
UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

REVISION SUMMARY

Version Revisions

1.0 Formal release for initial validation.

1.1 Incorporate approved Change Proposals, numbers 97, 99, 110, 160, 161, 162, 164, 171,

177, 178, 179, 180, 193, 195, 201, 204, 205, 208, 209, 211, 216.

2.0 Incorporate approved Change Proposals, numbers 39, 105, 119, 147, 175, 186, 191, 192,

210, 217, 218, 219, 220, 222, 223, 225, 226, 227, 229, 231, 232, 235, 237, 240, 243, 249,

255, 258, 266, 270, 275, 276, 277, 278, 282, 283, 285, 299, 307, 308, 310, 311, 332, 335,

336, 337, 341, 342, 343, 344, 345.

2.1 Incorporate approved Change Proposals, numbers 88, 102, 142, 306, 316, 353, 357, 358,

359, 360, 365, 366, 367, 369, 370, 371, 372, 373, 419, 468, 471, 472, 473, 475, 476, 477

2.2 Incorporate approved Change Proposals, numbers 138, 250, 279, 338, 388, 466, 486, 487,

488, 495, 497, 504, 508, 509, 513, 514, 515, 517

2.2.1 Incorporate approved Change Proposals, SCA-CCM* numbers 1, 4, 5, 13, 15, 20, 23, 26,

28, 29, 30, 44, 70, 74, 78, 77, 100, 102, 107,

2.2.2 Incorporate approved Change Proposals:

SCA-CCM 001, 004, 005, 013, 015, 020, 022, 023, 024, 025, 026, 027, 028, 029, 030, 044,

070, 074, 077, 078, 083, 084, 087, 091, 095, 097, 100, 102, 104, 107, 108, 118, 120, 121,

122, 123, 124, 125, 134, 137, 140, 141, 142, 145, 149, 152, 153, 178, 182, 188, 189, 190,

194, 202, 234, 264, 273, 276, 283, 284, 299, 303, 307, 308, 309, 313, 314, 316, 318, 319,

320, 321, 323, 324, 325

* The numbering scheme for change proposals was changed for version 2.2.1.

SCA version 2.2.2 FINAL / 15 May 2006

i

TABLE OF CONTENTS

1 INTRODUCTION... 1-1

1.1 Scope.. 1-1

1.2 Compliance ... 1-2

1.3 Document conventions, Terminology, and Definitions ... 1-2

1.3.1 Conventions and Terminology ... 1-2

1.3.1.1 File and Directory Nomenclature .. 1-2

1.3.1.2 Unified Modeling Language ... 1-2

1.3.1.3 Interface Definition Language .. 1-2

1.3.1.4 eXtensible Markup Language ... 1-2

1.3.1.5 Requirements Language .. 1-3

1.3.1.6 Core Framework Interface and Operation Identification .. 1-3

1.3.1.7 Figures... 1-3

1.3.2 Definitions.. 1-3

1.4 Document Content ... 1-3

1.5 Normative References .. 1-4

1.6 Informative References ... 1-4

2 OVERVIEW .. 2-1

2.1 Architecture Definition Methodology .. 2-1

2.2 Architecture Overview .. 2-1

2.2.1 Goals and Context .. 2-1

2.2.2 Core Framework .. 2-2

2.2.3 Definitions.. 2-2

2.2.4 Structure ... 2-3

2.2.4.1 Bus Layer (Board Support Package) ... 2-7

2.2.4.2 Network & Serial Interface Services .. 2-7

2.2.4.3 Operating System .. 2-7

2.2.4.4 CORBA Middleware .. 2-7

2.2.4.5 Applications .. 2-7

2.2.4.5.1 Adapters .. 2-7

SCA version 2.2.2 FINAL / 15 May 2006

ii

2.2.4.6 Reference Model ... 2-8

2.2.5 Networking Overview .. 2-9

3 SOFTWARE ARCHITECTURE DEFINITION ... 3-1

3.1 Operating Environment .. 3-1

3.1.1 Operating System ... 3-1

3.1.2 CORBA Middleware & Services ... 3-1

3.1.2.1 Naming Service ... 3-2

3.1.2.2 Log Service ... 3-2

3.1.2.2.1 Log Producers ... 3-2

3.1.2.3 CORBA Event Service and Standard Events .. 3-2

3.1.2.3.1 CORBA Event Service .. 3-2

3.1.2.3.2 StandardEvent Module .. 3-3

3.1.3 Core Framework .. 3-5

3.1.3.1 Base Application Interfaces .. 3-6

3.1.3.1.1 Port .. 3-6

3.1.3.1.2 LifeCycle .. 3-8

3.1.3.1.3 TestableObject ... 3-10

3.1.3.1.4 PortSupplier .. 3-12

3.1.3.1.5 PropertySet .. 3-13

3.1.3.1.6 Resource .. 3-15

3.1.3.1.7 ResourceFactory ... 3-17

3.1.3.2 Framework Control Interfaces .. 3-20

3.1.3.2.1 Application .. 3-20

3.1.3.2.2 ApplicationFactory .. 3-26

3.1.3.2.3 DomainManager ... 3-32

3.1.3.2.4 DeviceManager ... 3-50

3.1.3.3 Base Device Interfaces .. 3-57

3.1.3.3.1 Device .. 3-58

3.1.3.3.2 LoadableDevice ... 3-67

3.1.3.3.3 ExecutableDevice .. 3-70

3.1.3.3.4 AggregateDevice ... 3-73

3.1.3.4 Framework Services Interfaces ... 3-75

SCA version 2.2.2 FINAL / 15 May 2006

iii

3.1.3.4.1 File .. 3-75

3.1.3.4.2 FileSystem ... 3-79

3.1.3.4.3 FileManager .. 3-86

3.1.3.5 Domain Profile .. 3-90

3.1.3.5.1 Software Package Descriptor .. 3-91

3.1.3.5.2 Software Component Descriptor ... 3-91

3.1.3.5.3 Software Assembly Descriptor .. 3-92

3.1.3.5.4 Properties Descriptor ... 3-92

3.1.3.5.5 Device Package Descriptor ... 3-92

3.1.3.5.6 Device Configuration Descriptor .. 3-92

3.1.3.5.7 Profile Descriptor .. 3-92

3.1.3.5.8 DomainManager Configuration Descriptor .. 3-92

3.1.3.6 Core Framework Base Types .. 3-92

3.1.3.6.1 DataType ... 3-92

3.1.3.6.2 DeviceSequence .. 3-93

3.1.3.6.3 FileException .. 3-93

3.1.3.6.4 InvalidFileName .. 3-93

3.1.3.6.5 InvalidObjectReference ... 3-93

3.1.3.6.6 InvalidProfile ... 3-93

3.1.3.6.7 OctetSequence ... 3-93

3.1.3.6.8 Properties ... 3-93

3.1.3.6.9 StringSequence .. 3-93

3.1.3.6.10 UnknownProperties ... 3-94

3.1.3.6.11 DeviceAssignmentType .. 3-94

3.1.3.6.12 DeviceAssignmentSequence ... 3-94

3.1.3.6.13 ErrorNumberType. .. 3-94

3.2 Applications .. 3-94

3.2.1 General Application Requirements .. 3-95

3.2.1.1 OS Services ... 3-95

3.2.1.2 CORBA Services .. 3-95

3.2.1.3 CF Interfaces ... 3-95

3.2.2 Application Interfaces .. 3-95

SCA version 2.2.2 FINAL / 15 May 2006

iv

3.2.2.1 Service Definitions.. 3-96

3.3 Logical Device ... 3-96

3.3.1 OS Services .. 3-97

3.3.2 CORBA Services. .. 3-97

3.3.3 CF Interfaces .. 3-98

3.3.4 Profile ... 3-98

3.4 General Software Rules ... 3-98

3.4.1 Software Development Languages .. 3-98

3.4.1.1 New Software .. 3-98

3.4.1.2 Legacy Software ... 3-98

4 ARCHITECTURE COMPLIANCE ... 4-1

4.1 Certification Authority .. 4-1

4.2 Specification Authority .. 4-1

4.3 Responsibility for Compliance Evaluation .. 4-1

4.4 Evaluating Compliance ... 4-1

4.5 Registration. ... 4-2

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILES

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

SCA version 2.2.2 FINAL / 15 May 2006

v

LIST OF FIGURES

Figure 2-1: SCA Architecture Layer Diagram .. 2-4

Figure 2-2: SCA Management Hierarchy at Instantiation .. 2-5

Figure 2-3: Relationship of Domain Profile XML File Types .. 2-6

Figure 2-4: Conceptual Model of Resources .. 2-8

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP 3-1

Figure 3-2: Core Framework IDL Relationships .. 3-6

Figure 3-3: Port Interface UML ... 3-7

Figure 3-4: LifeCycle Interface UML ... 3-9

Figure 3-5: TestableObject Interface UML .. 3-10

Figure 3-6: PortSupplier Interface UML .. 3-12

Figure 3-7: PropertySet Interface UML ... 3-13

Figure 3-8: Resource Interface UML .. 3-15

Figure 3-9: ResourceFactory Interface UML ... 3-17

Figure 3-10: Application Interface UML .. 3-21

Figure 3-11: Application Behavior ... 3-25

Figure 3-12: ApplicationFactory UML .. 3-26

Figure 3-13: ApplicationFactory Behavior ... 3-31

Figure 3-14: DomainManager Interface UML ... 3-32

Figure 3-15: DomainManager Sequence Diagram for registerDeviceManager Operation 3-38

Figure 3-16: DomainManager Sequence Diagram for registerDevice Operation 3-41

Figure 3-17: DomainManager Sequence Diagram for registerService Operation 3-47

Figure 3-18: DeviceManager UML .. 3-50

Figure 3-19: Device Manager Startup Scenario .. 3-54

Figure 3-20: Device Interface UML ... 3-58

Figure 3-21: State Transition Diagram for adminState ... 3-61

Figure 3-22: State Transition Diagram for allocateCapacity and deallocateCapacity 3-63

Figure 3-23: Release Aggregated Device Scenario .. 3-65

Figure 3-24: Release Composite Device Scenario .. 3-66

Figure 3-25: Release Composite & Aggregated Device Scenario .. 3-67

SCA version 2.2.2 FINAL / 15 May 2006

vi

Figure 3-26: LoadableDevice Interface UML .. 3-68

Figure 3-27: ExecutableDevice Interface UML .. 3-70

Figure 3-28: AggregateDevice Interface UML ... 3-74

Figure 3-29: File Interface UML .. 3-76

Figure 3-30: FileSystem Interface UML ... 3-79

Figure 3-31: FileManager Interface UML ... 3-87

Figure 3-32: Relationship of Domain Profile XML File Types ... 3-91

Figure 3-33: Logical Device Interface Relationships ... 3-97

SCA version 2.2.2 FINAL / 15 May 2006

vii

FOREWORD

Introduction. The Software Communication Architecture (SCA) is published by the Joint

Program Executive Office (JPEO) of the Joint Tactical Radio System (JTRS). This architecture

was developed to assist in the development of software defined radio communication systems,

capturing the benefits of recent technology advances which are expected to greatly enhance

interoperability of communication systems and reduce development and deployment costs. The

SCA has been structured to:

1. provide for portability of applications software between different SCA

implementations,

2. leverage commercial standards to reduce development cost,

3. reduce software development time through the ability to reuse design modules,

4. build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as those

of military applications. Since the SCA is intended to become a self-sustaining standard, a wide

cross-section of industry has been invited to participate in the development and validation of the

SCA. The SCA is not a system specification but an implementation independent set of rules that

constrain the design of systems to achieve the objectives listed above.

Core Framework. The Core Framework (CF) defines the essential, “core” set of open software

interfaces and profiles that provide for the deployment, management, interconnection, and

intercommunication of software application components in an embedded, distributed-computing

communication system. In this sense, all interfaces defined in the SCA are part of the CF.

Support and Rationale Document (SRD). The Support and Rationale document (SRD)

provides the rationale used to determine the requirements contained in this document. The SRD

also contains further supporting material including historical references, examples, and

implementation considerations and should be consulted when attempting to develop a product

compliant with this specification.

Feedback. An open architecture framework is greatly improved through active feedback and

recommended changes from a wide audience of potential users. The JPEO JTRS solicits and

encourages feedback to this document and provides a website for submitting feedback and

change proposals. The website can be found at https://jtrs.spawar.navy.mil/sca . Change

proposals to the SCA shall be unencumbered by copyrights, export restrictions, or intellectual

property rights.

https://jtrs.spawar.navy.mil/sca

SCA version 2.2.2 FINAL / 15 May 2006

1-1

1 INTRODUCTION

The Software Communications Architecture (SCA) establishes an implementation-independent

framework with baseline requirements for the development of software for software defined

radios. The SCA is an architectural framework that was created to maximize portability,

interoperability, and configurability of the software while still allowing the flexibility to address

domain specific requirements and restrictions. Constraints on software development imposed by

the framework are on the interfaces and the structure of the software and not on the

implementation of the functions that are performed. The framework places an emphasis on areas

where reusability is affected and allows implementation unique requirements to determine a

specific application of the architecture.

1.1 SCOPE

This document together with its appendices as specified in the Table of Contents provides a

complete definition of the SCA.

The goal of this specification is to provide for the deployment, management, interconnection,

and intercommunication of software components in embedded, distributed-computing

communication systems. The SCA addresses a portion of software portability and

interoperability concerns – other aspects of these properties are addressed by different means as

indicated in Table 1.

Table 1: Portability and Interoperability and the SCA

Goals Responsibility

Software (operating on the host environment) meets all

original performance specifications; interoperate over the

air (OTA) with other communication systems, and not

conflict with the correct operation of other software

when deployed on a SCA compliant system.

System Engineering and Testing

Software (compiled for a target host environment) may

be installed, configured and operated on different SCA

compliant operating environments with a minimal

amount of changes to the original code.

Software Communications

Architecture

Software implementations may be moved from one

specific host or development environment (i.e. a specific

set of compilers, linkers, libraries, OS, chipsets, etc.) to

another with a minimal amount of changes to the original

code.

Coding Standards, Software

Architecture and Design

The main body of the SCA addresses the goals identified for it in Table 1, while appendices to

this specification are used to extend the scope of the SCA in order to address some of the desired

portability and interoperability characteristics identified elsewhere in the table.

SCA version 2.2.2 FINAL / 15 May 2006

1-2

1.2 COMPLIANCE

As the Certification Authority, the JPEO JTRS is the sole entity that may authorize the use of

any trademarks, certification markings, as well as verbal or written claims with respect to a

product’s compliance to this specification. Specific authorities and certification requirements are

found in section 4.

Compliance to this specification requires a product to meet all applicable requirements identified

within the scope of the specification. Applicability of requirements to specific products is

determined by the Certification Authority. Language used to identify requirements within this

specification is defined in section 1.3.1.5. Requirements stated in this specification take

precedence when they are in conflict with other existing standards/specifications, cited or not

cited.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND

DEFINITIONS

1.3.1 Conventions and Terminology

1.3.1.1 File and Directory Nomenclature

The terms “file” and “filename” as used in the SCA, refer to both a “plain file” (equivalent to a

POSIX “regular file”) and a directory. An explicit reference is made within the text when

referring to only one of these.

Pathnames are used in accordance with the POSIX specification definition and may reference

either a plain file or a directory. An “absolute pathname” is a pathname which starts with a “/”

(forward slash) character – a “relative pathname” does not have the leading “/” character. A

“path prefix” is a pathname which refers to a directory and thus does not include the name of a

plain file.

1.3.1.2 Unified Modeling Language

The Unified Modeling Language (UML) [2], defined by the Object Management Group (OMG),

is used to graphically represent SCA interfaces, operational scenarios, use cases, and

collaboration diagrams. Where feasible, the UML used in this specification conforms to the

syntax recommended by the OMG for Common Object Request Broker Architecture (CORBA)

usage [A].

1.3.1.3 Interface Definition Language

The OMG defined Interface Definition Language (IDL), [E] is used to define the SCA interfaces

within this specification.

1.3.1.4 eXtensible Markup Language

eXtensible Markup Language (XML) [3] is used to create the SCA Domain Profile elements

which identify the capabilities, properties, inter-dependencies, and location of the hardware

devices and software components that make up an SCA-compliant system. The term “profile” is

SCA version 2.2.2 FINAL / 15 May 2006

1-3

used to refer to either the raw XML format of these files as well as these same files in a parsed

format. References to a specific file (e.g. SAD, DCD) refer to the raw XML format per the

definitions in section 3.1.3.5.

1.3.1.5 Requirements Language

The word “shall” is used to indicate absolute requirements of this specification which must be

strictly followed in order to achieve compliance. No deviations are permitted.

The phrase “shall not” is used to indicate a strict and absolute prohibition of this specification.

The word “should“ is used to indicate a recommended course of action among several possible

choices, without mentioning or excluding others. “Should not” is used to discourage a course of

action without prohibiting it.

The word “may” is used to indicate a truly optional item or allowable course of action within the

scope of the specification. A product which chooses not to implement the indicated item must be

able to interoperate with one that does without impairment of required behavior.

The word “is” (or equivalently “are”) used in conjunction with the association of a value to a

data type indicates a required value or condition when multiple values or conditions are possible.

1.3.1.6 Core Framework Interface and Operation Identification

References to interface names, their operations and defined XML elements/attributes within this

specification are presented in italicized text. All interface names are capitalized. Interface

attributes, operation parameters, and realized interfaces are presented in plain text. “CF”

precedes references to Core Framework Base Types (3.1.3.6)

1.3.1.7 Figures

The figures contained in this document use coloration to identify elements of the SCA or how an

object in a figure relates to those elements. Brown is used to indicate elements of the OS, orange

for the Framework Control, Framework Service, and Device Interfaces and yellow for the Base

Application Interfaces. Figure objects containing more than one of these colors indicate that the

object relates to more than one SCA element – usually depending on context.

1.3.2 Definitions

A list of acronyms and definitions used in this specification are provided in Appendix A.

1.4 DOCUMENT CONTENT

The Foreword and Section 1 of this document provide an introduction to this specification and

provides the definitions and rules for its usage.

Section 2 provides an overview of the Software Communications Architecture as well as a

description of the interfaces and behaviors prescribed by the specification.

Section 3 provides the detailed description of the architecture framework and the specification

requirements.

SCA version 2.2.2 FINAL / 15 May 2006

1-4

Section 4 defines the appropriate authorities for incorporating changes, recommendations,

additions, or retractions into this specification, for validating compliance, and for granting

certification.

Appendix A contains a glossary of terms and acronyms used in this specification.

Appendix B provides the specific requirements for the SCA Application Environment Profile

(AEP) required as part of compliance to this specification.

Appendix C contains the Interface Definition Language (IDL) code used to define the interfaces

required by this specification.

Appendix D contains the definitions and requirements for creating the SCA Domain Profile.

1.5 NORMATIVE REFERENCES

The following documents contain provisions or requirements which by reference constitute

requirements of this specification. Applicable versions are as stated.

[1] Information technology - Portable Operating System Interface (POSIX®), ISO/IEC

9945:2003

[2] UML: OMG (Object Management Group) Unified Modeling Language Specification,

Version 1.4.2, formal/05-04-01 (also available as ISO/IEC 19501:2005(E)

[3] XML: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation,

04 February 2004F

[4] IEEE Standard for Information Technology – Standardized Application Environment

Profile (AEP) – POSIX Realtime and Embedded Application Support, IEEE Std

1003.13-2003.

[5] Minimum CORBA Specification version 1.0: OMG Document formal/02-08-01, August

2001.

[6] OMG Document formal/00-11-01: Interoperable Naming Service Specification.

[7] OMG Lightweight Log Service Specification: OMG Document formal/05-02-02: v1.1

[8] OMG Event Service Specification: OMG Document formal/01-03-01 and Event Service

IDL, v1.1.

[9] DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remote

Procedure Call).

1.6 INFORMATIVE REFERENCES

The following is a list of documents referenced within this specification or used as reference or

guidance material in its development.

[A] OMG Document formal/02-04-01; UML Profile for CORBA, version 1.0.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA version 2.2.2 FINAL / 15 May 2006

1-5

[B] “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley

Professional Computing) Gamma, Helm, Johnson, and Vlissides.

[C] Joint Program Executive Office for the Joint Tactical Radio System (JPEO JTRS), JTRS

Charter 13 October 2005.

[D] JTRS Standards Waiver Process, JPEO JTRS, 2 December 2005, version 1.0.

[E] The Common Object Request Broker: Architecture and Specification, version 3.0.3

formal/04-03-12, Object Management Group, Inc. (OMG)

[F] Joint Technical Architecture, Version 2.0, 26 May 1998.

[G] C Standard: Programming languages – C, ISO/IEC 9899:1999.

[H] ISO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternative and

Additional Time Sequence Diagrams for Two-party Communications.

SCA version 2.2.2 FINAL / 15 May 2006

2-1

2 OVERVIEW

This section presents an architectural overview of the SCA which defines the fundamental

organization of the components that compose this specification. A high-level description of the

components, their responsibilities, as well as their relationship to each other and the environment

are also provided. Technical details and specific requirements of the architecture and individual

components are contained in section 3.

2.1 ARCHITECTURE DEFINITION METHODOLOGY

The architecture has been developed using an object-oriented approach including current best

practices from software component models and software design patterns. Unless stated, no

explicit grouping or separation of interfaces is required within an implementation. The interface

definitions and required behaviors that follow in section 3, define the responsibilities, roles, and

relationships of components implementing that interface. Within this specification, the Unified

Modeling Language (UML) [2] is used to graphically represent interfaces and the Interface

Definition Language (IDL) provided in Appendix C contains the textual representation of the

interfaces.

2.2 ARCHITECTURE OVERVIEW

2.2.1 Goals and Context

The goal of this specification is to provide for the deployment, management, interconnection,

and intercommunication of software components in embedded, distributed-computing

communication systems. This specification is targeted towards facilitating the development of

software defined radios (SDRs) with the additional goals of maximizing software application

portability, reusability, and scalability through the use of commercial protocols and products.

Although there are many definitions of a SDR, it is in essence a radio or communication system

whose output signal is determined by software. In this sense, the output is entirely

reconfigurable at any given time, within the limits of the radio or system hardware capabilities

(e.g. processing elements, power amplifiers, antennas, etc.) merely by loading new software as

required by the user. Since this software determines the output signal of the system, it is

typically referred to as “waveform software” or simply as the “waveform” itself. This ability to

add, remove, or modify the output of the system through reconfigurable and redeployable

software, leads to communication systems capable of multiple mode operation (including

variable signal formatting, data rates, and bandwidths) within a single hardware configuration.

Simultaneous multi-mode operation is possible when a multi-channel configuration is available.

Since the functionality of software itself is virtually limitless, there is a large degree of

dependency placed on the ability to select and configure the appropriate hardware to support the

software available or required for a specific system. The selection of hardware is not restricted to

the input/output (I/O) devices typically associated with communication systems (analog-to-

digital converters, power amplifiers, etc.). It is also dependent on the type and capabilities of the

processing elements (General Purpose Processors (GPP), Digital Signal Processors (DSP), Field-

Programmable Gate Arrays (FPGA), etc.) that are required to be present, since typically the

software required to generate a given output signal will consist of many components of different

SCA version 2.2.2 FINAL / 15 May 2006

2-2

types based on performance requirements. From an illustrative view, this results in a system that

is represented by a variable collection of hardware elements which need to be connected together

to form communication pathways based on the specific software loaded onto the system. The

role of the SCA is then to provide a common infrastructure for managing the software and

hardware elements present in a system and ensuring that their requirements and capabilities are

commensurate. The SCA accomplishes this function by defining a set of interfaces that isolate

the system applications from the underlying hardware. This set of interfaces is referred to as the

Core Framework of the SCA.

Additionally, the SCA provides the infrastructure and support elements needed to ensure that

once software components are deployed on a system, they are able to execute and communicate

with the other hardware and software elements present in the system.

2.2.2 Core Framework

The Core Framework is the essential set of open application-layer CORBA interfaces and

services which provide an abstraction of the underlying system software and hardware. The

Core Framework consists of:

Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet,

PortSupplier, ResourceFactory, and Resource), which provide the management and

control interfaces for all system software components.

Base Device Interfaces: Device, LoadableDevice, ExecutableDevice, and

AggregateDevice, which allows the management and control of hardware devices within

the system through their software interface,

Framework Control Interfaces: Application, ApplicationFactory, DomainManager,

and DeviceManager, which control the instantiation, management, and

destruction/removal of software from the system,

Framework Services Interfaces: File, FileSystem, and FileManager, that provide

additional support functions and services.

2.2.3 Definitions

The SCA differentiates between waveform “application” software – software that manipulates

input data and determines the output of the system – from the software that provides the

capabilities for waveforms to execute and access to the systems hardware resources. The

“application” software implements the Base Application Interfaces identified in section 2.2.2.

The software components that provide access to the system hardware resources are referred to as

SCA “devices” that implement the Base Device Interfaces. Non-hardware (software-only)

resources provided by the system for use by applications are generically referred to as “services”,

however the SCA does not specify an interface that must be realized by these components. The

SCA standardizes the component interfaces but does not place implementation requirements (e.g.

transport mechanisms) on the software.

The software components which provide for the management and execution of the SCA

applications and devices comprise the SCA-defined operating environment (OE). The OE

consists of an operating system (OS), CORBA middleware (including the OMG-defined Event

SCA version 2.2.2 FINAL / 15 May 2006

2-3

and Naming Services), and the elements defined by the Framework Control and Service

Interfaces.

2.2.4 Structure

The architectural structure of the SCA is presented in Figure 2-1. In the SCA, an application

consists of multiple software components that are loaded onto a distributed-processing system.

These components are managed by an implementation of the Framework Control Interfaces. The

application components communicate either with each other or with the services and devices

provided by the system through extensions of the SCA-defined Port interface. Similarly,

communications between the application and the Framework Services Interfaces are

accomplished through the CORBA middleware. It is intended that the APIs to the services and

devices (“System Components” in Figure 2-1) be standardized for a given system or domain so

that in conjunction with the Framework Interfaces, all communications between the application

and the system are uniform across multiple systems. However, being system and domain

specific, the standardization of these interfaces is outside the scope of this specification.

An application may access OS functionality but is restricted to the operations enumerated in the

SCA Application Environment Profile (Appendix B) which is a subset of the Portable Operating

System Interface (POSIX) specification [4]. POSIX is an accepted industry standard and its real-

time extensions are compatible with the requirements to support the OMG CORBA

specification. Since defined POSIX profiles can encompass more features than are necessary to

control a typical implementation, this specification defines a minimal POSIX profile to facilitate

attainment of the SCA objectives.

Similar to the application components, system components are managed by the Framework

Control Interfaces through the Base Device Interfaces and are limited . However, unlike

application components, system components are not restricted in their use of functionality

provided by the OS since these components are in general, system specific.

SCA version 2.2.2 FINAL / 15 May 2006

2-4

Figure 2-1: SCA Architecture Layer Diagram

All SCA compliant systems require certain software components to be present in order to

provide for component deployment, management, and interconnection. These components

include the DomainManager (including support for the ApplicationFactory and Application

interfaces), DeviceManager, FileManager, and FileSystem interfaces and their required

behaviors. The management hierarchy of these entities is depicted in Figure 2-2.

An SCA compliant system includes a domain manager which contains knowledge of all existing

implementations installed or loaded onto the system including references to all file systems

(through the file manager), device managers, and all applications (and their resources).

Each device manager, in turn, contains complete knowledge of a set of devices and/or services.

A system may have multiple device managers but each device manager registers with the domain

manager to ensure that the domain manager has complete cognizance of the system. A device

manager may have an associated file system (or file manager to support multiple file systems) as

indicated in the Figure 2-2.

The implementation of the Application interface (created by the ApplicationFactory) OE

provided proxy for an application contains all the information regarding a specific application

that is instantiated on the system.

SCA version 2.2.2 FINAL / 15 May 2006

2-5

Device

Manager

Device Service Application

Application

Factory

File Resource
Resource

Factory

File

System

File

Manager

Domain

Manager

Figure 2-2: SCA Management Hierarchy at Instantiation

In order to describe the characteristics and attributes of the services, devices, and applications

installed on the system, the SCA defines a set of files referred to as the Domain Profile. The

Domain Profile is a hierarchical collection of eXtensible Markup Language (XML) files that

define the properties of all software components in the system. All CORBA software elements

of the system are described by a Software Package Descriptor (SPD) and a Software Component

Descriptor (SCD) file.

The SPD provides identification of the software (title, author, etc.) as well as the name of the

code file (executable, library or driver), implementation details (language, OS, etc.),

configuration and initialization properties (contained in a Properties File), dependencies to other

SPDs and devices, and a reference to a Software Component Descriptor.

The Software Component Descriptor (SCD) defines CORBA interfaces supported and used by a

specific component.

Since applications are composed of multiple SW components a Software Assembly Descriptor

(SAD) file is defined to determine the composition and configuration of the application. The

SAD references all SPDs needed for this application, defines required connections between

application components (connection of provides and uses ports / interfaces), defines needed

connections to devices and services, provides additional information on how to locate the needed

devices and services, defines any co-location (deployment) dependencies, and identifies a single

component within the application as the assembly controller.

SCA version 2.2.2 FINAL / 15 May 2006

2-6

Domain Profile

«DTDElement»

Device Configuration Descriptor

«DTDElement»

Domain Manager Configuration Descriptor

«DTDElement»

Software Assembly Descriptor

«DTDElement»

Software Package Descriptor

0..n 1 0..n

1..n

1..n
1

0..1

0..n

«DTDElement»

Device Package Descriptor

«DTDElement»

Software Component Descriptor

0..1

«DTDElement»

Properties Descriptor
0..1

0..1

«DTDElement»

Properties Descriptor

«DTDElement»

Properties Descriptor

Figure 2-3: Relationship of Domain Profile XML File Types

An application consists of one or more software modules that, when loaded and executed, create

one or more components (e.g. Resources or ResourceFactories), which comprise the application.

These components use the facilities of the platform devices and services. The software profile for

an application consists of one SAD file that references (directly or indirectly) one or more SPD,

SCD, and properties (PRF) files. An SPD file contains the details of an application’s software

module that is to be loaded and executed. The SPD specifies the Device implementation

requirements for loading dependencies (processor kind, etc.) and processing capacities (e.g.,

memory, process) for an application software module.

Similar to the application SAD, a device manager has an associated Device Configuration

Descriptor (DCD) file. The DCD identifies all devices and services associated with this device

manager, by referencing the associated SPDs. The DCD also defines properties of the specific

SCA version 2.2.2 FINAL / 15 May 2006

2-7

device manager, enumerates the needed connections to services (e.g. file systems), and provides

additional information on how to locate the domain manager. In addition to an SPD, a device

may have a Device Package Descriptor (DPD) file which provides a description of the hardware

device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the Domain Manager is itself described by the DomainManager

Configuration Descriptor (DMD) which provides the location of the (SPD) file for the specific

DomainManager implementation to be loaded. It also specifies the connections to other software

components (services and devices) which are required by the domain manager.

2.2.4.1 Bus Layer (Board Support Package)

The SCA is capable of operating on commercial bus architectures. The OE supports reliable

transport mechanisms, which may include error checking and correction at the bus support level.

2.2.4.2 Network & Serial Interface Services

The SCA relies on commercial components to support multiple unique serial and network

interfaces. To support these interfaces, various low-level network protocols may be used.

Elements of waveform networking functionality may also exist at the Operating System layer.

2.2.4.3 Operating System

The SCA includes real-time embedded operating system functions (profiled by the AEP for

applications), to provide multi-threaded support for all software executing on the system,

including applications, devices, and services.

2.2.4.4 CORBA Middleware

CORBA is used as the message passing technique for the distributed processing environment.

CORBA is a cross-platform framework that is used to standardize client/server operations when

using distributed processing. Distributed processing is a fundamental aspect of the system

architecture and CORBA is a widely used “Middleware” service for providing distributed

processing.

2.2.4.5 Applications

Applications consist of one or more resources. The Resource interface provides a common SCA

API for the control and configuration of software components. Application developers may

extend these capabilities by creating specialized Resource interfaces for the application. At a

minimum, the extension inherits the Resource interface. The design of a resource’s internal

functionality is not dictated by the Software Communications Architecture. This is left to the

application developer.

2.2.4.5.1 Adapters

Adapters are resources or devices used to support the use of non-CORBA capable elements

within the domain. Adapters are used in an implementation to provide the translation between

non-CORBA-capable components or devices and CORBA-capable Resources. The Adapter

SCA version 2.2.2 FINAL / 15 May 2006

2-8

concept is based on the industry-accepted Adapter design pattern [B]. Since an Adapter

implements the CF CORBA interfaces known to other CORBA-capable Resources, the

translation service is transparent to the CORBA-capable Resources. Adapters become

particularly useful to support non-CORBA-capable processing elements.

2.2.4.6 Reference Model

The SCA realizes the reference model by defining a standard unit of functionality called a

Resource. All applications are comprised of resources and using devices. Specific resources and

devices can be identified corresponding to the functional entities but this mapping is not

identified or required by this specification.

Figure 2-4 shows examples of inheritance hierarchy for Resources. The operations and attributes

provided by the LifeCycle, TestableObject, PortSupplier, and PropertySet interfaces establish a

common approach for interacting with any resource in a SCA environment. The Port interface is

used for pushing or pulling messages between resources and devices. A resource may consist of

zero or more input and output message ports. The figure also shows examples of more

specialized resources and devices that result in specific functionality.

initialize()

releaseObject()

«CORBAInterface»

CF::LifeCycle

+getPort(in name : string(idl)) : object(idl)

«CORBAInterface»

CF::PortSupplier

+configure(in configureProperties : Properties) : void

+query(inout configProperties : Properties) : void

«CORBAInterface»

CF::PropertySet

runTest()

«CORBAInterface»

CF::TestableObject

+start() : void

+stop() : void

«readonly» +identifier : string(idl)

«CORBAInterface»

CF::Resource

«inherits» «inherits»
«inherits» «inherits»

+allocateCapacity(in capacities : Properties) : boolean(idl)

+deallocateCapacity(in capacities : Properties) : void

«readonly» +usageState : UsageType

«readonly» +adminState : AdminType

«readonly» +operationalState : OperationalType

«readonly» +softwareProfile : string(idl)

«readonly» +label : string(idl)

«readonly» +compositeDevice : AggregateDevice

«CORBAInterface»

CF::Device
«inherits»

«CORBAInterface»

::LinkResource

«CORBAInterface»

::NetworkResource

«CORBAInterface»

::IODevice

«CORBAInterface»

::AudioDevice

«CORBAInterface»

::ModemDevice

«CORBAInterface»

::ModemAdapter

Figure 2-4: Conceptual Model of Resources

SCA version 2.2.2 FINAL / 15 May 2006

2-9

2.2.5 Networking Overview

External networking protocols define the communications between a SCA-compliant radio

system and its peer systems. A network of nodes is formed between systems which are

interconnected by repeaters, bridges, routers, and/or gateways. External-networking protocols

will typically communicate peer-to-peer at different layers using physical layer interconnections

with a repeater function, link layer interconnections with a bridge function, network layer

interconnections with standard network routing, or upper layer interconnections with application

gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There

may be multiple levels of interoperability within the same system on a waveform-by-waveform

basis.

1. Physical Layer Interoperability. The external networking protocols provide a

compatible physical interface, including the signaling interface, but no higher

layer processing. This level of interoperability is adequate for a simple bit-by-bit

bridging or relay operation between two interfaces.

2. Link Layer Interoperability. The external networking protocols provide link

layer processing over all physical interfaces. This level of interoperability is

adequate for allowing the radio to be used as transport and for allowing the radio

to use another network as transport. Intelligent routing or switching decisions are

limited to local layer 2 routing.

3. Network Layer Interoperability. The external networking protocols provide

network layer address processing interoperability. The radio and the networks

being inter-operated are sub-networks of the same Inter-network. At this level,

intelligent switching and routing decisions can be made end-to-end.

4. Host Level Interoperability (Layers 4 – 7). Embedded applications can

exchange information with hosts attached to the network. An example of this is a

handheld radio that contains embedded Situation Awareness (SA) application

exchanging SA updates with a vehicular platform in an external sub-network. In

this example, the radio provides message payload translations to allow two

otherwise incompatible hosts to communicate.

In order to support application portability, standard interfaces are required between application

protocol entities.

SCA version 2.2.2 FINAL / 15 May 2006

3-1

3 SOFTWARE ARCHITECTURE DEFINITION

3.1 OPERATING ENVIRONMENT

This section contains the requirements of the operating system, middleware, and the CF

interfaces and operations that comprise the SCA Operating Environment.

3.1.1 Operating System

The processing environment and the functions performed in the architecture impose differing

constraints on the architecture. An SCA application environment profile (AEP) is defined to

support portability of waveforms, scalability of the architecture, and commercial viability.

POSIX specifications are used as a basis for this profile. The notional relationship of the OE and

applications to the SCA AEP is depicted in Figure 3-1. The OE shall provide the functions and

options designated as mandatory by the AEP defined in Appendix B. The OE is not limited to

providing the functions and options designated as mandatory by the profile. Implementations of

the CORBA Object Request Broker (ORB), the CF Framework Control Interfaces, Framework

Services Interfaces, and Base Device Interfaces are not limited to using the services designated

as mandatory by the SCA AEP.

Operating System

ORB and

CORBA

Services

Core Framework Control,

Services, Devices, and

File access
AEP

Application Resources

CORBA APIs

CF Interfaces

Operating System

ORB and

CORBA

Services

Core Framework Control,

Services, Devices, and

File access
AEP

Application Resources

CORBA APIs

CF Interfaces

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP

The OE and related file systems shall support a filename length of 40 characters and a pathname

length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.

Applications perform file access through the CF. (Application requirements are covered in

section 3.2)

3.1.2 CORBA Middleware & Services

The OE shall include middleware that, at a minimum, provides the services and capabilities of

minimumCORBA as specified by the OMG Document in reference [5].

SCA version 2.2.2 FINAL / 15 May 2006

3-2

3.1.2.1 Naming Service

The OE shall provide an implementation of a CORBA Naming Service which implements the

CosNaming module NamingContext interface operations: bind, bind_new_context, unbind,

destroy, and resolve as defined in the OMG Interoperable Naming Service Specification [6]

using the IDL found in Appendix A of that reference.

A Naming Service’s NameComponent structure is made up of an id-and-kind pair. The “id”

element of each NameComponent is a string value that uniquely identifies a NameComponent.

The “kind” element of each NameComponent shall be “” (null string).

3.1.2.2 Log Service

An SCA compliant implementation may include a log service. If a log service is implemented,

the log service shall conform to the OMG Lightweight Log Service Specification [7].

3.1.2.2.1 Log Producers

A log producer is a CF component (e.g., DomainManager, Application, ApplicationFactory,

DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,

ResourceFactory) that produces log records using the Lightweight Log Service

CosLwLog::LogProducer interface. Log records are of type CosLwLog::ProducerLogRecord.

Log producers shall implement a configure property which is a CF Properties type with an id of

“PRODUCER_LOG_LEVEL” and a value that is a CosLwLog::LogLevelSequence. The value of

this configure property contains all log levels that are enabled. A log producer shall only output

log records that contain an enabled CosLwLog::LogLevel value. Log levels that are not in the

CosLwLog::LogLevelSequence are disabled.

Log producers and CF components that are required by this specification to write log records

shall operate normally in the absence of a log service or in the case where the connections to a

log are nil or an invalid reference.

Log producers shall use their component identifier attribute in the producerId field of the

CosLwLog::ProducerLogRecord.

3.1.2.3 CORBA Event Service and Standard Events

3.1.2.3.1 CORBA Event Service

The OE shall provide an implementation of the CORBA Event Service. The Event Service shall

implement the PushConsumer and PushSupplier interfaces of the CosEventComm module as

described in OMG Event Service Specification [8] using the IDL found in that specification.

The CosEventComm CORBA Module is used by consumers for receiving events and by

producers for generating events. A component (e.g., Resource, DomainManager, etc.) that

consumes events shall implement the CosEventComm PushConsumer interface. A component

(e.g., Resource, Device, DomainManager, etc.) that produces events shall implement the

CosEventComm PushSupplier interface and use the CosEventComm PushConsumer interface

for generating the events. A producer component shall not forward or raise any exceptions when

the connection to a CosEventComm PushConsumer is a nil or invalid reference.

SCA version 2.2.2 FINAL / 15 May 2006

3-3

The CORBA Event Service has the capability to create event channels. An event channel allows

multiple suppliers to communicate with multiple consumers asynchronously. An event channel is

both a consumer and a producer of events. For example, event channels may be standard

CORBA objects and communicate with those channels is accomplished using standard CORBA

requests. The OE shall provide two standard event channels: Incoming Domain Management and

Outgoing Domain Management. The Incoming Domain Management Channel name shall be

"IDM_Channel". The Outgoing Domain Management Channel name shall be "ODM_Channel".

The Incoming Domain Management event channel is used by components within the domain to

generate events (e.g., Device state change event) that are consumed by domain management

functions (e.g., ApplicationFactory, Application, DomainManager, etc.). The Outgoing Domain

Management Channel is used by domain clients (e.g., HCI) to receive events (e.g., additions or

removals from the domain) generated from domain management functions (e.g.,

ApplicationFactory, Application, DomainManager, etc.). Besides these two standard event

channels, the OE allows other event channels to be set up by application developers.

3.1.2.3.2 StandardEvent Module

The StandardEvent module contains type definitions that are used for passing events from event

producers to event consumers. The IDL for this module is found in Appendix C of this

specification.

3.1.2.3.2.1 Types

3.1.2.3.2.1.1 StateChangeCategoryType

The type StateChangeCategoryType is an enumeration that is utilized in the

StateChangeEventType. It is used to identify the category of state change that has occurred.

enum StateChangeCategoryType

{

 ADMINISTRATIVE_STATE_EVENT,

 OPERATIONAL_STATE_EVENT,

 USAGE_STATE_EVENT

};

3.1.2.3.2.1.2 StateChangeType

The type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is

used to identify the specific states of the event source before and after the state change occurred.

enum StateChangeType

{

 LOCKED, /*Administrative State Event */

 UNLOCKED, /*Administrative State Event */

 SHUTTING_DOWN, /*Administrative State Event */

 ENABLED, /*Operational State Event */

 DISABLED, /*Operational State Event */

 IDLE, /*Usage State Event */

 ACTIVE, /*Usage State Event */

 BUSY /*Usage State Event */

};

SCA version 2.2.2 FINAL / 15 May 2006

3-4

3.1.2.3.2.1.3 StateChangeEventType

The type StateChangeEventType is a structure used to indicate that the state of the event source

has changed.

struct StateChangeEventType

{

 string producerId;

 string sourceId;

 StateChangeCategoryType stateChangeCategory;

 StateChangeType stateChangeFrom;

 StateChangeType stateChangeTo;

};

3.1.2.3.2.1.4 SourceCategoryType

The type SourceCategoryType is an enumeration that is utilized in the

DomainManagementObjectAddedEventType and

DomainManagementObjectRemovedEventType. It is used to identify the type of object that has

been added to or removed from the domain.

enum SourceCategoryType

{

 DEVICE_MANAGER,

 DEVICE,

 APPLICATION_FACTORY,

 APPLICATION,

 SERVICE

};

3.1.2.3.2.1.5 DomainManagementObjectRemovedEventType

The type DomainManagementObjectRemovedEventType is a structure used to indicate that the

event source has been removed from the domain.

struct DomainManagementObjectRemovedEventType

{

 string producerId;

 string sourceId;

 string sourceName;

 SourceCategoryType sourceCategory;

};

3.1.2.3.2.1.6 DomainManagementObjectAddedEventType

The type DomainManagementObjectAddedEventType is a structure used to indicate that the

event source has been added to the domain.

struct DomainManagementObjectAddedEventType

{

 string producerId;

 string sourceId;

 string sourceName;

SCA version 2.2.2 FINAL / 15 May 2006

3-5

 SourceCategoryType sourceCategory

 Object sourceIOR;

};

3.1.3 Core Framework

This section includes a detailed description of the purpose of each CF interface, the purpose of

each supported operation within the interface, and interface class diagrams to support these

descriptions. The corresponding IDL for the CF is found in Appendix C.

Figure 3-2 depicts the key elements of the CF and the IDL relationships between these elements.

A DomainManager component manages the software applications, application factories,

hardware devices (represented by software devices) and device managers within the system.

Some software components may directly control the system’s internal hardware devices; these

components are logical devices, which implement the Device, LoadableDevice, or

ExecutableDevice interfaces. Other software components have no direct relationship with a

hardware device, but perform application services for the user and implement the Resource

interface. This interface provides a consistent way of configuring and tearing down these

components. Each resource can potentially communicate with other resources. An application is

a specific collection of one or more resources which provides a specified service or function and

which is managed through the Application interface. The resources of an application are

allocated to one or more hardware devices by the application factory based upon various factors

including the current availability of hardware devices, the behavior rules of a resource, and the

loading requirements of each resource. The resources may then be created by using the

ResourceFactory interface or through the Device interfaces (Device, LoadableDevice, or

ExecutableDevice) an connected to other resources or devices resident on the system.

