise in spite of 
compliance with the best engineering practices of the 
moment. Failures are the �rst-class citizens of security. 
For all major so�ware systems, we normally expect 
security updates, which usually arise from attacks and 
o�en inspire them.

1.2. Where did security engineering 

come from?

�e earliest examples of security technologies are 
found among the earliest documents of civilization. 
Figure 1, on the following page, shows security tokens 
with a tamper protection technology from almost 
6,000 years ago. Figure 2 depicts the situation where 
this technology was probably used. Alice has a lamb 
and Bob has built a secure vault, perhaps with multiple 
security levels, spacious enough to store both Bob’s 
and Alice’s assets. For each of Alice’s assets deposited 
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in the vault, Bob issues a clay token with an inscrip-
tion identifying the asset. Alice’s tokens are then 
encased into a bulla—a round, hollow envelope of 
clay—that is then baked to prevent tampering. When 
she wants to withdraw her deposits, Alice submits 
her bulla to Bob; he breaks it, extracts the tokens, 
and returns the goods. Alice can also give her bulla 
to Carol, who can also submit it to Bob to withdraw 
the goods, or pass it on to Dave. Bullae can thus be 
traded and facilitate an exchange economy. �e tokens 
used in the bullae evolved into the earliest forms of 
money; and the inscriptions on them led to the earliest 

numeral systems, as well as to Sumerian cuneiform 
script, which was one of the earliest alphabets. Secu-
rity thus predates literature, science, mathematics, and 
even money.

1.3. Where is security engineering going?

�rough history, security technologies evolved gradu-
ally, serving the purposes of war and peace, protecting 
public resources and private property. As computers 
pervaded all aspects of social life, security became 
interlaced with computation, and security engineering 
came to be closely related with computer science. �e 
developments in the realm of security are nowadays 
inseparable from the developments in the realm of 
computation. �e most notable such development is, 
of course, cyberspace.

A brief history of cyberspace. In the beginning, engi-
neers built computers and wrote programs to control 
computations. �e platform of computation was the 
computer, and it was used to execute algorithms and 
calculations, allowing people to discover, for example, 
fractals, and to invent compilers that allowed them to 
write and execute more algorithms and more calcula-
tions more e�ciently. �en the operating system be-
came the platform of computation, and so�ware was 
developed on top of it. �e era of personal comput-
ing and enterprise so�ware broke out. And then the 
Internet happened, followed by cellular networks, and 
wireless networks, and ad hoc networks, and mixed 
networks. Cyberspace emerged as the distance-free 

FIGURE 2. To withdraw her sheep from Bob’s secure vault, Alice 
submits a tamper-proof token, like those shown in �gure 1.

FIGURE 1. Tamper protection (bulla envelope with 11 plain and 
complex tokens inside) from the Near East, circa 3700–3200 BC. 
(The Schøyen Collection MS 4631. ©The Schøyen Collection, 
Oslo and London. Available at: www.schoyencollection.com.)
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space of instant, costless communication. Nowadays, 
so�ware is developed to run in cyberspace. 

�e Web is, strictly speaking, just a so�ware system, 
albeit a formidable one. A botnet is also a so�ware 
system. As social space blends with cyberspace, many 
social (business, collaborative) processes can be use-
fully construed as so�ware systems that run on social 
networks as hardware. Many social and computational 
processes become inextricable. Table 1 summarizes 
the crude picture of the paradigm shi�s that led to this 
remarkable situation.

TABLE 1. Paradigms of computation

Ancient 
Times

Middle  
Ages

Modern 
Times

Platform computer operating 
system

network

Applications Quicksort, 
compiler

MS Word, 
Oracle

WWW, 
botnets

Requirements correctness, 
termination

liveness, 
safety

trust,  
privacy

Tools programming 
languages

speci�cation 
languages

scripting 
languages

But as every person got connected to a computer, 
and every computer to a network, and every net-
work to a network of networks, computation became 
interlaced with communication and ceased to be 
programmable. �e functioning of the web and of 
web applications is not determined by the code in the 
same sense as in a traditional so�ware system; a�er 
all, web applications do include the human users as a 
part of their runtime. �e fusion of social and compu-
tational processes in cybersocial space leads to a new 
type of information processing, where the purposeful 
program executions at the network nodes are supple-
mented by spontaneous data-driven evolution of 
network links. While the network emerges as the new 
computer, data and metadata become inseparable, and 
a new type of security problems arises.

A brief history of cybersecurity. In early computer 
systems, security tasks mainly concerned sharing of 
the computing resources. In computer networks, se-
curity goals expanded to include information protec-
tion. Both computer security and information security 
essentially depend on a clear distinction between 
the secure areas and the insecure areas, separated 
by a security perimeter. Security engineering caters 

for computer security and for information security 
by providing the tools to build the security perim-
eter. In cyberspace, the secure areas are separated 
from the insecure areas by the “walls” of cryptogra-
phy, and they are connected through the “gates” of 
cryptographic protocols.

But as networks of computers and devices spread 
through physical and social spaces, the distinctions 
between the secure and the insecure areas become 
blurred. And in such areas of cybersocial space, where 
information processing does not yield to program-
ming and cannot be secured by cryptography and 
protocols, security cannot be assured by engineer-
ing methodologies alone. �e methodologies of data 
mining and classi�cation, needed to secure such areas, 
form a bridge from information science to a putative 
security science.

2. On security science

It is the aim of the natural scientist to discover 
mathematical theories, formally expressed as 
predicates describing the relevant observations 
that can be made of some [natural] system. 
. . . �e aim of an engineer is complementary 
to that of the scientist. He starts with a 
speci�cation, formally expressible as a predicate 
describing the desired observable behaviour. 
�en . . . he must design and construct a 
product that meets that speci�cation.

~Tony Hoare~

�e preceding quote was the �rst paragraph in one 
of the �rst papers on formal methods for so�ware 
engineering, published under the title “Programs 
are predicates.” Following this slogan, so�ware has 
been formalized by logical methods and viewed as 
an engineering task ever since. But computation 
evolved, permeated all aspects of social life, and came 
to include not just the purposeful program executions, 
but also spontaneously evolving network processes. 
Data and metadata processing became inseparable. In 
cyberspace, computations are not localized at network 
nodes, but also propagate with nonlocal data �ows 
and with the evolution of network links. While the 
local computations remain the subject of so�ware 
engineering, network processes are also studied in the 
emerging so�ware and information sciences, where 
the experimental validation of mathematical models 
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has become the order of the day. Modern so�ware 
engineering is therefore coupled with an empiric so�-
ware science, as depicted in �gure 3. In a similar way, 
modern security engineering needs to be coupled with 
an empiric security science.

2.1. Why security science?

Conjoining cyber, physical, and social spaces by net-
works gives rise to new security problems that com-
bine computational, physical, and social aspects. �ey 
cross the boundaries of the disciplines where security 
was studied before, and require new modeling tools, 
and a new, uni�ed framework, with a solid scienti�c 
foundation, and empiric methods to deal with the 
natural and social processes on which security now 
depends. In many respects, a scienti�c foundation for 
the various approaches to security would have been 
bene�cial even before; but now it became necessary.

Let us have a closer look at the paradigm shi� to 
postmodern cybersecurity in table 2. It can be il-
lustrated as the shi� from �gure 4 to �gure 5. �e 
fortress in �gure 4 represents the static, architectural 
view of security. A fortress consists of walls and gates 
separating the secure area within from the insecure 
area outside. �e boundary between these two areas 
is the security perimeter. �e secure area may be 
further subdivided into areas of higher security and 
areas of lower security. �ese intuitions extend into 
cyberspace, where crypto systems and access controls 
can be viewed as the walls, preventing the undesired 
tra�c; whereas, authentication protocols and authori-
zation mechanisms can be construed as the gates, al-
lowing the desired tra�c. But as every fortress owner 
knows, the walls and the gates are not enough for 
security; you also need weapons, soldiers, and maybe 
even some detectives and judges. �ey take care of the 
dynamic aspects of security. Dynamic security evolves 

through social processes, such as trust, privacy, repu-
tation, or in�uence. �e static and dynamic aspects 
depend on each other. For example, the authentication 
on the gates is based on some credentials intended to 
prove that the owner is honest. �ese credentials may 
be based on some older credentials, but down the line 
a �rst credential must have resulted from a process of 
trust building or from a trust decision, whereby the 
principal’s honesty was accepted with no credentials. 
�e word credential has its root in Latin credo, which 
means “I believe.”

�e attacks mostly studied in security research can 
be roughly divided into cryptanalytic attacks and pro-
tocol attacks. �ey are the cyber versions of the simple 
frontal attacks on the walls and the gates of a fortress. 
Such attacks are static in the sense that the attack-
ers are outside, the defenders inside, and the two are 
easily distinguished. �e dynamic attacks come about 
when some attackers penetrate the security perimeter 
and attack from within, as in �gure 5. �ey may even 
blend with the defenders and become spies. Some 
of them may build up trust and in�ltrate the fortress 
earlier, where they wait as moles. Some of the insiders 
may defect and become attackers. �e traitors and the 
spies are the dynamic attackers; they use the vulner-
abilities in the process of trust. To deter them, all 
cultures reserve for the breaches of trust the harshest 
punishments imaginable; Dante, in his description of 
Hell, places the traitors into the deepest, Ninth Circle. 
As a dynamic attack, treason was always much easier 
to punish than to prevent.

In cybersecurity, a brand new line of defense 
against dynamic attacks relies on predictive analytics, 
based on mining the data gathered by active or passive 

TABLE 2. Paradigms of security

Middle 
Ages

Modern 
Times

Postmodern 
Times

Space computer 
center

cyberspace cybersocial 
space

Assets computing 
resources

information public and 
private 
resources

Requirements availability, 
authorization

integrity, 
con�dentiality

trust, privacy

Tools locks, tokens, 
passwords

cryptography, 
protocols

mining and 
classi�cation

Speci�cation

   Software

Engineering: 
Implement, 
synthesize

Science: 
Analyze, 

learn

FIGURE 3. Conceptualization loop: The life cycle of computation.

Engineering: 
implement, 
synthesize

Science: 
analyze, 
learn
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FIGURE 4. Static security: Multilevel architecture. (Illustration by Mark Burgess at 
www.markburgess.co.uk.)

observations, network probes, honeypots, or direct 
interactions. It should be noted that the expanding 
practices of predictive modeling are not engineering 
methodologies, geared toward building some speci�ed 
systems, but the �rst simple tools of a security science, 
recognizing security as a process. 

2.2. What is security science?

Although the security environment maliciously de�es 
any system’s assumptions that it can, security engi-
neering still pursues its tasks strictly within the frame-
work of the assume-guarantee methods. Indeed, to 
engineer a system, we must frame an environment for 
it; to guarantee system behavior, we must assume the 
environment behavior; to guarantee system security, 
we must specify an attacker model. �at is the essence 
of the engineering approach. Following that approach, 
the cryptographic techniques of security engineering 
are based on the �xed assumption that the environ-
ment is computationally limited and cannot solve 
certain hard problems.  (Defy that, Environment!)

But sometimes, as we have seen, it is not realistic 
to assume even that there is a clear boundary between 
the system and the environment. Such situations have 
become pervasive with the spread of networks sup-
porting not only social, commercial, and collaborative 
applications, but also criminal and terrorist organiza-
tions. When there is a lot going on, you cannot be sure 

FIGURE 5. Security dynamics: Threats within.

who is who. In large networks, with 
immense numbers of processes, 
the distinction between the sys-
tem and the environment becomes 
meaningless, and the engineering 
assume-guarantee approach must be 
supplemented by the analyze-adapt 
approach of science.  �e task of the 
analyze-adapt approach of science 
is to recover the distinction between 
system and environment—whenever 
possible, albeit as a dynamic vari-
able—and to adaptively follow its 
evolution. Similar situations, where 
engineering interventions are inter-
leaved with scienti�c analyses, arise 
not only in security—where they 
elicit security science to support 
security engineering—but also, for 
example, in the context of health—
where they elicit medical science to 

support health care. And just as health is not achieved 
by isolating the body from the external world, but by 
supporting its internal defense mechanisms, security is 
not achieved by erecting fortresses, but by supporting 
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dynamic defenses, akin to the immune response. 
While security engineering provides blueprints and 
materials for static defenses, it is the task of security 
science to provide guidance and adaptation methods 
for dynamic defenses.

In general, science is the process of understanding 
the environment, adapting the system to it, chang-
ing the environment by the system, adapting to these 
changes, and so on. Science is thus an ongoing dialog 
of the system and the environment, separated and 
conjoined along the ever-changing boundaries. Dy-
namic security, on the other hand, is an ongoing battle 
between the ever-changing teams of attackers and 
defenders. Only scienti�c probing and analyses of this 
battle can tell who is who at any particular moment.

