SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

SOFTWARE COMMUNICATIONS ARCHITECTURE V 2.2.2
PRODUCT MIGRATION GUIDE

26 August 2016
Version: 0.1

Prepared by:

Joint Tactical Networking Center
33000 Nixie Way
San Diego, CA 92147-5110

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016
REVISION SUMMARY
Version Revision
0.1 Initial Release

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

TABLE OF CONTENTS
1 SCOPE ...t b et b e 6
1.1 INTOrmMative REFEIENCESoiiiiiiiiiii e 6
2 OVERVIEW ... bbbttt bbbt bbbt 6
3 SCA AL STRUCTUREcotiiititciitest ettt bbbttt anen e 6
4 MIGRATION OF 2.2.2 PRODUCTS ..ottt 8
4.1 SCA 4.1 Common Construct — BaseCOMPONENT............cooviiiiieiieieiieneeee s 8
4.1.1 INEEITACE CNANGESooviiiiiitiii et bbbttt bbbt 10
A.1.11 RESOUICE. ...ttt nn et n e e nme e e e s e nne e 10
A.1.1.2 LITECYCIE .ot 11
A.1.1.3 PIOPEITYSEL....coeeieeie ittt 11
4114 POMSUPPIEE .ttt bbbt 12
4.1.15 TeStablEODJECTceieiiciee e 13
4.1.2 Implementation CRANGEScoiiiieiiieieiese bbb 13
4.1.2.1 ReqUIrEMENTS DIIVEN ..ottt 13
4.1.2.2 SEHUCTUIAL. ...t sb bbb 13
4.2 SCA 4.1 Manageable ApplicationCOMPONENT........ccoiiiiiiiiiieee e 14
4.2.1 INTEITACE CNANGESoviiiiiitiiiieie et bbbttt bbbt n e 16
4.2.2 Implementation CRANGESooiiiiiiiieieiee bbb 16
4.2.2.1 ReqUIrEMENTS DIIVEN ..ottt 16
4.2.2.2 SHUCTUIAL....ceiiiiieeeee e bbbt 17
4.3 SCA 4.1 DeVICe COMPONENTccuiiiiiiiiieteiteite sttt sttt e et bbbt nes 17
4.3.1 INTEITACE CNANGESoviiiiiitieiieie et bbbttt bbbt s e 19
4,311 DEBVICE ...tttk ettt bbbttt b bRttt b e bbbt e e 19
4.3.2 IMplementation CRANGEScoiviiiiiieieiee et 19
4.3.2.1 ReqUIrEMENTS DIIVEN ..ottt ettt 19
4.3.2.2 SHUCTUTAL. ..o et bbbt 20
4.4 SCA 4.1ApplicationManagerCOmMPONENT.........cccuiiiiiierese et 20
441 INTEITACE CNANGESooviiiitiiieiii et bbbt bbbttt bbbt 22
4411 APPIICALION. ...t bbb 22
4.4.2 Implementation CRANGESccoiiiieiiieieie et 22
4421 ReqUIrEMENTS DIIVEN ..ottt 22
A.4.2.2 SHUCTUTAL....coiiiiiec et sb bttt 23
45 SCA 4.1 ApplicationFactoryCOmMPONENTooiiiiieienienie st 23
iii

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

4.5.1 INErface ChaNQESooieiieiie ittt ste et reesbeebeeneenreas 24
45.1.1 APPHCALIONFACIONYcuiiiiiiiiiiciieee e 24
4.5.2 Implementation CRANGEScoiiiiiiiieiee et 25
4521 ReqUIrEMENTS DIIVEN ..ottt 25
4.5.2.2 SHUCTUIAL.....coiiiieieeee et bbbt 26
4.6 SCA 4.1 DeviceManagerCOmMPONENT.........ccuiiiirieieieie ettt 27
4.6.1 INtErface ChaNQESeoiiiieiie ittt et ereesbeenbeeneenreas 29
4.6.1.1 DeviceManager AITDULESccoiiiiiiiiiiiieee s 29
4.6.1.2 DeviceManager OPEIratiONSccccoeieriririeiienieneeste sttt eenes 30
4.6.2 IMplementation CRANGEScooviiiiiieieie et 30
4.6.2.1 ReqUIrEMENTS DIIVEN ..ottt bt 30
4.6.2.2 SHUCTUIAL....ceiiiiiiieec ettt 31
4.7 SCA 4.1 DomainManagerCOMPONENTcoiiiiiiieieiee e 31
A4.7.1 INTEITACE CNANGESoviiiiiitiiieie ettt bbbt bbbt 33
4.7.1.1 DomainManager Types and EXCEPLIONSc.coveierieriririeiieieieese e 33
4.7.1.2 DomainManager ALIDULESccoiiiiriiiiieere e 34
4.7.1.3 DomainManager Registration OPErationscccoererererinieenenene e 34
4.7.2 IMplementation CRANGEScoiiiiiiiieiee bbb 35
4.7.2.1 ReqUIrEMENTS DIIVEN ..ottt bbb 35
A.7.2.2 SEHUCTUIAL. ..ottt 35
1\

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
TABLE OF FIGURES

Figure 1: SCA 2.2.2 ReSOUICE INTEITACEccuveiiiie ittt 9
Figure 2: SCA 4.1 BaSe COMPONENT......c.eciuiiieiieeieiiesteeieseeseeseesseeseete e sseessessaesreesaeanaesraessesneens 10
Figure 3: Resource Interface COMPAIISONccvuiiiieiieieiie st 10
Figure 4: Lifecycle Interface COMPAriSON........cccvoviiiiiiiiie e 11
Figure 5: PropertySet Interface COMPAriSONc.civeiieiieiieiieie e se e 11
Figure 6: Port Interfaces COMPAIISONc.ccveiieiieiieie e sie et ra e ae e e e sreenee e 12
Figure 7: Test Interface COMPAIISONcccviiieiiiiie ettt sae e e e sreenee e 13
Figure 8: SCA 2.2.2 Resource and ResourceFactory INterfaces........cccccovevveveiieiieeve e, 15
Figure 9: SCA 4.1 Manageable ApplicationCOMPONENTccviieiieiiie e 16
Figure 10: SCA 2.2.2 DeViCe INtEITACE........cccveiiei e 18
Figure 11: SCA 4.1 DeViCECOMPONENTeiieiiiiie et eieseeste e et teeste e e sae s e sraesaeeseesreenreenee e 18
Figure 12: Device Interface COMPAIISONccviiuiiieiieeiesie sttt ra et raesre e 19
Figure 13: SCA 2.2.2 Application INterfaceccoevveiiiieiice e 21
Figure 14: SCA 4.1 ApplicationManagerCompONENtccceveeieieeresie e 21
Figure 15: Application Interface COMPAriSONccccveiiiiiiiiicie e 22
Figure 16: SCA 2.2.2 ApplicationFactory INterface..........ccccovveveiiiiicie e 23
Figure 17: SCA 4.1 ApplicationFactoryCOmMPONENTccoveieeieiiiieeie e 24
Figure 18: ApplicationFactory Interface COMPAriSON.........cccoveiiiieiieie e 24
Figure 19: ApplicationFactory Interface Operation COmMPAriSON..........cccccvevveveeiieieese e 25
Figure 20: SCA 2.2.2 DeviceManager INterfacecccocviieiieii i 27
Figure 21: SCA 4.1 DeviceManagerCOMPONENT........cccueviiieiieieiee e eie et sre e 28
Figure 22: DeviceManager Interface COMPAriSONccccovveiieieiieie e 29
Figure 23: DeviceManager Interface Operation COMPAriSONcccvevviieieereiiieieese e 30
Figure 24: SCA 2.2.2 DomainManager INterfaceccoveiveiiiiiiicie e 32
Figure 25: SCA 4.1 DomainManagerCOmMPONENTccveiieiierieiieieerie e s se e sre e 32
Figure 26: DomainManager Interface ComMPariSON...........cccueiveiieiieieeie e 33
Figure 27: DomainManager Interface Attribute COMPAariSONcccecvivieieeieiie s 34
Figure 28: DomainManager Interface Registration Operation CompariSonc.cccccvevvevverveennenn. 34
5

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

1 SCOPE

This Product Migration Guide is an engineering focused document intended to provide practical
guidance and suggestions for migrating Software Communications Architecture (SCA) compliant
products from version 2.2.2 to 4.1 compliance. It is not a substitute for the SCA specification, but
a companion document to highlight items that should be taken into consideration when
modernizing an existing implementation.

1.1 INFORMATIVE REFERENCES

The following documents are referenced within this specification or used as reference or guidance
material in its development.

[1] Software Communications Architecture Specification, Version 4.1, 20 August 2015.
[2] Software Communications Architecture Specification Version 2.2.2, 15 May 2006.

2 OVERVIEW

SCA 4.1 was published in August of 2015 [1]. The specification incorporates a host of features that
facilitate the development and deployment of better performing radio products that are more
secure, capable, and cost effective. The current SCA release provides an upgrade of the widely
deployed SCA 2.2.2 which was released in May 2006 [2].

A topic of interest associated with SCA 4.1 relates to the question of what differences exist
between the specification versions and what steps would be required to migrate SCA 2.2.2
compliant versions to the current SCA version. This document highlights the interface and
requirements differences between the specifications and provides general guidance related to the
steps that would be required to transition an SCA 2.2.2 product. Since SCA products can be
developed using several approaches it is likely that the suggestions contained within this document
will not provide a detailed roadmap of all of the steps required to perform the migration of any
particular implementation. However, the guidance should identify the majority of conceptual items
that will be applicable to products that are migration candidates.

3 SCA4.1 STRUCTURE

SCA 4.1 has a very different appearance than SCA 2.2.2, but at its core the specification includes
the same elements and addresses similar issues. The primary driver behind the cosmetic changes
was the introduction of the Component Model within SCA 4.1. Components represent
"autonomous units within a system or subsystem" which have the following characteristics:

e Provide one or more Interfaces which users may access, and
e Hide the internal representation and make it inaccessible other than as provided by the
Interfaces.

Component definitions reference interface definitions (which may not be component-unique) and
specify required behaviors, constraints or associations that must be adhered to when their
corresponding products are built.

At a functional level, component specifications differ from their incorporated interfaces because
they include the dynamic behavior and semantics that must be provided by the containing entity.
SCA 2.2.2 also contained those functional requirements, but no distinction was made between its

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

“static” and “dynamic” requirements. In some instances, the lack of separation made the
specification more difficult to comprehend. Table 1 below highlights the similarities between the
SCA 2.2.2 and 4.1 interfaces.

Table 1: Comparison between SCA 4.1 and SCA 2.2.2 Interfaces

SCA 4.1 Interface

SCA 2.2.2 Interface Similar Across Portion of 2.2.2 Identical

Versions** Interface®** Content*
Administratablelnterface N/A X
AggregateDevice AggregateDevice X
AggregateDeviceAttributes N/A X

ApplicationFactory

ApplicationFactory

ApplicationManager Application

CapacityManagement N/A

ComponentFactory ResourceFactory

Componentldentifier N/A X
ComponentRegistry N/A

Controllablelnterface N/A X
DeploymentAttributes N/A X
DeviceAttributes N/A X
Domainlnstallation N/A X
DomainManager DomainManager

EventChannelRegistry N/A X
Executablelnterface N/A X
File File

FileManager FileManager

FileSystem FileSystem

FullComponentRegistry N/A

LifeCycle LifeCycle

Loadablelnterface N/A X

PortAccessor

PropertySet

Distribution Statement on the Cover Page applies to all pages of this document.

Port, PortSupplier
PropertySet

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
ReleasableManager N/A
Testablelnterface TestableObject X
N/A Device
N/A Resource
N/A DeviceManager
N/A LoadableDevice
N/A ExecutableDevice

*|dentical interfaces — self-explanatory, the SCA 2.2.2 implementation can be reused in SCA 4.1.

**Similar interfaces — much of the SCA 2.2.2 implementation can be reused in an SCA 4.1
product, however some elements will need to be developed or removed to account for the SCA 4.1
feature set.

***Portion of SCA 2.2.2 interface — Can be either a similar or identical interface, these interfaces
represent an extraction of SCA 2.2.2 concepts within a new, SCA 4.1 interface definition.

4 MIGRATION OF 2.2.2 PRODUCTS

SCA 2.2.2 systems are comprised of Waveforms, Operating Environment components and a Core
Framework implementation. In SCA 4.1 terminology this equates to a collection of Base
Application Components, Base Device Components, Framework Control Components, Framework
Service Components and the underlying services provided by any middleware implementations or
the Real-time Operating System. The primary components within these categories are
ManageableApplicationComponents, Device Components, ApplicationManagerComponents,
ApplicationFactoryComponents, DeviceManagerComponents and DomainManagerComponents.

When migrating a component from SCA 2.2.2 to SCA 4.1 a development team must account for
interface changes, requirements changes and design changes. The subsequent text will focus on the
interface and requirements changes. There may be some references to design changes, but at best
they will be high level because the SCA requirements can be fulfilled using a wide variety of
implementation approaches.

4.1 SCA 4.1 COMMON CONSTRUCT — BASECOMPONENT

The BaseComponent construct is reused across many of the SCA 4.1 Components. In large part
BaseComponent is equivalent to the composition of the SCA 2.2.2 Resource (including all of its
inherited interfaces). Consequently, many of the same elements and techniques are involved in the
migration process. This section captures the activities required to migrate the “BaseComponent”
portion of an SCA 2.2.2 component.

The SCA 2.2.2 base entity is the Resource interface that is shown in Figure 1.

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
«CORBAINterfaces
ProperiySet
«CORBAINterfaces
PortSupplier = = = =
configuredin configProparties @ Properties) | woaid
lquany({inaul configPropertias ;| Propertias) ; waid
metPort(in name stringlidl)) @ abjact(idl)
Y =
\ j.-"r «CORBAIntarfacas
«CORBAIntarfacas TestableObject
LifeCycle
runTast{in leslid @ unsigned langlidl), inout lesiValues © Proparties) | woid

initialize() © void \ .
relaasaCbject() | void| «MhEniss
N \

\\\\%

AN

«CORBAINterfaces
Resource

raadonlys identiliar @ string(idl)

Istari() : wold
slapd) © veid

.
TSRS = HLISBSS
.l" o T &

! - -
! i
sl =
waxcaplians aexcEplions
StartError SlopErrar
in errorMumber © ErmorMumberTyps in errorumber ; ErrcrumberType
in mag : stringgidl) in meg : string(idl}

Figure 1: SCA 2.2.2 Resource Interface

In SCA 4.1 this functionality was componentized and encapsulated within the BaseComponent
construct. The original Resource interface inherited from several smaller interfaces whereas the
new BaseComponent, Figure 2, is an aggregation of optional interfaces. This design pattern is
extended throughout SCA 4.1. In SCA 2.2.2, more complex interfaces such as Device inherit from
Resource. In SCA 4.1, there is no Device interface, but the DeviceComponent inherits the
decomposed interfaces previously encapsulated by Resource.