SCA version 2.2.2 FINAL / 15 May 2006

3-6

«CORBAInterface»

CF::AggregateDevice

«CORBAInterface»

CF::Application

«CORBAInterface»

CF::ApplicationFactory

«CORBAInterface»

CF::Device

«CORBAInterface»

CF::DeviceManager

«CORBAInterface»

CF::DomainManager

«CORBAInterface»

CF::ExecutableDevice

«CORBAInterface»

CF::LifeCycle

«CORBAInterface»

CF::LoadableDevice

«inherits»

«inherits»

«CORBAInterface»

CF::Port

«CORBAInterface»

CF::PortSupplier

«inherits»

«CORBAInterface»

CF::PropertySet

«inherits»

«inherits»

«CORBAInterface»

CF::Resource

«inherits»

«inherits»«inherits»

«inherits»

«CORBAInterface»

CF::ResourceFactory

«CORBAInterface»

CF::TestableObject

«inherits»

«uses»
«uses»

«creates»

«creates»

Figure 3-2: Core Framework IDL Relationships

The file service interfaces (FileManager, FileSystem, and File) are used for installation and

removal of application files, and for loading and unloading application files on the various

processors that the devices execute upon.

3.1.3.1 Base Application Interfaces

Base Application Interfaces are defined by the Core Framework requirements and implemented

by application developers; see section 3.2 for application requirements.

Base Application Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.1.1 Port

3.1.3.1.1.1 Description

This interface provides operations for managing associations between ports. The Port interface

UML is depicted in Figure 3-3. An application defines a specific port type by specifying an

interface that inherits the Port interface. An application establishes the operations for

transferring data and control. The application also establishes the meaning of the data and

control values. Examples of how applications may use ports in different ways include: push or

pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,

pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

How components' ports are connected is described in the software assembly descriptor (SAD)

and the device configuration descriptor (DCD) files of the Domain Profile (3.1.3.5).

SCA version 2.2.2 FINAL / 15 May 2006

3-7

3.1.3.1.1.2 UML

connectPort(in connection : object(idl), in connectionId : string(idl)) : void

disconnectPort(in connectionId : string(idl)) : void

«CORBAInterface»

Port

in errorCode : unsigned short(idl)

in msg : string(idl)

«exception»

InvalidPort

«exception»

OccupiedPort

«uses» «uses»

Figure 3-3: Port Interface UML

3.1.3.1.1.3 Types

3.1.3.1.1.3.1 InvalidPort

The InvalidPort exception indicates one of the following errors has occurred in the specification

of a Port association:

1. errorCode 1 means the Port component is invalid (unable to narrow object

reference) or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).

exception InvalidPort { unsigned short errorCode; string msg; };

3.1.3.1.1.3.2 OccupiedPort

The OccupiedPort exception indicates the port is unable to accept any additional connections.

exception OccupiedPort{};

3.1.3.1.1.4 Attributes

N/A.

3.1.3.1.1.5 Operations

3.1.3.1.1.5.1 connectPort

3.1.3.1.1.5.1.1 Brief Rationale

Applications require the connectPort operation to establish associations between ports. Ports

provide channels through which data and/or control pass.

The connectPort operation provides half of a two-way association; therefore two calls are

required to create a two-way association.

3.1.3.1.1.5.1.2 Synopsis

void connectPort (in Object connection, in string connectionId)

raises (InvalidPort, OccupiedPort);

SCA version 2.2.2 FINAL / 15 May 2006

3-8

3.1.3.1.1.5.1.3 Behavior

The connectPort operation shall make a connection to the component identified by its input

parameters.

A port may support several connections. The input connectionId is a unique identifier to be used

by the disconnectPort operation when breaking a specific connection.

3.1.3.1.1.5.1.4 Returns

This operation does not return a value.

3.1.3.1.1.5.1.5 Exceptions/Errors

The connectPort operation shall raise the InvalidPort exception when the input connection

parameter is an invalid connection for this port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the

connections because the port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort

3.1.3.1.1.5.2.1 Brief Rationale

Applications require the disconnectPort operation in order to allow consumer/producer data

components to disassociate themselves from their counterparts (consumer/producer).

3.1.3.1.1.5.2.2 Synopsis

void disconnectPort (in string connectionId) raises

(InvalidPort);

3.1.3.1.1.5.2.3 Behavior

The disconnectPort operation shall break the connection to the component identified by the input

connectionId parameter.

3.1.3.1.1.5.2.4 Returns

This operation does not return a value.

3.1.3.1.1.5.2.5 Exceptions/Errors

The disconnectPort operation shall raise the InvalidPort exception when the input connectionId

parameter is not a known connection to the Port component.

3.1.3.1.2 LifeCycle

3.1.3.1.2.1 Description

The LifeCycle interface defines the generic operations for initializing or releasing instantiated

component-specific data and/or processing elements. The LifeCycle interface UML is depicted

in Figure 3-4.

SCA version 2.2.2 FINAL / 15 May 2006

3-9

3.1.3.1.2.2 UML

initialize() : void

releaseObject() : void

«CORBAInterface»

LifeCycle

in errorMessages : StringSequence

«exception»

InitializeError

in errorMessages : StringSequence

«exception»

ReleaseError

«uses» «uses»

Figure 3-4: LifeCycle Interface UML

3.1.3.1.2.3 Types

3.1.3.1.2.3.1 InitializeError

The InitializeError exception indicates an error occurred during component initialization. The

message is component-dependent, providing additional information describing the reason why

the error occurred.

exception InitializeError { StringSequence errorMessage; };

3.1.3.1.2.3.2 ReleaseError

The ReleaseError exception indicates an error occurred during the component releaseObject

operation. The message is component-dependent, providing additional information describing

the reason why the error occurred.

exception ReleaseError { StringSequence errorMessage; };

3.1.3.1.2.4 Attributes

N/A.

3.1.3.1.2.5 Operations

3.1.3.1.2.5.1 initialize

3.1.3.1.2.5.1.1 Brief Rationale

The purpose of the initialize operation is to provide a mechanism to set a component to a known

initial state. For example, data structures may be set to initial values, memory may be allocated,

hardware devices may be configured to some state, etc.

3.1.3.1.2.5.1.2 Synopsis

void initialize() raises (InitializeError);

3.1.3.1.2.5.1.3 Behavior

Initialization behavior is implementation dependent.

3.1.3.1.2.5.1.4 Returns

This operation does not return a value.

SCA version 2.2.2 FINAL / 15 May 2006

3-10

3.1.3.1.2.5.1.5 Exceptions/Errors

The initialize operation shall raise an InitializeError exception when an initialization error

occurs.

3.1.3.1.2.5.2 releaseObject

3.1.3.1.2.5.2.1 Brief Rationale

The purpose of the releaseObject operation is to provide a means by which an instantiated

component may be torn down.

3.1.3.1.2.5.2.2 Synopsis

void releaseObject() raises (ReleaseError);

3.1.3.1.2.5.2.3 Behavior

The releaseObject operation shall release all internal memory allocated by the component during

the life of the component. The releaseObject operation shall tear down the component and

release it from the CORBA environment.

3.1.3.1.2.5.2.4 Returns

This operation does not return a value.

3.1.3.1.2.5.2.5 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when a release error occurs.

3.1.3.1.3 TestableObject

3.1.3.1.3.1 Description

The TestableObject interface defines a set of operations that is used to test component

implementations. The TestableObject interface UML is depicted in Figure 3-5.

3.1.3.1.3.2 UML

runTest(in testid : unsigned long(idl), inout testValues : Properties) : void

«CORBAInterface»

TestableObject

«exception»

UnknownTest«uses»

in invalidProperties : Properties

«exception»

UnknownProperties

«uses»

Figure 3-5: TestableObject Interface UML

3.1.3.1.3.3 Types

3.1.3.1.3.3.1 UnknownTest

The UnknownTest exception indicates the input testId parameter is not known by the component.

exception UnknownTest{};

SCA version 2.2.2 FINAL / 15 May 2006

3-11

3.1.3.1.3.4 Attributes

N/A.

3.1.3.1.3.5 Operations

3.1.3.1.3.5.1 runTest

3.1.3.1.3.5.1.1 Brief Rationale

The runTest operation allows components to be “black box” tested. This allows built-in tests

(BITs) to be implemented which provide a means to isolate faults (both software and hardware)

within the system.

3.1.3.1.3.5.1.2 Synopsis

void runTest (in unsigned long testId, inout Properties

testValues) raises (UnknownTest, UnknownProperties);

3.1.3.1.3.5.1.3 Behavior

The runTest operation shall use the input testId parameter to determine which of its predefined

test implementations should be performed. The id/value pair(s) of the testValues parameter shall

be used to provide additional information to the implementation-specific test to be run. The

runTest operation shall return the result(s) of the test in the testValues parameter.

Tests to be implemented by a component are component-dependent and are specified in the

component’s Properties Descriptor. Valid testId(s) and both input and output testValues

(properties) for the runTest operation shall at a minimum be the test properties defined in the

properties test element of the component's Properties Descriptor (refer to Appendix D Domain

Profile). The testId parameter corresponds to the XML attribute testId of the property element

test in a propertyfile.

A CF UnknownProperties exception is raised by the runTest operation. All testValues parameter

properties (i.e., test properties defined in the propertyfile(s) referenced in the component’s SPD)

shall be validated.

The runTest operation shall not execute any testing when the input testId or any of the input

testValues are not known by the component or are out of range.

3.1.3.1.3.5.1.4 Returns

This operation does not return a value.

3.1.3.1.3.5.1.5 Exceptions/Errors

The runTest operation shall raise the UnknownTest exception when there is no underlying test

implementation that is associated with the input testId given.

The runTest operation shall raise the CF UnknownProperties exception when the input parameter

testValues contains any CF DataTypes that are not known by the component’s test

implementation or any values that are out of range for the requested test. The exception

parameter invalidProperties shall contain the invalid testValues properties id(s) that are not

known by the component or the value(s) are out of range.

SCA version 2.2.2 FINAL / 15 May 2006

3-12

3.1.3.1.4 PortSupplier

3.1.3.1.4.1 Description

This interface provides the getPort operation for those components that provide ports.

3.1.3.1.4.2 UML

«exception»

UnknownPort

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»

PortSupplier
«uses»

Figure 3-6: PortSupplier Interface UML

3.1.3.1.4.3 Types

3.1.3.1.4.3.1 UnknownPort

The UnknownPort exception is raised if an undefined port is requested.

exception UnknownPort{};

3.1.3.1.4.4 Attributes

N/A.

3.1.3.1.4.5 Operations

3.1.3.1.4.5.1 getPort

3.1.3.1.4.5.1.1 Brief Rationale

The getPort operation provides a mechanism to obtain a specific consumer or producer port. A

port supplier may contain zero-to-many consumer and producer port components. The exact

number is specified in the component’s software profile SCD (section 3.1.3.5). Multiple input

and/or output ports provide flexibility for port suppliers that manage varying priority levels and

categories of incoming and outgoing messages, provide multi-threaded message handling, or

other special message processing.

3.1.3.1.4.5.1.2 Synopsis

Object getPort (in string name) raises (UnknownPort);

3.1.3.1.4.5.1.3 Behavior

The getPort operation returns the object reference to the named port as stated in the component's

SCD.

3.1.3.1.4.5.1.4 Returns

The getPort operation shall return the CORBA object reference that is associated with the input

port name.

3.1.3.1.4.5.1.5 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port name is invalid.

SCA version 2.2.2 FINAL / 15 May 2006

3-13

3.1.3.1.5 PropertySet

3.1.3.1.5.1 Description

The PropertySet interface defines configure and query operations to access component

properties/attributes. The PropertySet interface UML is depicted in Figure 3-7.

3.1.3.1.5.2 UML

in msg : string(idl)

in invalidProperties : Properties

«exception»

InvalidConfiguration

in invalidProperties : Properties

«exception»

PartialConfiguration

configure(in configProperties : Properties) : void

query(inout configProperties : Properties) : void

«CORBAInterface»

PropertySet

«uses» «uses»

in invalidProperties : Properties

«exception»

UnknownProperties

«uses»

Figure 3-7: PropertySet Interface UML

3.1.3.1.5.3 Types

N/A.

3.1.3.1.5.3.1 InvalidConfiguration

The InvalidConfiguration exception indicates the configuration of a component has failed (no

configuration at all was done). The message is component-dependent, providing additional

information describing the reason why the error occurred. The invalidProperties returned

indicate the properties that were invalid.

exception InvalidConfiguration { string msg; Properties

invalidProperties; };

3.1.3.1.5.3.2 PartialConfiguration

The PartialConfiguration exception indicates the configuration of a Component was partially

successful. The invalidProperties returned indicate the properties that were invalid.

exception PartialConfiguration { Properties invalidProperties;

};

3.1.3.1.5.4 Attributes

N/A.

SCA version 2.2.2 FINAL / 15 May 2006

3-14

3.1.3.1.5.5 Operations

3.1.3.1.5.5.1 configure

3.1.3.1.5.5.1.1 Brief Rationale

The configure operation allows id/value pair configuration properties to be assigned to

components implementing this interface.

3.1.3.1.5.5.1.2 Synopsis

void configure (in Properties configProperties) raises

(InvalidConfiguration, PartialConfiguration);

3.1.3.1.5.5.1.3 Behavior

The configure operation shall assign values to the properties as indicated in the input

configProperties parameter. Valid properties for the configure operation shall at a minimum be

the configure readwrite and writeonly properties referenced in the component’s SPD.

3.1.3.1.5.5.1.4 Returns

This operation does not return a value.

3.1.3.1.5.5.1.5 Exceptions/Errors

The configure operation shall raise a PartialConfiguration exception when some configuration

properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error

occurs and no configuration properties were successfully set.

3.1.3.1.5.5.2 query

3.1.3.1.5.5.2.1 Brief Rationale

The query operation allows a component to be queried to retrieve its properties.

3.1.3.1.5.5.2.2 Synopsis

void query (inout Properties configProperties) raises

(UnknownProperties);

3.1.3.1.5.5.2.3 Behavior

The query operation shall return all component properties when the inout parameter

configProperties is zero size. The query operation shall return only those id/value pairs specified

in the configProperties parameter if the parameter is not zero size. Valid properties for the query

operation shall be all configure properties (simple properties whose kind element’s kindtype

attribute is “configure”) whose mode attribute is “readwrite” or “readonly” and any allocation

properties with an action value of "external" as referenced in the component's SPD.

3.1.3.1.5.5.2.4 Returns

This operation does not return a value.

SCA version 2.2.2 FINAL / 15 May 2006

3-15

3.1.3.1.5.5.2.5 Exceptions/Errors

The query operation shall raise the CF UnknownProperties exception when one or more

properties being requested are not known by the component.

3.1.3.1.6 Resource

3.1.3.1.6.1 Description

The Resource interface provides a common API for the control and configuration of a software

component. The Resource interface UML is depicted in Figure 3-8.

The Resource interface inherits from the LifeCycle, PropertySet, TestableObject, and

PortSupplier interfaces.

The inherited LifeCycle, PropertySet, TestableObject, and PortSupplier interface operations are

documented in their respective sections of this document.

The Resource interface may also be inherited by other application interfaces as described in the

software profile's Software Component Descriptor (SCD) file (see 3.1.3.5.2).

3.1.3.1.6.2 UML.

start() : void

stop() : void

«readonly» identifier : string(idl)

«CORBAInterface»

Resource

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

StartError

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

StopError

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»

PortSupplier

initialize() : void

releaseObject() : void

«CORBAInterface»

LifeCycle

configure(in configProperties : Properties) : void

query(inout configProperties : Properties) : void

«CORBAInterface»

PropertySet

runTest(in testid : unsigned long(idl), inout testValues : Properties) : void

«CORBAInterface»

TestableObject

«inherits»
«inherits»

«inherits»

«inherits»

«uses» «uses»

Figure 3-8: Resource Interface UML

SCA version 2.2.2 FINAL / 15 May 2006

3-16

3.1.3.1.6.3 Types

3.1.3.1.6.3.1 StartError

The StartError exception indicates that an error occurred during an attempt to start the resource.

The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is

component-dependent, providing additional information describing the reason for the error.

exception StartError { ErrorNumberType errorNumber; string msg;

};

3.1.3.1.6.3.2 StopError

The StopError exception indicates that an error occurred during an attempt to stop the resource.

The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is

component-dependent, providing additional information describing the reason for the error.

exception StopError { ErrorNumberType errorNumber; string msg;

};

3.1.3.1.6.4 Attributes

3.1.3.1.6.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a Resource instance.

readonly attribute string identifier;

3.1.3.1.6.5 Operations

3.1.3.1.6.5.1 start

3.1.3.1.6.5.1.1 Brief Rationale

The start operation is provided to command the resource implementing this interface to start

internal processing.

3.1.3.1.6.5.1.2 Synopsis

void start()raises (StartError);

3.1.3.1.6.5.1.3 Behavior

The start operation puts the resource in an operating condition.

3.1.3.1.6.5.1.4 Returns

This operation does not return a value.

3.1.3.1.6.5.1.5 Exceptions/Errors

The start operation shall raise the StartError exception if an error occurs while starting the

resource.

3.1.3.1.6.5.2 stop

3.1.3.1.6.5.2.1 Brief Rationale

The stop operation is provided to command the resource implementing this interface to stop

internal processing.

SCA version 2.2.2 FINAL / 15 May 2006

3-17

3.1.3.1.6.5.2.2 Synopsis

void stop()raises (StopError);

3.1.3.1.6.5.2.3 Behavior

The stop operation shall disable all current operations and put the resource in a non-operating

condition. The stop operation shall not inhibit subsequent configure, query, and start operations.

3.1.3.1.6.5.2.4 Returns

This operation does not return a value.

3.1.3.1.6.5.2.5 Exceptions/Errors

The stop operation shall raise the StopError exception if an error occurs while stopping the

resource.

3.1.3.1.7 ResourceFactory

3.1.3.1.7.1 Description

A resource factory is used to create and tear down a resource. The ResourceFactory interface is

designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted in

Figure 3-9. The factory mechanism provides client-server isolation among resources and

provides a standard mechanism of obtaining a resource without knowing its identity. An

application is not required to use resource factories to obtain, create, or tear down resources. A

software profile specifies which application resource factories are to be used by the application

factory.

3.1.3.1.7.2 UML

createResource(in resourceId : string(idl), in qualifiers : Properties) : Resource

releaseResource(in resourceId : string(idl)) : void

shutdown() : void

«readonly» identifier : string(idl)

«CORBAInterface»

ResourceFactory

«exception»

InvalidResourceId

in msg : string(idl)

«exception»

ShutdownFailure

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

CreateResourceFailure

«uses» «uses» «uses»

Figure 3-9: ResourceFactory Interface UML

3.1.3.1.7.3 Types

3.1.3.1.7.3.1 InvalidResourceId

The InvalidResourceId exception indicates the resourceId does not reference a resource created

by this resource factory.

exception InvalidResourceId{};

SCA version 2.2.2 FINAL / 15 May 2006

3-18

3.1.3.1.7.3.2 ShutdownFailure

The ShutdownFailure exception indicates that the shutdown method failed to release the resource

factory from the CORBA environment. The message is component-dependent, providing

additional information describing why the shutdown failed.

exception ShutdownFailure { string msg; };

3.1.3.1.7.3.3 CreateResourceFailure

The CreateResourceFailure exception indicates that the createResource operation failed to create

the resource. The error number shall indicate a CF ErrorNumberType value. The message is

component-dependent, providing additional information describing the reason for the error.

exception CreateResourceFailure { ErrorNumberType errorNumber;

string msg; };

3.1.3.1.7.4 Attributes

3.1.3.1.7.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a ResourceFactory

instance.

readonly attribute string identifier;

3.1.3.1.7.5 Operations

3.1.3.1.7.5.1 createResource

3.1.3.1.7.5.1.1 Brief Rationale

The createResource operation provides the capability to create resources in the same process

space as the resource factory or to return a reference to a resource that has already been created.

This behavior is an alternative approach to the Device::execute operation for creating a resource.

3.1.3.1.7.5.1.2 Synopsis

Resource createResource (in string resourceId, in Properties

qualifiers) raises (CreateResourceFailure);

3.1.3.1.7.5.1.3 Behavior

The resourceId parameter is the identifier for a resource. The qualifiers parameter contains

values used by the resource factory in creation of the Resource. The application factory

determines the values to be supplied for the qualifiers from the description in the resource

factory’s software profile. The qualifiers may be used to identify, for example, specific subtypes

of resources created by a resource factory.

The createResource operation shall create a resource if no resource exists for the given

resourceId and shall assign the given resourceId to a new resource. If the resource already exists

for the given resourceId, the input qualifiers parameter is ignored and the resource's reference is

returned. The createResource operation shall set a reference count to one, when the resource is

initially created, or increment the reference count by one, when the resource already exists. The

reference count is used to indicate the number of times that a specific resource reference has

been given to requesting clients. This ensures that the resource factory does not release a

resource that has a reference count greater than zero (0). When multiple clients have obtained a

SCA version 2.2.2 FINAL / 15 May 2006

3-19

reference to the same resource, each client requests release of the resource when it is through

with the resource. However, the resource is not released until the release request comes from the

last client in existence.

3.1.3.1.7.5.1.4 Returns

The createResource operation shall return a reference to the created resource. If the resource

already exists, the createResource operation shall return a reference to the existing resource.

3.1.3.1.7.5.1.5 Exceptions/Errors

The createResource operation shall raise the CreateResourceFailure exception when it cannot

create the resource.

3.1.3.1.7.5.2 releaseResource

3.1.3.1.7.5.2.1 Brief Rationale

In CORBA there is client side and server side representation of a resource. The releaseResource

operation provides the mechanism of releasing the resource in the CORBA environment on the

server side when all clients are through with a specific resource. The client still has to release its

client side reference of the resource.

3.1.3.1.7.5.2.2 Synopsis

void releaseResource (in string resourceId) raises

{InvalidResourceId);

3.1.3.1.7.5.2.3 Behavior

The releaseResource operation shall decrement the reference count for the specified resource, as

indicated by the resourceId parameter. The releaseResource operation shall release the resource

from the CORBA environment and make the resource no longer available when the resource’s

reference count is zero.

3.1.3.1.7.5.2.4 Returns

This operation does not return a value.

3.1.3.1.7.5.2.5 Exceptions/Errors

The releaseResource operation shall raise the InvalidResourceId exception if an invalid

resourceId is received.

3.1.3.1.7.5.3 shutdown

3.1.3.1.7.5.3.1 Brief Rationale

In CORBA there is client side and server side representation of a resource factory. The shutdown

operation provides the mechanism for releasing the resource factory from the CORBA

environment on the server side. The client has the responsibility to release its client side

reference of the resource factory.

3.1.3.1.7.5.3.2 Synopsis

void shutdown() raises {ShutdownFailure);

SCA version 2.2.2 FINAL / 15 May 2006

3-20

3.1.3.1.7.5.3.3 Behavior

The shutdown operation shall release the resource factory from the CORBA environment and

make it unavailable to any subsequent calls to its object reference.

3.1.3.1.7.5.3.4 Returns

This operation does not return a value.

3.1.3.1.7.5.3.5 Exceptions/Errors

The shutdown operation shall raise the ShutdownFailure exception when processing errors

prevent the release of the resource factory from the CORBA environment or when all resources

have not been released from the resource factory.

3.1.3.2 Framework Control Interfaces

Framework control within a Domain is accomplished by domain management and device

management interfaces.

The management interfaces are Application, ApplicationFactory, DeviceManager and

DomainManager. These interfaces manage the registration and unregistration of applications,

devices, and device managers within the domain and the controlling of applications within the

domain. The implementation of the Application, ApplicationFactory, and DomainManager

interfaces are coupled together and are delivered together as a complete domain management

implementation and service.

Device management is accomplished by the DeviceManager interface. The device manager is

responsible for creation of logical devices and launching service applications on these logical

devices.

Framework Control Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.2.1 Application

3.1.3.2.1.1 Description

The Application class provides the interface for the control, configuration, and status of an

instantiated application in the domain.

The Application interface inherits the IDL interface of Resource. A created application instance

may contain Resource components and/or non-CORBA components. The Application interface

UML is depicted in Figure 3-10.

The Application interface releaseObject operation provides the interface to release the

computing resources allocated during the instantiation of the application, and de-allocate the

devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the

ApplicationFactory class.

SCA version 2.2.2 FINAL / 15 May 2006

3-21

3.1.3.2.1.2 UML

«readonly» profile : string(idl)

«readonly» name : string(idl)

«readonly» componentNamingContexts : ComponentElementSequence

«readonly» componentProcessIds : ComponentProcessIdSequence

«readonly» componentDevices : DeviceAssignmentSequence

«readonly» componentImplementations : ComponentElementSequence

«CORBAInterface»

Application

start() : void

stop() : void

«readonly» identifier : string(idl)

«CORBAInterface»

Resource

«inherits»

Figure 3-10: Application Interface UML

3.1.3.2.1.3 Types

3.1.3.2.1.3.1 ComponentProcessIdType

The ComponentProcessIdType defines a type for associating a component with its process ID.

struct ComponentProcessIdType

{

string componentId;

unsigned long processId;

};

3.1.3.2.1.3.2 ComponentProcessIdSequence

The ComponentProcessIdSequence type defines an unbounded sequence of components’ process

IDs.

typedef sequence <ComponentProcessIdType>

ComponentProcessIdSequence;

3.1.3.2.1.3.3 ComponentElementType

The ComponentElementType defines a type for associating a component with an element (e.g.,

naming context, implementation ID).

struct ComponentElementType

{

 string componentId;

 string elementId;

};

3.1.3.2.1.3.4 ComponentElementSequence

The ComponentElementSequence defines an unbounded sequence of ComponentElementType.

SCA version 2.2.2 FINAL / 15 May 2006

3-22

typedef sequence <ComponentElementType>

ComponentElementSequence;

3.1.3.2.1.4 Attributes

3.1.3.2.1.4.1 profile

The readonly profile attribute shall contain a profile element (Profile Descriptor) with a file

reference to the application’s SAD file. Files referenced within the profile are obtained via a

FileManager.

readonly attribute string profile;

3.1.3.2.1.4.2 name

This readonly name attribute shall contain the name of the created application. The

ApplicationFactory interface’s create operation name parameter provides the name content.

readonly attribute string name;

3.1.3.2.1.4.3 componentNamingContexts

The componentNamingContexts attribute shall contain the list of components’ Naming Service

Context within the application for those components using CORBA Naming Service.

readonly attribute ComponentElementSequence

componentNamingContexts;

3.1.3.2.1.4.4 componentProcessIds

The componentProcessIds attribute shall contain the list of components’ process IDs within the

Application for components that are executing on a device.

readonly attribute ComponentProcessIdSequence

componentProcessIds;

3.1.3.2.1.4.5 componentDevices

The componentDevices attribute shall contain a list of devices, which each component either

uses, is loaded on or is executed on. Each component (identified by the componentinstantiation

element in the application’s software profile) is associated with at least one device.

readonly attribute DeviceAssignmentSequence componentDevices;

3.1.3.2.1.4.6 componentImplementations

The componentImplementations attribute shall contain the list of components’ SPD

implementation IDs within the application for those components created.

readonly attribute ComponentElementSequence

componentImplementations;

3.1.3.2.1.5 General Class Behavior

The application shall delegate the implementation of the inherited Resource operations (runTest,

start, stop, configure, and query) to the Application Resource component identified by the

application’s SAD assemblycontroller element (Assembly Controller). The application shall

propagate exceptions raised by the application’s Assembly Controller’s operations. The

SCA version 2.2.2 FINAL / 15 May 2006

3-23

initialize operation shall not be propagated to the application’s components or its Assembly

Controller.

3.1.3.2.1.6 Operations

3.1.3.2.1.6.1 releaseObject

3.1.3.2.1.6.1.1 Brief Rationale

The releaseObject operation terminates execution of the application, returns all allocated

computing resources, and de-allocates the resources’ capacities in use by the devices associated

with the application. Before terminating, the application removes the message connectivity with

its associated applications (e.g., ports, resources, and logs) in the domain.

3.1.3.2.1.6.1.2 Synopsis

void releaseObject() raises (ReleaseError);

3.1.3.2.1.6.1.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The Application::releaseObject operation shall release each application component not created

by a resource factory by utilizing the component’s Resource::releaseObject operation. The

Application::releaseObject operation shall release each component created by a resource factory

via the ResourceFactory::releaseResource operation. The Application::releaseObject operation

shall terminate a resource factory when no more resources are managed by the resource factory

via the ResourceFactory::shutdown operation. The Application::releaseObject operation shall

terminate the processes / tasks on allocated executable devices belonging to each application

component by utilizing the ExecutableDevice:terminate operation.

The releaseObject operation shall de-allocate the memory associated with each application

component instance from its allocated device by utilizing the LoadableDevice::unload operation.

The releaseObject operation shall deallocate the device capacities that were allocated during

application creation. The actual devices deallocated (Device::deallocateCapacity) reflect

changes in their capacity based upon component capacity requirements deallocated from them,

which may also cause state changes for the devices.

The application shall release all object references to the components making up the application.

The releaseObject operation shall disconnect ports that were previously connected based upon

the application’s software profile.

The releaseObject operation shall disconnect consumers and producers from a CORBA Event

Service’s event channel based upon the software profile. The releaseObject operation may

destroy a CORBA Event Service’s event channel when no more consumers and producers are

connected to it.

For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the

releaseObject operation shall unbind those components and destroy the associated naming

contexts as necessary from the Naming Service.

SCA version 2.2.2 FINAL / 15 May 2006

3-24

The releaseObject operation for an application shall disconnect ports first, then release the

resources and the resource factories, then call the terminate operation, and lastly call the unload

operation on the devices.

The releaseObject operation shall, upon successful application release, write an

ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful application release, write a

FAILURE_ALARM log record.

The releaseObject operation shall send a DomainManagementObjectRemovedEventType event

to the Outgoing Domain Management event channel upon successful release of an application.

For this event,

1. The producerId is the identifier attribute of the released application.

2. The sourceId is the identifier attribute of the released application.

3. The sourceName is the name attribute of the released application.

4. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the application’s behavior for the release of an

application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.

2. Disconnect Ports.

3. Release the ResourceFactory components.

4. Shutdown the ResourceFactory components.

5. Release the Resource components.

6. Terminate the components’ processes.

7. Unload the components’ executable images.

8. Change the state of the associated devices to be available, along with device(s)

memory utilization availability and processor utilization availability based upon

the Device Profile and software profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the application was either successfully or

unsuccessfully released.

11. Remove the application reference from the applications attribute and generate an

event to indicate the application has been removed from the domain.

Figure 3-11 is a collaboration diagram depicting the behavior as described above.

SCA version 2.2.2 FINAL / 15 May 2006

3-25

CF::Comm User

«CORBAInterface»

 : Application

1: releaseObject()

«CORBAInterface»

Port

2: d
isconnectP

ort(
)

«CORBAInterface»

ResourceFactory

4:
 s

hu
td

ow
n(

)

3:
 r

el
ea

se
R

es
ou

rc
e(

)

«CORBAInterface»

Resource

5
:
 r

e
le

a
se

O
b
je

ct
()

«CORBAInterface»

ExecutableDevice

6
: te

rm
in

a
te

()

7
: u

n
lo

a
d
()

8
: d

e
a
llo

ca
te

C
a
p
a
city()

«CORBAInterface»

Naming Service

9: unbind() «CORBAInterface»

Log

«oneway» 10: write_records()

«CORBAInterface»

ODM Event Channel

11: push:=push(DomainManagementOjbjectRemovedEventType)

Figure 3-11: Application Behavior

3.1.3.2.1.6.1.4 Returns

This operation does not return a value.

3.1.3.2.1.6.1.5 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when internal processing errors

prevent the successful release of any application component.

3.1.3.2.1.6.2 getPort

3.1.3.2.1.6.2.1 Brief Rationale

The getPort operation obtains an object reference to a specific visible port of the application.

3.1.3.2.1.6.2.2 Synopsis

Object getPort (in string name) raises (UnknownPort);

3.1.3.2.1.6.2.3 Behavior

The getPort operation returns object references for port names that are in the application SAD

externalports element.

3.1.3.2.1.6.2.4 Returns

The getPort operation shall return object references only for input port names that match the port

names that are in the application SAD externalports element.

SCA version 2.2.2 FINAL / 15 May 2006

3-26

3.1.3.2.1.6.2.5 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port is invalid.

3.1.3.2.2 ApplicationFactory

3.1.3.2.2.1 Description

 The ApplicationFactory interface class provides an interface to request the creation of a specific

type of application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The

software profile determines the type of application that is created by the application factory.

3.1.3.2.2.2 UML

create(in name : string(idl), in initConfiguration : Properties, in deviceAssignments : DeviceAssignmentSequence) : Application

«readonly» name : string(idl)

«readonly» identifier : string(idl)

«readonly» softwareProfile : string(idl)

«CORBAInterface»

ApplicationFactory

in invalidAssignments : DeviceAssignmentSequence

«exception»

CreateApplicationRequestError

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

CreateApplicationError

in invalidProperties : Properties

«exception»

InvalidInitConfiguration

«uses» «uses» «uses»

Figure 3-12: ApplicationFactory UML

3.1.3.2.2.3 Types

3.1.3.2.2.3.1 CreateApplicationRequestError Exception

The CreateApplicationRequestError exception is raised when the parameter CF

DeviceAssignmentSequence contains one (1) or more invalid application component-to-device

assignment(s).

exception CreateApplicationRequestError {

DeviceAssignmentSequence invalidAssignment; };

3.1.3.2.2.3.2 CreateApplicationError Exception

The CreateApplicationError exception is raised when a create request is valid but the application

is unsuccessfully instantiated due to internal processing errors. The error number shall indicate a

CF ErrorNumberType value. The message is component-dependent, providing additional

information describing the reason for the error.

exception CreateApplicationError { ErrorNumberType errorNumber;

string msg; };

3.1.3.2.2.3.3 Exception InvalidInitConfiguration

The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is

invalid.

SCA version 2.2.2 FINAL / 15 May 2006

3-27

exception InvalidInitConfiguration { Properties

invalidProperties; };

3.1.3.2.2.4 Attributes

3.1.3.2.2.4.1 name

The readonly name attribute contains the user-friendly name of the application instantiated by an

application factory. The name attribute shall be identical to the softwareassembly element name

attribute of the application’s Software Assembly Descriptor file.

readonly attribute string name;

3.1.3.2.2.4.2 softwareProfile

The softwareProfile attribute contains the Profile Descriptor for the application that is created by

the application factory.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a

file reference to the application’s SAD file. Files referenced within the profile are obtained via

FileManager.

readonly attribute string softwareProfile;

3.1.3.2.2.4.3 identifier

The readonly identifier attribute shall contain the unique identifier for an ApplicationFactory

instance. The identifier shall be identical to the softwareassembly element id attribute of the

application factory’s Software Assembly Descriptor file.

readonly attribute string identifier;

3.1.3.2.2.5 Operations

3.1.3.2.2.5.1 create

3.1.3.2.2.5.1.1 Brief Rationale

The create operation is used to create an application within the system domain.

The create operation provides a client interface to request the creation of an application on client

requested device(s) and/or the creation of an application in which the application factory

determines the necessary device(s) required for instantiation of the application.

3.1.3.2.2.5.1.2 Synopsis

Application create (in string name, in Properties

initConfiguration, in DeviceAssignmentSequence

deviceAssignments) raises (CreateApplicationError,

CreateApplicationRequestError, InvalidInitConfiguration);

3.1.3.2.2.5.1.3 Behavior

The create operation shall use the SPD implementation element to locate candidate devices

capable of loading and executing application software modules.

The create operation validates all component-device associations in the input deviceAssignments

parameter by verifying that the device indicated by the assignedDeviceId element provides the

SCA version 2.2.2 FINAL / 15 May 2006

3-28

necessary capacities and properties required by the component indicated by the componentId

element. Device assignments should not be given for resources created via a resource factory

since instantiation of these Resources is controlled by the creating ResourceFactory.

The create operation shall perform the comparison of allocation properties of the application to

those of each candidate device, according to the allocation property’s action element, for those

application component properties whose kindtype is allocation and whose action element is not

external.

The create operation shall use the allocateCapacity operation to perform the comparison of

allocation properties of the application to those of each candidate device for those application

component properties whose kindtype is allocation and whose action element is external

The create operation shall deallocate any capacity allocations on devices that do not satisfy the

application components allocation requirements or that are not utilized due to an unsuccessful

application creation.

The create operation shall load application modules onto devices that have been granted

successful capacity allocations and that satisfy the application components allocation

requirements.

The create operation shall execute the application software modules as specified in the

application’s Software Assembly Descriptor (SAD) file. The create operation shall use each

software module’s SPD implementation code’s stack size and priority elements, when specified,

for the execute options parameters.

The create operation shall include the mandatory execute parameters Naming Context IOR,

Name Binding, and Component Identifier, as described in this section, in the parameters

parameter of the ExecutableDevice::execute operation when the CORBA instance’s

componentinstantiation element of the SAD contains a findcomponent element with a

namingservice sub-element.

The execute parameter for the Naming Context IOR shall be a CF Properties type with an id

element set to "NAMING_CONTEXT_IOR" and a value element set to the stringified IOR of

the naming context to which the component will bind. The create operation shall create any

naming contexts that do not exist but which are required for successful binding to the Naming

Context IOR. The structure of the naming context path shall be "/ DomainName / [optional

naming context sequences]". In the naming context path, each "slash" (/) represents a separate

naming context.

The Name Binding execute parameter shall be a CF Properties type with an id element set to

"NAME_BINDING" and a value element set to a string in the format of

"ComponentName_UniqueIdentifier". The ComponentName value is the SAD

componentinstantiation findcomponent namingservice element’s name attribute. The

UniqueIdentifier is determined by the implementation. The Name Binding parameter is used by

the component to bind its object reference to the Naming Context IOR parameter.

The Component Identifier execute parameter shall be a CF Properties type with an id element set

to "COMPONENT_IDENTIFIER" and a value element set to a string in the format of

“Component_Instantiation_Identifier: Application_Name”. The

Component_Instantiation_Identifier is the componentinstantiation element id attribute for the

SCA version 2.2.2 FINAL / 15 May 2006

3-29

component in the application’s SAD file. The Application_Name field shall be identical to the

create operation’s input name parameter. The Application_Name field provides a specific

instance qualifier for executed components.

The create operation shall pass the values of the “execparam” properties of the

componentinstantiation componentproperties element contained in the SAD, as parameters to the

execute operation. The create operation passes “execparam” parameters values as string values.

Upon execution of a software module by the create operation, a Resource or a ResourceFactory

component shall register with the Naming Service. The create operation uses

"ComponentName_UniqueIdentifier" to retrieve the component’s CORBA object reference from

the Naming Context IOR.

The create operation obtains a resource in accordance with the SAD via the CORBA Naming

Service or a resource factory. The ResourceFactory object reference is obtained by using the

CORBA Naming Service. The create operation, when creating a resource from a resource

factory, shall pass the componentinstantiation componentresourcefactoryref element properties

whose kindtype element is factoryparam as the qualifiers parameter to the referenced

ResourceFactory component’s createResource operation.

The create operation shall, in order, initialize all application resources, then establish

connections for those resources, and finally configure the application component indicated by the

assemblycontroller element in the SAD. The create operation connects the ports of the

application resources with the ports of other resources within the application as well as the

devices and services they use in accordance with the SAD.

The create operation shall establish connections for an application which are specified in the

SAD domainfinder element. The create operation obtains object references to the required Port

interfaces in via PortSupplier::getPort operation. The create operation uses the SAD

connectinterface element id attribute as the unique identifier for a specific connection when

provided. The create operation creates a connection id when no SAD connectinterface element

id attribute is specified for a connection. For connections to an event channel, the create

operation shall connect a CosEventComm::PushConsumer or CosEventComm::PushSupplier

object to the event channel as specified in the SAD's domainfinder element. The create operation

shall create the specified event channel if the event channel does not exist.

The create operation shall configure the application component indicated by the

assemblycontroller element in the SAD if that component has properties with a kindtype of

“configure” and a mode of “readwrite” or “writeonly”. The create operation shall use the union

of the properties contained in the input initConfiguration parameter of the create operation and

the assembly controller’s componentinstantiation element properties with a kindtype of

“configure” and a mode of “readwrite” or “writeonly”. Values contained in the input

initConfiguration parameter shall have precedence over the values of the assembly controller’s

componentinstantiation element properties when they reference the same property.

The TestableObject::runTest operation (3.1.3.1.3.5.1), Resource::stop operation (3.1.3.1.6.5.1),

and Resource::start operation (3.1.3.1.6.5.1) are not called at start-up.

The create operation shall return an Application object reference for the created application

when the application is successfully created.

SCA version 2.2.2 FINAL / 15 May 2006

3-30

The create operation shall, upon successful application creation, write an

ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful application creation, write a FAILURE_ALARM

log record.

The create operation shall send a DomainManagementObjectAddedEventType event to the

Outgoing Domain Management event channel upon successful creation of an application. For

this event:

1. The producerId is the identifier attribute of the application factory.

2. The sourceId is the identifier attribute of the created application.

3. The sourceName is the name attribute of the created application.

4. The sourceIOR is the object reference for the created application.

5. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the behavior of an application factory for the

creation of an application:

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available devices that meet the application’s

memory and processor requirements, available dependent applications, and

dependent libraries needed by the application. Create an instance of an

Application, if the requested application can be created. Update the memory and

processor utilization of the devices.

3. Allocate the device(s) memory and processor utilization.

4. Load the application software modules on the devices using the appropriate

Device(s) interface provided the application software modules haven’t already

been loaded.

5. Execute the application software modules on the devices using the appropriate

Device interface as indicated by the application’s software profile.

6. Obtain the object reference (Resource or ResourceFactory) as described by the

SAD.

7. If the component obtained from the CORBA Naming Service is a resource factory

as indicated by the SAD, then narrow the object reference to be a

ResourceFactory component.

8. If the component is a ResourceFactory, then create a resource using the

ResourceFactory interface.

9. If the components obtained from the Naming Services is a resource supporting the

Resource interface as indicated by the SCDs, then narrow the components

reference to Resource components.

10. Initialize the resource.

11. Get Port object references for the resources.

SCA version 2.2.2 FINAL / 15 May 2006

3-31

12. Connect the ports that interconnect the resources’ ports together.

13. Configure the assemblycontroller component using the Resource interface.

14. Return the Application object reference and log message.

15. Generate an event to indicate the application has been added to the domain.

Figure 3-13 is a collaboration diagram depicting the behavior as described above.

CF::Comm User

«CORBAInterface»

ApplicationFactory

1: create:=create(name, initConfiguration, deviceAssignments)

Domain Profile

2: Evaluate and Obtain Application Profile

«CORBAInterface»

ExecutableDevice

3:
 a

llo
ca

te
C
ap

ac
ity

()

4:
 l

oa
d(

)

5:
 e

xe
cu

te
()

«CORBAInterface»

Naming Service

6
:
re

so
lv

e
()

O
b
ta

in
 c

o
m

p
o
n
e
n
t
re

fe
re

n
ce

s
p
e
r
S

A
D

«CORBAInterface»

ResourceFactory

7
:
 _

n
a
rr

o
w

()
8
:
 c

re
a
te

R
e
s
o
u
rc

e
()

«CORBAInterface»

Resource

9
: _

n
a
rro

w
()

1
0
: in

itia
lize

()

1
1
: g

e
tP

o
rt()

1
3
: co

n
fig

u
re

()

«CORBAInterface»

Port

12: connectPort()

«CORBAInterface»

Log

«oneway» 14: write_records()

«CORBAInterface»

ODM Event Channel
15: push:=push(DomainManagementObjectAddedEventType)

Figure 3-13: ApplicationFactory Behavior

3.1.3.2.2.5.1.4 Returns

The create operation returns a duplicated Application reference for the created application.

3.1.3.2.2.5.1.5 Exceptions/Errors

The create operation shall raise the CreateApplicationRequestError exception when the input CF

DeviceAssignmentSequence parameter contains one (1) or more invalid application component

to device assignment(s).

The create operation shall raise the CreateApplicationError exception when the create request is

valid but the application cannot be successfully instantiated due to internal processing error(s).

The create operation shall raise the InvalidInitConfiguration exception when the input

initConfiguration parameter is invalid. The InvalidInitConfiguration invalidProperties parameter

shall identify the invalid properties.