In summary, if security engineering is a family of 
methods to keep the attackers out, security science is 
a family of methods to catch the attackers once they 
get in.

It may be interesting to note that these two families 
of methods, viewed as strategies in an abstract security 
game, turn out to have opposite winning odds. It is 
o�en observed that the attackers only need to �nd one 
attack vector to enter the fortress, whereas the defend-
ers must defend all attack vectors to prevent them. But 
when the battle switches to the dynamic mode and the 
defense moves inside, then the defenders only need to 
�nd one marker to recognize and catch the attackers; 
whereas, the attackers must cover all their markers. 
�is strategic advantage is also the critical aspect of 
the immune response, where the invading organisms 
are purposely sampled and analyzed for chemical 
markers. In security science, this sampling and analy-
ses take the form of data mining.

2.3. Where to look for security science?

�e germs of a scienti�c approach to security, with 
data gathering, statistical analyses, and experimental 
validation, are already present in many intrusion de-
tection and antivirus systems, as well as in spam �lters 
and some �rewalls. Such systems use measurable 
inputs and have quanti�able performance and model 
accuracy and thus conform to the basic requirements 
of the scienti�c method. �e collaborative processes 
for sharing data, comparing models, and retesting 
and unifying results complete the social process of 
scienti�c research.

However, a broader range of deep security problems 
is still awaiting applications of a broader range of pow-
erful scienti�c methods that are available in this realm. 
At least initially, the statistical methods of security sci-
ence will need to be borrowed from information sci-
ence. Security, however, imposes special data analysis 
requirements, some of which have been investigated in 
the existing work and led to novel approaches. In the 
long run, security science will undoubtedly engender 
its own domain-speci�c data analysis methods.

In general, security engineering solutions are based 
on security infrastructure: Internet protocol security 
(IPSec) suites, Rivest-Shamir-Adleman (RSA) systems, 
and elliptic curve cryptography (ECC) provide typi-
cal examples. In contrast, security science solutions 
emerge where the available infrastructure does not 
su�ce for security. �e examples abound—a mobile 
ad hoc network (MANET), for example, is a network 
of nodes with no previous contacts, direct or indirect, 
and thus no previous infrastructure. Although ad-
vanced MANET technologies have been available for 
more than 15 years, secure MANETs are still a bit of 
a holy grail. Device pairing, social network security, 
and web commerce security also require secure ad hoc 
interactions akin to the social protocols that regulate 
new encounters in social space. Such protocols are 
invariably incremental and accumulating, analyzing 
and classifying the data from multiple channels until 
a new link is established or aborted. Powerful data-
mining methods have been developed and deployed in 
web commerce and �nancial security, but they are still 
awaiting systematic studies in noncommercial security 
research and systematic applications in noncommer-
cial security domains.

3. Summary

Security processes are distributed, subtle, and com-
plex, and there are no global observers. Security is like 
an elephant, and we are like the blind men touching 
its body. For the cryptographers among us, the secu-
rity elephant consists of elliptic curves and of integers 
with large factors. Many so�ware engineers among us 
derive their view of the security elephant entirely from 
their view of the so�ware bugs �ying around it.

Beyond and above all of our partial views is the 
actual elephant—people cheating each other, stealing 
secrets and money, forming online gangs and terror-
ist networks. �ere is a whole wide world of social 
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processes of attacking and defending the assets by 
methods beyond the reach of security engineering. 
Such attacks and fraud cannot be debugged or pro-
grammed away; they cannot be eliminated by cryp-
tography, protocols, or policies. Security engineer-
ing defers such attacks to the marginal notes about 
“social engineering.”

However, since these attacks nowadays evolve in 
networks, the underlying social processes can be 
observed, measured, analyzed, understood, validated, 
and even experimented with. Security can be im-
proved by security science, combining and re�ning the 
methods of information sciences, social sciences, and 
computational sciences. 
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1. Introduction

Compositional security is a well-recognized scienti�c 
challenge [1]. Contemporary systems are built up 
from smaller components, but even if each compo-
nent is secure in isolation, a system composed of 
secure components may not meet its security require-
ments—an adversary may exploit complex interac-
tions between components to compromise security. 
Attacks using properties of one component to subvert 
another have shown up in practice in many di�erent 
settings, including network protocols and infrastruc-
ture [2, 3, 4, 5, 1], web browsers and infrastructure 
[6, 7, 8, 9, 10], and application and systems so�ware 
and hardware [11, 12, 13]. 

A theory of compositional security should iden-
tify relationships among systems, adversaries, and 

Programming language 
methods for compositional 
security  |  

A n u p a m  D a t t a  a n d  
J o h n  C .  M i t c h e l l

D
ivide-and-conquer is an important paradigm in computer 
science that allows complex software systems to be 
built from interdependent components. However, 

there are widely recognized di�culties associated with 
developing divide-and-conquer paradigms for computer 
security; we do not have principles of compositional security 
that allow us to put secure components together to produce 
secure systems. The following article illustrates some of the 
problems and solutions we have explored in recent research on 
compositional security, compares them to other approaches 
explored in the research community, and describes important 
remaining challenges.

properties, such that pre-
cisely de�ned operations 
over systems and adversaries 
preserve security properties. It 
should explain known attacks, 
predict previously unknown attacks, 
and inform design of new systems. 
�e theory should be general—it should 
apply to a wide range of systems, adver-
saries, and properties. Guided by these 
desiderata, we initiated an investigation of 
compositional security in the domain of security 
protocols with the Protocol Composition Logic (PCL) 
project [14, 15, 16]. Building on these results, we then 
developed general secure composition principles 
that transcend speci�c application domains (for ex-
ample, security protocols, access control systems, web 
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platform) in the Logic of Secure Systems (LS2) proj-
ect [17]. �ese theories have been applied to explain 
known attacks, predict previously unknown attacks, 
and inform the design of practical protocols and 

so�ware systems [12, 4, 18, 3, 19, 20, 21].

In both projects, we addressed two basic 
problems in compositional security: non-

destructive and additive composition.

Nondestructive composition 
ensures that if two system compo-

nents are combined, then neither 
degrades the security properties 

of the other. �is is particular-
ly complicated when system 

components share state. 
For example, if an alter-
native mode of operation 
is added to a protocol, 
then some party may 
initiate a session in 
one mode and simul-
taneously respond to 
another session in 
another mode, using 
the same public key 
(an example of shared 
state) in both. Unless 
the modes are de-
signed not to interfere, 
there may be an attack 
on the multimode 
protocol that would not 
arise if only one mode 
were possible. In a simi-

lar example, new attacks 
became possible when 

trusted computing systems 
were augmented with a new 

hardware instruction that 
could operate on protected reg-

isters (an example of shared state) 
previously accessible only through a 

prescribed protocol [12].

Additive composition supports a combina-
tion of system components in a way that accumulates 
security properties. Combining a basic key exchange 
protocol with an authentication mechanism to 
produce a protocol for authenticated key exchange 

provides one example of additive composition [15]. 
Systematically adding cryptographic operations to 
basic authentication protocols to provide additional 
properties such as identity protection provides anoth-
er example of additive composition [22].

Both additive and nondestructive compositions are 
important in practice. If we want a system with the 
positive security features of two components, A and B, 
we need nondestructive composition conditions to be 
sure that we do not lose security features we want, and 
we need additive composition conditions to make sure 
we get the advantages of A and B combined.

Before turning to a high-level presentation of tech-
nical aspects of nondestructive and additive composi-
tion in PCL and LS2, we present two concrete ex-
amples that illustrate how security properties fail to be 
preserved under composition (that is, both examples 
are about the failure of nondestructive composition). 
We also compare our composition methods to three 
related approaches—compositional reasoning for cor-
rectness properties of systems [23, 24], the universal 
composability framework [25, 26], and a re�nement 
type system for compositional type-checking of secu-
rity protocols [27]. Finally, we describe directions for 
future work.

2. Two examples

While these protocol examples are contrived, the 
phenomena they illustrate are not: It is possible for 
one component of a system to expose an interface to 
the adversary that does not a�ect its own security but 
compromises the security of other components. Later, 
we will describe two general principles of composi-
tional security that could be used to design security 
protocols and other kinds of secure so�ware systems 
while avoiding the kind of insecure interaction illus-
trated by these examples.

Example 1: Authentication failure. �e following two 
protocols use digital signatures. �e �rst protocol 
provides one-way authentication when used in isola-
tion; however, this property is not preserved when the 
second protocol is run concurrently.

 Protocol 1.1. Alice generates a fresh random 
number r and sends it to Bob. Upon receiving 
such a message, Bob replies to the sender of the 
message (as recorded in the message) with his 
signature over the fresh random number and 
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the sender’s name—that is, if Bob receives the 
message with the random number r from sender 
A, then Bob replies with his signature over r and 
A. �is protocol guarantees a form of one-way 
authentication: A�er sending the �rst message 
to Bob and then receiving Bob’s second message, 
Alice is guaranteed that Bob received the �rst 
message that she sent to him and then sent the 
second message and intended it for her.

 Protocol 1.2. Upon receiving any message m, Bob 
signs it with his private signing key and sends it 
out on the network. 

When the two protocols are run concurrently, 
protocol 1.1 no longer provides one-way authentica-
tion: Alice cannot be certain that Bob received her 
�rst message and intended the signed message for her 
as part of the execution of this protocol; it could very 
well be that Bob produced the signature as part of 
protocol 1.2 in response to an adversary M who inter-
cepted Alice’s message and used it to start a session of 
protocol 1.2 with Bob.

Example 2: Secrecy failure. Using network protocols 
as an illustration, here are two secure, unidirectional 
protocols for communication between Alice and Bob. 
Both involve public key cryptography, in which two 
di�erent keys are used for encryption and decryption, 
and the encryption key may be distributed publicly.

 Protocol 2.1. In this protocol, for communication 
from Alice to Bob, Alice sends a message to Bob 
by encrypting it with Bob’s public encryption 
key. As part of each message, in order to make 
our example illustrate the general point, Alice 
also reveals her secret decryption key, making 
public-key encryption to Alice insecure.

 Protocol 2.2. �is protocol is the same as the pre-
vious one (that is, protocol 2.1), but in reverse: 
Bob communicates to Alice by encrypting mes-
sages using Alice’s public key and revealing his 
own private decryption key.

Both protocol 2.1 and 2.2 are secure when used by 
themselves: If Bob sends Alice a message encrypted 
with Alice’s public key, then only Alice can decrypt 
and read the message. However, it should be clear that 
composing these two protocols to communicate be-
tween Alice and Bob in both directions is completely 
insecure because when Alice sends Bob a message, 

she leaks her private key, and when Bob communi-
cates to Alice, he leaks his private key. A�er at least 
one message in each direction, both public keys have 
been leaked and any eavesdropper on the network can 
decrypt and read all the messages.

3. Two principles of secure composition

In the following, we describe two principles of se-
cure composition, and we use these principles to 
explain the examples of insecure composition in the 
previous section.

3. 1. Principle 1: Preserving invariants of 

system components 

�e central idea behind this principle is that the 
security property of a system component is preserved 
under composition if every other component respects 
invariants used in the proof of security of the com-
ponent in the face of attack. In example 1, the only 
relevant invariant for the authentication property of 
protocol 1.1 is of the following form: “If an honesta 
principal signs a message of the form < r, A >, then he 
must have previously received r in a message with A as 
the identi�er for the sender.” �is invariant is not pre-
served by protocol 1.2, as demonstrated by the attack 
described in the previous section, leading to a failure 
of nondestructive composition.

To illustrate the generality of this principle, we 
brie�y discuss a published analysis of the widely de-
ployed Trusted Computing Group (TCG) technology 
using this principle [12], and we discuss the conse-
quent discovery of a real incompatibility between an 
existing standard protocol for attesting the integrity 
of the so�ware stack to a remote party and a newly 
added hardware instruction. Machines with trusted 
computing abilities include a special, tamper-proof 
hardware called the Trusted Platform Module or 
TPM, which contains protected append-only registers 
to store measurements (that is, hashes) of programs 
loaded into memory and a dedicated coprocessor 
to sign the contents of the registers with a unique 
hardware-protected key. �e protocol in question, 
called Static Root of Trust Measurement (SRTM), 
uses this hardware to establish the integrity of the 
so�ware stack on a machine to a trusted remote third 

a. A principal is honest if he does not deviate from the steps of the protocol.
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party. �e protocol works by requiring each program 
to store, in the protected registers, the hash of any 
program it loads. �e hash of the �rst program loaded 
into memory, usually the boot loader, is stored in the 
protected registers by the booting �rmware, usually 
the basic input/output system (BIOS). �e integrity of 
the so�ware stack of a machine following this protocol 
can be proved to a third party by asking the coproces-
sor to sign the contents of the protected registers with 
the hardware-protected key, and sending the signed 
hashes of loaded programs to the third party. �e 
third party can compare the hashes to known ones, 
thus validating the integrity of the so�ware stack.