When porting from SCA 2.2.2 to SCA 4.1, the opportunity exists to delete unnecessary interfaces
to reduce code complexity. As an example, many SCA 2.2.2 implementations merely stubbed out
the TestableObject interface. Depending upon the system design, <<TESTABLE>> may or may
not be supported, and thus represents an opportunity to eliminate the interface.

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide

«interfaces «interfaces
CF::LifeCycle CF::Componentldentifier

w CF:Testablelnterface

Version: 0.1
26 August 2016

«interfaces
CF::Property 5et

sintefaces

0.1 0.1

- i

. e «INTERRCGABLE:
winterfaces T
- e
CF:Controllableinterface +RELEASEABLE

0.1 -
«CONTROLLABLE»

adDNnedss
| +ponnectedComponent *

fr e
«TESTABLE» CONFIGURABLEs
.r"; - wzinterfaces
.»"/ CF:Porthiccessor
- 0.1

0.1 . 0.1

-

-

——
«CONNECTABLE: -

o

+registrar

- «interfaces
wregisterss

CF::ComponentRegistry

1 1‘\'\,EI..'

+domainProfile — \

Descriptor | (1.~

aproduces consumess

aproducess
-~

+Hargetl og
-

\
' +|5\x-|5ntf.hann|§|§§|l
:

Type of Properies. Le
Est, configure, Query
dictates some of the

Componet supported
nterfaces

+property

ComponentProperties ﬁ

Log Service

4
Event Service

Figure 2: SCA 4.1 Base Component

The following interfaces are part of the Resource interface: Resource, LifeCycle, PropertySet,
PortSupplier and TestableObject. The following sections will provide a comparison of those

interfaces.

4.1.1 Interface Changes

4.1.1.1 Resource

interface Resource : LifeCycle - M

TestableObject, PropertySet, FortSupplier
{
exception StartError {
CF::ErrorNumberType errorNumber;
string msg;

exception StopError {
CF::ErrorNumberType errorNumber;
string msg;

readonly attribute string identifier;
void start ()
raises (CF::Resource::StartError);
void stop ()
raises (CF::Resource::StopError);
b

, SCA 4.1

interface Controllablelnterface {
exception StartError {
CF::ErrorNumberType errorNumber;
string msg;

exception StopError {
CF::ErrorNumberType errorNumber;
string msg;
3
readonly attribute boolean started; } 3
void start ()
raises (CF::Controllablelnterface::StartError}
void stop () -
raises (CF::Controllablelnterface::StopError) -
I
interface Componentldentifier { } 2
readonly attribute string identifier;

%

Figure 3: Resource Interface Comparison

=

SCA 4.1 removes the Resource interface.

2. SCA 4.1 introduces the new Controllableinterface and Componentldentifier interfaces in

place of Resource.

Distribution Statement on the Cover Page applies to all pages of this document.

10

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

3. SCA 4.1 introduces the new started attribute within the Controllablelnterface interface.
4. SCA 4.1 re-scopes the exceptions from the Resource interface to the Controllablelnterface
interface.

4.1.1.2 LifeCycle

interface LifeCycle { SCA2.2.2 interface LifeCycle { SCA4.1

exception InitializeError { exception InitializeError {

CF::StringSequence CF::StringSequence
errorMessages; errorMessages;

h b

exception ReleaseError { exception ReleaseError {

CF::StringSequence CF::StringSequence
errorMessages; errorMessages;

b h

void initialize () void initialize ()

raises raises
(CF::LifeCycle::InitializeError); (CF::LifeCycle::InitializeError);
void releaseObject () void releaseObject ()

raises raises
(CF::LifeCycle::ReleaseError); (CF::LifeCycle::ReleaseError);

b h
Figure 4: Lifecycle Interface Comparison
The interfaces are identical.
4.1.1.3 PropertySet
SCA2.2.2 interface PropertySet { SCA 4.1

interface PropertySet {
exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;

exception PartialConfiguration {
CF::Properties invalidProperties;
e
void configure (
in CF::Properties configProperties)
raises
(CF::PropertySet::InvalidConfiguration,
CF::PropertySet::PartialConfiguration);
void query (
inout CF::Properties configProperties)
raises (CF::UnknownProperties);

%

exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;
h

exception PartialConfiguration {
CF::Properties invalidProperties;
h
void configure (
in CF::Properties configProperties)
raises
(CF::PropertySet::InvalidConfiguration,
CF::PropertySet::PartialConfiguration);
void query (
inout CF::Properties configProperties)
raises (CF::UnknownProperties);

Figure 5: PropertySet Interface Comparison

The interfaces are identical.

Distribution Statement on the Cover Page applies to all pages of this document.

11

SCAV 2.2.2 Product Migration Guide

4.1.1.4 PortSupplier

Version: 0.1
26 August 2016

interface PortSupplier {

exception UnknownPort{
! 2

Object getPort (in string name)

I3

interface Port {

exception InvalidPort {
unsigned short errorCode; 3
string msg;

U
exception OccupiedPort { } 2
5
void connectPort (

in Object connection,

in string connectionld)

raises
(CF::Port::InvalidPort,CF::Port::OccupiedPort);

void disconnectPort (
in string connectionld)
raises (CF::Port::InvalidPort);

SCA222

raises (CF::PortSupplier::UnknownPort);

interface PortAccessor {
struct ConnectionldType {
string connectionld;
string portName;
I
typedef sequence <ConnectionldType> Disconnections;
struct ConnectionType {
ConnectionldType portConnectionld;
Object portReference;
I
typedef sequence <ConnectionType> Connections;
struct ConnectionErrorType {
ConnectionldType portConnectionld;
unsigned short errorCode;

I3
exception InvalidPort { } 3
ConnectionErrorType invalidConnections;

void connectUsesPorts(
in CF::PortAccessor::Connections portConnections)
raises(CF::PortAccessor:InvalidPort);
void disconnectPorts(
in CF::PortAccessor::Disconnections portDisconnecions)
raises(CF::PortAccessor:InvalidPort);
void getProvidesPorts(
inout CF::PortAccessor::Connections portConnections)
raises(CF::PortAccessor:InvalidPort);

SCA 4.1

Figure 6: Port Interfaces Comparison

1. SCA 4.1 collapses the functionality of the Port and PortSupplier interfaces and combines it

within the PortAccessor interface.
2. SCA 4.1 eliminates the OccupiedPort exception and reflects its semantics within the

InvalidPort exception.

3. SCA 4.1 refactors the composition of the InvalidPort exception variable to a

ConnectionErrorType.

4. SCA 4.1 refactors port operations to enable multiple connections to be managed on a single
call (e.g. connectUsesPorts rather than connectPort).

Distribution Statement on the Cover Page applies to all pages of this document.

12

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
4.1.1.5 TestableObject
SCA2.2.2 SCA 4.1
interface TestableObject{ interface Testablelnterface {
exception UnknownTest { exception UnknownTest {
h h
void runTest (void runTest (
in unsigned long testld, in unsigned long testld,
inout CF::Properties inout CF::Properties
testValues) testValues)
raises raises
(CF::TestableObject::Unkno (CF::Testablelnterface::Unkno
wnTest,CF::UnknownProper wnTest,
ties); CF::UnknownProperties);
X h

Figure 7: Test Interface Comparison
1. SCA 4.1 renames the TestableObject interface to Testablelnterface.

4.1.2 Implementation Changes
4.1.2.1 Requirements Driven

4.1.2.1.1 Resource

SCA 4.1 introduces three new requirements, SCA32, SCA33 and SCA36 that are associated with
the new started attribute. The implementation requirements associated with this change should be
minimal.

4.1.2.1.2 PortSupplier

The 4.1 specification includes three new requirements SCA11, SCA14 and SCA519 that are a
result of the port restructure, two of which are a byproduct of the fact that the operations need to
accommodate multiple ports. This change will likely result in a moderate change to an existing
implementation.

4.1.2.2 Structural

An SCA 2.2.2 component that uses the Resource interfaces will require the following changes in
order for it to be migrated to SCA 4.1 compliance:

1. Change any scoped or qualified TestableObject references should be to Testablelnterface.

2. Change any scoped or qualified Port or PortSupplier references to PortAccessor.

3. Change any use of the InvalidPort exception to represent the exception’s new format.

4. Update any use of the OccupiedPort or UnknownPort exceptions to become InvalidPort
exceptions.

5. Rename the PortSupplier::getPort operation to PortAccessor::getProvidesPorts and update
its implementation to support requests for multiple provides ports.

13

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016
6. Update the PortAccessor connectPort and disconnectPort operations to delegate calls to the
converted (references and servant classes) non-CORBA (e.g. cpp) Port class.
7. Rename the connectPort operation to connectUsesPorts and update it to support requests for
multiple ports.
8. Rename the disconnectPort operation, will need to be renamed to disconnectPorts and
update it to support requests for multiple ports.
9. Re-scope any use of the StopError or StartError exceptions to a definition within the
Controllablelnterface interface.
10. Update any use of the stop or start operations to reflect a location within the
Controllablelnterface interface.
11. Extend the implementation to include the Controllablelnterface started attribute, a Boolean
attribute that is set and unset when stop and start are called.

4.2 SCA 4.1 MANAGEABLEAPPLICATIONCOMPONENT

SCA 2.2.2 applications or waveforms (ApplicationComponents) realize the Resource and
optionally ResourceFactory interfaces that are illustrated in Figure 8. Application components,
within both SCA 2.2.2 and SCA 4.1 support the same core capabilities of:

e Configuration management
e Operations management

e Life cycle support

e Connectivity management
e Test management

14

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

«CORBAInterfaces
PropertySet

«CORBAInterfaces
PortSupplier

jconfigure(in confligProperties : Properties) : void
lquery(inout configProperties : Properties) : void

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»
TestableObject

«CORBAInterface»
LifeCycle

runTest(in testid : unsigned long(idl), inout testValues : Properties) : void

initialize() : void
releaseObject() : void

«CORBAInterfaces
Resource
lcreadonly» identifier : string(ial)
start() : void
istop() : void
ses» | . “USOS»
’ -
/ T~
-
/ -~
AL =
wexceptions aexcaptions
StantError StopError
in errorNumber : ErrorNumberType in arrorNumber : ErrorNumberType
In msg : string(idl) in msg : string(ial)

«CORBAInterface»
ResourceFactory
«readonly» identifier : string(idl)

createResource(in resourceld : string(kil). in qualifiers : Properties) : Resource
releaseResource(in resourceld : string(idl)) : void
shutdown() : void

=

«USeSP _€USeS® - ~ . kuses»

- - / -~
- / I
- ~
-~ / ~
- S
=" VA S
wexceplions wexception» wexceptions
InvalidResourceld ShutdownFailure CreateResourceFailure
nmsg : string(icl) in errorNumber : ErrorNumberType
¥n msg : string(idl)

Figure 8: SCA 2.2.2 Resource and ResourceFactory Interfaces

As illustrated earlier, Resource is a monolithic interface that incorporates several lower level
interfaces. An SCA 2.2.2 waveform is composed of multiple application components that utilize
the capabilities and services provided by the platform’s operating environment.

Within SCA 4.1 componentization the Resource interface was removed and the developer has the
responsibility of defining Component interfaces, which when realized provides equivalent
functionality. In other words, the developer must build the component (as an example, the
application component) with the BaseComponent interfaces. Unlike the paradigm of SCA 2.2.2,
there is no BaseComponent interface (or corresponding *.idl) to inherit.

15

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
ApplicationC omponent @ «interfaces
CF::LifeCycle
v\\ +fileManagement o g]
. __-,---—}/
ManageableApplicationComponent @ " «accessess
BaseComponent 8
) B
+. yCo n I\~
Boptomponent ‘\ A \‘\\ +fileSysManagement
«accesses» -\ *
«interfacess —
+ Co R e
Py Anpos erl.\/‘! FileSystem Component 8
ApplicationComponent @ ApplicationControllerCom ponent @|

Ba sefac toryComponent @’

ApplicaionComponent 8] ’

+createdComponent \\ ‘ V\ ///
\ N\ /
‘ ApplicationComponentfa ctoryComponent @’

Figure 9: SCA 4.1 ManageableApplicationComponent

An SCA 4.1 developer could define the following interface which effectively mimics the 2.2.2
Resource (there is a difference in the identifier definition which will be accounted for):

interface BaseResource : LifeCycle, TestableInterface,

PropertySet, PortAccessor, ControllablelInterface

Utilizing the SCA 4.1 “Resource”, which is equivalent to a 2.2.2 Resource (LifeCycle is picked up
through BaseResource), as the basis for an SCA 4.1 ApplicationComponent definition, as shown in
Figure 9, is an approach that may be employed to minimize the changes required to migrate an
application.

Similar to SCA 2.2.2, an ApplicationComponentFactoryComponent (ResourceFactory), can be
incorporated optionally as part of an application if desired.

4.2.1 Interface Changes

The SCA 4.1 ApplicationComponent does not introduce additional interface changes beyond those
introduced by the BaseComponent.

4.2.2 Implementation Changes
4.2.2.1 Requirements Driven

SCA 2.2.2 applications contain approximately 75 requirements and that count drops to about 70 in
SCA 4.1. In actuality there is a greater disparity as there are structural and modeling oriented
requirements such as SCA550 (a ManageableApplicationComponent shall realize the LifeCycle
interface) that are included within that count. Once those are removed, there are about 58
requirements allocated to each component.

SCA 4.1 introduces one new requirement, SCA82, at the application level beyond those of the
BaseComponent. SCA82 requires an application component to register with a component registry

16

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

rather than a naming service. The mechanics of this functionality are similar, the component is
provided with a reference that it uses to perform the registration. When the component registers
with the ComponentRegistry it needs to provide a populated ComponentType structure to utilize
the new push model registration. The SCA 4.1 implementation will also need to remove any code
that was associated with the Naming Service. Thus the level of effort and associated with this
change should be moderate.

4.2.2.2 Structural

Another instance where the SCA 4.1 Component Model differs from an SCA 2.2.2 “component” is
that in SCA 4.1 a Waveform developer will need to define their own interface(s) to represent their
waveform components because they are not provided by the framework. As an example, the
developer might choose to extend the BaseResource interface described earlier to create a
Waveform specific interface as follows:

interface MyWaveforml : BaseResource

An SCA 2.2.2 application component that uses the Resource interfaces will require the following
changes beyond those required of a BaseComponent in order to be migrated to SCA 4.1
compliance:

1. Modify any interfaces associated with an SCA component to inherit from a non-CORBA
CF::Port equivalent in order to minimize changes to an existing implementation.