SCA version 2.2.2 FINAL / 15 May 2006

3-32

3.1.3.2.3 DomainManager

3.1.3.2.3.1 Description

The DomainManager interface is for the control and configuration of the system domain.

The DomainManager interface operations may be logically grouped into three categories:

Human Computer Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (devices,

services, and applications), and initiate maintenance functions. Host operations are performed

by an HCI client capable of interfacing to the domain manager.

The registration operations are used to register / unregister device managers, device manager’s

devices, device manager’s services, and applications at startup or during run-time for dynamic

device, service, and application extraction and insertion.

The administration operations are used to access the interfaces of registered device managers and

domain manager's file manager.

3.1.3.2.3.2 UML

The DomainManager Interface UML is depicted in Figure 3-14.

registerDevice(in registeringDevice : Device, in registeredDeviceMgr : DeviceManager) : void

registerDeviceManager(in deviceMgr : DeviceManager) : void

unregisterDevice(in unregisteringDevice : Device) : void

unregisterDeviceManager(in deviceMgr : DeviceManager) : void

installApplication(in profileFileName : string(idl)) : void

uninstallApplication(in applicationId : string(idl)) : void

registerService(in registeringService : object(idl), in registeredDeviceMgr : DeviceManager, in name : string(idl)) : void

unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void

registerWithEventChannel(in registeringObject : object(idl), in registeringId : string(idl), in eventChannelName : string(idl)) : void

unregisterFromEventChannel(in unregisteringId : string(idl), in eventChannelName : string(idl)) : void

«readonly» identifier : string(idl)

«readonly» deviceManagers : DeviceManagerSequence

«readonly» applications : ApplicationSequence

«readonly» applicationFactories : ApplicationFactorySequence

«readonly» fileMgr : FileManager

«readonly» domainManagerProfile : string(idl)

«CORBAInterface»

DomainManager

configure(in configProperties : Properties) : void

query(inout configProperties : Properties) : void

«CORBAInterface»

PropertySet

«inherits»

Figure 3-14: DomainManager Interface UML

SCA version 2.2.2 FINAL / 15 May 2006

3-33

3.1.3.2.3.3 Types

3.1.3.2.3.3.1 ApplicationInstallationError

The ApplicationInstallationError exception type is raised when an application installation has not

completed correctly. The error number shall indicate a CF ErrorNumberType value. The

message is component-dependent, providing additional information describing the reason for the

error.

exception ApplicationInstallationError { ErrorNumberType

errorNumber; string msg; };

3.1.3.2.3.3.2 InvalidIdentifier

The InvalidIdentifier exception indicates an application identifier is invalid.

exception InvalidIdentifier{};

3.1.3.2.3.3.3 DeviceManagerSequence

This type defines an unbounded sequence of DeviceManager(s).

typedef sequence <DeviceManager> DeviceManagerSequence

3.1.3.2.3.3.4 ApplicationSequence

This type defines an unbounded sequence of Application(s).

typedef sequence < Application> ApplicationSequence

3.1.3.2.3.3.5 ApplicationFactorySequence

This type defines an unbounded sequence of ApplicationFactory(s).

typedef sequence < ApplicationFactory>

ApplicationFactorySequence

3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception

The DeviceManagerNotRegistered exception indicates the registering device’s device manager is

not registered in the domain manager. A device’s device manager has to be registered prior to

device registration to the domain manager.

exception DeviceManagerNotRegistered{};

3.1.3.2.3.3.7 RegisterError

The RegisterError exception indicates that an internal error has occurred to prevent

DomainManager registration operations from successful completion. The error number shall

indicate a CF ErrorNumberType value. The message is component-dependent, providing

additional information describing the reason for the error.

exception RegisterError { ErrorNumberType errorNumber; string

msg; };

3.1.3.2.3.3.8 UnregisterError

The UnregisterError exception indicates that an internal error has occurred to prevent

DomainManager unregister operations from successful completion. The error number shall

SCA version 2.2.2 FINAL / 15 May 2006

3-34

indicate a CF ErrorNumberType value. The message is component-dependent, providing

additional information describing the reason for the error.

exception UnregisterError { ErrorNumberType errorNumber; string

msg; };

3.1.3.2.3.3.9 ApplicationUninstallationError

The ApplicationUninstallationError exception type is raised when the uninstallation of an

application has not completed correctly. The error number shall indicate a CF ErrorNumberType

value. The message is component-dependent, providing additional information describing the

reason for the error.

exception ApplicationUninstallationError { ErrorNumberType

errorNumber; string msg; };

3.1.3.2.3.3.10 InvalidEventChannelName

The InvalidEventChannelName exception indicates that a domain manager was not able to locate

the event channel.

exception InvalidEventChannelName{};

3.1.3.2.3.3.11 AlreadyConnected

The AlreadyConnected exception indicates that a registering consumer is already connected to

the specified event channel.

exception AlreadyConnected{};

3.1.3.2.3.3.12 NotConnected

The NotConnected exception indicates that the unregistering consumer was not connected to the

specified event channel.

exception NotConnected{};

3.1.3.2.3.3.13 ApplicationAlreadyInstalled

The ApplicationAlreadyInstalled exception indicates that the application being installed is

already installed.

exception ApplicationAlreadyInstalled{};

3.1.3.2.3.4 Attributes.

3.1.3.2.3.4.1 deviceManagers

The deviceManagers attribute is read-only containing a sequence of registered device managers

in the domain. The readonly deviceManagers attribute shall contain a list of registered device

managers that have registered with the domain manager. The domain manager shall write an

ADMINISTRATIVE_EVENT log to a domain manager’s log, when the deviceManagers

attribute is obtained by a client.

readonly attribute DeviceManagerSequence deviceManagers;

SCA version 2.2.2 FINAL / 15 May 2006

3-35

3.1.3.2.3.4.2 applications

The applications attribute is read-only containing a sequence of instantiated Applications in the

domain. The readonly applications attribute shall contain the list of Applications that have been

instantiated. The domain manager shall write an ADMINISTRATIVE_EVENT log record to a

domain manager’s log, when the application’s attribute is obtained by a client.

readonly attribute ApplicationSequence applications;

3.1.3.2.3.4.3 applicationFactories

The readonly applicationFactories attribute shall contain a list with one application factory per

application (SAD file and associated files) successfully installed (i.e. no exception raised). The

domain manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s

log, when the applicationFactories attribute is obtained by a client.

readonly attribute ApplicationFactorySequence

applicationFactories;

3.1.3.2.3.4.4 fileMgr

The readonly fileMgr attribute shall contain the domain manager file manager. The domain

manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s log,

when the fileMgr attribute is obtained by a client.

readonly attribute FileManager fileMgr;

3.1.3.2.3.4.5 domainManagerProfile

The domainManagerProfile attribute contains the domain manager’s Profile Descriptor.

The readonly domainManagerProfile attribute shall contain a profile element (Profile Descriptor)

with a file reference to the DomainManager Configuration Descriptor (DMD) file. Files

referenced within the profile are obtained via the domain manager’s FileManager.

readonly attribute string domainManagerProfile;

3.1.3.2.3.4.6 identifier

The readonly identifier attribute shall contain a unique identifier for a DomainManager instance.

The identifier shall be identical to the domainmanagerconfiguration element id attribute of the

domain manager’s Descriptor (DMD) file.

readonly attribute string identifier;

3.1.3.2.3.5 General Class Behavior

The domain manager shall register itself with the CORBA Naming Service during component

construction. The domain manager shall create a naming context using "/DomainName" as the id

attribute to the input name parameter, and "" (Null string) as the kind attribute. The domain

manager shall create a name binding to the created naming context using "/DomainName" as the

id attribute to the input name parameter, and "" (Null string) as the kind attribute, where

DomainName is identical to the name attribute of the domain manager’s DMD

domainmanagerconfiguration element and the input object parameter is the domain manager

object reference. [6]

SCA version 2.2.2 FINAL / 15 May 2006

3-36

Since a log service is not a required component, a domain manager implementation may, or may

not have access to a log. However, if log service(s) are available, a DomainManager

implementation may use one or more of them. The logs utilized by the DomainManager

implementation shall be defined in the DMD.

The domain manager shall begin to use a service specified in the DMD once the service is

successfully registered with the domain manager via the registerDeviceManager or

registerService operations.

The domain manager shall create its own FileManager component that consists of all registered

device manager’s FileSystems.

Upon system startup, the domain manager shall restore application factories for applications that

were previously installed by the DomainManager::installApplication operation. The domain

manager shall add the restored application factories to the DomainManager applicationFactories

attribute.

The domain manager shall create the Incoming Domain Management and Outgoing Domain

Management event channels.

3.1.3.2.3.6 Operations

3.1.3.2.3.6.1 registerDeviceManager

3.1.3.2.3.6.1.1 Brief Rationale

The registerDeviceManager operation is used to register a device manager, its device(s), and its

services. Software profiles may be obtained from the device manager's FileSystem.

3.1.3.2.3.6.1.2 Synopsis

void registerDeviceManager (in DeviceManager deviceMgr) raises

(InvalidObjectReference, InvalidProfile, RegisterError);

3.1.3.2.3.6.1.3 Behavior

The registerDeviceManager operation verifies that the input deviceMgr parameter is a not a nil

CORBA object reference.

The registerDeviceManager operation shall add the device manager indicated by the input

deviceMgr parameter to the DomainManager deviceManagers attribute, if it does not already

exist. The registerDeviceManager operation shall add the input device manager’s registered

devices and each registered device’s attributes (e.g., identifier, softwareProfile, allocation

properties, etc.) to the domain manager. The domain manager associates the input device

manager’s registered devices with the device manager in order to support the

unregisterDeviceManager operation.

The registerDeviceManager operation shall add all the services contained in the registering

device manager’s registeredServices attribute to the domain manager. The

registerDeviceManager operation associates the device manager indicated by the input

deviceMgr parameter with its registered services in the domain manager in order to support the

unregisterDeviceManager operation.

The registerDeviceManager operation shall return without exception and not register a new

device manager when that device manager, indicated by the input deviceMgr parameter, has the

SCA version 2.2.2 FINAL / 15 May 2006

3-37

same identifier attribute as a previously registered device manager and the reference to the

registered device manager refers to an existing object.

The registerDeviceManager operation shall register the new device manager indicated by the

input deviceMgr parameter, when the previously registered device manager has the same

identifier attribute as the new device manager and the reference to the registered device manager

refers to a nonexistent object.

The registerDeviceManager operation shall write an ADMINISTRATIVE_EVENT log record

when reference to the registered device manager refers to a nonexistent object.

The registerDeviceManager operation shall establish any connections for the device manager

indicated by the input deviceMgr parameter, which are specified in the connections element of

the device manager’s Device Configuration Descriptor (DCD) file, that are possible with the

current set of registered devices and services. Connections not currently possible are left

unconnected pending future device / service registrations.

For connections established for a CORBA Event Service’s event channel, the

registerDeviceManager operation shall connect a CosEventComm::PushConsumer or

CosEventComm::PushSupplier object to the event channel as specified in the DCD’s

domainfinder element. If the event channel does not exist, the registerDeviceManager operation

shall create the event channel.

The registerDeviceManager operation shall obtain all the software profiles from the registering

device manager's file systems.

The registerDeviceManager operation shall mount the device manager's file system to the

domain manager’s file manager. The mounted FileSystem name shall have the format,

“/DomainName/HostName”, where DomainName is the name of the domain and HostName is

the input deviceMgr’s label attribute.

The registerDeviceManager operation shall, upon unsuccessful device manager registration,

write a FAILURE_ALARM log record to a domain manager’s Log.

The registerDeviceManager operation shall send a DomainManagementObjectAddedEventType

event to the Outgoing Domain Management event channel upon successful registration of a

device manager. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the registered device manager.

3. The sourceName is the label attribute of the registered device manager.

4. The sourceIOR is the object reference for the registered device manager.

5. The sourceCategory is “DEVICE_MANAGER”.

The following UML sequence diagram (Figure 3-15) illustrates the domain manager’s behavior

for the registerDeviceManager operation.

SCA version 2.2.2 FINAL / 15 May 2006

3-38

«CORBAInterface»

DeviceManager

«CORBAInterface»

DomainManager

«CORBAInterface»

Device
XML Parser

«CORBAInterface»

Port
«CORBAInterface»

Log

«CORBAInterface»

ODM Channel

1: registerDeviceManager:=registerDeviceManager(deviceMgr)

2: Add DeviceManager to DomainManager

20: push:=push(DomainManagerObjectAddedEventType)

3: getfileSys()

4: mount FileSystem to FileManager

Steps 6 thru 14 need to be repeated for each device
and service. Steps 11 thru 14 are optional, provided
the Device requires a service and the service exists in
the Domain.

Devices that were previously registered that are
waiting for Services are also connected to services that
come into existence during a Device Manager
registration.

5: getregisteredDevices()

6: getdeviceConfigurationProfiles()

7: get attributes

Device attributes (identifier, softwareProfile, etc.)
Repeated for each attribute

8: getregisteredServices()

9: Parse and get service properties (e.g. allocation)

This step is optional provided the XML has not
changed and has already been parsed

10: add devices to domain manager

11: getPort:=getPort(name)

12: narrow to Port interface reference

13: Obtain a service from the Domain

14: connectPort:=connectPort(connection, connectionId)

Steps 15 thru 18 are optional, provided the device
manager is using a service and the service exists in the
domain

15: getPort:=getPort(name)

16: narrow to Port interface reference

17: Obtain a service from the Domain

18: connectPort:=connectPort(connection, connectionId)

«oneway» 19: write_record:=write_record(record:ProducerLogRecord)

Figure 3-15: DomainManager Sequence Diagram for registerDeviceManager Operation

3.1.3.2.3.6.1.4 Returns

This operation does not return a value.

SCA version 2.2.2 FINAL / 15 May 2006

3-39

3.1.3.2.3.6.1.5 Exceptions/Errors

The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when

the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

The registerDeviceManager operation shall raise the CF InvalidProfile exception when the

device manager’s DCD file and the DCD’s referenced files do not exist.

The registerDeviceManager operation shall raise the RegisterError exception when an internal

error exists which causes an unsuccessful registration.

3.1.3.2.3.6.2 registerDevice

3.1.3.2.3.6.2.1 Brief Rationale

The registerDevice operation is used to register a device for a specific device manager with the

domain manager.

3.1.3.2.3.6.2.2 Synopsis

void registerDevice (in Device registeringDevice, in

DeviceManager registeredDeviceMgr) raises

(InvalidObjectReference, InvalidProfile,

DeviceManagerNotRegistered, RegisterError);

3.1.3.2.3.6.2.3 Behavior

The registerDevice operation shall verify that the input parameters, registeringDevice and

registeredDeviceMgr, are not nil CORBA object references.

The registerDevice operation shall add the device indicated by the input registeringDevice

parameter and the device’s attributes to the domain manager, if it does not already exist.

The registerDevice operation shall return without exception and not register a new device when

that device, indicated by the input registeringDevice parameter, has the same identifier attribute

as a previously registered device and the reference to the registered device refers to an existing

object.

The registerDevice operation shall register the new device indicated by the input

registeringDevice parameter, when the previously registered device has the same identifier

attribute as the new device and the reference to the registered device refers to a nonexistent

object.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record when

reference to the registered device refers to a nonexistent object.

The registerDevice operation associates the device indicated by the input registeringDevice

parameter with the device manager indicated by the input registeredDeviceMgr parameter when

the device manager is a valid registered DeviceManager in the domain manager.

The registerDevice operation shall establish any pending connections from previously registered

device managers when the registering device completes these connections.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record to a

domain manager log upon successful device registration.

SCA version 2.2.2 FINAL / 15 May 2006

3-40

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager

log, when the CF InvalidProfile exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager

log when the DeviceManagerNotRegistered exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager

log when the CF InvalidObjectReference exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager

log when the RegisterError exception is raised.

The registerDevice operation shall send a DomainManagementObjectAddedEventType event to

the Outgoing Domain Management event channel, upon successful registration of a device. For

this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the registered device.

3. The sourceName is the label attribute of the registered device.

4. The sourceIOR is the object reference for the registered device.

5. The sourceCategory is “DEVICE”.

The following UML sequence diagram (Figure 3-16) illustrates the domain manager's behavior

for the registerDevice operation.

SCA version 2.2.2 FINAL / 15 May 2006

3-41

«CORBAInterface»

DeviceManager

«CORBAInterface»

DomainManager

«CORBAInterface»

Device
XML Parser

«CORBAInterface»

Port
«CORBAInterface»

Log

«CORBAInterface»

ODM Channel

1: registerDevice:=registerDevice(registeringDevice, registeredDeviceMgr)

5: add registering device to domain manager

10: push:=push(DomainManagmentObjectAddedEventType)

4: associate registering device with a registered device manager in the domain manager

6: getdeviceConfigurationProfiles()

2: get attributes
Device attributes (identifier, softwareProfile, etc.)
Repeated for each attribute

3: Parse and get device properties (e.g. allocation)
This step is optional provided the XML has not
changed and has already been parsed

7: narrow to Port interface reference

8: Obtian a service from the Domain

9: connectPort:=connectPort(connection, connectionId)

Steps 7 thru 9 are optional, provided the registering
device is using a service and the service exists in the
domain

«oneway» write_record:=write_record(record:ProducerLogRecord)

Figure 3-16: DomainManager Sequence Diagram for registerDevice Operation

3.1.3.2.3.6.2.4 Returns

This operation does not return a value.

3.1.3.2.3.6.2.5 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidProfile exception when:

1. The device's SPD file and the SPD’s referenced files do not exist, or

2. The device profile does not reference allocation properties.

The registerDevice operation shall raise a DeviceManagerNotRegistered exception when the

input registeredDeviceMgr parameter is not a nil reference and the referenced device manager is

not registered with the domain manager.

The registerDevice operation shall raise the CF InvalidObjectReference exception when input

parameters registeringDevice or registeredDeviceMgr contains an invalid reference.

The registerDevice operation shall raise the RegisterError exception when an internal error exists

which causes an unsuccessful registration.

SCA version 2.2.2 FINAL / 15 May 2006

3-42

3.1.3.2.3.6.3 installApplication

3.1.3.2.3.6.3.1 Brief Rationale

The installApplication operation is used to install new application software in the domain.

3.1.3.2.3.6.3.2 Synopsis

void installApplication (in string profileFileName) raises

(InvalidProfile, InvalidFileName, ApplicationInstallationError,

ApplicationAlreadyInstalled);

3.1.3.2.3.6.3.3 Behavior

The input profileFileName parameter is the absolute pathname of the application SAD.

The installApplication operation shall verify the existence of the application's SAD file and all

files upon which the SAD depends, within the domain manager's file manager.

The installApplication operation shall write an ADMINISTRATIVE_EVENT log record to a

domain manager's log, upon successful application installation.

The installApplication operation shall, upon unsuccessful application installation, write a

FAILURE_ALARM log record to a domain manager's log.

The installApplication operation shall send a DomainManagementObjectAddedEventType event

to the Outgoing Domain Management event channel, upon successful installation of an

application. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the installed application factory.

3. The sourceName is the name attribute of the installed application factory.

4. The sourceIOR is the object reference for the installed application factory.

5. The sourceCategory is “APPLICATION_FACTORY”.

3.1.3.2.3.6.3.4 Returns

This operation does not return a value.

3.1.3.2.3.6.3.5 Exceptions/Errors

The installApplication operation shall raise the ApplicationInstallationError exception when the

installation of the application file(s) was not successfully completed.

The installApplication operation shall raise the CF InvalidFileName exception when the input

SAD file or any of the SAD’s referenced filenames do not exist in the file system identified by

the absolute path of the input profileFileName parameter. The installApplication operation shall

log a FAILURE_ALARM log record to a domain manager's Log with a message consisting of

"installApplication::invalid file is xxx", where "xxx" is the input or referenced filename, when

the CF InvalidFileName exception occurs.

The installApplication operation shall raise the CF InvalidProfile exception when any referenced

property definition is missing.

SCA version 2.2.2 FINAL / 15 May 2006

3-43

The installApplication operation shall write a FAILURE_ALARM log record to a domain

manager's log when the CF InvalidProfile exception is raised. The value of the logData attribute

of this record is "installApplication::invalid Profile is yyy", where "yyy" is the input or

referenced file name.

The installApplication operation shall raise the ApplicationAlreadyInstalled exception when the

softwareassembly element id attribute of the referenced application is the same as a previously

registered application.

3.1.3.2.3.6.4 unregisterDeviceManager

3.1.3.2.3.6.4.1 Brief Rationale

The unregisterDeviceManager operation is used to unregister a DeviceManager component from

the domain manager. A device manager may be unregistered during run-time for dynamic

extraction or maintenance of the device manager.

3.1.3.2.3.6.4.2 Synopsis

void unregisterDeviceManager (in DeviceManager deviceMgr) raises

(InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.4.3 Behavior

The unregisterDeviceManager operation shall unregister a DeviceManager component from the

DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with

the device manager that is being unregistered.

The unregisterDeviceManager operation shall disconnect the established connections (including

those made to the CORBA Event Service event channels) of the unregistering device manager as

well as for its registered devices and services. Connections broken as a result of the

unregisterDeviceManager operation shall be considered as “pending” for future connections

when the component to which the device manager or its registered devices and services were

connected still exists. The unregisterDeviceManager operation may destroy the CORBA Event

Service channel when no more consumers and producers are connected to it.

The unregisterDeviceManager operation shall unmount all device manager's file systems from

its file manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a device

manager, write an ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a device

manager, write a FAILURE_ALARM log record to a domain manager's log.

The unregisterDeviceManager operation shall send a

DomainManagementObjectRemovedEventType event to the Outgoing Domain Management

event channel, upon successful unregistration of a device manager. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the unregistered device manager.

3. The sourceName is the label attribute of the unregistered device manager.

SCA version 2.2.2 FINAL / 15 May 2006

3-44

4. The sourceCategory is “DEVICE_MANAGER”.

3.1.3.2.3.6.4.4 Returns

This operation does not return a value.

3.1.3.2.3.6.4.5 Exceptions/Errors

The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the

input deviceMgr parameter contains an invalid reference to a DeviceManager interface.

The unregisterDeviceManager operation shall raise the UnregisterError exception when an

internal error exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.5 unregisterDevice

3.1.3.2.3.6.5.1 Brief Rationale

The unregisterDevice operation is used to remove a device entry from the domain manager for a

specific device manager.

3.1.3.2.3.6.5.2 Synopsis

void unregisterDevice (in Device unregisteringDevice) raises

(InvalidObjectReference, UnregisterError)

3.1.3.2.3.6.5.3 Behavior

The unregisterDevice operation shall remove a device entry from the domain manager.

The unregisterDevice operation shall release (client-side CORBA release) the

unregisteringDevice from the domain manager.

The unregisterDevice operation shall disconnect the established connections (including those

made to the CORBA Event Service event channels) of the unregistering device. Connections

broken as a result of the unregisterDevice operation shall be considered as “pending” for future

connections when the component to which the device was connected still exists.

The unregisterDevice operation may destroy the CORBA Event Service event channel when no

more consumers and producers are connected to it.

The unregisterDevice operation shall, upon the successful unregistration of a device, write an

ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDevice operation shall, upon unsuccessful unregistration of a device, write a

FAILURE_ALARM log record to a domain manager's log.

The unregisterDevice operation shall send a DomainManagementObjectRemovedEventType

event to the Outgoing Domain Management event channel, upon successful unregistration of a

device. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the unregistered device.

3. The sourceName is the label attribute of the unregistered device.

4. The sourceCategory is “DEVICE”.

SCA version 2.2.2 FINAL / 15 May 2006

3-45

3.1.3.2.3.6.5.4 Returns

This operation does not return a value.

3.1.3.2.3.6.5.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference exception when the

input parameter contains an invalid reference to a Device interface.

The unregisterDevice operation shall raise the UnregisterError exception when an internal error

exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.6 uninstallApplication

3.1.3.2.3.6.6.1 Brief Rationale

The uninstallApplication operation is used to uninstall an application factory from the domain.

3.1.3.2.3.6.6.2 Synopsis

void uninstallApplication (in string applicationId)raises

(InvalidIdentifier, ApplicationUninstallationError);

3.1.3.2.3.6.6.3 Behavior

The ApplicationId parameter is the softwareassembly element id attribute of the

ApplicationFactory’s Software Assembly Descriptor file.

The uninstallApplication operation shall make the ApplicationFactory unavailable from the

domain manager (i.e. its services no longer provided for the application).

The uninstallApplication operation shall, upon successful uninstall of an application, write an

ADMINISTRATIVE_EVENT log record to a domain manager's log.

The uninstallApplication operation shall, upon unsuccessful uninstall of an application, write a

FAILURE_ALARM log record to a domain manager's log.

The uninstallApplication operation shall send a DomainManagementObjectRemovedEventType

event to the Outgoing Domain Management event channel, upon the successful uninstallation of

an application. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the uninstalled application factory.

3. The sourceName is the name attribute of the uninstalled application factory.

4. The sourceCategory is “APPLICATION_FACTORY”.

3.1.3.2.3.6.6.4 Returns

This operation does not return a value.

3.1.3.2.3.6.6.5 Exceptions/Errors

The uninstallApplication operation shall raise the InvalidIdentifier exception when the

ApplicationId is invalid.

The uninstallApplication operation shall raise the ApplicationUninstallationError exception

when an internal error causes an unsuccessful uninstallation of the application.

SCA version 2.2.2 FINAL / 15 May 2006

3-46

3.1.3.2.3.6.7 registerService

3.1.3.2.3.6.7.1 Brief Rationale

The registerService operation is used to register a service for a specific device manager with the

domain manager.

3.1.3.2.3.6.7.2 Synopsis

void registerService (in Object registeringService, in

DeviceManager registeredDeviceMgr, in string name) raises

(InvalidObjectReference, DeviceManagerNotRegistered,

RegisterError);

3.1.3.2.3.6.7.3 Behavior

The registerService operation shall verify the input registeringService and registeredDeviceMgr

are valid object references.

The registerService operation shall verify the input registeredDeviceMgr has been previously

registered with the domain manager.

The registerService operation shall add the registeringService’s object reference and the

registeringService’s name to the domain manager, if the name for the type of service being

registered does not exist within the domain manager. The registerService operation shall return

without exception and not register a new service when that service, indicated by the input

registeringService parameter, has the same name and type as a previously registered service and

the reference to the registered service refers to an existing object.

The registerService operation shall register the new service, indicated by the input

registeringService parameter, when the previously registered service has the same name and type

as the new service and the reference to the registered service refers to a nonexistent object.

The registerService operation shall write an ADMINISTRATIVE_EVENT log record when

reference to the registered service refers to a nonexistent object.

The registerService operation shall associate the input registeringService parameter with the

input registeredDeviceMgr parameter in the domain manager, when the registeredDeviceMgr

parameter indicates a device manager that is registered with the domain manager.

The registerService operation shall establish any pending connections from previously registered

device managers when the registering service completes these connections.

The registerService operation shall, upon successful service registration, write an

ADMINISTRATIVE_EVENT log record to a domain manager's log.

The registerService operation shall, upon unsuccessful service registration, write a

FAILURE_ALARM log record to a domain manager's log.

The registerService operation shall send a DomainManagementObjectAddedEventType event to

the Outgoing Domain Management event channel, upon successful registration of a service. For

this event,

1. The producerId is the identifier attribute of the domain manager.

SCA version 2.2.2 FINAL / 15 May 2006

3-47

2. The sourceId is the identifier attribute of the componentinstantiation element

associated with the registered service.

3. The sourceName is the input name parameter for the registering service.

4. The sourceIOR is the object reference for the registered service.

5. The sourceCategory is “SERVICE”.

The following UML sequence diagram (Figure 3-17) illustrates the domain manager's behavior

for the registerService operation.

«CORBAInterface»

Device Manager

«CORBAInterface»

Domain Manager

«CORBAInterface»

Device Uses Port

«CORBAInterface»

ODM Channel

«CORBAInterface»

Log

1: registerService:=registerService(registeringService, registeredDeviceMgr, name)

2: associate registering service with registered Device manager in the Domain Manager

3: add registering service to domain manager

4: connectPort:=connectPort(connection, connectionId)

5: push:=push(DomainManagmentObjectAddedEventType)

«oneway» 6: write_records:=write_records(records)

Figure 3-17: DomainManager Sequence Diagram for registerService Operation

3.1.3.2.3.6.7.4 Returns

This operation does not return a value.

3.1.3.2.3.6.7.5 Exceptions/Errors.

The registerService operation shall raise a DeviceManagerNotRegistered exception when the

input registeredDeviceMgr parameter is not a nil reference and is not registered with the domain

manager.

The registerService operation shall raise the CF InvalidObjectReference exception when input

parameters registeringService or registeredDeviceMgr contains an invalid reference.

The registerService operation shall raise the RegisterError exception when an internal error

exists which causes an unsuccessful registration.

3.1.3.2.3.6.8 unregisterService

3.1.3.2.3.6.8.1 Brief Rationale

The unregisterService operation is used to remove a service entry from the domain manager for a

specific device manager.

SCA version 2.2.2 FINAL / 15 May 2006

3-48

3.1.3.2.3.6.8.2 Synopsis

void unregisterService (in Object unregisteringService, in

string name) raises (InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.8.3 Behavior

The unregisterService operation shall disconnect the established connections (including those

made to the CORBA Event Service event channels) of the unregistering service indicated by the

input unregisteringService parameter. Connections broken as a result of the unregisterService

operation shall be considered as “pending” for future connections when the component to which

the service was connected still exists.

The unregisterService operation shall remove the unregisteringService entry specified by the

input name parameter from the domain manager.

The unregisterService operation shall release (client-side CORBA release) the

unregisteringService from the domain manager.

The unregisterService operation shall, upon the successful unregistration of a service, write an

ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterService operation shall, upon unsuccessful unregistration of a service, write a

FAILURE_ALARM log record to a domain manager's log.

The unregisterService operation shall send a DomainManagementObjectRemovedEventType

event to the Outgoing Domain Management event channel, upon successful unregistration of a

service. For this event,

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the componentinstantiation element

associated with the unregistered service.

3. The sourceName is the input name parameter for the unregistering service.

4. The sourceCategory is “SERVICE”.

3.1.3.2.3.6.8.4 Returns

This operation does not return a value.

3.1.3.2.3.6.8.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference exception when the

input parameter contains an invalid reference to a service interface.

The unregisterService operation shall raise the UnregisterError exception when an internal error

exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.9 registerWithEventChannel

3.1.3.2.3.6.9.1 Brief Rationale

The registerWithEventChannel operation is used to connect a consumer to a domain’s event

channel.

SCA version 2.2.2 FINAL / 15 May 2006

3-49

3.1.3.2.3.6.9.2 Synopsis

void registerWithEventChannel (in Object registeringObject, in

string registeringId, in string eventChannelName) raises

(InvalidObjectReference, InvalidEventChannelName,

AlreadyConnected);

3.1.3.2.3.6.9.3 Behavior

The registerWithEventChannel operation shall connect the object identified by the input

registeringObject parameter to an event channel as specified by the input eventChannelName

parameter.

3.1.3.2.3.6.9.4 Returns

This operation does not return a value.

3.1.3.2.3.6.9.5 Exceptions/Errors

The registerWithEventChannel operation shall raise the CF InvalidObjectReference exception

when the input registeringObject parameter contains an invalid reference to a

CosEventComm::PushConsumer interface.

The registerWithEventChannel operation shall raise the InvalidEventChannelName exception

when the input eventChannelName parameter contains an invalid event channel name.

The registerWithEventChannel operation shall raise AlreadyConnected exception when the input

parameter contains a connection to the event channel for the input registeringId parameter.

3.1.3.2.3.6.10 unregisterFromEventChannel

3.1.3.2.3.6.10.1 Brief Rationale

The unregisterFromEventChannel operation is used to disconnect a consumer from a domain’s

event channel.

3.1.3.2.3.6.10.2 Synopsis

void unregisterFromEventChannel (in string unregisteringId, in

string eventChannelName) raises (InvalidEventChannelName,

NotConnected);

3.1.3.2.3.6.10.3 Behavior

The unregisterFromEventChannel operation shall disconnect a registered component from the

event channel as identified by the input parameters.

3.1.3.2.3.6.10.4 Returns

This operation does not return a value.

3.1.3.2.3.6.10.5 Exceptions/Errors

The unregisterFromEventChannel operation shall raise the InvalidEventChannelName exception

when the input eventChannelName parameter contains an invalid reference to an event channel.

The unregisterFromEventChannel operation shall raise the NotConnected exception when the

input parameter unregisteringId parameter is not connected to specified input event channel.

SCA version 2.2.2 FINAL / 15 May 2006

3-50

3.1.3.2.4 DeviceManager

3.1.3.2.4.1 Description

The DeviceManager interface is used to manage a set of logical devices and services. The

interface for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to

meaningful labels (e.g., audio1, serial1, etc.), along with the devices and services

to be deployed.

2. File System - the FileSystem associated with this device manager.

3. Device Manager Identifier - the instance-unique identifier for this device

manager.

4. Device Manager Label - the meaningful name given to this device manager.

5. Registered Devices - a list of devices that have registered with this device

manager.

6. Registered Services - a list of services that have registered with this device

manager.

3.1.3.2.4.2 UML

registerDevice(in registeringDevice : Device) : void

unregisterDevice(in registeredDevice : Device) : void

shutdown() : void

registerServce(in registeringService : object(idl), in name : string(idl)) : void

unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void

getComponentImplementationId(in componentInstantiationId : string(idl)) : string(idl)

«readonly» deviceConfigurationProfile : string(idl)

«readonly» fileSys : FileSystem

«readonly» identifier : string(idl)

«readonly» label : string(idl)

«readonly» registeredDevices : DeviceSequence

«readonly» registeredServices : ServiceSequence

«CORBAInterface»

DeviceManager

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»

PortSupplier

configure(in configProperties : Properties) : void

query(inout configProperties : Properties) : void

«CORBAInterface»

PropertySet

«inherits» «inherits»

Figure 3-18: DeviceManager UML

3.1.3.2.4.3 Types

This section describes the types defined in the interface DeviceManager.

3.1.3.2.4.3.1 ServiceType

This structure provides the object reference and name of a service that has registered with the

device manager.

SCA version 2.2.2 FINAL / 15 May 2006

3-51

struct ServiceType

{

 Object serviceObject;

 string serviceName;

};

3.1.3.2.4.3.2 ServiceSequenceType

This type provides an unbounded sequence of ServiceType structures for services that have

registered with the device manager.

typedef sequence <ServiceType> ServiceSequence;

3.1.3.2.4.4 Attributes

3.1.3.2.4.4.1 identifier

The readonly identifier attribute shall contain the instance-unique identifier for a device

manager. The identifier shall be identical to the deviceconfiguration element id attribute of the

device manager's Device Configuration Descriptor (DCD) file.

readonly attribute string identifier;

3.1.3.2.4.4.2 label

The readonly label attribute shall contain the device manager's label. The label is the meaningful

name given to a device manager.

readonly attribute string label;

3.1.3.2.4.4.3 fileSys

The readonly fileSys attribute shall contain the FileSystem associated with this device manager.

readonly attribute FileSystem fileSys;

3.1.3.2.4.4.4 deviceConfigurationProfile

The readonly deviceConfigurationProfile attribute contains the device manager’s profile

descriptor.

The readonly deviceConfigurationProfile attribute shall contain a profile element (Profile

Descriptor) with a file reference to the device manager’s Device Configuration Descriptor

(DCD) file. Files referenced within the profile are obtained via the FileSystem.

readonly attribute string deviceConfigurationProfile;

3.1.3.2.4.4.5 registeredDevices

The readonly registeredDevices attribute shall contain a list of devices that have registered with

this device manager or a sequence length of zero if no devices have registered with the device

manager.

readonly attribute DeviceSequence registeredDevices;

SCA version 2.2.2 FINAL / 15 May 2006

3-52

3.1.3.2.4.4.6 registeredServices

The readonly registeredServices attribute shall contain a list of services that have registered with

this device manager or a sequence length of zero if no services have registered with the device

manager.

readonly attribute ServiceSequence registeredServices;

3.1.3.2.4.5 General Behavior

The device manager upon start up shall register itself with a domain manager. This requirement

allows the system to be developed where at a minimum only the DomainManager’s object

reference needs to be known. A device manager shall use the information in the device

manager’s DCD for determining:

1. Services to be deployed for this device manager (for example, log(s)),

2. Devices to be created for this device manager (when the DCD deployondevice

element is not specified then the DCD componentinstantiation element is

deployed on the same hardware device as the device manager),

3. Devices to be deployed on (executing on) another device,

4. Devices to be aggregated to another device,

5. Mount point names for file systems,

6. The DeviceManager’s identifier attribute value which is the DCD’s id attribute

value, and

7. The DeviceManager’s label attribute value which is the DCD’s name attribute

value.

The device manager shall create FileSystem components implementing the FileSystem interface

for each OS file system. If multiple file systems are to be created, the device manager shall

mount created file systems to a FileManager component (widened to a FileSystem through the

FileSys attribute). The mount points used for the created file systems are identical to the values

identified in the filesystemnames element of the device manager’s Device Configuration

Descriptor. Each mounted file system name shall be unique within the device manager.

The device manager shall supply execute operation parameters for a device consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string

that is the DeviceManager stringified IOR.

2. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string

that is the full mounted file system file path name.

3. Device Identifier – The ID is “DEVICE_ID” and the value is a string that

corresponds to the DCD componentinstantiation id attribute.

4. Device Label – The ID is “DEVICE_LABEL” and the value is a string that

corresponds to the DCD componentinstantiation usage element. This parameter

is only used when the DCD componentinstantiation usage element is specified.

5. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is

a string that is an AggregateDevice stringified IOR. This parameter is only used

SCA version 2.2.2 FINAL / 15 May 2006

3-53

when the DCD componentinstantiation element represents the child device of

another componentinstantiation element.

6. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the

componentinstantiation element “execparam” properties that have values as

parameters. The device manager shall pass “execparam” parameters’ IDs and

values as string values.

The device manager shall use the componentinstantiation element’s SPD implementation code’s

stacksize and priority elements, when specified, for the execute operation options parameters.

The device manager shall initialize and then configure logical devices that are started by the

device manager, after they have successfully registered with the device manager. The device

manager shall configure a DCD’s componentinstantiation element provided the

componentinstantiation element has “configure” readwrite or writeonly properties with values.

Figure 3-19 depicts a device manager startup scenario.

If a service is deployed by the device manager, the device manager shall supply execute

operation parameters consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string

that is the DeviceManager stringified IOR.

2. Service Name – The ID is “SERVICE_NAME” and the value is a string that

corresponds to the DCD componentinstantiation usagename element.

3. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the

componentinstantiation element “execparam” properties that have values as

parameters. The device manager shall pass “execparam” parameters’ IDs and

values as string values.

SCA version 2.2.2 FINAL / 15 May 2006

3-54

3: Parse DCD and SPD files

Node Boot Up
«CORBAInterface»

DeviceManager
XML Parser Log

«CORBAInterface»

Device

«CORBAInterface»

AggregateDevice
«CORBAInterface»

DomainManager

1: create

2: create FileSystem
This step is optional provided
the XML has not changed and
has already been processed

4: launch

Log executable parameters:
Device Mgr IOR, Log Name.
Steps 4 and 5 should be
performed on any other
deployed services

5: registerServce:=registerServce(registeringService, name)

6: launch

Device executable parameters:
Device Mgr IOR, identifier, label,
softwareprofile.
Steps 6-9 are repeated for each
Device in the DCD file

8: registerDevice:=registerDevice(registeringDevice)

9: initialize:=initialize()

10: configure:=configure(configProperties)

11: registerDeviceManager:=registerDeviceManager(deviceMgr)

7: addDevice:=addDevice(associatedDevice)

This step is not performed
if there is no relationship to
a parent device

Figure 3-19: Device Manager Startup Scenario

3.1.3.2.4.6 Operations

3.1.3.2.4.6.1 registerDevice

3.1.3.2.4.6.1.1 Brief Rationale

The registerDevice operation provides the mechanism to register a device with a device

manager.

3.1.3.2.4.6.1.2 Synopsis

void registerDevice (in Device registeringDevice) raises

(InvalidObjectReference);

3.1.3.2.4.6.1.3 Behavior

The registerDevice operation shall add the input registeringDevice to the DeviceManager

registeredDevices attribute when the input registeringDevice does not already exist in the

registeredDevices attribute. The registeringDevice is ignored when duplicated.

SCA version 2.2.2 FINAL / 15 May 2006

3-55

The registerDevice operation shall register the registeringDevice with the domain manager when

the device manager has already registered to the domain manager and the registeringDevice has

been successfully added to the DeviceManager registeredDevices attribute.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain

manager's log, upon unsuccessful registration of a device to the DeviceManager

registeredDevices attribute.

3.1.3.2.4.6.1.4 Returns

This operation does not return any value.

3.1.3.2.4.6.1.5 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidObjectReference when the input

registeringDevice is a nil CORBA object reference.

3.1.3.2.4.6.2 unregisterDevice

3.1.3.2.4.6.2.1 Brief Rationale

The unregisterDevice operation unregisters a device from a device manager.

3.1.3.2.4.6.2.2 Synopsis

void unregisterDevice (in Device registeredDevice) raises

(InvalidObjectReference);

3.1.3.2.4.6.2.3 Behavior

The unregisterDevice operation shall remove the input registeredDevice from the

DeviceManager registeredDevices attribute. The unregisterDevice operation shall unregister the

input registeredDevice from the domain manager when the input registeredDevice is registered

with the device manager and the device manager is not shutting down.

The unregisterDevice operation shall write a FAILURE_ALARM log record, when it cannot

successfully remove a registeredDevice from the DeviceManager registeredDevices attribute.

3.1.3.2.4.6.2.4 Returns

This operation does not return any value.

3.1.3.2.4.6.2.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference when the input

registeredDevice is a nil CORBA object reference or does not exist in the DeviceManager’s

registeredDevices attribute.

3.1.3.2.4.6.3 registerService

3.1.3.2.4.6.3.1 Brief Rationale

The registerService operation provides the mechanism to register a service with a device

manager.

3.1.3.2.4.6.3.2 Synopsis

void registerService (in Object registeringService, in string

name) raises (InvalidObjectReference);

SCA version 2.2.2 FINAL / 15 May 2006

3-56

3.1.3.2.4.6.3.3 Behavior

The registerService operation shall add the input registeringService to the DeviceManager

registeredServices attribute when the input registeringService does not already exist in the

registeredServices attribute. The registeringService is ignored when duplicated.

The registerService operation shall register the registeringService with the domain manager

when the device manager has already registered to the domain manager and the

registeringService has been successfully added to the DeviceManager’s registeredServices

attribute.

The registerService operation shall write a FAILURE_ALARM log record, upon unsuccessful

registration of a service to the DeviceManager registeredServices attribute.

3.1.3.2.4.6.3.4 Returns

This operation does not return any value.

3.1.3.2.4.6.3.5 Exceptions/Errors

The registerService operation shall raise the CF InvalidObjectReference exception when the

input registeringService is a nil CORBA object reference.

3.1.3.2.4.6.4 unregisterService

3.1.3.2.4.6.4.1 Brief Rationale.

The unregisterService operation unregisters a service from a device manager.

3.1.3.2.4.6.4.2 Synopsis

void unregisterService (in Object unregisteringService, in

string name) raises (InvalidObjectReference);

3.1.3.2.4.6.4.3 Behavior

The unregisterService operation shall remove the input registered service specified by the input

name parameter from the DeviceManager::registeredServices attribute. The unregisterService

operation shall unregister the input unregistering service from the domain manager when the

device manager is not in the SHUTTING_DOWN state.

The unregisterService operation shall write a FAILURE_ALARM log record, when it cannot

successfully remove a registeredService from the DeviceManager registeredServices attribute.

3.1.3.2.4.6.4.4 Returns

This operation does not return any value.

3.1.3.2.4.6.4.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference when the input

unregistering service is a nil CORBA object reference or does not exist in the DeviceManager

registeredServices attribute.

3.1.3.2.4.6.5 shutdown

3.1.3.2.4.6.5.1 Brief Rationale

The shutdown operation provides the mechanism to terminate a device manager.

SCA version 2.2.2 FINAL / 15 May 2006

3-57

3.1.3.2.4.6.5.2 Synopsis

void shutdown();

3.1.3.2.4.6.5.3 Behavior

The shutdown operation shall unregister the device manager from the domain manager.

The shutdown operation shall perform releaseObject on all of the device manager's registered

devices (DeviceManager registeredDevices attribute).

The shutdown operation shall cause the device manager to be unavailable (i.e. released from the

CORBA environment and its process terminated on the OS), when all of the device manager's

registered devices are unregistered from the device manager.

3.1.3.2.4.6.5.4 Returns

This operation does not return any value.

3.1.3.2.4.6.5.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.2.4.6.6 getComponentImplementationId.

