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Machine learning—often described as 

artificial intelligence or deep learning—is in 

the news today, almost everywhere. The MIT 

Technology Review did a special issue on the 

topic for their November/December 2017 

issue. The New York Times has done a series 

of articles on the topic, most recently in a 

New York Times Magazine article published 

November 21, 2017, titled “Can A.I. be 

taught to explain itself.” 

Additionally, it was the focus of a special 

panel discussion at the November 2017 

IEEE International Conference on Rebooting 

Computing titled “AI, cognitive information 

processing, and rebooting computing: 

When will the new sheriff come to tame the 

wild, wild, west?” As this last item suggests, 

there can be considerable difficulty in 

separating fact from fiction, and reality from 

hype, in this technical field.

In this, the first of two special issues of The 

Next Wave on machine learning, we hope 

to provide you with a reasoned look at this 

topic, highlighting the various facets of NSA 

research and collaborations in the field. 

In our first article, NSA researcher 

Steve Knox gives “Some basic ideas and 

vocabulary in machine learning.” 

“Machine learning for autonomous cyber 

defense,” by NSA researcher Ahmad Ridley 

provides insight into a strategically valuable 

mission application of these techniques. 

NSA researchers Mark Mclean and 

Christopher Krieger focus our attention 

on how these techniques might alter 

computing systems in “Rethinking 

neuromorphic computing: Why a new 

paradigm is needed.” 

In “How deep learning changed computer 

vision,” NSA researchers Bridget Kennedy 

and Brad Skaggs help us understand the 

particular mechanisms that made these 

techniques so ubiquitous. 

“Deep learning for scientific discovery,” 

by Pacific Northwest National Laboratories 

researchers Courtney Corley et al. 

present several topic areas in which 

modern representation learning is 

driving innovation. 

We finish this issue with an article 

noting some pitfalls in the use of machine 

learning, “Extremely rare phenomena 

and sawtooths in La Jolla,” by researchers 

at the Institute for Defense Analyses’ 

Center for Communications Research in 



Contents

Vol. 22 | No. 1 | 2018

The Next Wave is published to disseminate technical 

advancements and research activities in telecommunications 

and information technologies. Mentions of company names 

or commercial products do not imply endorsement by the 

US Government. The views and opinions expressed herein 

are those of the authors and do not necessarily reflect 

those of the NSA/CSS. 

This publication is available online at http://www.

nsa.gov/thenextwave. For more information, 

please contact us at TNW@tycho.ncsc.mil.

2 Some Basic Ideas and Vocabulary in 

Machine Learning 
Steven Knox

7 Machine Learning for Autonomous 

Cyber Defense 
Ahmad Ridley

15 Rethinking Neuromorphic 

Computation: Why a New Paradigm 

is Needed 
Mark R. McLean 

Christopher D. Krieger

23 How Deep Learning Changed 

Computer Vision 
Bridget Kennedy 

Brad Skaggs

27 Deep Learning for Scientific Discovery 
Courtney Corley 

Nathan Hodas, et al.

32 Extremely Rare Phenomena and 

Sawtooths in La Jolla 
Anthony Gamst 

Skip Garibaldi

38 AT A GLANCE: Machine Learning 

Programs Across the Government 

41 FROM LAB TO MARKET: AlgorithmHub 

Provides Robust Environment for NSA 

Machine Learning Research

La Jolla, California, Anthony Gamst and 

Skip Garibaldi.

Our intent with this special issue 

is to enhance your understanding of 

this important field and to present the 

richness of our research from a variety 

of perspectives. We hope you enjoy our 

perspective on the topic.
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b y  S t e v e n  K n o x

1. We avoid circular reasoning here by assuming the reader is not a machine.

Some basic 
ideas and 
vocabulary 
in machine 
learning

W
hat is Machine Learning? Machine learning 

(ML) is a difficult, perhaps impossible, term 

to define without controversy. It is tempting 

to avoid defining it explicitly and just let you, the read-

er, learn a definition inductively by reading, among 

other sources, this issue of The Next Wave.1 You could 

then join the rest of us in any number of arguments 

about what ML is and what ML is not.

For the present purpose, a machine is an artificial 

device (hardware, software, or an abstraction) which 

takes in an input and produces an output. Phrased 

another way, a machine takes in a stimulus and pro-

duces a response. Machine learning (ML) refers to a 

process whereby the relationship between input and 

output (or stimulus and response) changes as a result 

of experience. This experience may come in the form 

of a set of stimuli paired with corresponding desired 

responses, or in the form of sequential stimuli accom-

panied by rewards or punishments corresponding to 

the machine’s responses. This definition, while perhaps 

not entirely satisfying, has at least the advantages of 

being very general and being in accordance with early 

references [1, 2].

In this introduction we shall think of a machine as 

a mathematical abstraction, that is, simply as a func-

tion which maps inputs to outputs. This function may 

be deterministic, or it may be in some respect ran-

dom (i.e., two identical inputs may produce different 

[Photo credit: Besjunior/iStock/Thinkstock]
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outputs). Working at this level of abstraction enables 

us to use precise mathematical language, to apply use-

ful, thought-clarifying ideas from probability, statis-

tics, and decision theory, and most importantly, to 

address with generality what is common across a wide 

variety of applications.2 In keeping with this abstrac-

tion, the goal of ML is to solve

The Problem of Learning. There are a known set 

X and an unknown function f on X. Given data, 

construct a good approximation f of f. This is 

called learning f.

There is a lot packed into this simple statement. 

Unpacking it will introduce some of the key ideas and 

vocabulary used in ML.

Key Ideas. The domain of the unknown function 

f, the set X, is called feature space. An element X   X 

is called a feature vector (or an input) and the coor-

dinates of X are called features. Individual features 

may take values in a continuum, a discrete, ordered 

set, or a discrete, unordered set. For example, an 

email spam filter might consider features such as the 

sender’s internet protocol (IP) address (an element 

of a finite set), the latitude and longitude associated 

with that IP address by an online geolocation service 

(a pair of real numbers), and the sender’s domain 

name (a text string). Features may arise naturally as 

the output of sensors (for example, weight, tempera-

ture, or chemical composition of a physical object) 

or they may be thoughtfully engineered from un-

structured data (for example, the proportion of words 

in a document which are associated with the topic 

“machine learning”).

The range of the unknown function f, the set 

f(X), is usually either a finite, unordered set or it is a 

continuum. In the first case, learning f is called clas-

sification and an element Y   f(X) is called a class. In 

the second case, learning f is called regression and an 

element Y   f(X) is called a response. The bifurcation 

of terminology based on the range of f reflects dif-

ferent historical origins of techniques for solving the 

problem of learning in these two cases.

Terminology also bifurcates based on the nature of 

the observed data, in particular, whether or not the 

range of f is observed directly. If the observed data 

have the form of matched stimulus-response pairs,

(x
1
, y

1
), . . . , (x

n
, y

n
)   X × f(X),

then the data are called marked data and learning f is 

called supervised learning (“supervised” because we 

observe inputs x
1
, . . . , x

n
 to the unknown function f 

and also the corresponding, perhaps noisy, outputs 

y
1
, . . . , y

n
 of f). If the observed data have the form

x
1
, . . . , x

n
   X,

then the data are called unmarked data and learning 

f is called unsupervised learning. While unsupervised 

learning may, on its face, sound absurd (we are asked 

to learn an unknown function based only on what 

is put into it), two cases have great utility: when the 

range of f is discrete, in which case unsupervised 

learning of f is clustering; and when x
1
, . . . , x

n
 are a 

random sample from a probability distribution with 

density function f, in which case unsupervised learn-

ing of f is density estimation. A situation in which both 

marked and unmarked data are available is called 

semi-supervised learning.

We generally consider data to be random draws 

(X, Y) from some unknown joint probability distri-

bution3 P(X, Y) on X × f(X). This is true even if the 

outputs of f are unobserved, in which case we can 

think of the unobserved Y ’s as latent variables. This is 

not to say that we believe the data generation process 

is intrinsically random—rather, we are introducing 

probability P(X, Y) as a useful descriptive language for 

a process we do not fully understand.

An approximation f of f could be considered “good” 

if, on average, the negative real-world consequences 

of using f in place of f are tolerable. In contrast, an 

approximation f of f could be considered “bad” if the 

negative real-world consequences are intolerable, 

either through the accumulation of many small er-

rors or the rare occurrence of a disastrous error. The 

consequences of errors are formalized and quantified 

2. Of course, an ML solution for any given application must be realized in actual hardware and software, or the whole exercise is point-

less. It is hard to overstress the importance of good hardware and software.

3. The joint distribution P(X, Y) can be factored into the conditional distribution of Y given X, P(Y | X), times the marginal distribution 

of X, P(X), which is the distribution of X once Y has been “averaged away”. That is, P(X, Y) = P(Y | X)P(X). It can also be factored the 

other way, P(X, Y) = P(X | Y )P(Y). Both factorizations are useful and inform the design of ML algorithms.



4

Some basic ideas and vocabulary in machine learning

by a loss function, L(y, f(x)). At a point x in feature 

space X , L(y, f(x)) compares the true class or re-

sponse y = f(x) to the approximation f(x) and assigns 

a non-negative real number to the cost or penalty 

incurred by using f(x) in place of y. Commonly 

used loss functions in regression are squared-error 

loss, where L(y, f(x)) = (y − f(x))2, and absolute-error 

loss, where L(y, f(x)) = |y − f(x)|. A commonly used4 

loss function in classification is zero-one loss, where 

L(y, f(x)) = 0 if y = f(x) and L(y, f(x)) = 1 if y ≠ f(x). In 

classification with C classes; that is, when the range 

f(X) can be identified with the set of labels {1, . . . , C}, 

an arbitrary loss function can be specified by the cells 

of a C × C loss matrix L. The loss matrix usually has 

all-zero diagonal elements and positive off-diagonal 

elements, where L(c, d) is the loss incurred for predict-

ing class d when the true class is c for all 1 ≤ c, d ≤ C 

(so correct classification incurs no loss, and misclas-

sification incurs positive loss).5

Some techniques, such as neural networks, solve a 

C-class classification problem by estimating a con-

ditional probability distribution on classes 1, . . . , C, 

given a feature vector X,

( (Y = 1 | X) , . . . , (Y = C | X)).

In these techniques, which essentially translate a 

classification problem into a regression problem, 

an observed class label y is identified with a degen-

erate probability distribution on the set of classes 

{1, . . . , C}. Called a one-hot encoding of y, this is a 

C-long vector which has the value 1 in position y 

and 0 elsewhere. A loss function commonly used to 

compare an estimated probability distribution to a 

one-hot encoding of a class label is cross-entropy loss, 

L(y, ( (Y=1 | X), . . . , (Y=C | X))) = − log (Y=y | X), 

although squared-error loss is also used sometimes in 

this setting.

The choice of loss function is subjective and prob-

lem dependent. Indeed, it is the single most important 

control we have over the behavior of ML algorithms6 

because it allows us to encode into the algorithm our 

values with respect to the real-world application: spe-

cifically, by stating the cost of each possible type of er-

ror the algorithm could make. That said, loss functions 

are often chosen for convenience and computational 

tractability.7 When approximations f are obtained by 

fitting statistical models, squared-error loss and cross-

entropy loss can be derived in certain situations from 

the (subjective) principle that the best approximation 

f in a class of models is one which assigns maximal 

likelihood to the observed data.