2. Update any use of the identifier attribute to its new location within
CF::Componentldentifier.

3. Review the use of AEP operations to ensure that they are all still in accordance with the
selected profile.

4.3 SCA 4.1 DEVICE COMPONENT

SCA 2.2.2 devices (DeviceComponents) realize the Device interface, see Figure 10, which inherits
the Resource interface. SCA 2.2.2 and 4.1 devices support the same basic capabilities:

e Capacity management

e Configuration management

e Operations management

e Life cycle support

e Connectivity management

e Test management

17

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

«CORBAInterface»
Resource
wreadonly» identifier : string(idl)
istart() - void
istop() : void

ainhgrits»
«CORBAInterface» «uses» wexceptions
Device =3 InvalidState
«readonly» usageState - UsageType - in msg : string(idl)

wreadonly» adminState : AdminType
«readonly» operationalState : OperationalType
areadonly» softwareProfile : string(idl)
areadonly» label ; string(idl) wusSes» <axcaption»
«readonly» compositeDevice : AggregateDevice - InvalidCapacity
a\!ocalaCapac:ty(in gapaciﬁa_'s‘: Properhesl} : boolr;l-an[ndt} T in msg : strng(idl)
deallocateCapacity(in capacities : Properties) : void in capacities : Properties

Figure 10: SCA 2.2.2 Device Interface

Within SCA 4.1 componentization the SCA 2.2.2 hierarchy of Device, Loadable Device, and
Executable Device was removed. Instead, SCA 4.1 introduces the DeviceComponent,
LoadableDeviceComponent and ExecutableDeviceComponent. As with BaseComponent, there is
no encompassing interface for DeviceComponent, Figure 11.

«interfaces «intefaces «interfaces
CF:DeviceAttributes CF::Administratableinterface CF::CapacityManagement
0.1 0.1 0.1
ALLOCATABLE
INTERROGABLE MANAGEABLE
BasePlatfoomComponent al
«interfaces Mm@
CF:AggregateDeviceAttributes |- CCREGATABLE] «interfaces
0.1 1 CF:LifeCycle

«sggregates»
‘compomnb\mreg:uﬂ 9.2

AggregateDeviceComponent a

L\

zinterfaces
CF::FullComponentRegistry

BasePlatformComponent {] +fullRegistrar
0. xunregisterss

Figure 11: SCA 4.1 DeviceComponent

A developer could leverage the SCA 4.1 “Resource” (BaseResource) to create a compliant
interface which is equivalent to a 2.2.2 Device (LifeCycle is picked up through BaseResource):

interface BaseDevice: BaseResouce, DeviceAttributes,
AdministrableInterface, CapacityManagement

18

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide

The AggregateDevice association can be provided at the component level if needed.

4.3.1 Interface Changes
4.3.1.1 Device

Version: 0.1
26 August 2016

interface Device : Resource {
exception InvalidState {
string msg;

gxception InvalidCapacity {
string ms

) CF::Properties capacities;

enum AdminType
LOC%‘I,ED{,
SHUTTING_DOWN,
UNLOCKED

%

enum Operational Type
pENABLED)t,p !

) DISABLED

enum UsageType{
IDLE,

ACTIVE,
BUSY

readonly attribute CF::Device::UsageType usageState;
attribute CF::Device::AdminType adminState;

readonly attribute CF::AggregateDevice compositeDevic
boolean allocateCapacity (in CF::Properties capacities)
raises (CF::Device::InvalidCapacity,
CF::Device::InvalidState);
void deallocateCapacity (in CF::Properties capacities)
raises (CF::Device::InvalidCapacity,
CF::Device:InvalidState);

I

} , SCA 222

readonly attribute CF::Device::Operational Type operationalState;

readonly attribute string softwareProfile;
readonly attribute string label; 3

interface CapacityManagement {
enum UsageType {
IDLE,
ACTIVE,
BUSY

i
readonly attribute CF::CapacityManagement:UsageType usageState;

exception InvalidCapacity {
string msg;
CF::Properties capacities;

boolean allocate Capacity (
in CF::Properties capacities)
raises (CF::CapacityManagement::InvalidCapacity,
CF::InvalidState);
void deallocateCapacity (
in CF::Properties capacities)
raises (CF::CapacityManagement:InvalidCapacity,
CF:InvalidState);
¥
interface DeviceAttributes : Componentidentifier {
enum OperationalType {
ENABLED,
DISABLED
i

readonly attribute CF::DeviceAttributes::Operational Type operationalState;

k
interface Administratableinterface {
enum AdminType {
LOCKED,
SHUTTING_DOWN,
UNLOCKED
k

attribute CF::Administratablelnterface::AdminType adminState;

k%

SCA 4.1

Figure 12: Device Interface Comparison

1. SCA 4.1 removes the Device interface and its Device scoped attributes and exceptions.

N

SCA 4.1 relocates the InvalidState exception to the CF:: name scope.

3. SCA 4.1 eliminates the Device interface softwareProfile and label attributes,
softwareProfile moves to the ComponentType structure and label is removed.

4. SCA 4.1 refactors Device interface into three new interfaces Administrablelnterface,
CapacityManagement and DeviceAttributes, and replaces and of the corresponding scoped
names for attributes, exceptions or data types.

4.3.2 Implementation Changes

4.3.2.1 Requirements Driven

SCA 2.2.2 devices contain approximately 98 requirements, that count increases to 99 in SCA 4.1.
However, when the structural and modeling oriented requirements are removed, there are roughly
84 requirements allocated to each device component.

SCA 4.1 introduces one new requirement, SCA298, at the device level beyond those of the
BaseComponent. SCA298 requires a DeviceComponent to register with a component registry
rather than a naming service. The mechanics of this functionality are similar, the component is
provided with a reference that it uses to perform the registration. When the component registers
with the ComponentRegistry it needs to provide a populated ComponentType structure to utilize

Distribution Statement on the Cover Page applies to all pages of this document.

19

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

the new push model registration. The SCA 4.1 implementation will also need to remove any code
that was associated with the Naming Service. Thus the level of effort and associated with this
change should be moderate.

4.3.2.2 Structural

An SCA 4.1 device developer will need to define their own interface(s) to represent their device
components because they are not provided by the framework. As an example, the developer might
choose to extend the BaseDevice interface to create a Platform Operating Environment specific
interface as follows:

interface MyDecoderDevice : BaseDevice
An SCA 2.2.2 component that uses the Device interface will require the following changes beyond
those required of a BaseComponent to be migrated to SCA 4.1 compliance:
1. Modify any interfaces associated with an SCA component could be modified to inherit from
a non-CORBA CF::Port equivalent in order to minimize changes to an existing
implementation.
2. Update any use of the identifier attribute to its new location within
CF::Componentldentifier.
3. Revise any use of the InvalidState exception to reflect its new location within the CF
module.
4. Update the use of the adminState, usageState or operationalState attributes to reflect their
location within the new CF interfaces.
5. Re-scope any use of the InvalidCapacity exception to reflect its definition within
Device::CapacityManagement.
6. Relocate the implementation of the allocateCapacity and deallocateCapacity operations to
the Device::CapacityManagement interface.
7. Rename any use of the softwareProfile attribute (to profile) and update its scoping in
accordance with its location within the ComponentType structure.
8. Remove any use of the label attribute.
9. Integrate any implementation of an AggregateDevice at the component level, and
incorporate the necessary changes, e.g. forming associations, to represent its new location.

Similar distinctions exist within the comparison of SCA 4.1 LoadableDeviceComponents and
ExecutableDeviceComponents with their SCA 2.2.2 counterparts and their migration should be
able to be performed with a comparable level of effort.

4.4 SCA 4.1APPLICATIONMANAGERCOMPONENT

SCA 2.2.2 applications (ApplicationManagerComponents) realize the Application interface, shown
in Figure 13, which inherits the SCA 2.2.2 Resource interface. Both SCA 2.2.2 and 4.1 application
managers support the same basic capability:

e Provides the Core Frameworks proxy to access an independently developed SCA application

20

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

«CORBAInterface»
Resource

«readonly» identifier : string(idl)
start() : void
stop() : void

«inherits»

«CORBAlInterface»
Application

«readonly» profile : string(idl)
«readonly» name : string(idl)
«readonly» componentNamingContexts : ComponentElementSequence;
«readonly» componentProcesslds : ComponentProcessldSequence
«readonly» componentDevices : DeviceAssignmentSequence
«readonly» componentimplementations : ComponentElementSequence

Figure 13: SCA 2.2.2 Application Interface

Application is a monolithic interface which incorporates several lower level interfaces via its
inheritance of the Resource interface.

Following the pattern of application (i.e. waveform) migration from SCA 2.2.2., an SCA 4.1
developer has the responsibility of defining the Component interface, which when realized
provides the specified functionality.

BaseComponent Sj «interface»
CF::ApplicationManager

+component /
+appComponent 1.+ // AssemblyComponent @
1. «manages /
connectionss ’

wreleases

+targetLog /
- /
0 / «maintains app
Log Service \ deployment data»
«produces» 1 +eventChannel

0"

«managess Event Service

For the AppicationManger |----="""" —_«deallocates
Component the . . +capacityProvider
INTERROGABLE UOF is Dev iceComponent @
enabled 0.*
«delegatesn

«releases»

+appController 1

+componentContainer 0..*

ApplicationControllerComponent g] «unloadss aterminate»

FactoryComp @ ‘

+moduleContainer VU.." +pracess€omamer$ 0."

LoadableDev iceComponent @ ’

ExecutableDeviceCom pnnenl@ ’

Figure 14: SCA 4.1 ApplicationManagerComponent

An SCA developer could define the following interface which could be utilized to manage
applications:

interface myApplicationManager : CF::ApplicationManager
An ApplicationManagerComponent, which is illustrated in Figure 14, inherits the functions and
capabilities of a BaseComponent and can be managed as such. It is worth noting that the

ApplicationManager interface, in its role as a proxy, is also a monolithic interface as it must be
able to support the delegation of operations to any of the instantiated applications that it manages.

21

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

4.4.1 Interface Changes
4.4.1.1 Application

interface Application : Resource { } 3SCA 222 SCA4.1

struct ComponentProcessldTyps

string componentld; interface ApplicationManager : LifeCycle,
. unsigned long processld; PortAccessor, PropertySet, Testablelnterface,
typedef sequence <ComponentProcessidType> Controllablelnterface {

ComponentProcessldSequence;

struct ComponentElementType { f . i
string componentld: readonly attribute string name;

string elementid; }

typedef sequence <ComponentElementType>
ComponentElementSequence;
readonly attribute
CF::Application::ComponentElementSequence
componentNamingContexts;
readonly atiribute

CF::Application::ComponentProcessldSequence
componentProcesslds; 2
readonly attribute CF::DeviceAssignmentSequence
2

componentDevices;
readonly attribute
CF::Application::ComponentElementSequence
componentimplementations; } 2
readonly attribute string profile;
readonly attribute string name;

Figure 15: Application Interface Comparison

1. SCA 4.1 removes componentNamingContexts interface which was associated with the
Naming Service.

2. SCA 4.1 removes the componentimplementations attribute and relocates the profile,
componentDevices and componentProcesslds attribute information within the
ComponentType structure.

3. SCA 4.1 renames the Application interface to ApplicationManager and modifies its
inheritance to reflect the removal of the Resource interface.

4.4.2 Implementation Changes
4.4.2.1 Requirements Driven

SCA 2.2.2 applications contain approximately 114 requirements, and the count decreases to 83 in
SCA 4.1. However, when the structural and modeling oriented requirements are removed, the count
is diminished even more and there are approximately 68 requirements allocated.

SCA 4.1 introduces eight new ApplicationManager requirements beyond those of the
BaseComponent. Four of the new requirements, SCA55, SCA58, SCA59 and SCA523 are
associated with an ApplicationManagerComponent’s role in establishing and destroying
connections to external components. The impact of these changes should be minimal, as the
behavior should mimic the connection logic required for a BaseComponent. The other four
requirements SCA161, SCA162, SCA163 and SCA543 provide clarification of the
ApplicationManagerComponent’s role in delegating operations to the application components that
it manages. The implementation of the requirements should result in a minimal to moderate level of
effort as they introduce new, although not too complex, logic for features such as multiple
assembly controllers.

22

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

4.4.2.2 Structural

An SCA 4.1 Core Framework developer that realizes the ApplicationManager interface will need
to define their own interface(s) to represent the ApplicationManagerComponent, for example the
myApplicationManager interface described earlier.

An SCA 2.2.2 component that implements the Application interface will require the following
changes beyond those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Update any use of the Application interface to ApplicationManager.

2. Eliminate any use of the Resource name will and have the name go directly to one of the
Base Application interface names.

3. Modify any interfaces associated with an SCA component to inherit from a non-CORBA
CF::Port equivalent in order to minimize changes to an existing implementation.

4. Update any use of the identifier attribute to its new location within
CF::Componentldentifier.

5. Remove any reference to the namingContext attribute, or other naming service related
concept (if the implementation is going to implement backwards compatibility then this
logic should be preserved).

6. Any usage of the componentProcesslds, componentDevices or componentimplementations
attributes is integrated within the ApplicationFactoryComponent’s population of the
ApplicationManagerComponent’s ComponentType representation.

45 SCA 4.1 APPLICATIONFACTORYCOMPONENT

SCA 2.2.2 application factories (ApplicationFactoryComponents) realize the ApplicationFactory
interface, which is shown in Figure 16. SCA 2.2.2 and 4.1 application factories support the same
basic capabilities:

e Application deployment

e Application component connection, initialization and configuration

«CORBAInterface»
ApplicationFactory

«readonly» name : string(idl}

«readonly» identifier : string(idl)

«readonly» softwareProfile : string(idl)

create(in name : string(idl), in initConfiguration : Properties, in deviceAssignments : DeviceAssignmentSequence) : Application|

«uUSEesy /,1"/ «ugeis?r-‘_ “«usesy
- - \\ -l -
- N T
- A T
e N T
=" AN, R
«exceﬁ(icn» wexception» «exception»
CreateApplicationRequestError CreateApplicationError InvalidinitConfiguration
in invalidAssignments : DeviceAssignmentSequence in errorNumber : ErrorNumberType in invalidProperties : Proper‘ties|
in msg : string(idl)

Figure 16: SCA 2.2.2 ApplicationFactory Interface

From a functional perspective, SCA 4.1 ApplicationFactoryComponents, see Figure 17, are very
similar to their SCA 2.2.2 counterparts. The primary distinction is that the
ApplicationFactoryComponent has an associated registry, ComponentRegistry, with which its
deployed ApplicationComponents register, as opposed to registering with a Naming Service.

23

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
ainterfaces
CF:Applicationb ooy Descriptor - ApplicationComponent @
+appManager) &‘
| +domainProfile +appComponent 1.

acreatess

LoadableDeviceComponent @ l\ «deployss @
+moduleContainer \ +component BaseComponent
1= «loads L
- ApplicationFactoryC omponent @ econnectse

+processContainer
«8XecUTe s «pruducesx“““ar&&g
ExecutableDev iceComponent @ 0

| =

acreatess «managesm\ Log Service
+componentContainer 0. «obtains «allocatess +eventChanne!
application —=
Applicati FactoryC 8:] companents 0.*
+componentRegigryy| /0.1 +capacityProvidery, 1.* Event Service
«interfaces

CF::ComponentRegistry

DeviceCom ponem@

Figure 17: SCA 4.1 ApplicationFactoryComponent

The ApplicationFactoryComponent is unique in that it is not a BaseComponent, a fact that serves to

minimize some of the differences that would be encountered when migrating an SCA 2.2.2

implementation.