3.1.3.2.4.6.6.1 Brief Rational

The getComponentImplementationId operation returns the SPD implementation ID that the

DeviceManager interface used to create a component.

3.1.3.2.4.6.6.2 Synopsis

string getComponentImplementationId (in string

componentInstantiationId);

3.1.3.2.4.6.6.3 Behavior

The getComponentImplementationId operation returns the SPD implementation element’s id

attribute that matches the id attribute of the SPD implementation element used to create the

component specified by the input componentInstantiationId parameter.

3.1.3.2.4.6.6.4 Returns

The getComponentImplementationId operation shall return the SPD implementation element’s id

attribute that matches the SPD implementation element used to create the component identified

by the input componentInstantiationId parameter. The getComponentImplementationId

operation shall return an empty string when the input componentInstantiationId parameter does

not match the id attribute of any SPD implementation element used to create the component.

3.1.3.2.4.6.6.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.3 Base Device Interfaces

The device interfaces are for the implementation and management of logical devices within the

domain. The devices within the domain may be simple devices with no loadable, executable, or

SCA version 2.2.2 FINAL / 15 May 2006

3-58

aggregate device behavior, or devices with a combination of these behaviors. The device

interfaces are Device, LoadableDevice and ExecutableDevice.

Base Device Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.3.1 Device

3.1.3.3.1.1 Description

A device is a type of resource and has all the requirements associated with the Resource

interface. The Device interface defines additional capabilities and attributes for any logical

device in the domain. A logical device is a software abstraction for a physical hardware device

and provides the following attributes and operations:

1. Software Profile Attribute – The SPD referenced by this profile element (Profile

Descriptor) defines the logical device capabilities (data/command uses and

provides ports, configure and query properties, capacity properties, status

properties, etc.), which could be a subset of the hardware device’s capabilities.

2. State Management & Status Attributes – This information describes the

administrative, usage, and operational states of the device.

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,

performance, etc.) are obtained from the device. A device may have multiple

capacities which need to be allocated, since each device has its own unique

capacity model which is described in the associated software profile.

3.1.3.3.1.2 UML

The Device Interface UML is depicted in Figure 3-20.

allocateCapacity(in capacities : Properties) : boolean(idl)

deallocateCapacity(in capacities : Properties) : void

«readonly» usageState : UsageType

«readonly» adminState : AdminType

«readonly» operationalState : OperationalType

«readonly» softwareProfile : string(idl)

«readonly» label : string(idl)

«readonly» compositeDevice : AggregateDevice

«CORBAInterface»

Device

start() : void

stop() : void

«readonly» identifier : string(idl)

«CORBAInterface»

Resource

«inherits»

in msg : string(idl)

in capacities : Properties

«exception»

InvalidCapacity

«uses»

in msg : string(idl)

«exception»

InvalidState
«uses»

Figure 3-20: Device Interface UML

SCA version 2.2.2 FINAL / 15 May 2006

3-59

3.1.3.3.1.3 Types

3.1.3.3.1.3.1 InvalidState

The InvalidState exception indicates that the device is not capable of the behavior being

attempted due to the state the device is in.

exception InvalidState {string msg;};

3.1.3.3.1.3.2 InvalidCapacity

The InvalidCapacity exception returns the capacities that are not valid for this device.

exception InvalidCapacity {string msg; Properties capacities;};

3.1.3.3.1.3.3 AdminType

This is a CORBA IDL enumeration type that defines a device's administrative states. The

administrative state indicates the permission to use or prohibition against using the device.

enum AdminType

{

 LOCKED,

 SHUTTING_DOWN,

 UNLOCKED

};

3.1.3.3.1.3.4 OperationalType

This is a CORBA IDL enumeration type that defines a device’s operational states. The

operational state indicates whether or not the object is functioning.

enum OperationalType

{

 ENABLED,

 DISABLED

};

3.1.3.3.1.3.5 UsageType

This is a CORBA IDL enumeration type that defines the device’s usage states. The usage state

indicates which of the following states a device is in:

IDLE – not in use

ACTIVE – in use, with capacity remaining for allocation, or

BUSY – in use, with no capacity remaining for allocation

enum UsageType

{

 IDLE,

 ACTIVE,

 BUSY

};

SCA version 2.2.2 FINAL / 15 May 2006

3-60

3.1.3.3.1.4 Attributes

3.1.3.3.1.4.1 usageState.

The readonly usageState attribute shall contain the device’s usage state (IDLE, ACTIVE, or

BUSY). UsageState indicates whether or not a device is actively in use at a specific instant, and

if so, whether or not it has spare capacity for allocation at that instant.

The device shall send a StateChangeEventType event to the Incoming Domain Management

event channel, whenever the usageState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “USAGE_STATE_EVENT”.

4. The stateChangeFrom field is the value of the usageState attribute before the state

change

5. The stateChangeTo field is the value of the usageState attribute after the state

change.

readonly attribute UsageType usageState;

3.1.3.3.1.4.2 adminState

The administrative state indicates the permission to use or prohibition against using the device.

The adminState attribute shall contain the device’s admin state value. The adminState attribute

shall only allow the setting of LOCKED and UNLOCKED values, where setting “LOCKED” is

only effective when the adminState attribute value is UNLOCKED, and setting “UNLOCKED”

is only effective when the adminState attribute value is LOCKED or SHUTTING_DOWN.

Illegal state transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the

UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire

aggregation of devices (if it has any). The adminState shall then transition to the LOCKED state

when the device’s usageState is IDLE and its entire aggregation of devices are LOCKED. Refer

to Figure 3-21 for an illustration of the above state behavior.

The device shall send a StateChangeEventType event to the Incoming Domain Management

event channel, whenever the adminState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “ADMINISTRATIVE_STATE_EVENT”.

4. The stateChangeFrom field is the value of the adminState attribute before the

state change

5. The stateChangeTo field is the value of the adminState attribute after the state

change.

attribute AdminType adminState;

SCA version 2.2.2 FINAL / 15 May 2006

3-61

UNLOCKED

SHUTTING_DOWN

LOCKED

adminState :=

UNLOCKED

usageState := IDLE

adminState := LOCKED (child devices)

adminState :=

UNLOCKED

adminState :=

LOCKED

Figure 3-21: State Transition Diagram for adminState

3.1.3.3.1.4.3 operationalState

The readonly operationalState attribute shall contain the device’s operational state (ENABLED

or DISABLED). The operational state indicates whether or not the device is functioning.

The device shall send a StateChangeEventType event to the Incoming Domain Management

event channel, whenever the operationalState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “OPERATIONAL_STATE_EVENT”.

4. The stateChangeFrom field is the value of the operationalState attribute before

the state change.

5. The stateChangeTo field is the value of the operationalState attribute after the

state change.

readonly attribute OperationalType operationalState;

3.1.3.3.1.4.4 softwareProfile

The softwareProfile attribute contains the profile descriptor for this device.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a

file reference to the SPD file. Files referenced within the profile are obtained via the

FileManager.

SCA version 2.2.2 FINAL / 15 May 2006

3-62

readonly attribute string softwareProfile;

3.1.3.3.1.4.5 label

The readonly label attribute shall contain the device’s label. The label attribute is the meaningful

name given to a device. The attribute could convey location information within the system (e.g.,

audio1, serial1, etc.).

readonly attribute string label;

3.1.3.3.1.4.6 compositeDevice

The readonly compositeDevice attribute shall contain the object reference of the aggregate

device when this device is a parent device. The readonly compositeDevice attribute shall contain

a nil CORBA object reference when this device is not a parent device.

readonly attribute AggregateDevice compositeDevice;

3.1.3.3.1.5 Operations

3.1.3.3.1.5.1 allocateCapacity

3.1.3.3.1.5.1.1 Brief Rationale

The allocateCapacity operation provides the mechanism to request and allocate capacity from

the Device.

3.1.3.3.1.5.1.2 Synopsis

boolean allocateCapacity (in Properties capacities) raises

(InvalidCapacity, InvalidState);

3.1.3.3.1.5.1.3 Behavior

The allocateCapacity operation shall reduce the current capacities of the device based upon the

input capacities parameter, when the device’s adminState is UNLOCKED, device’s

operationalState is ENABLED, and device’s usageState is not BUSY.

The allocateCapacity operation shall set the Device’s usageState attribute to BUSY, when the

device determines that it is not possible to allocate any further capacity. The allocateCapacity

operation shall set the usageState attribute to ACTIVE, when capacity is being used and any

capacity is still available for allocation (reference Figure 3-22).

The allocateCapacity operation shall only accept properties for the input capacities parameter

which are simple properties whose kindtype is allocation and whose action element is external

contained in the component’s SPD.

3.1.3.3.1.5.1.4 Returns

The allocateCapacity operation shall return TRUE, if the capacities have been allocated, or

FALSE, if not allocated.

3.1.3.3.1.5.1.5 Exceptions/Errors

The allocateCapacity operation shall raise the InvalidCapacity exception, when the input

capacities parameter contains invalid properties or when attributes of those CF Properties contain

an unknown id or a value of the wrong data type.

SCA version 2.2.2 FINAL / 15 May 2006

3-63

The allocateCapacity operation shall raise the InvalidState exception, when the Device’s

adminState is not UNLOCKED or operationalState is DISABLED.

3.1.3.3.1.5.2 deallocateCapacity

3.1.3.3.1.5.2.1 Brief Rationale

The deallocateCapacity operation provides the mechanism to return capacities back to the

device, making them available to other users.

3.1.3.3.1.5.2.2 Synopsis

void deallocateCapacity (in Properties capacities) raises

(InvalidCapacity, InvalidState);

3.1.3.3.1.5.2.3 Behavior

The deallocateCapacity operation shall adjust the current capacities of the device based upon the

input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after

adjusting capacities, any of the device’s capacities are still being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting

capacities, none of the device’s capacities are still being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in

3.1.3.2.4.4.2.

IDLE

ACTIVE

BUSY

all capacities
unused

no available
capacity

all
capacities

unused

capacities in use
and

available

capacities in use
and

available

no available
capacity

Figure 3-22: State Transition Diagram for allocateCapacity and deallocateCapacity

SCA version 2.2.2 FINAL / 15 May 2006

3-64

3.1.3.3.1.5.2.4 Returns

This operation does not return any value.

3.1.3.3.1.5.2.5 Exceptions/Errors

The deallocateCapacity operation shall raise the InvalidCapacity exception, when the capacity

ID is invalid or the capacity value is the wrong type. The InvalidCapacity exception msg

parameter describes the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the device’s

adminState is LOCKED or operationalState is DISABLED.

3.1.3.3.1.5.3 releaseObject

3.1.3.3.1.5.3.1 Description

This section describes additional release behavior for a logical device.

3.1.3.3.1.5.3.2 Synopsis

void releaseObject() raises (ReleaseError);

3.1.3.3.1.5.3.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The releaseObject operation shall assign the LOCKED state to the Device adminState attribute,

when the Device adminState attribute is UNLOCKED.

The releaseObject operation shall call the releaseObject operation on all those devices that are

contained within the AggregateDevice devices attribute, when this device is a parent device.

The releaseObject operation shall cause the removal of the device from the Device

compositeDevice attribute, when this device is a child device.

The releaseObject operation shall cause the device to be unavailable and released from the

CORBA environment when the Device adminState attribute transitions to LOCKED. The

transition to the LOCKED state signifies that the Device usageState attribute is IDLE and, if the

device is a parent device, that its child devices have been removed.

The releaseObject operation shall unregister its device from its device manager.

The following three figures (Figure 3-23, Figure 3-24, and Figure 3-25) depict different release

scenarios depending on the type of device and the state the device is in.

SCA version 2.2.2 FINAL / 15 May 2006

3-65

User
«CORBAInterface»

Child Device

«CORBAInterface»

Parent Device

«CORBAInterface»

Device Manager

«CORBAInterface»

Domain Manager
ORB OS

1: releaseObject:=releaseObject()

2: removeDevice:=removeDevice(associatedDevice)

3: unregisterDevice:=unregisterDevice(registeredDevice)

4: unregisterDevice:=unregisterDevice(unregisteringDevice)

5: deactivate device

6: terminate device process / threads

After the deactivation of the device from
the ORB, the process / thread can be
terminated

For this scenario, the child device’s
adminState = LOCKED and the device
has been requested to terminate. How a
device indicates to its process / thread to
terminate is implementation specific.

This Parent device supports both the
Device and the AggregateDevice
interfaces

Figure 3-23: Release Aggregated Device Scenario

SCA version 2.2.2 FINAL / 15 May 2006

3-66

User
«CORBAInterface»

Child Device

«CORBAInterface»

Device Manager

«CORBAInterface»

Domain Manager
ORB OS

1: releaseObject:=releaseObject()

2: releaseObject:=releaseObject()

3: removeDevice:=removeDevice(associatedDevice)

4: unregisterDevice:=unregisterDevice(registeredDevice)

5: unregisterDevice:=unregisterDevice(unregisteringDevice)

6: deactivate device

8: unregisterDevice:=unregisterDevice(registeredDevice)

9: unregisterDevice:=unregisterDevice(unregisteringDevice)

7: terminate device process / threads

10: deactivate device

11: terminate devce process / threads

«CORBAInterface»

Parent Device

«CORBAInterface»

Parent Device

This Parent device supports both the
Device and the AggregateDevice
interfaces

Figure 3-24: Release Composite Device Scenario

SCA version 2.2.2 FINAL / 15 May 2006

3-67

«CORBAInterface»

Parent Device

«CORBAInterface»

Parent Device
User

«CORBAInterface»

Child Device

«CORBAInterface»

Device Manager
ORB

This Parent device supports both the
Device and the AggregateDevice
interfaces

«CORBAInterface»

Domain Manager
OS

1: releaseObject:=releaseObject()

releaseObject:=releaseObject() Step 2 is repeated for
every Child Device

removeDevice:=removeDevice(associatedDevice)

unregisterDevice:=unregisterDevice(registeredDevice)

unregisterDevice:=unregisterDevice(unregisteringDevice)

deactivate device

terminate deivce process / threads

unregisterDevice:=unregisterDevice(registeredDevice)

unregisterDevice:=unregisterDevice(unregisteringDevice)

deactivate device

terminate device process / threads

For this scenario all device’s
adminState = LOCKED

How a device informs its process to
terminate is implementation specific

Figure 3-25: Release Composite & Aggregated Device Scenario

3.1.3.3.1.5.3.4 Returns

The releaseObject operation does not return a value.

3.1.3.3.1.5.3.5 Exceptions/Errors

The releaseObject operation shall raise the ReleaseError exception when releaseObject is not

successful in releasing a logical device due to internal processing errors that occurred within the

device being released.

3.1.3.3.2 LoadableDevice

3.1.3.3.2.1 Description

This interface extends the Device interface by adding software loading and unloading behavior to

a device.

SCA version 2.2.2 FINAL / 15 May 2006

3-68

3.1.3.3.2.2 UML

The LoadableDevice Interface UML is depicted in Figure 3-26.

allocateCapacity(in capacities : Properties) : boolean(idl)

deallocateCapacity(in capacities : Properties) : void

«readonly» usageState : UsageType

«readonly» adminState : AdminType

«readonly» operationalState : OperationalType

«readonly» softwareProfile : string(idl)

«readonly» label : string(idl)

«readonly» compositeDevice : AggregateDevice

«CORBAInterface»

Device

load(in fs : FileSystem, in fileName : string(idl), in loadKind : LoadType) : void

unload(in fileName : string(idl)) : void

«CORBAInterface»

LoadableDevice

«inherits»

«exception»

InvalidLoadKind

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

LoadFail

«uses» «uses»

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

InvalidFileName

«uses»

in msg : string(idl)

«exception»

InvalidState

«uses»

Figure 3-26: LoadableDevice Interface UML

3.1.3.3.2.3 Types

3.1.3.3.2.3.1 LoadType

The LoadType defines the type of load to be performed. The load types are in accordance with

the code element within the softpkg element’s implementation element, which is defined in

Appendix D.2.1.

enum LoadType

{

 KERNEL_MODULE,

 DRIVER,

 SHARED_LIBRARY,

 EXECUTABLE

};

3.1.3.3.2.3.2 InvalidLoadKind

The InvalidLoadKind exception indicates that the device is unable to load the type of file

designated by the loadKind parameter.

exception InvalidLoadKind{};

SCA version 2.2.2 FINAL / 15 May 2006

3-69

3.1.3.3.2.3.3 LoadFail.

The LoadFail exception indicates that the load operation failed due to device dependent reasons.

The LoadFail exception indicates that an error occurred during an attempt to load the device. The

error number shall indicate a CF ErrorNumberType. The message is component-dependent,

providing additional information describing the reason for the error.

exception LoadFail { ErrorNumberType errorNumber; string msg; };

3.1.3.3.2.4 Attributes

N/A

3.1.3.3.2.5 Operations

3.1.3.3.2.5.1 load

3.1.3.3.2.5.1.1 Brief Rationale

The load operation provides the mechanism for loading software on a specific device. The

loaded software may be subsequently executed on the device, if the device is an executable

device.

3.1.3.3.2.5.1.2 Synopsis

void load (in FileSystem fs, in string fileName, in LoadType

loadKind) raises (InvalidState, InvalidLoadKind,

InvalidFileName, LoadFail);

3.1.3.3.2.5.1.3 Behavior

The load operation shall load the file identified by the input filename parameter on the device

based upon the input loadKind parameter. The input filename parameter is a pathname relative

to the file system identified by the input FileSystem parameter

The load operation shall support the load types as stated in the device’s software profile

LoadType allocation properties.

Multiple loads of the same file as indicated by the input fileName parameter shall not result in an

exception. However, the load operation should account for this multiple load so that the unload

operation behavior can be performed.

3.1.3.3.2.5.1.4 Returns

This operation does not return any value.

3.1.3.3.2.5.1.5 Exceptions/Errors

The load operation shall raise the InvalidState exception if upon entry the Device's adminState

attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is

DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind

parameter is not supported.

The load operation shall raise the CF InvalidFileName exception when the file designated by the

input filename parameter cannot be found.

SCA version 2.2.2 FINAL / 15 May 2006

3-70

The load operation shall raise the LoadFail exception when an attempt to load the device is

unsuccessful.

3.1.3.3.2.5.2 unload

3.1.3.3.2.5.2.1 Brief Rationale

The unload operation provides the mechanism to unload software that is currently loaded.

3.1.3.3.2.5.2.2 Synopsis

void unload (in string fileName) raises (InvalidState,

InvalidFileName);

3.1.3.3.2.5.2.3 Behavior

The unload operation shall unload the file identified by the input fileName parameter from the

device when the number of unload requests matches the number of load requests for the

indicated file.

3.1.3.3.2.5.2.4 Returns

This operation does not return a value.

3.1.3.3.2.5.2.5 Exceptions/Errors

The unload operation shall raise the InvalidState exception if upon entry the device's adminState

attribute is LOCKED or its operationalState attribute is DISABLED.

The unload operation shall raise the CF InvalidFileName exception when the file designated by

the input filename parameter cannot be found.

3.1.3.3.3 ExecutableDevice

3.1.3.3.3.1 Description

This interface extends the LoadableDevice interface by adding execute and terminate behavior to

a device.

3.1.3.3.3.2 UML

The ExecutableDevice Interface UML is depicted in Figure 3-27.

load(in fs : FileSystem, in fileName : string(idl), in loadKind : LoadType) : void

unload(in fileName : string(idl)) : void

«CORBAInterface»

LoadableDevice

execute(in name : string(idl), in options : Properties, in parameters : Properties) : ProcessID_Type

terminate(in processID : ProcessID_Type) : void

«const» STACK_SIZE_ID : string(idl) = "STACK_SIZE"

«const» PRIORITY_ID : string(idl) = "PRIORITY"

«CORBAInterface»

ExecutableDevice

«inherits»

Figure 3-27: ExecutableDevice Interface UML

SCA version 2.2.2 FINAL / 15 May 2006

3-71

3.1.3.3.3.3 Types

3.1.3.3.3.3.1 InvalidProcess

The InvalidProcess exception indicates that a process, as identified by the processId parameter,

does not exist on this device. The errorNumber parameter shall indicate a CF ErrorNumberType

value. The message is component-dependent, providing additional information describing the

reason for the error.

exception InvalidProcess { ErrorNumberType errorNumber; string

msg; };

3.1.3.3.3.3.2 InvalidFunction

The InvalidFunction exception indicates that a function, as identified by the input name

parameter, hasn’t been loaded on this device.

exception InvalidFunction{};

3.1.3.3.3.3.3 ProcessID_Type

The ProcessID_Type defines a process number within the system. The process number is unique

to the Processor operating system that created the process.

typedef long ProcessID_Type;

3.1.3.3.3.3.4 InvalidParameters

The InvalidParameters exception indicates the input parameters are invalid on the execute

operation. The InvalidParameters exception is raised when there are invalid execute parameters.

The invalidParms parameter is a list of invalid parameters specified in the execute operation.

exception InvalidParameters { Properties invalidParms; };

3.1.3.3.3.3.5 InvalidOptions

The InvalidOptions exception indicates the input options are invalid on the execute operation.

The invalidOpts parameter is a list of invalid options specified in the execute operation.

exception InvalidOptions { Properties invalidOpts; };

3.1.3.3.3.3.6 STACK_SIZE_ID

The STACK_SIZE_ID is the identifier for the ExecutableDevice::execute operation options

parameter. The value for a stack size shall be an unsigned long.

Constant string STACK_SIZE_ID = “STACK_SIZE”;

3.1.3.3.3.3.7 PRIORITY_ID

The PRIORITY_ID is the identifier for the ExecutableDevice::execute operation options

parameters. The value for a priority shall be an unsigned long.

Constant string PRIORITY_ID = “PRIORITY”;

3.1.3.3.3.3.8 ExecuteFail

The ExecuteFail exception indicates that the execute operation failed due to device dependent

reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke

SCA version 2.2.2 FINAL / 15 May 2006

3-72

the execute function on the device. The error number shall indicate a CF ErrorNumberType

value. The message is component-dependent, providing additional information describing the

reason for the error.

exception ExecuteFail { ErrorNumberType errorNumber; string msg;

};

3.1.3.3.3.4 Attributes

N/A.

3.1.3.3.3.5 Operations

3.1.3.3.3.5.1 execute

3.1.3.3.3.5.1.1 Brief Rationale

The execute operation provides the mechanism for starting up and executing a software

process/thread on a device.

3.1.3.3.3.5.1.2 Synopsis

ProcessID_Type execute (in string name, in Properties options,

in Properties parameters) raises (InvalidState, InvalidFunction,

InvalidParameters, InvalidOptions, InvalidFileName,

ExecuteFail);

3.1.3.3.3.5.1.3 Behavior

The execute operation shall execute the function or file identified by the input name parameter

using the input parameters and options parameters. Whether the input name parameter is a

function or a file name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the

standard argv of the POSIX exec family of functions, where argv(0) is the function name. The

execute operation shall map the input parameters parameter to argv starting at index 1 as follows,

argv (1) maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so

forth. The execute operation passes argv through the operating system “execute” function.

The execute operation input options parameters are STACK_SIZE_ID and PRIORITY_ID. The

execute operation shall use these options, when specified, to set the operating system’s

process/thread stack size and priority, for the executable image of the given input name

parameter.

3.1.3.3.3.5.1.4 Returns

The execute operation shall return a unique process ID for the process that it created.

3.1.3.3.3.5.1.5 Exceptions/Errors

The execute operation shall raise the InvalidState exception if upon entry the device's adminState

attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is

DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by

the input name parameter does not exist for the device.

SCA version 2.2.2 FINAL / 15 May 2006

3-73

The execute operation shall raise the CF InvalidFileName exception when the file name

indicated by the input name parameter does not exist for the device.

The execute operation shall raise the InvalidParameters exception when the input parameter ID

or value attributes are not valid strings.

The execute operation shall raise the InvalidOptions exception when the input options parameter

does not comply with sections 3.1.3.3.3.3.6 STACK_SIZE_ID and 3.1.3.3.3.3.7 PRIORITY_ID.

The execute operation shall raise the ExecuteFail exception when the operating system “execute”

function for the device is not successful.

3.1.3.3.3.5.2 terminate

3.1.3.3.3.5.2.1 Brief Rationale

The terminate operation provides the mechanism for terminating the execution of a

process/thread on a specific device that was started up with the execute operation.

3.1.3.3.3.5.2.2 Synopsis

void terminate (in ProcessID_Type processId) raise

(InvalidProcess, InvalidState);

3.1.3.3.3.5.2.3 Behavior

The terminate operation shall terminate the execution of the process/thread designated by the

processId input parameter on the device.

3.1.3.3.3.5.2.4 Returns

This operation does not return a value.

3.1.3.3.3.5.2.5 Exceptions/Errors

The terminate operation shall raise the InvalidState exception if upon entry the device's

adminState attribute is LOCKED or its operationalState attribute is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the process Id does not

exist for the device.

3.1.3.3.4 AggregateDevice

3.1.3.3.4.1 Description

The AggregateDevice interface provides the required behavior that is needed to add and remove

child devices from a parent device. This interface may be provided via inheritance or as a

“provides port” for any device that is used as a parent device. Child devices use this interface to

add or remove themselves to a parent device when being created or torn-down.

3.1.3.3.4.2 UML

The AggregateDevice Interface UML is depicted in Figure 3-28.

SCA version 2.2.2 FINAL / 15 May 2006

3-74

addDevice(in associatedDevice : Device) : void

removeDevice(in associatedDevice : Device) : void

devices : DeviceSequence

«CORBAInterface»

AggregateDevice

«exception»

InvalidObjectReference

«uses»

Figure 3-28: AggregateDevice Interface UML

3.1.3.3.4.3 Types

N/A.

3.1.3.3.4.4 Attributes

3.1.3.3.4.4.1 devices

The readonly devices attribute shall contain a list of devices that have been added to this device

or a sequence length of zero if the device has no aggregation relationships with other devices.

readonly attribute DeviceSequence devices;

3.1.3.3.4.5 Operations

3.1.3.3.4.5.1 addDevice

3.1.3.3.4.5.1.1 Brief Rationale

The addDevice operation provides the mechanism to associate a device with another device.

When a device changes state or it is being torn down, its associated devices are affected.

3.1.3.3.4.5.1.2 Synopsis

void addDevice (in Device associatedDevice) raises

(InvalidObjectReference);

3.1.3.3.4.5.1.3 Behavior

The addDevice operation shall add the input associatedDevice parameter to the

AggregateDevice’s devices attribute when the associatedDevice does not exist in the devices

attribute. The associatedDevice is ignored when duplicated.

The addDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful adding

of an associatedDevice to the AggregateDevice’s devices attribute.

3.1.3.3.4.5.1.4 Returns

This operation does not return any value.

SCA version 2.2.2 FINAL / 15 May 2006

3-75

3.1.3.3.4.5.1.5 Exceptions/Errors

The addDevice operation shall raise the CF InvalidObjectReference when the input

associatedDevice parameter is a nil CORBA object reference.

3.1.3.3.4.5.2 removeDevice

3.1.3.3.4.5.2.1 Brief Rationale

The removeDevice operation provides the mechanism to disassociate a device from another

device.

3.1.3.3.4.5.2.2 Synopsis

void removeDevice (in Device associatedDevice) raises

(InvalidObjectReference);

3.1.3.3.4.5.2.3 Behavior

The removeDevice operation shall remove the input associatedDevice parameter from the

AggregateDevice’s devices attribute.

The removeDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful

removal of the associatedDevice from the AggregateDevice devices attribute.

3.1.3.3.4.5.2.4 Returns

This operation does not return any value.

3.1.3.3.4.5.2.5 Exceptions/Errors

The removeDevice operation shall raise the CF InvalidObjectReference when the input

associatedDevice parameter is a nil CORBA object reference or does not exist in the

AggregateDevice devices attribute.

3.1.3.4 Framework Services Interfaces

Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.4.1 File

3.1.3.4.1.1 Description

The File interface provides the ability to read and write files residing within a compliant,

distributed file system. A file can be thought of conceptually as a sequence of octets with a

current filePointer describing where the next read or write will occur. This filePointer points to

the beginning of the file upon construction of the file object. The File interface is modeled after

the POSIX/C file interface.

SCA version 2.2.2 FINAL / 15 May 2006

3-76

3.1.3.4.1.2 UML

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

IOException

«exception»

InvalidFilePointer

read(out data : OctetSequence, in length : unsigned long(idl)) : void

write(in data : OctetSequence) : void

sizeOf() : unsigned long(idl)

close() : void

setFilePointer(in filePointer : unsigned long(idl)) : void

«readonly» fileName : string(idl)

«readonly» filePointer : unsigned long(idl)

«CORBAInterface»

File

«uses»«uses»

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

FileException

«uses»

Figure 3-29: File Interface UML

3.1.3.4.1.3 Types

3.1.3.4.1.3.1 IOException

The IOException exception indicates an error occurred during a read or write operation to a file.

The error number shall indicate a CF ErrorNumberType value. The message is component-

dependent, providing additional information describing the reason for the error.

exception IOException { ErrorNumberType errorNumber; string msg;

};

3.1.3.4.1.3.2 InvalidFilePointer

The InvalidFilePointer exception indicates the file pointer is out of range based upon the current

file size.

exception InvalidFilePointer{};

3.1.3.4.1.4 Attributes

3.1.3.4.1.4.1 fileName

The readonly fileName attribute shall contain the pathname used as the input fileName parameter

of the FileSystem::create operation when the file was created .

readonly attribute string fileName;

3.1.3.4.1.4.2 filePointer

The readonly filePointer attribute shall contain the current file position. The filePointer attribute

value dictates where the next read or write will occur.

readonly attribute unsigned long filePointer;

SCA version 2.2.2 FINAL / 15 May 2006

3-77

3.1.3.4.1.5 Operations

3.1.3.4.1.5.1 read

3.1.3.4.1.5.1.1 Brief Rationale

Applications require the read operation in order to retrieve data from remote files.

3.1.3.4.1.5.1.2 Synopsis

void read (out OctetSequence data, in unsigned long length)

raises (IOException);

3.1.3.4.1.5.1.3 Behavior

The read operation shall read, from the referenced file, the number of octets specified by the

input length parameter and advance the value of the filePointer attribute by the number of octets

actually read. The read operation shall read less than the number of octets specified in the input-

length parameter, when an end of file is encountered.

3.1.3.4.1.5.1.4 Returns

The read operation shall return via the out Message parameter a CF OctetSequence that equals

the number of octets actually read from the File. If the filePointer attribute value reflects the end

of the File, the read operation shall return a zero-length CF OctetSequence.

3.1.3.4.1.5.1.5 Exceptions/Errors

The read operation shall raise the IOException when a read error occurs.

3.1.3.4.1.5.2 write

3.1.3.4.1.5.2.1 Brief Rationale

Applications require the write operation in order to write data to remote files.

3.1.3.4.1.5.2.2 Synopsis

void write (in OctetSequence data) raises (IOException);

3.1.3.4.1.5.2.3 Behavior

The write operation shall write data to the file referenced. The write operation shall increment

the filePointer attribute to reflect the number of octets written, when the operation is successful.

If the write is unsuccessful, the value of the filePointer attribute shall maintain or be restored to

its value prior to the write operation call. If the file was opened using the FileSystem::open

operation with an input read_Only parameter value of TRUE, writes to the file are considered to

be in error.

3.1.3.4.1.5.2.4 Returns

This operation does not return any value.

3.1.3.4.1.5.2.5 Exceptions/Errors

The write operation shall raise the IOException when a write error occurs.

SCA version 2.2.2 FINAL / 15 May 2006

3-78

3.1.3.4.1.5.3 sizeOf

3.1.3.4.1.5.3.1 Brief Rationale

An application may need to know the size of a file in order to determine memory allocation

requirements.

3.1.3.4.1.5.3.2 Synopsis

unsigned long sizeOf() raises (FileException);

3.1.3.4.1.5.3.3 Behavior

There is no significant behavior beyond the behavior described by the following section.

3.1.3.4.1.5.3.4 Returns

The sizeOf operation shall return the number of octets stored in the file.

3.1.3.4.1.5.3.5 Exceptions/Errors

The sizeOf operation shall raise the CF FileException when a file-related error occurs (e.g., file

does not exist anymore).

3.1.3.4.1.5.4 close

3.1.3.4.1.5.4.1 Brief Rationale

The close operation is needed in order to release file resources once they are no longer needed.

3.1.3.4.1.5.4.2 Synopsis

void close() raises (FileException);

3.1.3.4.1.5.4.3 Behavior

The close operation shall release any OE file resources associated with the component. The

close operation shall make the file unavailable to the component.

3.1.3.4.1.5.4.4 Returns

This operation does not return any value.

3.1.3.4.1.5.4.5 Exceptions/Errors.

The close operation shall raise the CF FileException when it cannot successfully close the file.

3.1.3.4.1.5.5 setFilePointer

3.1.3.4.1.5.5.1 Brief Rationale

The setFilePointer operation positions the file pointer where the next read or write will occur.

3.1.3.4.1.5.5.2 Synopsis

void setFilePointer (in unsigned long filePointer) raises

(InvalidFilePointer, FileException);

3.1.3.4.1.5.5.3 Behavior

The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

SCA version 2.2.2 FINAL / 15 May 2006

3-79

3.1.3.4.1.5.5.4 Returns

This operation does not return any value.

3.1.3.4.1.5.5.5 Exceptions/Errors

The setFilePointer operation shall raise the CF FileException when the file pointer for the

referenced file cannot be set to the value of the input filePointer parameter.

The setFilePointer operation shall raise the InvalidFilePointer exception when the value of the

filePointer parameter exceeds the file size.

3.1.3.4.2 FileSystem

3.1.3.4.2.1 Description

The FileSystem interface defines CORBA operations that enable remote access to a physical file

system. (see Figure 3-30)

The files stored on a file system may be plain files or directories. Valid individual filenames and

directory names shall be 40 characters or less. Valid characters for a filename or directory name

are the 62 alphanumeric characters (Upper, and lowercase letters and the numbers 0 to 9) in

addition to the “.” (period), “_” (underscore) and “-“ (hyphen) characters. The filenames “.”

(“dot”) and “..” (“dot-dot”) are invalid in the context of a file system.

Valid pathnames are structured according to the POSIX specification whose valid characters

include the “/” (forward slash) character in addition to the valid filename characters. A valid

pathname may consist of a single filename. A valid pathname shall not exceed 1024 characters.

3.1.3.4.2.2 UML

remove(in filename : string(idl)) : void{sequential}

copy(in sourceFileName : string(idl), in destinationFileName : string(idl)) : void{sequential}

exists(in fileName : string(idl)) : boolean(idl){sequential}

list(in pattern : string(idl)) : FileInformationSequence{sequential}

create(in fileName : string(idl)) : File{sequential}

open(in fileName : string(idl), in read_Only : boolean(idl)) : File{sequential}

mkdir(in directoryName : string(idl)) : void{sequential}

rmdir(in directoryName : string(idl)) : void{sequential}

query(inout fileSystemProperties : Properties) : void{sequential}

«const» SIZE : string(idl)

«const» AVAILABLE_SPACE : string(idl)

«const» CREATED_TIME_ID : string(idl)

«const» MODIFIED_TIME_ID : string(idl)

«const» LAST_ACCESS_TIME_ID : string(idl)

«CORBAInterface»

FileSystem

in invalidProperties : Properties

«exception»

UnknownFileSystemProperties

«uses»

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

InvalidFileName

«uses»

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

FileException

«uses»

Figure 3-30: FileSystem Interface UML

SCA version 2.2.2 FINAL / 15 May 2006

3-80

3.1.3.4.2.3 Types

3.1.3.4.2.3.1 UnknownFileSystemProperties.

The UnknownFileSystemProperties exception indicates a set of properties unknown by the

component.

exception UnknownFileSystemProperties { properties

invalidProperties; };

3.1.3.4.2.3.2 fileSystemProperties Query Constants

Constants are defined to be used for the query operation (see section 3.1.3.4.2.5.9).

const string SIZE = “SIZE”;

const string AVAILABLE_SPACE = “AVAILABLE_SPACE”;

3.1.3.4.2.3.3 FileInformationType

The FileInformationType indicates the information returned for a file. Not all the fields in the

FileInformationType are applicable for all file systems. At a minimum, the file system shall

support name, kind, and size information for a file. Examples of other file properties that may be

specified are created time, modified time, and last access time.

struct FileInformationType

{

 string name;

 FileType kind;

 unsigned long long size;

 Properties fileProperties;

};

The name element of the FileInformationType indicates the simple name of the file. The kind

element of the FileInformationType indicates the type of the file entry. The size element of the

FileInformationType indicates the size in octets.

3.1.3.4.2.3.4 FileInformationSequence

The FileInformationSequence type defines an unbounded sequence of FileInformationTypes.

typedef sequence<FileInformationType>FileInformationSequence;

3.1.3.4.2.3.5 FileType

The FileType indicates the type of file entry. A file system may have PLAIN or DIRECTORY

files and mounted file systems contained in a FileSystem.

enum FileType

{

 PLAIN,

 DIRECTORY,

 FILE_SYSTEM

};

SCA version 2.2.2 FINAL / 15 May 2006

3-81

3.1.3.4.2.3.6 CREATED_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was

created. For this property, the identifier is CREATED_TIME_ID and the value shall be an

unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan. 1,

1970.

Constant string CREATED_TIME_ID = “CREATED_TIME”;

3.1.3.4.2.3.7 MODIFIED_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was

last modified. For this property, the identifier is MODIFIED_TIME_ID and the value shall be an

unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan. 1,

1970.

Constant string MODIFIED_TIME_ID=”MODIFIED_TIME”;

3.1.3.4.2.3.8 LAST_ACCESS_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was

last accessed. For this property, the identifier is LAST_ACCESS_TIME_ID and the value shall

be an unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan.

1, 1970.

Constant string LAST_ACCESS_TIME_ID=”LAST_ACCESS_TIME”;

3.1.3.4.2.4 Attributes

N/A.

3.1.3.4.2.5 Operations

3.1.3.4.2.5.1 remove

3.1.3.4.2.5.1.1 Brief Rationale

The remove operation provides the ability to remove a plain file from a file system.

3.1.3.4.2.5.1.2 Synopsis

void remove (in string fileName) raises (FileException,

InvalidFileName);

3.1.3.4.2.5.1.3 Behavior

The remove operation shall remove the plain file which corresponds to the input fileName

parameter.

3.1.3.4.2.5.1.4 Returns

This operation does not return any value.

3.1.3.4.2.5.1.5 Exceptions/Errors

The remove operation shall raise the CF InvalidFileName exception when the input fileName

parameter is not a valid absolute pathname.

The remove operation shall raise the CF FileException when a file-related error occurs.

SCA version 2.2.2 FINAL / 15 May 2006

3-82

3.1.3.4.2.5.2 copy

3.1.3.4.2.5.2.1 Brief Rationale

The copy operation provides the ability to copy a plain file to another plain file.

3.1.3.4.2.5.2.2 Synopsis

void copy (in string sourceFileName, in string

destinationFileName) raises (InvalidFileName, FileException);

3.1.3.4.2.5.2.3 Behavior

The copy operation shall copy the source file identified by the input sourceFileName parameter

to the destination file identified by the input destinationFileName parameter.

The copy operation shall overwrite the destination file, when the destination file already exists

and is not identical to the source file.

3.1.3.4.2.5.2.4 Returns

This operation does not return any value.

3.1.3.4.2.5.2.5 Exceptions/Errors

The copy operation shall raise the CF FileException exception when a file-related error occurs.

The copy operation shall raise the CF InvalidFileName exception when the destination pathname

is identical to the source pathname.

The copy operation shall raise the CF InvalidFileName exception when the sourceFileName or

destinationFileName input parameters are not a valid absolute pathnames.

3.1.3.4.2.5.3 exists

3.1.3.4.2.5.3.1 Brief Rationale

The exists operation provides the ability to verify the existence of a file within a file system.

3.1.3.4.2.5.3.2 Synopsis

boolean exists (in string fileName) raises (InvalidFileName);

3.1.3.4.2.5.3.3 Behavior

The exists operation shall check to see if a file exists based on the fileName parameter.

3.1.3.4.2.5.3.4 Returns

The exists operation shall return TRUE if the file exists, or FALSE if it does not.

3.1.3.4.2.5.3.5 Exceptions/Errors

The exists operation shall raise the CF InvalidFileName exception when input fileName

parameter is not a valid absolute pathname.

SCA version 2.2.2 FINAL / 15 May 2006

3-83

3.1.3.4.2.5.4 list

3.1.3.4.2.5.4.1 Brief Rationale

The list operation provides the ability to obtain a list of files along with their information in the

file system according to a given search pattern. The list operation may be used to return

information for one file or for a set of files.

3.1.3.4.2.5.4.2 Synopsis

FileInformationSequence list (in string pattern) raises

(FileException, InvalidFileName);

3.1.3.4.2.5.4.3 Behavior

The list operation shall support the “*” and “?” wildcard characters (used to match any sequence

of characters (including null) and any single character, respectively. These wildcards shall only

be applied following the right-most forward-slash character (“/”) in the pathname contained in

the input pattern parameter.

3.1.3.4.2.5.4.4 Returns

The list operation shall return a FileInformationSequence for files that match the search pattern

specified in the input pattern parameter. The list operation shall return a zero length sequence

when no file is found which matches the search pattern.

3.1.3.4.2.5.4.5 Exceptions/Errors

The list operation shall raise the CF InvalidFileName exception when the input pattern parameter

is not an absolute pathname or cannot be interpreted due to unexpected characters.

The list operation shall raise the CF FileException when a file-related error occurs.

3.1.3.4.2.5.5 create

3.1.3.4.2.5.5.1 Brief Rationale

The create operation provides the ability to create a new plain file on the file system.

3.1.3.4.2.5.5.2 Synopsis

File create (in string fileName) raises (InvalidFileName,

FileException);

3.1.3.4.2.5.5.3 Behavior

The create operation shall create a new File based upon the input fileName parameter.

3.1.3.4.2.5.5.4 Returns

The create operation shall return a file object reference to the opened file.

3.1.3.4.2.5.5.5 Exceptions/Errors

The create operation shall raise the CF FileException if the file already exists or another file

error occurred.

The create operation shall raise the CF InvalidFileName exception when the input fileName

parameter is not a valid absolute pathname.

SCA version 2.2.2 FINAL / 15 May 2006

3-84

3.1.3.4.2.5.6 open

3.1.3.4.2.5.6.1 Brief Rationale

The open operation provides the ability to open a plain file for read or write.

3.1.3.4.2.5.6.2 Synopsis

File open (in string fileName, in boolean read_Only) raises

(InvalidFileName, FileException);

3.1.3.4.2.5.6.3 Behavior

The open operation shall open the file referenced by the input fileName parameter. The open

operation shall open the file with read-only access when the input read_Only parameter is

TRUE. The open operation shall open the file for write access when the input read_Only

parameter is FALSE.

3.1.3.4.2.5.6.4 Returns

The open operation shall return a File instance on successful completion. The open operation

shall set the filePointer attribute of the returned file instance to the beginning of the file.

3.1.3.4.2.5.6.5 Exceptions/Errors

The open operation shall raise the CF FileException if the file does not exist or another file error

occurred.

The open operation shall raise the CF InvalidFileName exception when the input fileName

parameter is not a valid absolute pathname.

3.1.3.4.2.5.7 mkdir

3.1.3.4.2.5.7.1 Brief Rationale

The mkdir operation provides the ability to create a directory on the file system.

3.1.3.4.2.5.7.2 Synopsis

void mkdir (in string directoryName) raises (InvalidFileName,

FileException);

3.1.3.4.2.5.7.3 Behavior

The mkdir operation shall create a file system directory based on the directoryName given. The

mkdir operation shall create all parent directories required to create the directoryName path

given.

3.1.3.4.2.5.7.4 Returns.

This operation does not return any value.

3.1.3.4.2.5.7.5 Exceptions/Errors

The mkdir operation shall raise the CF FileException if the directory indicated by the input

directoryName parameter already exists or if a file-related error occurred during the operation.

The mkdir operation shall raise the CF InvalidFileName exception when the directoryName is

not a valid directory name.

SCA version 2.2.2 FINAL / 15 May 2006

3-85

3.1.3.4.2.5.8 rmdir.

3.1.3.4.2.5.8.1 Brief Rationale

The rmdir operation provides the ability to remove a directory from the file system.

3.1.3.4.2.5.8.2 Synopsis

void rmdir (in string directoryName) raises (InvalidFileName,

FileException);

3.1.3.4.2.5.8.3 Behavior

The rmdir operation shall remove the directory identified by the input directoryName parameter.

The rmdir operation shall not remove the directory identified by the input directoryName

parameter when the directory contains files.

3.1.3.4.2.5.8.4 Returns

This operation does not return any value.

