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are often developed—these take advantage of this 
available computational power but often lack princi-
pled motivation or justification. As a result, these algo-
rithms may perform poorly when used on real data sets 
in support of applications. In his article, NSA research-
er Mark Jacobson has developed rigorous statistical 
methods to address these issues for an important class 
of recommender system problems.

Another technology benefiting from AI is the smart 
digital assistant, with which the intelligence communi-
ty has tremendous potential to revolutionize analysis 
by helping analysts find the data and analytics they 
need, fostering collaborations, and making workflow 
recommendations. Laboratory for Analytical Sciences 
(LAS) researchers Paul Jones and S. Lynch, along with 
North Carolina State University researcher Kathleen M. 
Vogel, describe an example of ML/AI research at LAS 
that provides digital assistance for the intelligence 
analyst trying to search through a deluge of data to 
discover information of value.

Apple’s iPhone X has a “neural engine” that enables 
it to use facial recognition to unlock itself and also to 
transfer facial expressions onto an animated emoji. 
Huawei’s Kirin 970, Google’s Pixel 2, and other smart-
phones have similar capabilities. Eventually, companies 
will start using specialized chips to run radio frequency 
(RF) DL applications for 5G and Internet of Things (IoT). 
The article by researchers Rob Miller, Marc Lichtman, 
and Edward Laird begins to explore the potential to 
apply DL models for the classification of wideband 
RF data.

Recent advances in ML technology have resulted 
in the development and ready access of sophisticat-
ed software tools than can be readily consumed by 
users for a variety of applications. The column near 
the end of this issue discusses In-Q-Tel’s partnership 

The previous issue of The Next Wave (TNW) focused 
on the exciting area of machine learning (ML), often 
described as artificial intelligence (AI) or deep learning 
(DL). This topic has generated a lot of interest in recent 
years throughout government, academia, and industry; 
at times, it has been overhyped and misunderstood, 
but often, it has proven to be wildly successful. Our ML 
goals at NSA are to understand its current limitations, 
apply it to important national defense applications, 
and extend the theory as required by our hardest 
mission problems. 

In this second special issue of TNW on ML, we high-
light additional advances in ML by NSA researchers and 
collaborators. In the first article of this second issue, 
Lawrence Livermore National Laboratory researchers 
Barry Chen and Nathan Mundhenk and In-Q-Tel re-
searcher Karl Ni develop computer-assisted algorithms 
for the multimodal analysis and retrieval of large 
collections of unlabeled images, video, audio, and text. 
The lack of labeled data, combined with the required 
multimodal analysis of large amounts of heteroge-
neous data, makes this a truly daunting technical task.

The US government relies on the use of ML analytics 
to help inform decisions made in defense of national 
security. Often this requires that analytics be publicly 
deployed, where an adversary can study their behavior, 
discover weaknesses, and then alter their expected 
behavior in several ways. Sandia National Laboratory 
researcher Philip Kegelmeyer’s article on adversarial 
ML presents a statistical framework to assess the vul-
nerability of deployed analytics and then harden their 
performance against attacks. 

In the modern era, data science can take advantage 
of massive computational power to deal with large 
data sets that are contaminated with noise. As data sci-
ence expands into new applications, ad hoc algorithms 
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NSA needs to establish partnerships with indus-
try, academia, and other government agencies to 
address its staggering future data science needs, 
requiring a combination of research, innovation, and 
collaboration. As one of its initiatives, the NSA Tech-
nology Transfer Program has a Cooperative Research 
and Development Agreement with the University of 
Texas System to explore joint challenges in ML, inno-
vation, and IoT. The Lab to Market article in this issue 
provides insight into one of the current areas of ex-
ploration, anomaly detection and insider threat ac-
tivity inside high-performance computing systems.

This second special issue of TNW on ML highlights 
additional facets of NSA research and collaboration 
in this growing and dynamic field. ML offers great 
promise for national defense, but also a threat in the 
hands of our adversaries, who will use ML against 
us with growing sophistication. Hopefully these two 
special issues of TNW taken together convey both 
the importance of this topic to NSA now and far into 
the future, and also provide insight into the com-
plexity and richness of the research and applications 
of ML for national defense.

Joe McCloskey  
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Analysts and decision makers are constant-
ly charged with making sense of large 
amounts of disparate data. With the pro-

liferation of smartphones and the ever-grow-
ing array of new sensor technologies, the old 
adage of swimming in sensors but drowning in 
data remains especially relevant. As collections 
of images, video, audio, and text continue to 
grow, the need for computer-assisted analysis 
likewise increases. The “data deluge” presents 
both daunting challenges as well as remarkable 
opportunities. In this article, we describe deep 
learning approaches for learning representa-
tions of data from vast amounts of unlabeled 
or weakly labeled training sets. These feature 
representations enable the computer-assisted 
retrieval and tagging that can help analysts find 
patterns in the vast ocean of collected data.
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Toward a deep learning 
system for making sense of 
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Second, word sense ambiguity may pose retrieval 
challenges. One could argue that the words up and 
down are very similar in the sense that they’re both 
directional semantics, and that both are very differ-
ent from a tangible object like a peacock. Then again, 
a peacock is a bird and birds fly, so the word up may 
not be very far off in meaning. So, how would we 
account for the semantic senses of a single word for 
truth labels?

Finally, some data sets do have lots of labels, but 
they can be quite noisy. In the Yahoo Flickr Creative 
Commons 100 Million (YFCC100M) data set [1] 
of user-generated content, users can tag images and 
video in any way that they choose, using any language, 
with any keyboard (different text coding schemes). 
This can lead to some creative, but not semantically 
relevant labels. Our hope is that by training with mas-
sive amounts of such weakly labeled data, the noise 
would cancel out. Indeed, this is the case as we will 
show below: Training over millions of weakly labeled 
images leads to more generalizable results than train-
ing on much smaller well-labeled training sets.

In the following few sections, we’ll take you 
through the research we’ve conducted at the Lawrence 
Livermore National Laboratory and Lab41 to build the 
beginnings of the multimodal joint embedding space 
in figure 1. We start from unimodal representations 
with unsupervised deep learning contributions in the 
next section, the basic building blocks of higher order 
deep reasoning. Then, in the following section, we glue 

There are many challenges in training a system of 
multimodal neural networks. First, there are not a lot 
of labeled data sets to train on. To reduce the need 
for large amounts of labeled training data, we learn 
unimodal feature representations with enhanced 
self-supervised deep learning approaches that allow us 
to learn from vast quantities of unlabeled data. Such 
representations are designed to capture higher order 
information so that downstream analytics can operate 
with more compact and meaningful features.

FIGURE 1. We envision a system of deep neural networks 
(DNNs) mapping text, imagery, audio, and video into a multi-
modal feature space where conceptually related data are prox-
imal. In this example, text tags, an image, an audio waveform, 
and a video of biplanes are mapped to nearby points in the 
multimodal feature space by a system of DNNs.

As an analyst, imagine that you’re given a hard 
drive of collected data and told to find all the 
data related to your area of expertise by the 

end of the day. Such a task would be easy if every file 
on the hard drive was already labeled with a set of 
keywords describing its content. If you knew all the 
categories of things that you wanted to find, and if 
you had a lot of examples of these things, you could 
use your favorite machine learning (ML) system to 
automatically find them. Unfortunately, keyword tags 
are often unavailable and difficult to create. Moreover, 
getting large labeled training sets may be too costly, 
and the set of categories you’re looking for may change 
in the future.

On the other hand, if there was a way to map all 
the unlabeled data in the hard drive to a feature space 
where multimodal data (i.e., text, images, videos, etc.) 
that are conceptually related to each other are proxi-
mal, then you could retrieve relevant data by looking 
for those that are close in feature space to the things 
you are looking for (see figure 1). For example, if you 
wanted to find a biplane, you could look for all the 
data that are mapped to locations in the multimodal 
feature space where images, video, audio, and text de-
scriptions of biplanes reside. Such a general-purpose 
feature space would also allow you to retrieve new 
categories of interest.

In our research, we use deep neural networks 
(DNNs) to learn these multimodal feature spaces. 
Figure 1 depicts our DNNs mapping text descriptions, 
an image, an audio waveform, and a video of biplanes 
to proximal locations in a multimodal feature space. 
The creation of this system of DNNs involves two 
main steps: First, train DNNs to learn high-quality 
feature representations of unimodal data, and second, 
learn mappings from these unimodal feature spaces to 
the multimodal feature space.
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FIGURE 2. Two identical DNNs whose weights are tied (i.e., 
forced to be the same) automatically learn representations use-
ful for classifying the relative positions of two randomly selected 
image patches. [Figure adapted from [13]].

with the mean squared error between the inputs and 
reconstructed outputs, that can serve as the unimodal 
representation we seek. Another family of unsuper-
vised learning algorithms, Generative Adversarial 
Networks (GANs) [12], changes the cost function in 
a clever manner to improve the realism of the recon-
structed inputs. In GANs, two networks compete 
against each other: The first one learns features effec-
tive for generating input data realistic enough to fool 
the second one. 

A promising new family of unsupervised learn-
ing approaches is based on developing meaningful 
training tasks for which the computer can provide its 
own training labels. These so-called self-supervised 
learning approaches, create pretext learning tasks that 
force the neural networks to learn useful features that 
can then be recycled for other tasks. An example of 
self-supervised learning is the work of Doersch [13], 
where the pretext task is to classify the relative posi-
tion of one randomly selected image patch to another. 
As depicted in figure 2 adapted from [13], the neural 
network is taught to predict that the patch with the 
cat’s ear is northeast of the nose patch. The reason this 
pretext learning problem works is that it forces the 
DNN to learn something about what makes a set of 
pixels ear-like or nose-like and that ears are typically 
northeast or northwest of noses. Because the comput-
er controls where to sample the two image patches, it 

the representations together with a joint optimization 
of the feature spaces to form a multimodal representa-
tion, which can serve as a powerful organizing princi-
ple to enable better data queries. We demonstrate all of 
the contributions on large-scale, noisy data sets.

Unimodal unsupervised deep learning
In the past few years, DNNs have exceeded human 
performance levels on tasks once considered to be 
quite difficult for machines. In image classification 
challenges, such as the ImageNet Large Scale Visual 
Recognition Challenge [2], state-of-the-art DNN sys-
tems attain error rates as low as 2.25% [3, 4] compared 
to 5.1% for a human expert, and in the conversational 
telephone speech recognition task [5], DNNs now 
attain word error rates of 5.1%—beating human word 
error rates of 5.9% [6]. To achieve these impressive 
results, millions of labeled examples are required for 
training the DNNs. What sets deep learning apart 
from other ML techniques today is its increasing 
effectiveness at improving performance as the amount 
of labeled training data grows. Hardware acceleration 
provided by graphics processing units (GPUs) coupled 
with improved optimization algorithms [7, 8, 9] and 
new neural network architectures [10, 4] now make it 
possible to simultaneously reduce bias and variance 
with large and deep networks (reduces bias) on mas-
sive amounts of training data (reduces variance). With 
enough labeled training data, it is possible to achieve 
better-than-human performance with supervised 
deep learning.