To rephrase, then, an approximation f of f could be 

considered “good” if its use incurs small loss on aver-

age as it is applied to data drawn from the joint prob-

ability distribution P(X, Y). The average loss incurred 

by approximation f is its risk. There are at least three 

different types of risk, depending on what is consid-

ered fixed and what can vary in future applications of 

f. The risk of approximation f at point x   X is the ex-

pected loss incurred by using f(x) in place of Y for new 

data (X, Y) such that X = x, E
Y | X=x

[L(Y, f(x))].8 The 

response Y is treated as random, with the conditional 

distribution P(Y | X = x), while the input X = x and 

trained classifier f are treated as fixed. Choosing an 

approximation f to minimize the risk of f at a specific 

point (or finite set of points) in X is called transductive 

learning. It is of use when the entire set of points at 

which predictions are to be made is known at the time 

that f is constructed. The risk of approximation f is the 

expected loss incurred by using f(X) in place of Y for 

new data (X, Y), E
X,Y 

[L(Y, f(X))]. Data point (X, Y) 

is treated as random while the trained classifier f is 

treated as fixed. Choosing an approximation f to mini-

mize the risk of f is done when the points at which f 
is to make a prediction are not known at the time that 

f is constructed, but will be drawn from the marginal 

distribution P(X) on X at some future time. This is the 

typical situation in applied ML.

4. Zero-one loss is commonly used in textbook examples. It is rarely, if ever, appropriate in applications.

5. In the spam-filtering example, “loss” is measured in inconvenience to the email recipient. If we define the inconvenience of reading a 

spam email as one unit of loss, then the loss incurred by labeling a spam email as not spam is L(spam, not spam) = 1. Relative to this, dif-

ferent recipients may have different opinions about the inconvenience of having a non-spam email labeled as spam. That is, L(not spam, 

spam) = c, where each recipient has his or her own value of c > 0: some users might have c = 10, some c = 20, and perhaps some might 

even have c < 1.

6. In this statement, we are ignoring for the moment the critically important issue of optimization required for training most 

ML algorithms. Another control available in some, but not all, ML methods, is the marginal (or prior) distribution on classes, 

(P(Y = 1), . . . , P(Y = C)).
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An approximation method is a function which maps 

training data sets to approximations of f. It maps a set 

of n observed data S = ((x
1
, y

1
), . . . , (x

n
, y

n
))   (X × f 

(X))n to a function f
S
 , where f

S
 is a function that 

maps X → f(X). Actually, approximations f
S
 lie in a 

method-specific proper subset of the set of func-

tions X → f(X), about which more will be said later. 

The probability distribution on X × f(X) extends to 

training data sets S and thence to approximations f
S
 , 

so approximations f
S
 are random variables. The risk of 

an approximation method (trained on data sets of size 

n) is the expected loss incurred by drawing a random 

training set S of size n, constructing an approximation 

f
S
 from it, and using f

S
(X) in place of Y for new data 

(X, Y), E
S,X,Y 

[L(Y, f
S
(X))]. Choosing an approxima-

tion method S → f
S
 to minimize the risk of the ap-

proximation method is done by algorithm designers, 

whose goal is to produce approximation methods that 

are useful in a wide variety of as-yet-unseen applied 

problems. Note that there is some tension between the 

goal of the algorithm designer, who wants to obtain 

low-risk approximations f
S
 from most data sets S, and 

the goal of the applied ML practitioner, who wants to 

obtain a low-risk approximation f from the single data 

set he or she has to work with in a given application.

Risk estimation, model training, and 

model selection

Since the joint probability distribution P(X, Y) is un-

known—it is, after all, simply a name for an unknown 

process which generates the data we observe—the ac-

tual risk of approximation f, in any of the three senses 

above, cannot be computed. Solving an ML problem 

in practice means searching for an approximation f 
that is optimal according to a computable optimal-

ity criterion, which is an approximation of, or sur-

rogate for, the true risk. The risk of f can be estimated 

in multiple ways, each of which has advantages and 

disadvantages. There is the training estimate of risk, 

, where (x
1
, y

1
), . . . , (x

n
, y

n
) are the 

data used to produce approximation f; there is the vali-

dation (or test) estimate of risk,  , 

where (x
1
, y

1
), . . . , (x

n
 , y

n
) are hold-out data which 

are not used to produce approximation f; and 

there is the k-fold cross-validation estimate of risk, f

, where S
1
  · · ·  S

k

is a partition of the set {(x
1
, y

1
), . . . , (x

n
, y

n
)} into k 

subsets and approximation f
k
 is produced using all of 

the data except those in S
k
, which is treated as hold-

out data for f
k
. In addition to computable estimates 

of risk, other computable optimality criteria include 

surrogates derived from asymptotic behavior as n → ∞, 

such as Akaike’s Information Criterion [3], and com-

putable upper bounds for the true risk.

Given a computable optimality criterion, the practi-

cal problem of finding an approximation f which is 

exactly or approximately optimal with respect to that 

criterion must be solved. Each concrete method for 

solving the problem of learning specifies (explicitly or 

implicitly) a set F of functions which map X → f(X) 

and provides a method for searching the set F for 

an optimal member. For example, in classical linear 

regression, X = Rm for some m ≥ 1 and the set F is the 

set of all affine functions Rm → R; that is, all functions 

of the form f (x
1
, . . . , x

m
) = 

0
 + 

1
x

1
 + · · · + 

m
x

m
. 

Using squared-error loss and using the training 

estimate of risk, the computable optimality criterion 

is (y
i
 − 

0
 − 

1
x

i,1 
− · · · − 

m
x

i,m
)2. Finding the 

optimal approximation f  F , which is equivalent to 

finding optimal values of the parameters 
0
, . . . , β

m
, 

can be done approximately by using an iterative 

gradient descent method (the optimal f actually has 

a closed-form solution in this case, but closed-form 

solutions are not typical in ML).

Specification of a ML method, and hence specifying 

the set of functions F to be searched, is called model 

7. Many ML methods require solving optimization problems through iterative numerical procedures because no closed-form solutions are 

known. It has been found empirically that some loss functions lead to easier optimization problems than others, and that sometimes chang-

ing a loss function to make an optimization problem easier, say by replacing cross-entropy loss with squared-error loss in a neural network, 

results in a better solution, even in terms of the original loss function.

8. Recall that the expected value is an integral or sum with respect to the appropriate probability distribution. If Y is real-valued (re-

gression), 

p g p

, while if Y takes values in the discrete set {1, . . . , C} (classification), g

. 
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selection. Searching a set F for an approximately opti-

mal member is called training a model. If the functions 

in F are all described by a finite number of parameters 

which does not depend on the number of data, n, then 

the method is called parametric, and otherwise it is 

called nonparametric. An important concern in model 

selection is to specify a set of functions F such that 

the optimal member f is sufficiently well adapted to 

the training data (i.e., it is not underfit to the data) but 

at the same time is not too well adapted, essentially 

memorizing the correct outputs to the given inputs 

but unable to generalize (i.e., not overfit to the data). 

Avoidance of overfitting can be done by regularization, 

which essentially means modifying the loss function 

to penalize model complexity in addition to penalizing 

model inaccuracy.

Machine learning and statistics

From the way it has been presented in this intro-

duction, ML appears very statistical. One might ask 

whether there is, in fact, any meaningful difference be-

tween ML and statistics. An answer to this is that there 

is considerable overlap in methodology (indeed, many 

ML techniques are based upon statistical models), 

but the applied focus tends to be different: Statistics 
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is more often about producing human insight from 

data about an incompletely understood process (the 

unknown function f), while ML is more often about 

producing an automatic means of decision-making 

which, for a variety of reasons,9 might be preferred to 

human decision making [4]. On some level, debat-

ing whether a particular model or method is statistics 

or ML is like debating whether a sledgehammer is a 

construction tool or a demolition tool—the answer 

depends on what one hits with it, and why. 
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Imagine networks where zero day cannot happen to anybody, where 

zero day does not guarantee a hacker’s success, where defenders work 

together with guardian machines to keep networks safe. Imagine getting 

a text message from the system that protects your business, letting you 

know it just learned about a new flaw in your document reader and 

synthesized a new patch all on its own.

Mike Walker, Defense Advanced Research Projects Agency (DARPA) Program Manager, 
Remarks at opening of the DARPA Grand Cyber Challenge, August 4, 2016

b y  A h m a d  R i d l e y 

T
he number and impact of cyberattacks continue to increase every year. The NSA 

Research Directorate aims to build an autonomous cyber defense system that 

will make enterprise networks, and their associated missions and services, more 

resilient to cyberattacks. Such a system should choose appropriate responses to help 

these networks achieve their mission goals and simultaneously withstand, anticipate, 

recover, and/or evolve in the presence of cyberattacks. Through automation, the sys-

tem should make decisions and implement responses in real time and at network scale. 

Through adaptation, the system should also learn to reason about the best response 

based on the dynamics of both constantly evolving cyberattacks and network usage 

and configurations. 

In this article, we present our research methodology and investigate a branch of machine 

learning (ML) called reinforcement learning (RL), to construct an autonomous cyber-

defense system that will control and defend an enterprise network. 

he number and impact of cyberattacks continue to increase every year. The NSA 

Research Directorate aims to build an autonomous cyber defense system that 

will make enterprise networks, and their associated missions and services, more

resilient to cyberattacks. Such a system should choose appropriate responses to help 

these networks achieve their mission goals and simultaneously withstand, anticipate, 

recover, and/or evolve in the presence of cyberattacks. Through automation, the sys-

tem should make decisions and implement responses in real time and at network scale. 

Through adaptation, the system should also learn to reason about the best response 

based on the dynamics of both constantly evolving cyberattacks and network usage 

and configurations. 

In this article, we present our research methodology and investigate a branch of machine 

learning (ML) called reinforcement learning (RL), to construct an autonomous cyber-

defense system that will control and defend an enterprise network. 

Machine learning 
for autonomous 
cyber defense

[Photo credit: ChakisAtelier/iStock/Thinkstock]
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Cyber-resilience research methodology

We seek to change the enterprise network defense 

paradigm by integrating autonomous (i.e., automated 

and adaptive) cyber defense within the defensive capa-

bilities of large and complex mission network systems. 

We define cyber resilience as the ability of missions and 

services to maintain a certain level of performance de-

spite the presence of sophisticated cyber adversaries in 

the underlying enterprise network [1]. Cyber-defense 

strategies that engage potential adversaries earlier in 

the cyber kill chain are fundamental to cyber resil-

ience. The cyber kill chain is a model of the various 

stages of a cyberattack, listed in increasing order of 

severity for the defender. Early adversary engagement 

allows the defender to increase detection confidence 

and disambiguate malicious from nonmalicious ac-

tors. Ultimately, we must develop a scientific method 

to measure cyber-resiliency and understand the effects 

of cyber responses on those measurements. Such de-

velopment is critical to the evolution of our research. 

Cyber-resiliency research presents a set of chal-

lenges, detailed in table 1 below, including:

TABLE 1. Cyber-Resiliency Challenges: Fundamental assumptions, principles, and hard problems

Fundamental Assumption Guiding Principle Hard Problem

Adversary can always get inside 

the system but cannot hide from 

all vantage points

Utilize diverse sensors from across the en-

vironment to form a holistic and contextual 

understanding of adversary activities

Dynamic information collection and control 

of diverse sensors

Real-time fusion and contextualization 

of events from diverse and disparate 

data sources

Humans cannot quickly identify 

and react to adversarial behavior

Automated reasoning and adaptive response 

mechanisms are needed to mitigate damage 

from attacks at adversarial speed and 

enterprise scale

Representing and reasoning over system 

state and response effects on systems 

and adversaries

Apply automated responses to increase 

certainty and situational understanding

Automated reasoning and response in the 

face of uncertain and missing data

Developing a common language for 

automated orchestration of responses

Cyber defenders have 

asymmetric disadvantage

Defensive deception and adaptive response 

can improve the asymmetric imbalance

Determining how best to use deception—

where, when, and what kind

Create metrics and experiments to 

evaluate the effectiveness and impact on 

attacker behavior based on principles from 

human science

Autonomous systems are 

still in research phase across 

many disciplines

Adaptive cyber-defense systems must 

allow for operation with varied levels of 

human interaction

Establishing human trust in automated 

cyber systems

Developing secure design methodology for 

adaptive cyber-defense systems

1.    Detecting the presence and movement of a so-

phisticated cyber attacker in a network, 

2.    Automating the speed at which human analysts 

can react to a large volume of cyber alerts,

3.    Mitigating the imbalance in workload between 

defender and attacker, and

4.    Allowing for the fact that autonomous sys-

tems are still in the research phase across 

many disciplines. 