3.1.3.4.2.5.8.5 Exceptions/Errors

The rmdir operation shall raise the CF FileException when the directory identified by the input

directoryName parameter does not exist, the directory contains files, or an error occurs which

prohibits the directory from being deleted.

The rmdir operation shall raise the CF InvalidFileName exception when the input directoryName

parameter is not a valid path prefix.

3.1.3.4.2.5.9 query

3.1.3.4.2.5.9.1 Brief Rationale

The query operation provides the ability to retrieve information about a file system.

3.1.3.4.2.5.9.2 Synopsis

void query (inout Properties fileSystemProperties) raises

(UnknownFileSystemProperties);

3.1.3.4.2.5.9.3 Behavior

The query operation shall return file system information to the calling client based upon the

given fileSystemProperties' ID.

The FileSystem::query operation shall recognize and provide the designated return values for the

following fileSystemProperties (section 3.1.3.4.2.3.2):

1. SIZE - an ID value of "SIZE” causes the query operation to return an unsigned

long long containing the file system size (in octets).

2. AVAILABLE SPACE - an ID value of "AVAILABLE SPACE" causes the query

operation to return an unsigned long long containing the available space on the

file system (in octets)

See section 3.1.3.4.2.3.2 for the constants for the fileSystemProperties.

SCA version 2.2.2 FINAL / 15 May 2006

3-86

3.1.3.4.2.5.9.4 Returns

This operation does not return any value.

3.1.3.4.2.5.9.5 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the given file

system property is not recognized.

3.1.3.4.3 FileManager

3.1.3.4.3.1 Description

Multiple, distributed file systems may be accessed through a file manager. The FileManager

interface appears to be a single file system although the actual file storage may span multiple

physical file systems. (Reference the FileManager interface UML in Figure 3-31.)

This is called a federated file system. A federated file system is created using the mount and

unmount operations. Typically, the domain manager or system initialization software will

invoke these operations.

The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a

directory or file and the set of mounted file systems, the file manager delegates the FileSystem

operations to the appropriate file system. For example, if a file system is mounted at “/ppc2”, an

open operation for a file called “/ppc2/profile.xml” would be delegated to the mounted file

system. The mounted file system will be given the filename relative to it. In this example the

FileSystem’s open operation would receive “/profile.xml” as the fileName argument.

Another example of this concept is shown using the copy operation. When a client invokes the

copy operation, the file manager delegates the operation to the appropriate file systems (based

upon supplied pathnames) thereby allowing copy of files between file systems.

If a client does not need to mount and unmount file systems, it may treat the file manager as a

file system by CORBA widening a FileManager reference to a FileSystem reference. One can

always widen a FileManager to a FileSystem since the FileManager is derived from a

FileSystem.

SCA version 2.2.2 FINAL / 15 May 2006

3-87

3.1.3.4.3.2 UML

«CORBAInterface»

FileSystem

mount(in mountPoint : string(idl), in file_system : FileSystem) : void

unmount(in mountPoint : string(idl)) : void

getMounts() : MountSequence

«CORBAInterface»

FileManager

«inherits»

«exception»

NonExistentMount

«exception»

MountPointAlreadyExists

«exception»

InvalidFileSystem

«uses» «uses» «uses»

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

InvalidFileName

«uses»

Figure 3-31: FileManager Interface UML

3.1.3.4.3.3 Types

3.1.3.4.3.3.1 MountType

The MountType structure identifies the file systems mounted within the file manager.

struct MountType

{

 string mountPoint;

 FileSystem fs;

};

3.1.3.4.3.3.2 MountSequence

The MountSequence is an unbounded sequence of Mount types.

typedef sequence <MountType> MountSequence;

3.1.3.4.3.3.3 NonExistentMount

The NonExistentMount exception indicates a mount point does not exist within the

FileManager.

exception NonExistentMount{};

3.1.3.4.3.3.4 MountPointAlreadyExists

The MountPointAlreadyExists exception indicates the mount point is already in use in the

FileManager.

exception MountPointAlreadyExists{};

SCA version 2.2.2 FINAL / 15 May 2006

3-88

3.1.3.4.3.3.5 InvalidFileSystem

The InvalidFileSystem exception indicates the FileSystem is a null (nil) object reference.

exception InvalidFileSystem{};

3.1.3.4.3.4 Attributes

N/A

3.1.3.4.3.5 Operations

3.1.3.4.3.5.1 mount

3.1.3.4.3.5.1.1 Brief Rationale

The file manager supports the notion of a federated file system. To create a federated file

system, the mount operation associates a file system with a mount point (a directory name).

3.1.3.4.3.5.1.2 Synopsis

void mount (in string mountPoint, in FileSystem file_System)

raises (InvalidFileName, InvalidFileSystem,

MountPointAlreadyExists);

3.1.3.4.3.5.1.3 Behavior

The mount operation shall associate the specified file system with the mount point referenced by

the input mountPoint parameter. A mount point name shall begin with a “/” (forward slash

character). The input mountPoint parameter is a logical directory name for a file system.

3.1.3.4.3.5.1.4 Returns.

This operation does not return any value.

3.1.3.4.3.5.1.5 Exceptions/Errors.

The mount operation shall raise the CF InvalidFileName exception when the input mount point

does not conform to the file name syntax in section 3.1.3.4.2.1.

The mount operation shall raise the MountPointAlreadyExists exception when the mount point

already exists in the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystem is a

null object reference.

3.1.3.4.3.5.2 unmount

3.1.3.4.3.5.2.1 Brief Rationale

Mounted file systems may need to be removed from a file manager.

3.1.3.4.3.5.2.2 Synopsis

void unmount (in string mountPoint) raises (NonExistentMount);

3.1.3.4.3.5.2.3 Behavior

The unmount operation shall remove a mounted file system from the file manager whose

mounted name matches the input mountPoint name.

SCA version 2.2.2 FINAL / 15 May 2006

3-89

3.1.3.4.3.5.2.4 Returns

This operation does not return any value.

3.1.3.4.3.5.2.5 Exceptions/Errors

The unmount operation shall raise the NonExistentMount exception when the mount point does

not exist.

3.1.3.4.3.5.3 getMounts

3.1.3.4.3.5.3.1 Brief Rationale

File management user interfaces may need to list a file manager’s mounted file systems.

3.1.3.4.3.5.3.2 Synopsis

MountSequence getMounts();

3.1.3.4.3.5.3.3 Behavior

The getMounts operation returns a MountSequence that describes the mounted file systems.

3.1.3.4.3.5.3.4 Returns

The getMounts operation shall return a MountSequence that contains the file systems mounted

within the file manager.

3.1.3.4.3.5.3.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.4.3.5.4 File System Operations.

The system may support multiple FileSystem implementations. Some file systems correspond

directly to a physical file system within the system. The FileManager interface shall support a

federated, or distributed, file system that may span multiple FileSystem components. From the

client perspective, the FileManager may be used just like any other FileSystem component since

the FileManager inherits all the FileSystem operations.

A file manager shall implement the inherited FileSystem operations as required under section

3.1.3.4.2 for each mounted file system. The FileSystem operations ensure that the

filename/directory arguments given are absolute pathnames relative to a mounted file system.

The FileSystem operations inherited by a file manager shall remove the name of the mounted file

system from input pathnames before passing the pathnames to any operation on a mounted file

system. The file manager shall propagate exceptions raised by a mounted file system.

The file manager shall use the FileSystem operations of the file system whose associated mount

point exactly matches the input fileName parameter to the lowest matching subdirectory.

3.1.3.4.3.5.5 query

3.1.3.4.3.5.5.1 Brief Rationale

The inherited query operation provides the ability to retrieve the same information for a set of

file systems.

SCA version 2.2.2 FINAL / 15 May 2006

3-90

3.1.3.4.3.5.5.2 Synopsis

void query (inout Properties fileSystemProperties) raises

(UnknownFileSystemProperties);

3.1.3.4.3.5.5.3 Behavior

The query operation shall return the combined mounted file systems information to the calling

client based upon the given input fileSystemProperties’ ID elements. As a minimum, the query

operation shall support the following input fileSystemProperties ID elements:

SIZE - a property item ID value of "SIZE" causes the query operation to return the

combined total size of all the mounted file system as an unsigned long long property

value.

AVAILABLE_SPACE - a property item ID value of "AVAILABLE_SPACE" causes the

query operation to return the combined total available space (in octets) of all the mounted

file system as unsigned long long property value.

3.1.3.4.3.5.5.4 Returns

This operation does not return any value.

3.1.3.4.3.5.5.5 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the input

fileSystemProperties parameter contains an invalid property ID element

3.1.3.5 Domain Profile

The hardware devices and software components that make up an SCA system domain are

described by a set of files that are collectively referred to as a Domain Profile. These files

describe the identity, capabilities, properties, inter-dependencies, and location of the hardware

devices and software components that make up the system. All of the descriptive data about a

system is expressed in the XML vocabulary.

The types of XML files that are used to describe a system's hardware and software assets are

depicted in Figure 3-32. The XML vocabulary within each of these files describes a distinct

aspect of the hardware and software assets. The collection of XML which are associated with a

particular software component is referred to as that component’s software profile. The contents

of a profile depends on the component being described, although every profile contains a

Software Package Descriptor – all profiles for CORBA components contain a Software

Component Descriptor. A software profile for an application contains a Software Assembly

descriptor (3.1.3.2.1.4.1), the device manager profile contains a Device Configuration Descriptor

(3.1.3.2.4.4.4), and the domain manager software profile contains a DomainManager

Configuration Descriptor (3.1.3.2.3.4.5).

Domain Profile files shall be complaint to the Document Type Definitions (DTDs) provided in

Appendix D. DTD files are installed in the domain and shall have “.dtd” as their filename

extension. All XML files shall have as the first two lines as an XML declaration (?xml) and a

document type declaration (!DOCTYPE). The XML declaration specifies the XML version and

whether the document is standalone. The document type declaration specifies the DTD for the

document. Example declarations are as follows:

SCA version 2.2.2 FINAL / 15 May 2006

3-91

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE softwareassembly SYSTEM “softwareassembly.2.2.2.dtd”>

Domain Profile

«DTDElement»

Device Configuration Descriptor

«DTDElement»

Domain Manager Configuration Descriptor

«DTDElement»

Software Assembly Descriptor

«DTDElement»

Software Package Descriptor

0..n 1 0..n

1..n

1..n
1

0..1

0..n

«DTDElement»

Device Package Descriptor

«DTDElement»

Software Component Descriptor

0..1

«DTDElement»

Properties Descriptor
0..1

0..1

«DTDElement»

Properties Descriptor

«DTDElement»

Properties Descriptor

Figure 3-32: Relationship of Domain Profile XML File Types

3.1.3.5.1 Software Package Descriptor

A Software Package Descriptor (SPD) identifies a software component implementation(s). A

Software Package Descriptor file shall have a “.spd.xml” extension. General information about a

software package, such as the name, author, property file, and implementation code information

and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3.1.3.5.2 Software Component Descriptor

A Software Component Descriptor (SCD) contains information about a specific SCA software

component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall

SCA version 2.2.2 FINAL / 15 May 2006

3-92

have a “.scd.xml” extension. A Software Component Descriptor file contains information about

the interfaces that a component provides and/or uses. A Software Component Descriptor for a

Device type has a reference to Device Package Descriptor file.

3.1.3.5.3 Software Assembly Descriptor

A Software Assembly Descriptor (SAD) contains information about the components that make

up an application. The application factory uses this information when creating an application. A

Software Assembly Descriptor file shall have a “.sad.xml” extension.

3.1.3.5.4 Properties Descriptor

A Property File contains information about the properties applicable to a software package or a

device package. A Properties File shall have a “.prf.xml” extension. A Properties File contains

information about the properties of a component such as configuration, test, execute, and

allocation types.

3.1.3.5.5 Device Package Descriptor

A Device Package Descriptor (DPD) identifies a class of a device. A Device Package Descriptor

File shall have a “.dpd.xml” extension. A Device Package Descriptor also has Properties that

define specific properties (capacity, serial number, etc.) for this class of device.

3.1.3.5.6 Device Configuration Descriptor

A Device Configuration Descriptor (DCD) contains information about the devices associated

with a device manager, how to find the domain manager, and the configuration information (Log,

FileSystems, etc.) for a device. A Device Configuration Descriptor file shall have a “.dcd.xml”

extension.

3.1.3.5.7 Profile Descriptor

A Profile Descriptor is an XML element which contains an absolute pathname for a Software

Package Descriptor (SPD), Software Assembly Descriptor (SAD), DomainManager

Configuration Descriptor (DMD), or a Device Configuration Descriptor (DCD), depending upon

the context. This element is used as the parameter for interface profile attributes (e.g., CF

Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF DomainManager).

3.1.3.5.8 DomainManager Configuration Descriptor

A DomainManager Configuration Descriptor (DMD) contains configuration information for the

domain manager. A DomainManager Configuration Descriptor file shall have a “.dmd.xml”

extension.

3.1.3.6 Core Framework Base Types

The CF Base Types are the underlying types used in the CF interfaces.

3.1.3.6.1 DataType

This type is a CORBA IDL structure, which may be used to hold any CORBA basic type or

static IDL type. The id attribute indicates the kind of value and type (e.g., frequency, preset,

etc.). The id may be an UUID string, an integer string, or a name identifier depending on

context. The value attribute may be any static IDL type or CORBA basic type.

SCA version 2.2.2 FINAL / 15 May 2006

3-93

struct DataType

{

 string id;

 any value;

};

3.1.3.6.2 DeviceSequence

The CF DeviceSequence type defines an unbounded sequence of devices.

typedef sequence <Device> DeviceSequence;

3.1.3.6.3 FileException

The CF FileException indicates a file-related error occurred. The error number shall indicate a

CF ErrorNumberType value. The message provides information describing the error. The

message may be used for logging the error.

exception FileException {ErrorNumberType errorNumber; string

msg; };

3.1.3.6.4 InvalidFileName

The CF InvalidFileName exception indicates an invalid file name was passed to a file service

operation. The error number shall indicate a CF ErrorNumberType value. The message provides

information describing why the filename was invalid.

exception InvalidFileName {ErrorNumberType errorNumber; string

msg; };

3.1.3.6.5 InvalidObjectReference

The CF InvalidObjectReference exception indicates an invalid CORBA object reference error.

exception InvalidObjectReference {string msg;};

3.1.3.6.6 InvalidProfile

The CF InvalidProfile exception indicates an invalid profile error.

exception InvalidProfile{};

3.1.3.6.7 OctetSequence

This type is a CORBA unbounded sequence of octets.

typedef sequence <octet> OctetSequence;

3.1.3.6.8 Properties

The CF Properties is a CORBA IDL unbounded sequence of CF DataType(s), which is used in

defining a sequence of name and value pairs.

typedef sequence <DataType> Properties;

3.1.3.6.9 StringSequence

This type defines a sequence of strings.

typedef sequence <string> StringSequence;

SCA version 2.2.2 FINAL / 15 May 2006

3-94

3.1.3.6.10 UnknownProperties

The CF UnknownProperties exception indicates a set of properties unknown by the component.

exception UnknownProperties {Properties invalidProperties; };

3.1.3.6.11 DeviceAssignmentType

The CF DeviceAssignmentType defines a structure that associates a component with the device

which the component either uses, is loaded upon or on which it is executed.

struct DeviceAssignmentType

{

string componentId;

string assignedDeviceId;

};

3.1.3.6.12 DeviceAssignmentSequence

The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of CF

DeviceAssignmentTypes.

typedef sequence <DeviceAssignmentType>

DeviceAssignmentSequence;

3.1.3.6.13 ErrorNumberType.

This enum is used to pass error number information in various exceptions. Those exceptions

starting with “CF_E” map the POSIX definitions (with the "CF_" removed), and is found in

reference [4].

CF_NOTSET CF_NOTSET is not defined in the POSIX specification. CF_NOTSET is an SCA

specific value that is applicable for any exception when the method specific or standard POSIX

error values are not appropriate.)

enum ErrorNumberType

{

CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN, CF_EBADF, CF_EBADMSG,

CF_EBUSY, CF_ECANCELED, CF_ECHILD, CF_EDEADLK, CF_EDOM,

CF_EEXIST, CF_EFAULT, CF_EFBIG, CF_EINPROGRESS,

CF_EINTR,CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK,

CF_EMSGSIZE, CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT,

CF_ENOEXEC, CF_ENOLCK, CF_ENOMEM, CF_ENOSPC, CF_ENOSYS,

CF_ENOTDIR, CF_ENOTEMPTY, CF_ENOTSUP ,CF_ENOTTY, CF_ENXIO,

CF_EPERM, CF_EPIPE, CF_ERANGE , CF_EROFS, CF_ESPIPE, CF_ESRCH,

CF_ETIMEDOUT ,CF_EXDEV

};

3.2 APPLICATIONS

Applications are programs that perform the functions of a specific SCA-compliant product.

They are designed to meet the requirements of a specific acquisition and are not defined by the

SCA except as they interface to the OE.

SCA version 2.2.2 FINAL / 15 May 2006

3-95

3.2.1 General Application Requirements

An application’s dependencies to the log, file manager, file system, CORBA Event Service, and

CORBA Naming Service are specified as connections in the SAD using the domainfinder

element.

3.2.1.1 OS Services

Applications shall be limited to using the OS services that are designated as mandatory in the

SCA Application Environment Profile (Appendix B).

Applications shall perform file access through the CF File interfaces. The application filename

syntax is specified in section 3.1.3.4.2.1.

All application processes shall have a handler registered for the POSIX-defined SIGQUIT signal.

3.2.1.2 CORBA Services

Applications shall be limited to using CORBA and CORBA services defined in the referenced

minimumCORBA specification [5]. Dynamically-created stringified IORs may be used to

provide an IOR reference value parameter. Applications shall not utilize static stringified IORs.

Applications may support the LogProducer interface of the CORBA Lightweight Log

Specification [7].

3.2.1.3 CF Interfaces

Applications shall implement the Base Application Interfaces as specified in section 3.1.3.1

using the corresponding IDL in Appendix C. Use of the ResourceFactory interface per section

3.1.3.1.7 is optional.

Each application component shall support the mandatory Naming Context IOR, Name Binding,

and the identifier execute parameters as described in 3.1.3.2.2.5.1, in addition to their user-

defined execute properties in the component’s SPD. Each application component shall bind its

object reference to the Naming Context IOR using the Name Binding parameter. Each

executable component of an application shall set its identifier attribute using the component

identifier execute parameter.

Each executable component of an application shall accept the standard argv arguments of the

POSIX exec family of functions [4].

An application, each application component, and each device manager shall be accompanied by

the appropriate Domain Profile files per section 3.1.3.5.

3.2.2 Application Interfaces

Applications consist of one to many components. These components may be CORBA-capable

or not CORBA-capable components. For CORBA-capable components, in addition to

supporting the CF Base Application interfaces, the component may implement and use

component-specific interfaces for data and/or control. Interfaces provided by a component shall

SCA version 2.2.2 FINAL / 15 May 2006

3-96

be described in a Software Component Descriptor file as provides ports. Interfaces required by a

component shall be described in a Software Component Descriptor file as uses ports.

An application may define interfaces that are visible to entities external to the application. These

external interfaces are Ports, referenced in the application SAD externalports element. An

application interface shall be referenced in the application’s SAD externalports element, and

thus declared “external”, if the interface provides a service that is used by other applications.

All non-standard interfaces shall be defined in Interface Control Documents that are available to

other parties without restriction to the extent that interfacing or replacement hardware and

software can be developed by other parties without restriction.

3.2.2.1 Service Definitions

SCA service definitions consist of APIs, behavior, state, priority and additional information that

provide the contract between the Service Provider and the Service User. IDL is used to define

the interfaces for service definitions to foster reuse and interoperability. IDL provides a method

to inherit from multiple interfaces to form a new service definition.

All SCA APIs shall have their interfaces described in IDL. All non-IDL interfaces shall provide

an IDL mapping within the service definition.

3.3 LOGICAL DEVICE

A logical device is a software component that implements one of the Base Device Interfaces. The

Base Device Interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice as

stated in section 2.2.2. and depicted in Figure 3-33.

SCA version 2.2.2 FINAL / 15 May 2006

3-97

+allocateCapacity(in capacities : Properties) : boolean(idl)

+deallocateCapacity(in capacities : Properties) : void

«readonly» +usageState : UsageType

«readonly» +adminState : AdminType

«readonly» +operationalState : OperationalType

«readonly» +softwareProfile : string(idl)

«readonly» +label : string(idl)

«readonly» +compositeDevice : AggregateDevice

«CORBAInterface»

CF::Device

+load(in fs : FileSystem, in fileName : string(idl), in loadKind : LoadType) : void

+unload(in fileName : string(idl)) : void

«CORBAInterface»

CF::LoadableDevice

«inherits»

+execute(in name : string(idl), in options : Properties, in parameters : Properties) : ProcessID_Type

+terminate(in processID : ProcessID_Type) : void

«const» -STACK_SIZE_ID : string(idl) = "STACK_SIZE"

«const» -PRIORITY_ID : string(idl) = "PRIORITY"

«CORBAInterface»

CF::ExecutableDevice

«inherits»

+start() : void

+stop() : void

«readonly» +identifier : string(idl)

«CORBAInterface»

CF::Resource

«inherits»

+addDevice(in associatedDevice : Device) : void

+removeDevice(in associatedDevice : Device) : void

#devices : DeviceSequence

«CORBAInterface»

CF::AggregateDevice

Figure 3-33: Logical Device Interface Relationships

3.3.1 OS Services

Logical devices may use any service provided by the OE and as such are not restricted to using

the services specified in the SCA Application Environment Profile (Appendix B).

The executable parameters of a logical device shall accept the standard argv arguments as used

in the POSIX exec family of functions [4].

A logical device shall accept the executable parameters as specified in section 3.1.3.3.3.5.1.3

(ExecutableDevice::execute).

3.3.2 CORBA Services.

Logical devices shall be limited to using CORBA and CORBA services defined in the referenced

minimumCORBA specification [5].

Logical devices may support the LogProducer interface of the CORBA Lightweight Log

Specification [7].

SCA version 2.2.2 FINAL / 15 May 2006

3-98

3.3.3 CF Interfaces

A logical device implements one of the following CF interfaces: Device, LoadableDevice or

ExecutableDevice.

In addition to the requirements stated in the Device interface (section 3.1.3.3.1), a logical device

has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier and

TestableObject interfaces.

A logical device shall register itself with a device manager using the value associated with the

DEVICE_MGR_IOR parameter per 3.1.3.2.4.5.

A child device shall add itself to a parent device using the executable Composite Device IOR

parameter per 3.1.3.2.4.5.

The values associated with the parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR,

DEVICE_ID and DEVICE_LABEL) as described in 3.1.3.2.4.5 shall be used to set the Device’s

softwareProfile, compositeDevice, identifier, and label attributes, respectively.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to

other parties without restriction. Critical interfaces are those interfaces at the physical boundary

of a replaceable device that are required for the operation and maintenance of the device.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in

section 3.2.2.

3.3.4 Profile

Each logical device shall have a SPD, SCD, DPD, and one or more Properties Descriptors as

described in section 3.1.3.5. For each logical device, allocation properties shall be defined in its

referenced SPD’s property file.

3.4 GENERAL SOFTWARE RULES

This section identifies those rules and recommendations specific to the Software

Communications Architecture that are not specifically addressed elsewhere in this specification.

3.4.1 Software Development Languages

3.4.1.1 New Software

Software developed for an SCA-compliant system shall be developed in a standard higher order

language. The goal of new development should be to provide software that is independent from

platform and environment dependencies, ensuring minimal portability issues.

3.4.1.2 Legacy Software

Legacy software is not required to be rewritten in a standard higher order language. Legacy

software shall interface with the Core Framework in accordance with this specification.

SCA version 2.2.2 FINAL / 15 May 2006

4-1

4 ARCHITECTURE COMPLIANCE

This section defines the authorities as well as the requirements and criteria for the certification of

any product to this specification.

Certification may be requested for any product meeting all applicable requirements identified

within the scope of the specification. The applicable requirements for any product not fulfilling

all requirements of this specification are determined at the sole discretion of the Certification

Authority (section 4.1)

This process is based on the existence of three distinct organizations: a Certification Authority

(CA), a Specification Authority (SA), and a Test and Evaluation Authority (TA). The CA is

given the sole responsibility for granting certification for all products to the specified standard,

based on the data and recommendations provided. The Certification Authority is supported by

the Specification Authority (SA), which is responsible for developing, maintaining, evolving and

interpreting the standard, and the Test and Evaluation Authority (TA) which is responsible for

the definition of all test procedures, development and maintenance of all test tools, and for

providing formal certification test results.

4.1 CERTIFICATION AUTHORITY

The Joint Program Executive Office (JPEO) JTRS is the Certification Authority (CA) for the

SCA and is given the sole responsibility and authority for granting certification of all products to

this specification and to certify that a product meets the requirements of this specification. The

JPEO JTRS authority is derived from its Charter [C].

4.2 SPECIFICATION AUTHORITY

The Joint Program Executive Office (JPEO) JTRS is the Specification Authority (SA) for the

SCA and is given the sole responsibility and authority to incorporate changes, recommendations,

additions, or retractions into this specification.

4.3 RESPONSIBILITY FOR COMPLIANCE EVALUATION

The Joint Program Executive Office (JPEO) JTRS shall assign one or more test organizations as

the Test and Evaluation Authority (TA) for the SCA. The TA has the responsibility for

providing formal certification test results to the Certification Authority.

4.4 EVALUATING COMPLIANCE

Compliance to this specification requires a product to meet all applicable requirements identified

within the scope of the specification. Applicability of requirements to specific products is

determined by the Certification Authority. Products are submitted to the Test and Evaluation

Authority for verification. Results of that verification are submitted to the Certification Authority

for evaluation.

The CA grants three levels of product certification for all JTRS standards: Fully Compliant,

Compliant with Waivers, and Non-Compliant. A certification of Fully Compliant will be granted

when a product has passed all requirements identified by the TA, without exception, for a

SCA version 2.2.2 FINAL / 15 May 2006

4-2

specific version of the standard. A product will be certified as Compliant with Waivers when all

requirements not validated according to the criteria for a Fully Compliant certification, are

granted waivers under the process defined in the JTRS Standards Waiver Process [D]. A product

will be declared Non-Compliant when any failed requirement exists for which a waiver is not

approved.

4.5 REGISTRATION.

Some elements of an SCA implementation are identified with a Universally Unique Identifier

(UUID). As used in this specification, the UUID is defined by the DCE UUID standard adopted

by the Common Object Request Broker Architecture (CORBA) [9]. No centralized authority is

required to administer UUIDs under this specification.

	Software Communications Architecture Specification
	Revision Summary
	Table of Contents
	List of Figures
	Foreword
	1 INTRODUCTION
	1.1 Scope
	1.2 Compliance
	1.3 Document conventions, Terminology, and Definitions
	1.3.1 Conventions and Terminology
	1.3.1.1 File and Directory Nomenclature
	1.3.1.2 Unified Modeling Language
	1.3.1.3 Interface Definition Language
	1.3.1.4 eXtensible Markup Language
	1.3.1.5 Requirements Language
	1.3.1.6 Core Framework Interface and Operation Identification
	1.3.1.7 Figures

	1.3.2 Definitions

	1.4 Document Content
	1.5 Normative References
	1.6 Informative References

	2 Overview
	2.1 Architecture Definition Methodology
	2.2 Architecture Overview
	2.2.1 Goals and Context
	2.2.2 Core Framework
	2.2.3 Definitions
	2.2.4 Structure
	2.2.4.1 Bus Layer (Board Support Package)
	2.2.4.2 Network & Serial Interface Services
	2.2.4.3 Operating System
	2.2.4.4 CORBA Middleware
	2.2.4.5 Applications
	2.2.4.5.1 Adapters

	2.2.4.6 Reference Model

	2.2.5 Networking Overview

	3 Software Architecture Definition
	3.1 Operating Environment
	3.1.1 Operating System
	3.1.2 CORBA Middleware & Services
	3.1.2.1 Naming Service
	3.1.2.2 Log Service
	3.1.2.2.1 Log Producers

	3.1.2.3 CORBA Event Service and Standard Events
	3.1.2.3.1 CORBA Event Service
	3.1.2.3.2 StandardEvent Module
	3.1.2.3.2.1 Types
	3.1.2.3.2.1.1 StateChangeCategoryType
	3.1.2.3.2.1.2 StateChangeType
	3.1.2.3.2.1.3 StateChangeEventType
	3.1.2.3.2.1.4 SourceCategoryType
	3.1.2.3.2.1.5 DomainManagementObjectRemovedEventType
	3.1.2.3.2.1.6 DomainManagementObjectAddedEventType

	3.1.3 Core Framework
	3.1.3.1 Base Application Interfaces
	3.1.3.1.1 Port
	3.1.3.1.1.1 Description
	3.1.3.1.1.2 UML
	3.1.3.1.1.3 Types
	3.1.3.1.1.3.1 InvalidPort
	3.1.3.1.1.3.2 OccupiedPort

	3.1.3.1.1.4 Attributes
	3.1.3.1.1.5 Operations
	3.1.3.1.1.5.1 connectPort
	3.1.3.1.1.5.1.1 Brief Rationale
	3.1.3.1.1.5.1.2 Synopsis
	3.1.3.1.1.5.1.3 Behavior
	3.1.3.1.1.5.1.4 Returns
	3.1.3.1.1.5.1.5 Exceptions/Errors

	3.1.3.1.1.5.2 disconnectPort
	3.1.3.1.1.5.2.1 Brief Rationale
	3.1.3.1.1.5.2.2 Synopsis
	3.1.3.1.1.5.2.3 Behavior
	3.1.3.1.1.5.2.4 Returns
	3.1.3.1.1.5.2.5 Exceptions/Errors

	3.1.3.1.2 LifeCycle
	3.1.3.1.2.1 Description
	3.1.3.1.2.2 UML
	3.1.3.1.2.3 Types
	3.1.3.1.2.3.1 InitializeError
	3.1.3.1.2.3.2 ReleaseError

	3.1.3.1.2.4 Attributes
	3.1.3.1.2.5 Operations
	3.1.3.1.2.5.1 initialize
	3.1.3.1.2.5.1.1 Brief Rationale
	3.1.3.1.2.5.1.2 Synopsis
	3.1.3.1.2.5.1.3 Behavior
	3.1.3.1.2.5.1.4 Returns
	3.1.3.1.2.5.1.5 Exceptions/Errors

	3.1.3.1.2.5.2 releaseObject
	3.1.3.1.2.5.2.1 Brief Rationale
	3.1.3.1.2.5.2.2 Synopsis
	3.1.3.1.2.5.2.3 Behavior
	3.1.3.1.2.5.2.4 Returns
	3.1.3.1.2.5.2.5 Exceptions/Errors

	3.1.3.1.3 TestableObject
	3.1.3.1.3.1 Description
	3.1.3.1.3.2 UML
	3.1.3.1.3.3 Types
	3.1.3.1.3.3.1 UnknownTest

	3.1.3.1.3.4 Attributes
	3.1.3.1.3.5 Operations
	3.1.3.1.3.5.1 runTest
	3.1.3.1.3.5.1.1 Brief Rationale
	3.1.3.1.3.5.1.2 Synopsis
	3.1.3.1.3.5.1.3 Behavior
	3.1.3.1.3.5.1.4 Returns
	3.1.3.1.3.5.1.5 Exceptions/Errors

	3.1.3.1.4 PortSupplier
	3.1.3.1.4.1 Description
	3.1.3.1.4.2 UML
	3.1.3.1.4.3 Types
	3.1.3.1.4.3.1 UnknownPort

	3.1.3.1.4.4 Attributes
	3.1.3.1.4.5 Operations
	3.1.3.1.4.5.1 getPort
	3.1.3.1.4.5.1.1 Brief Rationale
	3.1.3.1.4.5.1.2 Synopsis
	3.1.3.1.4.5.1.3 Behavior
	3.1.3.1.4.5.1.4 Returns
	3.1.3.1.4.5.1.5 Exceptions/Errors

	3.1.3.1.5 PropertySet
	3.1.3.1.5.1 Description
	3.1.3.1.5.2 UML
	3.1.3.1.5.3 Types
	3.1.3.1.5.3.1 InvalidConfiguration
	3.1.3.1.5.3.2 PartialConfiguration

	3.1.3.1.5.4 Attributes
	3.1.3.1.5.5 Operations
	3.1.3.1.5.5.1 configure
	3.1.3.1.5.5.1.1 Brief Rationale
	3.1.3.1.5.5.1.2 Synopsis
	3.1.3.1.5.5.1.3 Behavior
	3.1.3.1.5.5.1.4 Returns
	3.1.3.1.5.5.1.5 Exceptions/Errors

	3.1.3.1.5.5.2 query
	3.1.3.1.5.5.2.1 Brief Rationale
	3.1.3.1.5.5.2.2 Synopsis
	3.1.3.1.5.5.2.3 Behavior
	3.1.3.1.5.5.2.4 Returns
	3.1.3.1.5.5.2.5 Exceptions/Errors

	3.1.3.1.6 Resource
	3.1.3.1.6.1 Description
	3.1.3.1.6.2 UML.
	3.1.3.1.6.3 Types
	3.1.3.1.6.3.1 StartError
	3.1.3.1.6.3.2 StopError

	3.1.3.1.6.4 Attributes
	3.1.3.1.6.4.1 identifier

	3.1.3.1.6.5 Operations
	3.1.3.1.6.5.1 start
	3.1.3.1.6.5.1.1 Brief Rationale
	3.1.3.1.6.5.1.2 Synopsis
	3.1.3.1.6.5.1.3 Behavior
	3.1.3.1.6.5.1.4 Returns
	3.1.3.1.6.5.1.5 Exceptions/Errors

	3.1.3.1.6.5.2 stop
	3.1.3.1.6.5.2.1 Brief Rationale
	3.1.3.1.6.5.2.2 Synopsis
	3.1.3.1.6.5.2.3 Behavior
	3.1.3.1.6.5.2.4 Returns
	3.1.3.1.6.5.2.5 Exceptions/Errors

	3.1.3.1.7 ResourceFactory
	3.1.3.1.7.1 Description
	3.1.3.1.7.2 UML
	3.1.3.1.7.3 Types
	3.1.3.1.7.3.1 InvalidResourceId
	3.1.3.1.7.3.2 ShutdownFailure
	3.1.3.1.7.3.3 CreateResourceFailure

	3.1.3.1.7.4 Attributes
	3.1.3.1.7.4.1 identifier

	3.1.3.1.7.5 Operations
	3.1.3.1.7.5.1 createResource
	3.1.3.1.7.5.1.1 Brief Rationale
	3.1.3.1.7.5.1.2 Synopsis
	3.1.3.1.7.5.1.3 Behavior
	3.1.3.1.7.5.1.4 Returns
	3.1.3.1.7.5.1.5 Exceptions/Errors

	3.1.3.1.7.5.2 releaseResource
	3.1.3.1.7.5.2.1 Brief Rationale
	3.1.3.1.7.5.2.2 Synopsis
	3.1.3.1.7.5.2.3 Behavior
	3.1.3.1.7.5.2.4 Returns
	3.1.3.1.7.5.2.5 Exceptions/Errors

	3.1.3.1.7.5.3 shutdown
	3.1.3.1.7.5.3.1 Brief Rationale
	3.1.3.1.7.5.3.2 Synopsis
	3.1.3.1.7.5.3.3 Behavior
	3.1.3.1.7.5.3.4 Returns
	3.1.3.1.7.5.3.5 Exceptions/Errors

	3.1.3.2 Framework Control Interfaces
	3.1.3.2.1 Application
	3.1.3.2.1.1 Description
	3.1.3.2.1.2 UML
	3.1.3.2.1.3 Types
	3.1.3.2.1.3.1 ComponentProcessIdType
	3.1.3.2.1.3.2 ComponentProcessIdSequence
	3.1.3.2.1.3.3 ComponentElementType
	3.1.3.2.1.3.4 ComponentElementSequence

	3.1.3.2.1.4 Attributes
	3.1.3.2.1.4.1 profile
	3.1.3.2.1.4.2 name
	3.1.3.2.1.4.3 componentNamingContexts
	3.1.3.2.1.4.4 componentProcessIds
	3.1.3.2.1.4.5 componentDevices
	3.1.3.2.1.4.6 componentImplementations

	3.1.3.2.1.5 General Class Behavior
	3.1.3.2.1.6 Operations
	3.1.3.2.1.6.1 releaseObject
	3.1.3.2.1.6.1.1 Brief Rationale
	3.1.3.2.1.6.1.2 Synopsis
	3.1.3.2.1.6.1.3 Behavior
	3.1.3.2.1.6.1.4 Returns
	3.1.3.2.1.6.1.5 Exceptions/Errors

	3.1.3.2.1.6.2 getPort
	3.1.3.2.1.6.2.1 Brief Rationale
	3.1.3.2.1.6.2.2 Synopsis
	3.1.3.2.1.6.2.3 Behavior
	3.1.3.2.1.6.2.4 Returns
	3.1.3.2.1.6.2.5 Exceptions/Errors

	3.1.3.2.2 ApplicationFactory
	3.1.3.2.2.1 Description
	3.1.3.2.2.2 UML
	3.1.3.2.2.3 Types
	3.1.3.2.2.3.1 CreateApplicationRequestError Exception
	3.1.3.2.2.3.2 CreateApplicationError Exception
	3.1.3.2.2.3.3 Exception InvalidInitConfiguration

	3.1.3.2.2.4 Attributes
	3.1.3.2.2.4.1 name
	3.1.3.2.2.4.2 softwareProfile
	3.1.3.2.2.4.3 identifier

	3.1.3.2.2.5 Operations
	3.1.3.2.2.5.1 create
	3.1.3.2.2.5.1.1 Brief Rationale
	3.1.3.2.2.5.1.2 Synopsis
	3.1.3.2.2.5.1.3 Behavior
	3.1.3.2.2.5.1.4 Returns
	3.1.3.2.2.5.1.5 Exceptions/Errors

	3.1.3.2.3 DomainManager
	3.1.3.2.3.1 Description
	3.1.3.2.3.2 UML
	3.1.3.2.3.3 Types
	3.1.3.2.3.3.1 ApplicationInstallationError
	3.1.3.2.3.3.2 InvalidIdentifier
	3.1.3.2.3.3.3 DeviceManagerSequence
	3.1.3.2.3.3.4 ApplicationSequence
	3.1.3.2.3.3.5 ApplicationFactorySequence
	3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception
	3.1.3.2.3.3.7 RegisterError
	3.1.3.2.3.3.8 UnregisterError
	3.1.3.2.3.3.9 ApplicationUninstallationError
	3.1.3.2.3.3.10 InvalidEventChannelName
	3.1.3.2.3.3.11 AlreadyConnected
	3.1.3.2.3.3.12 NotConnected
	3.1.3.2.3.3.13 ApplicationAlreadyInstalled

	3.1.3.2.3.4 Attributes.
	3.1.3.2.3.4.1 deviceManagers
	3.1.3.2.3.4.2 applications
	3.1.3.2.3.4.3 applicationFactories
	3.1.3.2.3.4.4 fileMgr
	3.1.3.2.3.4.5 domainManagerProfile
	3.1.3.2.3.4.6 identifier

	3.1.3.2.3.5 General Class Behavior
	3.1.3.2.3.6 Operations
	3.1.3.2.3.6.1 registerDeviceManager
	3.1.3.2.3.6.1.1 Brief Rationale
	3.1.3.2.3.6.1.2 Synopsis
	3.1.3.2.3.6.1.3 Behavior
	3.1.3.2.3.6.1.4 Returns
	3.1.3.2.3.6.1.5 Exceptions/Errors

	3.1.3.2.3.6.2 registerDevice
	3.1.3.2.3.6.2.1 Brief Rationale
	3.1.3.2.3.6.2.2 Synopsis
	3.1.3.2.3.6.2.3 Behavior
	3.1.3.2.3.6.2.4 Returns
	3.1.3.2.3.6.2.5 Exceptions/Errors

	3.1.3.2.3.6.3 installApplication
	3.1.3.2.3.6.3.1 Brief Rationale
	3.1.3.2.3.6.3.2 Synopsis
	3.1.3.2.3.6.3.3 Behavior
	3.1.3.2.3.6.3.4 Returns
	3.1.3.2.3.6.3.5 Exceptions/Errors

	3.1.3.2.3.6.4 unregisterDeviceManager
	3.1.3.2.3.6.4.1 Brief Rationale
	3.1.3.2.3.6.4.2 Synopsis
	3.1.3.2.3.6.4.3 Behavior
	3.1.3.2.3.6.4.4 Returns
	3.1.3.2.3.6.4.5 Exceptions/Errors

	3.1.3.2.3.6.5 unregisterDevice
	3.1.3.2.3.6.5.1 Brief Rationale
	3.1.3.2.3.6.5.2 Synopsis
	3.1.3.2.3.6.5.3 Behavior
	3.1.3.2.3.6.5.4 Returns
	3.1.3.2.3.6.5.5 Exceptions/Errors

	3.1.3.2.3.6.6 uninstallApplication
	3.1.3.2.3.6.6.1 Brief Rationale
	3.1.3.2.3.6.6.2 Synopsis
	3.1.3.2.3.6.6.3 Behavior
	3.1.3.2.3.6.6.4 Returns
	3.1.3.2.3.6.6.5 Exceptions/Errors

	3.1.3.2.3.6.7 registerService
	3.1.3.2.3.6.7.1 Brief Rationale
	3.1.3.2.3.6.7.2 Synopsis
	3.1.3.2.3.6.7.3 Behavior
	3.1.3.2.3.6.7.4 Returns
	3.1.3.2.3.6.7.5 Exceptions/Errors.

	3.1.3.2.3.6.8 unregisterService
	3.1.3.2.3.6.8.1 Brief Rationale
	3.1.3.2.3.6.8.2 Synopsis
	3.1.3.2.3.6.8.3 Behavior
	3.1.3.2.3.6.8.4 Returns
	3.1.3.2.3.6.8.5 Exceptions/Errors

	3.1.3.2.3.6.9 registerWithEventChannel
	3.1.3.2.3.6.9.1 Brief Rationale
	3.1.3.2.3.6.9.2 Synopsis
	3.1.3.2.3.6.9.3 Behavior
	3.1.3.2.3.6.9.4 Returns
	3.1.3.2.3.6.9.5 Exceptions/Errors

	3.1.3.2.3.6.10 unregisterFromEventChannel
	3.1.3.2.3.6.10.1 Brief Rationale
	3.1.3.2.3.6.10.2 Synopsis
	3.1.3.2.3.6.10.3 Behavior
	3.1.3.2.3.6.10.4 Returns
	3.1.3.2.3.6.10.5 Exceptions/Errors

	3.1.3.2.4 DeviceManager
	3.1.3.2.4.1 Description
	3.1.3.2.4.2 UML
	3.1.3.2.4.3 Types
	3.1.3.2.4.3.1 ServiceType
	3.1.3.2.4.3.2 ServiceSequenceType

	3.1.3.2.4.4 Attributes
	3.1.3.2.4.4.1 identifier
	3.1.3.2.4.4.2 label
	3.1.3.2.4.4.3 fileSys
	3.1.3.2.4.4.4 deviceConfigurationProfile
	3.1.3.2.4.4.5 registeredDevices
	3.1.3.2.4.4.6 registeredServices

	3.1.3.2.4.5 General Behavior
	3.1.3.2.4.6 Operations
	3.1.3.2.4.6.1 registerDevice
	3.1.3.2.4.6.1.1 Brief Rationale
	3.1.3.2.4.6.1.2 Synopsis
	3.1.3.2.4.6.1.3 Behavior
	3.1.3.2.4.6.1.4 Returns
	3.1.3.2.4.6.1.5 Exceptions/Errors

	3.1.3.2.4.6.2 unregisterDevice
	3.1.3.2.4.6.2.1 Brief Rationale
	3.1.3.2.4.6.2.2 Synopsis
	3.1.3.2.4.6.2.3 Behavior
	3.1.3.2.4.6.2.4 Returns
	3.1.3.2.4.6.2.5 Exceptions/Errors

	3.1.3.2.4.6.3 registerService
	3.1.3.2.4.6.3.1 Brief Rationale
	3.1.3.2.4.6.3.2 Synopsis
	3.1.3.2.4.6.3.3 Behavior
	3.1.3.2.4.6.3.4 Returns
	3.1.3.2.4.6.3.5 Exceptions/Errors

	3.1.3.2.4.6.4 unregisterService
	3.1.3.2.4.6.4.1 Brief Rationale.
	3.1.3.2.4.6.4.2 Synopsis
	3.1.3.2.4.6.4.3 Behavior
	3.1.3.2.4.6.4.4 Returns
	3.1.3.2.4.6.4.5 Exceptions/Errors

	3.1.3.2.4.6.5 shutdown
	3.1.3.2.4.6.5.1 Brief Rationale
	3.1.3.2.4.6.5.2 Synopsis
	3.1.3.2.4.6.5.3 Behavior
	3.1.3.2.4.6.5.4 Returns
	3.1.3.2.4.6.5.5 Exceptions/Errors

	3.1.3.2.4.6.6 getComponentImplementationId.
	3.1.3.2.4.6.6.1 Brief Rational
	3.1.3.2.4.6.6.2 Synopsis
	3.1.3.2.4.6.6.3 Behavior
	3.1.3.2.4.6.6.4 Returns
	3.1.3.2.4.6.6.5 Exceptions/Errors

	3.1.3.3 Base Device Interfaces
	3.1.3.3.1 Device
	3.1.3.3.1.1 Description
	3.1.3.3.1.2 UML
	3.1.3.3.1.3 Types
	3.1.3.3.1.3.1 InvalidState
	3.1.3.3.1.3.2 InvalidCapacity
	3.1.3.3.1.3.3 AdminType
	3.1.3.3.1.3.4 OperationalType
	3.1.3.3.1.3.5 UsageType

	3.1.3.3.1.4 Attributes
	3.1.3.3.1.4.1 usageState.
	3.1.3.3.1.4.2 adminState
	3.1.3.3.1.4.3 operationalState
	3.1.3.3.1.4.4 softwareProfile
	3.1.3.3.1.4.5 label
	3.1.3.3.1.4.6 compositeDevice

	3.1.3.3.1.5 Operations
	3.1.3.3.1.5.1 allocateCapacity
	3.1.3.3.1.5.1.1 Brief Rationale
	3.1.3.3.1.5.1.2 Synopsis
	3.1.3.3.1.5.1.3 Behavior
	3.1.3.3.1.5.1.4 Returns
	3.1.3.3.1.5.1.5 Exceptions/Errors

	3.1.3.3.1.5.2 deallocateCapacity
	3.1.3.3.1.5.2.1 Brief Rationale
	3.1.3.3.1.5.2.2 Synopsis
	3.1.3.3.1.5.2.3 Behavior
	3.1.3.3.1.5.2.4 Returns
	3.1.3.3.1.5.2.5 Exceptions/Errors

	3.1.3.3.1.5.3 releaseObject
	3.1.3.3.1.5.3.1 Description
	3.1.3.3.1.5.3.2 Synopsis
	3.1.3.3.1.5.3.3 Behavior
	3.1.3.3.1.5.3.4 Returns
	3.1.3.3.1.5.3.5 Exceptions/Errors

	3.1.3.3.2 LoadableDevice
	3.1.3.3.2.1 Description
	3.1.3.3.2.2 UML
	3.1.3.3.2.3 Types
	3.1.3.3.2.3.1 LoadType
	3.1.3.3.2.3.2 InvalidLoadKind
	3.1.3.3.2.3.3 LoadFail.