Unfortunately, not all data collections are easily an-
notated. In many commercial applications, harvesting 
massive amounts of labeled data with crowd sourcing 
may be feasible. However, for many government or 
scientific data sets, the data may have sensitivities 
or require expertise that prevents many people from 
providing annotations. In these cases, unsupervised 
algorithms are required to automatically learn im-
portant patterns or features from massive amounts of 
unlabeled training data. 

Unsupervised learning for neural networks has 
traditionally been based on a network called an auto-
encoder, which learns to project input data into a com-
pressed feature space and then from that compressed 
feature space reconstruct the original data [11]. It is 
this compressed feature space, which is optimized 
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brand-new layer that maps the pretrained network 
to the outputs of the new task. Then all the parame-
ters are adjusted or “fine-tuned” to minimize the cost 
function for the new task.

TABLE 1. Mean average precision (mAP) performance on the 
PASCAL VOC image classification problem of various systems 
pretrained on the ImageNet training set and fine-tuned on 
the PASCAL VOC training set. The Supervised Pretraining 
system uses the ImageNet training labels, while the other 
systems are self-supervised methods that do not require labels 
for pretraining.

Model mAP (%)

Supervised Pretraining 79.9

Doersch et al. 65.3

Split Brain Autoencoder 67.1

Multiscale Triple Patch 69.6

TABLE 2. Mean average precision (mAP) performance on 
the PASCAL VOC object detection problem of various systems 
pretrained on the ImageNet training set and fine-tuned on 
the PASCAL VOC training set. The Supervised Pretraining 
system uses the ImageNet training labels, while the other 
systems are self-supervised methods that do not require labels 
for pretraining.

Model mAP (%)

Supervised Pretraining 56.8

Doersch et al. 51.1

Split Brain Autoencoder 46.7

Multiscale Triple Patch 55.8

The second extension is an improved approach for 
preventing the DNN from “cheating” on chromatic 
aberrations. Many inexpensive camera systems induce 
chromatic aberrations that manifest in pushing certain 
colors radially outward more than others. Our ap-
proach blends magenta and green together in L*a*b* 
color space to prevent the DNNs from using chromat-
ic aberration while keeping the intensity channel crisp. 
Finally, we train our self-supervised DNNs for many 
more iterations than is typical for supervised DNNs.

With these extensions, our self-supervised feature 
learning outperforms the best self-supervised tech-
niques on image classification and object detection 
tasks. Table 1 compares the mean average precision of 
our self-supervised approach called multiscale triple 
patch (MSTP) to two leading self-supervised systems: 
Doersch’s [13] method and the Split Brain autoencod-
er method [14] for classifying PASCAL VOC imag-
ery (i.e., Pattern Analysis, Statistical Modeling and 
Computational Learning Visual Object Classes) [15]. 
Table 2 shows the effectiveness of MSTP for detecting 
objects in the PASCAL VOC data set. The self-super-
vised systems are first trained using only the images 
in the ImageNet training set (i.e., unlabeled data) and 
then “fine-tuned” using the smaller labeled PASCAL 
VOC training set. Fine-tuning involves replacing the 
last layer of a DNN that was pretrained on another 
task (like the self-supervised learning task) with a 

FIGURE 3. In our multiscale triple patch system, our patch 
orientation classes come from three patches arranged in various 
configurations with different scales and various visible areas.

Once trained, self-supervised DNN features are 
subsequently used to build classifiers that perform 
quite well on image classification tasks [13, 14]. We 
have extended Doersch’s original work in several ways 
to significantly improve its performance. The first 
extension varies the number and visible area of the 
patches to increase the probability that meaningful ob-
ject parts are sampled and sampled over various scales 
from coarse to fine (see figure 3, triple patch and bor-
ders). We typically sample three patches at different 
configurations: along straight lines, right angles, and 
at mixed scales. To vary the visible area of the patch-
es, we randomly place gray borders of varying sizes 
around the patches. This focuses the DNN to learn 
finer scale pattern and leads to better classification and 
detection performance.

knows their relative positions and can thus self-super-
vise the training of the DNN on massive amounts of 
unlabeled images.

FEATURE
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Positive and negative sampling is important be-
cause it allows us to efficiently train on large vocab-
ulary sizes and massive amounts of training data. It 
lets us avoid a large matrix multiply when correlating 
images to words. Other practical issues stem from 
holding word-embedding matrices for large vocab-
ulary sizes in memory. Because most of the word 
embedding work [19, 20] is done on multithreaded 

The proposed approach makes use of unnormalized 
cost functions from the natural language processing 
domain with optimization strategies rooted in unsu-
pervised and embedding approaches. Most notably, 
Restricted Boltzmann Machines and word embed-
dings like [19] rely on some variant of noise contras-
tive estimation, where the distribution of foreground 
(e.g., the surrounding context of a word) is separated 
from the distribution of the background (e.g., the 
probability distribution over all words in the corpora). 
In our case, the context is the set of tags for each im-
age, and negative samples can be obtained by sampling 
from the entire tag distribution absent the positive im-
age tags. We represent this in the below cost function:

Here, the vp are positively sampled vectors coming 
from words the image has been tagged with; vn are 
the negatively sampled vectors from the probability 
distribution over all possible tags; P is the number of 
positive samples; N is the number of negative samples; 
IE is the expectation value; α is a tuning parameter; and 
the image feature vector f is parameterized by the set 
of weights W from a neural network.

To generate the vector space, the first term positive-
ly correlates the feature vector with the metadata tags, 
pulling the image closer to the context through back-
propagation over Wi. The second term pushes them 
away from the background distribution. These two 
terms in the cost function promote the optimization 
of the image content. In the same manner, the final 
two terms serve to promote the analogous situation 
with the words themselves. We also optimize the word 
vectors (some of which are not in YFCC100M) with 
the New York Times corpus and Wikipedia. The entire 
optimization can be seen in a word2vec-like diagram 
in figure 4.

In tables 1 and 2, we also compare the performance 
of the self-supervised techniques with a system that 
pretrains on the labeled ImageNet training data. This 
Supervised Pretraining system provides a measure 
of how much performance gain we can obtain from 
having large amounts of labeled data for pretraining. 
Even though the performance for MSTP is 12.9% and 
1.8% below that of the Supervised Pretraining system 
on PASCAL VOC classification and detection respec-
tively, it is remarkable that it can get so close without 
the luxury of millions of labeled pretraining data.

Multimodal deep learning
Unsupervised learning and self-supervised learning 
provide an adequate solution for deep unimodal fea-
ture extraction in the absence of labels. These features 
can produce meaningful representations of complex 
concepts, but without applying labels, deploying these 
systems would still need a semantic reference point to 
ground their application to analyst problems. One way 
is to gain context about targets and objects of inter-
est by relating features from one modality to another 
modality where deep feature extraction has produced 
equally powerful representations. By creating a joint 
vector embedding of both modalities, we have a repre-
sentation that can be queried from both modalities.

The creation of a joint vector embedding to unite 
two modalities is nontrivial. As previously mentioned, 
the challenges of word sense ambiguity and paucity 
of semantically labeled training data make it difficult 
to build high quality embeddings. To address these 
challenges, we jointly optimize both neural networks 
for image and word embeddings so that ambiguities in 
word senses can be moderated by visual cues and vice 
versa, and use negative sampling and noise contras-
tive estimation [16] to train on enormous amounts of 
weakly labeled data. Specifically, we use a traditional 
cross-entropy cost function and provide an analyti-
cal comparison to ranking cost functions [17, 18], to 
which we also apply the proposed sampling methods 
for fair comparison. In doing so, we train against the 
user-generated corpus currently available via open 
source: the YFCC100M corpus [1], and demonstrate 
that despite the issues, automated tagging using a 
sampled cost function can produce considerably more 
useful information than the original user-generated 
tags. More importantly, we allow users to search for 
relevant images using an almost unlimited vocabulary. 
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Conclusion
We have described a deep learning framework for 
mapping data of disparate modalities into a joint 
multimodal feature space in which conceptually 
related data are proximal. This feature space enables 
generalized multimodal retrieval, such as “find other 
images like this image,” “find textual descriptions 
related to this image,” “find videos related to these 
sentences,” etc. The multimodal feature space can help 
analysts quickly find relevant data even if the data 
are not tagged with keywords. We developed a set 
of learning algorithms that allows our DNN models 
to be well trained while minimizing the dependence 
on massive amounts of high-quality, human-labeled 
training data. Our self-supervised learning method is 
a promising approach for learning unimodal feature 

However, more important is the real-world demon-
stration with image retrieval on the YFCC100M data 
using our bimodal text+image feature learning system. 
Using a query system that takes less than a second to 
return from a search of over millions of images, we 
can accurately retrieve relevant images relating to a 
search query. Figure 5 (on the following page) shows 
search results for three different queries from a subset 
of YFCC100M consisting over 6.7 million images.

TABLE 3. A comparison of image-tagging performance. Each system is first trained on either the IAPR TC-12 (which has 291 unique 
tags, ~20,000 images) or YFCC100M (which has 432,000 unique tags, ~95,000,000 images) tagged training set and then tested on 
the ESP game (which has 268 unique tags, ~20,000 images) data set. Compared with a leading zero-shot image-tagging algorithm, 
our approach for learning a joint image+text feature space greatly improves performance when going from a small well-labeled 
training set (IAPR TC-12) to a much larger weakly labeled training set (YFCC100M).

Method
Train IAPR TC-12 → Test ESP Train YFCC100M → Test ESP

Precision (%) Recall (%) F1 Precision (%) Recall (%) F1

Sampled Fast0Tag [19] 5.9 8.3 6.9 5.1 3.9 4.4

Our Approach 13.3 10.2 12.1 21.9 15.1 17.9

ESP is trained and validated on the IAPR TC-12 train-
ing/validation splits and tested on the ESP game test 
split. For YFCC100M, we only test on the ESP game 
because the Train YFCC100M → Test YFCC100M 
evaluation is not meaningful due to noisy truth data. 
In table 3, we compare our approach with the state-of-
the-art Fast0Tag image-tagging system. Our approach 
effectively uses the large amounts of weakly labeled 
training data in YFCC100M, significantly improving 
performance over the system trained on a smaller 
amount of well-labeled IAPR TC-12 training data.

computer processing units (CPUs) due to its capacity, 
our architecture places the deep portion of the neural 
network on the GPU, and the wide portion (the input 
word vector list and the last matrix operation) is on 
the CPU. 