4.5.1 Interface Changes
45.1.1 ApplicationFactory

M interface ApplicationFactory { M
exception CreateApplicationRequestError {
interface ApplicationFactory { CF::DeviceAssignmentSequence
invalidAssignments; };
exception CreateApplicationRequestError { exception CreateApplicationError {
CF::DeviceAssignmentSequence CF::ErrorNumberType errorNumber;
invalidAssignments; }; string msg; };
exception CreateApplicationError { exception InvalidinitConfiguration {
CF::ErrorNumberType errorNumber; CF::Properties invalidProperties; };
string msg; };
exception InvalidInitConfiguration { readonly attribute string name; =
CF::Properties invalidProperties; }; struct ExecutionAffinity Type p.
readonly attribute string name; 7 : string componentld;
readonly attribute string identifier; L string processCollocation; L
readonly attribute string softwareProfile; CF::ULongSeq coreAffinities;
}: };
typedef sequence <ExecutionAffinity Type>
ExecutionAffinitySequence; o

Figure 18: ApplicationFactory Interface Comparison

1. SCA 4.1 eliminates the identifier attribute and moves the softwareProfile to the
ComponentType structure.
2. SCA 4.1 introduces new data types for multi-core processor support.

24

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
_ - interface ApplicationFactory {
interface ApplicationFactory {
o CF::ComponentType create (
CF::Application create (in string name
instring name, ¢ i in CF::Properties initConfiguration,
in CF::Properties initConfiguration, . i in CF::DeviceAssignmentSequence deviceAssignments!
in CF::DeviceAssignmentSequence deviceAssignments in CF::Properties deploymentDependencies } 2
)) o o in CF::ApplicationFactory::ExecutionAffinitySequenc
raises (CF::ApplicationFactory::CreateApplicationError, executionAffinityAssignments 3
CF::ApplicationFactory::CreateApplicationRequestError,)
; CF::ApplicationFactory::InvalidinitConfiguration); raises (CF::ApplicationFactory::CreateApplicationError,
I3 CF::ApplicationFactory::CreateApplicationRequestError,

CF::ApplicationFactory::InvalidinitConfiguration);
I

Figure 19: ApplicationFactory Interface Operation Comparison

1. SCA 4.1 modifies the create operation’s return value from an Application interface to a
ComponentType structure.

3. SCA 4.1 adds the deploymentDependencies parameter to enable enhanced deployment
support.

4. SCA 4.1 introduces the executionAffinityAssignments parameter for multi-core processor
support.

4.5.2 Implementation Changes
45.2.1 Requirements Driven

The SCA 2.2.2 application factory contains approximately 35 requirements. The SCA 4.1
ApplicationFactoryComponent appears to have many more requirements with 64, or when the
structural and modeling oriented requirements are removed 63.

However, many of the 35 new ApplicationFactory requirements would not need to be implemented
in a scenario where an SCA 2.2.2 implementation was being migrated to SCA 4.1 because they are
associated with features that were not available within the older specification. 16 requirements,
SCA84*, SCA68*, SCAT1*, SCAT72*, SCA73*, SCA76*, SCA81*, SCA83*, SCA85*, SCA69*,
SCA70*, SCAT77*, SCA86*, SCA87*, SCA98*, SCA524* are associated with Application
Backwards Compatibility — an SCA 4.1 Core Framework managing SCA 2.2.2 Applications;
SCA70 was introduced to support sub-applications within an application, nested deployment;
SCA575 was introduced to in support to allow an ApplicationFactoryComponent to deploy
operations and utilize the capabilities of multi-core processors, Core Affinity; and nine
requirements, SCA92, SCA93, SCA94, SCA95, SCA96, SCA97, SCA105, SCA106, SCA98 are
associated with the SCA 2.2.2 Channel Extension and could be reused if the 2.2.2 product
implemented the extension. Therefore, the SCA 4.1 ApplicationFactoryComponent effectively
introduces eight new requirements.

25

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

Three of the new requirements, SCA77, SCA86 and SCA87 are associated with component
identifiers and should result in a minimal change for a CF developer as identifier because the logic
to create an identifier exists at other locations within the Core Framework and can be reused.
SCAG69 instructs the developer on how to handle the deploymentDependencies parameter. This
change should also be relatively straightforward as it can reuse or leverage other code which
accommodates property precedents. SCA576 dictates how an ApplicationFactoryComponent
should store information about its deployed components and this should be a trivial extension to the
ComponentType structure. SCA570 requires the ApplicationFactoryComponent to throw an
exception if the ApplicationManagerComponent already exits. This should be a simple extension to
throw the exception, as it is likely that logic already exists to check the value. SCA542 modifies the
parameters passed to an executable device to include a reference to the ComponentRegistry
instance, which should be an easy modification to the existing execute call. Lastly, SCA555
introduces a check that instructs the ApplicationFactoryComponent on when it should instantiate an
SCA 2.2.2 application. This final change should also be relatively simple because most Core
Framework implementations know how to extract and process domain profile information.

45.2.2 Structural

An SCA 4.1 Core Framework developer that realizes the ApplicationFactory interface will need to
define their own interface(s) to represent the ApplicationFactoryComponent, for example the
myApplicationFactory interface defined below, because one is not provided by the framework.

interface myApplicationFactory : CF::ApplicationFactory

If the objective of the migration is to transition the existing implementation to SCA 4.1 and
minimize the resources required, then the new SCA 4.1 ApplicationFactoryComponent features of
Channel Extension, Nested Deployment, Multicore Support and Application Backwards
Compatible will not be implemented.

1. Eliminate the identifier and softwareProfile ApplicationFactory interface attributes and
reconstitute them as fields within the ApplicationFactoryComponent’s ComponentType
representation.

2. Refactor the application’s proxy object that is instantiated by the ApplicationFactory from a
realized Application to ApplicationManager interface.

3. Refactor the ApplicationFactoryComponent to construct and populate a ComponentType
structure.

4. Modify the create operation’s return type from an Application object to a ComponentType
structure which represents the ApplicationManager.

5. Modify the create operation implementation to accommodate the existence of the
deploymentDependencies parameter.

6. Modify the create operation implementation to accommodate the existence of the
executionAffinityAssignments parameter.

7. Convert the application factory’s association with a Naming Service implementation to an
association with a ComponentRegistry. The ComponentRegistry will serve as the repository
with which deployed components will register (may require implementation of
ComponentRegistry).

26

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

10.

11.

12.

13.
14.

15.

16.

26 August 2016

Store the components deployed by the ApplicationFactoryComponent within the
ComponentType’s specializedInfo.

Update the ApplicationFactoryComponent’s call to the platform’s execution operation to
pass a reference to a ComponentRegistry.

Update any use of the ResourceFactory interface to refer to a
ComponentFactoryComponent reference.

Update any use of the ExecutableDevice interface to refer to a
ExecutableDeviceComponent reference.

Update any use of the LoadableDevice interface to refer to a LoadableDeviceComponent
reference.

Update any use of the Device interface to refer to a DeviceComponent reference.

Update any use of the Resource interface to refer to a ManageableApplicationComponent
reference.

Modify any use of the DomainManagementObjectAddedEventType to use a
ComponentChangeEventType.

Extend the ApplicationFactoryComponent to create a unique connection identifier when
none is provided.

4.6 SCA 4.1 DEVICEMANAGERCOMPONENT

SCA 2.2.2 device managers (DeviceManagerComponents) realize the DeviceManager interface,
illustrated in Figure 20, which inherits the SCA 2.2.2 PortSupplier and PropertySet interfaces.
SCA 2.2.2 and 4.1 device managers support the same basic capabilities:

e Device and Service deployment
e Node management

«CORBAInterface»
PropertySet

«CORBAInterface»
PortSupplier

configure(in configProperties : Properties) : void
query(inout configProperties : Properties) : void

«inherits» «inherits»

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»
DeviceManager

«readonly» deviceConfigurationProfile : string(idl)

«readonly» fileSys : FileSystem

«readonly» identifier : string(idl)

«readonly» label : string(idl)

«readonly» registeredDevices : DeviceSequence

«readonly» registeredServices : ServiceSequence

registerDevice(in registeringDevice : Device) : void

unregisterDevice(in registeredDevice : Device) : void

shutdown() : void

registerServce(in registeringService : object(idl), in name : string(idl)) : void
unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void
getComponentimplementationld(in componentinstantiationld : string(idl)) : string(idl)

Figure 20: SCA 2.2.2 DeviceManager Interface

SCA 4.1 removed the DeviceManager interface and modifies the DeviceManagerComponent to
have an associated registry, ComponentRegistry, with which the components it deploys register.

27

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

The DeviceManagerComponent, which is shown in Figure 21, inherits the functions and
capabilities of a BaseComponent and consequently can be managed as such.

«interface»
BaseComponent @ CF::DeploymentAttributes
«interface»
+ deployedComponents Components CF::Componentidentifier

+ identifier: stning
0.1

FileSystemComponent 8
+nodeFileSysdem

0"

«interface» «creates»
CF::ReleaseableManager \
0.* leconamgorc«npumua

L
O«wANAGER‘RELEASABLE,

«INTERROGABLE»

+ shutdown(). void

1 +domainRegistrar
«creales»/ 1 “regiser 0.1

deployedCF . «creates»

i 0 +componentRegistry «interface»

N CF::ComponentRegistry
P ponentFactoryComp {] 0.1
«unregiters» + regiderComponent(ComponentType): void
«manages» \
+domain FullRegistrar

odeployedCompone(r)\l_/ N 91 /v

«inteface»
BasePlatformComponent @ ’ CF::FullComponentRegistry

+ unregigerComponent(string). void

Figure 21: SCA 4.1 DeviceManagerComponent

A developer could define the following SCA 4.1 compliant interface:
interface myDeviceManager : CF::DeploymentAttributes,
ComponentIdentifier

The inheritance of the CF::DeploymentAttributes interfaces provides external clients with the
ability to interrogate the DeviceManagerComponent regarding the platform components it
deployed.

28

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide

4.6.1 Interface Changes
4.6.1.1 DeviceManager Attributes

interface DeviceManager : PropertySet, PortSupplier {
struct ServiceType {
Object serviceObject;
string serviceName;
¥

typedef sequence <ServiceType> ServiceSequence;

readonly attribute string deviceConfigurationProfile;

readonly attribute CF::FileSystem fileSys;

readonly attribute string identifier;

readonly attribute string label; } 2

readonly attribute CF::DeviceSequence
registeredDevices;

registeredServices;

SCA2.2.2

} s

-
readonly attribute CF::DeviceManager::ServiceSequence F 3

Version: 0.1
26 August 2016

SCA 4.1
interface Componentldentifier {
readonly attribute string identifier; } 3

h

interface DeploymentAttributes {

readonly attribute CF::Components
deployedComponents;

h

Figure 22: DeviceManager Interface Comparison

1. SCA 4.1 removes the DeviceManager interface.
SCA 4.1 removes the label attribute.
3. SCA 4.1 moves the identifier attribute to the Componentldentifier interface and collapses

N

the registeredDevices and registeredServices attributes to the deployedComponents attribute

within the DeploymentAttributes interface.

4. SCA 4.1 relocates the deviceConfigurationProfile, fileSys, registeredComponents and
registeredServices (deployedComponents) attributes to the ComponentType structure.

Distribution Statement on the Cover Page applies to all pages of this document.

29

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
4.6.1.2 DeviceManager Operations
SCA2.2.2 SCA 4.1
interface DeviceManager : PropertySet, PortSupplier { interface ReleasabIeManager {
void registerDevice (2 : .
in CF::Device registeringDevice } i) SIS0 (0F

void unregisterDevice (
in CF::Device registeredDevice
) raises (CF::InvalidObjectReference);

void shutdown ();
void registerService (} 2
in Object registeringService,
in string name

) raises (CF::InvalidObjectReference);
void unregisterService (} 2

in Object unregisteringService,
in string name
) raises (CF::InvalidObjectReference); }
3

) raises (CF::InvalidObjectReference); } b
2

string getComponentimplementationld (
in string componentinstantiationld

);

Figure 23: DeviceManager Interface Operation Comparison

1. SCA 4.1 relocates the shutdown operation within the ReleasableManager interface.

2. SCA 4.1 abstracts the registerService and registerDevice operations to registerComponent;
the unregisterService and unregisterDevice operations to unregisterComponent SCA 4.1;
removes registration and unregistration operations from the device manager and places
them in independent registry components.

3. SCA 4.1 removes the getComponentimplementationld operation and maintains
implementation properties within the ComponentType structure.

4.6.2 Implementation Changes
4.6.2.1 Requirements Driven

SCA 2.2.2 device managers contain approximately 56 requirements. The SCA 4.1
DeviceManagerComponent contains approximately 91 requirements and when the structural and
modeling oriented requirements are removed there are about 70. Many of the 33 new requirements
introduced in SCA 4.1 would not need to be implemented if an SCA 2.2 device manager was being
migrated. 25 of the new requirements are a result of the DeviceManagerComponent’s inheritance
of BaseComponent and which would not need to be fully implemented in order to provide SCA
2.2.2 functionality. Once the BaseComponent requirements are removed there are eight new
requirements that would need to be implemented.

Two requirements, SCA429 and SCA153 provide text clarifications from SCA 2.2.2 and may
already be implemented. If they require a change, the effort should be minimal. SCA 4.1 introduces
four requirements SCA438, SCA439, SCA449, SCA573 which are associated with support for the
PlatformComponentFactory. The introduction of the PlatformComponentFactory represents a new
capability within SCA 4.1 and would require a moderate change within a
DeviceManagerComponent as it introduces new logic, but the code should be similar to an

30

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

ApplicationFactoryComponent’s use of the ComponentFactory. One new requirement, SCA572, is
associated with saving component allocation properties and requires a minimal change to store the
property information within the ComponentType structure. The final new requirement is SCA133
and it should require a minimal change as it introduces a new exception case.

4.6.2.2 Structural

An SCA 4.1 Core Framework developer will need to define their own interface(s) to represent a
DeviceManagerComponents because it is not provided by the framework.

An SCA 2.2.2 component that uses the DeviceManager interface will require the following
changes beyond those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Remove the DeviceManager interface in lieu of a new, user-defined interface.

2. Modify any interfaces associated with an SCA component could be modified to inherit from

a non-CORBA CF::Port equivalent in order to minimize changes to an existing

implementation.

Construct a container of type ComponentType for the DeviceManager component.

Relocate the deviceConfigurationProfile attribute information within the ComponentType

container.

Relocate the fileSys attribute information within the ComponentType container.

Relocate the identifier attribute information within the ComponentType container.

Relocate the shutdown operation implementation to the ReleasableManager interface.

Copy the identifier attribute information within the Componentldentifier interface.

Remove the label attribute.

10. Remove the Device and Service registration and unregistration operations in favor of a
ComponentRegistry implementation (if needed those operations could provide the basis of
the registry implementation).

11. Migrate the logic which stored data within the registeredDevices and registeredServices to
be associated with the component registry.

12. Store the information about the registered (deployed) components within the
DeploymentAttributes interface.

13. Store the information about the registered (deployed) components within the
ComponentType container.

14. Remove the getComponentimplementationld interface and ensure that the data that would
have be retrieved through that interface is stored within the ComponentType container.