	3.1.3.3.2.4 Attributes
	3.1.3.3.2.5 Operations
	3.1.3.3.2.5.1 load
	3.1.3.3.2.5.1.1 Brief Rationale
	3.1.3.3.2.5.1.2 Synopsis
	3.1.3.3.2.5.1.3 Behavior
	3.1.3.3.2.5.1.4 Returns
	3.1.3.3.2.5.1.5 Exceptions/Errors

	3.1.3.3.2.5.2 unload
	3.1.3.3.2.5.2.1 Brief Rationale
	3.1.3.3.2.5.2.2 Synopsis
	3.1.3.3.2.5.2.3 Behavior
	3.1.3.3.2.5.2.4 Returns
	3.1.3.3.2.5.2.5 Exceptions/Errors

	3.1.3.3.3 ExecutableDevice
	3.1.3.3.3.1 Description
	3.1.3.3.3.2 UML
	3.1.3.3.3.3 Types
	3.1.3.3.3.3.1 InvalidProcess
	3.1.3.3.3.3.2 InvalidFunction
	3.1.3.3.3.3.3 ProcessID_Type
	3.1.3.3.3.3.4 InvalidParameters
	3.1.3.3.3.3.5 InvalidOptions
	3.1.3.3.3.3.6 STACK_SIZE_ID
	3.1.3.3.3.3.7 PRIORITY_ID
	3.1.3.3.3.3.8 ExecuteFail

	3.1.3.3.3.4 Attributes
	3.1.3.3.3.5 Operations
	3.1.3.3.3.5.1 execute
	3.1.3.3.3.5.1.1 Brief Rationale
	3.1.3.3.3.5.1.2 Synopsis
	3.1.3.3.3.5.1.3 Behavior
	3.1.3.3.3.5.1.4 Returns
	3.1.3.3.3.5.1.5 Exceptions/Errors

	3.1.3.3.3.5.2 terminate
	3.1.3.3.3.5.2.1 Brief Rationale
	3.1.3.3.3.5.2.2 Synopsis
	3.1.3.3.3.5.2.3 Behavior
	3.1.3.3.3.5.2.4 Returns
	3.1.3.3.3.5.2.5 Exceptions/Errors

	3.1.3.3.4 AggregateDevice
	3.1.3.3.4.1 Description
	3.1.3.3.4.2 UML
	3.1.3.3.4.3 Types
	3.1.3.3.4.4 Attributes
	3.1.3.3.4.4.1 devices

	3.1.3.3.4.5 Operations
	3.1.3.3.4.5.1 addDevice
	3.1.3.3.4.5.1.1 Brief Rationale
	3.1.3.3.4.5.1.2 Synopsis
	3.1.3.3.4.5.1.3 Behavior
	3.1.3.3.4.5.1.4 Returns
	3.1.3.3.4.5.1.5 Exceptions/Errors

	3.1.3.3.4.5.2 removeDevice
	3.1.3.3.4.5.2.1 Brief Rationale
	3.1.3.3.4.5.2.2 Synopsis
	3.1.3.3.4.5.2.3 Behavior
	3.1.3.3.4.5.2.4 Returns
	3.1.3.3.4.5.2.5 Exceptions/Errors

	3.1.3.4 Framework Services Interfaces
	3.1.3.4.1 File
	3.1.3.4.1.1 Description
	3.1.3.4.1.2 UML
	3.1.3.4.1.3 Types
	3.1.3.4.1.3.1 IOException
	3.1.3.4.1.3.2 InvalidFilePointer

	3.1.3.4.1.4 Attributes
	3.1.3.4.1.4.1 fileName
	3.1.3.4.1.4.2 filePointer

	3.1.3.4.1.5 Operations
	3.1.3.4.1.5.1 read
	3.1.3.4.1.5.1.1 Brief Rationale
	3.1.3.4.1.5.1.2 Synopsis
	3.1.3.4.1.5.1.3 Behavior
	3.1.3.4.1.5.1.4 Returns
	3.1.3.4.1.5.1.5 Exceptions/Errors

	3.1.3.4.1.5.2 write
	3.1.3.4.1.5.2.1 Brief Rationale
	3.1.3.4.1.5.2.2 Synopsis
	3.1.3.4.1.5.2.3 Behavior
	3.1.3.4.1.5.2.4 Returns
	3.1.3.4.1.5.2.5 Exceptions/Errors

	3.1.3.4.1.5.3 sizeOf
	3.1.3.4.1.5.3.1 Brief Rationale
	3.1.3.4.1.5.3.2 Synopsis
	3.1.3.4.1.5.3.3 Behavior
	3.1.3.4.1.5.3.4 Returns
	3.1.3.4.1.5.3.5 Exceptions/Errors

	3.1.3.4.1.5.4 close
	3.1.3.4.1.5.4.1 Brief Rationale
	3.1.3.4.1.5.4.2 Synopsis
	3.1.3.4.1.5.4.3 Behavior
	3.1.3.4.1.5.4.4 Returns
	3.1.3.4.1.5.4.5 Exceptions/Errors.

	3.1.3.4.1.5.5 setFilePointer
	3.1.3.4.1.5.5.1 Brief Rationale
	3.1.3.4.1.5.5.2 Synopsis
	3.1.3.4.1.5.5.3 Behavior
	3.1.3.4.1.5.5.4 Returns
	3.1.3.4.1.5.5.5 Exceptions/Errors

	3.1.3.4.2 FileSystem
	3.1.3.4.2.1 Description
	3.1.3.4.2.2 UML
	3.1.3.4.2.3 Types
	3.1.3.4.2.3.1 UnknownFileSystemProperties.
	3.1.3.4.2.3.2 fileSystemProperties Query Constants
	3.1.3.4.2.3.3 FileInformationType
	3.1.3.4.2.3.4 FileInformationSequence
	3.1.3.4.2.3.5 FileType
	3.1.3.4.2.3.6 CREATED_TIME_ID
	3.1.3.4.2.3.7 MODIFIED_TIME_ID
	3.1.3.4.2.3.8 LAST_ACCESS_TIME_ID

	3.1.3.4.2.4 Attributes
	3.1.3.4.2.5 Operations
	3.1.3.4.2.5.1 remove
	3.1.3.4.2.5.1.1 Brief Rationale
	3.1.3.4.2.5.1.2 Synopsis
	3.1.3.4.2.5.1.3 Behavior
	3.1.3.4.2.5.1.4 Returns
	3.1.3.4.2.5.1.5 Exceptions/Errors

	3.1.3.4.2.5.2 copy
	3.1.3.4.2.5.2.1 Brief Rationale
	3.1.3.4.2.5.2.2 Synopsis
	3.1.3.4.2.5.2.3 Behavior
	3.1.3.4.2.5.2.4 Returns
	3.1.3.4.2.5.2.5 Exceptions/Errors

	3.1.3.4.2.5.3 exists
	3.1.3.4.2.5.3.1 Brief Rationale
	3.1.3.4.2.5.3.2 Synopsis
	3.1.3.4.2.5.3.3 Behavior
	3.1.3.4.2.5.3.4 Returns
	3.1.3.4.2.5.3.5 Exceptions/Errors

	3.1.3.4.2.5.4 list
	3.1.3.4.2.5.4.1 Brief Rationale
	3.1.3.4.2.5.4.2 Synopsis
	3.1.3.4.2.5.4.3 Behavior
	3.1.3.4.2.5.4.4 Returns
	3.1.3.4.2.5.4.5 Exceptions/Errors

	3.1.3.4.2.5.5 create
	3.1.3.4.2.5.5.1 Brief Rationale
	3.1.3.4.2.5.5.2 Synopsis
	3.1.3.4.2.5.5.3 Behavior
	3.1.3.4.2.5.5.4 Returns
	3.1.3.4.2.5.5.5 Exceptions/Errors

	3.1.3.4.2.5.6 open
	3.1.3.4.2.5.6.1 Brief Rationale
	3.1.3.4.2.5.6.2 Synopsis
	3.1.3.4.2.5.6.3 Behavior
	3.1.3.4.2.5.6.4 Returns
	3.1.3.4.2.5.6.5 Exceptions/Errors

	3.1.3.4.2.5.7 mkdir
	3.1.3.4.2.5.7.1 Brief Rationale
	3.1.3.4.2.5.7.2 Synopsis
	3.1.3.4.2.5.7.3 Behavior
	3.1.3.4.2.5.7.4 Returns.
	3.1.3.4.2.5.7.5 Exceptions/Errors

	3.1.3.4.2.5.8 rmdir.
	3.1.3.4.2.5.8.1 Brief Rationale
	3.1.3.4.2.5.8.2 Synopsis
	3.1.3.4.2.5.8.3 Behavior
	3.1.3.4.2.5.8.4 Returns
	3.1.3.4.2.5.8.5 Exceptions/Errors

	3.1.3.4.2.5.9 query
	3.1.3.4.2.5.9.1 Brief Rationale
	3.1.3.4.2.5.9.2 Synopsis
	3.1.3.4.2.5.9.3 Behavior
	3.1.3.4.2.5.9.4 Returns
	3.1.3.4.2.5.9.5 Exceptions/Errors

	3.1.3.4.3 FileManager
	3.1.3.4.3.1 Description
	3.1.3.4.3.2 UML
	3.1.3.4.3.3 Types
	3.1.3.4.3.3.1 MountType
	3.1.3.4.3.3.2 MountSequence
	3.1.3.4.3.3.3 NonExistentMount
	3.1.3.4.3.3.4 MountPointAlreadyExists
	3.1.3.4.3.3.5 InvalidFileSystem

	3.1.3.4.3.4 Attributes
	3.1.3.4.3.5 Operations
	3.1.3.4.3.5.1 mount
	3.1.3.4.3.5.1.1 Brief Rationale
	3.1.3.4.3.5.1.2 Synopsis
	3.1.3.4.3.5.1.3 Behavior
	3.1.3.4.3.5.1.4 Returns.
	3.1.3.4.3.5.1.5 Exceptions/Errors.

	3.1.3.4.3.5.2 unmount
	3.1.3.4.3.5.2.1 Brief Rationale
	3.1.3.4.3.5.2.2 Synopsis
	3.1.3.4.3.5.2.3 Behavior
	3.1.3.4.3.5.2.4 Returns
	3.1.3.4.3.5.2.5 Exceptions/Errors

	3.1.3.4.3.5.3 getMounts
	3.1.3.4.3.5.3.1 Brief Rationale
	3.1.3.4.3.5.3.2 Synopsis
	3.1.3.4.3.5.3.3 Behavior
	3.1.3.4.3.5.3.4 Returns
	3.1.3.4.3.5.3.5 Exceptions/Errors

	3.1.3.4.3.5.4 File System Operations.
	3.1.3.4.3.5.5 query
	3.1.3.4.3.5.5.1 Brief Rationale
	3.1.3.4.3.5.5.2 Synopsis
	3.1.3.4.3.5.5.3 Behavior
	3.1.3.4.3.5.5.4 Returns
	3.1.3.4.3.5.5.5 Exceptions/Errors

	3.1.3.5 Domain Profile
	3.1.3.5.1 Software Package Descriptor
	3.1.3.5.2 Software Component Descriptor
	3.1.3.5.3 Software Assembly Descriptor
	3.1.3.5.4 Properties Descriptor
	3.1.3.5.5 Device Package Descriptor
	3.1.3.5.6 Device Configuration Descriptor
	3.1.3.5.7 Profile Descriptor
	3.1.3.5.8 DomainManager Configuration Descriptor

	3.1.3.6 Core Framework Base Types
	3.1.3.6.1 DataType
	3.1.3.6.2 DeviceSequence
	3.1.3.6.3 FileException
	3.1.3.6.4 InvalidFileName
	3.1.3.6.5 InvalidObjectReference
	3.1.3.6.6 InvalidProfile
	3.1.3.6.7 OctetSequence
	3.1.3.6.8 Properties
	3.1.3.6.9 StringSequence
	3.1.3.6.10 UnknownProperties
	3.1.3.6.11 DeviceAssignmentType
	3.1.3.6.12 DeviceAssignmentSequence
	3.1.3.6.13 ErrorNumberType.

	3.2 Applications
	3.2.1 General Application Requirements
	3.2.1.1 OS Services
	3.2.1.2 CORBA Services
	3.2.1.3 CF Interfaces

	3.2.2 Application Interfaces
	3.2.2.1 Service Definitions

	3.3 Logical Device
	3.3.1 OS Services
	3.3.2 CORBA Services.
	3.3.3 CF Interfaces
	3.3.4 Profile

	3.4 General Software Rules
	3.4.1 Software Development Languages
	3.4.1.1 New Software
	3.4.1.2 Legacy Software

	4 Architecture Compliance
	4.1 Certification Authority
	4.2 Specification Authority
	4.3 Responsibility for Compliance Evaluation
	4.4 Evaluating Compliance
	4.5 Registration.

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

APPENDIX B

SCA APPLICATION ENVIRONMENT PROFILE

AMENDED / 22 October 2008

Version 2.2.2A <ICWG Approved>

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (22 October 2008)

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 ii

REVISION SUMMARY

Version Revisions

1.0 Initial Release

1.1 no changes

2.0 no changes

2.1 no changes

2.2 no changes

2.2.1 Incorporate approved Change Proposals, SCA-CCM number 2

2.2.2 Incorporate Approved Change Proposal, SCA-CCM-264

2.2.2A

<Final

Draft>

Incorporate Changes Resulting from SCA AEP Amendment – Included 20 new

operations within the profile, removed 10 operations and clarified the specification

position regarding the incorporation of the Standard C Libraries.

2.2.2A

<ICWG

Approved>

Included memmove operation per JTRS Community discussion

ICWG Approved

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 iii

TABLE OF CONTENTS

B.1 SCOPE .. 1

B.2 CONVENTIONS .. 1

B.3 STANDARDS ... 1

B.4 CONSTRAINTS ... 1

B.4.1 POSIX.1 ... 2

B.4.1.1 Single Process Function Behavior ... 3

B.4.1.2 Multi Process Function Behavior... 3

B.4.1.3 Job Control Function Behavior .. 4

B.4.1.4 Signals Function Behavior ... 4

B.4.1.5 Signal Jump Function Behavior ... 5

B.4.1.6 User Group Function Behavior .. 6

B.4.1.7 File System Function Behavior .. 6

B.4.1.8 File Attributes Function Behavior ... 7

B.4.1.9 File and Directory Management Function Behavior ... 8

B.4.1.10 Device I/O Function Behavior ... 8

B.4.1.11 Device-Specific Function Behavior ... 9

B.4.1.12 System Database Function Behavior ... 10

B.4.1.13 Pipe Function Behavior.. 10

B.4.1.14 FIFO Function Behavior .. 10

B.4.1.15 C Language-Specific Support Services Function Behavior 10

B.4.1.16 C Language-Specific Mathematical Function Behavior .. B-12

B.4.1.17 C Language-Specific Non-local Jump Function Behavior. 16

B.4.1.18 POSIX Semaphore Function Behavior .. 16

B.4.1.19 POSIX Timer Function Behavior .. 17

B.4.1.20 POSIX Threading Function Behavior .. 17

B.4.1.21 POSIX Thread Safe Option Requirements Behavior ... 18

B.4.1.22 XSI Thread Mutex Ext Option Requirements Behavior ... 19

B.5 POSIX STANDARD C LIBRARY HEADER FILES .. 19

B.5.1 Diagnostics <assert.h> .. 20

B.5.2 Complex <complex.h> ... 20

B.5.3 Character handling <ctype.h> .. 22

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 iv

B.5.4 Floating-point environment <fenv.h> ... 22

B.5.5 Format conversion of integer types <inttypes.h> .. 23

B.5.6 Localization <locale.h> ... 23

B.5.7 Mathematics <math.h> ... 23

B.5.8 Nonlocal jumps <setjmp.h> ... 29

B.5.9 Signal handling <signal.h> ... 29

B.5.10 Variable arguments <stdarg.h> ... 29

B.5.11 Input/output <stdio.h> ... 29

B.5.12 General utilities <stdlib.h> ... 31

B.5.13 String handling <string.h> .. 33

B.5.14 Type-generic math <tgmath.h> .. 33

B.5.15 Date and time <time.h> ... 35

B.5.16 Extended multibyte/wide character utilities <wchar.h> .. 36

B.5.17 Wide character classification and mapping utilities <wctype.h> 38

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 v

Foreword

SCA 2.2.2 incorporated a number of modifications that were intended to reduce ambiguity

within the specification, address implementation concerns of SCA developers and ensure that the

specification maintained its commercial relevance.

Lessons learned after the SCA 2.2.2 publication necessitated a modification of the set of

permissible RTOS capabilities for SCA compliant applications. The combination of a

demonstrated need and commercial availability of several new OS functions resulted in the

creation of this revised AEP. SCA Appendix B 2.2.2A contains new material and technical

corrections to the content of JPEO JTRS Standards specification – SCA 2.2.2 Appendix B.

This AEP revision better aligns the specification with the emerging needs of waveform

developers while balancing the challenges of SCA compliance faced by radio set providers. The

design objectives of the amended AEP were focused on the following tenets:

1. Maximizing the commercial content of the OE – the newly incorporated operations are

widely supported by commercially available products;

2. Preserving the minimalist nature of the waveform/OE interface – the revision does not

expand the profile to full POSIX profile 53 compliance or a set of operations which

would significantly impact the number of functions that the OE must provide;

3. Minimizing the amount of development required by JTR set developers –the OE is

allowed to provide more required functionality, thus relieving the developer’s

implementation responsibilities.

This document also formalizes the SCA 2.2.2 position on the incorporation of the Standard C

Libraries. The SCA 2.2.2 reference to the C Standard “C Standard: Programming languages – C,

ISO/IEC 9899:1999 [C99]” contains a chapter that defines the Standard C Library and its

incorporated header files. Earlier versions of Appendix B were focused on operations and silent

on whether or not the standard C libraries or header files could be used. The document from

which Appendix B was modeled, IEEE 1003.13 IEEE Standard for Information Technology —

Standardized Application Environment Profile (AEP) — POSIX
®

 Real-time and Embedded

Application Support contains explicit language regarding the interpretation of symbols defined

within header files. In summary, the specification supports the visibility of all symbols within a

header file other than those governed by feature test macros associated with the POSIX
®

 Real-

time profiles.

The amended Appendix B accounts for the lack of clarity pertaining to the sanctioned usage of

Standard C Library elements within the SCA documentation. The revised AEP identifies a subset

of the Standard C Library header files that are required by the profile and explicitly permits the

utilization of the symbols defined in those header files.

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 1

APPENDIX B SCA APPLICATION ENVIRONMENT PROFILE

B.1 SCOPE

This appendix defines the Application Environment Profile (AEP) for the SCA, based on

Standardized Application Environment Profile - POSIX

 Realtime Application Support (AEP),

IEEE Std 1003.13-2003.

The application environment profile (AEP), is the SCA required profile referenced in sections

3.1.1, 3.2.1, and 3.3.1 of the main document. The SCA dictates that an Operating Environment

provides the options and functions designated as mandatory within this AEP and constrains an

application to only use those services.

B.2 CONVENTIONS

Within this appendix, the following abbreviations are used:

1. “MAN” indicates that the identified function or option is mandatory for the

indicated profile

2. “NRQ” indicates that the identified function or option is not required for the

indicated profile

3. “PRT” indicates that only a subset of the indicated option or unit of functionality

is required. This designation will be followed by a note or cross-reference

indicating which elements are required.

B.3 STANDARDS

The standards identified in Table B-1 are required in whole or in part by the SCA AEP

application environment profile.

Table B-1: Required Standards

Standard SCA AEP

C Standard (ISO/IEC 9899:1999) PRT
1

POSIX (ISO/IEC 9945:2003) PRT
1

B.4 CONSTRAINTS

The real-time profile defined in this appendix requires only specific Units of Functionality of the

included standards. The absence of particular elements of these standards introduces constraints

on the use of some of the features of particular functions. These constraints must be observed by

an application that conforms to the profile when using each of the required functions.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
1
 Specific functions and options are identified in section B.4

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 2

An Ada AEP has not been explicitly defined. Any Ada application shall be restricted to using

the equivalent Ada functionality, as defined in POSIX Ada language binding (ISO/IEC

14519:2001), designated as mandatory by the AEP or may use the C interface.

B.4.1 POSIX.1

The options, limits, and any other constraints on POSIX.1 shall be provided as described in

Table B-2.

Table B-2: POSIX.1 Option Requirements

Option AEP

{_POSIX_ASYNCHRONOUS_IO} MAN

{_POSIX_CHOWN_RESTRICTED} NRQ

{_POSIX_CLOCK_SELECTION} NRQ

{_POSIX_FSYNC} PRT
2

{_POSIX_MAPPED_FILES} NRQ

{_POSIX_MEMLOCK_RANGE} MAN

{_POSIX_MEMLOCK} MAN

{_POSIX_MEMORY_PROTECTION} NRQ

{_POSIX_MESSAGE_PASSING} MAN

{_POSIX_MONOTONIC_CLOCK} NRQ

{_POSIX_NO_TRUNC} PRI

{_POSIX_PRIORITIZED_IO} NRQ

{_POSIX_PRIORITY_SCHEDULING} NRQ

{_POSIX_REALTIME_SIGNALS} MAN

{_POSIX_SAVED_IDS} NRQ

{_POSIX_SEMAPHORES} MAN

{_POSIX_SHARED_MEMORY_OBJECTS} NRQ

{_POSIX_SYNCHRONIZED_IO} PRT
3

{_POSIX_THREAD_ATTR_STACKADDR} MAN

{_POSIX_THREAD_ATTR_STACKSIZE} MAN

{_POSIX_THREAD_CPUTIME} NRQ

{_POSIX_THREAD_PRIO_INHERIT} MAN

{_POSIX_THREAD_PRIO_PROTECT} MAN

{_POSIX_THREAD_PRIORITY_SCHEDULING} MAN

{_POSIX_THREAD_PROCESS_SHARED} NRQ

2
 fsync not required

3
 fdatasync not required

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 3

Option AEP

{_POSIX_THREAD_SAFE_FUNCTIONS} PRT
4

{_POSIX_THREAD_SPORADIC_SERVER} NRQ

{_POSIX_TIMEOUTS} NRQ

{_POSIX_TIMERS} MAN

{_POSIX_TRACE_EVENT_FILTER} NRQ

{_POSIX_TRACE_LOG} NRQ

{_POSIX_TRACE} NRQ

{_POSIX_VDISABLE} NRQ

NOTES:

 PRI - The primary file system shall generate an error for pathname components longer than
NAME_MAX. The user is responsible for semantics of other file systems that may be mounted.

 Embedded processor C/C++ run-time libraries typically do not support stdio.h or iostream.h.

 Heavy weight processes are typically not supported in embedded operating systems. The
mandatory POSIX.1b options can be implemented without the use of heavy weight signaling.

B.4.1.1 Single Process Function Behavior

The functions in Table B-3 shall behave as described in the applicable clauses of the referenced

POSIX referenced POSIX specifications contained in Table B-1.

Table B-3: POSIX_SINGLE_PROCESS Functions

Function AEP

confstr() NRQ

environ NRQ

errno NRQ

getenv () NRQ

setenv() NRQ

sysconf () NRQ

uname() NRQ

unsetenv() NRQ

B.4.1.2 Multi Process Function Behavior

The functions listed in Table B-4 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

4
 See Table B-23: POSIX_THREAD_SAFE_FUNCTIONS Functions

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 4

Table B-4: POSIX_MULTI_PROCESS Functions

Function AEP

_exit () NRQ

_Exit() NRQ

assert () NRQ

atexit() NRQ

clock() NRQ

execl () NRQ

execle () NRQ

execlp () NRQ

execv () NRQ

execve () NRQ

execvp () NRQ

exit () NRQ

fork() NRQ

getpgrp() NRQ

getpid () NRQ

getppid () NRQ

setsid() NRQ

sleep () NRQ

times () NRQ

wait() NRQ

waitpid () NRQ

B.4.1.3 Job Control Function Behavior

The functions listed in Table B-5 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-5: POSIX_JOB_CONTROL Functions

Function AEP

setpgid() NRQ

tcgetpgrp() NRQ

tcsetpgrp() NRQ

B.4.1.4 Signals Function Behavior

Operating systems on embedded processors typically support neither signaling nor exception

handling. POSIX does not define behaviors associated with divide by zero or overflow /

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 5

underflow. Signaling methods introduced as part of POSIX.1c are more consistent with the

multi-threaded, single process model of a resource constrained processing environment.

The functions listed in Table B-6 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1, except for the following constraints:

1. An application that conforms to the AEP shall not result in abnormal termination

of the process because this profile does not support multiple processes.

2. An application that conforms to the AEP shall not call the kill() function with a

negative argument because this profile does not require process group

functionality.

Table B-6: POSIX_SIGNALS Functions

Function AEP

abort() MAN

alarm()* NRQ

kill() MAN

pause() MAN

raise() MAN

sigaction() MAN

sigaddset() MAN

sigdelset() MAN

sigemptyset() MAN

sigfillset() MAN

sigismember() MAN

signal() MAN

sigpending() MAN

sigprocmask() MAN

sigsupend() MAN

sigwait() MAN

NOTES:

 * Functionality provided through the POSIX timers

 abort() is used to support assert() which is widely supported.

B.4.1.5 Signal Jump Function Behavior

The functions listed in Table B-7 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 6

Table B-7: POSIX_SIGNAL_JUMP Functions

Function AEP

siglongjmp() NRQ

sigsetjmp() NRQ

B.4.1.6 User Group Function Behavior

The functions listed in Table B-8 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-8: POSIX_USER_GROUPS Functions

Function AEP

getegid() NRQ

geteuid() NRQ

getgid() NRQ

getgroups() NRQ

getlogin() NRQ

getlogin_r() NRQ

getuid() NRQ

setegid() NRQ

seteuid() NRQ

setgid() NRQ

setuid() NRQ

B.4.1.7 File System Function Behavior

The functions listed in Table B-9 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-9: POSIX_FILE_SYSTEM Functions

Function AEP

access() MAN

chdir() MAN

closedir() MAN

creat() MAN

fpathconf() MAN

fstat() MAN

getcwd() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 7

Function AEP

link() MAN

mkdir() MAN

opendir() MAN

pathconf() MAN

readdir() MAN

readdir_r() MAN

remove() MAN

rename() MAN

rewinddir() MAN

rmdir() MAN

stat() MAN

tmpfile() NRQ

tmpnam() NRQ

unlink() MAN

utime() MAN

NOTE:

 POSIX file system not generally supported in embedded operating systems.

B.4.1.8 File Attributes Function Behavior

The functions listed in Table B-10 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1, except for the following constraint:

1. An application that conforms to the AEP shall be guaranteed that the file mode

creation mask for any object created by any process is S-IRWXU; that is, the

object shall be fully accessible to the creator.

Table B-10: POSIX_FILE_ATTRIBUTES Functions

Function AEP

chmod() NRQ

chown() NRQ

fchmod() NRQ

fchown() NRQ

umask() NRQ

NOTE:

 POSIX file system not generally supported in embedded operating systems

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 8

B.4.1.9 File and Directory Management Function Behavior

The functions listed in Table B-11 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-11: POSIX_FD_MGMT Functions

Function AEP

dup() NRQ

dup2() NRQ

fcntl() NRQ

fgetpos() NRQ

fseek() MAN

fseeko() MAN

fsetpos() NRQ

ftell() MAN

ftello() MAN

ftruncate() NRQ

lseek() MAN

rewind() MAN

NOTE:

 POSIX file system not generally supported in embedded operating systems.

B.4.1.10 Device I/O Function Behavior

The functions listed in Table B-12 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-12: POSIX_DEVICE_IO Functions

Function AEP

clearerr() MAN

close() MAN

fclose() MAN

fdopen() MAN

feof() MAN

ferror() MAN

fflush() MAN

fgetc() MAN

Function AEP

fgets() MAN

fileno() MAN

fopen() MAN

fprintf() MAN

fputc() MAN

fputs() MAN

fread() MAN

freopen() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 9

Function AEP

fscanf() MAN

fwrite() MAN

getc() MAN

getchar() MAN

gets() NRQ

open() MAN

perror() MAN

printf() MAN

putc() MAN

putchar() MAN

puts() NRQ

Function AEP

read() MAN

scanf() NRQ

setbuf() MAN

setvbuf() MAN

ungetc() MAN

vfprintf() NRQ

vfscanf() NRQ

vprintf() NRQ

vscanf() NRQ

write() MAN

NOTE:

 POSIX streams not generally supported in embedded operating systems.

B.4.1.11 Device-Specific Function Behavior

The functions listed in Table B-13 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-13: POSIX_DEVICE_SPECIFIC Functions

Function AEP

cfgetispeed() NRQ

cfgetospeed() NRQ

cfsetispeed() NRQ

cfsetospeed() NRQ

ctermid() NRQ

isatty() NRQ

tcdrain() NRQ

tcflow() NRQ

tcflush() NRQ

tcgetattr() NRQ

tcsendbreak() NRQ

tcsetattr() NRQ

ttyname() NRQ

ttyname_r() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 10

B.4.1.12 System Database Function Behavior

The functions listed in Table B-14 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-14: POSIX_SYSTEM_DATABASE Functions

Function AEP

getgrgid() NRQ

getgrgid_r() NRQ

getgrnam() NRQ

getgrnam_r() NRQ

getpwnam() NRQ

getpwnam_r() NRQ

getpwuid() NRQ

getpwuid_r() NRQ

B.4.1.13 Pipe Function Behavior

The function listed in Table B-15 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-15: POSIX_PIPE_Function

Function AEP

pipe() NRQ

B.4.1.14 FIFO Function Behavior

The function listed in Table B-16 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-16: POSIX_FIFO Function

Function AEP

mkfifo() NRQ

B.4.1.15 C Language-Specific Support Services Function Behavior

The functions listed in Table B-17 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 11

Table B-17: POSIX_C_LANG_SUPPORT Functions

Function AEP

fesetenv() NRQ

abs() MAN

asctime() MAN

asctime_r() MAN

atof() MAN

atoi() MAN

atol() MAN

atoll() NRQ

bsearch() MAN

calloc() MAN

ctime() MAN

ctime_r() MAN

difftime() NRQ

div() NRQ

feclearexcept() NRQ

fegetenv() NRQ

fegetexceptflag() NRQ

fegetround() NRQ

feholdexcept() NRQ

feraiseexcept() NRQ

fesetexceptflag() NRQ

fesetround() NRQ

fetestexcept() NRQ

feupdateenv() NRQ

free() MAN

gmtime() MAN

gmtime_r() MAN

imaxabs() NRQ

imaxdiv() NRQ

isalnum() MAN

isalpha() MAN

isblank() MAN

iscntrl() MAN

Function AEP

isdigit() MAN

isgraph() MAN

islower() MAN

isprint() MAN

ispunct() MAN

isspace() MAN

isupper() MAN

isxdigit() MAN

labs() MAN

ldiv() NRQ

llabs() NRQ

lldiv() NRQ

localeconv() NRQ

localtime() MAN

localtime_r() MAN

malloc() MAN

memchr() MAN

memcmp() MAN

memcpy() MAN

memmove() MAN

memset() MAN

mktime() MAN

qsort() MAN

rand() MAN

rand_r() MAN

realloc() MAN

setlocale () MAN

snprintf() MAN

sprintf() NRQ

srand() MAN

sscanf() MAN

strcat() NRQ

strchr() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 12

Function AEP

strcmp() MAN

strcoll() MAN

strcpy() NRQ

strcspn() MAN

strerror() MAN

strerror_r() MAN

strftime() MAN

strlen() MAN

strncat() MAN

strncmp() MAN

strncpy() MAN

strpbrk() MAN

strrchr() MAN

strspn() MAN

strstr() MAN

strtod() MAN

strtof() NRQ

strtoimax() NRQ

strtok() MAN

strtok_r() MAN

Function AEP

strtol() MAN

strtold() NRQ

strtoll() NRQ

strtoul() MAN

strtoull() NRQ

strtoumax() NRQ

strxfrm() MAN

time() MAN

tolower() MAN

toupper() MAN

tzname, NRQ

tzset() NRQ

va_arg() MAN

va_copy() NRQ

va_end() MAN

va_start() MAN

vsnprintf() MAN

vsprintf() NRQ

vsscanf() NRQ

NOTE:

 Support for dynamic memory allocation is essential to re-entrant object-oriented design.

B.4.1.16 C Language-Specific Mathematical Function Behavior

The functions listed in Table B-18 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-18: POSIX_C_LANG_MATH Functions

Function AEP

acos() MAN

acosf() NRQ

acosh() NRQ

acoshf() NRQ

acoshl() NRQ

acosl() NRQ

Function AEP

asin() MAN

asinf() NRQ

asinh() NRQ

asinhf() NRQ

asinhl() NRQ

asinl() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 13

Function AEP

atan() MAN

atan2() MAN

atan2f() NRQ

atan2l() NRQ

atanf() NRQ

atanh() NRQ

atanhf() NRQ

atanhl() NRQ

atanl() NRQ

cabs() NRQ

cabsf() NRQ

cabsl() NRQ

cacos() NRQ

cacosf() NRQ

cacosh() NRQ

cacoshf() NRQ

cacoshl() NRQ

cacosl() NRQ

carg() NRQ

cargf() NRQ

cargl() NRQ

casin() NRQ

casinf() NRQ

casinh() NRQ

casinhf() NRQ

casinhl() NRQ

casinl() NRQ

catan() NRQ

catanf() NRQ

catanh() NRQ

catanhf() NRQ

catanhl() NRQ

catanl() NRQ

cbrt() NRQ

cbrtf() NRQ

Function AEP

cbrtl() NRQ

ccos() NRQ

ccosf() NRQ

Ccosh() NRQ

ccoshf() NRQ

ccoshl() NRQ

ccosl() NRQ

ceil() MAN

ceilf() NRQ

ceill() NRQ

cexp() NRQ

cexpf() NRQ

cexpl() NRQ

Cimag() NRQ

cimagf() NRQ

cimagl() NRQ

clog() NRQ

clogf() NRQ

clogl() NRQ

conj() NRQ

conjf() NRQ

conjl() NRQ

copysign() NRQ

copysignf() NRQ

copysignl() NRQ

cos() MAN

cosf() NRQ

cosh() MAN

coshf() NRQ

coshl() NRQ

cosl() NRQ

cpow() NRQ

cpowf() NRQ

cpowl() NRQ

cproj() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 14

Function AEP

cprojf() NRQ

cprojl() NRQ

creal() NRQ

crealf() NRQ

creall() NRQ

csin() NRQ

csinf() NRQ

csinh() NRQ

csinhf() NRQ

csinhl() NRQ

csinl() NRQ

csqrt() NRQ

csqrtf() NRQ

csqrtl() NRQ

ctan() NRQ

ctanf() NRQ

ctanh() NRQ

ctanhf() NRQ

ctanhl() NRQ

ctanl() NRQ

erf() NRQ

erfc() NRQ

erfcf() NRQ

erfcl() NRQ

erff() NRQ

erfl() NRQ

exp() MAN

exp2() NRQ

exp2f() NRQ

exp2l() NRQ

expf() NRQ

expl() NRQ

expm1() NRQ

expm1f() NRQ

expm1l() NRQ

Function AEP

fabs() MAN

fabsf() NRQ

fabsl() NRQ

fdim() NRQ

fdimf() NRQ

fdiml() NRQ

floor() MAN

floorf() NRQ

floorl() NRQ

fma() NRQ

fmaf() NRQ

fmal() NRQ

fmax() NRQ

fmaxf() NRQ

fmaxl() NRQ

fmin() NRQ

fminf() NRQ

fminl() NRQ

fmod() MAN

fmodf() NRQ

fmodl() NRQ

fpclassify() NRQ

frexp() MAN

frexpf() NRQ

frexpl() NRQ

hypot() NRQ

hypot() NRQ

hypotl() NRQ

ilogb() NRQ

ilogbf() NRQ

ilogbl() NRQ

isfinite() NRQ

isgreater() NRQ

isgreaterequal() NRQ

isinf() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 15

Function AEP

isless() NRQ

islessequal() NRQ

islessgreater() NRQ

isnan() NRQ

isnormal() NRQ

isunordered() NRQ

ldexp() MAN

ldexpf() NRQ

ldexpl() NRQ

lgamma() NRQ

lgammaf() NRQ

lgammal() NRQ

llrint() NRQ

llrintf() NRQ

llrintl() NRQ

llround() NRQ

llroundf() NRQ

llroundl() NRQ

log() MAN

log10() MAN

log10f() NRQ

log10l() NRQ

log1p() NRQ

log1pf() NRQ

log1pl() NRQ

log2() NRQ

log2f() NRQ

log2l() NRQ

logb() NRQ

logbf() NRQ

logbl() NRQ

logf() NRQ

logl() NRQ

lrint() NRQ

lrintf() NRQ

Function AEP

lrintl() NRQ

lround() NRQ

lroundf() NRQ

lroundl() NRQ

modf() MAN

modff() NRQ

modfl() NRQ

nan() NRQ

nanf() NRQ

nanl() NRQ

nearbyint() NRQ

nearbyintf() NRQ

nearbyintl() NRQ

nextafter() NRQ

nextafterf() NRQ

nextafterl() NRQ

nexttoward() NRQ

nexttowardf() NRQ

nexttowardl() NRQ

pow() MAN

powf() NRQ

powl() NRQ

remainder() NRQ

remainderf() NRQ

remainderl() NRQ

remquo() NRQ

remquof() NRQ

remquol() NRQ

rint() NRQ

rintf() NRQ

rintl() NRQ

round() NRQ

roundf() NRQ

roundl() NRQ

scalbln() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 16

Function AEP

scalblnf() NRQ

scalblnl() NRQ

scalbn() NRQ

scalbnf() NRQ

scalbnl() NRQ

signbit() NRQ

sin() MAN

sinf() NRQ

sinh() MAN

sinhf() NRQ

sinhl() NRQ

sinl() NRQ

sqrt() MAN

sqrtf() NRQ

Function AEP

sqrtl() NRQ

tan() MAN

tanf() NRQ

tanh() MAN

tanhf() NRQ

tanhl() NRQ

tanl() NRQ

tgamma() NRQ

tgammaf() NRQ

tgammal() NRQ

trunc() NRQ

truncf() NRQ

truncl() NRQ

B.4.1.17 C Language-Specific Non-local Jump Function Behavior.

The functions listed in Table B-19 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-19: POSIX_C_LANG_JUMP Functions

Function AEP

longjmp() NRQ

setjmp() NRQ

NOTE:

 This is a form of context switch used to support a non-local exit.

B.4.1.18 POSIX Semaphore Function Behavior

The functions listed in Table B-20 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-20. POSIX_SEMAPHORES Functions

Function AEP

sem_close() MAN

sem_destroy() MAN

sem_getvalue() MAN

sem_init() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 17

Function AEP

sem_open() MAN

sem_post() MAN

sem_trywait() MAN

sem_unlink() MAN

sem_wait() MAN

B.4.1.19 POSIX Timer Function Behavior

The functions listed in Table B-21 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-21. POSIX_TIMERS Functions

Function AEP

clock_getres() MAN

clock_gettime() MAN

clock_settime() MAN

nanosleep() MAN

timer_create() MAN

timer_delete() MAN

timer_getoverrun() MAN

timer_gettime() MAN

timer_settime() MAN

B.4.1.20 POSIX Threading Function Behavior

The functions listed in Table B-22 shall behave as described in the applicable clauses of the

referenced POSIX specifications contained in Table B-1.

Table B-22. POSIX_THREADS_BASE Functions

Function AEP

pthread_atfork() NRQ

pthread_attr_xxx() MAN

pthread_cancel() MAN

pthread_cleanup_xxx() MAN

pthread_cond_xxx() MAN

pthread_condattr_xxx() MAN

pthread_create() MAN

pthread_detach() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 18

Function AEP

pthread_equal() MAN

pthread_exit() MAN

pthread_getschedparam() MAN

pthread_getspecific() MAN

pthread_join() MAN

pthread_key_xxx() MAN

pthread_kill() MAN

pthread_mutex_xxx() MAN

pthread_mutexattr_xxx() MAN

pthread_once() MAN

pthread_self() MAN

pthread_setcancelstate() MAN

pthread_setcanceltype() MAN

pthread_setschedparam() MAN

pthread_setspecific() MAN

pthread_sigmask() MAN

pthread_testcancel() MAN

B.4.1.21 POSIX Thread Safe Option Requirements Behavior

The function listed in Table B-23shall behave as described in the referenced clause.

Table B-23: POSIX_THREAD_SAFE_FUNCTIONS Functions

Function AEP

asctime_r() MAN

ctime_r() MAN

flockfile() NRQ

ftrylockfile() NRQ

funlockfile() NRQ

getc_unlocked() NRQ

getchar_unlocked() NRQ

getgrgid_r() NRQ

getgrnam_r() NRQ

getlogin_r() NRQ

getpwnam_r() NRQ

Function AEP

getpwuid_r() NRQ

gmtime_r() MAN

localtime_r() MAN

putc_unlocked() NRQ

putchar_unlocked() NRQ

rand_r() MAN

readdir_r() MAN

strerror_r() MAN

strtok_r() MAN

ttyname_r() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 19

B.4.1.22 XSI Thread Mutex Ext Option Requirements Behavior

The function listed in Table B-24 shall behave as described in the referenced clause.

Table B-24 XSI_THREAD_MUTEX_EXT Functions

Function AEP

pthread_mutexattr_gettype() MAN

pthread_mutexattr_settype() MAN

B.5 POSIX STANDARD C LIBRARY HEADER FILES

The Standard C Library header files listed in Table B-25 shall be included within the AEP as

described in the referenced clause. All symbols (other than operations) included within the

header files with a MAN or PRT designation are considered elements of the profile.