While the primary objective is to train on us-
er-generated content, we compute quantitative 
metrics on curated, traditional corpora to com-
pare against the state of the art. These include the 
International Association of Pattern Recognition 
Technical Committee benchmark (IAPR TC-12) 
[21], the Extrasensory Perception game (ESP game) 
[22], and the YFCC100M data set with University 
of Oxford’s Visual Geometry Group (VGG) neural 
network features.

To assess image-tagging capability, we train, 
validate, and test against proper splits from a single 
corpus. To assess generalization capability for a variety 
of content and word tags, we perform cross-corpus 
evaluation: train on a single data set, then test on a dif-
ferent data set. For example, Train IAPR TC-12 → Test 

FIGURE 4. Diagram shows jointly optimizing word vectors 
(right) with image weights (left). 

FEATURE
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Adversarial issues in 
machine learning
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The US Government makes critical use of machine 
learning (ML) analytics in defense of national securi-
ty. One of the primary defining characteristics of a “na-
tional security” analysis is the existence of adversaries 
who seek to sap, even suborn, that analysis. Through 
understanding the ML methods in play, they seek to 
produce data which is evolving, incomplete, deceptive, 
and otherwise custom-designed to defeat them.
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future test sample or samples. Thus, the idea is 
to appropriately shape a specific part of the ML 
decision surface, or to understand the existing 
decision surfaces well enough to be able to move 
evasively within them.

What makes machine learning 
vulnerable?
What might make an ML algorithm vulnerable to 
such attacks? Classic supervised ML methods depend 
on two fundamental assumptions; violating either of 
them creates exploitable weaknesses.

The first assumption is that the test data is essen-
tially similar to the training data. It has long been 
well-understood that this is often an unreliable 
expectation. For instance, data often changes slowly 
and naturally over time. Therefore, much research has 
been focused on building ML models that can grace-
fully handle dissimilar test data; examples are methods 
for handling concept drift [4] or for using transfer 
learning [5] to explicitly extend an ML model beyond 
its original training data.

This test set similarity assumption is also the basis 
for most of the currently popular attacks against deep 
learning on image data [6]. Deep learning methods 
typically overfit their training data, generating ML 
models which are indeed very accurate if the test data 
is similar to the training data, but which are easily led 

A taxonomy of adversary goals
Though adversarial aspects of ML have been discussed 
for more than a decade [3], there is no broadly adopt-
ed consensus as to how to categorize an adversary’s 
goals. One possibility is to think in terms of quality, 
confidence, or evasion attacks.

 � Quality attack: The adversary’s goal is to drive 
down the overall effectiveness of ML as assessed 
on the training data, regardless of whether test 
performance is unaffected. The idea might be to 
convince the defender not to deploy an actually 
useful analytic or to cause the defender to waste 
time attempting to improve it.

 � Confidence attack: The adversary’s goal is to 
drive down the overall effectiveness of ML as 
assessed on the test data, without necessarily 
affecting accuracy on the training data. The idea 
here is to convince the defender to confidently 
deploy an ineffective analytic.

 � Evasion attack: The adversary’s goal is to en-
gineer a specific desired outcome for a specific 

FIGURE 1. IF (white AND fuzzy) THEN <Harmless>

This cannot be easily prevented. Recent work [1, 
2] has shown that if an ML model is publicly 
deployed, it can itself be easily modeled, even 

duplicated, and then studied in private to discover 
its weaknesses. Even a privately held model might be 
sufficiently well deduced through reverse engineering 
or network compromise. And once a model is un-
derstood, there are typically many avenues of attack, 
as the training data, test data, or both are generally 
uncontrolled and can be modified by an adversary.

Adversarial ML addresses these issues, spanning 
developing attacks against ML, assessing defenses, 
detecting whether an attack is in progress, quantitative 
assessment of worst-case scenarios, considerations 
around if, when, and how to deploy an ML model, and 
so on. Adversarial ML tradecraft is essentially applying 
vulnerability assessment methods at the algorithm lev-
el, rather than to software or hardware. The end goal is 
to harden the ML methods in use, and in any case, to 
regard their outputs with an informed, wary eye. That 
is, to become the top middle sheep in figure 1—the 
one that doesn’t quite buy into the “IF (white AND 
fuzzy) THEN <Harmless>” analytic.
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with the amount of tampering (until a full half of the 
data is flipped) and thereby illustrates a mild example 
of a quality attack. That is, a defender who looked only 
at training set accuracy might incorrectly conclude 
that the test set accuracy would not be high enough to 
be useful.

Unfortunately, figure 2 is a best-case scenario of 
a particularly lazy adversarial attack. Now consider 
figure 3 (on the following page), which illustrates 
an effective confidence attack. Here the adversary 
has been slightly smarter and has clustered all of the 
training data, randomly ordered the clusters, and then 
randomly attacked all members of a cluster before go-
ing on to the next one. This small change dramatically 
improves matters for the adversary. Now the test set 
ensemble accuracy (in red) decreases nearly linearly 
with the amount of tampering. It is also essentially no 
better than the average tree accuracy (in black), which 
means the extra computation required by ensembles is 
accomplishing nothing.

Most worrisome, however, is the fact that the train-
ing set accuracy (in blue) stays relatively flat regardless 
of the degree of tampering. This means, for instance, 
that if the adversary can tamper with 20% of the 
training points, the actual real-world accuracy will de-
crease to about 75%, but the defender won’t know this! 
They’ll expect the accuracy to be around 90%, because 
that’s what the training set validation indicates.

In that plot, the red curve is the test set accuracy, 
the accuracy we care about. Happily, nearly 40% of 
the training samples must be corrupted before there 
is a noted drop in accuracy, which is a reassuring 
testament to the robustness of ensemble decision tree 
methods. Also, at first, the ensemble accuracy (in 
red) outperforms the average single tree accuracy (in 
black), as we would hope.

The blue curve depicts the cross-validated training 
set accuracy. That curve does decrease nearly linearly 

FIGURE 2. A random label-flipping attack is effective 
but obvious.

astray by minutely altered test data. This vulnerability 
has created its own subfield, Generative Adversarial 
Networks [7], in which one ML model is explicitly 
trained to generate images designed to fool a compet-
ing ML model, which is in turn trying to learn how 
not to be fooled.

The second assumption, perhaps less well ap-
preciated, is that the “ground-truth” labels in the 
training data used to build the model are accu-
rate. Undermining this assumption by tampering 
with the labels exposes particularly pernicious 
algorithmic vulnerabilities.

An example label-tampering 
vulnerability
As one example, consider ensembles of bagged deci-
sion trees [8] as the ML method. For ML in general, 
it is standard to assume that self-assessment on the 
training data via cross-validation is a useful, if mildly 
optimistic, estimate of accuracy on an eventual test 
set. Further, for ensemble methods in particular, it is 
standard to assume that ensemble accuracy will be 
higher than the average accuracy of the individual 
trees. These assumptions have been correct so consis-
tently that they are rarely examined.

With that in mind, consider figure 2, which depicts 
the results of tampering with ground-truth labels. The 
underlying data is a product inspection data set with 
roughly balanced “Pass/Fail” labels. The curves indi-
cate what happens to three measures of accuracy (on 
the y-axis) as we flip a certain number of the ground-
truth labels (the x-axis) before we build the ensemble 
model. Here the adversary is choosing which labels to 
flip in a purely random fashion.

FEATURE
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Conclusion
Adversarial ML is a new and rapidly developing field, 
and so this article was able only to introduce some of 
its ideas, along with a single example of an unnerving-
ly effective attack.

Still, we can’t stop using these methods, so perhaps 
we can learn to consider them with a useful sense of 
watchful paranoia. G.K. Chesterton famously said “We 
must learn to love life without ever quite trusting it” 
[9]; that seems the right perspective to take with ML 
as well. 
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Reconciling “now” and “then” in data science

Modern data science contends with big data sets in which signal (helpful, illuminating) 
is contaminated by noise (annoying, inexplicable).

Historically, the problem of how to deal with data in the presence of noise—how 
to infer, understand, predict—has been the province of statistics, with mathematical stat-
isticians developing model-based theory to blaze the trails. What sorts of things go wrong? 
The theoretician forgets that the model was a first approximation and falls in love with it; 
the front-line statistician embraces a technique but disregards the premises underlying it. 
Or the real-life data are complicated in ways that preclude robust handling by idealized, 
textbook techniques.

M a r k  T.  J a c o b s o n

recommender-system theory
ADVANCES IN 
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Adopting flexible notions of “user” and “item” 
allows us to cast many problems this way: online me-
dia providers try to match subscribers with content; 
employment agencies try to match employers with job 
seekers; dating services try to match clients with each 
other; a baseball manager might seek a batter expected 
to perform well against a particular opposing pitcher 
(or vice versa). NSA has its own range of applications 
that could benefit from RSs.

The most basic flavor of recommender problem is 
collaborative filtering (CF). Here you’re given only a 
partial feedback array, as in figure 1, without any fur-
ther information about the users and items. The fore-
most example of CF was provided by the Netflix chal-
lenge [2], in which the internet movie-rental company 
sought a better system for recommending movies to 
its users. It published a large training set of users’ rat-
ings of movies (1–5 “stars”), solicited algorithms, and 
offered a $1 million prize for the first to outperform 

FIGURE 1. Example of a partial array of ratings (here, 1-9) that 
users assign to items they’ve purchased.

Collaborative filtering via latent factors
Suppose you run an online marketplace, and you get 
to see feedback—numerical ratings—from your users 
about (some of the) items they buy. If you knew what 
feedback would be provided for the unrated user-item 
pairs, you could make savvy recommendations for 
future purchases. Representing ratings as entries in a 
partial array (see figure 1), we could imagine trying 
to estimate what we’d see in the empty cells (which 
typically are massively prevalent). What we’re seek-
ing here is an RS that takes the information we have 
about users, items, and their interactions, and helps 
make predictions related to further interactions. Note 
the crucial two-dimensional nature of this problem: 
Feedback depends on item and user (two aspects).

Now, in the modern era, we have massive computa-
tional power, hordes of experts capable of harnessing 
it, and mechanisms for producing massive amounts 
of data that can be fed into it. What sorts of things go 
wrong? Machine learning algorithms can be impres-
sive—but inscrutable. The computational expert has 
no training to distinguish noise from signal, but data 
will be analyzed—with consequences. Our stockhold-
ers may see profits—but no one knows whether we 
could have done better. And understanding theory 
seems like a waste when we know that the models are 
simplistic and our data don’t meet their assumptions…

All models are wrong,  
so let’s not bother with any of them.