Note that the SRTM protocol is correct only if so�-
ware that has not already been measured cannot ap-
pend to the protected registers. Indeed, this invariant 
was true in the hardware prescribed by the initial TCG 
standard and, hence, this protocol was secure then. 
However, a new instruction, called latelaunch, 
added to the standard in a later extension allows an 
unmeasured program to be started with full access to 
the TPM. �is violates the necessary invariant- and 
results in an actual attack on the SRTM protocol: 
A program invoked with latelaunch may add 
hashes of arbitrary programs to the protected registers 
without actually loading them. Since the program is 
not measured, the remote third party obtaining the 
signed measurements will never detect its presence. 
An analysis of the protocol using the method outlined 
here discovered this incompatibility between the 
SRTM protocol and the latelaunch instruction. 
In the analysis, the TPM instruction set, including 
latelaunch, were modeled as interfaces available 
to programs. �e invariant can be established for all 
interfaces except latelaunch, thus leading to failure 

of a proof of correctness of SRTM with latelaunch 
and leading to discovery of the actual attack.

�is composition principle is related to the form 
of assume-guarantee reasoning initially proposed 
by Jones for reasoning about correctness properties 
of concurrent programs [23]. However, one di�er-
ence is that, in contrast to Jones’ work, we consider 
preservation of properties of system components 
under composition in the presence of an active ad-
versary whose exact program (or invariants) is not 
known. A�er sketching the technical approach in the 
next sections, we will explain how we address this 
additional complexity.

3.2. Principle 2: Secure rely-guarantee 

reasoning 

Inductive security properties (that is, properties which 
hold at a point of time if and only if they have held 
at all prior points of time) require a di�erent form of 
compositional reasoning that builds on prior work on 
rely-guarantee reasoning for correctness properties 
of programs [23, 24].

Suppose we wish to prove that property φ holds 
at all times. First, we identify a set S = {T

1
,…, T

n
} of 

trusted components relevant to the property and local 
properties Ψ

T1
,…,Ψ

Tn
 of these components, satisfying 

the following conditions:

(1)    If φ holds at all time points strictly before any 
given time point, then each of Ψ

T1
,…,Ψ

Tn
 holds 

at the given time point.

(2)    If φ does not hold at any time, then at least one 
of Ψ

T1
,…,Ψ

Tn
 must have been violated strictly 

before that time.
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�e rely-guarantee principle states that under these 
conditions, if φ holds initially, then φ holds forever.

We return to example 2 to illustrate the application 
of this principle. In order to prove the secrecy of the 
encrypted message, it is necessary to prove that the 
private decryption key is known only to the associated 
party. If protocol 2.1 (or protocol 2.2) were to run in 
isolation, the relevant decryption key would indeed 
be known only to the associated party (Alice or Bob). 
�is can be proved using the rely-guarantee reasoning 
technique described above and noting that the recipi-
ent of the encrypted message never sends out his or 
her private decryption key and that the other party 
cannot send it out (assuming that it has not already 
been sent out). However, when the two protocols are 
composed in parallel, the proof no longer works be-
cause the sender in one protocol is the recipient in the 
other; thus, we can no longer prove that the recipient’s 
private decryption key is not sent out on the network. 
Indeed, the composition attack arises precisely be-
cause the recipient’s private decryption key is sent out 
on the network.

Another application of the rely-guarantee technique 
is in proofs of secrecy of symmetric keys generated in 
network protocols. We explain one instance here—
proving that the so called authentication key (AKey) 
generated during the Kerberos V protocol (a widely 
used industry standard) becomes known only to three 
protocol participants [17, 18]: the client authenticated 
by the key, the Kerberos authentication server (KAS) 
that generates the key, and the ticket granting server 
(TGS) to whom the key authenticates the client. At 
the center of this proof is the property that whenever 
any of these three participants send out the AKey onto 
the (unprotected) network, it is encrypted with other 
secure keys. Proving this property requires induction 
because, as part of the protocol, the client blindly for-
wards an incoming message to the TGS. Consequently, 
the client’s outgoing message does not contain the un-
encrypted AKey because the incoming message does 
not contain the unencrypted AKey in it. �e latter fol-
lows from the inductive hypothesis that any network 
adversary could not have had the unencrypted AKey 
to send to the client.

Formally, the rely-guarantee framework is instanti-
ated by choosing φ to be the property that any mes-
sage sent out on the network does not contain the un-
encrypted AKey. �e properties Ψ

T 
, for components 

T of the client, KAS, and the TGS model the require-
ment that the respective components do not send out 
the AKey unencrypted. �en, the proof of condition 
(2) of the rely-guarantee framework is trivial, and 
condition (1) follows from an analysis of the programs 
of the client, the KAS, and the TGS. �e �rst of these, 
as mentioned earlier, uses the assumption that φ holds 
at all points in the past. Note that the three programs 
are analyzed individually, even though the secrecy 
property relies on the interactions between them, that 
is, the proof is compositional.

4. Protocol Composition Logic

Protocol Composition Logic (PCL) [14, 15, 16] is a 
formal logic for proving security properties of network 
protocols that use public and symmetric key cryptog-
raphy. �e system has several parts:

 A simple programming language for de�ning 
protocols by writing programs for each role 

of the protocol. For example, the secure sock-
ets layer (SSL) protocol can be modeled in this 
language by writing two programs—one for the 
client role and one for the server role of SSL. 
Each program is a sequence of actions, such as 
sending and receiving messages, decryption, and 
digital signature veri�cation. �e operational 
semantics of the programming language de-
�ne how protocols execute concurrently with a 
symbolic adversary (sometimes referred to as the 
Dolev-Yao adversary) that controls the network 
but cannot break the cryptographic primitives.

 A pre/postcondition logic for describing the 
starting and ending security conditions for 

protocol. For example, a precondition might 
state that a symmetric key is shared by two 
agents, and a postcondition might state that 
a new key exchanged using the symmetric 
key for encryption is only known to the same 
two agents.

 Modal formulas, denoted θ[P]
X 

 

, for stating 
that if a precondition θ holds initially, and a 
protocol thread X completes the steps P, then 
the postcondition  will be true afterwards irre-
spective of concurrent actions by other agents 

and the adversary. Typically, security proper-
ties of protocols are speci�ed in PCL using such 
modal formulas.
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A formal proof system for deriving true modal 

formulas about protocols. �e proof system 
consists of axioms about individual protocol 
actions and inference rules that yield assertions 
about protocols composed of multiple steps.

One of the important ideas in PCL is that although 
assertions are written only using the steps of the 
protocol, the logic is sound in a strong sense: Each 
provable assertion involving a sequence of actions 
holds in any protocol run containing the given actions 
and arbitrary additional actions by a malicious adver-
sary. �is approach lets us prove security properties 
of protocols under attack while reasoning only about 
the actions of honest parties in the protocol, thus 
signi�cantly reducing the size of protocol proofs in 
comparison to other proof methods, such as Paulson’s 
Inductive Method [28].

Intuitively, additive combination is achieved using 
modal formulas of the form θ[P]

A
. For example, the 

precondition θ might assert that A knows B’s public 
key, the actions P allow A to receive a signed message 
and verify B’s signature, and the postcondition  may 
say that B sent the signed message that A received. 
�e importance of modal formulas with before-a�er 
assertions is that we can combine assertions about 
individual protocol steps to derive properties of a se-
quence of steps: If [P]

A
Ψ and Ψ[P']

A
θ, then [PP']

A
θ. 

For example, an assertion assuming that keys have 
been successfully distributed can be combined with 
steps that do key distribution to prove properties of a 
protocol that distributes keys and uses them.

We ensure one form of nondestructive combination 
using invariance assertions, capturing the �rst compo-
sition principle described in Section 3. �e central as-
sertion in our reasoning system, Γ [P]

A
Ψ, says that 

in any protocol satisfying the invariant Γ, the before-
a�er assertion [P]

A
Ψ holds in any run (regardless of 

any actions by any dishonest attacker). Typically, our 
invariants are statements about principals that follow 
the rules of a protocol, as are the �nal conclusions. 
For example, an invariant may state that every honest 
principal maintains secrecy of its keys, where honest 
means simply that the principal only performs actions 
that are given by the protocol. A conclusion in such a 
protocol may be that if Bob is honest (so no one else 
knows his key), then a�er Alice sends and receives 
certain messages, Alice knows that she has communi-
cated with Bob. Nondestructive combination occurs 

when two protocols are combined and neither violates 
the invariants of the other.

PCL also supports a specialized form of secure 
rely-guarantee reasoning about secrecy properties, 
capturing the second composition principle in Section 
3. In order to prove that the network is safe (that is, all 
occurrences of the secret on the network appear under 
encryption with a set of keys κ not known to the 
adversary), the proof system requires us to prove that 
assuming that the network is safe, all honest agents 
only send out “safe” messages, that is, messages from 
which the secret cannot be extracted without knowing 
the keys in the set κ [18].

�ese composition principles have been applied to 
prove properties of a number of industry standards 
including SSL/TLS, IEEE 802.11i, and Kerberos V5.

5. Logic of Secure Systems

�e Logic of Secure Systems (LS2) (initially presented 
in [12]) builds on PCL to develop related composition 
principles for secure systems that perform network 
communication and operations on local shared 
memory as well as on associated adversary models. 
�ese principles have been applied to study industrial 
trusted computing system designs. �e study uncov-
ered an attack that arises from insecure composition 
between two remote attestation protocols (see [12] 
for details). A natural scienti�c question to ask is 
whether one could build on these results to develop 
general secure composition principles that transcend 
speci�c application domains, such as network proto-
cols and trusted computing systems. Subsequent work 
on LS2 [17], which we turn to next, answers exactly 
this question.

Two goals drove the development of LS2. First, we 
posit that a general theory of secure composition must 
enable one to �exibly model and parametrically reason 
about di�erent classes of adversaries. To develop such 
a theory, we view a trusted system in terms of the in-
terfaces its various components expose: Larger trusted 
components are built by connecting interfaces in the 
usual ways (client-server, call-return, message-passing, 
etc.). �e adversary is con�ned to some subset of the 
interfaces, but its program is unspeci�ed and can call 
those interfaces in ways that are not known a priori. 
Our focus on interface-con�ned adversaries thus 
provides a generic way to model di�erent classes of 
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adversaries in a compositional setting. For example, 
in virtual machine monitor-based secure systems, 
we model an adversarial guest operating system by 
con�ning it to the interface exposed by the virtual 
machine monitor. Similarly, adversary models for web 
browsers, such as the gadget adversary (an attractive 
vector for malware today that leverages properties 
of Web 2.0 sites), can be modeled by con�ning the 
adversary to the read and write interfaces for frames 
guarded by the same-origin policy as well as by frame 
navigation policies [7]. �e network adversary model 
considered in prior work on PCL and the adversary 
against trusted computing systems considered in the 
initial development of LS2 are also special cases of this 
interface-con�ned adversary model. At a technical 
level, interfaces are modeled as recursive functions in 
an expressive programming language. Trusted com-
ponents and adversaries are also represented using 
programs in the same programming language. Typi-
cally, we assume that the programs for the trusted 
components (or their properties) are known. However, 
an adversary is modeled by considering all possible 
programs that can be constructed by combining calls 
to the interfaces to which the adversary is con�ned.

Our second goal was to develop compositional rea-
soning principles for a wide range of classes of inter-
connected systems and associated interface-con�ned 
adversaries that are described using a rich logic. �e 
approach taken by LS2 uses a logic of program speci�-
cations, employing temporal operators to express not 
only the states and actions at the beginning and end of 
a program, but also at points in between. �is expres-
siveness is crucial because many security properties of 
interest, such as integrity properties, are safety prop-
erties [29]. LS2 supports the two principles of secure 
composition discussed in the previous section in the 
presence of such interface-con�ned adversaries. �e 
�rst principle follows from a proof rule in the logic, 
and the second principle follows from �rst-order rea-
soning in the logic. We refer the interested reader to 
our technical paper for details [17].

6. Related work

We compare our approach to three related approach-
es—compositional reasoning for correctness proper-
ties of systems [23, 24], the Universal Composability 

(UC) framework [25, 26], and a re�nement type 
system for compositional type-checking of security 
protocols [27].