P w

© o NG

4.7 SCA 4.1 DOMAINMANAGERCOMPONENT

SCA 2.2.2 domain managers (DomainManagerComponents) realize the DomainManager interface,
that is shown in Figure 24, which inherits the PropertySet interface. SCA 2.2.2 and 4.1 domain
managers support the same basic capabilities:

e Application installation
e Component registration and unregistration
e Management of applications, application factories and device managers within the domain

31

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide

Version: 0.1

26 August 2016

e Event channel registration for external consumers

«CORBAInterface»
PropertySet

configure(in configProperties : Properties) : void
query(inout configProperties : Properties) : void

«inherits»

«CORBAInterface»
DomainManager

«readonly» identifier : string(idl)

«readonly» deviceManagers : DeviceManagerSequence

«readonly» applications : ApplicationSequence

«readonly» applicationFactories : ApplicationFactorySequence

«readonly» fileMgr : FileManager

«readonly» domainManagerProfile : string(idl)

registerDevice(in registeringDevice : Device, in registeredDeviceMgr : DeviceManager) : void
registerDeviceManager(in deviceMgr : DeviceManager) : void

unregisterDevice(in unregisteringDevice : Device) : void

unregisterDeviceManager(in deviceMgr : DeviceManager) : void

installApplication(in profileFileName : string(idl)) : void

uninstallApplication(in applicationld : string(idl}) : void

registerService(in registeringService : object(idl), in registeredDeviceMgr : DeviceManager, in name : string(idl)) : void
unregisterService(in unregisteringService : object(idl), in name : siring(idl)) : void

registerWithEventChannel(in registeringObject : object(idl}, in registeringld : string(idl), in eventChannelName : string(idl)) : void
unregisterFromEventChannel(in unregisteringld : string(idl), in eventChannelName : string(idl)) : void

Figure 24: SCA 2.2.2 DomainManager Interface

The SCA 4.1 DomainManagerComponent has an associated registry, ComponentRegistry, with
which the components it managers register. The DomainManagerComponent, illustrated in Figure
25, inherits the functions and capabilities of a BaseComponent and consequently can be managed

as such.

CF::Domaininstallation

«interfacexs BaseComponent @ «interfaces
CF::EventChannelRegistry CF::DomainManager
N
0.1 4domainCompcnent7 1.* N
-
- ot -
-
«interfaces Pl App FactoryComp t g]

«EVENT_CHANNEL»

«APPLICATION_INSTALLABLE» «restoress 0.0

+appManagerComponent

«oontainss

-
R «createss
+componentRegistry 0.1

«interfaces
CF::ComponentRegistry

«manages

incoming ang ~ “Manages»

outgoing domain

«USESH
Event channels»

+fileManager
-

«interfacexs

+dominevent€hannel& FileManagerComponent 8
CF::FullComponentRegistry +utilityComponent {{/0..*

0.-

Event Service

Figure 25: SCA 4.1 DomainManagerComponent

Distribution Statement on the Cover Page applies to all pages of this document.

32

SCAV 2.2.2 Product Migration Guide Version: 0.1

26 August 2016
A developer could define the following SCA 4.1 compliant interface:
interface myDomainManager : CF::DomainManager,
CF::DomainInstallation
Where the inheritance of the CF::Domaininstallation interfaces provides the
DomainManagerComponent with the ability to install applications.
4.7.1 Interface Changes
4.7.1.1 DomainManager Types and Exceptions
interface DomainManager : PropertySet { SCA 2.2.2 . . . SCA 41
exception ApplicationinstallationError {F 2 interface Domainlnstallation {
CF::ErrorNumberType errorNumber; exception ApplicationinstallationError { p.
strmg msg; }:_ . CF::ErrorNumberType errorNumber;
exception ApplicationAlreadylnstalled { }; 2 string msg; };
exception Invalididentifier {}; ring msg; J;
exception DeviceManagerNotRegistered { }; } exception ApplicationAlreadylnstalled{ }; 2
exception ApplicationUninstallationError { 2 exception Invalididentifier { };
CF::ErrorNumberType errorNumber; exception ApplicationUninstallationError {

string msg; };
exception RegisterError {
CF::ErrorNumberType errorNumber;

CF::ErrorNumberType errorNumber;
string msg; };

string msg; }; %
exception UnregisterError {
CF::ErrorNumberType errorNumber; interface EventChannelRegistry {
siring msg; }, exception AlreadyConnected { }; 2
exception AlreadyConnected { };
exception InvalidEventChannelName {}; 2 exception InvalidEventChannelName { };
exception NotConnected { }; exception NotConnected { };

typedef sequence <Application> ApplicationSequence;

typedef sequence <ApplicationFactory> 3
ApplicationFactorySequence;

typedef sequence <DeviceManager>
DeviceManagerSequence;

Figure 26: DomainManager Interface Comparison

1. SCA 4.1 preserves the DomainManager interface but decomposes it to create two new
interfaces, Domaininstallation and EventChannelRegistry.

2. SCA 4.1 relocates exceptions to the new interfaces.

SCA 4.1 removes specialized type definitions.

4. SCA 4.1 relocates registration exceptions to component registry interfaces (distinct from the
DomainManager interface).

w

33

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide

4.7.1.2 DomainManager Attributes

Version: 0.1
26 August 2016

SCA2.2.2

readonly attribute string domainManagerProfile;

readonly attribute
CF::DomainManager::DeviceManagerSequence
deviceManagers;

readonly attribute CF::DomainManager::ApplicationSequence
applications;

readonly attribute
CF::DomainManager::ApplicationFactorySequence

SCA 4.1

interface DomainManager : Componentldentifier { } 2

readonly attribute string domainManagerProfile;
readonly attribute CF::Components managers;

readonly attribute CF::Components applications;
readonly attribute CF::Components applicationFactories;
readonly attribute CF::FileManager fileMgr;

%

applicationFactories;

readonly attribute CF::FileManager fileMgr;
readonly attribute string identifier; } 2

Figure 27: DomainManager Interface Attribute Comparison

1. SCA 4.1 uses a common type definition, CF::Components for managed elements.
2. SCA 4.1 relocates the identifier attribute to the Componentldentifier interface.

4.7.1.3 DomainManager Registration Operations

SCA 4.1

void registerDevice (M
in CF::Device registeringDevice;
in CF::DeviceManager registeredDeviceMgr)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager::DeviceManagerNotRegistered,
CF::DomainManager::RegisterError);
void unregisterDevice (
in CF::Device unregisteringDevice)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);
void registerService (
in Object registeringService,
in CF::DeviceManager registeredDeviceMagr,
in string name)
raises (CF::InvalidObjectReference,
CF::DomainManager::DeviceManagerNotRegistered,
CF::DomainManager::RegisterError);
void unregisterService (
in Object unregisteringService,
in string name)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);
void registerDeviceManager (
in CF::DeviceManager deviceMgr)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager::RegisterError);
void unregisterDeviceManager (
in CF::DeviceManager deviceMgr)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);

Figure 28: DomainManager Interface Registration Operation Comparison

1. SCA 4.1 removes registration and unregistration operations from DomainManager and
places them in the ComponentRegistry interface for registration and
FullComponentRegistry interface for unregistration.

34

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1
26 August 2016

4.7.2 Implementation Changes
4.7.2.1 Requirements Driven

SCA 2.2.2 domain managers contain approximately 130 requirements, and the count decreases to
124 in SCA 4.1. However, when the structural and modeling oriented requirements are removed,
the count is decreased to about 112 allocated 68 requirements.

Similar to the DeviceManagerComponent, several new DomainManagerComponent requirements
were introduced with its BaseComponent inheritance which do not need to be implemented in the
migration scenario. Therefore, there are nine new DomainManagerComponent requirements
beyond those of the BaseComponent. SCA518 establishes the domain manager as a safety valve to
disconnect components that are being torn down. This enhancement should be a minimal change,
as it should reuse other releaseObject logic. SCA571 introduces a requirement for the
installApplication operation to return a ComponentType structure, which should be a minimal
change that requires an implementation to reorganize most of the information that is maintained
within the code. Six requirements, SCA132, SCA135, SCA149, SCA194, SCA198 and SCA199
are associated with component registration. The change should be a minimal impact, as it will be a
refactoring of logic from the preexisting registration and unregistration operations. One
requirement, SCA552, is associated with backwards compatibility and should require a minimal
change, to check for the presence of an SCA 2.2.2 application and throw an exception when they
are not handled by the Core Framework.

4.7.2.2 Structural

An SCA 4.1 Core Framework developer that realizes the DomainManager interface will need to
define their own interface(s) to represent the DomainManagerComponent, for example the
myDomainManager interface described earlier.

An SCA 2.2.2 component that implements the DomainManager interface will require the following
changes beyond those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Refactor any use of the PropertySet interface operations to reflect its location within the
DomainManagerComponent.

2. Implement the new Domaininstallation interface which will be inherited by the
DomainManager interface.

3. Implement the new EventChannelRegistry interface which will be inherited by the
DomainManager interface.

4. Remove the device, service and device manager registration and unregistration operations
in favor of a ComponentRegistry implementation (if needed those operations could provide
the basis of the registry implementation).

5. Relocate the installation related operations to the new Domaininstallation interface.

6. Relocate the event channel registration related operations to the new EventChannelRegistry
interface.

7. Relocate the registration and unregistration exceptions to the ComponentRegistry
implementation.

8. Relocate the installation and uninstallation exceptions to the Domainlnstallation interface.

9. Relocate the event channel registration exceptions to the EventChannelRegistry interface.

35

Distribution Statement on the Cover Page applies to all pages of this document.

SCAV 2.2.2 Product Migration Guide Version: 0.1

10.
11.
12.
13.

14.
15.
16.

17.
18.

26 August 2016

Remove the type definition of the specialized ApplicationSequence type.

Remove the type definition of the specialized ApplicationFactorySequence type.
Remove the type definition of the specialized DeviceManagerSequence type.

Rename the deviceManagers attribute to managers and change its type to be
ComponentType.

Modify the applications attribute to be type ComponentType.

Modify the applicationFactories attribute to be type ComponentType.

The implementation will need to introduce the new Componentldentifier interface which
will be inherited by the DomainManager interface.

Relocate the identifier attribute to the new Componentldentifier interface.

Modify the install Application interface to return a ComponentType rather than a void.

36

Distribution Statement on the Cover Page applies to all pages of this document.

	1 Scope
	1.1 Informative References

	2 Overview
	3 SCA 4.1 Structure
	4 Migration of 2.2.2 Products
	4.1 SCA 4.1 Common Construct – BaseComponent
	4.1.1 Interface Changes
	4.1.1.1 Resource
	4.1.1.2 LifeCycle
	4.1.1.3 PropertySet
	4.1.1.4 PortSupplier
	4.1.1.5 TestableObject

	4.1.2 Implementation Changes
	4.1.2.1 Requirements Driven
	4.1.2.1.1 Resource
	4.1.2.1.2 PortSupplier

	4.1.2.2 Structural

	4.2 SCA 4.1 ManageableApplicationComponent
	4.2.1 Interface Changes
	4.2.2 Implementation Changes
	4.2.2.1 Requirements Driven
	4.2.2.2 Structural

	4.3 SCA 4.1 Device Component
	4.3.1 Interface Changes
	4.3.1.1 Device

	4.3.2 Implementation Changes
	4.3.2.1 Requirements Driven
	4.3.2.2 Structural

	4.4 SCA 4.1ApplicationManagerComponent
	4.4.1 Interface Changes
	4.4.1.1 Application

	4.4.2 Implementation Changes
	4.4.2.1 Requirements Driven
	4.4.2.2 Structural

	4.5 SCA 4.1 ApplicationFactoryComponent
	4.5.1 Interface Changes
	4.5.1.1 ApplicationFactory

	4.5.2 Implementation Changes
	4.5.2.1 Requirements Driven
	4.5.2.2 Structural

	4.6 SCA 4.1 DeviceManagerComponent
	4.6.1 Interface Changes
	4.6.1.1 DeviceManager Attributes
	4.6.1.2 DeviceManager Operations

	4.6.2 Implementation Changes
	4.6.2.1 Requirements Driven
	4.6.2.2 Structural

	4.7 SCA 4.1 DomainManagerComponent
	4.7.1 Interface Changes
	4.7.1.1 DomainManager Types and Exceptions
	4.7.1.2 DomainManager Attributes
	4.7.1.3 DomainManager Registration Operations

	4.7.2 Implementation Changes
	4.7.2.1 Requirements Driven
	4.7.2.2 Structural

UNCLASSIFIED

SCA 2.2.2 tto 4.1 Migratiomn

August 2016
JTNC Standards

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

 There are three distinct families of SCA 2.2.2
developers

— Application Developers
» Build Waveforms using the Base Application Interfaces
» Migrate in accordance with the application migration guidance

— Device Developers
» Build Devices using the Base Device Interfaces
» Migrate in accordance with the Device migration guidance

— Infrastructure Developers
» Build Waveforms using the Framework Control Interfaces

» Migrate in accordance with the Application, ApplicationFactory,
DeviceManager or DomainManager migration guidance depending
on which components are supported

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 application Migration

SCA 2.2.2 applications (ApplicationComponents) realize the Resource and optionally

ResourceFactory interfaces

Resource is a monolithic interface which incorporates several lower level interfaces

«CORBAINtarfaces:
PraperlySet

«CORBAInterfaces

PortSupplier

carfigure]in configProperties @ Properties) | void
uery{inaul configProperties : Properties) : waid

lgetPartin name : siing{idl)) - objectiidl)

&

b

«CORBAIntarfacas
TestableOblect

wCORBAINtarfacas \

LifeCycla \

run Test{in teslid | unsigned long(idl), inoul lestValues @ Proparties) | void

initialize() - wid
releaseObject() | void

o\
N\

N/

.