What? No! The famous aphorism is

All models are wrong, but some are useful [1].

So what might “useful” mean in the modern era of 
big data and ad hoc algorithms? As NSA researchers, 
we offer our experience with recommender systems 
(RSs). Seeing opportunities for their beneficial use 
at NSA, we examined published RS algorithms. We 
noticed the following pattern:

1. We’d see some component of the algo-
rithm—offered without motivation or justi-
fication—and realize that it would resemble 
the “right answer” to the problem if we 
introduced a particular model.

2. Guided by this model, we tackled the 
problem and gained new insights about the 
problem that led to potentially advanta-
geous modifications to the algorithm.

3. Cognizant that “all models are wrong,” we 
approached experts with our ideas, expect-
ing to hear practical reasons for why they 
hadn’t worked or wouldn’t work. Instead, we 
were encouraged by reactions like “we never 
thought of that.”

This sort of model-based discipline encourages 
clear, coherent thinking—even if some of the details 
won’t survive the eventual reality check. Furthermore, 
recommender applications have myriad variations; the 
coherent, idealistic treatment of basic flavors can lead 
to insight when it’s time to confront trickier, more nu-
anced situations. In the sections ahead, we’ll describe 
a substantial NSA advance in recommender-system 
theory, and offer ideas we’re currently exploring.
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hope is that there will be an f that’s large enough to ex-
plain the ratings but small enough to allow reasonable 
estimation of the parameters.

We can think of this in matrix terms: What would 
have been an m×n matrix of γ’s (with rank min(m, 
n)) turns into a rank-f product of an m×f matrix (the 
p’s) and an f×n matrix (the q’s). Indeed, if we had the 
γ-matrix, we could obtain a “best” rank-f approxima-
tion using the singular value decomposition (SVD). 
Interestingly, the recommender literature commonly 
refers to LF approaches as “matrix factorization” or 
“SVD” algorithms, even though we have no actual 
matrix we can factor (the closest is the partial array of 
ratings, which falls far short).

The LF approach becomes more intuitive if we 
imagine that each of the f factors captures a salient 
“quality” underlying the rating process. In the Netflix 
example, imagine that such a factor of a movie is 
“number of Academy Award-winning actors in cast.” 
That is, this number appears as some component qj,k in

and there’s a corresponding user factor pi,k that tells us 
how much user i values Academy Award (AA) win-
ners—think of the contribution as

(AA winners in j) × (stars awarded by i per 
AA winner)

(though such bilinearity might be unreasonable; we’re 
also apparently allowing arbitrary real values for 
stars). The (f − 1) other factors contribute similarly; of 
course, before fine-tuning for factors, we have main 
effects: αi (how liberal is user i with stars?) and βj (how 
generally well-liked is movie j?). Now, if indeed we 
were told all the components of q’s (and the β’s), then 
consideration of (1) reveals that, for each user i, we 
could estimate (µ + αi, pi) as a linear regression exercise 
(over the items j for which i has provided ratings).

In CF-by-LF, underappreciated symmetries are 
cause for concern. Alas, no one hands us either the 
p’s or the q’s; in CF, we must find both. No one’s even 
telling us what their dimension f should be . . . or how 
we might qualitatively understand any of their compo-
nents; the goal, simply but vaguely, is to find parame-
ters that perform well. Netflix used a typical figure of 
(de)merit to evaluate RS algorithm performance: the 

its own proprietary RS by a specified margin on a test 
set of user movie ratings withheld from publication. 
The contest spawned myriad algorithms and literature, 
but careful thought was often an unaffordable luxury 
amid the marketplace scramble for the prize. There 
was crowdsourcing and aggregation: The eventual 
winner was a mash-up of more than 800 component 
techniques, as competing entrants formed teams and 
threw their ideas together.

Our focus is a core technique [3] that uses latent 
factors (LF). Let us index the users by i = 1, 2, . . . m 
and the items by j = 1, 2, . . . n, and denote a rating in 
the array by ri,j. The LF approach explains/predicts the 
rating as

ri,j = µ + αi + βj + píqj + noise,     (1)

representing it in terms of unknown quantities to be 
estimated from the training data:

 � a “baseline” µ, adjusted additively by
 � “main effects” αi and βj attributed to the distinc-
tive natures of user i and item j;

 � for some postulated number f of factors, a 
dot-product of two f-dimensional factor vectors: 
pi for the user, qj for the item (prime ( ́) denoting 
matrix transpose);

 � noise that admits our inability to tell a perfect 
story about the ratings.

That is, for each user, there is a parameter pair 
(αi, pi); for each item, there is a pair (βj , qj ).

Understanding LFs as dimension reduction. 
Statisticians are used to a two-way analysis of variance 
(ANOVA) model that looks like (1), except with the 
píqj term replaced by a less restrictive γi,j , which rep-
resents an interaction effect between user i and item 
j. (Underneath the noise, the ANOVA model allows 
each ri,j to have an unconstrained mean.) In CF, we 
hope for substantial interactions that we can profi-
ciently estimate, leading us to accuracy (and profits) 
beyond what we’d obtain using only main effects. 
There’s a problem with free γ’s, though: For the nu-
merous (i, j)’s that are missing ratings, we have no data 
to allow us to estimate the cell means; in fact, a typical 
ANOVA scenario expects multiple observations per 
cell in order to produce reasonable estimates. But by 
resorting to factor vectors, we’re doing dimension 
reduction on the interaction effects: The parameter 
count falls from (effectively) mn to O((m + n)f ); the 
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training data; variance—too little training data to 
support precise estimation of the specified parame-
ter collection. (We saw the problem in extreme form 
when we considered the unrestricted ANOVA model.) 
Variance will decrease if we increase the training-set 
size—but typically we can’t.

How can we improve the situation? RS efforts 
frequently turn to shrinkage (or regularization): The 
objective function [the training-set version of (2)] 
is augmented by a weighted term that penalizes a 
putative solution for its distance from a certain fixed 
point (in parameter space), resulting in an objective 
function like

(3)

in which each main effect and factor component pays 
a penalty—determined by yet another parameter, λ—
for its squared distance from 0. The effect is to shrink 
the parameter estimates toward 0, decreasing variance: 
If we take λ = 0, we get the unaltered MLEs, but as 
we increase λ, the estimates progressively discount 
the training data (and their vagaries), ultimately all 
approaching 0. The downside is that penalization 
increases bias—in this case, the tendency to redirect a 
parameter estimate toward an arbitrary, fixed choice 
(0), away from an optimal (but unknown) alterna-
tive. There are various strategies for navigating this 
bias-variance trade-off (e.g., choosing λ by cross-vali-
dation involving held-out portions of the training set; 
see, e.g., [5]).

Shrinkage understood through the Gaussian 
backstory: Random effects. Suppose we regard our 
users as samples from some larger (maybe infinite) 
population of users; specifically, we’re interested in 
their (αi, pi)-pairs as samples from a population. 
Similarly, regard the items’ (βj , qj )-pairs as samples 
dispensed from some (other) item population. (See 
figure 2.) These still influence the ri,j’s, per (1), but 
we’ve introduced a preliminary “tier” of randomness 
[prior to the random noise that arrives in (1)]. What 
we formerly regarded as parameters—to be estimated 
from the training data—are now (unobservable) ran-
dom variables to be predicted conditional on observed 
instances of related random variables (the ratings in 
the training data).

sum of squared errors between predicted and actual 
ratings over a test set; for a LF scheme, this would be

     (2)

where the sum is over pairs (i, j) included in the test 
set. The literature overlooks an important issue: The 
predictions (1) and squared-error sum (2) are invari-
ant under arbitrary linear transformations of the p’s, 
provided the transformation is inverted on the q’s. 
That is, pick any invertible f × f matrix A; the results 
won’t change in (1) or (2) if we replace each pi by (Ápi) 
and each qj by (A−1qj ). The group of such transforma-
tions effectively partitions our possible solutions into 
equivalence classes, each of which comprises equiva-
lently performing alternatives. In particular, a “best” 
solution has infinitely many equally good counter-
parts! Ignored, this symmetry can be hazardous con-
ceptually and computationally; properly understood 
and dealt with, it can be a blessing. We’ll see both sides 
of this.

Squared-error minimization is maximum-like-
lihood estimation with a Gaussian backstory. We 
can’t minimize (2) since the sum is over test ratings 
that we don’t get to see, but if we sum instead over 
the training set, finding parameters to minimize that 
function might be a reasonable objective. In fact, if the 
noise component in (1) is modeled as Gaussian—and 
independent and identically distributed (IID) across 
(i, j)—the training-set version of (2) is a scaled version 
of the (negated) log-likelihood function of the param-
eters; minimizing it is equivalent to finding maxi-
mum-likelihood estimates (MLE) for the parameters. 
RS literature (e.g., [4]) discusses techniques for doing 
so (e.g., gradient descent, alternating least squares), but 
observes that solution performance is poor on test sets 
(even for moderate f).

Shrinkage to combat overfitting. Each training set 
yields parameter estimates (which form a prediction 
function); if parameters are too numerous, the esti-
mates will be unstable across different (but compara-
bly representative) training sets, any particular one of 
which is liable to produce bad estimates (which will 
generalize poorly when making predictions beyond 
the training set). This single problem has two names/
perspectives: overfitting—too many parameters to 
be precisely estimated by the available quantity of 
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(MCMC) methods, with (say) a long-term average 
of samples serving as an estimate of the sought-after 
posterior mean.

Pursuing the Gaussian premise leads to wonderful 
revelations. The multivariate Gaussian (or normal) 
distribution has two parameters: its mean vector and 
covariance matrix. These appear respectively in our 
notation for the distribution: We write, for example, pi 
∼ N(θ, Σ) to indicate that pi has a particular Gaussian 
distribution. A convenience of the Gaussian is its clo-
sure under affine transformations: For such pi, we have 
Api + b ∼ N(Aθ + b, AΣÁ) for conformable (nonran-
dom) A and b. Now, once we’ve bought the multivar-
iate-Gaussian premise for our random effects, we can 
shift the user- and item-factor scales to be centered 
on 0 by absorbing the consequences of the shifts into 
the main effects; we can further center the main-effect 
scales on 0 by absorbing the necessary shifts into the 
baseline term µ; that is, we lose no generality by taking 
all of our random-effect means to be zero. We there-
fore postulate that

user vectors pi are IID draws from N(0f , Σ); simi-
larly, itemwise, qj ∼ N(0f , Φ)

for some (unknown) f × f covariance-matrix hyper-
parameters Σ and Φ. Now, consider:

 � our ratings model uses the pi’s and qj’s only 
in the píqj terms;

 � the pi’s and qj’s are latent constructs, actual 
observations of which we’ll never be blessed 
(or stuck) with—so we’re free to transform 
them, even in ways that involve the unknown 
hyperparameters;

In ANOVA, such parameters-now-random-vari-
ables are called random effects; their postulated distri-
butions amount (in a Bayesian context) to priors, but 
don’t disturb frequentists who eschew subjective no-
tions of probability. The priors may themselves involve 
parameters (called, in this context, hyperparameters).