�e secure composition principles we developed are 
related to prior work on rely-guarantee reasoning for 
correctness properties of programs [23, 24]. However, 
the prior work was developed for a setting in which 
all programs are known. In computer security, how-
ever, it is unreasonable to assume that the adversary’s 
program is known a priori; rather, we model adversar-
ies as arbitrary programs that are con�ned to certain 
system interfaces as explained earlier. We prove invari-
ants about trusted programs and system interfaces 
that hold irrespective of concurrent actions by other 
trusted programs and the adversary. �is additional 
generality, which is crucial for the secure composition 
principles, is achieved at a technical level using novel 
invariant rules. �ese rules allow us to conclude that 
such invariants hold by proving assertions of the form 
θ[P]

x
 over trusted programs or system interfaces; 

note that because of the way the semantics of the 
modal formula is de�ned, the invariants hold irrespec-
tive of concurrent actions by other trusted programs 
and the adversary, although the assertion only refers 
to actions of one thread X.

Recently, Bhargavan et al. developed a type system 
to modularly check interfaces of security protocols, 
implemented the system, and applied it to analysis of 
secrecy properties of cryptographic protocols [27]. 
�eir approach is based on re�nement types (that is, 
ordinary types quali�ed with logical assertions), which 
can be used to specify program invariants and pre- 
and postconditions. Programmers annotate various 
points in the model with assumed and asserted facts. 
�e main safety theorem states that all programmer 
de�ned assertions are implied by programmer as-
sumed facts in a well-typed program. 

However, a semantic connection between the 
program state and the logical formulas representing 
assumed and asserted facts is missing. In contrast, 
we prove that the inference systems of our logics of 
programs (PCL and LS2) are sound with respect to 
trace semantics of the programming language. Our 
logic of programs may provide a semantic founda-
tion for the work of Bhargavan et al. and, dually, the 
implementation in that work may provide a basis for 
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mechanizing the formal system in our logics of pro-
grams. Bhargavan et al.’s programming model is more 
expressive than ours because it allows higher-order 
functions. We intend to add higher-order functions to 
our framework in the near future.

While all the approaches previously discussed 
involve proving safety properties of protocols and 
systems modeled as programs, an alternative approach 
to secure composition involves comparing the real 
protocol (or system) whose security we are trying 
to evaluate to an ideal functionality that is secure by 
construction and prove that the two are equivalent 
in a precise sense. Once the equivalence between the 
real protocol and the ideal functionality is established, 
the composition theorem guarantees that any larger 
system that uses the real protocol is equivalent to the 
system where the real protocol is replaced by the ideal 
functionality. 

�is approach has been taken in the UC framework 
for cryptographic protocols [25, 26] and is also related 
to the notion of observational equivalence and simula-
tion relations studied in the programming languages 
and veri�cation literature [30, 31]. When possible, 
this form of composition result is indeed very strong: 
Composition is guaranteed under no assumptions 
about the environment in which a component is used. 
However, components that share state and rely on one 
another to satisfy certain assumptions about how that 
state is manipulated cannot be compositionally ana-
lyzed using this approach; the secure rely-guarantee 
principle we develop is better suited for such analyses. 
One example is the compositional security analysis of 
the Kerberos protocol that proceeds from proofs of its 
constituent programs [18].

7. Future work

�ere are several directions for further work on this 
topic. First, automating the compositional reason-
ing principles we presented is an open problem. 
Rely-guarantee reasoning principles have already 
been automated for functional veri�cation of realistic 
systems. We expect that progress can be made on this 
problem by building on these prior results. Second, 
while sequential composition of secure systems is 

an important step forward, a general treatment of 
additive composition that considers other forms of 
composition is still missing. �ird, it is important to 
extend the compositional reasoning principles pre-
sented here to support analysis of more re�ned models 
that consider, for example, features of implementation 
languages such as C. Finally, a quantitative theory 
of compositional security that supports analysis of 
systems built from components that are not perfectly 
secure would be a signi�cant result. 
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W
hen running software applications and services, we rely on the underlying 
execution platform: the hardware and the lower levels of the software stack. 
The execution platform is susceptible to a wide range of threats, ranging from 

accidental bugs, faults, and leaks to maliciously induced Trojan horses. The problem is 
aggravated by growing system complexity and by increasingly pertinent outsourcing 
and supply chain consideration. Traditional mechanisms, which painstakingly validate all 
system components, are expensive and limited in applicability. 

What if the platform assurance 
problem is just too hard? Do we have 
any hope of securely running software 
when we cannot trust the underlying 
hardware, hypervisor, kernel, libraries, 
and compilers? 

This article will discuss a potential 
approach for doing just so: conducting 
trustworthy computation on untrusted 
execution platforms. The approach, 
proof-carrying data (PCD), circumnavi-

gates the threat of faults and 
leakage by reasoning solely 
about properties of a computa-
tion’s output data, regardless 
of the process that produced 
it. In PCD, the system designer 
prescribes the desired proper-
ties of the computation’s out-
puts. These properties are then 
enforced using cryptographic 
proofs attached to all data �ow-
ing through the system and 
veri�ed at the system perimeter 
as well as internal nodes. 
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1. Introduction 

Integrity of data, information �ow control, and fault 
isolation are three examples of security properties 
of which attainment, in the general case and under 
minimal assumptions, is a major open problem. Even 
when particular solutions for speci�c cases are known, 
they tend to rely on platform trust assumptions (for 
example, the kernel is trusted, the central processing 
unit is trusted), and even then they cannot cross trust 
boundaries between mutually untrusting parties. For 
example, in cloud computing, clients are typically 
interested in both integrity [1] and con�dentiality [2] 
when they delegate their own computations to the 
untrusted workers. 

Minimal trust assumptions and very strong cer-
ti�cation guarantees are sometimes almost a basic 
requirement. For example, within the information 
technology supply chain, faults can be devastating 
to security [3] and hard to detect; moreover, hard-
ware and so�ware components are o�en produced in 
faraway lands from parts of uncertain origin where 
it is hard to carry out quality assurance in case trust 
is not available [4]. �is all implies risks to the users 
and organizations [5, 6, 7, 8]. 

2. Goals 

In order to address the aforementioned problems, we 
propose the following goal: 

Goal. A compiler that, given a protocol for a 
distributed computation and a security property 
(in the form of a predicate to be veri�ed at every 
node of the computation), yields an augmented 
protocol that enforces the security property. 

We wish this compiler to respect the original 
distributed computation (that is, the compiler should 
preserve the computation’s communication graph, dy-
namics, and e�ciency). �is implies, for example, that 
scalability is preserved: If the original computation can 
be jointly conducted by numerous parties, then the 
compiler produces a secure distributed computation 
that has the same property.

3. Our approach 

We propose a generic solution approach, proof-
carrying data (PCD), to solve the aforementioned 

problems by de�ning appropriate checks to be per-
formed on each party’s computation and then letting 
parties attach proofs of correctness to each message. 
Every piece of data �owing through a distributed 
computation is augmented by a short proof string 
that certi�es the data as compliant with some desired 
property. �ese proofs can be propagated and ag-
gregated “on the �y,” as the computation proceeds. 
�ese proofs may be between components of a single 
platform or between components of mutually un-
trusting platforms, thereby extending trust to any 
distributed computation. 

But what “properties” do we consider? Certainly 
we want to consider the property that every node 
carried out its own computation without making any 
mistakes. More generally, we consider properties that 
can be expressed as a requirement that every step in 
the computation satis�es some compliance predicate 
C computable in polynomial time; we call this notion 
C-compliance. �us, each party receives inputs that 
are augmented with proof strings, computes some 
outputs, and augments each of the outputs with a 
new proof string that will convince the next party (or 
the veri�er of the ultimate output) that the output is 
consistent with a C-compliant computation. See �gure 
1 for a high-level diagram of this idea. 

For example, C could simply require that each 
party’s computation was carried out without errors. 
Or, C could require that not only each party’s com-
putation was carried out without errors, but also that 
the program run by each party carried a signature 
valid under the system administrator’s public key; in 
such a case, the local program supplied by each party 
would be the combination of the program and the 
signature. Or, C could alternatively require that each 
party’s computation involved a binary produced by 
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a compiler prescribed by the system administrator, 
which is known to perform certain tests on the code to 
be compiled (for example, type safety, static analysis, 
dynamic enforcement). Note that a party’s local pro-
gram could be a combination of code, human inputs, 
and randomness. 

To formalize the above, we de�ne and construct 
a PCD scheme: A cryptographic primitive that fully 
encapsulates the proof system machinery and pro-
vides a simple but very general “interface” to be used 
in applications.a

Our construction does require a minimal trusted 
setup: Every party should have black-box access to 
a simple signed-input-and-randomness functional-
ity, which signs every input it receives along with 
some freshly-generated random bits. �is is similar to 
standard functionality of cryptographic signing tokens 
and can also be implemented using Trusted Platform 
Module chips or a trusted party. 

3.1. Our results 

We introduce the generic approach of PCD for secur-
ing distributed computations and describing the 
cryptographic primitive of PCD schemes to capture 
this approach: 

Theorem (informal). PCD schemes 
can be constructed under standard 
cryptographic assumptions, given 
signed-input-and-randomness tokens. 

3.2. The construction and its practicality 

We do not rely on the traditional notion of a proof; in-
stead, we rely on computationally sound proofs. �ese 
are proofs that always exist for true theorems and can 
be found e�ciently given the appropriate witness. For 
false theorems, however, we only have the guarantee 
that no e	cient procedure will be able to write a proof 
that makes us accept with more than negligible prob-
ability. Nonetheless, computationally sound proofs 
are just as good as traditional ones, for we are not 
interested in being protected against infeasible attack 
procedures, nor do we mind accepting a false theorem 
with, say, 2-100 probability. 

�e advantage of settling for computationally sound 
proofs is that they can be much shorter than the com-
putation to which they attest and can be veri�ed much 
more quickly than repeating the entire computation. 
To this end, we use probabilistically checkable proofs 
(PCPs) [11, 12], which originate in the �eld of com-
putational complexity and its cryptographic exten-
sions [9, 13, 14]. 

While our initial results establish theoretical foun-
dations for PCD and show their possibility in prin-
ciple, the aforementioned PCPs are computationally 
heavy and are notorious for being e�cient only in the 
asymptotic sense, and they are not yet of practical rel-
evance. Motivated by the potential impact of a practi-
cal PCD scheme, we have thus taken on the challenge 
of constructing a practical PCP system, in an ongoing 
collaboration with Professor Eli Ben-Sasson and a 
team of programmers at the Technion. 

4. Related approaches 

Cryptographic tools. Secure multiparty computation 
[15, 16, 17] considers the problem of secure function 
evaluation; our setting is not one function evaluation, 
but ensuring a single invariant (that is, C-compli-
ance) through many interactions and computations 
between parties. 

Platforms, languages, and static analysis. Integ-
rity can be achieved by running on suitable fault-
tolerant systems. Con�dentiality can be achieved 
by platforms with suitable information �ow control 
mechanisms following [18, 19] (for example, at the 
operating-system level [20, 21]). Various invariants 
can be achieved by statically analyzing programs and 
by programming language mechanisms such as type 
systems following [22, 23]. �e inherent limitation of 
these approaches is that the output of such computa-
tion can be trusted only if one trusts the whole plat-
form that executed it; this renders them ine�ective in 
the setting of mutually untrusting distributed parties. 

Run-time approaches. In proof-carrying code (PCC) 
[24], the code producer augments the code with for-
mal, e�ciently checkable proofs of the desired prop-
erties (typically, using the aforementioned language 
or static analysis techniques); PCC and PCD are 

a. PCD schemes generalize the “computationally-sound proofs” of Micali [9], which consider only the “one-hop” case of a single prover 
and a single veri�er and also generalize the “incrementally veri�able computation” of Valiant [10], which considers the case of an a-priori 
�xed sequence of computations.
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complementary techniques, in the sense that PCD can 
enforce properties expressed via PCC. Dynamic analy-
sis monitors the properties of a program’s execution 
at run-time (for example, [25, 26, 27]). Our approach 
can be interpreted as extending dynamic analysis to 
the distributed setting, by allowing parties to (implic-
itly) monitor the program execution of all prior parties 
without actually being present during the executions. 
�e Fabric system [28] is similar to PCD in motiva-
tion, but takes a very di�erent approach: Fabric aims 
to make maximal use of distributed-system given trust 
constraints, while PCD creates new trust relations. 

5. The road onward 

We envision PCD as a framework for achieving secu-
rity properties in a nonconventional way that cir-
cumvents many di�culties with current approaches. 
In PCD, faults and leakage are acknowledged as an 
expected occurrence, and rendered inconsequential 
by reasoning about properties of data that are inde-
pendent of the preceding computation. �e system 
designer prescribes the desired properties of the 
computation’s output; proofs of these properties are at-
tached to the data �owing through the system and are 
mutually veri�ed by the system’s components. 