Autonomous cyber defense 

Our research focuses on reasoning and learning 

methods to enable automated and self-adaptive deci-

sions and responses. A cyber-defense system based 

on this research is autonomous, which will allow it to 

effectively improve the cyber resilience of a mission or 

service. Once the system receives data, analytic results, 

and state representation of the network, its decision 

engine must reason over the current state knowledge, 

attacker tactics, techniques, and procedures (TTPs), 

potential responses, and desired state. The system will 

determine a response strategy to best achieve the goals 
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Orchestration

FIGURE 1. Monitoring feedback loop: Sensors collect observ-

able data, data are analyzed to gain insight, system state 

is formed, the decision is made about optimal response to 

mitigate attacks, and a response is implemented. Sensors collect 

more information and next state is formed, providing feedback 

to reasoning process about impact on mission, service, or goal.

of the mission or service, which rely on the underly-

ing enterprise network. This reasoning must account 

for incomplete and untrustworthy data from host and 

network sensors. To make sequential decisions in the 

presence of this uncertainty, the system should receive 

full-loop feedback about its decisions and responses 

by selecting and taking responses, observing the ef-

fects, and learning from these observations to improve 

performance over time. 

To maximize the benefits of full-loop reasoning and 

response, sensors collect observable data, such as host 

logins or network connections between machines. 

The data is analyzed to extract key system features and 

conditions, such as unexpected internet connections 

or an unusual number of failed authentications. These 

features and conditions are combined to create a sys-

tem state. Decisions are made based on the quality of 

this state, such as the frequency or severity of unwant-

ed conditions, and responses are employed to optimize 

the quality of state subject to the cybersecurity and/

or mission goals. Finally, by collecting new, observ-

able data, the sensors provide feedback to the reasoner 

about the effectiveness of its decisions and responses. 

If the new state, formed from the newly collected data, 

is better than the old state, the reasoner learns that the 

previous response was effective in moving the system 

closer towards achieving the cybersecurity and, ulti-

mately, the mission goal. See figure 1.

Architecting a system to do all of the above is an 

enormous research challenge. We divide the work 

across several government laboratories, academic 

partners, and other government organizations inside 

and outside of NSA to create the foundational re-

search, practical techniques, capabilities, and experi-

ments to address the challenge. Our architecture must 

unify the results of these supporting research efforts 

into a single functional system to perform full-loop, 

autonomous reasoning and response. At the same 

time, this system must be initially designed with solid 

security principles, minimizing the chances that it 

can be exploited or subverted by an attacker, espe-

cially one employing adversarial machine learning 

(ML) methods.

Reinforcement learning: Overview

Reinforcement learning (RL) is one of the subfields of 

ML. It differs from other ML fields, such as supervised 

and unsupervised learning, because it involves learn-

ing how to map situations to actions in order to maxi-

mize a numerical reward signal [2]. RL is founded on 

the idea that we learn by interacting with our environ-

ment, which is a foundational idea underlying nearly 

all theories of learning and intelligence [2]. Thus, an 

RL learner, or agent, discovers on its own the optimal 

actions to achieve its goal based on immediate reward 

signals from the environment. In fact, actions taken in 

one state of the system may affect not only immediate 

rewards, but also all subsequent rewards. Thus, trial-

and-error action search and delayed reward are two of 

the most important distinguishing features of RL [2]. 

Another interesting feature is the trade-off between 

exploration and exploitation [2]. An RL agent must 

exploit situations it has already learned from experi-

ence that produce rewards, but also explore new situa-

tions for possibly better rewards (see figure 2). 

Beyond the agent and environment, an RL system 

features four main elements: policy, reward function, 

value function, and optionally, a model of the envi-

ronment. A policy is a mapping from observed states 

of the environment to actions to take when in those 

states [2]. A reward function defines the goal of the 

RL problem. It maps each state, or state-action pair, 
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to a single number (i.e., a reward) indicating the im-

mediate, intrinsic quality of that state [2]. By contrast, 

the value function specifies the long-run goodness 

of a given state. The value of a state is the cumulative 

amount of reward an agent can expect to receive over 

the future, starting from that state [2]. Finally, a model 

basically predicts the next state and reward from 

the given state and action. While in some dynamic, 

complex environments, such as computer networks, a 

sufficient model may not exist, RL can still be effective 

in solving problems in those “model-free” situations.

Reinforcement learning for 

autonomous cyber defense: 

Experiment

Our goal is to train a single RL agent to defend a 

sample enterprise network of 18 nodes (see figure 3) 

from being compromised by a cyber adversary. Each 

node has the same level of importance to a given mis-

sion and the same types of vulnerabilities. Achieving 

our goal in this simple scenario will provide proof-

of-concept that RL can be used to develop an autono-

mous cyber-defense system. Recent advances in ML 

and RL have not focused on reasoning and response 

for autonomous cyber defense. Most current advances 

aim to improve detection of cyberattacks instead of 

reasoning about the best response to a cyberattack.

Thus, we must transform the autonomous network 

defense scenario into a RL problem. We make the 

standard assumption that the RL agent learns using a 

Markov decision process (MDP), which models the 

random transitions between pairs of states. In an MDP, 

M is formally characterized as a 5-tuple, so M= (S, A, R, 

P, γ), where [3]:

1.     S is a set of states, with individual states denoted 

with lowercase s;

2.     A is a set of actions, with individual actions 

denoted with lowercase a;

3.     R is a reward function, written as R(s, a, s’) to 

indicate the reward gained from being in state s, 

taking action a, and moving directly to state s’;

4.     P is a transition probability function, written 

as P(s’|s; a) to represent the probability of be-

ing in state s’ after starting in state s and taking 

action a;

5.     γ is the discount factor, which represents how 

much future rewards are valued, γ has a value in 

the interval [0,1]. If γ is close to 1, then future 

rewards are highly valued. If γ is close to zero, 

then future rewards are not valued at all.

The MDP formulation allows us to find a high-

quality policy function : S  A. A policy  is a 

function that, for each state, identifies a corresponding 

action to perform. In short, a policy,  is a probabil-

ity distribution function that maps states to actions. 

The optimal policy  is one that, if followed, maxi-

mizes the expected sum of discounted rewards [3]. To 

reduce the initial scenario complexity, we assume all 

nodes are equal with the same level of importance to 

the mission.

The most common class of RL algorithms is 

based on Q-Learning. These algorithms utilize state-

action values denoted as Q(s, a), which represent the 

FIGURE 3. Enterprise network configuration with 18 nodes [4].
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FIGURE 2. Given a state, the agent chooses an action that tran-

sitions the system to a new state and generates a reward from 

the environment. By accumulating these rewards over time, an 

agent learns the best actions for a given state or situation [2].
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expected sum of discounted rewards when the agent 

starts at state s, takes action a, and from thereafter, 

chooses actions optimally. Once Q(s,a) is known, the 

optimal action for each state is the action that maxi-

mizes Q(s,a). By choosing the optimal action at each 

state to reach a given goal, the RL agent forms an 

optimal policy  *.

The RL agent must learn the maximum Q(s, a), or 

Q*(s, a), values. In standard Q-Learning, this is ac-

complished by first initializing all of the Q(s, a) values 

at random. Then, the agent explores the state space, 

according to some policy. The most common of these 

is a greedy-epsilon policy, where epsilon, represents 

some small probability that the agent will choose a 

random action at a given state, instead of the best, 

or greedy, action. This provides some guarantee that 

the agent, during its training phase, explores a large 

enough number of states such that its learned policy 

works sufficiently well during the testing phase on new 

states. This learning generalization, or transfer learn-

ing, problem is much studied in all fields of ML. So, 

at each time step the agent will take a random action 

with probability , or pick the current best action for 

the state with probability 1 - . The “current best ac-

tion” is only “best” with respect to the current Q(s, a) 

values; later iterations of the algorithm can cause Q(s, 

a) value changes that would alter the best action when 

the same state s is encountered in the future [4].

Also, at each time step, the agent will receive a sam-

ple “state, action, reward, next state”-tuple, namely (s, 

a, r, s’) from its environment. These samples are used 

to update the Q(s, a) values using a moving average 

update [4]. Eventually, the updated Q(s, a) values will 

converge to the optimal Q*(s, a) values, under some 

theoretical assumptions [3].

For our experiment, we assume that a given 

node can take on the following assignments 

or conditions [4]:

 Assignment 0. This represents being safe and 

non-isolated. The RL agent receives positive 

rewards for this node type.

 Assignment 1. This represents being compro-

mised by an attacker and nonisolated. Since the 

node is nonisolated, the attacker could use it to 

spread to adjacent nodes.

 Assignment 2. This represents being compro-

mised and isolated. The node does not represent 

a further threat to adjacent nodes.

Thus, our state of the network, and thus MDP, 

consists of the current node assignment of all 18 

nodes simultaneously. Thus, the size of our state space 

is 3n where n = 18. This implies that our state space 

is extremely large, with 318 = 387,420,489 possible 

states, even for a (relatively) small enterprise network 

size. In such large state space cases, the state-action 

value function, Q(s, a) will be approximated, using 

a linear combination of a set of network features, 

instead of directly computed to enhance the speed of 

the Q-Learning algorithm. We used features such as 

the number of 0, 1, or 2 nodes, longest path of 0, 1, or 

2 nodes, and maximum degree of any 0 node in our 

example [4]. Choosing the most important features 

for a state-action value function, or so-called feature 

extraction, is another challenging problem in all fields 

of ML. These features can be computed based on the 

sensor data collected and analyzed in the feedback 

loop described earlier.

We trained our RL agent using the following 

three actions:

1.    DO NOTHING: At any given time step, the agent 

can choose to do nothing. Although there is no 

immediate cost to the agent for this action, the 

action can become costly if the adversary has 

compromised a node and spreads to neighbor-

ing nodes before the agent takes action to fix a 

compromised node.

2.    ISOLATE: The agent disconnects a compromised 

node from the network. This action incurs an 

immediate cost, and is more expensive than 

PATCH. It also costs the agent another time step 

to reconnect the node.

3.    PATCH: The agent fixes a compromised node, 

whether or not it is isolated. If the node was 

isolated, then this action returns the node to safe 

status. If not, the compromise has some chance 

of spreading before the agent completes the fix. 

This action is less expensive than ISOLATE, but 

could ultimately be more costly depending on 

amount of attacker spreading.

Ideally, our agent should use RL to learn the cost-

benefit trade-off between choosing the ISOLATE and 

PATCH actions. Instead of using a predefined set of 

static decision rules to determine the correct action, 

the agent learns the best actions by trial-and-error 

based on the rewards received from the environment. 

In our example, the reward is the difference between 
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the number of uncompromised nodes and the cost 

of the current action. In other words, R(s, a, s’) = 

N(s) – C(s) where N(s) is the number of uncompro-

mised nodes in the current state s and C(s) is the cost 

of the action performed in state s. We used the nu-

merical values of 10, 5, and 0 for the cost of the isolate, 

patch, and do nothing actions, respectively [4].

The state transitions in our MDP are stochastic, 

because there is no certainty about which node the 

attacker will compromise next. Thus, when the agent 

chooses an action, the next state is not known with 

certainty. Our MDP is effectively modeling a two-play-

er game. At each turn, the adversary has two options 

to influence the network state:

1.    Spreading: For each unsafe (i.e., compromised) 

and non-isolated node, the attacker has some 

probability p of also compromising an adjacent 

node that is safe and independent of other nodes. 