This route leads to insight about the penalty term 
in (3), which is another (scaled, negated) Gaussian 
log-likelihood—consistent with IID mean-0 Gaussian 
priors for all of the components of the α’s, β’s, p’s, and 
q’s. Since the initial term relates to the conditional 
distribution of the ratings given the random effects, 
(3) is now the negative log of the joint probability 
density of everything random—the observable ratings 
and the unobservable random effects—with (hyper)
parameters µ, λ, and the variance of the noise [in (1)]. 
From this joint density, Bayes’ Rule leads us (in theory) 
to the posterior distribution of the random effects, 
conditional on the observed ratings; this can be 
thought of as a savvy updating of the prior (in light of 
pertinent data), and would be the appropriate vehicle 
for inference about main effects and factor vectors. By 
minimizing (3), we produce their maximum a poste-
riori (MAP) estimates (collectively, the mode of their 
posterior distribution). We note a standard phenom-
enon: The center of the joint random-effects prior 
serves as the “magnet” (here, all zeros) toward which 
the MLE gets pulled; the force it exerts depends on 
the variances (prior vs. noise) and the training-set size 
[the number of terms in the first sum in (3)].

In the literature, there has been hand-wringing over 
the wisdom of various refinements to (3) (e.g., penal-
izing the user components differently from the item 
components). Salakhutdinov and Mnih have proposed 
an appealing, expansive approach [6], which trans-
lates to our story thusly: Each user’s random effects 
are modeled by a multivariate Gaussian distribution 
having a completely general covariance matrix as a 
hyperparameter (allowing for correlation between fac-
tors); each item’s effects are modeled by another (with 
its own covariance matrix). The authors then proceed 
along a hierarchical, fully Bayesian route, postulating 
diffuse priors for the hyperparameters as a further, 
earlier tier. Random-effect and ratings predictions 
follow from consideration of the appropriate poste-
riors: Though intractable, the distributions can be 
sampled practically using Markov chain Monte Carlo 

FIGURE 2. Each user’s parameters are regarded as a random 
draw from a population comprising all users; similarly, item 
parameters are regarded as emissions from an item population.
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omitted) leads us to the ratings model [cf. (1)]

 (4)

where this (block-matrix) bilinear form organizes 
the hyperparameters into the middle matrix, and the 
random variables (factors and main effects) into the 
flanking matrices; here,

 � Λ is (still) the f × f diagonal matrix of (positive, 
decreasing) importances;

 � the user effects (αi, pi) and item effects (βj , qj ) 
are all IID N(0f +1, If +1); 

 � σ 2
α  and σ 2

β  are main-effect variances; 
 � τp and τq are free, real f × 1 vectors that allow 
correlation between a user’s (or item’s) main 
effect and factor vector.

Apart from the noise variance, our model has 3(f + 1) 
dimensions’ worth of hyperparameters—far more 
parsimonious than the overspecified models in the 
literature.

From here, we have charted a fully Bayesian, hierar-
chical route, identifying expedient prior distributions 
for the hyperparameters and constructing a (MCMC) 
Gibbs sampler for drawing samples from the (rat-
ings-informed) posterior distributions of the random 
effects and hyperparameters. Early implementation 
efforts [7] show promise.

More on symmetries and factor interpretation. 
Without an appropriate appreciation for the symme-
tries lurking in (1), LF efforts have incurred various 
consequences. When random-effect collections are to 
be sampled from a posterior distribution, such sym-
metries will manifest themselves as aliasing: equiva-
lence classes on which the probability density is con-
stant. We regard such a density as having “lobes” that 
are copies of each other, symmetrically arranged—in 
our case, around an unfortunate mean: the all-zero-ef-
fect collection. Our sample average, then, is destined 
to misleadingly approach this zero-collection. In [6], 
the fact that this seems not to happen is evidence of 
sampling from a poorly mixing Markov chain: The 
chain likely lands in a lobe from which it then fails to 
escape. (We’ve seen evidence of this in other settings: 
for example, when multiple chains are run in parallel 
and each lands—and stays—in a different region [8].) 

 � Σ and Φ, being symmetric positive definite 
(SPD) matrices, have (SPD) square roots.

We can thus write

in which transformed factor vectors now are both dis-
tributed as N(0f , If )—free of hyperparameters, which 
appear in between as a “geometric mean” diagonaliz-
able via the SVD:

Σ
1/2

Φ
1/2 = UΛV ́,

where f × f orthogonal matrices sandwich a diagonal 
matrix Λ whose diagonal (comprising the singular val-
ues) is decreasing and positive. This allows us to write

and absorbing U ́ and V ́ into the flanking factor vec-
tors does not alter their N(0f , If ) distribution. Here’s 
what we’ve accomplished:

 � We’ve revealed—and eliminated—considerable 
model overspecification: Without loss of general-
ity, we can reexpress

píqj     with pi ∼ N(0f , Σ), qj ∼ N(0f , Φ),

involving effectively f (f + 1) dimensions’ worth of 
covariance hyperparameters—as

ṕiΛqj     with pi ∼ N(0f , If ), qj ∼ N(0f , If ),

involving a single diagonal matrix—merely f di-
mensions’ worth of hyperparameters. 

 � Because ṕiΛqj = , with the p’s 
and q’s all IID N(0, 1) (standard normal), the 
diagonal elements of Λ are revealed as weights 
that scale otherwise similarly behaving products 
pi,k qj,k. And, thanks to the sorting of the singular 
values, λk can be thought of as the importance of 
the kth most important LF.

 � That is, we’ve settled on a particular, appeal-
ing representation of the interactions between 
users and items: one in which the f contributing 
factors—whether on the user side or the item 
side—are orthogonal to each other (uncorrelat-
ed, independent), and are distinguished by their 
relative importance (provided the singular values 
are distinct).

Extending the Gaussian premise to the main effects 
and conducting suitable transformations (details 
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hyperparameters; correlation between components is 
modeled naturally by postulating correlation between 
factor vectors across components. (Details remain to 
be worked out.)

Nonignorable missingness. Imagine that even 
when we don’t get to observe ri,j , it “lurks.” There may 
be correlation between ri,j and whether we get to see 
it (e.g., i tries j only if expecting to like it, and then 
rates j only if extremely [un]happy). Such nonignorable 
missingness (NM) is a concern since we use observed 
ratings to predict unobserved ones. Broadly, the 
successful statistical treatment of NM seems to rest on 
strong modeling assumption(s) about how what’s seen 
relates to what isn’t seen. The standard text [9] devotes 
only its last chapter to this challenge, but describes a 
normal selection model we could adopt: Supplement ri,j 
with a latent “gatekeeper” response r̃ i,j whose sign (pos-
itive or negative) controls whether we observe ri,j. That 
is, we now have a bivariate response (ri,j , r̃ i,j )—but r̃ i,j is 
never observable; its sign always is, and, (only) if that 
sign is positive, ri,j is observed. [10] and [11] pursue 
schemes like this; we expect progress from a more 
careful, modern treatment of the issues.

Observables are not continuous, and sometimes 
it matters. Our Gaussian premises have led to insight, 
but ratings—even if quantitative—tend to be discrete: 
low-medium-high, or numbers of “stars.” [10] and [11] 
have attempted to model such ordinal recommenda-
tions, using a latent continuous rating and cutpoints 
that “bin” it. (A related example is the binarization of 
the NM gatekeeper r̃ i,j , although this isn’t a rating.) We 
suspect that a thoughtful study of ordinal-data litera-
ture (e.g., [12]) would yield dividends.

Implicit feedback. In most scenarios, we get no 
explicit rating—just some measurement that we regard 
as a reasonable surrogate (e.g., number of visits to a 
website versus an actual rating of the website). The 
gatekeeper device helps us understand how things 
change: When r̃ i,j > 0, we see a meaningful measure-
ment (ri,j , now likely noisier than if feedback were 
explicit). But when r̃ i,j < 0, we can no longer detect 
this; instead of a recognized nonresponse, we see a 
measured value whose meaning is ambiguous. [Does 
0 visits mean the user intentionally avoided the site 
(a de facto rating), or was the user unaware of the site 
(a nonresponse)?] A careful multivariate-response 
formulation (comprising the always-observable 
measurement and suitable, related latent components) 

Ironically, this mimics the proper remedy of restrict-
ing sampling to a single lobe (any lobe), but it’s hap-
pening accidentally; eliminating symmetries ensures 
that it will happen properly.

LF efforts often seek qualitative understanding 
of the factor vectors they produce; for example, Bell 
& Koren’s winning Netflix team was able to look at 
scatterplots of factor-subvectors and realize that two 
prominent factors they’d found were “seriousness” (of 
user or movie) and “gender [appeal]” [3]. Such sleuth-
ing is undoubtedly complicated by symmetries (a solu-
tion is high-dimensional and may not have landed in a 
particularly interpretation-friendly lobe); perhaps our 
canonical, orthogonal representation facilitates inter-
pretation: Factors are uncorrelated, so we gain noth-
ing by considering them in tandem. (“Orthogonality 
isn’t realistic,” we’ve heard, but this doesn’t seem like 
a legitimate complaint when any lobe is as admissible 
as any other; why must we rule out the “orthogonal” 
one?) Now, there may well be correlation between 
“seriousness” and “gender”; our representation would 
redraw the axes to define two alternative, uncorrelated 
factors. Does this make the interpretation less clear? 
Or does it reveal deeper truths?

Finally, we note that our representation (4) is not 
yet free of symmetries: Λ will be unchanged if pre- 
and post-multiplied by a diagonal matrix of arbitrary 
signs (±1), the two copies of which can be algebraical-
ly moved out to the flanking factor vectors (changing 
some signs). This amounts, for example, to deciding 
whether we’re measuring “seriousness” or its oppo-
site (“whimsy”?). A remedy is to choose a reference 
user or item and stipulate that all of its factors are to 
be positive (e.g., “we’re estimating either seriousness 
or whimsy, whichever Groundhog Day has a positive 
amount of ”).

Variations, and ideas for tackling them
What we’ve learned suggests new ways to grapple with 
common RS complications.