We have already shown explicit constructions of 
PCD, under standard cryptographic assumptions, in 
the model where parties have black-box access to a 
simple hardware token. �e theoretical problem of 
weakening this requirement, or formally proving that 
it is (in some sense) necessary, remains open. In recent 
work, we show how to resolve this problem in the case 
of a single party’s computation [29]. 

As for practical realizations, since there is evidence 
that the use of PCPs for achieving short proofs is 
inherent [30], we are tackling head-on the challenge of 
making PCPs practical. We are also studying devising 
ways to express the security properties, to be enforced 
by PCD, using practical programming languages such 
as C++. 

In light of these, as real-world practicality of PCD 
becomes closer and closer, the task of compliance 
engineering becomes an exciting direction. While PCD 
provides a protocol compiler to ensure any compliance 

predicate in a distributed computation, �guring out 
what are useful compliance predicates in this or that 
setting is a problem in its own right. 

We already envision problem domains where we 
believe enforcing compliance predicates will come 
a long way toward securing distributed systems in a 
strong sense: 

 Multilevel security. PCD may be used for in-
formation �ow control. For example, consider 
enforcing multilevel security [31, Chap. 8.6] in 
a room full of data-processing machines. We 
want to publish outputs labeled “nonsecret,” but 
are concerned that they may have been tainted 
by “secret” information (for example, due to 
bugs, via so�ware side channel attacks [32] or, 
perhaps, via literal eavesdropping [33, 34, 35]). 
PCD then allows you to reduce the problem of 
controlling information �ow to the problem of 
controlling the perimeter of the information 
room by ensuring that every network packet 
leaving the room is inspected by the PCD veri�er 
to establish it carries a valid proof. 

 IT supply chain and hardware Trojans. Using 
PCD, one can achieve fault isolation and ac-
countability at the level of system components 
(for example, chips or so�ware modules) by 
having each component augment every output 
with a proof that its computation, including all 
history it relied on, was correct. Any fault in the 
computation, malicious or otherwise, will then 
be identi�ed by the �rst nonfaulty subsequent 
component. Note that even the PCD veri�ers 
themselves do not have to be trusted except for 
the very last one. 

 Distributed type safety. Language-based type-
safety mechanisms have tremendous expressive 
power, but are targeted at the case where the 
underlying execution platform can be trusted to 
enforce type rules. �us, they typically cannot 
be applied across distributed systems consist-
ing of multiple mutually untrusting execution 
platforms. �is barrier can be surmounted by 
using PCD to augment typed values passing 
between systems with proofs for the correctness 
of the type. 
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E�orts to understand how to think about com-
pliance in concrete problem domains are likely to 
uncover common problems and corresponding 
design patterns [36], thus improving our overall abil-
ity to correctly phrase desired security properties as 
compliance predicates. 

We thus pose the following challenge: Given a 
genie that grants every wish expressed as a compliance 
predicate on distributed computations, what compli-
ance predicates would you wish for in order to achieve 
the security properties your system needs? 
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1. Introduction

A secure system must defend against all possible at-
tacks—including those unknown to the defender. But 
defenders, having limited resources, typically develop 
defenses only for attacks they know about. New kinds 
of attacks are then likely to succeed. So our growing 
dependence on networked computing systems puts at 
risk individuals, commercial enterprises, the public 
sector, and our military.  

�e obvious alternative is to build systems whose 
security follows from �rst principles. Unfortunately, 
we know little about those principles. We need a 
science of cybersecurity (see box 1) that puts the con-
struction of secure systems onto a �rm foundation 
by giving developers a body of laws for predicting the 
consequences of design and implementation choices. 
�e laws should

 transcend speci�c technologies and attacks, yet 
still be applicable in real settings, 

 introduce new models and abstractions, thereby 
bringing pedagogical value besides predictive 
power, and

 facilitate discovery of new defenses as well as de-
scribe non-obvious connections between attacks, 
defenses, and policies, thus providing a better 
understanding of the landscape. 

�e research needed to develop this science 
of cybersecurity must go beyond the search for 

vulnerabilities in deployed systems and beyond the de-
velopment of defenses for speci�c attacks. Yet, use of a 
science of cybersecurity when implementing a system 
should not be equated with implementing absolute 
security or even with concluding that security requires 
perfection in design and implementation. Rather, a 
science of cybersecurity would provide—independent 
of speci�c systems—a principled account for tech-
niques that work, including assumptions they require 
and ways one set of assumptions can be transformed 
or discharged by another. It would articulate and or-
ganize a set of abstractions, principles, and trade-o�s 
for building secure systems, given the realities of the 
threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it 
to describe a body of knowledge. To many, it connotes knowl-
edge obtained by systematic experimentation, so they take that 
process as the de�ning characteristic of a science. The natural 
sciences satisfy this de�nition. 

Experimentation helps in forming and then a�rming 
theories or laws that are intended to o�er veri�able predictions 
about man-made and natural phenomena. It is but a small step 
from science as experimentation to science as laws that ac-
curately predict phenomena. The status of the natural sciences 
remains una�ected by changing the de�nition of a science in 
this way. But computer science now joins. It is the study of what 
processes can be automated e�ciently; laws about speci�cation 
(problems) and implementations (algorithms) are a comfortable 
way to encapsulate such knowledge.

Blueprint for a science 
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�e �eld of cryptography comes close to exem-
plifying the kind of science base we seek. �e focus 
in cryptography is on understanding the design and 
limitations of algorithms and protocols to compute 
certain kinds of results (for example, con�dential or 
tamperproof or attributed) in the presence of certain 
kinds of adversaries who have access to some, but not 
all, information involved in the computation. Cryp-
tography, however, is but one of many cybersecurity 
building blocks. A science of cybersecurity would have 
to encompass richer kinds of speci�cations, comput-
ing environments, and adversaries. Peter Neumann [1] 
summarized the situation well when he opined about 
implementing cybersecurity, “If you think cryptog-
raphy is the answer to your problem, then you don’t 
know what your problem is.”

An analogy with medicine can be instructive for 
contemplating bene�ts we might expect from a sci-
ence of cybersecurity. Some health problems are best 
handled in a reactive manner. We know what to do 
when somebody breaks a �nger, and each year we 
create a new in�uenza vaccine in anticipation of the 
�u season to come. But only a�er making signi�cant 
investments in basic medical sciences are we start-
ing to understand the mechanisms by which cancers 
grow, and a cure seems to require that kind of deep 
understanding. Moreover, nobody believes disease will 
someday be a “solved problem.” We make enormous 
strides in medical research, yet new threats emerge 
and old defenses (for example, antibiotics) lose their 
e�ectiveness. Like good health, cybersecurity is never 
going to be a “solved problem.” Attacks coevolve with 
defenses and in ways to disrupt each new task that is 
entrusted to our networked systems. As with medical 
problems, some attacks are best addressed in a reactive 
way, while others are not. But our success in develop-
ing all defenses will bene�t considerably from having 
laws that constitute a science of cybersecurity. 

�is article gives one perspective on the shape of 
that science and its laws. Subjects that might be char-
acterized in laws are discussed in section 2. �en, sec-
tion 3 illustrates by giving concrete examples of laws. 
�e relationship that a science of cybersecurity would 
have with existing branches of computer science is 
explored in section 4. 

If you think 
cryptography is the 

answer to your problem, 
then you don’t know 

what your problem is. 
 

-PETER NEUMANN
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2. Laws about what? 

In the natural sciences, quantities found in nature are 
related by laws: E = mc2, PV = nRT, etc. Continuous 
mathematics is used to specify these laws. Continuous 
mathematics, however, is not intrinsic to the notion 
of a scienti�c law—predictive power is. Indeed, laws 
that govern digital computations are o�en most con-
veniently expressed using discrete mathematics and 
logical formulas. Laws for a science of cybersecurity 
are likely to follow suit because these, too, concern 
digital computation.

But what should be the subject matter of these laws? 
To be deemed secure, a system should, despite attacks, 
satisfy some prescribed policy that speci�es what the 
system must do (for example, deliver service) and 
what it must not do (for example, leak secrets). And 
defenses are the means we employ to prevent a system 
from being compromised by attacks. �is account 
suggests we strive to develop laws that relate attacks, 
defenses, and policies. 

For generality, we should prefer laws that relate 
classes of attacks, classes of defenses, and classes of 
policies, where the classi�cation exposes essential 
characteristics. �en we can look forward to hav-
ing laws like “Defenses in class enforce policies in 
class  despite attacks from class A” or “By compos-
ing defenses from class ' and class ", a defense is 
constructed that resists the same attacks as defenses 
from class .” Appropriate classes, then, are crucial for 
a science of cybersecurity to be relevant. 

2.1. Classes of attacks 

A system’s interfaces de�ne the sole means by which an 
environment can change or sense the e�ects of system 
execution. Some interfaces have clear embodiment 
to hardware: the keyboard and mouse for inputs, a 
graphic display or printer for outputs, and a network 
channel for both inputs and outputs. Other hardware 
interfaces and methods of input/output will be less 
apparent, and some are quite obscure. For example, 
Halderman et al. [2] show how lowering the operating 
temperature of a memory board facilitates capture of 
secret cryptographic keys through what they term a 

cold boot attack. �e temperature of the environment 
is, in e�ect, an input to a generally overlooked hard-
ware interface. Most familiar are interfaces created 
by so�ware. �e operating system interface o�en 
provides ways for programs to communicate overtly 
through system calls and shared memory or covertly 
through various side channels (such as battery level or 
execution timings). 

Since (by de�nition) interfaces provide the only 
means for in�uencing and sensing system execution, 
interfaces necessarily constitute the sole avenues for 
conducting attacks against a system. �e set of in-
terfaces and the speci�c operations involved is thus 
one obvious basis for de�ning classes of attacks. For 
example, we might distinguish attacks (such as SQL-
injections) that exploit overly powerful interfaces 
from attacks (such as bu�er over�ows) that exploit 
insu�ciently conservative implementations. Another 
basis for de�ning classes of attacks is to characterize 
the information or e�ort required for conducting the 
attack. With some cryptosystems, for instance, e�-
cient techniques exist for discovering a decryption key 
if samples of ciphertext with corresponding plaintext 
are available for that key, but these techniques do not 
work when only ciphertext is available.

A given input might cause some policies to be 
violated but not others. So whether an input consti-
tutes an attack on a given system could depend on the 
policy that system is expected to enforce. �is depen-
dence suggests that classes of attacks could be de�ned 
in terms of what policies they compromise. �e de�ni-
tion of denial-of-service attacks, for instance, equates 
a class of attacks with system availability policies. 

For attacks on communications channels, cryptog-
raphers introduce classi�cations based on the compu-
tational power or information available to the attacker. 
For example, Dolev-Yao attackers are limited to read-
ing, sending, deleting, or modifying �elds in messages 
being sent as part of some protocol execution [3]. (�e 
altered tra�c confuses the protocol participants, and 
they unwittingly undertake some action the attacker 
desires.) But it is not obvious how to generalize these 
attack classes to systems that implement more com-
plex semantics than message delivery and that provide 
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operations beyond reading, sending, deleting, or 
modifying messages. 

Finally, the role of people in a system can be a basis 
for de�ning classes of attacks. Security mechanisms 
that are inconvenient will be ignored or circumvented 
by users; security mechanisms that are di�cult to 
understand will be misused (with vulnerabilities intro-
duced as a result). Distinct classes of attacks can thus 
be classi�ed according to how or when the human 
user is fooled into empowering an adversary. Phishing 
attacks, which enable the� of passwords and ultimate-
ly facilitate identity the�, are one such class of attacks. 

2.2. Classes of policies  

Traditionally, the cybersecurity community 
has formulated policies in terms of three kinds 
of requirements:

 Con�dentiality refers to which principals are al-
lowed to learn what information.

 Integrity refers to what changes to the system 
(stored information and resource usage) and to 
its environment (outputs) are allowed.

 Availability refers to when must inputs be read 
or outputs produced. 

�is classi�cation, as it now stands, is likely to be 
problematic as a basis for the laws that form a science 
of cybersecurity.

One problem is the lack of widespread agree-
ment on mathematical de�nitions for con�dentiality, 
integrity, and availability. A second problem is that 
the three kinds of requirements are not orthogonal. 
For example, secret data can be protected simply by 
corrupting it so that the resulting value no longer 
accurately conveys the true secret value, thus trading 
integrity for con�dentiality.a As a second example, any 
con�dentiality property can be satis�ed by enforcing 
a weak enough availability property, because a system 
that does nothing cannot be accessed by attackers to 
learn secret information.