Table B-25 POSIX Standard C Library Header Files

Header File AEP

assert.h NRQ

complex.h NRQ

ctype.h MAN

errno.h MAN

fenv.h NRQ

float.h NRQ

inttypes.h NRQ

iso646.h NRQ

limits.h MAN

locale.h PRT

math.h PRT

setjmp.h NRQ

Header File AEP

signal.h MAN

stdarg.h PRT

stdbool.h NRQ

stddef.h NRQ

stdint.h NRQ

stdio.h PRT

stdlib.h PRT

string.h PRT

tgmath.h NRQ

time.h PRT

wchar.h NRQ

wctype.h NRQ

The remainder of this section is non-normative and provides a detailed view of the Standard C

Library Functions that are included within the AEP relative to the header file in which they are

defined.

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 20

B.5.1 Diagnostics < a s s e r t . h >

Table B-26: <assert.h> Functions

Function AEP

void assert(scalar expression); NRQ

B.5.2 Complex < c o m p l e x . h >

Table B-27: <complex.h> Functions

Function AEP

double complex cacos(double complex z); NRQ

float complex cacosf(float complex z); NRQ

long double complex cacosl(long double complex z); NRQ

double complex casin(double complex z); NRQ

float complex casinf(float complex z); NRQ

long double complex casinl(long double complex z); NRQ

double complex catan(double complex z); NRQ

float complex catanf(float complex z); NRQ

long double complex catanl(long double complex z); NRQ

double complex ccos(double complex z); NRQ

float complex ccosf(float complex z); NRQ

long double complex ccosl(long double complex z); NRQ

double complex csin(double complex z); NRQ

float complex csinf(float complex z); NRQ

long double complex csinl(long double complex z); NRQ

double complex ctan(double complex z); NRQ

float complex ctanf(float complex z); NRQ

long double complex ctanl(long double complex z); NRQ

double complex cacosh(double complex z); NRQ

float complex cacoshf(float complex z); NRQ

long double complex cacoshl(long double complex z); NRQ

double complex casinh(double complex z); NRQ

float complex casinhf(float complex z); NRQ

long double complex casinhl(long double complex z); NRQ

double complex catanh(double complex z); NRQ

float complex catanhf(float complex z); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 21

Function AEP

long double complex catanhl(long double complex z); NRQ

double complex ccosh(double complex z); NRQ

float complex ccoshf(float complex z); NRQ

long double complex ccoshl(long double complex z); NRQ

double complex csinh(double complex z); NRQ

float complex csinhf(float complex z); NRQ

long double complex csinhl(long double complex z); NRQ

double complex ctanh(double complex z); NRQ

float complex ctanhf(float complex z); NRQ

long double complex ctanhl(long double complex z); NRQ

double complex cexp(double complex z); NRQ

float complex cexpf(float complex z); NRQ

long double complex cexpl(long double complex z); NRQ

double complex clog(double complex z); NRQ

float complex clogf(float complex z); NRQ

long double complex clogl(long double complex z); NRQ

double cabs(double complex z); NRQ

float cabsf(float complex z); NRQ

long double cabsl(long double complex z); NRQ

double complex cpow(double complex x, double complex
y);

NRQ

float complex cpowf(float complex x, float complex y); NRQ

long double complex cpowl(long double complex x, long
double complex y);

NRQ

double complex csqrt(double complex z); NRQ

float complex csqrtf(float complex z); NRQ

long double complex csqrtl(long double complex z); NRQ

double carg(double complex z); NRQ

float cargf(float complex z); NRQ

long double cargl(long double complex z); NRQ

double cimag(double complex z); NRQ

float cimagf(float complex z); NRQ

long double cimagl(long double complex z); NRQ

double complex conj(double complex z); NRQ

float complex conjf(float complex z); NRQ

long double complex conjl(long double complex z); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 22

Function AEP

double complex cproj(double complex z); NRQ

float complex cprojf(float complex z); NRQ

long double complex cprojl(long double complex z); NRQ

double creal(double complex z); NRQ

float crealf(float complex z); NRQ

long double creall(long double complex z); NRQ

B.5.3 Character handling < c t y p e . h >

Table B-28: <ctype.h> Functions

Function AEP

int isalnum(int c); MAN

int isalpha(int c); MAN

int isblank(int c); MAN

int iscntrl(int c); MAN

int isdigit(int c); MAN

int isgraph(int c); MAN

int islower(int c); MAN

int isprint(int c); MAN

int ispunct(int c); MAN

int isspace(int c); MAN

int isupper(int c); MAN

int isxdigit(int c); MAN

int tolower(int c); MAN

int toupper(int c); MAN

B.5.4 Floating-point environment < f e n v . h >

Table B-29: <fenv.h> Functions

Function AEP

void feclearexcept(int excepts); NRQ

void fegetexceptflag(fexcept_t *flagp, int excepts); NRQ

void feraiseexcept(int excepts); NRQ

void fesetexceptflag(const fexcept_t *flagp, int excepts); NRQ

int fetestexcept(int excepts); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 23

Function AEP

int fegetround(void); NRQ

int fesetround(int round); NRQ

void fegetenv(fenv_t *envp); NRQ

int feholdexcept(fenv_t *envp); NRQ

void fesetenv(const fenv_t *envp); NRQ

void feupdateenv(const fenv_t *envp); NRQ

B.5.5 Format conversion of integer types < i n t t y p e s . h >

Table B-30: <inttypes.h> Functions

Function AEP

intmax_t imaxabs(intmax_t j); NRQ

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom); NRQ

intmax_t strtoimax(const char * restrict nptr, char **
restrict endptr, int base);

NRQ

uintmax_t strtoumax(const char * restrict nptr, char **
restrict endptr, int base);

NRQ

intmax_t wcstoimax(const wchar_t * restrict nptr, wchar_t
** restrict endptr, int base);

NRQ

uintmax_t wcstoumax(const wchar_t * restrict nptr, wchar_t
** restrict endptr, int base);

NRQ

B.5.6 Localization < l o c a l e . h >

Table B-25: <locale.h> Functions

Function AEP

char *setlocale(int category, const char *locale); MAN

struct lconv *localeconv(void); NRQ

B . 5 . 7 Mathematics < m a t h . h >

The Macros and definitions introduced by C99 and IEEE TR 19768 are not required by the

profile.

Table B-26: <math.h> Functions

Function AEP

double acos(double x); MAN

long double acosl(long double x); NRQ

double asin(double x); MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 24

Function AEP

long double asinl(long double x); NRQ

double atan(double x); MAN

long double atanl(long double x); NRQ

double atan2(double y, double x); MAN

long double atan2l(long double y, long double x); NRQ

double cos(double x); MAN

long double cosl(long double x); NRQ

double sin(double x); MAN

long double sinl(long double x); NRQ

double tan(double x); MAN

long double tanl(long double x); NRQ

double acosh(double x); NRQ

long double acoshl(long double x); NRQ

double asinh(double x); NRQ

long double asinhl(long double x); NRQ

double atanh(double x); NRQ

long double atanhl(long double x); NRQ

double cosh(double x); MAN

long double coshl(long double x); NRQ

double sinh(double x); MAN

long double sinhl(long double x); NRQ

double tanh(double x); MAN

long double tanhl(long double x); NRQ

double exp(double x); MAN

long double expl(long double x); NRQ

double exp2(double x); NRQ

long double exp2l(long double x); NRQ

double expm1(double x); NRQ

long double expm1l(long double x); NRQ

double frexp(double value, int *exp); MAN

long double frexpl(long double value, int *exp); NRQ

int ilogb(double x); NRQ

int ilogbl(long double x); NRQ

double ldexp(double x, int exp); MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 25

Function AEP

long double ldexpl(long double x, int exp); NRQ

double log(double x); MAN

long double logl(long double x); NRQ

double log10(double x); MAN

long double log10l(long double x); NRQ

double log1p(double x); NRQ

long double log1pl(long double x); NRQ

double log2(double x); NRQ

long double log2l(long double x); NRQ

double logb(double x); NRQ

long double logbl(long double x); NRQ

double modf(double value, double *iptr); MAN

long double modfl(long double value, long double *iptr); NRQ

double scalbn(double x, int n); NRQ

long double scalbnl(long double x, int n); NRQ

double scalbln(double x, long int n); NRQ

long double scalblnl(long double x, long int n); NRQ

double cbrt(double x); NRQ

long double cbrtl(long double x); NRQ

double fabs(double x); MAN

long double fabsl(long double x); NRQ

double hypot(double x, double y); NRQ

long double hypotl(long double x, long double y); NRQ

double pow(double x, double y); MAN

long double powl(long double x, long double y); NRQ

double sqrt(double x); MAN

long double sqrtl(long double x); NRQ

double erf(double x); NRQ

long double erfl(long double x); NRQ

double erfc(double x); NRQ

long double erfcl(long double x); NRQ

double lgamma(double x); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 26

Function AEP

long double lgammal(long double x); NRQ

double tgamma(double x); NRQ

long double tgammal(long double x); NRQ

double ceil(double x); MAN

long double ceill(long double x); NRQ

double floor(double x); MAN

long double floorl(long double x); NRQ

double nearbyint(double x); NRQ

long double nearbyintl(long double x); NRQ

double rint(double x); NRQ

long double rintl(long double x); NRQ

long int lrint(double x); NRQ

long int lrintl(long double x); NRQ

long long int llrint(double x); NRQ

long long int llrintl(long double x); NRQ

double round(double x); NRQ

long double roundl(long double x); NRQ

long int lround(double x); NRQ

long int lroundl(long double x); NRQ

long long int llround(double x); NRQ

long long int llroundl(long double x); NRQ

double trunc(double x); NRQ

long double truncl(long double x); NRQ

double fmod(double x, double y); MAN

long double fmodl(long double x, long double y); NRQ

double remainder(double x, double y); NRQ

long double remainderl(long double x, long double y); NRQ

double remquo(double x, double y, int *quo); NRQ

long double remquol(long double x, long double y,int
*quo);

NRQ

double copysign(double x, double y); NRQ

long double copysignl(long double x, long double y); NRQ

double nan(const char *tagp); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 27

Function AEP

long double nanl(const char *tagp); NRQ

double nextafter(double x, double y); NRQ

long double nextafterl(long double x, long double y); NRQ

double nexttoward(double x, long double y); NRQ

long double nexttowardl(long double x, long double y); NRQ

double fdim(double x, double y); NRQ

long double fdiml(long double x, long double y); NRQ

double fmax(double x, double y); NRQ

long double fmaxl(long double x, long double y); NRQ

double fmin(double x, double y); NRQ

long double fminl(long double x, long double y); NRQ

double fma(double x, double y, double z); NRQ

long double fmal(long double x, long double y,long double
z);

NRQ

float acosf(float x); NRQ

float asinf(float x); NRQ

float atanf(float x); NRQ

float atan2f(float y, float x); NRQ

float cosf(float x); NRQ

float sinf(float x); NRQ

float tanf(float x); NRQ

float acoshf(float x); NRQ

float asinhf(float x); NRQ

float atanhf(float x); NRQ

float coshf(float x); NRQ

float sinhf(float x); NRQ

float tanhf(float x); NRQ

float expf(float x); NRQ

float exp2f(float x); NRQ

float expm1f(float x); NRQ

float frexpf(float value, int *exp); NRQ

int ilogbf(float x); NRQ

float ldexpf(float x, int exp); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 28

Function AEP

float logf(float x); NRQ

float log10f(float x); NRQ

float log1pf(float x); NRQ

float log2f(float x); NRQ

float logbf(float x); NRQ

float modff(float value, float *iptr); NRQ

float scalbnf(float x, int n); NRQ

float scalblnf(float x, long int n); NRQ

float cbrtf(float x); NRQ

float fabsf(float x); NRQ

float hypotf(float x, float y); NRQ

float powf(float x, float y); NRQ

float sqrtf(float x); NRQ

float erff(float x); NRQ

float erfcf(float x); NRQ

float lgammaf(float x); NRQ

float tgammaf(float x); NRQ

float ceilf(float x); NRQ

float floorf(float x); NRQ

float nearbyintf(float x); NRQ

float rintf(float x); NRQ

long int lrintf(float x); NRQ

long long int llrintf(float x); NRQ

float roundf(float x); NRQ

long int lroundf(float x); NRQ

long long int llroundf(float x); NRQ

float truncf(float x); NRQ

float fmodf(float x, float y); NRQ

float remainderf(float x, float y); NRQ

float remquof(float x, float y, int *quo); NRQ

float copysignf(float x, float y); NRQ

float nanf(const char *tagp); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 29

Function AEP

float nextafterf(float x, float y); NRQ

float nexttowardf(float x, long double y); NRQ

float fdimf(float x, float y); NRQ

float fmaxf(float x, float y); NRQ

float fminf(float x, float y); NRQ

float fmaf(float x, float y, float z); NRQ

B.5.8 Nonlocal jumps < s e t j m p . h >

Table B-27: <setjmp.h> Functions

Function AEP

int setjmp(jmp_buf env); NRQ

void longjmp(jmp_buf env, int val); NRQ

B.5.9 Signal handling < s i g n a l . h >

Table B-28: <signal.h> Functions

Function AEP

void (*signal(int sig, void (*func)(int)))(int); MAN

int raise(int sig); MAN

B.5.10 Variable arguments < s t d a r g . h >

Table B-29: <stdarg.h> Functions

Function AEP

void va_arg(va_list ap, type); MAN

void va_copy(va_list dest, va_list src); NRQ

void va_end(va_list ap); MAN

void va_start(va_list ap, parmN); MAN

B.5.11 Input/output < s t d i o . h >

Table B-30: <stdio.h> Functions

Function AEP

int remove(const char *filename); MAN

int rename(const char *old, const char *new); MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 30

Function AEP

int fclose(FILE *stream); MAN

int fflush(FILE *stream); MAN

FILE *fopen(const char * restrict filename, const char *
restrict mode);

MAN

FILE *freopen(const char * restrict filename, const char *
restrict mode,FILE * restrict stream);

MAN

void setbuf(FILE * restrict stream, char * restrict buf); MAN

int setvbuf(FILE * restrict stream, char * restrict
buf,int mode, size_t size);

MAN

int fprintf(FILE * restrict stream, const char * restrict
format, ...);

MAN

int fscanf(FILE * restrict stream, const char * restrict
format, ...);

MAN

int printf(const char * restrict format, ...); MAN

int snprintf(char * restrict s, size_t n, const char *
restrict format, ...);

MAN

int sscanf(const char * restrict s, const char * restrict
format, ...);

MAN

int fgetc(FILE *stream); MAN

char *fgets(char * restrict s, int n, FILE * restrict
stream);

MAN

int fputc(int c, FILE *stream); MAN

int fputs(const char * restrict s, FILE * restrict
stream);

MAN

int getc(FILE *stream); MAN

int getchar(void); MAN

int putc(int c, FILE *stream); MAN

int putchar(int c); MAN

int ungetc(int c, FILE *stream); MAN

size_t fread(void * restrict ptr,size_t size, size_t
nmemb, FILE * restrict stream);

MAN

size_t fwrite(const void * restrict ptr, size_t size,
size_t nmemb, FILE * restrict stream);

MAN

int fseek(FILE *stream, long int offset, int whence); MAN

long int ftell(FILE *stream); MAN

void rewind(FILE *stream); MAN

void clearerr(FILE *stream); MAN

int feof(FILE *stream); MAN

int ferror(FILE *stream); MAN

void perror(const char *s); MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 31

Function AEP

FILE *tmpfile(void); NRQ

char *tmpnam(char *s); NRQ

int fgetpos(FILE * restrict stream, fpos_t * restrict
pos);

NRQ

int fsetpos(FILE *stream, const fpos_t *pos); NRQ

char *gets(char *s); NRQ

int puts(const char *s); NRQ

int scanf(const char * restrict format, ...); NRQ

int vfscanf(FILE * restrict stream, const char * restrict
format, va_list arg);

NRQ

int vscanf(const char * restrict format, va_list arg); NRQ

int vsscanf(const char * restrict s, const char * restrict
format, va_list arg);

NRQ

int sprintf(char * restrict s, const char * restrict
format, ...);

NRQ
(1)

int vfprintf(FILE * restrict stream, const char * restrict
format, va_list arg);

NRQ

int vprintf(const char * restrict format, va_list arg); NRQ

int vsnprintf(char * restrict s, size_t n, const char *
restrict format, va_list arg);

MAN

int vsprintf(char * restrict s, const char * restrict
format, va_list arg);

NRQ

(1) removed in favor of snprintf

B.5.12 General utilities < s t d l i b . h >

Table B-31: <stdlib.h> Functions

Function AEP

double atof(const char *nptr); MAN

int atoi(const char *nptr); MAN

long int atol(const char *nptr); MAN

long long int atoll(const char *nptr); NRQ

double strtod(const char * restrict nptr, char ** restrict
endptr);

MAN

long double strtold(const char * restrict nptr,char **
restrict endptr);

NRQ

long int strtol(const char * restrict nptr,char **
restrict endptr, int base);

MAN

long long int strtoll(const char * restrict nptr,char **
restrict endptr, int base);

NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 32

Function AEP

unsigned long int strtoul(const char * restrict nptr,char
** restrict endptr, int base);

MAN

unsigned long long int strtoull(const char * restrict
nptr,char ** restrict endptr, int base);

NRQ

int rand(void); MAN

void srand(unsigned int seed); MAN

void *calloc(size_t nmemb, size_t size); MAN

void free(void *ptr); MAN

void *malloc(size_t size); MAN

void *realloc(void *ptr, size_t size); MAN

void abort(void); MAN

void *bsearch(const void *key, const void *base,size_t
nmemb, size_t size,int (*compar)(const void *, const void
*));

MAN

void qsort(void *base, size_t nmemb, size_t size,int
(*compar)(const void *, const void *));

MAN

int abs(int j); MAN

long int labs(long int j); MAN

long long int llabs(long long int j); NRQ

div_t div(int numer, int denom); NRQ

ldiv_t ldiv(long int numer, long int denom); NRQ

lldiv_t lldiv(long long int numer, long long int denom); NRQ

int mblen(const char *s, size_t n); NRQ

int mbtowc(wchar_t * restrict pwc,const char * restrict s,
size_t n);

NRQ

int wctomb(char *s, wchar_t wchar); NRQ

size_t mbstowcs(wchar_t * restrict pwcs,const char *
restrict s, size_t n);

NRQ

size_t wcstombs(char * restrict s, const wchar_t *
restrict pwcs, size_t n);

NRQ

float strtof(const char * restrict nptr,char ** restrict
endptr);

NRQ

int atexit(void (*func)(void)); NRQ

void exit(int status); NRQ

void _Exit(int status); NRQ

char *getenv(const char *name); NRQ

int system(const char *string); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 33

B.5.13 String handling < s t r i n g . h >

Table B-32: <string.h> Functions

Function AEP

void *memcpy(void * restrict s1,const void * restrict s2,
size_t n);

MAN

char *strncpy(char * restrict s1,const char * restrict s2,
size_t n);

MAN

char *strncat(char * restrict s1,const char * restrict s2,
size_t n);

MAN

int memcmp(const void *s1, const void *s2, size_t n); MAN

int strcmp(const char *s1, const char *s2); MAN

int strcoll(const char *s1, const char *s2); MAN

int strncmp(const char *s1, const char *s2, size_t n); MAN

size_t strxfrm(char * restrict s1,const char * restrict
s2, size_t n);

MAN

void *memchr(const void *s, int c, size_t n); MAN

char *strchr(const char *s, int c); MAN

size_t strcspn(const char *s1, const char *s2); MAN

char *strpbrk(const char *s1, const char *s2); MAN

char *strrchr(const char *s, int c); MAN

size_t strspn(const char *s1, const char *s2); MAN

char *strstr(const char *s1, const char *s2); MAN

char *strtok(char * restrict s1,const char * restrict s2); MAN

void *memset(void *s, int c, size_t n); MAN

size_t strlen(const char *s); MAN

void *memmove(void *s1, const void *s2, size_t n); MAN

char *strcat(char * restrict s1,const char * restrict s2); NRQ

char *strcpy(char * restrict s1,const char * restrict s2); NRQ

char *strerror(int errnum); MAN

B.5.14 Type-generic math < t g m a t h . h >

Table B-33: <tgmath.h> Functions

Function AEP

acos NRQ

asin NRQ

atan NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 34

Function AEP

acosh NRQ

asinh NRQ

atanh NRQ

cos NRQ

sin NRQ

tan NRQ

cosh NRQ

sinh NRQ

tanh NRQ

exp NRQ

log NRQ

pow NRQ

sqrt NRQ

fabs NRQ

atan2 NRQ

cbrt NRQ

ceil NRQ

copysign NRQ

erf NRQ

erfc NRQ

exp2 NRQ

expm1 NRQ

fdim NRQ

floor NRQ

fma NRQ

fmax NRQ

fmin NRQ

fmod NRQ

frexp NRQ

hypot NRQ

ilogb NRQ

ldexp NRQ

lgamma NRQ

llrint NRQ

llround NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 35

Function AEP

log10 NRQ

log1p NRQ

log2 NRQ

logb NRQ

lrint NRQ

lround NRQ

nearbyint NRQ

nextafter NRQ

nexttoward NRQ

remainder NRQ

remquo NRQ

rint NRQ

round NRQ

scalbn NRQ

scalbln NRQ

tgamma NRQ

trunc NRQ

carg NRQ

cimag NRQ

conj NRQ

cproj NRQ

creal NRQ

B.5.15 Date and time < t i m e . h >

Table B-34: <time.h> Functions

Function AEP

clock_t clock(void); MAN

time_t mktime(struct tm *timeptr); MAN

time_t time(time_t *timer); MAN

char *asctime(const struct tm *timeptr); MAN

char *ctime(const time_t *timer); MAN

struct tm *gmtime(const time_t *timer); MAN

struct tm *localtime(const time_t *timer); MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 36

Function AEP

size_t strftime(char * restrict s,size_t maxsize,const
char * restrict format,const struct tm * restrict
timeptr);

MAN

double difftime(time_t time1, time_t time0); NRQ

B.5.16 Extended multibyte/wide character utilities < w c h a r . h >

Table B-35: <wchar.h> Functions

Function AEP

int fwprintf(FILE * restrict stream,const wchar_t *
restrict format, ...);

NRQ

int fwscanf(FILE * restrict stream,const wchar_t *
restrict format, ...);

NRQ

int swprintf(wchar_t * restrict s, size_t n,const wchar_t
* restrict format, ...);

NRQ

int swscanf(const wchar_t * restrict s,const wchar_t *
restrict format, ...);

NRQ

int vfwprintf(FILE * restrict stream,const wchar_t *
restrict format, va_list arg);

NRQ

int vfwscanf(FILE * restrict stream,const wchar_t *
restrict format, va_list arg);

NRQ

int vswprintf(wchar_t * restrict s, size_t n,const wchar_t
* restrict format,va_list arg);

NRQ

int vswscanf(const wchar_t * restrict s,const wchar_t *
restrict format,va_list arg);

NRQ

int vwprintf(const wchar_t * restrict format,va_list arg); NRQ

int vwscanf(const wchar_t * restrict format,va_list arg); NRQ

int wprintf(const wchar_t * restrict format, ...); NRQ

int wscanf(const wchar_t * restrict format, ...); NRQ

wint_t fgetwc(FILE *stream); NRQ

wchar_t *fgetws(wchar_t * restrict s, int n,FILE *
restrict stream);

NRQ

wint_t fputwc(wchar_t c, FILE *stream); NRQ

int fputws(const wchar_t * restrict s,FILE * restrict
stream);

NRQ

int fwide(FILE *stream, int mode); NRQ

wint_t getwc(FILE *stream); NRQ

wint_t getwchar(void); NRQ

wint_t putwc(wchar_t c, FILE *stream); NRQ

wint_t putwchar(wchar_t c); NRQ

wint_t ungetwc(wint_t c, FILE *stream); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 37

Function AEP

double wcstod(const wchar_t * restrict nptr,wchar_t **
restrict endptr);

NRQ

float wcstof(const wchar_t * restrict nptr,wchar_t **
restrict endptr);

NRQ

long double wcstold(const wchar_t * restrict nptr,wchar_t
** restrict endptr);

NRQ

long int wcstol(const wchar_t * restrict nptr,wchar_t **
restrict endptr, int base);

NRQ

long long int wcstoll(const wchar_t * restrict
nptr,wchar_t ** restrict endptr, int base);

NRQ

unsigned long int wcstoul(const wchar_t * restrict
nptr,wchar_t ** restrict endptr, int base);

NRQ

unsigned long long int wcstoull(const wchar_t * restrict
nptr, wchar_t ** restrict endptr, int base);

NRQ

wchar_t *wcscpy(wchar_t * restrict s1,const wchar_t *
restrict s2);

NRQ

wchar_t *wcsncpy(wchar_t * restrict s1,const wchar_t *
restrict s2, size_t n);

NRQ

wchar_t *wcscat(wchar_t * restrict s1,const wchar_t *
restrict s2);

NRQ

wchar_t *wcsncat(wchar_t * restrict s1,const wchar_t *
restrict s2, size_t n);

NRQ

int wcscmp(const wchar_t *s1, const wchar_t *s2); NRQ

int wcscoll(const wchar_t *s1, const wchar_t *s2); NRQ

int wcsncmp(const wchar_t *s1, const wchar_t *s2,size_t
n);

NRQ

size_t wcsxfrm(wchar_t * restrict s1,const wchar_t *
restrict s2, size_t n);

NRQ

wchar_t *wcschr(const wchar_t *s, wchar_t c); NRQ

size_t wcscspn(const wchar_t *s1, const wchar_t *s2); NRQ

size_t wcslen(const wchar_t *s); NRQ

wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2); NRQ

wchar_t *wcsrchr(const wchar_t *s, wchar_t c); NRQ

size_t wcsspn(const wchar_t *s1, const wchar_t *s2); NRQ

wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2); NRQ

wchar_t *wcstok(wchar_t * restrict s1, const wchar_t *
restrict s2,wchar_t ** restrict ptr);

NRQ

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n); NRQ

int wmemcmp(wchar_t * restrict s1,const wchar_t * restrict
s2, size_t n);

NRQ

wchar_t *wmemcpy(wchar_t * restrict s1,const wchar_t *
restrict s2, size_t n);

NRQ

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2,size_t
n);

NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 38

Function AEP

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n); NRQ

size_t wcsftime(wchar_t * restrict s, size_t maxsize,const
wchar_t * restrict format,const struct tm * restrict
timeptr);

NRQ

wint_t btowc(int c); NRQ

int wctob(wint_t c); NRQ

int mbsinit(const mbstate_t *ps); NRQ

size_t mbrlen(const char * restrict s, size_t n,mbstate_t
* restrict ps);

NRQ

size_t mbrtowc(wchar_t * restrict pwc, const char *
restrict s, size_t n,mbstate_t * restrict ps);

NRQ

size_t wcrtomb(char * restrict s, wchar_t wc,mbstate_t *
restrict ps);

NRQ

size_t mbsrtowcs(wchar_t * restrict dst,const char **
restrict src, size_t len,mbstate_t * restrict ps);

NRQ

size_t wcsrtombs(char * restrict dst,const wchar_t **
restrict src, size_t len,mbstate_t * restrict ps);

NRQ

B.5.17 Wide character classification and mapping utilities < w c t y p e . h >

Table B-36: <wctype.h> Functions

Function AEP

wint_t wctrans_t wctype_t WEOF NRQ

int iswalnum(wint_t wc); NRQ

int iswalpha(wint_t wc); NRQ

int iswblank(wint_t wc); NRQ

int iswcntrl(wint_t wc); NRQ

int iswdigit(wint_t wc); NRQ

int iswgraph(wint_t wc); NRQ

int iswlower(wint_t wc); NRQ

int iswprint(wint_t wc); NRQ

int iswpunct(wint_t wc); NRQ

int iswspace(wint_t wc); NRQ

int iswupper(wint_t wc); NRQ

int iswxdigit(wint_t wc); NRQ

int iswctype(wint_t wc, wctype_t desc); NRQ

wctype_t wctype(const char *property); NRQ

wint_t towlower(wint_t wc); NRQ

wint_t towupper(wint_t wc); NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

 39

Function AEP

wint_t towctrans(wint_t wc, wctrans_t desc); NRQ

wctrans_t wctrans(const char *property); NRQ

		Software Communications Architecture Specification

		Appendix B

		SCA APPLICATION ENVironment PROFILE

		Revision Summary

		Table of Contents

		Appendix B SCA Application Environment Profile

		B.1 Scope

		B.2 Conventions

		B.3 Standards

		B.4 Constraints

		B.4.1 POSIX.1

		B.4.1.1 Single Process Function Behavior

		B.4.1.2 Multi Process Function Behavior

		B.4.1.3 Job Control Function Behavior

		B.4.1.4 Signals Function Behavior

		B.4.1.5 Signal Jump Function Behavior

		B.4.1.6 User Group Function Behavior

		B.4.1.7 File System Function Behavior

		B.4.1.8 File Attributes Function Behavior

		B.4.1.9 File and Directory Management Function Behavior

		B.4.1.10 Device I/O Function Behavior

		B.4.1.11 Device-Specific Function Behavior

		B.4.1.12 System Database Function Behavior

		B.4.1.13 Pipe Function Behavior

		B.4.1.14 FIFO Function Behavior

		B.4.1.15 C Language-Specific Support Services Function Behavior

		B.4.1.16 C Language-Specific Mathematical Function Behavior

		B.4.1.17 C Language-Specific Non-local Jump Function Behavior.

		B.4.1.18 POSIX Semaphore Function Behavior

		B.4.1.19 POSIX Timer Function Behavior

		B.4.1.20 POSIX Threading Function Behavior

		B.4.1.21 POSIX Thread Safe Option Requirements Behavior

		B.4.1.22 XSI Thread Mutex Ext Option Requirements Behavior

		B.5 POSIX Standard C Library header FILES

		B.5.1 Diagnostics <assert.h>

		B.5.2 Complex <complex.h>

		B.5.3 Character handling <ctype.h>

		B.5.4 Floating-point environment <fenv.h>

		B.5.5 Format conversion of integer types <inttypes.h>

		B.5.6 Localization <locale.h>

		B.5.7 Mathematics <math.h>

		B.5.8 Nonlocal jumps <setjmp.h>

		B.5.9 Signal handling <signal.h>

		B.5.10 Variable arguments <stdarg.h>

		B.5.11 Input/output <stdio.h>

		B.5.12 General utilities <stdlib.h>

		B.5.13 String handling <string.h>

		B.5.14 Type-generic math <tgmath.h>

		B.5.15 Date and time <time.h>

		B.5.16 Extended multibyte/wide character utilities <wchar.h>

		B.5.17 Wide character classification and mapping utilities <wctype.h>

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

APPENDIX A: GLOSSARY

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

 A-ii

REVISION SUMMARY

Version Revisions

1.0 Initial Release

1.1 no changes

2.0 no changes

2.1 no changes

2.2 no changes

2.2.1 no changes

2.2.2 Updated

SCA version 2.2.2 FINAL / 15 May 2006

A-1

APPENDIX A GLOSSARY

A.1 ABBREVIATIONS AND ACRONYMS

Abbreviation Definition

AEP Application Environment Profile

API Application Program Interface

CF Core Framework

CORBA Common Object Request Broker Architecture

DCD Device Configuration Descriptor

DMD DomainManager Configuration Descriptor

DPD Device Package Descriptor

DSP Digital Signal Processor

DTD Document Type Definition

FPGA Field Programmable Gate Array

GPP General Purpose Processor

HCI Human-Computer Interface

ID Identification, Identifier

IDL Interface Definition Language

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

IOR Interoperable Object Reference

ISO International Standards Organization

N/A Not Applicable

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

OS Operating System

SCA version 2.2.2 FINAL / 15 May 2006

A-2

Abbreviation Definition

OSI Open System Interconnection

POSIX

 Portable Operating System Interface

SAD Software Assembly Descriptor

SCA Software Communications Architecture

SCD Software Component Descriptor

SPD Software Package Descriptor

SRD Support and Rationale Document (for the SCA)

SW Software

UML Unified Modeling Language

UUID Universally Unique Identifier

XML eXtensible Markup Language

A.2 DEFINITIONS

Application

The SCA defines an Application interface class that provides the interface for the control,

configuration, and status of an instantiated application. An Application controls its components

and establishes connections to other applications.

application

Generically, an executable software program which may contain one or more modules. Within the

SCA, an application consists of one or more software modules which implement the Base

Application Interfaces and which are identified within a Software Assembly Descriptor file. When

loaded and executed, these modules create one or more components which comprise the

application.

Software designed to fulfill the needs of a user.
1

ApplicationFactory

An instantiation of the ApplicationFactory interface is used to create an instance of an application.

The domain manager creates an application factory for each Software Assembly Descriptor that is

installed.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

1
 IEEE Standard Glossary of Software Engineering Terminology, Std. 610.12-1990

SCA version 2.2.2 FINAL / 15 May 2006

A-3

Application Program Interface

An Application Program Interface (API) is the definition of operations and attributes contained in a

set of related interfaces that provide a coherent functional capability.

assemblycontroller

The assemblycontroller element of the Software Assembly Descriptor indicates the component that

is the main resource controller for an application.

Attribute (IDL)

An IDL attribute is a variable that contains a value of a specific type. Attributes may be declared

with read-write or read-only access, and the appropriate get and set operations are generated when

the IDL is compiled.

Child Device

A device intended to be strongly associated to a related parent device. See Parent Device.

Client

A component that invokes an operation of another component.

Commercial Standard

A commercial standard is a set of requirements maintained for common use by industry. As used

in this specification, commercial standards are available for use without restrictive licensing and

are supported by commercially available hardware or software.

Component

A software module or element that conforms to and implements an set of interfaces.

Consumer

A software component that can receive user data traffic.

CORBA Component

A software component that implements one ore more CORBA interfaces. A CORBA component

within this specification is described by a Software Component Descriptor.

Core Application

A software implementation of one or more of the Framework Control or Service Interfaces.

Core Framework (CF)

The Core Framework is the set of open application-layer interfaces and services defined within this

specification. The CF is to provide the essential (“core”) set of interfaces needed to provide an

abstraction of the underlying software and hardware layers for software application designers.

SCA version 2.2.2 FINAL / 15 May 2006

A-4

Destroy

The act of releasing / terminating a software object or component.

Device

1. Hardware device refers to a physical hardware element (typically a module performing a

function or set of functions).

2. The SCA defines a Device interface class. This interface is an abstraction of a hardware

device that defines the capabilities, attributes, and interfaces for that device.

Device Configuration Description (DCD)

A Device Configuration Descriptor is an element of the Domain Profile that contains information

regarding a software component implementing the Device interface. It provides information about

the children Devices when implementing the AggregateDevice interface, how to find the domain

manager, and the device-specific configuration information.

Device Driver

The low-level software, at the physical layer, that controls the physical interface a device uses for

communication, e.g. to a hardware bus.

Device Package Descriptor (DPD)

A Device Package Descriptor is an element of the Domain Profile that contains information about a

hardware device. The DPD has properties that define specific information (manufacturer, model

number, serial number, etc.) about the device.

Device Profile

The Device Profile is the set of XML files within the Domain Profile which fully describe a

hardware device. The Device Profile contains a Device Package Descriptor, a Device

Configuration Descriptor, and an optional Properties File. Information about the software

associated with this hardware device is found in the associated Software Profile.

Document Type Definition (DTD)

“XML provides a mechanism, the Document Type Declaration, to define constraints on the logical

structure and to support the use of predefined storage units. An XML document is valid if it has an

associated document type declaration and if the document complies with the constraints expressed

in it…The XML document type declaration contains or points to [a] markup declaration that

provide a grammar for a class of documents.”
2

2
 XML: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04

February 2004.

http://www.stylusstudio.com/w3c/xml11/sec-prolog-dtd.htm#dt-doctype

http://www.stylusstudio.com/w3c/xml11/sec-prolog-dtd.htm#dt-markupdecl

SCA version 2.2.2 FINAL / 15 May 2006

A-5

Domain

A Domain defines a set of hardware devices and available applications under the control of a single

domain manager component.

Domain Manager

An implementation of the DomainManager interface, a domain manager manages the complete set

of available hardware devices and applications. It is responsible for the set-up and shut-down of

applications and for allocating resources, devices, and non-CORBA components to hardware

devices.

Domain Profile

The hardware devices and software components that make up an SCA system domain are described

by a set of XML files that are collectively referred to as a Domain Profile. The domain manager

uses the Domain Profile to build its internal information base from the descriptions of the

individual hardware devices, software components, and application assemblies under its control.

Event Service

The Event Service is a CORBA service that decouples the communication between components.

The CORBA Event Service defines two roles for components: the producer role (produce event

data) and the consumer role (process event data). Event data are communicated between producers

and consumers by issuing standard CORBA requests.

Event Channel

An Event Channel is an intervening component that allows multiple producers to communicate

with multiple consumers asynchronously. An event channel is both a consumer and a supplier of

events. Event Channel is the intermediary between the components (producers) being changed and

components (consumers) interested in knowing about changes. Event Channels that provide change

notification can be general purpose, well-known components (Incoming and Outgoing Domain

Management Event Channels) that are run as part of a domain-wide framework or specific-to-task

components (e.g., temporary Event Channels that are created at application deployment).

Host

A host is a computer/processor and/or software application that provides services to one or more

elements connected to it. These services may include, but are not limited to, network access,

program loading, database storage, and HMI. The element or elements connected to a host may be

hardware elements (e.g. FPGAs), processing elements (e.g. DSPs), or a combination of elements

(e.g. a JTRS radio).

Incoming Domain Management Event Channel

Incoming Domain Management Event Channel is an event channel that is internal to the domain

and is used by domain’s components to send events to the domain management components

(Application, ApplicationFactory, DomainManager).

SCA version 2.2.2 FINAL / 15 May 2006

A-6

Initialize

The operation of setting a component to a known initial state.

Name

A user-friendly label such as the name used in DTDs of the Domain Profile.

Outgoing Domain Management Event Channel

Outgoing Domain Management Event Channel is an event channel that is external to the domain

and is used by external domain’s components (e.g., HCI) to receive events by domain management

components (Application, ApplicationFactory, DomainManager).

Parent Device

A parent device uses the AggregateDevice interface and is composed of one or more child devices.

The parent device and its children are strongly associated and have the same lifetime (i.e. removal

of the parent device removes all child devices).

Port

A Port interface identifies a source /consumer (Provides Port) or a sink /producer (Uses Port) for

data and/or commands.

Primitive

An abstract, implementation-independent representation of the interactions between service users

and service providers.

Private

As used in the SCA, a proprietary interface definition.

Producer

A software component that can supply user data traffic.

Profile Descriptor

A Profile Descriptor is an element of the Domain Profile that contains an absolute pathname for

either a Software Package Descriptor, Software Assembly Descriptor, DomainManager

Configuration Descriptor, or a Device Configuration Descriptor.

Properties Descriptor

A Properties Descriptor is an element of the Domain Profile that contains information about the

properties applicable to a software package or a device package such as configuration, test, execute,

and allocation types.

SCA version 2.2.2 FINAL / 15 May 2006

A-7

Property

An SCA Property is a variable that contains a value of a specific type. Configuration Properties are

parameters to the configure and query operations of the PropertySet interface. Allocation

Properties define the capabilities required of a Device by a Resource.

Public

As used in the SCA, an open, publicly defined, non-license bearing interface definition.

Release (from the CORBA Environment)

When a CORBA object is released, it is no longer able to process object requests; its CORBA

object reference unavailable to other objects. A release is analogous to the POA concept of

deactivation. When a server object is deactivated, the association between the CORBA object and

its implementation is removed. In the SCA, a component is removed from the OE and OE

resources consumed by a component are returned back to the OE. For CORBA components, this

includes deactivation. After a component is removed from the OE, a client is unable to

communicate with the component.

Resource

A software component that implements the SCA defined Resource base application interface. All

visible SCA-conformant components of a user application must implement the Resource interface.

Service Applications

Service applications (or services) are software programs running in the system that provide

functionality available for use by other applications. Services are not defined by a particular

interface but are recognized by within a domain by use of the SCA-defined registerService

operations.

Software Assembly Descriptor (SAD)

A Software Assembly Descriptor is an element of the Domain Profile that contains information

about the components that make up an application.

Software Component Descriptor (SCD)

A Software Component Descriptor is an element of the Domain Profile that contains information

about a specific SCA software component (Resource, ResourceFactory, or Device).

Software Package Descriptor (SPD)

A Software Package Descriptor is an element of the Domain Profile that identifies a software

component implementation(s). General information about a software package, such as the name,

author, property file, and implementation code information and hardware and/or software

dependencies are contained in a Software Package Descriptor file.

SCA version 2.2.2 FINAL / 15 May 2006

A-8

Software Profile

A Software Profile is a set of Domain Profile files which pertain to a specific SCA component. All

software profiles for CORBA components include a Software Package Descriptor and a Software

Component Descriptor (as well as optional Properties Descriptor files), but the other files contained

in the profile depend on the SCA component in question. The profile for an application will include

a Software Assembly Descriptor, a domain manager profile includes a DomainManager

Configuration Descriptor, and a profile for a device manager will include a Device Configuration

Descriptor.

Waveform

A waveform is the set of transformations applied to information that is transmitted over the air and

the corresponding set of transformations to convert received signals back to their information

content.

Waveform Application

A waveform application is the collection of software elements (modules or components) which

perform any or all of the transformations defined for a specific waveform. This may include (SCA)

application components as well as Core Applications, Services, and (SCA) devices.

		Software Communications Architecture Specification

		Appendix A: Glossary

		Revision Summary

		Appendix A GLOSSARY

		A.1 Abbreviations and Acronyms

		A.2 Definitions

		Application

		application

		ApplicationFactory

		Application Program Interface

		assemblycontroller

		Attribute (IDL)

		Child Device

		Client

		Commercial Standard

		Component

		Consumer

		CORBA Component

		Core Application

		Core Framework (CF)

		Destroy

		Device

		Device Configuration Description (DCD)

		Device Driver

		Device Package Descriptor (DPD)

		Device Profile

		Document Type Definition (DTD)

		Domain

		Domain Manager

		Domain Profile

		Event Service

		Event Channel

		Host

		Incoming Domain Management Event Channel

		Initialize

		Name

		Outgoing Domain Management Event Channel

		Parent Device

		Port

		Primitive

		Private

		Producer

		Profile Descriptor

		Properties Descriptor

		Property

		Public

		Release (from the CORBA Environment)

		Resource

		Service Applications

		Software Assembly Descriptor (SAD)

		Software Component Descriptor (SCD)

		Software Package Descriptor (SPD)

		Software Profile

		Waveform

		Waveform Application

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

APPENDIX C: CORE FRAMEWORK IDL

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

 C-ii

REVISION SUMMARY

Version Revision

1.0 Initial Release

1.1 Updated IDL to reflect SCAS changes made for v1.1; updated comments.

2.0
Incorporate approved Change Proposals, numbers 175, 245, 277, 278, 282, 311, 336,

345.

2.1
Incorporate approved Change Proposals, numbers 142, 175, 245, 277, 278, 282, 306,

311, 336, 345, 360.

2.2 Incorporate approved Change Proposals, numbers 138, 496, 509

2.2.1 Incorporate approved Change Proposals, numbers 15, 77, 26, 44, 45, 70, 74, 101, 102

2.2.2

Updated IDL

Reduced comment text

Incorporated Change Proposals SCA-CCM 44, 178, 202, and 210

SCA version 2.2.2 FINAL / 15 May 2006

 C-iii

TABLE OF CONTENTS

APPENDIX C CORE FRAMEWORK IDL .. C-1

C.1 Core Framework IDL ... C-1

C.2 PortTypes Module. .. C-35

C.3 StandardEvent Module. ... C-36

SCA version 2.2.2 FINAL / 15 May 2006

 C-1

APPENDIX C CORE FRAMEWORK IDL

The CF interfaces are expressed in CORBA IDL. Any IDL compiler for the target language of

choice may compile the generated IDL.

The CF interfaces are contained in the CF CORBA module. Additionally, IDL modules are

provided for interfaces that extend the Port interface by defining basic data sequence types. The

StandardEvent CORBA Module contains the standard event types to be passed via the event

service.

Attachment 1 to this appendix contains this same IDL.