For instance, suppose p = 0.25 and the network 

contains only three connected nodes, where 

only one is unsafe. Then the attacker has a 0.252 

chance of compromising the other two nodes, a 

0.375 chance of compromising exactly one of the 

adjacent nodes, and a 0.752 chance that none of 

the other nodes are compromised [4].

2.    Random Intrusion: For each node, the attacker 

has some probability of randomly compromising 

FIGURE 4. The performance of an RL agent defending the network autonomously, measured in terms of the average number of 

safe nodes out of 18. The left plot shows training with the annealed greedy- epsilon policy; the right plot shows testing with fixed 

 = 0.05. We use 10k and 1k training and testing episodes, respectively. The black curve is a smoothed version of the blue curve [4].

it, independent of the other nodes. For example, 

if the probability is 0.1 and the network state has 

three nodes that are all safe, then there is a 0.13 

chance that the attacker manages to get in all the 

nodes at once. This action is applied during each 

attacker’s turn after it has attempted to spread as 

described previously [4].

These two actions come with different probabili-

ties. In general, we set the probability of the intrusion 

spreading to a node adjacent to a compromised one to 

be much higher than the probability of a cyberattack, 

i.e., intrusion, compromising a random node. With 

the network of 18 nodes, a good starting value is 0.15 

for the intrusion “spreading” probability, and 0.01 for 

the probability of random compromise. These prob-

abilities will have to be modified appropriately as the 

number of network states changes, since we assume 

that the RL agent can only act on one node per turn. 

If the spreading probability is too high, the RL agent 

effectively cannot protect the network even if it per-

formed the optimal actions [4]. 

Reinforcement learning for cyber 

defense: Initial results

To evaluate our agent’s performance for a single 

episode of 100 turns, we compute the number of safe 

nodes (out of a total of 18) after each turn, and then 
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average those numbers across all turns. The average 

number of safe nodes is a performance metric that ac-

counts for the entire episode of 100 turns and should 

smooth out unlucky turns when the attacker’s “ran-

dom intrusion” compromises many more nodes than 

expected. In the RL literature, these episodes are also 

known as “rollouts” or “trials” [2]. See figure 4.

To evaluate the RL agent’s overall performance, we 

compute the whole sequence of average number of 

safe nodes for each test set episode. Note that because 

of the attacker’s intrusion ability, the odds of an agent 

scoring a perfect 18 for any one episode are exceed-

ingly remote. For instance, based on our chosen prob-

ability of compromise and probability of spreading 

values, the attacker has basically a zero probability, i.e., 

((0.9818)100 ~ 0, of never compromising any node dur-

ing every turn of one episode. Therefore, an agent has 

basically a zero probability of keeping all 18 nodes safe 

during every turn [4].

For our testing the performance of our RL agent, 

we used a standard value of  = 0.05. However, other 

choices of  may be better for our RL agent, and we 

would also like to find a suitable range of  values 

that reaches consistent testing performance. Figure 

5 shows our results, starting from the top left and 

FIGURE 5. Testing performance plots for various values of . All six subplots were generated using performance results computed 

across 1,000 total episodes [4].

moving clockwise, for  in the set {0.0; 0.05; 0.1; 0.2; 

0.4; 0.6} [4]. In figure 5, we recomputed the testing 

performance results for the same  = 0.05 value used 

in figure 4 as a sanity check. The  = 0.0 case means 

we never randomly choose actions. In other words, 

we only choose the best actions for the given state. 

We see that the three smaller  values result in simi-

lar performance. The quality of RL agent noticeably 

decreases with  = 0.2, and worsens, as expected, as 

 increases. The worst performance is obtained when 

 reaches 1, representing the agent always choosing a 

random action for a given state. Figure 5 displays the 

exact performance values that are best for our ex-

ample and indicates that  = 0.05 is reasonable for our 

greedy-epsilon policy [4]. 

We now attempt to achieve the best test perfor-

mance possible. Using the information learned from 

previous sections, we maintain the greedy-epsilon 

policies for training and testing and do not use weight 

normalization. We also run Q-Learning for 200,000 

trials, a 20-fold increase over our previous number 

of trials.

Our RL agent results are shown in figure 6 in terms 

of performance. The performance plots show that 

the agent has successfully learned how to control the 
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network to a large degree. The average value over all 

200,000 trials is 15.919, with a standard deviation 

of 0.650. Despite all the training trials, however, the 

basic experiment with 10,000 training trials actually 

performed better with a mean score of 16.265 (though 

with a higher standard deviation). The best perform-

ing version of the RL agent uses  = 0.0 (average value 

of 16.600), though we caution that this is likely be-

cause of the limited actions in this scenario. In a more 

complicated domain, such as Atari 2600 games, play-

ing random actions in practice might be necessary.

Conclusions

We demonstrated a nontrivial computer network 

defense scenario and trained an RL agent that success-

fully protects the network from a randomized adver-

sary. Moreover, our agent has to reason when selecting 

actions, because they are designed to have competing 

trade-offs between safety and cost. We presented an 

18 node scenario, using a plain graph where all nodes 

had equal value. As evidenced by the results over 

many testing episodes, the agent consistently keeps a 

significant number of nodes safe. However, the pri-

mary weakness of this scenario is that it assumes very 

simplistic models for the attacker and defender. The 

most obvious direction for future work is therefore to 

design more realistic cyber attacker-defender models.

FIGURE 6. The performance of the RL agent measured in terms of the number of safe nodes out of 18. The performance is similar to 

that presented in figure 4, except with more (i.e., 200k) training episodes [4].

Moreover, we showed that RL can be used to devel-

op an autonomous cyber defense system that improves 

the resilience of an enterprise network to cyberattacks. 

As noted, more research is required to show that RL 

can be effective in larger, more complicated enterprise 

network configurations, where nodes vary in type and 

potential vulnerabilities, and in environments with 

sophisticated attacker behavior. As an initial research 

study, though, the results are promising. 
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DEPT NAME

M
ore than 

80 years 

ago, Alan 

Turing developed a 

computational paradigm 

that enabled machines to 

perform operations humans are not 

adept at—fast, precise math. Today, highly 

optimized central processing units (CPUs) 

and graphics processing units (GPUs) can do 

trillions of precise mathematical operations 

per second. Now researchers are trying to 

use these processors in a different way—to 

do tasks that humans are good at. This field 

of research is called machine learning (ML) or 

artificial intelligence (AI), and their associated 

algorithms are providing these new capabilities. 

This article describes our search to identify 

extremely efficient hardware architectures that 

execute ML algorithms, and how it ended up 

leading our research in an unanticipated direction.

by  Mark  R .  McL e an  and  Chr is topher  D.  Kr ieger

Rethinking neuromorphic 
computation: Why a new 
paradigm is needed

[Photo credit: monsitj/iStock/Thinkstock]
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ML applications deviate from the traditional computer 

programming methods in that they learn from data. 

They learn so well, in fact, that they provide better 

solutions for some tasks than our smartest program-

mers. Face recognition, speech recognition, and even 

autonomous driving are just a few applications for 

which ML algorithms surpass human ability to di-

rectly program a better solution. As a result of the re-

markable capabilities ML provides, billions of dollars 

are being spent by industry to develop new or modify 

current processors to provide more efficient computa-

tion of ML algorithms. These ML-focused computa-

tional processors are more commonly referred to as 

neuromorphic processors (NMPs). Realizing the capa-

bility NMPs could provide to NSA, the Laboratory for 

Physical Sciences (LPS) launched the Neuromorphic 

Computation Research Program (NCRP). 

Evaluating neuromorphic processors

The primary goal for the NCRP is to explore novel 

NMP architectures that could provide revolutionary 

computational efficiency, which we define as being 

greater than two orders of magnitude improvement 

in classifications/watt. In pursuit of this goal, we have 

explored a large number of the current and proposed 

NMPs from nearly all the major processor vendors. 

These NMP designs use similar complimentary metal-

oxide semiconductor (CMOS) process technologies, 

so they rely on architectural design changes to provide 

a competitive advantage. 

One of the NMP architectures we evaluated was the 

Google tensor processing unit (TPU) [1]. The TPU is 

an application-specific hardware design that focuses 

on providing efficient inference for Google’s ML ser-

vices. Recently, NVIDIA compared the TPU and the 

NVIDIA P40 GPU to better evaluate the performance 

of both designs. Directly comparing these NMPs is 

difficult because the two products were designed for 

different purposes; the P40 was designed as a more 

general-purpose computational system than the TPU. 

Considering this, the inference comparison shows the 

TPU to be only 6.3 times more power efficient than 

the P40. While this efficiency gain is very respectable 

within our highly optimized computation domain, it is 

not close to our desired revolutionary efficiency gains. 

Moreover, it demonstrates that even with an en-

tirely new application-specific design, the TPU could 

not surpass a general-purpose GPU efficiency by a 

single order of magnitude (see figure 1). 

We also evaluated the IBM TrueNorth processor, 

which was developed under the Defense Advanced 

Research Projects Agency’s Systems of Neuromorphic 

Adaptive Plastic Scalable Electronics (SyNAPSE) 

program. This processor is unique because it simulates 

spiking neurons and is supposed to be very power 

efficient. In our evaluation, we compared a low-power 

GPU, the NVIDIA Jetson TX2, to TrueNorth and 

ran the same benchmarks as the IBM TrueNorth 

paper [2]. When all the power required to make a 

deployable system (e.g., random-access memory, 

complex programmable logic device) was taken into 

account, the TrueNorth processor was no better and 

sometimes even less efficient than the inexpensive 

NVIDIA Jetson TX2. 

We concluded that spiking networks, using current 

algorithms, were not likely to provide revolutionary ef-

ficiency. Additionally, we evaluated a number of future 

architectural designs from leading computer processor 

companies, and we expect them to provide steady but 

incremental improvements in efficiency. The evalua-

tion of this broad range of NMP designs indicates that 

evolutionary architectural changes will not provide a 

disruptive efficiency benefit. 

Evaluating memristors

As a result, we decided to explore nontraditional 

computing approaches. We spent three years conduct-

ing in-depth evaluations involving a radically different 

way to perform multiply and accumulate operations 

(MACCs) [3]. Since the MACC operation is a funda-

mental computation for a number of neural networks, 

the expectation was that an efficiently computed 

MACC operation might provide our desired improve-

ment. The research focused on the use of memristors 

connected in a crossbar, which is the focus of many re-

search groups [4]. Memristors were theorized by Leon 

Chua in 1971 [5] and arguably discovered by Hewlett 

Packard’s Stan Williams in 2009 [6]. Memristors are a 

two-terminal device that if given enough energy can 

increase or decrease their resistance; while at lower 

energies, they can be read without resistance change. 

Our interest in memristors was fueled by wanting 

to determine if they could replace the synaptic weights 

of a neural network. When applying low voltages, 
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FIGURE 1. Hyper-optimized processor space is constraining computational advancements. [Figure credit: Oliver Mitchell, Robot 

Rabbi blog, http://robotrabbi.com] 

memristors act like fixed resistors, and by leveraging 

Ohm’s law, a multiply operation can be performed. 

The accumulate operation would be performed by 

having all the memristors connect to a single metal 

line in a wired “OR” configuration. Combining these 

devices into high-density memristive crossbars would 

enable billions of MACC operations to be computed 

in parallel.

In the summer of 2016, our team conducted an 

analysis to test the benefits of memristor-based cross-

bar computation. We created a simulation program 

with integrated circuit emphasis (SPICE)-level netlist 

of a two-layer neural network that evaluated an 

MNIST-trained model; MNIST (Modified National 

Institute of Standards and Technology) is a simple and 

standard ML data set that has images of handwrit-

ten digits from 0 to 9 represented in a 32 by 32 array. 