Contrast this state of a�airs with trace properties, 
where safety (“no ‘bad thing’ happens”) and liveness 
(“some ‘good thing’ happens”) are orthogonal classes. 
(Formal de�nitions of trace properties, safety, and 
liveness are given in box 2 for those readers who are 
interested.) Moreover, there is added value when re-
quirements are formulated in terms of safety and live-
ness, because safety and liveness are each connected to 
a proof method. Trace properties, though, are not ex-
pressive enough for specifying all con�dentiality and 
integrity policies. �e class of hyperproperties [5], a 
generalization of trace properties, is. And hyperprop-
erties include safety and liveness classes that enjoy the 
same kind of orthogonal decomposition that exists 
for trace properties. So hyperproperties are a promis-
ing candidate for use in a science of cybersecurity. 

BOX 2. Trace properties, safety, and liveness

A speci�cation for a sequential program would characterize for 
each input whether the program terminates and what outputs it 
produces. This characterization of execution as a relation is inad-
equate for concurrent programs. Lamport [6] introduced safety 
and liveness to describe the more expressive class of speci�ca-
tions that are needed for this setting. Safety asserts that no “bad 
thing” happens during execution and liveness asserts that some 
“good thing” happens. 

A trace is a (possibly in�nite) sequence of states; a trace prop-

erty is a set of traces, where each trace in isolation satis�es some 
characteristic predicate associated with that trace property. 
Examples include partial correctness (the �rst state satis�es the 
input speci�cation, and any terminal state satis�es the output 
speci�cation) and mutual exclusion (in each state, the program 
for at most one process designates an instruction in a critical 
section). Not all sets of traces de�ne trace properties. Informa-

tion �ow, which stipulates a correlation between the values 
of the two variables across all traces, is an example. This set of 
traces does not have a characteristic predicate that depends 
only on each individual trace, so the set is not a trace property. 

FIGURE 1. Phishing attacks, which enable theft of passwords 
and ultimately facilitate identity theft, can be classi�ed ac-
cording to how the human user is fooled into empowering 
the adversary.

a. Clarkson and Schneider [4] use information theory to derive a law that characterizes the trade-o� between con�dentiality and integrity 
for database-privacy mechanisms.
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Every trace property is either safety, liveness, or the con-
junction of two trace properties—one that is safety and one 
that is liveness [7]. In addition, an invariance argument su�ces 
for proving that a program satis�es a trace property that is 
safety; a variant function is needed for proving a trace property 
that is liveness [8]. Thus, the safety-liveness classi�cation for 
trace properties comes with proof methods beyond o�ering 
formal de�nitions.

Any classi�cation of policies is likely to be associ-
ated with some kind of system model and, in particu-
lar, with the interfaces the model de�nes (hence the 
operations available to adversaries). For example, we 
might model a system in terms of the set of possible 
indivisible state transitions that it performs while 
operating, or we might model a system as a black 
box that reads information streams from some chan-
nels and outputs on others. Sets of indivisible state 
transitions are a useful model for expressing laws 
about classes of policies enforced by various operating 
system mechanisms (for example, reference monitors 
versus code rewriting) which themselves are con-
cerned with allowed and disallowed changes to system 
state; stream models are o�en used for quantifying 
information leakage or corruption in output streams. 
We should expect that a science of cybersecurity will 
not be built around a single model or around a single 
classi�cation of policies. 

2.3. Classes of defenses  

A large and varied collection of di�erent defenses can 
be found in the cybersecurity literature.  

Program analysis and rewriting form one natural 
class characterized by expending the e�ort for deploy-
ing the defense (mostly) prior to execution. �is class 
of defenses, called language-based security, can be fur-
ther subdivided according to whether rewriting occurs 
(it might not occur with type-checking, for example) 
and according to the work required by the analysis 
and/or the rewriting. �e undecidability of certain 
analysis questions and the high computation costs 
of answering others is sometimes a basis for further 
distinguishing conservative defenses—those analysis 
methods that can reject as being insecure programs 
that actually are secure, and those rewriting methods 
that add unnecessary checks.

Run-time defenses have, as their foundation, only a 
few basic mechanisms:  

 Isolation. Execution of one program is somehow 
prevented from accessing interfaces that are as-
sociated with the execution of others. Examples 
include physically isolated hardware, virtual 
machines, and processes (which, by de�nition, 
have isolated memory segments).  

 Monitoring. A reference monitor is guaranteed to 
receive control whenever any operation in some 
speci�ed set is invoked; it further has the capac-
ity to block subsequent execution, which it does 
to prevent an operation from proceeding when 
that execution would not comply with what-
ever policy is being enforced. Examples include 
memory mapping hardware, processors having 
modes that disable certain instructions, operat-
ing system kernels, and �rewalls.

 Obfuscation. Code or data is transmitted or 
stored in a form that can be understood only 
with knowledge of a secret. �at secret is kept 
from the attacker, who then is unable to abuse, 
understand, or alter in a meaningful way the 
content being protected. Examples include data 
encryption, digital signatures, and program 
transformations that increase the work factor 
needed to cra� attacks.  

Obviously, a classi�cation of run-time defenses could 
be derived from this taxonomy of mechanisms. 

Another way to view defenses is in terms of trust 
relocation. For example, by running an application 

FIGURE 2. A �rewall is an example of a reference monitor.
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under control of a reference monitor, we relocate trust 
in that application to trust in the reference monitor. 
�is trust-relocation view of defenses invites discovery 
of general laws that govern how trust in one compo-
nent can be replaced by trust in another.

We know that it is always possible for trust in an 
analyzer to be relocated to a proof checker—sim-
ply have an analyzer that concludes P also generate 
a proof of P. Moreover, this speci�c means of trust 
relocation is attractive because proof checkers can be 
simple, hence easy to trust; whereas, analyzers can 
be quite large and complicated. �is suggests a re-
lated question: Is it ever possible to add defenses and 
transform one system into another, where the latter 
requires weaker assumptions about components be-
ing trusted? Perhaps trust is analogous to entropy in 
thermodynamics—something that can be reversed 
only at some cost (where “cost” corresponds to the 
strength of the assumptions that must be made)? Such 
questions are fundamental to the design of secure 
systems, and today’s designers have no theory to help 
with answers. A science of cybersecurity could provide 
that foundation. 

3. Laws already on the books  

Attacks coevolve with defenses, so a system that 
yesterday was secure might no longer be secure 
tomorrow. You can then wonder whether yesterday’s 
science of cybersecurity would be made irrelevant by 
new attacks and new defenses. �is depends on the 
laws, but if the classes of attacks, defenses, and poli-
cies are wisely constructed and su�ciently general, 
then laws about them should be both interesting and 
long-lived. Examples of extant laws can provide some 
con�rmation, and two (developed by the author) are 
discussed below.  

3.1. Law: Policies and reference monitors  

A developer who contemplates building or modifying 
a system will have in mind some class of policies that 
must be enforced. Laws that characterize what poli-
cies are enforced by given classes of defenses would be 
helpful here. Such laws have been derived for vari-
ous defenses. Next, we discuss a law [9] concerning 
reference monitors.  

�e policy enforced by a reference monitor is the 
set of traces that correspond to executions in which 
the reference monitor does not block any operation. 
�is set is a trace property, because whether the refer-
ence monitor blocks an operation in a trace depends 
only on the contents of that trace (speci�cally, the pre-
ceding operations in that trace). Moreover, this trace 
property is safety; the set of �nite sequences that end 
in an operation the reference monitor blocks consti-
tutes the “bad thing.” We conclude:  

Law. All reference monitors enforce trace 
properties that are safety.  

�is law, for example, implies that a reference mon-
itor cannot enforce an information �ow policy, since 
(as discussed in box 2) information �ow is not a trace 
property. However, the law does not preclude using a 
reference monitor to enforce a policy that is stronger 
and, by being stronger, implies that the information 
�ow policy also will hold. But a stronger policy will 
deem insecure some executions the information �ow 
policy does not. So such a reference monitor would 
block some executions that would be allowed by a 
defense that exactly enforces information �ow. �e 
system designer is thus alerted to a trade-o�—employ-
ing a reference monitor for information �ow policies 
brings overly conservative enforcement.  

�e above law also suggests a new kind of run-time 
defense mechanism [10]. For every trace property ψ 
that is safety, there exists an automaton m

ψ
 that accepts 

the set of traces in ψ [8]. 

Automaton m
ψ
 is a reference monitor for ψ because, 

by de�nition, it rejects traces that violate ψ. So if code 
M

ψ
 that simulates m

ψ
 is invoked before every instruc-

tion in some given program S, then the result will be 
a new program that behaves just like S except it halts 
rather than executing an instruction that violates 
policy ψ. �is is depicted in �gure 3, where invoca-
tion M

ψ
(x) simulates the transition that automaton 

m
ψ
 makes for input symbol x and repeatedly returns 

OK until automaton m
ψ
 would reject the sequence of 

inputs it has processed. �us, the statement

if M
ψ
(“S

1
”) ≠ OK then halt (1)

in �gure 3 immediately prior to a program statement 
S

i
 causes execution to terminate if next executing 
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b. �ere is also experimental evidence [11] that distinct versions built by independent teams nevertheless share vulnerabilities.

S
i
 would violate the policy de�ned by automaton 

m
ψ
—that is, if executing S

i
 would cause policy ψ to 

be violated.

S
1

if M
ψ
(“S

1
”) ≠ OK then halt

S
2

S
1

S
3

if M
ψ
(“S

2
”) ≠ OK then halt

S
4

S
2

… …

original inlined reference monitor

FIGURE 3. Inlined reference monitor example

Such inlined reference monitors can be more e�-
cient at run-time than traditional reference monitors, 
because a context switch is not required each time an 
inlined reference monitor is invoked. However, an 
inlined reference monitor must be installed separately 
in each program whose execution is being monitored; 
whereas, a traditional reference monitor can be writ-
ten and installed once and for all. �e per-program 
installation does mean that inlined reference monitors 
can enforce di�erent policies on di�erent programs, 
an awkward functionality to support with a single 
traditional reference monitor. And per-program in-
stallation also means that code (1) inserted to simulate 
m

ψ
 can be specialized and simpli�ed, thereby allow-

ing unnecessary checks to be eliminated for inlined 
reference monitors.

3.2. Law: Attacks and obfuscators  

We de�ne a set of programs to be diverse if all imple-
ment the same functionality but di�er in their imple-
mentation details. Diverse programs are less prone 
to having vulnerabilities in common, because attacks 
o�en depend on memory layout and/or instruction 
sequence speci�cs. But building multiple distinct ver-
sions of a program is expensive.b So system implemen-
tors have turned to mechanical means for creating sets 
comprising diverse versions of a given program.

For mechanically generated diversity to work as a 
defense, not only must implementations di�er (so they 
have few vulnerabilities in common), but the di�er-
ences must be kept secret from attackers. For example, 

bu�er over�ow attacks are generally written relative to 
some speci�c run-time stack layout. Alter this layout 
by rearranging the relative locations of variables as 
well as the return address on the stack, and an input 
designed to perpetrate an attack for the original stack 
layout is unlikely to succeed. But if the new stack 
layout were known by the adversary, then cra�ing an 
attack again becomes straightforward.

Programs to accomplish such transformations have 
been called obfuscators. An obfuscator τ takes two in-
puts—a program S and a secret key K—and produces 
a morph, which is a program τ(S, K) whose semantics 
is equivalent to S but whose implementation di�ers 
from S and from morphs generated with other keys. 
K speci�es which exact transformations are applied in 
producing morph τ(S, K). Note that since S and τ are 
assumed to be publicly known, knowledge of K would 
enable an attacker to learn implementation details for 
successfully attacking morph τ(S, K). 

Di�erent classes of transformations are more or 
less e�ective in defending against the various di�erent 
classes of attacks. �is correspondence is important 
when designing a set of defenses for a given threat 
model, but knowing the speci�c correspondences is 
not the same as knowing the overall power of mechan-
ically generated diversity as a defense. �at defensive 
power for programs written in a C-like language has 
been partially characterized in a set of laws [12]. Each 
Obfuscator Law establishes, for a speci�c (common) 
type system T

i
 and obfuscator τ

i
 pair, what is the rela-

tionship between two sets of attacks—those blocked 
when type system T

i
 is enforced versus those that 

cause execution of a morph τ
i
 (S, K) to abort for some 

secret key K.