«CORBAINtarfacas
Resource

craadonlys dentifier : stinglicl)

[Etan) : void
letesp) ¢ woid

"
lsass ~—
i = -
! -

Sl

—

=

aCORBAInerfaces
ResourceFactory

«readonlys identifier - strimg(kdl}

creataResourca{in resourcald : string (i}, in qualifiers | Properties) - Resourca
ralaaseResource(in resourceld : stringlidl}y) : void
shutdowni) - void

Coa

.
HUSESR LHUSE5E ~ HUSEsH
T
- - - l'l - -
- ! -]
.
S
L~ e ~
sExceplions agexceptions sexcaptions

InvalidResourceld

ShutdownFailure

weneapliong
StarEros

in errorflumber : ErorfumberType
in mag : stringiidl}

agxcBplions
StopErrar
in arrortlumber ; ErrorbumberType
in mag : stringfidl}

CreateResourceFailura

Fn mag ; string{idl) n errarMumber ; ErrorNumberType
Fn maq ; string(idl)

SCA 2.2.2 application components (e.g. waveform components) approximate SCA
4.1 BaseComponent functionality

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 4.1 “application”

ainterfamexs winterfaces winterfaces winmterfaces
CF:LifeCycle CF::Componentldentifier CF::Testablelnterface CF::Property Set
=

0.1 \‘.El..'l !'r 0.1 ~ 0.1
. \ 7
" A " -
sinterfaces .., “INTERROGABLE: LTESTABLEs .CONFIGURABLE» —
= e -~ zinterfacex
CF:Controllableinterface RELEASEABLES f;’ P il
— H‘M o N
0.1 77— =~ ~ o
- T A 0.1
«CONTROLLABLE S WCONNECTABLES
o:I:}I'II:IEEIS:o sregistrar
+connectedComponent = . T «interfaces
— «regisierss CF::ComponentRegistry
. . 1 .""'-.E'..' a.=
+domainProfile . S
- "'l\' Hﬁ""\-._‘
Descriptor <[|1..- \'\ aproducess
aprodUces coOnNsUMEes» ﬁsrﬂEﬂZﬁ_ﬂn
J-'f +eventChannel :.4

Type of Properties, ie - Log Service

+property
Est. configure, query propeny
dictates some of the i
Componet supported ComponentProperties ﬁ
nierfaces /

Ewent Service

SCA 4.1 has been restructured to explain the specification in an interface / component representation

* The Resource and Device interfaces have been removed, the developer has the responsibility of
defining interfaces which when realized provide equivalent functionality

* Adeveloper could define the following SCA 4.1 compliant interface which effectively mimics the

2.2.2 Resource (there is a difference in the identifier definition which will be accounted for):
— interface BaseResource : LifeCycle, Testablelnterface, PropertySet, PortAccessor, Controllablelnterface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 4

SCA 4.1 ApplicationComponent

Bas eComponent @
ApplicationC omp onent g] winterfa cex
CF:LifeCycle
FileC t g
\R_\ +filel anage ment =S
ApplicationCompone nt @ N _____———__::-
ManageableApplicaticnComponent S:l — «accessess
AN
+applom pnnentq\ H’“HEH +fileSysManagement
ApplicationComponent @ Ba sefFac toryCompone nt {] ®BCOESEESR o . ¢
xinterfacess -
=7 Fproxylom p:-nent\lz‘h' File 5ystemCompenent @
+createdComponent T Y?\ /// ApplicationControll erCom pone nt @
e
N -

Applic ationC omponentf a ctoryC omponent 8:]

* Adeveloper could utilize the user-defined BaseResource as the compliant interface, which is
equivalent to a 2.2.2 Resource (LifeCycle is picked up through BaseResource), within an application

 BaseComponents are responsible for the same requirements as those of an ApplicationComponent
with the exception of the AEP requirement

* An application component factory can be provided as a separate interface if needed
— interface BaseApplicationComponentFactory: ComponentFactory, BaseResouce

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 5

TestableObject Differences

SCA 222

Interface TestableObject {
exception UnknownTest {

It
void runTest (
In unsigned long testld,

inout CF::Properties
testValues)

raises
(CF::TestableObject::Unkno
wnTest,
CF::UnknownProperties);

SCA4.1
Interface Testablelnterface {
exception UnknownTest {

I
void runTest (
In unsigned long testld,

inout CF::Properties
testValues)

raises
(CF::Testablelnterface::Unkno
wnTest,
CF::UnknownProperties);

%

1 - SCA 4.1 renames the TestableObject interface to Testableinterface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 6

PropertySet Differences

SCA 2.2.2

interface PropertySet {
exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;
Ji
exception PartialConfiguration {
CF::Properties invalidProperties;
Ji
void configure (
in CF::Properties configProperties)
raises
(CF::PropertySet::InvalidConfiguration,
CF::PropertySet::PartialConfiguration);
void query (
inout CF::Properties configProperties)
raises (CF::UnknownProperties);

|3

interface PropertySet { SCA 4.1
exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;
i

exception PartialConfiguration {
CF::Properties invalidProperties;
};
void configure (
in CF::Properties configProperties)
raises
(CF::PropertySet::InvalidConfiguration,
CF::PropertySet::PartialConfiguration);
void query (
inout CF::Properties configProperties)
raises (CF::UnknownProperties);

The interfaces are identical

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

LifeCycle Differences

SCA 222

interface LifeCycle { interface LifeCycle {

exception InitializeError {

CF:.StringSequence
errorMessages;

I3
exception ReleaseError {

CF::StringSequence
errorMessages;

I3
void initialize ()
raises
(CF::LifeCycle::InitializeError);
void releaseObject ()

raises
(CF::LifeCycle::ReleaseError);

exception InitializeError {

CF::StringSequence
errorMessages;

I
exception ReleaseError {

CF::StringSequence
errorMessages;

I
void initialize ()
raises
(CF::LifeCycle::InitializeError);
void releaseObject ()

raises
(CF::LifeCycle::ReleaseError);

3

The interfaces are identical

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

Port & PortSupplier Differences

SCA 222

interface PortSupplier { interface PortAg:cessor{
struct ConnectionldType {
exception UnknownPort { string connectionld;
. 2 string portName;
’ It
Object getPort (in string name) typedef sequence <ConnectionldType> Disconnections;
raises (CF::PortSupplier::UnknownPort); struct ConnectionType {
ConnectionldType portConnectionld;
}; Object portReference;
interface Port { b
exception InvalidPort { 3 typedef sequence <ConnectionType> Connections;
unsigned short errorCode; struct ConnecponErrorType { '
string msg: Con_nectlonIdType portConnectionld,;
. unsigned short errorCode;
exception OccupiedPort { } 2 eXC(}e’ption invalidPort { } 3
I3 ConnectionErrorType invalidConnections;
void connectPort (¥;
in Object connection, void connectUsesPorts(
in string connectionid) in CF::PortAccessor::Connections portConnections)
raises (CF::Port::InvalidPort, raises(CF::PortAccessor::InvalidPort);
CF::Port::OccupiedPort); void disconnectPorts(
in CF::PortAccessor::Disconnections portDisconnections)
void disconnectPort (raises(CF::PortAccessor::InvalidPort);

void getProvidesPorts(
inout CF::PortAccessor::Connections portConnections)
raises(CF::PortAccessor::InvalidPort);

in string connectionld)
raises (CF::Port::InvalidPort);

g)
1-SCA 4.1 renames interfaces 3 -SCA 4.1 repurposes exception
2 - SCA 4.1 eliminates exceptions 4 - SCA 4.1 renames operations and allows for multiple connections

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 9

Resource Differences

; . SCA 2.2.2 .
interface Resource : LifeCycle interface Controllablelnterface { 2 SCA 4.1
TestableObject, PropertySet, PortSupplier exception StartError {
{ CF::ErrorNumberType errorNumber;
exception StartError { _ string msg;
CF::ErrorNumberType errorNumber; g

exception StopError {

string msg;
) CE::ErrorNumberType errorNumber;
exception StopError { string msg;
CF::ErrorNumberType errorNumber; g
string msg; readonly attribute boolean started; } 3
3 void start ()
readonly attribute string identifier: raises (CF::Controllablelnterface::StartError)
void stop () -

void start ()
raises (CF::Resource::StartError); _
void stop () g

" raises (CF::Resource::StopError); interface Componentidentifier { } 2

readonly attribute string identifier;

5

raises (CF::Controllablelnterface::StopError)

1 - SCA 4.1 removes Resource interface

2 - SCA 4.1 introduces new Controllableinterface and Componentldentifier interfaces to replace Resource
3-SCA 4.1 introduces new attribute

4 - SCA 4.1 re-scopes exceptions

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 10

SCA Application Requirements

* Both SCA 2.2.2 and 4.1 application components
support the same basic capabillities
— Configuration management
— Operations (start/stop) management
— Life cycle support
— Connectivity management
— Test management

 There Is a distinct difference in the number of
allocated requirements
— SCA 2.2.2 75 requirements

— SCA 4.1 70 requirements, however once the structural
and modeling oriented requirements are removed there
are 58 effective requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 1

Development Scope — Ported Application
Component

« SCA 4.1 introduces seven (7) requirements that are
distinct from the SCA 2.2.2 baseline

— Three (3) requirements resulting from port restructure ~ 2 a
result of the operations handling multiple ports

— Three (3) requirements associated with the new started
attribute ~ minimal change

— One (1) requirement associated with the new registration
approach ~ registration moved to component registry rather
than the Naming Service

* Modifications to accommodate component information
held within ComponentType structure

* There have been changes within the AEP which may
necessitate alternate operations

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 12

SCA 2.2.2 Device Migration

«CORBAINEface:
ProperlySet

«CORBAINterfaces
PortSupplier

configuredin configPropartias @ Proparties) | waid
uanyinout configPropertias | Properties) | vaid

lnetPortiin name : siring(dl)) : cbjact(il)

«CORBAIntarfacax
LifeCycla

initialize(} - woid
releasaeOhject() | void

wCORBAInterfacas
Resource

craadonlys identiiar | stingliol)

lstari) : void
stap{) @ veld

T

ausesy -
f

! -

)

[
aExcapliane
StarlErro

in errorfumber ; ErmortumberTypa
in mag : stringiidl}

«CORBAIntarfaces
TestableObject

nunTest{in testid ; unsigned langlidl), inoul les1Values -

Properties) | void

—

« CZORBAIMarfaces
Resource

sreadonlys identifier ; string(idl)

start() - woid
|.::tnp[} s woid

winheritgn

« CORBAInterfaces
Deavice

wreadonlys usageState - UsageType

me;:ci-fplimn-
SlopErrar

wreadonly» adminState - AdminType
wreadonlys oparationalState ;| Operational Type

in meg : string(idl}

in ermcrdumber | ErrcrMumberType

creadonlys softwareProfile ; string(idl)
creadonlys label ; stringfidl)

creadonlye compositeDevice © Aggregate Davice

llocateCapacity(in capacities : Properties) : boolean(idl}
Eaallmahﬂrﬁapa:itm{(in capacitias : Propartias) : void

SCA 2.2.2 devices (DeviceComponents) realize the Device interface
Device inherits the SCA 2.2.2 Resource interface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

wexceplions
InvalidState

in m=g : string{idl)

waxceplions
InvalidCapacity

in mag : stringlidl)
in capacities | Properiies

13

xintefaces xzintefaces ainterface.
CF:DeviceAltributes CF::Administratablelnterface CF.:CapacityManagement
.‘M- 1
D"1“m I\”--‘ f/ 0.1
\ ALLOCATABLE
INTERROGABLE MAMAGEABLE re
HHH § 4 EBaseFlatformComponent a
*-.HH -
e, il
winterfaces P —— i .
CF:AggregateDeviceAltributes }~”CCHEC”T”ELE ainterfaces
0.1 CF:LifeCycle
BaseComponent S:] 1 e
5 .
%
xaggregatess
L]
f_? +|:u'np::-nent-=‘xggn:—gat:-rﬂ 1

Ba sePlatformComponent %:I +fullRegistrar

AggregateleviceComponent S] ‘

winterfaces
CF: FullC omponentRegistry

——

0. awunreg iS-tEr‘S-x---"

The Device interface has been removed, the developer has the responsibility of defining interfaces
which when realized provide equivalent functionality

DeviceComponents inherit BaseComponent interfaces and semantics

A developer could utilize the user-defined BaseResource to create a compliant interface which is

equivalent to a 2.2.2 Device (LifeCycle is picked up through BaseResource):
— interface BaseDevice: BaseResource, DeviceAttributes, Administrablelnterface, CapacityManagement
The AggregateDevice association can be provided at the component level if needed

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 14

Device Differences

interface CapacityManagement
interface Device : Resource { SCA 2 . 2 . 2 enum UsaE)geTy)p/)e{ g {
exception InvalidState {
string msg; 2 IDLE,

; ACTIVE,
exception InvalidCapacity { BUSY

string msg; N %

0 readonly attribute CF::CapacityManagement::UsageType usageState;
. CF::Properties capacities; donly attribute CF::CapacityManag UsageTyp ges
enum AdminType { exception InvalidCapacity {

LOCKED, string msg;
SHLLJ(-SEIQIEEDOWN' CF::Properties capacities;
: b .
enum OperationalType { boolean allocateCapacity (
ENABLED, in CF::Properties capacities)
Y DISABLED raises (CF::CapacityManagement::InvalidCapacity,
enum UsageType { CF::InvalidState);
IDLE, void deallocateCapacity (
ACTIVE, in CF::Properties capacities)
BUSY raises (CF::CapacityManagement::InvalidCapacity,

3 CF::InvalidState);
readonly attribute CF::Device::UsageType usageState; ¥
interface DeviceAttributes : Componentldentifier {

attribute CF::Device::AdminType adminState; -
enum OperationalType {

readonly attribute CF::Device::OperationalType operationalState; ENABLED
readonly attribute string softwareProfile; DISABLED
readonly attribute string label; 3 g
readonly attribute CF::AggregateDevice compositeDeviC | readonly attribute CF::DeviceAttributes::OperationalType operationalState;
boolean allocateCapacity (in CF::Properties capacities) ;
I(;aises)(CF::Device::InvalidCapacity, b
CF::Device::InvalidState); i ini
void deallocateCapacity (in CF::Properties capacities) interface Adm_lnlStratablelnterface {
raises (CF::Device::InvalidCapacity, enum AdminType {
CF::Device::InvalidState); LOCKED,
% SHUTTING_DOWN,
: UNLOCKED
1 - SCA 4.1 removes Device interface and re-scopes exceptions i
. . ttribute CF::AdministratableInterface::AdminT dminState;
2 - SCA 4.1 relocates InvalidState exception attribte MRS G S S
k

3 -SCA 4.1 eliminates interface attributes

4 - SCA 4.1 introduces new interfaces to replace Device

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 15

LoadableDevice Differences

interface LoadableDevice : Device

{

SCA 222

enum LoadType {
KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE
I

exception InvalidLoadKind {};

exception LoadFail {
CF::ErrorNumberType errorNumber; string msg;};

void load(in FileSystem fs, in string fleName, in LoadType 2
loadKind)

raises

(CF::Device::InvalidState, CF::LoadableDevice::InvalidLo
adKind,CF::InvalidFileName,CF::Loadable
Device::LoadFail);

void unload(in string fileName)

raises (CF::Device::InvalidState,CF::InvalidFileName);

interface Loadablelnterface

{

enum LoadType {
KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE

15

exception InvalidLoadKind {};

exception LoadFail {CF::ErrorNumberType errorNumber;
string msg;};

void load (in CF::FileSystem fs, in string fileName, in 2
CF::Loadablelnterface::LoadType loadKind)

raises (CF::InvalidState,
CF::Loadablelnterface::InvalidLoadKind,
CF::InvalidFileName, CF::Loadablelnterface::LoadFail;

void unload (in string fileName)
raises (CF::InvalidState, CF::InvalidFileName);};

1 - SCA 4.1 renames LoadableDevice interface to Loadablelnterface and removes inheritance
2 - SCA 4.1 re-scopes exception locations to new interface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

16

ExecutableDevice Differences

interface Executablelnterface
interface ExecutableDevice : LoadableDevice SCA 2 . 2 . 2 { SCA 4 o 1