For baseline comparison, we also designed a SPICE 

netlist for a CMOS adder-based neural network. Both 

netlists provided inference capability and used the 

same weights from offline training. After completing 

multiple SPICE simulations of both architectures, we 

found that using memristors for computation would 

provide approximately a four times improvement in 

compute efficiency (i.e., classifications/watt); unfortu-

nately, this was nowhere near our goal. Furthermore, 

the four times improvement was derived from the 

computational efficiency in isolation, but a compu-

tational system must also expend energy on input-

output communication (I/O). 

To compare the efficiency benefit that memristors 

provide at a system level, we calculated the energy 

required to transfer information to the memris-

tive crossbars. For our computation, we used one of 

the most efficient memories available (i.e., Micron’s 

Hybrid Memory Cube), which consumes only 10 

picojoules per bit. These calculations revealed that 

the system-level efficiency provided by memristors 

would result in only a 1% power savings. Evaluating 

the system-level efficiency highlighted the depen-

dency of I/O and also emphasized that it is the largest 

energy consumer. Putting this into perspective, in a 

presentation at the 2011 International Conference on 

Parallel Architectures and Compilation Techniques, 

Intel Fellow Shekhar Borkar showed that for the 

LINPACK benchmarks, processor I/O consumes two 

http://robotrabbi.com
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thirds of the system power, and compute consumed 

only one third [4]. The implication is that—even if 

computation energy could be reduced to nothing—the 

resulting system-level efficiency would be improved 

by only 33%. This revealed a hard constraint: To make 

a revolutionary impact on power efficiency, both I/O 

and compute power need to be orders of magnitude 

more efficient. 

We decided to step back and look at the facts. We 

had explored the broad domain of current and future 

NMP designs, and we did not find any that had the 

potential to meet our efficiency goals. Furthermore, 

current computation advances are also being con-

strained by a number of physics limitations, just 

one example is scaling current CMOS technologies. 

Transistors will likely not scale down much further, 

but even if they could, thermal density will limit the 

number that can be used. We also explored more 

novel computation using memristors and found they 

provide no substantial advantage. Additionally, we 

realized we couldn’t just focus our search on effi-

cient computation; our solution had to also include 

efficient I/O. 

While we were discouraged by our inability to find 

a solution, our evaluations provided further insight 

into defining what a solution would require. We 

are fairly confident that a solution can exist. Why? 

Because the human brain provides a tangible realiza-

tion of our goal. While examining the constraints that 

the solution would require major efficiency advance-

ments to both compute and I/O, we wondered if ML 

tasks could be accomplished using multiple orders 

of magnitude less compute and I/O operations. This 

would enable us to meet our efficiency goals. But 

was there an underlying principle that could provide 

this reduction?

Inspired by the brain: Computing 

on concepts

Our search for a solution led us to look at the one of 

the most useful ML algorithms, called a convolutional 

neural network (CNN). CNNs were developed by 

Yann LeCun [7], and variations of these networks have 

held the highest marks for accuracy on a number of 

1. See https://www.youtube.com/watch?v=AgkfIQ4IGaM, or just search for deep visualization toolkit.

standard ML data sets. An aspect of CNNs of par-

ticular interest is that they employ a deep hierarchy of 

computational layers. To understand the functional-

ity hierarchy provides, we leveraged research from 

Jason Yosinski at Cornell University [8]. Yosinski and 

his team developed a deep visualization toolkit that 

enables visualization of what the different layers in 

the hierarchy learn. There is a short video of this on 

YouTube1 showing that as information propagates 

through the hierarchy, each consecutively higher layer 

is learning a more abstract representation of the previ-

ous layer. For example, at the lower layers, the CNN 

is learning edges, the next layers are learning shapes 

and parts of objects, and by the fifth layer, individual 

neurons are representing abstract concepts like faces, 

dogs, and text.

If computations could be performed on these con-

cepts rather than all the bits of information that they 

represent, it would significantly reduce both compute 

and I/O. Our preliminary investigations indicated that 

computing on concepts could provide a mechanism to 

significantly increase computational efficiency, but we 

realized that it could require the development of a new 

information processing paradigm that is inspired by 

the brain.

As a society, we have been trying to understand 

how the brain works for centuries, yet there is no uni-

fied theory of how the brain processes information. 

We have amassed so much data about the brain that 

it can be interpreted to support contradictory ideas, 

making knowledge extraction difficult. As a result, we 

are bounding our investigation of the brain to improve 

our chances of success. Our focus is on understand-

ing the high-level information processing paradigm 

used by the brain. While this is certainly a lofty goal, it 

does attempt to remove the biological implementation 

details. We are emphasizing the functionality—how 

the brain transforms information—and attempting to 

leave behind the complexity of how it does it. While it 

is impossible to completely overlook implementation, 

staying as removed from it as possible will improve 

our ability to piece together this paradigm. This ap-

proach has enabled us to extract a number of prin-

ciples that we feel are essential elements of the brain’s 

information processing paradigm.

https://www.youtube.com/watch?v=AgkfIQ4IGaM
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Brain evolution

Before discussing these principles, it is important to 

discuss the mechanisms that guided the development 

of our brain. Let’s start by describing some of the 

mechanisms and constraints that led to the existence 

of our current human brain. The brain as an informa-

tion processing system has taken millions of years to 

evolve. Evolution progresses from the success of its 

previous generation; it can’t scrap a design and start 

from scratch like Google with their TPU. Evolution’s 

main optimization constraint is survival of the organ-

ism’s genetic code. Survival is the ability of the organ-

ism to get the required energy to keep its life processes 

functioning and enable procreation. This puts con-

siderable constraints on what the organism expends 

energy on. 

Evolution, moreover, is not directed and is kept 

in check by our physical environment. For example, 

dinosaurs emerged by evolution placing a priority 

on size and strength and not on intellect. When the 

Earth’s environment changed rapidly, the dinosaurs 

didn’t have enough intelligence to adapt to the situa-

tion, and a large percentage of them died. This ex-

emplifies the interaction between evolution and the 

environment; the environment can scrap bad designs. 

When this rapid environmental change occurred, 

organisms that could adapt survived and procreated, 

and this is how evolution and the environment started 

to favor organisms with more intelligence.

However, evolution is constantly balancing the re-

quired intelligence of an organism against the energy 

it consumes. Additionally, there is no evolutionary 

motivation to improve intellect beyond the organism’s 

survival. It is the competition between other animals 

that continued to push intellectual improvement. Even 

with this competition, evolution is slow and incremen-

tal; reusing features that work and constantly balanc-

ing complexity with the energy it requires. This is the 

optimization landscape that our brain evolved under, 

and it provides an essential foundation for unraveling 

its information processing paradigm.

Brain information processing paradigm

Our goal is to uncover the information processing 

paradigm implemented by the brain, and as such, 

FIGURE 2. Silhouettes provide critical, spatially correlated infor-

mation enabling object recognition regardless of scale. [Image 

credit: Vecteezy.com]

we have to define the information it processes. Our 

brain did not evolve to process numbers, so what 

does it process? To answer this we need to look at 

our environment. Through evolution, organisms had 

to survive in our world. Our world resides in three-

dimensional space and time, and our brains evolved to 

efficiently process information and survive within this 

space. A few of the main brain functions that devel-

oped were object recognition and prediction. Objects 

need to be recognized at different distances and in 

different lighting conditions. 

In our world, all objects are three dimensional and 

contiguous, and the largest feature of an object is its 

outline or silhouette. To illustrate how much informa-

tion these structures contain, see how easy it is for us 

to recognize objects only by their silhouette (see figure 

2). There is no real color information; there is just a 

two-dimensional representation that contains relative 

structural information. The silhouette is an example of 

spatially correlated change (i.e., edges), which is a type 

of information our brain processes. 

Support for this idea comes from the functional-

ity of our retina. At the input to our visual cortex, the 

retina removes redundant information and extracts 

the spatial structure of the object; a simplified func-

tional description is that it is an edge detector. From 

the very start of information processing, edge detec-

tion greatly reduces the amount of information our 

https://www.vecteezy.com
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brain must compute and communicate. The retina 

contains approximately 100 million rods and cones, 

while the optic nerve has only about one million neu-

rons [9]. The retina reduces the amount of informa-

tion reaching our brain by two orders of magnitude. 

This has profound implications on how reducible 

natural signals are and provides valuable insight into 

what information is important. Vision is just one of 

our senses that provide information to the brain, and 

creating relationships between different senses may 

be accomplished using temporally correlated events. 

If you see a change and you hear a noise at the same 

time, you tend to link the events together. Spatially 

and temporally correlated events are the structured 

information our brains process. 

The requirement to process simultaneous spatial 

and temporal events provides strong support that our 

brain uses spatial computation and is event driven. 

Moreover, the retina passes edges, and these edges 

are spatially correlated change—this implies the brain 

computes on changes. Spatial computation, event-

driven processing that only computes on change cre-

ates a completely adaptive power-saving mechanism. 

Energy is consumed only when there is information 

to be processed and then only the locally affected 

neurons use energy to process it. That being said, if 

the brain is an event-driven architecture, then it also 

requires a method of prioritizing the processing of 

these events.

The priority for events should be directly related 

to the information the event contains; this leads us 

to believe that new information and rapid spatial 

change are events that contain high-priority infor-

mation. It also follows that these events would have 

higher spiking frequencies and consume more energy. 

These higher firing rates could also be used to direct 

our attention. The brain is always trying to minimize 

energy consumption and uses our attention as a tool 

to achieve this. Processing the high-frequency events 

first minimizes energy and prioritizes the informa-

tion we process. A tangible example of this principle is 

how a magician commands your attention by mak-

ing large gestures with one hand while he makes the 

subtle switch with his other hand. The large gestures 

evoke high spatial change on the retina and cause 

more neurons to fire; thus, the large gestures draw 

your brain’s attention in an attempt to minimize its 

energy consumption.

We previously mentioned that computing on 

concept is a foundational principle of the informa-

tion processing paradigm of the brain. We have seen 

from the deep visualization toolbox that CNNs create 

abstract concepts as information propagates up the 

hierarchy. The idea of using a hierarchy to process 

information is very different compared to our cur-

rent computational paradigm. There is considerable 

research supporting the idea that the brain processes 

information in a hierarchy [10, 11]. However, un-

like the CNN structure, we believe each layer in the 

hierarchy also connects to a central point. This point 

would be similar to the thalamus/hippocampus in the 

brain, and this additional connectivity is what enables 

the brain to easily use varying degrees of abstraction 

to accomplish tasks or recognize objects. 

Prediction is another foundational principle of 

the information processing paradigm of the brain. 

Research on the inferior temporal cortex of monkeys 

shows how, after learning a sequence of patterns, the 

monkey’s predictions minimize neural firing [12] 

(see figure 3). 

Novel sensory information is passed up the hierar-

chy, and these features evoke a hierarchical prediction 

back down. As the prediction passes down the hier-

archy, differences between the prediction and sensory 

input are calculated at each level. If these differences 

are small, then at some level of abstraction within the 

hierarchy, we “understand” what we are seeing. If we 

“understand” by choosing a good predictive model, 

then the firing rate of neurons—and hence the energy 

consumption of the brain—decreases. In addition, the 

difference between sensory input and prediction may 

play a crucial role in the learning algorithm. With a 

good prediction, there may not be enough available 

energy to learn, but with a bad prediction, there are 

still a number of neurons firing at a high frequency, 

and this additional energy may enable learning. 

Furthermore, this additional energy would then draw 

your attention to the prediction errors, which would 

be the highly discriminant information. An example 

of this is if a person has a unique feature on their face, 

we tend to fixate on it and learn to associate that fea-

ture to better identify the person. 