�e Obfuscator Laws do not completely quantify 
the di�erence between the e�ectiveness of type-check-
ing and obfuscation. But the laws are noteworthy for 
a science of cybersecurity because they circumvent 
the di�cult problem of reasoning about attacks not 
yet invented. Laws about classes of known attacks risk 
irrelevance as new attacks are discovered. By formulat-
ing the Obfuscator Laws in terms of a relation between 
sets of attacks, the need to identify or enumerate 
individual attacks is avoided. To wit, the class of at-
tacks that type-checking defends against is not known 
and not given, yet the power of obfuscation to defend 
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against an attack can now be meaningfully conveyed 
relative to the power of type-checking.

4. The science in context  

A science of cybersecurity would build on knowledge 
from several existing areas of computer science. �e 
connections to formal methods, fault-tolerance, and 
experimental computer science are nuanced; they are 
discussed below. However, cryptography, information 
theory, and game theory are also likely to be valuable 
sources of abstractions and laws. Finally, the physical 
sciences surely have a role to play—not only in matters 
of physical security but also for understanding un-
conventional interfaces to real devices that attackers 
might exploit (as exempli�ed by the cold boot attacks 
mentioned in section 2.1).  

Formal methods. Attacks are possible only because 
a system we deploy has �aws in its implementation, 
design, speci�cation, or requirements. Eliminate the 
�aws and we eliminate the need to deploy defenses. 
But even when the systems on which we rely aren’t 
being attacked, we should want con�dence that they 
will function correctly. �e presence of �aws under-
mines that con�dence. So cybersecurity is not the only 
compelling reason to eliminate �aws.  

�e focus of formal methods research is on meth-
ods for gaining con�dence in a system by using 
rigorous reasoning, including programming logics 
and model checkers.c �is work has been remarkably 
successful with small systems or small speci�cations. It 
is used by companies like Microso� to validate device 
drivers and Intel to validate chip designs. It is also 
the engine behind strong type-checking in modern 
programming languages (for example, Java and C#) 
and various code-analysis tools used in security audits.   
Further developments in formal methods could serve 
a science of cybersecurity well. However, to date, work 
in formal methods has been based on trace properties 
or something with equivalent expressive power. �is 
foundation allows mathematically elegant character-
izations for whether a program satis�es a speci�cation 
and for justifying stepwise re�nement of programs. 
But trace properties are not adequately expressive for 
specifying all con�dentiality, integrity, and availabil-
ity policies, and stepwise re�nement is not sound for 

these richer policies. (A mathematical justi�cation of 
this limitation is provided in box 3 for the interested 
reader.) So the foundations of today’s formal meth-
ods would have to be changed to something with the 
expressiveness of hyperproperties—no small feat.

BOX 3. Satis�es and re�nement 

A program S can be modeled as a trace property Σ
S
 containing 

all sequences of states that could arise from executing S, and 
a speci�c execution of S satis�es a trace property P if the trace 
modeling that execution is in P. Thus, S satis�es P if and only if 
Σ

S
  P holds. 

We say that a program S' re�nes S, denoted S'  S, when S' 
resolves choices left unspeci�ed by S. For example, a program 
that increments x by 1 re�nes a program that merely speci�es 
that x be increased. A re�nement S' of S thus exhibits a subset of 
the executions for S: S'  S holds if and only if Σ

S'
  Σ

S
 holds. 

Notice that “satis�es” is closed under re�nement. If S' re�nes 
S and S satis�es P, then S' satis�es P. Also, if we construct S' by 
performing a series of re�nements S'  S

1 
, S

1
  S

2 
, . . . , S

n
  S and 

S satis�es P then we are guaranteed that S' will satisfy P too. So 
programs can be constructed by stepwise re�nement.

With richer classes of policies, “satis�es” is unfortunately not 
closed under re�nement. As an example, consider two pro-
grams. Program S

x=y
 is modeled by trace property Σ

x=y
 contain-

ing all traces in which x = y holds in all states; program S* is 
modeled by Σ

S*
 containing all sequences of states. We have that 

Σ
x=y

  Σ
S*

 holds, so by de�nition S
x=y

  S*. However, program S* 
enforces the con�dentiality policy that no information �ows 
between x and y, whereas (re�nement) S

x=y
 does not. Satis�es for 

the con�dentiality policy is not closed under re�nement, and 
stepwise re�nement is not sound for deriving programs that 
satisfy this policy.

Byzantine fault-tolerance. A system is considered 
fault-tolerant if it will continue operating correctly 
even though some of its components exhibit faulty 
behavior. Fault-tolerance is usually de�ned relative 
to a fault model that de�nes assumptions about what 
components can become faulty and what kinds of 
behaviors faulty components might exhibit. In the 
Byzantine fault model [13], faulty components are per-
mitted to collude and to perform arbitrary state transi-
tions. A real system is unlikely to experience such 
hostile behavior from its faulty components, but any 
faulty behavior that might actually be experienced is, 
by de�nition, allowed with the Byzantine fault model. 
So by building a system that works for the Byzantine 

c. Other areas of so�ware engineering are concerned with gaining con�dence in a system through the use of experimentation (for ex-
ample, testing) or management (for example, strictures on development processes).
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fault model, we ensure that the system can tolerate 
all behaviors that in practice could be exhibited by its 
faulty components.  

�e basic recipe for implementing such Byzantine 
fault-tolerance is well understood. We assume that the 
output of every component is a function of the preced-
ing sequence of inputs. Each component that might 
fail is replaced by 2t + 1 replicas, where these replicas 
all receive the same sequence of inputs. Provided that 
t or fewer replicas are faulty, then the majority of the 
2t + 1 will be correct. �ese correct replicas will gener-
ate identical correct outputs, so the majority output 
from all replicas is una�ected by the behaviors of 
faulty components.  

A faulty component in the Byzantine fault model 
is indistinguishable from a component that has been 
compromised and is under control of an attacker. We 
might thus conclude that if a Byzantine fault-tolerant 
system can tolerate t component failures, then it also 
could resist as many as t attacks—we could get se-
curity by implementing Byzantine fault-tolerance. 
Unfortunately, the argument oversimpli�es, and the 
conclusion is unsound:

 Replication, if anything, creates more opportuni-
ties for attackers to learn con�dential informa-
tion. So enforcement of con�dentiality is not 
improved by the replication required for imple-
menting Byzantine fault-tolerance. And storing 
encrypted data—even when a di�erent key is 
used for each replica—does not solve the prob-
lem if replicas actually must themselves be able 
to decrypt and process the data they store. 

 Physically separated components connected only 
by narrow bandwidth channels are generally 
observed to exhibit uncorrelated failures. But 
physically separated replicas still will share many 
of the same vulnerabilities (because they will use 
the same code) and, therefore, will not exhibit 
independence to attacks. If a single attack might 
cause any number of components to exhibit 
Byzantine behavior, then little is gained by toler-
ating t Byzantine components. 

What should be clear, though, is that mechanically 
generated diversity creates a kind of independence 
that can be a bridge from Byzantine fault tolerance to 

attack tolerance. �e Obfuscation Laws discussed in 
section 3.2 are a �rst step in this direction.

Experimental computer science. �e code for a 
typical operating system can �t on a disk, and all of the 
protocols and interconnections that comprise the In-
ternet are known. Yet the most e�cient way to under-
stand the emergent behavior of the Internet is not to 
study the documentation and program code—it is to 
apply stimuli and make measurements in a controlled 
way. Computer systems are frequently too complex 
to admit predictions about their behaviors. So just as 
experimentation is useful in the natural sciences, we 
should expect to �nd experimentation an integral part 
of computer science.  

Even though we might prefer to derive our cyberse-
curity laws by logical deduction from axioms, the va-
lidity of those axioms will not always be self-evident. 
We o�en will work with axioms that embody approxi-
mations or describe models, as is done in the natural 
sciences. (Newton’s laws of motion, for example, ig-
nore friction and relativistic e�ects.) Experimentation 
is the way to gain con�dence in the accuracy of our 
approximations and models. And just as experimenta-
tion in the natural sciences is supported by laborato-
ries, experimentation for a science of cybersecurity 
will require test beds where controlled experiments 
can be run.  

Experimentation in computer science is somewhat 
distinct from what is called “experimental computer 
science” though. Computer scientists validate their 
ideas about new (hardware or so�ware) system de-
signs by building prototypes. �is activity establishes 
that hidden assumptions about reality are not being 
overlooked. Performance measurements then demon-
strate feasibility and scalability, which are otherwise 
di�cult to predict. And for artifacts that will be used 
by people (for example, programming languages and 
systems), a prototype may be the only way to learn 
whether key functionality is missing and what novel 
functionality is useful.  

Since a science of cybersecurity should lead to new 
ideas about how to build systems and defenses, the 
validation of those proposals could require building 
prototypes. �is activity is not the same as engineering 
a secure system. Prototypes are built in support of a 
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science of cybersecurity expressly to allow validation 
of assumptions and observation of emergent behav-
iors. So, a science of cybersecurity will involve some 
amount of experimental computer science as well as 
some amount of experimentation. 

5. Concluding remarks  

�e development of a science of cybersecurity could 
take decades. �e sooner we get started, the sooner we 
will have the basis for a principled set of solutions to 
the cybersecurity challenge before us. Recent new fed-
eral funding initiatives in this direction are a key step. 
It’s now time for the research community to engage. 
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GLOBE AT A GLANCE
Sources of malware

Malware, short for “malicious software,”  includes computer viruses, worms, and Trojan 
horses, and can spread using various methods, including worms sent through email and 
instant messages, Trojan horses dropped from websites, and virus-infected �les downloaded 
from peer-to-peer connections.a This map shows the top 25 geographical sources of 
malware from August of 2011 through October of 2011. Data was provided by Symantec.
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The “McAfee threats report: Second quarter 2011” 

found the following malware trends:b

 Malware has increased 22 percent from 2010 
to 2011. 

 By the end of 2011, McAfee Labs expects to 
have 75 million samples of malware.

 Fake antivirus software continues to grow 
and has even begun to climb aboard a new 
platform—the Mac.

 For-pro�t mobile malware has increased, 
including simple short message service (SMS)-
sending Trojans and complex Trojans that use 
exploits to compromise smartphones.

 Android is becoming the third-most targeted 
platform for mobile malware.

 Rootkits, also known as “stealth malware,” are 
growing in popularity. A rootkit is code that 
hides malware from operating systems and 
security software.

Cybercrime

60

The “Norton by Symantec cybercrime report 2011” revealed the following statistics based on surveys 
conducted between February 6, 2011 and March 14, 2011 of 19,636 individuals (including children) from 

24 countries:a

a. The full report can be accessed at www.symantec.com/content/en/us/home_homeo�ce/html/cybercrimereport/

b. The full report can be accessed at www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011



The Georgia Institute of Technology’s Cyber 
Security Summit on October 11, 2011 resulted in 

the “Emerging cyber threats report 2012.” 

d The key points 
include the following:

Mobile threats

 Mobile applications rely increasingly on the brows-
er, presenting unique challenges to security in terms 
of usability and scale.

 Expect compound threats targeting mobile devices 
to use SMS, email and the mobile Web browser to 
launch an attack, then silently record and steal data.

 While USB �ash drives have long been recognized 
for their ability to spread malware, mobile phones 
are becoming a new vector that could introduce 
attacks on otherwise-protected systems.

 Encapsulation and encryption for sensitive portions 
of a mobile device can strengthen security.

Botnets

 Botnet controllers build massive information pro-
�les on their compromised users and sell the data to 
the highest bidder.

 Advanced persistent adversaries query botnet op-
erators in search of already compromised machines 
belonging to their attack targets.

The IBM X-Force’s “2011 Mid-year trend and risk 
report” evidences that mobile malware is on the rise.c 

Their report highlights the following points:

 The �rst half of 2011 saw an increased level of 
malware activity targeting the latest generation of 
smart devices, and the increased number of vulner-
ability disclosures and exploit releases targeting 
mobile platforms seen in 2010 continues into 2011, 
showing no signs of slowing down.

 Mobile devices are quickly becoming a malware 
platform of choice. This malware increase is based 
on premium SMS services that can charge users, a 
rapidly increasing rate of user adoption, and un-
patched vulnerabilities on the devices.

 Two popular methods of malware distribution mod-
els are to create infected versions of existing market 

software and to publish software that claims to be a 
crack, patch, or cheat for some other software.

 Besides sending SMS messages, Android malware 
has been observed collecting personal data from 
the phone and sending it back to a central server. 
This information could be used in phishing attacks 
or for identity theft. We have also seen Android mal-
ware that has the ability to be remotely controlled 
by a remote command and control server—just like 
a bot that infects a Windows desktop machine.

 Enterprise security management of mobile 
endpoint devices will struggle to handle massive 
expansion. One solution may be the convergence 
of endpoint security con�guration management to 
incorporate all these new devices.

 Bad guys will borrow techniques from Black Hat 
Search Engine Optimization to deceive current 
botnet defenses like dynamic reputation systems.