Multivariate response. We might observe a vector 
of feedback from the (i, j) experience (instead of the 
univariate ri,j ). Extending our earlier perspective, we 
imagine this as dimension reduction within multivar-
iate analysis of variance (MANOVA). We pursue our 
univariate approach across the feedback vector, with 
each component having its own factor vectors and 
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to “personalize” the prior mean of (αi, pi) away from 0 
to an affine function of xi (involving new hyperparam-
eters). (A symmetric analog relates item features to 
their factor vectors.) Remarkably, this coincides with a 
basic version of the regression-based latent factor mod-
el, an ad hoc proposal [13] for contending with the 
classic cold-start problem of making recommendations 
for a new user/item that shows up without any ratings; 
we’ve now supplied a theoretical justification. 
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should yield insight and progress beyond present ad 
hoc approaches.

Inclusion of user, item features. RS literature 
generally draws a line between CF and content-based 
methods that take advantage of observable user/item 
characteristics (feature vectors) to help with recom-
mendations. We motivate a different perspective: If 
you’re planning to do CF-by-LF, and then you’re hand-
ed vectors of (user) features, shouldn’t these give you a 
head start on the (user) factor vectors? From the posi-
tion that LFs capture the users’ salient qualities, we re-
gard the observable user feature vector xi as some (un-
known, noisy) function of the latent (αi, pi). Assuming 
the function is affine and the noise is Gaussian, we dis-
cover that when we condition on the xi’s, the effect is 



In 2017, Apple released the iPhone X equipped with an A11 processor that contains what 
Apple calls a “neural engine.” Huawei announced a similar “neural processing unit (NPU)” 
available in one of their Kirin 970 system-on-chip (SoC) for mobile devices [1]. Google 

also released the Pixel 2 which contains an image processing unit (IPU) on their SoC. In 
addition, Google announced TensorFlow Lite, their version of the TensorFlow framework 
targeting Android and iOS application development. Intel acquired Movidius, a company 
that makes the neural compute stick (NCS) [2]. The NCS is a similar low-power neural pro-
cessing-specific hardware for Internet of Things (IoT) development and prototyping. It is 
only a matter of time before companies start using specialized chips to run radio frequency 
(RF) deep learning applications for 5G and IoT dynamic spectrum access (DSA) applications.

[Photo credit: jamesteohart/iStock]
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blocks to subsample the streaming 100 MHz raw 
I/Q data to a rate the Jetson TX2 development board 
could handle.

Technical approach
Our first step in developing a wideband RF classi-
fier was to generate a wideband data set. We used 
an RF isolation tent as the base recording environ-
ment. While a Ramsey RF isolation box is suitable 
for recording some of the devices, we preferred the 
larger tent so we could experiment with recording 
multidevice networks in a larger space. We placed the 
Ettus X310 in the RF isolation tent and configured it 
with a VERT2450 omnidirectional vertical antenna. 
We calibrated the X310 USRP to account for receiver 
I/Q imbalance and directly connected it to a serv-
er via 10 gigabit Ethernet (GbE). We took all of the 
recordings with the same gain, centered at 2.45 GHz. 
We used the UBX160 card in the X310. We made 
16-bit scalar complex (SC16) recordings at a sample 
rate of 100 MHz to allow for coverage of the full 2.4 
GHz ISM band. We called the Universal Software 
Radio Peripheral (USRP) hardware driver using the C 
language application program interface (API) wrapper 
to ensure minimal buffer sample drop issues. We did 
not off tune the low-frequency oscillator (LO) because 
we assumed the final application would be using lower 
cost receivers that do not have that option. The LO 
leakage introduced phase noise and distortion in the 
recordings; noise and distortion are common to most 
low-cost receivers. We left the LO leakage in the data 
set to help target practical real-world applications. Our 
data recordings lasted roughly three minutes, written 
directly to an Ubuntu 16.04 server random-access 
memory (RAM) disk. Three minutes is an arbitrary 
time; our main concern was to capture enough diverse 
activity from some of the lower duty cycle signals. 
The recording length just had to be long enough to 
contain enough active energy bursts to provide 6,000 
unique examples of 1,024 sample slices. 6,000 sam-
ples per class is an initial number to start with based 
on the Canadian Institute for Advanced Research 
(CIFAR)-10 data set. The more important factor is that 
the 6,000 samples contain a balanced sampling of each 
RF channel and mode within a signal class. The United 
States Federal Communications Commission (FCC) 
allows Wi-Fi to have 11 channels in the 2.4 GHz ISM 
band. Bluetooth has 79 channels in the 2.4 GHz ISM 

Introduction
An overarching goal of radio frequency (RF) deep 
learning research is to perform spectral use awareness 
for dynamic spectrum access (DSA) applications. 
Spectrum sharing is believed to be an important evo-
lution moving from 4G LTE to future 5G and Internet 
of Things (IoT) technologies. RF signal classification 
from base-banded raw in-phase and quadrature 
(I/Q) signal data is an acceptable approach to engi-
neering a solution, but what if the complex process 
of signal detection, tuning, filtering, and decimating 
could be removed from the process entirely? Another 
approach is to design an RF classifier that consumes 
the entire RF band of interest. A convolutional net-
work could be trained on the wideband data, where 
minimal digital signal processing takes place after 
analogue-to-digital sampling.

The wideband RF classifier approach is to build a 
semisynthetic data set consisting of wideband raw I/Q 
needed to explore deep learning spectrum classifica-
tion approaches. The simplest approach to classifying 
known signals in the industrial, scientific, and medical 
(ISM) radio band is to train a neural network over the 
entire static bandwidth and sample duration relative 
to a common receiver center frequency. The neural 
network assesses the entire RF bandwidth at once, 
relying on minimal digital signal processing in front of 
the classifier. This is a major change from traditional 
signal detection, filter, tune, decimate, and classify 
approaches. While the traditional approach works, the 
signal processing chain, latency, and system-on-chip 
(SoC) complexity could be greatly reduced by using 
neural networks to classify raw wideband spectrum. 

We explored this theory using the 100 megahertz 
(MHz)-wide 2.4 gigahertz (GHz) ISM band for its 
manageable propagation distance and the widely avail-
able generative equipment that operates in the band. 
We chose the Ettus X310 universal software radio 
peripheral (USRP) [3], equipped with a UBX160 [4] 
daughter board, because of its cost, bandwidth, and 
future RF network-on-chip (RFNoC [5]) enhancement 
potential. We developed and tested several convo-
lutional models using TensorFlow. We trained the 
models using an Nvidia 1080 Ti graphics processing 
unit (GPU), and ran them from inference using the 
Ettus X310 USRP connected to an Nvidia Jetson TX2 
development board. We used GNU Radio [6] RFNoC 
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We used the GNU Radio dynamic channel model 
block to synthetically adapt the isolation tent record-
ings to simulated signal-to-noise ratios. We configured 
the dynamic channel model block similarly to how 
it was configured in the publication “Convolutional 
radio modulation recognition networks” [7]. The 
only dynamic channel model block variable that we 
changed was the noise amplitude, which controls the 
standard deviation of the additive white Gaussian 

FIGURE 1. This GNU Radio active energy sampling flow graph is the basis behind the automated Python script that created files 
with active energy. It also applies a scriptable dynamic channel model to the energy, creating synthetic controllable signal-to-noise 
levels that add diversity to our data set.

that signals were active in order to train the neural 
network. Typically, a matched filter technique or 
something specific to each signal type is used for best 
detection results. For example, a traditional 802.15.4 
receiver detects the signal using a matched filter to 
correlate on a sequence at the start of each energy 
burst. To properly correlate, the filter must be coarsely 
tuned to the center frequency of the burst, allowing 
only a narrow bandwidth view of the 100 MHz spec-
trum. A generic wideband energy detection process, 
however, is designed to work reasonably well over dif-
ferent modulations, bandwidths, and channel hopping. 
We chose this technique also because of the possibility 
of adapting it to RFNoC. We used GNU Radio to pull 
out only areas of active duty cycle for each recording. 
(See figure 1.) Our initial approach was to train on 
labeled data consisting of only active energy.

band. This sampling process to cover all channels and 
modes needed to vary from signal to signal.

Our data set consisted of four classes: 1) Bluetooth, 
2) nRF24L01+, 3) Wi-Fi, and 4) 802.15.4. We recorded 
Wi-Fi using a Buffalo ac router configured to 2.4 GHz 
single band 20 MHz channel width. This is essen-
tially 802.11n with possible 802.11b/g legacy mode 
operation depending on client device capabilities. We 
connected a laptop and two tablets to the Wi-Fi router 
configured to stream videos. Multiple operational 
channels were captured in the recording; however, not 
all possible Wi-Fi channels were included in the data 
set. Bluetooth was recorded using a laptop connected 
to a Bose SoundLink Mini speaker streaming music. 
We believe the Bluetooth version was 2.1 + EDR, but 
the Bose product documentation did not confirm this. 
We generated 802.15.4 using a special testing device 
that transmits, continuously hopping through all 
possible channels in sequential order. We generated 
nRF24L01+ using a Microsoft wireless keyboard and 
mouse connected to a laptop.

We used a generic wideband energy detection 
technique to transform the recordings into only active 
energy. The signals we chose for the data set were all 
bursting signals that were not continuously transmit-
ting. It was important that we capture only the times 
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We generated figure 4 (on page 27) and figure 5 (on 
page 28) by training on 15 classes of data with an 18 
dB signal-to-noise ratio for 20 epochs. There are 6,000 
examples per class. The train and test data were ran-
domly shuffled and split in half using the TensorFlow 
estimator class. As the epochs increase over the x-axis, 
the model begins to overfit on the data. As the train 
(gray) and test (green) data begin to diverge, the mod-
el overfits on the training data. This means the model 

We developed and explored several different deep 
learning models using TensorFlow and TensorBoard. 
The best performing model on the wideband 1,024 
vector length data used a 2,048 x 2 shaped Fast Fourier 
transform (FFT) as the input features. We applied a 
padded 2,048 FFT to the 1,024 vector length com-
plex I/Q data. We cast the real and imaginary parts 
to float 32 values and separate into two dimensions. 
Four one-dimensional convolutional layers were used 
in conjunction with max pooling and batch normal-
ization layers. We flattened the output and fed it into 
three dense layers using elu activation and a dropout 
layer. (See table 1.)

FIGURE 3. The following 100 MHz-wide waterfall plots show 
all 6,000 data set examples of 1,024 sample, 18 dB data con-
catenated together. From left to right, the classes are: Wi-Fi, 
nRF24L01+, 802.15.4, and Bluetooth combined; Bluetooth and 
802.15.4 combined; Noise; Bluetooth and nRF24L01+ combined.