We have described how both prediction and atten-

tion combine to minimize neural firing and thereby 

minimize energy consumption. In the visual cortex, 

there is a ventral (what) and a dorsal (where) pathway. 
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FIGURE 3. Row B shows neural firing reduction on trained sequences. Row C illustrates neural firing patterns on untrained object 

sequences. Figure from [12].

Information propagating through the “what” hierarchy 

is reduced into a concept and then associated in the 

“where” space. What we believe is happening, is that 

the brain is creating a personal reality. New objects 

are identified and added to this reality. As our atten-

tion moves over objects in our reality, predictions are 

propagated down the hierarchy and compared with 

our sensory information. Only the differences are 

communicated to the thalamus/hippocampus, and our 

personal reality gets updated at the level of abstraction 

that is needed to achieve the current task. The creation 

of a personal reality would provide the substrate to 

achieve our energy efficiency goals by utilizing the 

concepts we create with our hierarchy. 

Conclusion

This article has summarized the NCRP’s search for 

highly efficient NMP architectures. From our broad 

evaluation of this computational landscape, we don’t 

believe it is possible for evolutionary design changes 

to meet our disruptive efficiency goals. Ultimately, the 

solution must significantly reduce both I/O and com-

pute power, and computing on concepts may provide 

that reduction. This hypothesis directed our research 

to the development of a different information pro-

cessing paradigm that is guided by the way our brain 

processes information. As we attempt to develop this 

new paradigm, we have to be careful not to get stuck 

in biological implementation details and stay focused 

on how information is transformed as it propagates 

through the brain.

Initial investigations are leading us to explore the 

possibility that this paradigm creates a personal reality 

where higher-level computations occur; however, the 

exact nature of these computations is still being deter-

mined. We are just starting to develop this paradigm, 

and we hope within the next few years to develop an 

initial framework, have a more detailed analysis about 

potential energy savings, and define suitable appli-

cations. Due to the vast complexities of the human 

brain, this framework will only capture a small subset 

of human brain behavior. Motor control, emotions, 

motivation, and higher-level reasoning are just a few 

of the functionalities that we are not addressing.

A parting perspective is that the majority of NMP 

research uses a computational paradigm designed for 
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high-speed precise math—which humans are not good 

at—to simulate tasks humans excel at. Precise math 

can be used to accurately simulate physical systems, 

such as CPUs; however, this approach is very compu-

tationally inefficient compared to using the CPU itself. 

Without the guidance from a new computational 

paradigm, NMPs will essentially be relegated to being 

hardware-based simulators. We expect that our new 

paradigm will integrate the principles discussed in this 

article and likely require more we have yet to uncover. 

That being said, if we are successful, it is possible we 

will achieve more than just highly efficient computa-

tion. This paradigm could provide the blueprints for 

designing a system with the fundamental abilities to 

understand, seamlessly work with multiple levels of 

abstract concepts, and inherently extract knowledge 

from data. 
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CHANGED COMPUTER VISION

HOW

b y  B r i d g e t  K e n n e d y  a n d  B r a d  S k a g g s 

I
f you are aware of the term deep learning, you 

are likely also aware of where deep learning has 

been most disruptive—that is, the field of com-

puter vision (CV)—the study of teaching a com-

puter to identify the content of an image or video. 

Problems in this area range from facial recogni-

tion to object recognition, scene understanding, 

geolocation of an image given only the objects in 

the image, and three-dimensional reconstruction 

from two-dimensional images. The majority of CV 

research is focused on imbuing a machine with a 

sufficient level of recognition so as to automati-

cally sort large quantities of images and videos by 

their visual content. 

Deep learning has been transformative in CV for 

a number of reasons, and the speed with which 

CV went from what one might perceive as primi-

tive analytics to highly sophisticated capabilities 

as a result of leveraging deep learning offers les-

sons for other domains seeking to produce game-

changing analytics in new areas.
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Before deep learning

CV is a subfield of computer science. It has a past 

that predates the current excitement surrounding the 

apps that allow you to turn a picture of yourself into a 

Picasso drawing [1] and tools that allow you to search 

and sort your pictures by visual concepts such as cats, 

children, parties, and so on [2, 3, 4, 5].

What did people used to do before deep con-

volutional neural networks disrupted the field? 

Understanding this process may help to understand 

the shift in design that was allowed by the use of 

deep nets.

The standard procedure for analyzing an image or 

the pixels within a video frame starts by running an 

algorithm that looks for “interesting” local regions 

within an image (i.e., local pieces that stand out from 

the rest—corners, edges, bright or dark regions with 

strong visual gradients). After interesting points are 

located, one describes these local regions using feature 

vectors. Some common image feature vectors, such 

as SIFT, SURF, BRIEF, ORB [6, 7, 8, 9], and so on, 

are handmade and were painstakingly developed by 

experts in the field. In designing these feature vectors, 

researchers performed years of research to ensure that 

their features were robust and unaffected by changes 

in lighting, scale, and rotation. 

After descriptions of the local areas in an image 

are made, a process of dimension reduction, pooling, 

clustering, and/or classification of these regions are 

performed, allowing one to describe an image both 

locally and generally. The general classifications are 

the most important for semantic labeling tasks, such 

as teaching a computer to recognize that an object is 

a cat. These methods, and the overall flow from pixels 

to classes, were optimized and improved, and the field 

was incrementally moved forward one PhD disserta-

tion at a time. 

The goal of all this work was often the same: How 

do we teach computers to see as a human being sees? 

How do we teach it to go from pixels to cats? The 

process of going from low-level features to seman-

tic or high-level concepts was still being thought 

out by researchers working with features such as 

SURF when deep convolutional neural networks 

became ubiquitous.

What does deep mean?

The power of deep learning for CV comes from the 

ability of a deep network to learn features in a layered 

fashion, ranging from edges and gradients to semantic 

concepts like ears, faces, writing, and so on. No longer 

would one need to spend years coming up with the 

best way to detect and describe local regions of inter-

est or to determine how best to glue these low-level 

ideas together to approximate semantic ideas. Instead, 

one could merely push millions of images through a 

deep network structure, and learn the optimal way to 

separate these images into classes using a target clas-

sifier and fast learning algorithms. The deep network 

would learn how to transition from the low-level to 

the semantic. This is really critical. Deep learning 

eliminated the need to hand design feature vectors at 

the same time it learned how to build semantic feature 

vectors, thus changing the way the community works. 

The mantra became: Learn features directly from your 

data—never design a feature vector by hand. 

One of the most interesting pieces of a deep convo-

lutional neural network trained on CV tasks—such as 

those trained on the large ImageNet [10] corpus with 

1,000 classes and over a million images—is that the 

semantic feature vector encodings of images can be 

recycled. That is, even if a particular category wasn’t 

present in the original training categories, there are 

enough high-level (semantic) categories pulled out or 

learned in the process of building the deep networks 

for ImageNet classification, that these feature vectors 

can be quickly transferred to new tasks. For example, 

one of the basic examples when learning how to use 

TensorFlow [11] is a transfer learning task, where one 

uses the deep features learned on ImageNet to quickly 

learn a classifier on a small data set. The typical first 

transfer learning task is one to classify flower types by 

training on the Oxford Flowers data set [12], but an 

extremely effective bird classifier is also easily ob-

tained using Caltech Birds (CUB-200) [13] and can be 

learned in minutes.

There are many arguments about what makes 

something deep learning. Is it the size of the network? 

If so, how deep is deep? ResNet-101 [5], where 101 is 

the number of layers, was the standard net for about 

a year—the life span of a reigning champ deep net. A 
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better rule of thumb should be how well do features 

learned in the training process transfer to different 

but related tasks—like the easy transfer of the deep 

Inception features trained on ImageNet to a general 

flower classifier. Did your network learn shallow or 

deep concepts? Low-level or semantic concepts?

Applying deep learning in other fields: 

Three lessons from CV

While some of the dramatic improvements that 

deep-learning CV applications have seen might be a 

result of the unique nature of CV problems, there are 

certainly lessons to be gleaned for achieving success in 

other fields beyond vision.

Adopt standard, sharable data sets

The CV community has a de facto ladder of standard 

data sets of increasing complexity. The most frequently 

used data set for basic testing of a model architec-

ture for image classification is the MNIST (Modified 

National Institute of Standards and Technology) 

database of handwritten digits [14]. An algorithm 

successful on MNIST might next be validated on 

the CIFAR-10 or CIFAR-100 (Canadian Institute for 

Advanced Research) [15] data sets with 10 or 100 

object categories more complex than digits. The final 

rung of the ladder is testing on ImageNet, which has 

roughly 14 million images (one million with bounding 

boxes) in 1,000 categories [10]. 

For an approach claiming state-of-the-art in image 

classification, reporting results on at least the upper 

rungs of the MNIST/CIFAR/ImageNet ladder is neces-

sary for publishable work in image classification. In 

fact, even nonclassification tasks often leverage data 

derived from these standard data sets.

For a field to adopt common evaluation data sets, 

practitioners must address the legal complexities of 

licensing large, diverse data sets derived from many 

sources. ImageNet handles this problem by provid-

ing URLs pointing to known locations of the images; 

it is up to each research team to download them for 

themselves, or else download them from the ImageNet 

curators after agreeing to several restrictions on use. 

As an example from the text processing community, 

a purpose-built question/answer data set was built by 

crowdsourcing humans to ask and answer questions 

about Wikipedia [16]; since the text of Wikipedia arti-

cles is under a Creative Commons license, this derived 

data set can be shared freely with few restrictions.

Use expressive deep-learning frameworks 

The gradient-based optimization problems that arose 

in adopting deep-learning approaches in CV were 

originally solved by hand-coded routines for calcu-

lating loss functions and their gradients, and using 

either general-purpose or hand-coded optimization 

schemes. While good hand-coded implementations 

would perform sufficiently well in practice, they 

were often complicated to modify, making not-trivial 

changes to the model or to the training process dif-

ficult to implement.

Modern deep-learning frameworks are now built 

around a computation graph abstraction; the loss 

function being optimized is built up in a declarative 

fashion recursively from a library of fundamental 

functions, and the gradient is automatically calcu-

lated by the framework using automatic differentia-

tion. Rather than using a general-purpose optimi-

zation routine, a machine learning (ML)-specific 

algorithm like AdaGrad [17] is often used for the 

subgradient optimization. 

Using modern frameworks makes it much easier for 

a researcher or ML engineer to modify existing mod-

els and to mix and match different architectural choic-

es, for example, to better explore the hyperparameter 

space of model structures. These frameworks also 

make it easier to transition code from research proto-

types or exploratory models to production-ready code.

Share (at least some of) your code

The adoption of flexible frameworks makes it possible 

to share code with the understanding that it can be 

run by other researchers, and perhaps repurposed for 

other problems. Building off of the arXiv (https://arxiv.

org), a repository of preprints that often is the debut 

location for new deep-learning techniques and appli-

cations, GitXiv (http://www.gitxiv.com/) links articles 

to GitHub code repositories of implementations of the 

https://arxiv.org
https://arxiv.org
http://www.gitxiv.com/
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algorithms in the preprints, often authored by other 

people than the original authors of the articles.

The sharing of code based on common frameworks 

lends itself to combining components in new ways, 

much like interlocking plastic toy bricks. For example, 

many image captioning systems can be concisely 

described as simply plugging a convolutional neural 

network used for image representation into a recur-

rent neural network used for language modeling. 
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Deep learning for scientific discovery

Model-driven discovery in 

deep learning

Scientific computing is all about predictions—predict-

ing properties of materials, behavior of systems, etc. 

From a physics point of view, predictions are possible 

because all natural and engineered systems follow 

conservation laws. Traditionally, parameters and 

rates in these laws are estimated from data, rigorous 

mathematical techniques, and/or expert knowledge. 