{ exception InvalidProcess { CF::ErrorNumberType errorNumber; string

exception InvalidProcess { CF::ErrorNumberType errorNumber; string msg; }; . .)
msg;}; exception InvalidFunction {};
struct ExecutionID_Type {
unsigned long long threadld; 2
typedef long ProcessID_Type; 2 unsigned long long processld;
string processCollocation;

CF::ULongSeq cores; };

exception InvalidFunction { };

exception InvalidParameters { CF::Properties invalidParms;};
exception InvalidOptions { CF::Properties invalidOpts; };

exception InvalidParameters { CF::Properties invalidParms; };
const string PRIORITY_ID = "PRIORITY"; P { b }

exception InvalidOptions { CF::Properties invalidOpts; };

const string STACK_SIZE_ID = "STACK_SIZE"; const string STACK_SIZE_ID = "STACK_SIZE";
))) const string PRIORITY_ID ="PRIORITY";
exception ExecuteFail { CF::ErrorNumberType errorNumber; string msg; }; const string EXEC_DEVICE_PROCESS_SPACE = "DEVICE"; 3

const string PROCESS_COLLOCATION_ID =
"PROCESS_COLLOCATION";

ProcessID_Type execute(in string name, in Properties options, in const string ENTRY_POINT_ID = "ENTRY_POINT";
Properties parameters) const string CORE_AFFINITY_ID = "CORE_AFFINITY";
raises (CF::Device::InvalidState, exception ExecuteFail { CF::ErrorNumberType errorNumber; string msg; };
CF::ExecutableDevice::InvalidFunction, 5 void terminate (
CF::ExecutableDevice::InvalidParameters,CF::ExecutableDevice::InvalidOptions, 5 in CF::Executablelnterface::ExecutionID_Type executionld}
CF:InvalidFileName, CF::ExecutableDevice::ExecuteFail); raises (CF::Executablelnterface::InvalidProcess,CF::InvalidState);
void terminate(in ProcessID_Type processld) CF::Executablelnterface::ExecutionlD_Type execute (
raises (CF::ExecutableDevice::InvalidProcess, |n.str|ng fllt'e.namg, in CF::Prc?.pertles options, in Cli::Propertles parameters)
CF::Device::InvalidState); 5 raises (CF::InvalidState, CF..ExecutabIgInterface..InvalldFunctlon,
CF::Executablelnterface::InvalidParameters,
} 5 CF::Executablelnterface::InvalidOptions, CF::InvalidFileName,

CF::Executablelnterface::ExecuteFail);

ki
1 - SCA 4.1 renames ExecutableDevice interface to Executableinterface and removes inheritance
2 - SCA 4.1 defined ExecutionID_Type in lieu of ProcessID_Type for execute return value

3 - SCA 4.1 defined new constants for multi core processor support

4 - SCA 4.1 modifies operation parameters and/or return values

5 - SCA 4.1 re-scopes exceptions to new interface names
DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

17

* Both SCA 2.2.2 and 4.1 devices support the same
basic capabilities
— Capacity management
— Configuration management
— Operations/State management
— Life cycle support
— Connectivity management
— Test management

 There Is a distinct difference in the number of allocated
requirements
— SCA 2.2.2 98 requirements

— SCA 4.1 99 requirements, however once the structural and
modeling oriented requirements are removed there are 84
effective requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

18

Development Scope — Ported Device

« SCA 4.1 introduces seven (7) requirements that are
distinct from the SCA 2.2.2 baseline

— Three (3) requirements resulting from port restructure ~ Two
(2) a result of the operations handling multiple ports

— Three (3) requirements associated with the new started
attribute ~ minimal change

— One (1) requirement associated with the new registration
approach ~ registration moved to component registry rather

than DeviceManager

« Modifications to accommodate component information
held within ComponentType structure

* Neither the Loadablelnterface nor Executablelnterface
interfaces introduce new requirements

— Five (5) requirements will need code modifications to account
for different parameters ~ minimal change

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 19

SCA 2.2.2 Application Migration

aCORBAINtefaces
PortSupplier

«CORBAINMeface:
ProperiySet

configure]in configProperties ©: Properties) | woid
lquaryinaul configPropartias | Propertias) ; waid

gatPart(in name @ sirng{idl)) - ebjactidl) 7:]

“ /

«CORBAINtarfaces
TestableObject

« CORBAIntarfacaxs \
LifeCycla \ /

run Test{in testid | unsigred langlidl), inoul lestvalues @ Proparties) @ void

initialize(} - wold
release Onject() | void

.\
ﬁ“\{\

aCORBAINerfaces
Resource

creadnnlye entiliar | stinglicl)

tari() : void
stapd] vl

sinnerAs:

=
o | RIS T
)

[} =

!

e
wexcapltians

StartError

in errorfumbar @ ErmorNumberTyps
ir g stringiidl)

—

Y

«CORBAInterface»
Resource

«readonly» identifier : string(idl)

start() : void
stop() : void

«inherits»

«CORBAInterface»
Application

aexcEplions
SlapErmar

in arrerdumber : ErrorfdumberType
Inrmisg @ string(idl}

«readonly» profile : string(idl)

«readonly» name : string(idl)

«readonly» componentNamingContexts : ComponentElementSequence
«readonly» componentProcesslds : ComponentProcessldSequence
«readonly» componentDevices : DeviceAssignmentSequence
«readonly» componentimplementations : ComponentElementSequence

SCA 2.2.2 applications (ApplicationManagerComponents) realize the Application interface

Application inherits the SCA 2.2.2 Resource interface

Application is a monolithic interface which incorporates several lower level interfaces

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

20

SCA 4.1 ApplicationManagerComponent

BaseComponent @ «interfaces
CF::ApplicationManager
+component /
+appComponent 1.* \ {_,’f AssemblyC omponent @
1.* amanages Y
connectionse /
/
/ 1
areleasess 7
+targetLog /
‘E:; J,/ «maintains app
Log Service \ / deployment datas
«producess 1 +eventChannel
0 *

«manages Event Service

«deallocatess

Forthe ApplicationManger |------""" ~
Component the . . - +capacityProvider .
INTERROGABLE UOF is 1. 1 DeviceComponent @
enabled 0.*
/«delegatesn

«releases»
+appController 1=

\ +componentContainer 0.7
«unloadse «terminate»

ApplicationControllerComponent %:]

ApplicationComponentFactoryComp ‘3]‘

+moduleContainer UU.." +pruces£ontainer§]‘ 0.

LoadableDeviceComponent @ ’

ExecutableDev iceCornponem@ ’

* The developer has the responsibility of defining an interface which when realized identifies the
provided functionality

* The ApplicationManagerComponent is monolithic and incorporates several lower level interfaces

* An ApplicationManagerComponent inherits the functions and capabilities of a BaseComponent
and consequently can be managed as such

* A developer could define the following SCA 4.1 compliant interface which provides the capability
for the application manager to manage applications:

— interface myApplicationManager : CF::ApplicationManager

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 2

Application Differences

interface Application : Resource { } 3SCA 2.2.2 SCA 4.1
truct ComponentProcess|dT
> string fomponenud;ss b interface ApplicationManager : LifeCycle, 4
unsigned long processld; PortAccessor, PropertySet, Testablelnterface, at
h Controllablelnterface {

typedef sequence <ComponentProcessldType>
ComponentProcessldSequence; .)
struct ComponentElementType { readonly attribute string name;
string componentlid; }
string elementld; ’
I
typedef sequence <ComponentElementType>
ComponentElementSequence;
readonly attribute
CF::Application::ComponentElementSequence
componentNamingContexts;
readonly attribute
CF::Application::ComponentProcessldSequence
componentProcesslds; 2
readonly attribute CF::DeviceAssignmentSequence
componentDevices; 2
readonly attribute
CF::Application::ComponentElementSequence
componentimplementations; } 2
readonly attribute string profile;
readonly attribute string name;

1 - SCA 4.1 removes attributes associated with the naming service
2 - SCA 4.1 removes attributes and incorporates their information within the ComponentType
3 - SCA 4.1 modifies the interface name and inheritance

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 22

* Both SCA 2.2.2 and 4.1 application managers
support the same basic capabillity
— Core Frameworks proxy for an externally developed
application
* There Is a distinct difference in the number of
allocated requirements
— SCA 2.2.2 114 requirements

— SCA 4.1 83 requirements, however once the structural,
modeling oriented and backwards compatible
requirements are removed there are 68 effective
requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

23

Development Scope — Ported Application
Manager

« SCA 4.1 introduces 14 requirements that are distinct
from the SCA 2.2.2 baseline

— Six (6) requirements overlap with those introduced for a base
application component ~ minimal effort to integrate changes

— Four (4) requirements associated with ApplicationManager’s
role in external connections ~ minimal change, should mimic
base application component logic

— Four (4) requirements associated with clarifications in
ApplicationManager’s role in operation delegation ~ minimal to
medium effort to introduce new, not very complex logic

« Changes to accommodate information being held
within ComponentType structure

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 24

SCA 2.2.2 ApplicationFactory Migration

«CORBAInterface»
ApplicationFactory

«readonly» name : string(idl)
«readonly» identifier : string(idl)
«readonly» softwareProfile : string(idl)

create(in name : string(idl), in initConfiguration : Properties, in deviceAssignments : DeviceAssignmentSequence) : Application

= N~ < _
«uses» -7 «USES»™ ~ — _ «uses»
- \ T~
— \ -~ _
_ - \ T~
- \ ~~_
- \ =~
-7 \ T~—_
(=~ N =\
«exception» «exception» «exception»
CreateApplicationRequestError CreateApplicationError InvalidinitConfiguration
in invalidAssignments : DeviceAssignmentSequence in errorNumber : ErrorNumberType in invalidProperties : Properties
in msg : string(idl)

SCA 2.2.2 application factories (ApplicationFactoryComponents) realize the ApplicationFactory interface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

25

«interface»
[CF::ApplicationFactory] Descriptor & ApplicationComponent @]
+appManager \ yZ

>4
\ +domainProfile y‘monem 1.x
\
\

| «deploys»

«creates»

LoadableDeviceComponent @

+moduleContainer \ +componen

t| BaseComponent 8:]]

%«Ioads» o
" ApplicationFactoryComponent @

«connects»

+praocessContainer

< «executes» «prod uces>>\+ta%
ExecutableDeviceComponent @ 0+
l”* ..
«creates» «manages»\ Log Service
i * «obtains «allocates» +eventChannel
+componentContainer ZO.. AN "
application
*
ApplicationComponentFactoryComponent @ component» 0..
+componentRegistry\|/ 0..1 +capacityProvide& 1. Event Service
«interface» DeviceComponenl@
CF::ComponentRegistry

* The ApplicationFactoryComponent has an associated component registry
(ManageableApplicationComponents deployed by an ApplicationFactoryComponent register with the
registry (SCA82)

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 2

ApplicationFactory Exception and

Attribute Differences
SCA 2.2.2 interface ApplicationFactory { SCA 4.1
’ exception CreateApplicationRequestError {
interface ApplicationFactory { CF::DeviceAssignmentSequence
invalidAssignments; };
exception CreateApplicationRequestError { exception CreateApplicationError {
CF::DeviceAssignmentSequence CF::ErrorNumberType errorNumber;
invalidAssignments; }; string msg; };
exception CreateApplicationError { exception InvalidInitConfiguration {
CF::ErrorNumberType errorNumber; CF::Properties invalidProperties; };
string msg; };
exception InvalidlnitConfiguration { read0n|y attribute String name;
CF::Properties invalidProperties; }; struct ExecutionAffinity Type 2
readonly attribute string name; { string componentld;
readonly attribute string identifier; string processCollocation;
readonly attribute string softwareProfile; CF::ULongSeq coreAffinities;
h i
typedef sequence <ExecutionAffinityType>
ExecutionAffinitySequence;

1 - SCA 4.1 removes attributes and integrates their values within the associated ComponentType
2 - SCA 4.1 introduces new constructs for multi-core processor support

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) za

ApplicationFactory Operation Differences

SCA 2.2.2 SCA4.1

interface ApplicationFactory {

interface ApplicationFactory {
CF::ComponentType create (

CF::Application create (in string name
In string name, _ _ in CF::Properties initConfiguration,
in CF::Properties initConfiguration, _ _ in CF::DeviceAssignmentSequence deviceAssignments,
in CF::DeviceAssignmentSequence deviceAssignments in CF::Properties deploymentDependencies, p
) _ - - in CF::ApplicationFactory::ExecutionAffinitySequence
raises (CF::ApplicationFactory::CreateApplicationError, executionAffinityAssignments 3
CF::ApplicationFactory::CreateApplicationRequestError,)
CF::ApplicationFactory::InvalidinitConfiguration); raises (CF::ApplicationFactory::CreateApplicationError,
g CF::ApplicationFactory::CreateApplicationRequestError,
CF::ApplicationFactory::InvalidinitConfiguration);
)i
)i

1 - SCA 4.1 modifies operation return type
2 - SCA 4.1 adds parameters for enhanced deployment support
3 - SCA 4.1 adds parameter for multi-core processor support

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 28
-

« Both SCA 2.2.2 and 4.1 application factories
support the same basic capabillities
— Application deployment

— Application component connection, initialization and
configuration

« SCA 4.1 appears to have many more allocated
requirements
— SCA 2.2.2 35 requirements

— SCA 4.1 64 requirements, once the structural and
modeling oriented requirements are removed there are
63 effective requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

29

SCA 4.1 New Application Factory
Requirements

« Many of the 35 new requirements introduced within
SCA 4.1 would not need to implemented in a
migration from SCA 2.2.2

— 16 requirements are a byproduct of Application
Backwards Compatibility

— One (1) requirement associated with Nested Deployment
— One (1) requirement associated with Core Affinity

— Nine (9) requirements associated with the Channel
Extension ~ these could be reused if the 2.2.2 product
Implemented the extension

« Consequently, there are eight (8) new
requirements which need to be implemented

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 30

Requirements Development Scope —
Ported Application Factory

SCA 4.1 introduces eight (8) requirements that are distinct from the
SCA 2.2.2 baseline

Three (3) requirement associated with component identifiers ~ should be a
minimal change for a CF developer as identifier creation logic exists at other
locations

One (1) requirement associated with handling deploymentDependencies ~
should be a minimal change for a CF developer as other parts of the framework
already accommodate property precedents so the code could be reused or
leveraged

One (1) requirement to store the deployed components ~ should be a trivial
extension to the ComponentType structure

One (1) requirement to throw an exception if the ApplicationManagerComponent
exists ~ should be a trivial and logic to check probably exists within the code

One (1) requirement to change the parameters passed to an executable device ~
should be a trivial modification

One (1) requirement to instruct the framework when to instantiate an SCA 2.2.2
application ~ should be a trivial modification because the CF implementation
already knows how to extract and process information from the domain profile

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

31

SCA 2.2.2 DeviceManager Migration

«CORBAInterface»

«CORBAInterface» PropertySet

PortSupplier

configure(in configProperties : Properties) : void
query(inout configProperties : Properties) : void

«inherits» «inherits»