FIGURE 2. The following 100 MHz-wide waterfall plots show 
all 6,000 data set examples of 1,024 sample, 18 decibel (dB) 
data concatenated together. From left to right, the classes are 
nRF24L01+, Bluetooth, 802.15.4, and Wi-Fi.

noise (AWGN) process [6]. The data set refers to this 
label value as signal-to-noise ratio; however, that is not 
accurate. The recordings initially contain some noise. 
The isolated bursting signals also vary in signal to 
noise and power level over time, and are not necessar-
ily placed equal distances from the recording antenna 
within the RF isolation tent. The signal-to-noise label 
is really just an estimate to examine the effects of 
noise and distortion on the classifier. In addition to 
energy sampling and dynamic channel modeling, we 
also used GNU Radio to synthetically combine the 
energy-sampled data into all possible combinations 
of the signal classes. Having combined classes on 
which to train a neural network allows the classifier 
to use categorical one-hot encoding for each class and 
class combination.

After noise was added to the active energy samples, 
the output consisted of various energy burst captures 
of different lengths stored in individual files. We then 
imported the files into a Python script that cut them 
up into 1,024 sample NumPy vectors. A Pandas data 
frame-based data set was generated that contains 
1,024 samples of 100 MHz bandwidth (0.0001024 sec-
onds) data. The vector gain was normalized, and 6,000 
samples per class for each signal-to-noise ratio were 
created. (See figures 2 and 3.)
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One of our goals of experimenting with wideband 
RF classification and deep learning was to develop 
some working implementations on commercial off-
the-shelf (COTS) equipment. We investigated two 
edge devices: 1) the Nvidia Jetson TX2 development 
board and 2) an Ettus X310 USRP running the classi-
fier implemented in RFNoC. (See figure 6 on page 28) 
The Ettus X310 USRP is far from an edge device but, 
at the time, was the only COTS equipment available 
that supported GNU Radio with RFNoC and band-
widths of 100 MHz. Another approach is to create a 
new wideband RF data set partitioned into smaller 
bandwidth chunks. An approach to spectrum classi-
fication using parallel classifiers to break up the 100 
MHz, 2.4 GHz ISM bandwidth can be found in the 
publication “Wireless interference identification with 
convolutional neural networks” [8]. Parallel classifiers 
could allow some of the Universal Serial Bus (USB) 
3.0 digitizers or the EPIQ Solutions Sidekiq [9] to be 
used. Possibly these same experiments could also be 
done with the RTL-SDR [10] or LimeSDR Mini [11] as 
well. The narrow bandwidth would most likely require 
major data set modifications. We were successful in 
using the Ettus URSP X310 connected to the Nvidia 
Jetson TX2 [12] over the network interface. RFNoC 
blocks were used to throttle the wideband data to 
a rate the Jetson GPU could ingest. We purposely 
dropped RF data before the classifier by subsampling. 
An FFT RFNoC block was used for the FFT-based 
classifiers. This helped to remove some of the central 
processing unit (CPU) load on the Jetson TX2. The 
GNU Radio flow graph was connected to the Python 

is providing a higher accuracy on training data than 
the test data. Overfitting starts to noticeably occur at 
82.5% accuracy. At 86.2% test accuracy, the model 
overfits by 1.8%. The highest test accuracy achieved 
with the model is 89% at epoch 34, not shown in fig-
ures 4 and 5 (which stop at epoch 20). 

FIGURE 4. The classification accuracy for train data (gray) and test data (green) on 18 dB, 2.4GHz ISM band data for 20 epochs 
shows that as the epochs increase over the x-axis, the model begins to overfit on the data.

TABLE 1. Keras model summary for 2,048 x 2 FFT-based 
convolutional model classifier

Layer Type Output Shape Parameters

Input Layer (None, 2,048, 2) 0

Convolutional 1-Dimensional (None, 1,024, 24) 264

Max Pooling 1-Dimensional (None, 255, 24) 0

Convolutional 1-Dimensional (None, 128, 48) 6,960

Max Pooling 1-Dimensional (None, 31, 48) 0

Batch Normalization (None, 31, 48) 192

Convolutional 1-Dimensional (None, 16, 128) 30,848

Max Pooling 1-Dimensional (None, 3, 128) 0

Convolutional 1-Dimensional (None, 3, 256) 98,560

Batch Normalization (None, 3, 256) 1,024

Flatten (None, 768) 0

Dense (None, 256) 196,864

Dense (None, 128) 32,896

Dense (None, 64) 8,256

Dropout (None, 64) 0

Dense (None, 15) 975

Total Parameters 376,839

Trainable Parameters 376,231

Nontrainable Parameters 608
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FIGURE 6. Ettus X310 USRP connected to Nvidia Jetson TX2 development board.

FIGURE 5. The classification loss for train data (gray) and test data (green) on 18 dB, 2.4GHz ISM band data for 20 epochs shows that 
as the epochs increase over the x-axis, the model begins to overfit on the data.
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be beneficial to see some future Jetson-like device 
with an Analog Devices AD9361 on board instead of 
a camera. There is a long way to go before neural-net-
work-based spectrum sharing implementations can be 
used efficiently and effectively in commercial handsets 
and IoT devices. 

Conclusion
A great deal of more research needs to be done in the 
area of deep learning models to apply to wideband 
RF data. The convolutional models here are relatively 
simple, looking at just FFT data. Residual and recur-
rent networks should additionally be developed. There 
is a great deal of room here to explore different types 
of classifiers.

The most challenging aspect of our research was 
creating a labeled curated wideband RF data set. 
Creating a semisynthetic data set that accounts for all 
aspects of each RF signal is time-consuming and com-
plex. It requires deep knowledge of the standards to 
cover all operational modes and channels. GNU Radio 
proved to be a great tool for synthetically expanding 
the recordings using the dynamic channel model and 
combining signal classes. Further work needs to be 
done exploring additional GNU Radio methods for 
augmenting curated data set creation.

COTS devices are reasonably available to explore 
wideband RF classification on edge devices; how-
ever, there is a great deal of room for the commer-
cial market to expand, enabling a more realistic 5G 
implementation on a handset or IoT device. Neural 
enabling-SoC and edge-GPU devices are still com-
mercially focused on image-based classifiers. It would 

script tasking the GPU using ZeroMQ. We tested the 
2,048-point FFT model on the Jetson. We used the RF 
isolation tent with the same devices to generate the 
data set. We obtained mixed results; the 2,048-point 
FFT model on the Jetson seemed to be very sensitive 
to the gain setting on the X310. The samples in the 
data set were normalized per sample; possibly there is 
a more realistic approach that would make the neural 
network classification accuracy more RF-gain invari-
ant. One of the issues is that the data set did not cover 
all the RF channels of each technology. In the future, 
GNU Radio could be used to synthetically manipulate 
the recordings to cover all channel frequencies. We are 
conducting ongoing work in these areas.
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The promises of machine learning (ML) and ar-
tificial intelligence (AI) are beginning to be re-
alized. Technology sector and public research 

and development investments over the past de-
cades have produced massive improvements in 
processing power, algorithmic design, and data 
management. These have in turn fueled a rise in AI 
capabilities, sparking further investment and cre-
ating a positive feedback loop. Private investments 
alone in 2016 were between $26–$39 billion and 
have been increasing at an average annual rate of 
over 40% since 2009 [1]. One technology bene-
fiting from AI advances is digital assistants (DAs). 
For example, Siri, Cortana, and Alexa now service 
billions of user requests per week, a testament to 
how far we’ve come from Clippy (i.e., Microsoft’s 
famously failed, yet pioneering, DA introduced in 
Office 97). For the Intelligence Community, enor-
mous potential exists for DA technologies to trans-
form the tradecraft of analysis by helping analysts 
find the data and analytics they need, facilitating 
collaboration, and offering workflow recommen-
dations. This is one area under investigation at the 
Laboratory for Analytic Sciences (LAS), which is 
one of more than 70 highly integrated industrial 
and governmental partnerships at North Carolina 
State University (NCSU).

D r .  P a u l  J o n e s  |  D r .  S .  L y n c h  |  D r .  K a t h l e e n  M .  V o g e l

Smart digital assistance 
for intelligence analysis

Laboratory for 
Analytic Sciences
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assistance to users including real-time recommenda-
tions of relevant data sources or analytic workflows 
and, in special cases, autonomous analysis operations.

Data acquisition
Training a DA requires quantitative data on analyst 
workflows, which is not trivially acquired, so our 
first task was to devise a minimally intrusive means 
of allowing analysts to document and track their 
workflows in a continuous and objective manner. 
We could then use this data to create a user-focused, 
user-friendly predictive DA for intelligence.

To start, we created two instrumentation agents 
[4]—one for the macOS operating system, and the 
other for the Google Chrome web browser. Our 
macOSinstrumenter captures high-level details of 
all activity on the system, including all applications 
opened, documents accessed, and screenshots. Our 
chromeInstrumenter captures finer-grained infor-
mation on web browsing activity across all operating 
systems. This data alone was sufficient to start training 
sequence prediction models to infer what an analyst 
might do or need next [5]. However, initial sequence 
prediction results showed that our models were get-
ting confused by multitasking behavior. To distinguish 
individual tasks, we added a feature to allow analysts 
to optionally tag their workflows with task and goal 
labels using a journaling interface [6]. Facilitating such 
tagging in a minimally intrusive manner is a research 
challenge in itself [7]. We adopted a simple task-tree 
approach triggered by indications that in-use docu-
ments are relevant (i.e., tag worthy). A particularly 
effective indicator was the scroll-trigger, which causes 
the task-tree interface to appear when a user scrolls 
down a web page or document. We tried to ensure 
that the journaling interface provided benefits to users 
(such as reminding them of other tasks and identify-
ing other users working on the same tasks) to encour-
age adoption with the underlying goal of obtaining 
high-quality labeled data sets for training supervised 
ML algorithms capable of predicting task labels.

However, error-prone and disruptive prototype 
tools are not well suited to high-pressure operational 
analysis environments! Fortunately, the unique model 
of the LAS facilitated data capture experiments with 
proxies that were not too dissimilar to intelligence 
work, including a class of 10 NCSU graduate political 

Machine learning at the LAS
The LAS is a multidisciplinary collaboration of 
researchers anticipating the future of intelligence anal-
ysis and envisioning the technologies and tradecraft 
that it will require. The model of the LAS is itself an 
ambitious experiment [2], where immersive collabora-
tion toward mutually beneficial outcomes is a primary 
goal. This differs from traditional contractual models 
in that it encourages more open engagement among 
collaborators and enables experimentation with new 
research methodologies. Among the LAS-relevant 
topic areas that benefit from ML are:

 � New anticipatory intelligence capabilities,
 � Technology and tradecraft efficiency,
 � Next-generation user experience, and
 � Data triage and discovery assistance.

Specific LAS projects in these areas include: 

 � The design of recommender algorithms for 
workflow model construction,

 � A system to deliver ML as a service to analysts,
 � A software library for enhancing exploratory 
data analysis via data pipeline test development 
(software is available, see [3]), and

 � System-level multiquery optimization methods 
to improve efficiency of map-reduce analytics.