Neural networks are trained on data, which can only 

come from the past and present. Therefore, making 

accurate predictions of systems using deep learning in 

the absence of tight coupling with conservation laws 

depends on the ability of a neural network itself to 

learn conservation laws. At present, this remains an 

open question. 

Conservation laws manifest themselves as a set 

of algebraic or dynamical constraints. There are 

two direct methods that can be used to incorporate 

conservation laws into neural networks. One direct 

method is to use deep learning as a part of a solu-

tion of conservation equations to directly incorporate 

conservation laws into neural networks [10]. Another 

direct method is to develop dedicated modules within 

a larger network that approximate the system response 

defined by the scientific law. For example, when 

describing local behavior of a nonlinear system, it is 

possible to use the layers of a convolutional neural 

network (CNN) to directly encode the system dynam-

ic response as a part of the network. 

Another approach to enforce scientific conser-

vation laws is to modify the objective function for 

training. The unconstrained objective function for a 

deep neural network restricts the input-output map 

of the deep neural network to match the input-output 

relationships observed in the data. However, one 

can impose conservation laws as a constraint on the 

optimization problem. Since constrained optimization 

problems can be formulated using objective functions 

with Lagrangian multipliers, simply modifying the 

objective function to incorporate a conservation law, 

g(x) = 0, enforces learning of the conservation law 

during training.

Deep learning has positively impacted fields in which 

perceptive tasks are paramount, such as computer 

vision and natural language processing. Tremendous 

strides have also been made in deep reinforcement 

learning towards robotics and gaming. Given the suc-

cess in these fields, it is apparent that deep learning 

may also accelerate scientific discovery. Herein, we 

discuss several topic areas in which modern represen-

tation learning is driving innovation. This article de-

scribes learning nonlinear models from data, learning 

scientific laws from models, deep learning on graphs, 

and approaches to scalable deep learning. 

Data-driven discovery and deep 

Koopman operators

Scientists possess powerful tools to deal with linear 

models, where the output of the system is directly 

proportional to its inputs. But, the world is not linear. 

Yet for as long as science has existed, we have had 

limited capabilities to probe and understand nonlinear 

models. Huge swaths of reality remain inaccessible. 

In 1931, B. O. Koopman proposed the existence of a 

mathematical function that turned a nonlinear system 

into an infinite dimensional linear system [1], a func-

tion we now call the Koopman operator. He did not 

show how to find it; for generations, the Koopman 

operator proved to be too difficult to compute. 

Recently, advanced computational methods such as 

dynamic mode decomposition (DMD) [2, 3, 4] have 

renewed interest in finding the Koopman operator 

[5–7]. DMD requires the scientist to choose certain 

dictionary functions, based on their experience or 

imagination; a poor choice results in an inaccurate 

Koopman operator. New methods, based on deep 

learning [8] and shallow learning [9], provide a way 

to automatically update dictionaries during training. 

While previous methods rely on static dictionaries, 

this new approach allows for dynamic editing and 

real-time updating of dictionaries during the training 

process—thus finding a high-fidelity Koopman opera-

tor as the dictionaries are refined (see figure 1). 

Deep Koopman operators have the potential to be 

transformational in data-driven scientific discovery 

in applications ranging from synthetic biology to 

control theory. 
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FIGURE 1. This schematic illustrates the state-of-the-art approach versus a deep learning approach for Koopman operator learning. 

In existing methods, the scientist postulates a variety of reasonable dictionary functions to include in their analysis (e.g., Hermite 

or Legendre polynomials, thin-plate radial basis functions). If the model is not predictive, the burden is on the scientist to postulate 

new functions to include in the dictionary. In our approach, the entire lifting map is specified as the output or outputs of a deep 

artificial neural network. The deep neural network can be a multilayer feed-forward network, a convolutional network, a recurrent 

network, etc. The prediction error is then used to compute the loss function and refine the dictionary automatically. Regardless of 

the structure, the network learns the most efficient dictionary for the given system. 

Deep learning for graphs

One other vital area in scientific discovery in which 

deep learning can make an impact is the ability to 

reason about and learn over graphs. Introduced by 

Leonhard Euler in 1736, graphs have emerged as a 

critical tool for modeling a large number of real-world 

data sources we deal with today. These include data-

bases containing relationships between many enti-

ties such as computer or social networks as well as 

semantic networks involving entities that are instan-

tiations of different concepts (e.g., people, locations, 

organizations), and the relationships or interactions 

between these entities. All prominent graph algo-

rithms seek to extract different types of information 

from this web of relationships, such as connecting 

entities (graph search), grouping entities with simi-

lar behavior (clustering), predicting the relationship 

between two entities (link recommendation or graph 

completion), or finding entities that interact closely 

(community detection).

Application of machine learning (ML) techniques 

into graph-oriented tasks typically begins with learn-

ing a set of features for every entity (or node) in the 

graph. We translate a graph into a tabular repre-

sentation where the features learned on every node 

preserve the topological properties associated with 

its neighborhood. This idea was first proposed by 

Scarselli et al. [11] and more recently improved upon 

by DeepWalk [12] and node2vec [13]. These repre-

sent an innovation in representation learning, where 

task-independent features are learned in a data-driven 

fashion as opposed to manual feature engineering, 

and where their algorithmic accuracy closely matches 

task-specific approaches. 
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Recently, a wave of research has demonstrated the 

effectiveness of deep learning-based approaches for 

graph-based tasks. Algorithms that traditionally relied 

on graph walks are naturally adopted towards recur-

rent neural networks and its variants for tasks such as 

knowledge base completion and probabilistic reason-

ing [14], shortest-path queries, and deductive reason-

ing [15]. CNNs are a natural choice for algorithms that 

treat graphs as matrices [16] or where operations on a 

node and its neighborhood are key [17]. Combining 

these individual building blocks to reflect the hierar-

chical structure that naturally exists in data is an-

other emerging area of research [18]. The potential to 

leverage graph-based deep learning is only now being 

realized for scientific discovery. 

Scalable deep-learning algorithms on 

extreme-scale architectures

Even when an accurate mathematical description of 

a system of interest exists, numerically solving the 

resulting equations can be difficult. This is especially 

true when results are needed in real time. Deep neural 

networks are difficult to train, so researchers are 

increasingly turning to high-performance computing 

(HPC) resources to scale their deep learning to match 

the complexity of their problems. It is also important 

to connect research solutions and users who would 

like to use the systems without needing detailed 

knowledge of the system architectures.

Recent developments, such as the Machine 

Learning Toolkit for Extreme Scale (MaTEx), are 

making progress by enabling a slew of algorithms to 

scale ML algorithms on HPC systems by extending 
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M
achine learning (ML) problems faced by the NSA and Department of De-

fense (DoD) are different from those found in industry and academia. For 

example, one often wants to develop classifiers with respectable true-posi-

tive rates at extremely low false-positive rates, far lower than what is routinely con-

sidered in other contexts. Inspired by such challenges, ML research at the Institute 

for Defense Analyses’ Center for Communications Research in La Jolla, California has 

focused on adapting commercial and academic techniques to this more austere re-

gime as well as the theoretical and foundational questions raised by that adaptation.

[Photo credit: monsitj/iStock/Thinkstock]
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How our problems are different

The ML challenges faced by the NSA, and more gener-

ally by the DoD, are somewhat different from those 

faced by academia or industry. For example, the NSA 

often wants to detect extremely rare phenomena, in 

the sense that, of 10 million observations, only a few 

will be true targets. In that situation, one has to aim 

for an extremely low false-positive rate to ensure that 

the number of observations that need to be checked 

in greater detail (for example, by an analyst) is not im-

mense. The ML research we have done in La Jolla has 

focused on addressing ML in that domain, and this 

has in turn spurred more research on the foundations 

of ML.

Achieving an extremely low false-

positive rate

Many immediate practical issues arise in building 

a detector for extremely rare phenomena. Here is a 

trivial one: A popular way to present the efficacy of 

a detector is by its receiver operating characteristic 

(ROC) curve, which is a plot with the false-positive 

rate (FPR, the proportion of negative observations that 

were marked as positive) on the horizontal axis and 

the true-positive rate (TPR, the proportion of posi-

tive observations that were marked as positive) on the 

vertical axis, where both axes run from 0 to 1. 

When targeting extremely rare phenomena, one 

is interested in the TPR when the FPR is, say, 10-6, 

and comparing that with the TPR when the FPR is 

10-7. Such distinctions are invisible on a normal ROC 

curve. This illustrates how our problem regime is dif-

ferent from the usual problem regime one reads about 

in ML publications; it also demonstrates that standard 

characterizations of diagnostic accuracy, such as area 

under the ROC curve, are too coarse to capture the 

differences of interest to us. Of course, plotting the 

ROC curve on a semi-log scale, where the horizontal 

axis is log(FPR) as in figure 1, improves the visibility 

of the low-FPR end of the ROC curve, and this helps 

with analysis.

A more serious issue stems from the relative 

proportions of the positive and negative items in the 

training data. To train a detector, it is not reason-

able to use data occurring at the same frequencies 

as it does in nature. Indeed, the power of a classifier 
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is determined almost entirely by the proportion of 

the training set made up of the smallest class, so one 

needs approximately equal amounts (or at least similar 

orders of magnitude) of both positive and negative 

observations. Typically, one needs to synthesize data 

for this. Of course, the goal of ML is to characterize 

a particular data-generating process, and synthetic 

data might be generated in a manner that differs in 

important but unknown ways from the process of 

interest. As a result, using synthetic data to train a 

neural network, for example, might lead to a system 

with excellent apparent accuracy in the lab but poor 

performance in practice. Furthermore, in order to feel 

any confidence at all about a detector’s performance 

at an FPR of one-in-a-million, one needs millions of 

negative examples in the test set and therefore a cor-

responding number of positive examples.

We generated training data for one practical prob-

lem in which the users required an FPR of 10-6 and 

hoped for a TPR of 0.1 at that FPR. (Note the contrast 

to more familiar settings, where the target FPR and 

TPR are both larger.) When we got our hands on the 

problem, the users had already trained a classifier us-

ing a random forest package. They thought their clas-

sifier might be sufficient but weren’t sure because they 

had not yet accumulated enough test data. We tried a 

variety of ML techniques, ranging from off-the-shelf 

to invented in-house, and found that a small ensemble 

of modestly sized neural networks performed best (see 

figure 1). These networks are indeed quite modest: 

Each had eight layers and about 1,800 nodes, which is 

already tiny compared with AlexNet (small by current 

standards but state of the art in 2012) with 650,000 

nodes [1]. An ensemble of these modest networks 

was produced by averaging their outputs rather than 

applying more sophisticated methods such as bagging, 

boosting, or arcing as described in chapter 16 of [2]. 

Figure 1 shows the performance goals were hand-

ily met, while the baseline random forest approach 

was unable to even achieve the 10-6 FPR. The bound 

in performance by the forest arose because the forest 

scored at least 1-in-104 negative items at least as high 

as the highest-scoring positive item.

One typical difficulty, which also appeared in this 

problem, is that some of the features we wanted to 

use for prediction had very poor statistical properties. 

This is often addressed by examining a histogram or 

summary statistics for each feature and deciding what 

mitigations are warranted. (Google Facets [3] is one 

well-publicized tool for this task.) However, this data 

set had more than 2,200 features, making feature-by-

feature inspection tiresome, so we employed auto-

mated techniques to cull features that were constant 

or mostly constant and features that had many 
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FIGURE 1. This semi-log plot shows the TPR and log FPR achieved by a detector for various choices of threshold. The goal is to get 

the left-hand endpoint of the ROC curve as close as possible to the upper left corner.
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missing values. More interestingly, many features 

had very large skewness or kurtosis, which would 

not be mitigated by the usual “z-scoring” normaliza-

tion procedure in which one subtracts the mean and 

divides by the standard deviation. We addressed this 

deficiency by scaling and shifting the values so that the 

25th percentile and 75th percentile values were set to 

-1 and 1 respectively, and we then clipped the values 

to lie between -10 and 10. Using this normalization 

procedure outperformed both the naive z-scoring 

procedure and a modification of the Box-Cox trans-

formation from [4]. Note that these procedures can be 

applied in an automated fashion and the parameters of 

the Winsorization—the clipping at -10 and +10—are 

learned from the data.