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»
DeviceManager

«readonly» deviceConfigurationProfile : string(idl)

«readonly» fileSys : FileSystem

«readonly» identifier : string(idl)

«readonly» label : string(idl)

«readonly» registeredDevices : DeviceSequence

«readonly» registeredServices : ServiceSequence

registerDevice(in registeringDevice : Device) : void

unregisterDevice(in registeredDevice : Device) : void

shutdown() : void

registerServce(in registeringService : object(idl), in name : string(idl)) : void
unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void
getComponentimplementationld(in componentinstantiationld : string(idl)) : string(idl)

SCA 2.2.2 device managers (DeviceManagerComponents) realize the DeviceManager interface
DeviceManager inherits the SCA 2.2.2 PortSupplier and PropertySet interfaces

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 32

SCA 4.1 DeviceManagerComponent

«interface»
BaseComponent g] CF::DeploymentAttributes
«interface»
+ deployedComponents Components CF::Componentidentifier
+ Identifier: string
FIIeSystemComponentg] 0.1

+nodeFileSygem

~
0.* «INTERROGABLE»

«interface» «creales»\
CF::ReleaseableManager
0." DovlcoManagarCompomnt@

—
0 «MANAGER RELEASABLE"

+ shutdown(): void

1 +domainRegistrar

«regisers»

«creates» 0.1
«creates»
Fdaployadok 0 ' ocom;)onentRe‘glstrvf «interface»
CF::ComponentRegistry
PIatformComponentFactoryComponem@ 0..1
«unreqns!ers» + regigerComponent{ComponentType): void

«manages»
+domain FulIReglsxrar

*deplovedComponegl 0 1 /V

«intefface»
CF::FullComponentRegistry

BasePlatformComponent {]

+ unregigerComponent(string): void

 The DeviceManager interface has been removed, the developer has the responsibility of defining an
interface which when realized identifies the provided functionality

* The DeviceManagerComponent has an associated component registry (devices and services deployed
by the DeviceManagerComponent register with the registry)

* A DeviceManagerComponent inherits the interfaces and semantics of a BaseComponent and
consequently can be managed as such

* A developer could define the following SCA 4.1 compliant interface which provides the capability for

an external client to interrogate the platform components that it deployed:
— interface myDeviceManager : CF::DeploymentAttributes, Componentldentifier

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 33

SCA 222

interface DeviceManager : PropertySet, PortSupplier {

struct ServiceType {
Object serviceObject;
string serviceName;

|8

typedef sequence <ServiceType> ServiceSequence;

readonly attribute string deviceConfigurationProfile;
readonly attribute CF::FileSystem fileSys; }
3

readonly attribute string identifier; }
2

readonly attribute string label;

readonly attribute CF::DeviceSequence

registeredDevices;

readonly attribute CF::DeviceManager::ServiceSequenc

registeredServices;

interface Componentldentifier {

readonly attribute string identifier; } 3

|

interface DeploymentAttributes {

readonly attribute CF::Components
deployedComponents;

j#

1 - SCA 4.1 removes the DeviceManager interface

2 - SCA 4.1 moves attributes within the ComponentType structure
3 - SCA 4.1 eliminates attributes
3, 4 - SCA 4.1 relocates attributes to different interfaces

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

34

SCA 222

interface DeviceManager : PropertySet, PortSupplier { interface ReleasableManager {
void registerDevice (} 2 void shutdown ();
in CF::Device registeringDevice };

void unregisterDevice (
in CF::Device registeredDevice
) raises (CF::InvalidObjectReference):

void shutdown ();
void registerService (} 2
in Object registeringService,

in string name
) raises (CF::InvalidObjectReference); }
2

) raises (CF::InvalidObjectReference); }
2

void unregisterService (
in Object unregisteringService,
in string name
) raises (CF::InvalidObjectReference);
string getComponentimplementationid (} 3
in string componentinstantiationid

);

1 - SCA 4.1 relocates the shutdown operation within the ReleasableManager interface

2 - SCA 4.1 abstracts the registerService and registerDevice operations to registerComponent

2 - SCA 4.1 removes registration operations from the device manager to a separate registry

3 -SCA 4.1 removes getComponentimplementationld, properties are held within the component

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 3

BaseComponent Differences

SCA 222

interface LifeCycle { };
interface ControllableInterface { };
interface Testablelnterface { };

1 - SCA 4.1 optionally supports the BaseComponent interfaces

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 36
-

SCA Device Manager Requirements

* Both SCA 2.2.2 and 4.1 device managers support
the same basic capabillities
— Device and Service deployment
— Node management

 There Is a distinct difference in the number of
allocated requirements
— SCA 2.2.2 56 requirements

— SCA 4.1 91 requirements, however once the structural
and modeling oriented requirements are removed there
are 70 effective requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

37

SCA 4.1 New Device Manager
Requirements

« Many of the 33 new requirements introduced within
SCA 4.1 would not need to implemented in a
migration from SCA 2.2.2

— 25 requirements are a byproduct of BaseComponent
Inheritance

« Consequently, there are eight (8) new
requirements which need to be implemented

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 38

Development Scope — Ported Device
Manager

« SCA 4.1 introduces eight (8) requirements that are
distinct from the SCA 2.2.2 baseline
— Two (2) requirements are text clarifications ~ minimal if
any change

— Four (4) requirements associated with support for the
PlatformComponentFactory ~ medium change

— One (1) requirement associated with saving component
allocation properties ~ minimal change

— One (1) requirement associated with a new exception
case ~ minimal change

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 39

SCA 2.2.2 DomainManager Migration

«CORBAInterface»
PropertySet

configure(in configProperties : Properties) : void
query(inout configProperties : Properties) : void

«inherits»

«CORBAInterface»
DomainManager

«readonly» identifier : string(idl)

«readonly» deviceManagers : DeviceManagerSequence
«readonly» applications : ApplicationSequence

«readonly» applicationFactories : ApplicationFactorySequence
«readonly» fileMgr : FileManager

«readonly» domainManagerProfile : string(idl)

registerDevice(in registeringDevice : Device, in registeredDeviceMgr : DeviceManager) : void

registerDeviceManager(in deviceMgr : DeviceManager) : void

unregisterDevice(in unregisteringDevice : Device) : void

unregisterDeviceManager(in deviceMgr : DeviceManager) : void

installApplication(in profileFileName : string(idl)) : void

uninstallApplication(in applicationld : string(idl)) : void

registerService(in registeringService : object(idl), in registeredDeviceMgr : DeviceManager, in name : string(idl)) : void
unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void

registerWithEventChannel(in registeringObject : object(idl), in registeringld : string(idl), in eventChannelName : string(idl)) : void
unregisterFromEventChannel(in unregisteringld : string(idl), in eventChannelName : string(idl)) : void

SCA 2.2.2 domain managers (DomainManagerComponents) realize the DomainManager interface
DomainManager inherits the SCA 2.2.2 PropertySet interface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 40

SCA 4.1 DomainManagerComponent

«interfaces BaseComponent @ «winterfaces
CF::EwventChannelRegistry CF::DemainManager
0.1 +d:}msinf.:}mpm|:-ntﬁ 1.7 o
ociI'II!EI‘fEI'.‘Ex- . «EVENT_CHANNEL - - ApplicationFactoryComponent @
CF::Demaininstallation - +appFactories
aAPPLICATION_INSTALLABLE . " arestoress 0.*

+appManagerComponent

woontainss

\\ 0.~
«Manages

—

) wreatess
+componentRegistry 0.1

winterfaces
CF::ComponentRegistry

incoming and “manaﬂEﬁ»
cutgoing domain
wUSESH
[P Event d‘IEII1I1E|SJo HIIEMEHEEH

+dam|nE\,EntuhgnnE&‘ FileManagerComponent @

CF::FullComponentRegistry

winterfaces }

+utilityComponent (20,
Ewvent Service

* The developer has the responsibility of defining an interface which when realized identifies the
provided functionality

* The DomainManagerComponent has an associated registry with which its managed components
register

* A DomainManagerComponent inherits the interfaces and semantics of a BaseComponent and can be
managed as such

* A developer could define the following SCA 4.1 compliant interface which provides the capability for
the domain manager to install applications:

— interface myDomainManager : CF::DomainManager, CF::Domaininstallation
DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 41

DomainManager Type and Exception
Differences

exception ApplicationinstallationError {
CF::ErrorNumberType errorNumber:
string msg; };
exception ApplicationAlreadylnstalled { }; 2
exception Invalididentifier { };

exception DeviceManagerNotRegistered { }; I 2

interface DomainManager : PropertySet { }S%A 222

exception ApplicationUninstallationError {
CF::ErrorNumberType errorNumber;
string msg; };

exception RegisterError {
CF::ErrorNumberType errorNumber;
string msg; };

exception UnregisterError {
CF::ErrorNumberType errorNumber;

string msg; };
exception AlreadyConnected { };
exception InvalidEventChannelName {}; 2
exception NotConnected { };

typedef sequence <Application> ApplicationSequence;

typedef sequence <ApplicationFactory>
ApplicationFactorySequence;

typedef sequence <DeviceManager>
DeviceManagerSequence;

h

exception ApplicationinstallationError {

interface Domaininstallation { }
2
CF::ErrorNumberType errorNumber;

string msg; };
exception ApplicationAlreadylnstalled { }; 2
exception Invalididentifier { };
exception ApplicationUninstallationError {
CF::ErrorNumberType errorNumber;
string msg; };

3

interface EventChannelRegistry {
exception AlreadyConnected { };
exception InvalidEventChannelName { };
exception NotConnected { };

1 - SCA 4.1 preserves the DomainManager interface and introduces two new interfaces
2 - SCA 4.1 relocates exceptions to newly introduced interfaces

3 -SCA 4.1 removes specialized type definitions

4 - SCA 4.1 relocates (un)registration exceptions to component registry (not shown in IDL)

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

42

DomainManager Attribute Differences

SCA 222

readonly attribute string domainManagerProfile;

readonly attribute
CF::DomainManager::DeviceManagerSequence
deviceManagers;

readonly attribute CF::DomainManager::ApplicationSequence
applications;

readonly attribute
CF::DomainManager::ApplicationFactorySequence

applicationFactories;

readonly attribute CF::FileManager fileMgr;
readonly attribute string identifier; } 2

SCA4.1

interface DomainManager : Componentldentifier { } 2

readonly attribute string domainManagerProfile;
readonly attribute CF::Components managers;

readonly attribute CF::Components applications;
readonly attribute CF::Components applicationFactories;
readonly attribute CF::FileManager fileMgr;

h

1 - SCA 4.1 uses common type definition for managed elements
2 - SCA 4.1 moves attributes within the ComponentType structure

2 - SCA 4.1 relocates attributes to interfaces

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
-

43

DomainManager Registration Operation
Differences

void registerDevice (SCA 2 . 2 . 2

in CF::Device registeringDevice,
in CF::DeviceManager registeredDeviceMgr)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager::DeviceManagerNotRegistered,
CF::DomainManager::RegisterError);
void unregisterDevice (
in CF::Device unregisteringDevice)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);
void registerService (
in Object registeringService,
in CF::DeviceManager registeredDeviceMgr,
in string name)
raises (CF::InvalidObjectReference,
CF::DomainManager::DeviceManagerNotRegistered,
CF::DomainManager::RegisterError);
void unregisterService (
in Object unregisteringService,
in string name)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);
void registerDeviceManager (
in CF::DeviceManager deviceMgr)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager::RegisterError);
void unregisterDeviceManager (
in CF::DeviceManager deviceMgr)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);

1-SCA 4.1 removes (un)registration operations from the domain manager to a separate component registry

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 44
-

DomainManager Operation Differences

interface Domainlinstallation {

void installApplication (SCA 2.2.2 CF::ComponentType installApplication { %M

in string profileFileName) R in string profileFileName)

raises (CF::InvalidProfile,CF::InvalidFileName, raises (CF::InvalidProfile,

CF::.DomainManager::ApplicationinstallationError, CF::InvalidFileName,

CF::DomainManager:: ApplicationAlreadyInstalled); CF::Domainlinstallation::ApplicationinstallationError,

CF::Domainlinstallation::ApplicationAlreadylnstalled);

void uninstallApplication (void uninstallApplication (

in string applicationld) in string identifier)

raises (CF::DomainManager::Invalididentifier, raises (CF::Domainlnstallation::Invalididentifier,

CF::DomainManager::ApplicationUninstallationError); CF::Domaininstallation::ApplicationUninstallationError);
void registerWithEventChannel (}

in Object registeringObject, interface EventChannelRegistry {

in string registeringld, void registerWithEventChannel (

in string eventChannelName) in Object registeringObject,

raises (CF::InvalidObjectReference, in string registeringld,

CF::DomainManager::InvalidEventChannelName, in string eventChannelName)

CF::DomainManager::AlreadyConnected); raises (CF::InvalidObjectReference,

CF::EventChannelRegistry::InvalidEventChannelName,

void unregisterFromEventChannel (CF::EventChannelRegistry::AlreadyConnected);

in string unregisteringld, void unregisterFromEventChannel (

in string eventChannelName) in string unregisteringld,

raises in string eventChannelName) raises

(CF::DomainManager::InvalidEventChannelName, (CF::EventChannelRegistry::InvalidEventChannelName,

CF::DomainManager::NotConnected); CF::EventChannelRegistry::NotConnected);

i 2

1 - SCA 4.1 relocates operations to new decomposed interfaces
2 - SCA 4.1 modifies operation return value type

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 45
-

BaseComponent Differences

SCA 222

interface LifeCycle { };
interface ControllableInterface { };
interface Testablelnterface { };

1 - SCA 4.1 optionally supports all BaseComponent interfaces

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 46
-

* Both SCA 2.2.2 and 4.1 domain managers support
the same basic capabillities
— Application installation
— Component registration and unregistration

— Management of applications, application factories and
device managers within the domain

— Event channel registration for external consumers
* There Is a marked difference in the number of

allocated requirements

— SCA 2.2.2 130 requirements

— SCA 4.1 124 requirements, however once the structural
and modeling oriented requirements are removed there
are 112 effective requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

47

SCA 4.1 New Domain Manager
Requirements

« Many of the 35 new requirements introduced within
SCA 4.1 would not need to implemented in a
migration from SCA 2.2.2

— 26 requirements are a byproduct of BaseComponent
Inheritance

e Consequently, there are nine (9) new reguirements
which need to be implemented

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 48

Development Scope — Ported Domain
Manager

« SCA 4.1 introduces nine (9) requirements that are
distinct from the SCA 2.2.2 baseline

— One (1) requirement resulting from establishing the domain
manager as a releaser of last resort ~ minimal change, should
reuse other releaseObject logic

— One (1) requirement associated with the installApplication
operation returning a ComponentType structure ~ minimal
change that will incorporated most of the information modified
by the interface changes

— Six (6) requirements associated with component registration ~
minimal impact registration moved to a component registry
rather than being within the DomainManagerComponent

— One (1) requirement associated with backwards compatibility ~
minimal change to throw an exception when 2.2.2 applications
are not handled

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016) 49