Information security

 Security researchers are currently debating whether 
personalization online could become a form of 
censorship.

  Attackers are performing search engine optimi-
zation to help their malicious sites rank highly in 
search results.

 The trend in compromised certi�cate authorities 
exposes numerous weaknesses in the overall trust 
model for the Internet.

Advanced persistent threats

 Advanced persistent threats will adapt to security 
measures until malicious objectives are achieved.

 Human error, lack of user education, and weak 
passwords are still major vulnerabilities.

 Cloud computing and computer hardware may 
present new avenues of attack, with all malware 
moving down the stack.

 Large, �at networks with perimeter defenses at the 
Internet ingress/egress point break down quickly in 
the face of advanced persistent threats.

EXPERTS
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c. The full report can be accessed at www-935.ibm.com/services/us/iss/xforce/trendreports/

d. The full report can be accessed at www.gtisc.gatech.edu/doc/emerging_cyber_threats_report2012
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New forensics tool exposes 

online activity

Stanford University researchers, led by Elie 
Bursztein, have developed so�ware that bypasses 
the encryption on a personal computer’s hard drive 
to reveal the websites a user has visited and whether 
he/she has any data stored in the cloud. Other than 
Microso�, Bursztein and his team are the only ones 
to discover how to decrypt the �les. �eir free, open-
source so�ware—O�ine Windows Analysis and 
Data Extraction (OWADE)—runs on a Windows 
operating system and was introduced at the Black 
Hat 2011 security conference in August. OWADE 
can enable, for example, a law enforcement agent to 
reconstruct a suspect’s online activity by extracting 
sensitive data stored by Windows, the browsers, and 
instant messaging so�ware from the computer’s hard 
drive. For more information, visit www.newscientist.
com/article/mg21128285.300-new-forensics-tool-
can-expose-all-your-online-activity.html. �e white 
paper can be downloaded from elie.im/talks/beyond-
�les-recovery-OWADE-cloud-based-forensic.

Combating next-generation 

computer viruses

Dr. Kevin Hamlen of the University of Texas 
at Dallas’ Cyber Security Research Center has 
discovered a new method to predict the actions 
of computer viruses. Dr. Hamlen’s research uses 
advanced algorithms based on programming-
language research to predict and interrupt the 
actions of malware programs in the microseconds 
before those programs begin to execute and mutate. 
His method builds upon existing computing 
capabilities and features already programmed 

into most central processing unit chips 
currently used in various popular 

devices, such as laptops. �is 
research could give way to new, 

proactive antivirus programs. 
For more information, visit 

www.afcea.org/signal/
articles/templates/

Signal_Article_Template.
asp?articleid=2754& 

zoneid=329.

Applying a new mathematical framework to cybersecurity

A team of researchers from the Stevens Institute of Technology and the 
City University of New York, led by Dr. Antonio Nicolosi, is applying a new 
mathematical paradigm to cryptography to secure the Internet. Dr. Nicolosi’s 
team was awarded a grant from the National Science Foundation to support 
the development of new cryptographic tools and protocols and to promote 
collaboration between the cryptography and group-theory research 
communities. �e team is applying recent developments in combinatorial 
group therapy (CGT)—a mathematical framework sensitive to the order of 
operations in an equation—to cybersecurity. Cybersecurity depends upon 
the quanti�able hardness of a small number of mathematical equations 
available in cryptographic methodologies; because CGT is sensitive to the 
order of operations, it is an e�ective method to generate new quanti�able 
mathematical equations that can be used to enhance cybersecurity. 
Dr. Nicolosi believes that CGT could also improve authentication protocol e�ciency. Both undergraduate and 
graduate students will be participating in building the systems used to test the equations. For more information, visit 
www.stevens.edu/news/content/applying-new-mathematics-robust-cryptography-and-safer-internet.
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Measuring the e�ects of a  

Wi-Fi attack

Dr. Wenye Wang and a team of researchers at North 
Carolina State University have developed a method 
to measure the e�ects of di�erent types of wireless-
�delity (Wi-Fi) attacks on a network; this method 
will be helpful in developing new cybersecurity 
technologies. �e researchers examined two 
Wi-Fi attack models—a persistent attack and an 
intermittent attack—and compared how these 
attacks are a�ected by di�erent conditions, such as 
the number of users. �ey developed a metric called 
an order gain, which measures the probability of an 
attacker having access to a Wi-Fi network versus 
the probability of a legitimate user having access to 
the same network. For example, if a user has an 80 
percent chance of accessing a network, and other 
users have the remaining 20 percent, the order gain 
is four. �is metric is useful in determining which 
attacks cause the most disruption. �e researchers 
suggested that system administrators focus their 
countermeasures on persistent attacks that target 
networks with large numbers of users because this 
yields the largest order gain. For more information, 
visit news.ncsu.edu/releases/wmswangordergain/.

Enhanced security for sensitive data in cloud computing

A team of researchers from North Carolina State 
University (NCSU) and IBM have developed a new 
technique to better protect sensitive data in cloud 
computing while preserving the system’s performance. 
Cloud computing uses hypervisors—programs that 
create a virtual workspace, or cloud, in which di�erent 
operating systems can run in isolation from one another. 
In cloud computing, a common concern is that attackers 
could take advantage of vulnerabilities in the hypervisor 
to steal or corrupt sensitive data from other users in the 
cloud. �e new technique, Strongly Isolated Computing 
Environment (SICE), addresses this concern by isolating 
sensitive information and workload from the rest of 
the functions performed by the hypervisor. Dr. Peng Ning, professor of computer science at NCSU and one of the 
researchers on the project, says, “…our approach relies on a so�ware foundation called the Trusted Computing 
Base, or TCB, that has approximately 300 lines of code, meaning that only these 300 lines of code need to be trusted 
in order to ensure the isolation o�ered by our approach. Previous techniques have exposed thousands of lines of 
code to potential attacks. We have a smaller attack surface to protect.” Additionally, testing indicated that the SICE 
framework used only about three percent of the system’s performance on multicore processors that do not require 
direct network access. For more information, visit news.ncsu.edu/releases/wmsningsice/.

An app that 

logs the 

keystrokes 

on your 

smartphone

Hao Chen and 
Liang Cai of the 
University of California, Davis, have created an 
application that records what you type on your 
Android smartphone. Also called keylogging, 
criminals can use this method to steal your 
passwords, logins, and other private information. �e 
application uses the smartphone’s motion sensors to 
detect vibrations that result from tapping the screen, 
and it doesn’t have to be visible on the screen to 
work. Chen and Cai say that the application correctly 
guesses over 70 percent of keystrokes on a virtual 
numerical keypad like those used in calculator 
applications. �ey expect the accuracy to be even 
higher on tablet devices due to tablets’ larger size 
and resulting movement from tapping the screen. 
For more information, visit www.newscientist.com/
article/mg21128255.200-smartphone-jiggles-reveal-
your-private-data.html.
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Automated tool defeats CAPTCHA on popular websites 

Stanford University researchers Elie Bursztein, Matthieu Martin, 
and John C. Mitchel created an automated tool, Decaptcha, 
that deciphers text-based antispam tests used by many popular 
websites. Completely Automated Public Turing test to tell 
Computers and Humans Apart (CAPTCHA) is a security 
mechanism used by many websites to block spam bots from 
registering for an account or posting a comment; it consists 
of a challenge, such as typing distorted text, that only humans 
are supposed to be able to solve. Decaptcha uses algorithms to 
clean up image background noise and to break text strings into 
individual characters for easier recognition. �e researchers ran 
the tool against 15 popular websites and found that it was able to 
beat Visa’s Authorize.net payment gateway 66 percent of the time, 
Blizzard (i.e., World of Warcra�, Starcra� II, and Battle.net) 70 
percent of the time, eBay 43 percent of the time, and Wikipedia 
25 percent of the time. Of the tested websites, Decaptcha could 
not break CAPTCHAs on Google or reCAPTCHA. (See table 1 
for more results.) To download the paper describing this research, 
“Text-based CAPTCHA strengths and weaknesses,” visit elie.im/
publication/text-based-Captcha-strengths-and-weaknesses.

TABLE 1. Results of Decaptcha testing

Website Decaptcha’s Solving Rate

Megaupload 93%

CAPTCHA.net 73%

NIH 72%

Blizzard 70%

Authorize.net 66%

eBay 43%

Reddit 42%

Slashdot 35%

Wikipedia 25%

Digg 20%

CNN 16%

Baidu 5%

Skyrock 2%

Google 0%

reCAPTCHA 0%

Secure cloud computing 

service for US researchers 

On November 2, 2011, Indiana 
University (IU) and Penguin Computing 
announced a partnership to o�er US 
researchers access to a secure cloud 
computing service. �e service remains 
secure because it is run by a group 
of computers owned by Penguin and 
housed in IU’s secure state-of-the-art 

data center. In addition to IU, initial 
users of the service include the University 

of Virginia, the University of California, 
Berkeley, and the University of Michigan. 

�e service will next be available for 
purchase to researchers at other US institutions 

of higher education and federally funded 
research centers. For more information, visit 
ovpitnews.iu.edu/news/page/normal/20208.html.

Vulnerabilities 

found in top Google 

Chrome extensions

Security researchers Adrienne Porter Felt, Nicholas 
Carlini, and Prateek Saxena at the University of Califor-
nia, Berkeley, conducted a review of 100 Google Chrome 

extensions, including the 50 most popular ones, and found 
that 27 percent of them contain one or more JavaScript injec-
tion vulnerabilities. �is vulnerability can allow an attacker, 
via the web or an unsecure Wi-Fi hotspot, to take complete 

control of an extension and gain access to a user’s private 
data. �e researchers also reported that seven of the vulner-

able extensions were used by 300,000 people or more. 
�ey sent vulnerability warnings to all the relevant 

developers. For more information, visit www.
informationweek.com/news/security/

vulnerabilities/231602411.
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Internet privacy tools are di�cult for most users 

Researchers from the Carnegie Mellon CyLab Usable 
Privacy and Security Laboratory conducted a usability 
study of nine Internet privacy tools and found that they 
were confusing and ine�ective for most nontechnical us-
ers. �e researchers evaluated the use of privacy settings 
in two popular browsers, Internet Explorer 9 and Mozil-
la Firefox 5, as well as three tools that set opt-out cookies 
to prevent websites from displaying advertisements, and 
four tools that block certain sites from tracking user 
activity. �e major �ndings include the following:

 Users can’t distinguish between trackers. Users 
are unfamiliar with companies that track their 
behavior, so tools that ask them to set opt-out or 
blocking preferences on a per-company basis are 
ine�ective. Most users just set the same preferences for every company on a list.

Inappropriate defaults. �e default settings of privacy tools and opt-out sites are inappropriate for users; 
they generally do not block tracking. A user must manually adjust the settings of these tools to activate their 
capability to block tracking.

 Communication problems. �e tools provide instructions and guidance that are either too simplistic to 
inform a user’s decision, or too technical to be understood.

 Need for feedback. Many of the tools do not provide feedback to let users know that the tool is 
actually working. 

 Users want protections that don’t break things. Users had di�culty determining when the tool they were 
using caused parts of websites to stop working. Subscribing to a Tracking Protection List (TPL) that blocks 
most trackers except those necessary for sites to function can solve this problem, but participants were 
unaware of the need to select a TPL or didn’t know how to choose one.

 Confusing interfaces. �e tools su�ered from major usability �aws. For example, some users mistook 
registration pages for opt-out pages, and some users did not realize they needed to subscribe to certain 
features of the tools.

To download the technical report describing this research, “Why Johnny can’t opt out: A usability evaluation of tools 
to limit online behavioral advertising,” visit www.cylab.cmu.edu/research/techreports/2011/tr_cylab11017.html.

“Split-manufacturing” microprocessors to protect intellectual property

�e Intelligence Advanced Research Project Agency (IARPA) is working toward developing a “split-manufacturing” 
process for microprocessor chips to ensure their design is secure and protected. In split-manufacturing, chip 
fabrication is split into two processes: front-end-of-line (FEOL) and back-end-of-line (BOEL). �e FEOL process 
involves the fabrication of transistor layers in o�shore foundries, and the BOEL process involves the fabrication 
of metallizations in trusted US facilities. According to IARPA, those working on the FEOL process will not have 
access to information about the design intention of the chips. �is split process is intended to prevent malicious 
circuitry as well as protect the intellectual property of the chip design. Sandia National Laboratories will coordinate 
all FEOL and BEOL processes, and the University of Southern California Information Sciences Institute will 
carry out the fabrication runs. For more information, visit www.informationweek.com/news/government/
enterprise-architecture/231902147.
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