Do you believe in ROC curves? 

Should you?

In the discussion of ROC curves for extremely low 

FPR, it is natural to wonder how much one should 

trust the TPR asserted at an FPR of, say, 10-7. At the 

very least, one would like to be able to determine 

whether or not the ROC curve corresponding to one 

technique is significantly different from that of an-

other technique, either over some range of FPRs or at 

a specific FPR.

The paper [5] discusses bootstrap methods for con-

structing confidence bounds for ROC curves associ-

ated with ensemble methods, like random forests, and 

uses those methods to study the accuracy of random 

forests in a particular prediction problem in which the 

desired FPR was one-in-a-million, as in the preceding 

example. One advantage of the techniques discussed 

in [5] is that, when the ensemble methods base their 

decisions on votes made by individual weak classifiers, 

the confidence bounds can be constructed without 

resampling the training data or refitting the models, 

producing significant computational savings. 

Using these techniques, Gamst, Reyes, and Walker 

[5] were able to determine the effect of increasing the 

number of trees in the forest, increasing or decreasing 

the amount of data used to fit the individual clas-

sification trees, increasing or decreasing the number 

of features considered at each node of the individual 

trees, selecting the depth of the individual trees, and 

modifying the voting or splitting rules used by the 

forest. These techniques were also used in a large-scale 

study of various ML techniques—some new and 

some off the shelf—applied to the same classification 

problem, allowing us to determine whether any of the 

models were significantly more accurate than any of 

the others and which of the models made the most 

accurate predictions.

Capacity of neural networks

Another direction of unclassified research in La Jolla 

has concerned the expressiveness of neural networks. 

It is well known as a theoretical result that sufficiently 

large neural networks can represent essentially any 

function. However, in practice, the range of functions 

that can be approximated by any particular neural 

network is less clear. For example, consider a neural 

network with one input and one output, consisting of 

D dense layers, each with W nodes and the commonly 

used ReLU activation function. What functions can 

such a network learn? Clearly the output is a linear 

spline. How many knots can the spline have? Provably 

the answer is O(WD) [6], but the average network ex-

hibits many fewer knots [7]. In fact, randomly initial-

ized networks almost always produce a function with 

O(WD) knots. 

These results describe a neural network just after 

initialization, before training, and they show that the 

untrained neural network tends to represent a func-

tion that is far less complex than what is possible in 

the space of functions representable by the network. 

(In fact, even after training, such networks tend to 

produce functions with O(WD) knots, but the place-

ment of the knots is adapted to the underlying func-

tion the network is trying to learn; see [8].)

What about the complexity of functions represent-

ed by trained networks? Two La Jolla researchers [9] 

handcrafted a network to represent a function whose 

graph is a hump adorned with a sawtooth; the output 

of this network is the blue plot in figure 2. They then 

took a network with an identical architecture, initial-

ized its weights randomly (as is common practice), 

and trained it to model the same function. The plot of 

the output of the trained network is the green plot in 

figure 2, and clearly does not precisely match the out-

put of the crafted network. This is either a plus (if you 

view the sawtooth as noise in your true measurement 

of the hump) or a minus (if you think the sawtooth 

is part of the signal). The experiment was repeated 
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50,000 times, and only the best fit is reported in the 

figure, so it is clear that even the best fit from the 

network has much lower complexity than the underly-

ing function, in spite of the fact that there is a set of 

weights that leads this network to reproduce the bent 

sawtooth function exactly. The point is that a trained 

network does not fully explore the space of functions 

that the network could produce. 

This last result sheds light on two different threads 

of outside research while not belonging to either. The 

first thread is a series of papers giving lower bounds 

on the complexity of a neural network that can ap-

proximate a given function well; see, for example, [10], 

[11], [12], or [13]. These results are about networks 

with handcrafted weights and do not attempt to give 

lower bounds on the complexity of a trained neu-

ral network that can approximate a given function. 

Indeed, the experiment described in the preceding 

paragraph shows that the two questions are different—

trained neural networks are less expressive. So, while 

it is possible to construct networks capable of learn-

ing wavelet-like basis functions on smooth manifolds 

and carry the corresponding approximation-theoretic 

results from the wavelet domain to the neural network 

domain, it is unclear that such networks can actually 

be trained to represent the functions of interest. 

FIGURE 2. Input versus output of two neural networks. The blue sawtooth 

is the output of a network with handcrafted weights. The green curve is the 

output of a trained network, the best fit among 50,000 networks of identical 

architecture trained on the output of the handcrafted network.
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AT A GLANCE

IARPA Machine Intelligence from Cortical Networks program

Program Manager: David Markowitz

The Intelligence Advanced Research Projects Activity (IARPA) Machine Intelligence from 

Cortical Networks (MICrONS) program aims to achieve a quantum leap in machine 

learning by creating novel machine learning algorithms that use neurally inspired 

architectures and mathematical abstractions of the representations, transformations, 

and learning rules employed by the brain. To guide the construction of these algorithms, 

researchers will conduct targeted neuroscience experiments that interrogate the 

operation of mesoscale cortical computing circuits, taking advantage of emerging tools 

for high-resolution structural and functional brain mapping. The program is designed 

to facilitate iterative refinement of algorithms based on a combination of practical, 

theoretical, and experimental outcomes. The researchers will use their experiences with 

the algorithms’ design and performance to reveal gaps in their understanding of cortical 

computation and will collect specific neuroscience data to inform new algorithmic 

implementations that address these limitations. Ultimately, as the researchers incorporate 

these insights into successive versions of the machine learning algorithms, they will 

devise solutions that can achieve human-like performance on complex information 

processing tasks with human-like proficiency. For more information on this program, visit 

https://www.iarpa.gov/index.php/research-programs/microns. 

 MACHINE LEARNING

 PROGRAMS ACROSS

 THE GOVERNMENT
[Photo credit: rashadashurov/iStock/Thinkstock]
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DARPA Lifelong Learning Machines program

Program Manager: Hava Siegelmann

The Defense Advanced Research Projects Agency (DARPA) Lifelong Learning Machines 

(L2M) program considers inspiration from biological adaptive mechanisms as a 

supporting pillar of the project. Biological systems exhibit an impressive capacity to learn 

and adapt their structure and function throughout their life span, while retaining stability 

of core functions. Taking advantage of adaptive mechanisms evolved through billions 

of years honing highly robust tissue-mediated computation will provide unique insights 

for building L2M solutions. The first technical area of the L2M program will focus on 

functional system development and take inspiration from known biological properties. 

The second technical area will involve computational neuroscientists and computational 

biologists in identifying and exploring biological mechanisms that underlie real-

time adaptation for translation into novel algorithms. These will possibly lead to the 

development of a plastic nodal network (PNN)—as opposed to a fixed, homogeneous 

neural network. While plastic, the PNN must incorporate hard rules governing its 

operation, maintaining an equilibrium. If rules hold the PNN too strongly, it will not be 

plastic enough to learn, yet without some structure the PNN will not be able to operate at 

all. For more information on this program, visit https://youtu.be/JeXv48AXLbo.
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DARPA Explainable Artificial Intelligence program

Program Manager: Dave Dunning

The DARPA Explainable Artificial Intelligence (XAI) program goal is to create a suite 

of machine learning techniques that can produce more explainable models while 

maintaining a high level of learning performance (i.e., prediction accuracy), and enable 

human users to understand, appropriately trust, and effectively manage the emerging 

generation of artificially intelligent partners. The program will focus the development of 

multiple systems on addressing challenge problems in two areas: 1) machine learning 

problems to classify events of interest in heterogeneous, multimedia data and 2) 

machine learning problems to construct decision policies for an autonomous system 

to perform a variety of simulated missions. These two challenge problem areas were 

chosen to represent the intersection of two important machine learning approaches 

(i.e., classification and reinforcement learning) and two important operational problem 

areas for the Department of Defense (i.e., intelligence analysis and autonomous 

systems). For more information on this program, visit https://www.darpa.mil/program/

explainable-artificial-intelligence.

[Photo credit: DARPA]
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News from the NSA Technology Transfer Program

FROM L   B TO MARK     T

AlgorithmHub provides robust environment for 

NSA machine learning research

B
eing able to save time, money, and effort while 

achieving mission can be easily classified as 

a “win-win situation” for everyone involved. 

Fortunately, researchers at NSA Hawaii (NSAH) are 

doing just that to further develop their machine learn-

ing (ML) models.

Teams at NSAH are conducting research on the 

training of ML models to provide a topical representa-

tion of foreign language content. The goal is to enable 

any user to quickly assign a meaning and perspective 

to text without having any prior knowledge of the 

language in which it is written. Their work will further 

develop program applications that will generate word 

lists and eventually visual images of data organized 

by topic. In need of a better way to continue their 

research, NSAH discovered Hawaii-based start-up 

AlgorithmHub at a speed networking event and quick-

ly saw potential in what the company had to offer. 

To meet NSAH requirements, the NSA Technology 

Transfer Program (TTP) finalized a Cooperative 

Research and Development Agreement (CRADA) 

with AlgorithmHub to apply their data science cloud 

compute environment to NSA’s unclassified ML re-

search problems. The partnership with AlgorithmHub 

allows NSA researchers to deploy algorithms in a 

cloud environment without lengthy delays and costs 

associated with provisioning and maintaining vir-

tual machines. AlgorithmHub’s unique Integrated 

Development Environment (IDE) for commercial 

cloud services provides data scientists with the ability 

to experiment and share their data science algorithms 

while leveraging the compute power and storage 

capacity of the cloud. With NSA participating as a 

beta test partner, the partnership will help boost the 

company profile for AlgorithmHub and allows them 

to test and determine the current limitations of their 

cloud capability.

After a highly successful data science work-

shop with participants from NSA, the Lincoln 

Laboratory (managed by the 

Massachusetts Institute 

of Technology), and the 

Institute of Defense 

Analysis, NSA hosted a 

topic-modeling cohort, 

subsequently extending 

testing and evaluation 

time in the AlgorithmHub 

environment. An upcom-

ing workshop will be more 

comprehensive and include broader 

participation to further refine the model 

for additional use of the AlgorithmHub platform for 

data analytics by NSAH. This effort is developing a 

potential model for continuing collaboration for data 

analytics and tradecraft development for use across 

the enterprise and with other researchers in academia 

and industry. 

John Bay, CEO of MathNimbus Inc., DBA 

AlgorithmHub, said “Through our CRADA with 

a data science team at the NSA, we have enhanced 

efficiency and effectiveness in evaluating machine 

learning algorithms for topic identification. Moreover, 

based on features desired by the NSA data scientists, 

we implemented support for large-scale hyperparam-

eter optimization and a collaborative Jupyter notebook 

environment in our AlgorithmHub software platform. 

These new features are not only valued by data scien-

tists at the NSA, but also with other AlgorithmHub 

customers. The CRADA with the NSA has provided us 

critical feedback and validation needed to continue to 

evolve the AlgorithmHub platform into an innovative, 

commercially viable product.”

The NSA TTP, located within the Research 

Directorate, establishes partnerships with industry, 

academia, and other government agencies to help ac-

celerate mission goals, advance science, foster innova-

tion, and promote technology commercialization. 

https://www.nsa.gov/what-we-do/research/technology-transfer/
https://www.nsa.gov/what-we-do/research/technology-transfer/
https://www.nsa.gov/what-we-do/research/technology-transfer/
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