However, given the open-ended nature of intel-
ligence analysis, DA research possesses the greatest 
potential to revolutionize intelligence tradecraft. 
Below we describe ongoing ML/AI research at the 
LAS investigating data modeling for DA technology to 
enhance intelligence analysis.

Mission problem
Modern intelligence analysts sift through a deluge of 
information in various formats to discover informa-
tion of value. Unfortunately, most analysis tools are 
primitive, allowing only one-dimensional analysis of 
complex, multifaceted problems. Moreover, analysts 
often work in teams and must consider several dif-
ferent analysis strands simultaneously. The question 
becomes: How can we empower intelligence analysts 
to better access, keep track of, and process analytic 
artifacts in these data rich, collaborative, multitasking 
environments? We envision future DA technologies 
meeting this challenge by offering a range of proactive 
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We generated context data sets for nodes using 
random walks across the multilayer graph, a technique 
that had been used on social network graphs [14] but 
never on workflow graphs. To better explore graph 
communities, we used guided walks [15] rather than 
purely random walks. With this collection of walks 
comprising the context space, we could then train 
vector representations of each node using Skipgram 
[11], a simple neural net for predicting context words 
given a target word. Skipgram learns a vector embed-
ding of words that maximizes the product of con-
ditional probabilities of context words given target 
words. With enough training data, Skipgram can 
learn high-quality representations even for rare words, 
and in our case, we could produce as much training 
data as required simply by increasing the number 
and length of random walks. Skipgram’s output layer 

FIGURE 1. Workflows are represented here as multilayer 
graphs with User, Task, and Document layers. Different types of 
associations (edges) between nodes within and between layers 
are permitted. Given a new Document Layer node (white), task 
association for that document is then equivalent to link predic-
tion between the new node and the Task Layer nodes. Image 
reproduced with permission from [13]. ©ACM

we created a vector representation of each node so that 
distances between nodes could be calculated naturally, 
providing an alternative approach to link prediction. 
To do this, we built upon recent research in natural 
language processing that succeeded in creating vector 
representations of words in a sentence, word2vec 
[11]. Word2vec turns words into vectors based on 
their context, drawing from a concept known as the 
distributional hypothesis [12]: “You shall know a word 
by the company it keeps.” Given workflow graphs 
rather than sentences, the distributional hypothesis 
could be applied in spirit by defining a context for a 
graph node.

science students participating in an international 
security course. The students were eager to learn about 
analysis tradecraft, and we were able to structure 
their course assignments and a journaling task tree 
in a manner that was consistent with recent research 
on generic analysis workflows [8]. Throughout a full 
semester, labeled data was captured from the students 
in a mutually beneficial experience. This experiment 
offered many technical and human factor lessons [9] 
while enabling continued design improvements to the 
instrumentation and journaling prototypes. We also 
captured data from an NCSU computer science class 
(based on a homework-oriented task tree) and from a 
small group of intelligence analysts at the LAS.

Model development
With three unique corpora of labeled analysis work-
flows in hand, we set a goal of designing an ML 
model to predict a task label for each document a user 
accessed, and to do so in real time so that we could 
organize their documents for them, both temporally 
and, critically, by task. After attempting many standard 
ML methods, it became clear that we needed a new 
way to model workflows that would represent users, 
tasks, and documents in a common manner while 
accommodating the many different types of associa-
tions between them. Associations include similarities 
between users (e.g., coworkers on a team), relation-
ships between tasks (e.g., subtasks of a common goal), 
similarities between documents (e.g., topics), as well 
as temporal proximity between these user, task, and 
document entities. With this new workflow repre-
sentation, we could then make probabilistic associ-
ations between entities, and do so in a scalable and 
streaming manner.

We chose a multilayer graph representation of our 
workflows (see figure 1) containing different types 
of edges, both between and inside each of the node 
layers, to represent the various types of associations. 
The problem of guessing task labels for new docu-
ments then became one of link prediction between 
new document nodes and existing task nodes. The 
field of link prediction is well developed [10]; one 
common approach is to factor the graph’s adjacency 
matrix (or tensor for multilayer graphs) to uncover 
latent features useful for prediction. However, such 
methods can be difficult to scale for large graphs and 
to adapt for use in streaming environments. Instead, 
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Overall accuracy now looks practical for a real 
system even when as little as 10% of labeled work-
flow data is supplied by the analyst (see figure 3). We 
created a real-time version of the algorithm, which 
updates the underlying multilayer graph when analysts 
accept or reject task labels, and incorporated it into a 

measures suggested that the most recently used doc-
uments were more likely to be used again, indicating 
that temporal information could improve our model. 
Our solution was to create additional nodes in the 
multilayer graph that represented tasks during a par-
ticular time period, the thought being that the artifacts 
needed for a given task are likely to shift over time. We 
could also create such concatenated nodes to represent 
users doing a particular task and users doing a par-
ticular task at a particular time. Concatenated nodes 
end up covering the document space much more 
thoroughly and evenly, allowing the distance metric 
to produce a clearer ranking of “close” task nodes (see 
figure 2b). Indeed, their introduction allowed docu-
ments to be classified much more accurately.

Model refinement and deployment
The above approach showed promise, which was 
particularly intriguing since we had neither designed 
a custom objective function, nor incorporated tem-
poral features of workflows. Intuition and empirical 

 
(a) (b)

FIGURE 2. Two-dimensional representations of Document, Task, User, and concatenated nodes from the political science workflow 
data set via t-distributed Stochastic Neighbor Embedding [19]. (a) Representation of Document, Task, User, and concatenated User 
|| Task nodes. (b) Representations of Document (blue) nodes with Task, User || Task, Task || Time, and User || Task || Time concatenated 
(green) nodes. Note the increased separation and document coverage resulting from introduction of User||Task and User||Task||Time 
concatenated nodes (Task||Time nodes showed less clear improvement). Image reproduced with permission from [13]. ©ACM

employs a softmax function to produce a probability 
vector across all context walks, which trains slowly 
but speeds up dramatically using hierarchical softmax 
[16] or negative sampling [17]. Our desired vector 
embeddings are obtained directly from the converged 
weights on hidden layer units, and can be visualized 
with dimension reduction techniques (see figure 2a). 
Finally, for each new document node that appears, we 
use its Euclidean or Cosine distance from each can-
didate task node to define document-task association 
measures. It should be noted that research on methods 
to create vector embeddings for graph nodes has been 
moving forward apace in the past couple of years, and 
there are now a variety of other approaches [18] that 
we could have used instead.
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To implement, algorithm developers simply upload 
their source code or AI/ML model, and the platform 
instantly deploys it as a live API. Algorithmia sup-
ports uploading code in seven different languages 
(i.e., Java, JavaScript, Python, R, Ruby, Rust, and 
Scala) and can host models built on 18 different Al/
ML frameworks (e.g., CNTK, Caffe, Keras, PyTorch, 
Scikit-learn, TensorFlow, and Theano). Application 
developers can utilize easy-to-use Algorithmia client 
libraries for many different development platforms, 
or virtually any programming language capable of 
making RESTful API calls [i.e., web-service architec-
ture and API design based on representational state 
transfer (REST) principles]. The enterprise version 
automates many aspects of DevOps (i.e., collabora-
tion between information technology development, 
quality assurance, and operations), allows for custom-
er authorization/permission, enables model inventory 
and discovery, and can run on essentially any public or 
private cloud. 

For more information on Algorithmia, see https://
algorithmia.com and https://blog.algorithmia.com. 
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infrastructure supporting the development and oper-
ation of AI/ML capabilities. The two main products’ 
offerings are: a public marketplace providing applica-
tion programming interface (API) access to thousands 
of algorithmic microservices and AI/ML models, and 
an enterprise version of the underlying microservices 
platform for use by customers in private deployments. 
The Algorithmia platform enables algorithm devel-
opers to share (and potentially monetize) their tools 
without having to start a company, pay to host their 
capability as a web service, or create a full-fledged 
commercial application. Application developers can 
then build apps by assembling a collection of micro-

services without having to separately down-
load each capability, figure out how to get 

it working, integrate it with the rest of 
their stack, or maintain numerous 

other individual components. 

In-Q-Tel and Algorithmia partner to make 
ML algorithms and tools more accessible
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plans for the collaboration will focus on the detection 
of insider threat indicators using low-cost network 
data, which will serve as a benchmark to evaluate the 
inclusion of high-cost, host-based data in later stages 
of the project. Additionally, this partnership will serve 
as a baseline for further collaborations on mission 
critical efforts concerning cybersecurity, cloud com-
puting, analytics, machine learning, and data visual-
ization. The partnering teams are working to develop 
a source of data that can be shared between the UTSA 
and NSA ecosystems.

The NSA TTP, located within the Research 
Directorate, establishes partnerships with industry, 
academia, and other government agencies to help ac-
celerate mission goals, advance science, foster innova-
tion, and promote technology commercialization. For 
more information about the NSA TTP, visit www.nsa.
gov/what-we-do/research/technology-transfer/. 

It takes a combination of research, innovation, and 
collaboration to invent the future. NSA, through 
a partnership with the University of Texas System 

(UT System), plans to use this approach to address 
national challenges in the field of machine learning.

The NSA Technology Transfer Program (TTP) 
recently signed a five-year agreement between NSA 
and the UT System to jointly address challenges in 
the areas of machine learning, innovation capability 
development, and Internet of Things. The Cooperative 
Research and Development Agreement (CRADA) 
provides a flexible framework for both parties to ex-
plore these areas in order to solve specific problems at 
their respective organizations. This research partner-
ship will complement and accelerate ongoing research 
efforts at NSA, potentially resulting in development 
breakthroughs for mission.

Movement has already started on many of the 
CRADA’s work plans, including a collaboration with 
NSA in Texas’ cyber office and the University of Texas 
at San Antonio (UTSA)’s Center for Security Enabled 
Cloud Computing. The two-year effort focuses on 
anomaly detection and insider threat activity inside 
high performance computing (HPC) systems. Though 
there are existing methods of detecting anomalies in 
data, the methods are primarily restricted to stable, 
non-complex application models and require signifi-
cant computing resources. This partnership provides 
NSA researchers with direct access to UTSA faculty, 
their research, and the supercomputing resources 
of the Texas Advanced Computing Center, housing 
one of the largest supercomputers in the world. The 
discoveries resulting from this engagement will benefit 
both parties.

The success of this research collaboration may lead 
to computationally efficient techniques that signifi-
cantly improve the defensive posture of critical infra-
structure computing systems across the nation. Initial 

NSA and University of Texas: Joining 
forces in machine learning

[Photo credit: antoniokhr/iStock]
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