C.1 CORE FRAMEWORK IDL

CF
ApplicationFactory

Applcation

DeviceManager

DomainManager

File

FileManager

FileSystem

LifeCycle

Port

PropertySet

Resource

ResourceFactory

PortSupplier

Device

LoadableDevice

AggregateDevice

ExecutableDevice

Figure C-1: CF CORBA Module

//Source file: CF.idl

#ifndef __CF_DEFINED

#define __CF_DEFINED

module CF {

 interface Device;

 interface File;

 interface Resource;

 interface Application;

 interface ApplicationFactory;

 interface DeviceManager;

 /* This type is a CORBA IDL struct type which can be used

to hold any CORBA basic type or static IDL type. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-2

 struct DataType {

 /* The id attribute indicates the kind of value and

type. The id can be an UUID string, an integer string, or a name

identifier. */

 string id;

 /* The value attribute can be any static IDL type or

CORBA basic type. */

 any value;

 };

 /* This exception indicates an invalid component profile

error. */

 exception InvalidProfile {

 };

 /* The Properties is a CORBA IDL unbounded sequence of CF

DataType(s), which can be used in defining a sequence of name and

value pairs. */

 typedef sequence <DataType> Properties;

 /* This exception indicates an invalid CORBA object

reference error. */

 exception InvalidObjectReference {

 string msg;

 };

 /* This type is a CORBA unbounded sequence of octets. */

 typedef sequence <octet> OctetSequence;

 /* This type defines a sequence of strings */

 typedef sequence <string> StringSequence;

 /* This exception indicates a set of properties unknown by

the component. */

 exception UnknownProperties {

 CF::Properties invalidProperties;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-3

 /* DeviceAssignmentType defines a structure that associates

a component with the device upon which the component is executing

on. */

 struct DeviceAssignmentType {

 string componentId;

 string assignedDeviceId;

 };

 /* The IDL sequence, DeviceAssignmentSequence, provides a

unbounded sequence of 0..n of DeviceAssignmentType. */

 typedef sequence <DeviceAssignmentType>

DeviceAssignmentSequence;

 /* This enum is used to pass error number information in

various exceptions. Those exceptions starting with "CF_E" map to

the POSIX definitions. The "CF_" has been added to the POSIX

exceptions to avoid namespace conflicts. CF_NOTSET is not defined

in the POSIX specification. CF_NOTSET is an SCA specific value

that is applicable for any exception when the method specific or

standard POSIX error values are not appropriate.) */

 enum ErrorNumberType {

 CF_NOTSET,

 CF_E2BIG,

 CF_EACCES,

 CF_EAGAIN,

 CF_EBADF,

 CF_EBADMSG,

 CF_EBUSY,

 CF_ECANCELED,

 CF_ECHILD,

 CF_EDEADLK,

 CF_EDOM,

 CF_EEXIST,

 CF_EFAULT,

 CF_EFBIG,

 CF_EINPROGRESS,

 CF_EINTR,

 CF_EINVAL,

 CF_EIO,

 CF_EISDIR,

 CF_EMFILE,

 CF_EMLINK,

 CF_EMSGSIZE,

SCA version 2.2.2 FINAL / 15 May 2006

 C-4

 CF_ENAMETOOLONG,

 CF_ENFILE,

 CF_ENODEV,

 CF_ENOENT,

 CF_ENOEXEC,

 CF_ENOLCK,

 CF_ENOMEM,

 CF_ENOSPC,

 CF_ENOSYS,

 CF_ENOTDIR,

 CF_ENOTEMPTY,

 CF_ENOTSUP,

 CF_ENOTTY,

 CF_ENXIO,

 CF_EPERM,

 CF_EPIPE,

 CF_ERANGE,

 CF_EROFS,

 CF_ESPIPE,

 CF_ESRCH,

 CF_ETIMEDOUT,

 CF_EXDEV

 };

 /* The InvalidFileName exception indicates an invalid file

name was passed to a file service operation. The message provides

information describing why the filename was invalid. */

 exception InvalidFileName {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The CF FileException indicates a file-related error

occurred. The message provides information describing the error.

*/

 exception FileException {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This type defines an unbounded sequence of Devices. */

 typedef sequence <Device> DeviceSequence;

SCA version 2.2.2 FINAL / 15 May 2006

 C-5

 /* The AggregateDevice interface provides aggregate behavior

that can be used to add and remove Devices from a parent device.

This interface can be provided via inheritance or as a "provides

port". Child devices use this interface to add or remove

themselves from parent device when being created or torn-down. */

 interface AggregateDevice {

 /* The readonly devices attribute contains a list of

devices that have been added to this device or a sequence length

of zero if the device has no aggregation relationships with other

devices. */

 readonly attribute CF::DeviceSequence devices;

 /* The addDevice operation provides the mechanism to

associate a device with another device. */

 void addDevice (

 in CF::Device associatedDevice

)

 raises (CF::InvalidObjectReference);

 /* The removeDevice operation provides the mechanism to

disassociate

 a device from another device. */

 void removeDevice (

 in CF::Device associatedDevice

)

 raises (CF::InvalidObjectReference);

 };

 /* The FileSystem interface defines the CORBA operations to

enable remote access to a physical file system. */

 interface FileSystem {

 /* This exception indicates a set of properties unknown

by the FileSystem object. */

 exception UnknownFileSystemProperties {

 CF::Properties invalidProperties;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-6

 /* This constant indicates file system size. */

 const string SIZE = "SIZE";

 /* This constant indicates the available space on the

file system. */

 const string AVAILABLE_SPACE = "AVAILABLE_SPACE";

 /* The FileType indicates the type of file entry. A file

system can have PLAIN or DIRECTORY files and mounted file systems

contained in a FileSystem. */

 enum FileType {

 PLAIN,

 DIRECTORY,

 FILE_SYSTEM

 };

 /* The FileInformationType indicates the information

returned for a file. */

 struct FileInformationType {

 string name;

 CF::FileSystem::FileType kind;

 unsigned long long size;

 CF::Properties fileProperties;

 };

 typedef sequence <FileInformationType>

FileInformationSequence;

 /* The CREATED_TIME_ID is the identifier for the created

time file property. */

 const string CREATED_TIME_ID = "CREATED_TIME";

 /* The MODIFIED_TIME_ID is the identifier for the

modified time file property. */

 const string MODIFIED_TIME_ID = "MODIFIED_TIME";

 /* The LAST_ACCESS_TIME_ID is the identifier for the

last access time file property. */

 const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

 /* The remove operation removes the file with the given

filename. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-7

 void remove (

 in string fileName

)

 raises (CF::FileException,CF::InvalidFileName);

 /* The copy operation copies the source file with the

specified sourceFileName to the destination file with the

specified destinationFileName. */

 void copy (

 in string sourceFileName,

 in string destinationFileName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The exists operation checks to see if a file exists

based on the filename parameter. */

 boolean exists (

 in string fileName

)

 raises (CF::InvalidFileName);

 /* The list operation provides the ability to obtain a

list of files along with their information in the file system

according to a given search pattern. */

 CF::FileSystem::FileInformationSequence list (

 in string pattern

)

 raises (CF::FileException,CF::InvalidFileName);

 /* The create operation creates a new File based upon

the provided file name and returns a File to the opened file. */

 CF::File create (

 in string fileName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The open operation opens a file for reading or

writing based upon the input fileName. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-8

 CF::File open (

 in string fileName,

 in boolean read_Only

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The mkdir operation creates a file system directory

based on the directoryName given. */

 void mkdir (

 in string directoryName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The rmdir operation removes a file system directory

based on the directoryName given. */

 void rmdir (

 in string directoryName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The query operation returns file system information

to the calling client based upon the given fileSystemProperties'

ID. */

 void query (

 inout CF::Properties fileSystemProperties

)

 raises (CF::FileSystem::UnknownFileSystemProperties);

 };

 /* The File interface provides the ability to read and write

files residing within a distributed FileSystem. A file can be

thought of conceptually as a sequence of octets with a current

filePointer describing where the next read or write will occur. */

 interface File {

 /* The IOException exception indicates an error occurred

during a read or write operation to a File. The message is

component-dependent, providing additional information describing

the reason for the error. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-9

 exception IOException {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates the file pointer is out of

range based upon the current file size. */

 exception InvalidFilePointer {

 };

 /* The readonly fileName attribute contains the file

name given to the FileSystem open/create operation. */

 readonly attribute string fileName;

 /* The readonly filePointer attribute contains the file

position where the next read or write will occur. */

 readonly attribute unsigned long filePointer;

 /* Applications require the read operation in order to

retrieve data from remote files. */

 void read (

 out CF::OctetSequence data,

 in unsigned long length

)

 raises (CF::File::IOException);

 /* The write operation writes data to the file

referenced. */

 void write (

 in CF::OctetSequence data

)

 raises (CF::File::IOException);

 /* The sizeOf operation returns the current size of the

file. */

 unsigned long sizeOf ()

 raises (CF::FileException);

 /* The close operation releases any OE file resources

associated with the component. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-10

 void close ()

 raises (CF::FileException);

 /* The setFilePointer operation positions the file

pointer where next read or write will occur. */

 void setFilePointer (

 in unsigned long filePointer

)

 raises

(CF::File::InvalidFilePointer,CF::FileException);

 };

 /* A ResourceFactory can be used to create and tear down a

Resource. */

 interface ResourceFactory {

 /* This exception indicates the resourceID does not

exist in the ResourceFactory. */

 exception InvalidResourceId {

 };

 /* This exception indicates that the shutdown method

failed to release the ResourceFactory from the CORBA environment

because the Factory still contains Resources. The message is

component-dependent, providing additional information describing

why the shutdown failed. */

 exception ShutdownFailure {

 string msg;

 };

 /* The CreateResourceFailure exception indicates that

the createResource operation failed to create the Resource. The

message is component-dependent, providing additional

information describing the reason for the error. */

 exception CreateResourceFailure {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-11

 /* The readonly identifier attribute contains the unique

identifier for a ResourceFactory instance. */

 readonly attribute string identifier;

 /* The createResource operation provides the capability

to create Resources in the same process space as the

ResourceFactory or to return a Resource that has already been

created. This behavior is an alternative approach to the Device's

execute operation for creating a Resource. */

 CF::Resource createResource (

 in string resourceId,

 in CF::Properties qualifiers

)

 raises (CF::ResourceFactory::CreateResourceFailure);

 /* In CORBA there is client side and server side

representation of a Resource. This operation provides the

mechanism of releasing the Resource in the CORBA environment on

the server side when all clients are through with a specific

Resource. The client still has to release its client side

reference of the Resource. */

 void releaseResource (

 in string resourceId

)

 raises (CF::ResourceFactory::InvalidResourceId);

 /* In CORBA there is client side and server side

representation of a ResourceFactory. This operation provides the

mechanism for releasing the ResourceFactory from the CORBA

environment on the server side. The client has the responsibility

to release its client side reference of the ResourceFactory. */

 void shutdown ()

 raises (CF::ResourceFactory::ShutdownFailure);

 };

 /* Multiple, distributed FileSystems may be accessed through

a FileManager. The FileManager interface appears to be a single

FileSystem although the actual file storage may span multiple

physical file systems. */

 interface FileManager : FileSystem {

SCA version 2.2.2 FINAL / 15 May 2006

 C-12

 /* The Mount structure identifies the FileSystems

mounted within the FileManager. */

 struct MountType {

 string mountPoint;

 CF::FileSystem fs;

 };

 /* This type defines an unbounded sequence of mounted

FileSystems. */

 typedef sequence <MountType> MountSequence;

 /* This exception indicates a mount point does not exist

within the FileManager */

 exception NonExistentMount {

 };

 /* This exception indicates the FileSystem is a null

(nil) object reference. */

 exception InvalidFileSystem {

 };

 /* This exception indicates the mount point is already

in use in the FileManager. */

 exception MountPointAlreadyExists {

 };

 /* The mount operation associates a FileSystem with a

mount point (a directory name). */

 void mount (

 in string mountPoint,

 in CF::FileSystem file_System

)

 raises

(CF::InvalidFileName,CF::FileManager::InvalidFileSystem,CF::FileMa

nager::MountPointAlreadyExists);

 /* The unmount operation removes a mounted FileSystem

from the FileManager whose mounted name matches the input

mountPoint name. */

 void unmount (

 in string mountPoint

)

 raises (CF::FileManager::NonExistentMount);

SCA version 2.2.2 FINAL / 15 May 2006

 C-13

 /* The getMounts operation returns the FileManager's

mounted FileSystems. */

 CF::FileManager::MountSequence getMounts ();

 };

 /* This interface provides operations for managing

associations between ports. An application defines a specific

Port type by specifying an interface that inherits the Port

interface. */

 interface Port {

 /* This exception indicates one of the following errors

has occurred in the specification of a Port association. */

 exception InvalidPort {

 unsigned short errorCode;

 string msg;

 };

 /* This exception indicates the Port is unable to accept

any additional connections. */

 exception OccupiedPort {

 };

 /* The connectPort operation makes a connection to the

component identified by the input parameters. The connectPort

operation establishes only half of the association; therefore two

calls are required to create a two-way association. A port may

support several connections. */

 void connectPort (

 in Object connection,

 in string connectionId

)

 raises (CF::Port::InvalidPort,CF::Port::OccupiedPort);

 /* The disconnectPort operation breaks the connection to

the component identified by the input parameters. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-14

 void disconnectPort (

 in string connectionId

)

 raises (CF::Port::InvalidPort);

 };

 /* The LifeCycle interface defines the generic operations

for initializing or releasing instantiated component-specific data

and/or processing elements. */

 interface LifeCycle {

 /* This exception indicates an error occurred during

component initialization. The messages provide additional

information describing the reason why the error occurred. */

 exception InitializeError {

 CF::StringSequence errorMessages;

 };

 /* This exception indicates an error occurred during

component releaseObject. The messages provide additional

information describing the reason why the error occurred. */

 exception ReleaseError {

 CF::StringSequence errorMessages;

 };

 /* The purpose of the initialize operation is to provide

a mechanism to set an object to an known initial state. */

 void initialize ()

 raises (CF::LifeCycle::InitializeError);

 /* The purpose of the releaseObject operation is to

provide a means by which an instantiated component may be torn

down. */

 void releaseObject ()

 raises (CF::LifeCycle::ReleaseError);

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-15

 /* The TestableObject interface defines a set of operations

that can be used to test component implementations. */

 interface TestableObject {

 /* This exception indicates the requested testid for a

test to be performed is not known by the component. */

 exception UnknownTest {

 };

 /* The runTest operation allows components to be

"blackbox" tested. This allows Built-In Tests to be implemented

which provides a means to isolate faults (both software and

hardware) within the system. */

 void runTest (

 in unsigned long testid,

 inout CF::Properties testValues

)

 raises

(CF::TestableObject::UnknownTest,CF::UnknownProperties);

 };

 /* The PropertySet interface defines configure and query

operations to access component properties/attributes. */

 interface PropertySet {

 /* This exception indicates the configuration of a

component has failed (no configuration at all was done). The

message provides additional information describing the reason why

the error occurred. The invalid properties returned indicates the

properties that were invalid. */

 exception InvalidConfiguration {

 string msg;

 CF::Properties invalidProperties;

 };

 /* The PartialConfiguration exception indicates the

configuration of a Component was partially successful. The invalid

properties returned indicates the properties that were invalid.

*/

SCA version 2.2.2 FINAL / 15 May 2006

 C-16

 exception PartialConfiguration {

 CF::Properties invalidProperties;

 };

 /* The purpose of this operation is to allow id/value

pair configuration properties to be assigned to components

implementing this interface. */

 void configure (

 in CF::Properties configProperties

)

 raises

(CF::PropertySet::InvalidConfiguration,CF::PropertySet::PartialCon

figuration);

 /* The purpose of this operation is to allow a component

to be queried to retrieve its properties. */

 void query (

 inout CF::Properties configProperties

)

 raises (CF::UnknownProperties);

 };

 /* The DomainManager interface is for the control and

configuration of the radio domain. */

 interface DomainManager : PropertySet {

 /* This exception is raised when an Application

installation has not completed correctly. The message provides

additional information describing the reason for the error. */

 exception ApplicationInstallationError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 exception ApplicationAlreadyInstalled {

 };

 /* This type defines an unbounded sequence of

Applications. */

 typedef sequence <Application> ApplicationSequence;

SCA version 2.2.2 FINAL / 15 May 2006

 C-17

 /* This type defines an unbounded sequence of

ApplicationFactories. */

 typedef sequence <ApplicationFactory>

ApplicationFactorySequence;

 /* This type defines an unbounded sequence of

DeviceManagers. */

 typedef sequence <DeviceManager> DeviceManagerSequence;

 /* This exception indicates the application ID is

invalid. */

 exception InvalidIdentifier {

 };

 /* This exception indicates the registering Device's

DeviceManager is not registered in the DomainManager. A Device's

DeviceManager has to be registered prior to a Device registration

to the DomainManager. */

 exception DeviceManagerNotRegistered {

 };

 /* This exception is raised when an Application

uninstallation has not completed correctly. The message provides

additional information describing the reason for the error. */

 exception ApplicationUninstallationError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that an internal error has

occurred to prevent DomainManager registration operations from

successful completion. The message provides additional information

describing the reason for the error. */

 exception RegisterError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that an internal error has

occurred to prevent DomainManager unregister operations from

successful completion. The message provides additional information

describing the reason for the error. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-18

 exception UnregisterError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that a registering consumer

is already connected to the specified event channel. */

 exception AlreadyConnected {

 };

 /* This exception indicates that a DomainManager was not

able to locate the event channel. */

 exception InvalidEventChannelName {

 };

 /* The NotConnected exception indicates that the

unregistering consumer was not connected to the specified event

channel. */

 exception NotConnected {

 };

 /* The readonly domainManagerProfile attribute contains

a profile element with a file reference to the DomainManager

Configuration Descriptor (DMD) profile. */

 readonly attribute string domainManagerProfile;

 /* The deviceManagers attribute is read-only containing

a sequence of registered DeviceManagers in the domain. */

 readonly attribute

CF::DomainManager::DeviceManagerSequence deviceManagers;

 /* The applications attribute contains a list of

Applications that have been instantiated in the domain. */

 readonly attribute CF::DomainManager::ApplicationSequence

applications;

 /* The readonly applicationFactories attribute contains

a list with one ApplicationFactory per application (SAD file and

associated files) successfully installed. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-19

 readonly attribute

CF::DomainManager::ApplicationFactorySequence

 applicationFactories;

 /* The readonly fileMgr attribute contains the

DomainManager's FileManager. */

 readonly attribute CF::FileManager fileMgr;

 /* The readonly identifier attribute contains a unique

identifier for a DomainManager instance. The identifier is

identical to the domainmanagerconfiguration element id attribute

of the DomainManager's Descriptor (DMD) file. */

 readonly attribute string identifier;

 /* The registerDevice operation is used to register a

Device for a specific DeviceManager in the DomainManager's Domain

Profile. */

 void registerDevice (

 in CF::Device registeringDevice,

 in CF::DeviceManager registeredDeviceMgr

)

 raises (CF::InvalidObjectReference,CF::InvalidProfile,

 CF::DomainManager::DeviceManagerNotRegistered,

 CF::DomainManager::RegisterError);

 /* The registerDeviceManager operation is used to

register a DeviceManager, its Device(s), and its Services. */

 void registerDeviceManager (

 in CF::DeviceManager deviceMgr

)

 raises (CF::InvalidObjectReference,CF::InvalidProfile,

 CF::DomainManager::RegisterError);

 /* The unregisterDeviceManager operation is used to

unregister a DeviceManager component from the DomainManager's

Domain Profile. A DeviceManager may be unregistered during run-

time for dynamic extraction or maintenance of the DeviceManager.

*/

SCA version 2.2.2 FINAL / 15 May 2006

 C-20

 void unregisterDeviceManager (

 in CF::DeviceManager deviceMgr

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 /* The unregisterDevice operation is used to remove a

device entry from the DomainManager for a specific DeviceManager.

*/

 void unregisterDevice (

 in CF::Device unregisteringDevice

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 /* The installApplication operation is used to register

new application software in the DomainManager's Domain Profile. */

 void installApplication (

 in string profileFileName

)

 raises (CF::InvalidProfile,CF::InvalidFileName,

 CF::DomainManager::ApplicationInstallationError,

 CF::DomainManager:: ApplicationAlreadyInstalled);

 /* The uninstallApplication operation is used to

uninstall an application and its associated ApplicationFactory

from the DomainManager. */

 void uninstallApplication (

 in string applicationId

)

 raises (CF::DomainManager::InvalidIdentifier,

 CF::DomainManager::ApplicationUninstallationError);

 /* The registerService operation is used to register a

service for a specific DeviceManager with the DomainManager. */

 void registerService (

 in Object registeringService,

 in CF::DeviceManager registeredDeviceMgr,

 in string name

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::DeviceManagerNotRegistered,

 CF::DomainManager::RegisterError);

SCA version 2.2.2 FINAL / 15 May 2006

 C-21

 /* The unregisterService operation is used to remove a

service entry from the DomainManager for a specific DeviceManager.

*/

 void unregisterService (

 in Object unregisteringService,

 in string name

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 /* The registerWithEventChannel operation is used to

connect a consumer to a domain's event channel. */

 void registerWithEventChannel (

 in Object registeringObject,

 in string registeringId,

 in string eventChannelName

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::InvalidEventChannelName,

 CF::DomainManager::AlreadyConnected);

 /* The unregisterFromEventChannel operation is used to

disconnect a consumer from a domain's event channel. */

 void unregisterFromEventChannel (

 in string unregisteringId,

 in string eventChannelName

)

 raises (CF::DomainManager::InvalidEventChannelName,

 CF::DomainManager::NotConnected);

 };

 /* The ApplicationFactory interface class provides an

interface to request the creation of a specific type of

Application in the domain.The Software Profile determines the type

of Application that is created by the ApplicationFactory. */

 interface ApplicationFactory {

 /* This exception is raised when the parameter

DeviceAssignmentSequence contains one or more invalid Application

component-to-device assignment(s). */

SCA version 2.2.2 FINAL / 15 May 2006

 C-22

 exception CreateApplicationRequestError {

 CF::DeviceAssignmentSequence invalidAssignments;

 };

 /* This exception is raised when a create request is

valid but the Application is unsuccessfully instantiated due to

internal processing errors. The message provides additional

information describing the reason for the error. */

 exception CreateApplicationError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception is raised when the input

initConfiguration parameter is invalid. */

 exception InvalidInitConfiguration {

 CF::Properties invalidProperties;

 };

 /* The name attribute contains the name of the type of

Application that can be instantiated by the ApplicationFactory. */

 readonly attribute string name;

 /* The readonly identifier attribute contains the unique

identifier for an ApplicationFactory instance. The identifier is

identical to the softwareassembly element id attribute of the

ApplicationFactory's Software Assembly Descriptor file. */

 readonly attribute string identifier;

 /* This attribute contains the application software

profile that the factory uses when creating an application. The

string value contains a profile element with a file reference to

the SAD */

 readonly attribute string softwareProfile;

 /* The create operation is used to create an Application

within the system domain. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-23

 CF::Application create (

 in string name,

 in CF::Properties initConfiguration,

 in CF::DeviceAssignmentSequence deviceAssignments

)

 raises

(CF::ApplicationFactory::CreateApplicationError,

 CF::ApplicationFactory::CreateApplicationRequestError,

 CF::ApplicationFactory::InvalidInitConfiguration);

 };

 /* The PortSupplier interface provides the getPort operation

for those objects that provide ports. */

 interface PortSupplier {

 /* This exception is raised if an undefined port is

requested. */

 exception UnknownPort {

 };

 /* The getPort operation provides a mechanism to obtain

a specific consumer or producer Port. A PortSupplier may contain

zero-to-many consumer and producer port components. */

 Object getPort (

 in string name

)

 raises (CF::PortSupplier::UnknownPort);

 };

 /* The Resource interface provides a common interface for

the control and configuration of a software component. */

 interface Resource : LifeCycle, TestableObject, PropertySet,

PortSupplier {

 /* This exception indicates that an error occurred

during an attempt to start the Resource. The message provides

additional information describing the reason for the error. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-24

 exception StartError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The StopError exception indicates that an error

occurred during an attempt to stop the Resource. The message

provides additional information describing the reason for the

error. */

 exception StopError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The readonly identifier attribute shall contain the

unique identifier for a resource instance. */

 readonly attribute string identifier;

 /* The start operation is provided to command a Resource

implementing this interface to start internal processing. */

 void start ()

 raises (CF::Resource::StartError);

 /* The stop operation is provided to command a Resource

implementing this interface to stop all internal processing. */

 void stop ()

 raises (CF::Resource::StopError);

 };

 /* The Device interface defines additional capabilities and

attributes for any logical Device in the domain. */

 interface Device : Resource {

 /* This exception indicates that the device is not

capable of the behavior being attempted due to the state the

Device is in. */

 exception InvalidState {

 string msg;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-25

 /* The InvalidCapacity exception returns the capacities

that are not valid for this device. */

 exception InvalidCapacity {

 /* The message indicates the reason for the invalid

capacity. */

 string msg;

 /* The invalid capacities sent to the

allocateCapacity operation.*/

 CF::Properties capacities;

 };

 /* This enumeration type defines a Device's

administrative states. The administrative state indicates the

permission to use or prohibition against using the Device. */

 enum AdminType {

 LOCKED,

 SHUTTING_DOWN,

 UNLOCKED

 };

 /* This enumeration type defines a Device's operational

states. The operational state indicates whether or not the object

is functioning. */

 enum OperationalType {

 ENABLED,

 DISABLED

 };

 /* This enumeration type defines the Device's usage

states. */

 enum UsageType {

 IDLE,

 ACTIVE,

 BUSY

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-26

 /* The readonly usageState attribute contains the

Device's usage state The usageState indicates whether or not a

device is actively in use at a specific instant, and if so,

whether or not it has spare capacity for allocation at that

instant. */

 readonly attribute CF::Device::UsageType usageState;

 /* The administrative state indicates the permission to

use or prohibition against using the device. The adminState

attribute contains the device's admin state value. */

 attribute CF::Device::AdminType adminState;

 /* The operationalState attribute contains the device's

operational state. The operational state indicates whether or not

the device is functioning. */

 readonly attribute CF::Device::OperationalType

operationalState;

 /* The softwareProfile attribute is the XML description

for this logical Device. The softwareProfile attribute contains a

profile DTD element with a file reference to the SPD profile file.

*/

 readonly attribute string softwareProfile;

 /* The label attribute is the meaningful name given to a

Device. */

 readonly attribute string label;

 /* The compositeDevice attribute contains the object

reference of the AggregateDevice with which this Device is

associated or a nil CORBA object reference if no association

exists. */

 readonly attribute CF::AggregateDevice compositeDevice;

 /* The allocateCapacity operation provides the mechanism

to request and allocate capacity from the Device. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-27

 boolean allocateCapacity (

 in CF::Properties capacities

)

 raises (CF::Device::InvalidCapacity,

CF::Device::InvalidState);

 /* The deallocateCapacity operation provides the

mechanism to return capacities back to the Device, making them

available to other users. */

 void deallocateCapacity (

 in CF::Properties capacities

)

 raises (CF::Device::InvalidCapacity,

CF::Device::InvalidState);

 };

 /* The Application interface provides for the control,

configuration, and status of an instantiated application in the

domain. */

 interface Application : Resource {

 /* The ComponentProcessIdType defines a type for

associating a component with its process ID. This type can be

used to retrieve a process ID for a specific component. */

 struct ComponentProcessIdType {

 string componentId;

 unsigned long processId;

 };

 /* The ComponentProcessIdSequence type defines an

unbounded sequence of components' process IDs. */

 typedef sequence <ComponentProcessIdType>

ComponentProcessIdSequence;

 /* The ComponentElementType defines a type for

associating a component with an element. */

 struct ComponentElementType {

 string componentId;

 string elementId;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-28

 /* This type is an unbounded sequence of

ComponentElementTypes. */

 typedef sequence <ComponentElementType>

ComponentElementSequence;

 /* This attribute contains the list of components'

Naming Service Context within the Application for those components

using CORBA Naming Service. */

 readonly attribute

CF::Application::ComponentElementSequence

 componentNamingContexts;

 /* This attribute contains the list of components'

process IDs within the Application for components that are

executing on a device. */

 readonly attribute

CF::Application::ComponentProcessIdSequence

 componentProcessIds;

 /* The componentDevices attribute shall contain a list

of devices which each component either uses, is loaded on or is

executed on. Each component (componentinstantiation element in the

Application's software profile) is associated with a device. */

 readonly attribute CF::DeviceAssignmentSequence

componentDevices;

 /* This attribute contains the list of components' SPD

implementation IDs within the Application for those components

created. */

 readonly attribute

CF::Application::ComponentElementSequence

 componentImplementations;

 /* This attribute is the XML profile information for the

application. The string value contains a profile element with a

file reference to the SAD. */

 readonly attribute string profile;

SCA version 2.2.2 FINAL / 15 May 2006

 C-29

 /* This name attribute contains the name of the created

Application. The ApplicationFactory interfaces's create operation

name parameter provides the name content. */

 readonly attribute string name;

 };

 /* This interface extends the Device interface by adding

software loading and unloading behavior to a Device. */

 interface LoadableDevice : Device {

 /* This LoadType defines the type of load to be

performed. The load types are in accordance with the code element

within the softpkg element's implementation element. */

 enum LoadType {

 KERNEL_MODULE,

 DRIVER,

 SHARED_LIBRARY,

 EXECUTABLE

 };

 /* The InvalidLoadKind exception indicates that the

Device is unable to load the type of file designated by the

loadKind parameter. */

 exception InvalidLoadKind {

 };

 /* The LoadFail exception indicates that an error

occurred during an attempt to load the device. The message

provides additional information describing the reason for the

error. */

 exception LoadFail {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The load operation provides the mechanism for loading

software on a specific device. The loaded software may be

subsequently executed on the Device, if the Device is an

ExecutableDevice. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-30

 void load (

 in CF::FileSystem fs,

 in string fileName,

 in CF::LoadableDevice::LoadType loadKind

)

 raises (CF::Device::InvalidState,

 CF::LoadableDevice::InvalidLoadKind,

 CF::InvalidFileName, CF::LoadableDevice::LoadFail);

 /* The unload operation provides the mechanism to unload

software that is currently loaded. */

 void unload (

 in string fileName

)

 raises (CF::Device::InvalidState,CF::InvalidFileName);

 };

 /* This interface extends the LoadableDevice interface by

adding execute and terminate behavior to a Device. */

 interface ExecutableDevice : LoadableDevice {

 /* The InvalidProcess exception indicates that a

process, as identified by the processID parameter, does not exist

on this device. The message provides additional information

describing the reason for the error. */

 exception InvalidProcess {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that a function, as

identified by the input name parameter, hasn't been loaded on this

device. */

 exception InvalidFunction {

 };

 /* This type defines a process number within the system.

The process number is unique to the Processor operating system

that created the process. */

 typedef long ProcessID_Type;

SCA version 2.2.2 FINAL / 15 May 2006

 C-31

 /* The InvalidParameters exception indicates that input

parameters are invalid for the execute operation. Each

parameter's ID and value must be a valid string type. The

invalidParms is a list of invalid parameters specified in the

execute operation. */

 exception InvalidParameters {

 CF::Properties invalidParms;

 };

 /* The InvalidOptions exception indicates the input

options are invalid on the execute operation. The invalidOpts is

a list of invalid options specified in the execute operation. */

 exception InvalidOptions {

 CF::Properties invalidOpts;

 };

 /* The STACK_SIZE_ID is the identifier for the

ExecutableDevice's execute options parameter. */

 const string STACK_SIZE_ID = "STACK_SIZE";

 /* The PRIORITY_ID is the identifier for the

ExecutableDevice's execute options parameters. */

 const string PRIORITY_ID = "PRIORITY";

 /* The ExecuteFail exception indicates that an attempt

to invoke the execute operation on a device failed. The message

provides additional information describing the reason for the

error. */

 exception ExecuteFail {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The terminate operation provides the mechanism for

terminating the execution of a process/thread on a specific device

that was started up with the execute operation. */

 void terminate (

 in CF::ExecutableDevice::ProcessID_Type processId

)

 raises (CF::ExecutableDevice::InvalidProcess,

 CF::Device::InvalidState);

SCA version 2.2.2 FINAL / 15 May 2006

 C-32

 /* The execute operation provides the mechanism for

starting up and executing a software process/thread on a device.

*/

 CF::ExecutableDevice::ProcessID_Type execute (

 in string name,

 in CF::Properties options,

 in CF::Properties parameters

)

 raises (CF::Device::InvalidState,

 CF::ExecutableDevice::InvalidFunction,

 CF::ExecutableDevice::InvalidParameters,

 CF::ExecutableDevice::InvalidOptions,

 CF::InvalidFileName,

 CF::ExecutableDevice::ExecuteFail);

 };

 /* The DeviceManager interface is used to manage a set of

logical Devices and services. */

 interface DeviceManager : PropertySet, PortSupplier {

 /* This structure provides the object reference and name

of services that have registered with the DeviceManager. */

 struct ServiceType {

 Object serviceObject;

 string serviceName;

 };

 /* This type provides an unbounded sequence of

ServiceType structures for services that have registered with the

DeviceManager. */

 typedef sequence <ServiceType> ServiceSequence;

 /* The deviceConfigurationProfile attribute contains the

DeviceManager's profile, a profile element with a file reference

to the DeviceManager's Device Configuration Descriptor (DCD)

profile. */

 readonly attribute string deviceConfigurationProfile;

SCA version 2.2.2 FINAL / 15 May 2006

 C-33

 /* The fileSys attribute contains the FileSystem

associated with this DeviceManager or a nil CORBA object reference

if no FileSystem is associated with this DeviceManager. */

 readonly attribute CF::FileSystem fileSys;

 /* The identifier attribute contains the instance-unique

identifier for a DeviceManager. The identifier is identical to

the deviceconfiguration element id attribute of the

DeviceManager's Device Configuration Descriptor (DCD) file. */

 readonly attribute string identifier;

 /* The label attribute contains the DeviceManager's

label. The label attribute is the meaningful name given to a

DeviceManager. */

 readonly attribute string label;

 /* The registeredDevices attribute contains a list of

Devices that have registered with this DeviceManager or a sequence

of length zero if no Devices have registered with the

DeviceManager. */

 readonly attribute CF::DeviceSequence registeredDevices;

 /* The registeredServices attribute contains a list of

Services that have registered with this DeviceManager or a

sequence of length zero if no Services have registered with the

DeviceManager. */

 readonly attribute CF::DeviceManager::ServiceSequence

registeredServices;

 /* The registerDevice operation provides the mechanism

to register a Device with a DeviceManager. */

 void registerDevice (

 in CF::Device registeringDevice

)

 raises (CF::InvalidObjectReference);

 /* This operation unregisters a Device from a

DeviceManager. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-34

 void unregisterDevice (

 in CF::Device registeredDevice

)

 raises (CF::InvalidObjectReference);

 /* The shutdown operation provides the mechanism to

terminate a DeviceManager, unregistering it from the

DomainManager. */

 void shutdown ();

 /* The registerService operation provides mechanisms to

register a Service with a DeviceManager and its DomainManager. */

 void registerService (

 in Object registeringService,

 in string name

)

 raises (CF::InvalidObjectReference);

 /* This operation provides mechanisms to unregister a

Service from a DeviceManager and its DomainManager. */

 void unregisterService (

 in Object unregisteringService,

 in string name

)

 raises (CF::InvalidObjectReference);

 /* The getComponentImplementationId operation returns

the SPD implementation ID that the DeviceManager interface used to

create a component. */

 string getComponentImplementationId (

 in string componentInstantiationId

);

 };

};

#endif

SCA version 2.2.2 FINAL / 15 May 2006

 C-35

C.2 PORTTYPES MODULE.

This CORBA Module contains a set of unbundled CORBA sequence types based on CORBA types

not in the CF CORBA Module.

//Source file: PortTypes.idl

#ifndef __PORTTYPES_DEFINED

#define __PORTTYPES_DEFINED

module PortTypes {

 /* This type is a unbounded sequence of booleans. */

 typedef sequence <boolean> BooleanSequence;

 /* This type is a unbounded sequence of characters. */

 typedef sequence <char> CharSequence;

 /* This type is a unbounded sequence of doubles. */

 typedef sequence <double> DoubleSequence;

 /* This type is a unbounded sequence of longlongs. */

 typedef sequence <long long> LongLongSequence;

 /* This type is a unbounded sequence of longs. */

 typedef sequence <long> LongSequence;

 /* This type is a unbounded sequence of shorts. */

 typedef sequence <short> ShortSequence;

 /* This type is a unbounded sequence of unsigned long longs.

*/

 typedef sequence <unsigned long long> UlongLongSequence;

 /* This type is a unbounded sequence of unsigned longs. */

 typedef sequence <unsigned long> UlongSequence;

 /* This type is a unbounded sequence of unsigned shorts. */

 typedef sequence <unsigned short> UshortSequence;

 /* This type is a unbounded sequence of floats. */

 typedef sequence <float> FloatSequence;

};

#endif

SCA version 2.2.2 FINAL / 15 May 2006

 C-36

C.3 STANDARDEVENT MODULE.

The StandardEvent module contains the types necessary for a standard event producer to generate

standard SCA events as depicted in Figure C-2.

ADMINISTRATIVE_STATE_EVENT.

OPERATIONAL_STATE_EVENT

USAGE_STATE_EVENT

«enumeration»

StateChangeCatagoryType

LOCKED

UNLOCKED

SHUTTING_DOWN

ENABLED

DISABLED

IDLE

ACTIVE

BUSY

«enumeration»

StateChangeType

producerId : string(idl)

sourceId : string(idl)

stateChangeCatagory : StateChangeCatagoryType

stateChangeFrom : StateChangeType

stateChangeTo : StateChangeType

«struct»

StateChangeEventType

DEVICE_MANAGER

DEVICE

APPLICATION_FACTORY

APPLICATION

SERVICE

«enumeration»

SourceCategoryType

producerId : string(idl)

sourceId : string(idl)

sourceName : string(idl)

sourceCategory : SourceCategoryType

«struct»

DomainManagementObjectRemovedEventType

producerId : string(idl)

sourceId : string(idl)

sourceName : string(idl)

sourceCategory : SourceCategoryType

sourceIOR : object(idl)

«struct»

DomainManagementObjectAddedEventType

«uses» «uses»

«uses»
«uses»

Figure C-2: StandardEvent Module

//Source file: StandardEvent.idl

#ifndef __STANDARDEVENT_DEFINED

#define __STANDARDEVENT_DEFINED

SCA version 2.2.2 FINAL / 15 May 2006

 C-37

module StandardEvent {

 /* Type StateChangeCategoryType is an enumeration that is

utilized in the StateChangeEventType. It is used to identify the

category of state change that has occurred. */

 enum StateChangeCategoryType {

 ADMINISTRATIVE_STATE_EVENT,

 OPERATIONAL_STATE_EVENT,

 USAGE_STATE_EVENT

 };

 /* Type StateChangeType is an enumeration that is utilized in

the StateChangeEventType. It is used to identify the specific

states of the event source before and after the state change

occurred. */

 enum StateChangeType {

 LOCKED,

 UNLOCKED,

 SHUTTING_DOWN,

 ENABLED,

 DISABLED,

 IDLE,

 ACTIVE,

 BUSY

 };

 /* Type StateChangeEventType is a structure used to indicate

that the state of the event source has changed. The event producer

will send this structure into an event channel on behalf of the

event source. */

 struct StateChangeEventType {

 string producerId;

 string sourceId;

 StandardEvent::StateChangeCategoryType

stateChangeCategory;

 StandardEvent::StateChangeType stateChangeFrom;

 StandardEvent::StateChangeType stateChangeTo;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-38

 /* Type SourceCategoryType is an enumeration that is utilized

in the DomainManagementObjectAddedEventType and

DomainManagementObjectRemovedEventType. Is used to identify the

type of object that has been added to or removed from the domain.

*/

 enum SourceCategoryType {

 DEVICE_MANAGER,

 DEVICE,

 APPLICATION_FACTORY,

 APPLICATION,

 SERVICE

 };

 /* Type DomainManagementObjectRemovedEventType is a structure

used to indicate that the event source has been removed from the

domain. The event producer will send this structure into an event

channel on behalf of the event source. */

 struct DomainManagementObjectRemovedEventType {

 string producerId;

 string sourceId;

 string sourceName;

 StandardEvent::SourceCategoryType sourceCategory;

 };

 /* Type DomainManagementObjectAddedEventType is a structure

used to indicate that the event source has been added to the

domain. The event producer will send this structure into an event

channel on behalf of the event source. */

 struct DomainManagementObjectAddedEventType {

 string producerId;

 string sourceId;

 string sourceName;

 StandardEvent::SourceCategoryType sourceCategory;

 Object sourceIOR;

 };

};

#endif

		Software Communications Architecture Specification

		Appendix C: Core Framework IDL

		Revision Summary

		Table of Contents

		Appendix C Core Framework IDL

		C.1 Core Framework IDL

		C.2 PortTypes Module.

		C.3 StandardEvent Module.

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

APPENDIX D: DOMAIN PROFILE

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

 D-ii

REVISION SUMMARY

Version Revision

1.0 release for prototype implementation and validation

1.0.1

correction of XML syntax errors; deleted deploymentattributedefinition element

(D.4.2), which was redundant with simple (with the addition of action element to

simple) and more in line with the CORBA components spec.; deleted

deploymentattribute (D.4.3) for same reason; changed deploymentattributedef element

to propertyref (D.2.1.8.10.1) for consistency with those changes; changed "access" to

"io" to be consistent with SCAS terminology; added softpkgrefid attribute to SPD and

SAD to allow profile to refer to a file already loaded in radio; clarified the initial

implied value of the enumeration element (D.4.1.1.6); corrected and clarified

description of ports element in D.5.1.4.2.

Added section D.7 and Attachment 1 for complete DTDs.

1.1
Incorporate approved Change Proposals, numbers 162, 163, 164, 165, 166, 167, 168,

169, 170, 171, 172, 173, 174, 176, 202, 203, 212, 214, 216.

2.0 Incorporate approved Change Proposals, numbers 152, 270, 281, 308, 309, 318, 321.

2.1
Incorporate approved Change Proposals, numbers 88, 183, 306, 355, 384, 468 also

complete some changes from CP 88, 142, 318, 473, 477 not incorporated in v2.0.

2.2 Incorporate approved Change Proposals, numbers 388, 415, 486, 495, 499, 512

2.2.1 Incorporate approved Change Proposals, SCA-CCM numbers 3, 73, 106, 80

2.2.2 Incorporate Change Proposals 85, 97, 124, 182, 194, 234, 284, 323

SCA version 2.2.2 FINAL / 15 May 2006

 D-iii

TABLE OF CONTENTS

APPENDIX D. DOMAIN PROFILE ... D-1

D.1 Deployment Overview .. D-1

D.2 Software Package Descriptor ... D-4

D.2.1 Software Package .. D-4

D.2.1.1 title ... D-5

D.2.1.2 author ... D-5

D.2.1.3 description .. D-6

D.2.1.4 propertyfile ... D-6

D.2.1.4.1 localfile .. D-7

D.2.1.5 descriptor.. D-7

D.2.1.6 implementation .. D-7

D.2.1.6.1 propertyfile .. D-8

D.2.1.6.2 description ... D-9

D.2.1.6.3 code ... D-9

D.2.1.6.4 compiler .. D-10

D.2.1.6.5 programminglanguage .. D-10

D.2.1.6.6 humanlanguage ... D-11

D.2.1.6.7 os ... D-11

D.2.1.6.8 processor ... D-11

D.2.1.6.9 dependency .. D-11

D.2.1.6.10 runtime .. D-13

D.2.1.7 usesdevice .. D-13

D.2.1.7.1 propertyref .. D-13

D.3 Device Package Descriptor ... D-14

D.3.1 Device Package ... D-14

D.3.1.1 title ... D-15

D.3.1.2 author ... D-15

D.3.1.3 description .. D-15

SCA version 2.2.2 FINAL / 15 May 2006

 D-iv

D.3.1.4 hwdeviceregistration .. D-15

D.3.1.4.1 propertyfile .. D-16

D.3.1.4.2 description ... D-17

D.3.1.4.3 manufacturer ... D-17

D.3.1.4.4 modelnumber ... D-17

D.3.1.4.5 deviceclass .. D-17

D.3.1.4.6 childhwdevice .. D-17

D.3.1.4.7 hwdeviceregistration ... D-18

D.3.1.4.8 devicepkgref .. D-18

D.4 Properties Descriptor .. D-19

D.4.1 properties .. D-19

D.4.1.1 simple ... D-19

D.4.1.1.1 description ... D-20

D.4.1.1.2 value .. D-21

D.4.1.1.3 units ... D-21

D.4.1.1.4 range ... D-21

D.4.1.1.5 enumerations ... D-21

D.4.1.1.6 kind .. D-21

D.4.1.1.7 action ... D-22

D.4.1.2 simplesequence .. D-23

D.4.1.3 test .. D-24

D.4.1.3.1 inputvalue .. D-24

D.4.1.3.2 resultvalue ... D-25

D.4.1.4 struct ... D-25

D.4.1.4.1 configurationkind .. D-26

D.4.1.5 structsequence .. D-26

D.5 Software Component Descriptor ... D-28

D.5.1 softwarecomponent ... D-28

D.5.1.1 corbaversion ... D-29

D.5.1.2 componentrepid .. D-29

D.5.1.3 componenttype ... D-29

D.5.1.4 componentfeatures ... D-29

SCA version 2.2.2 FINAL / 15 May 2006

 D-v

D.5.1.4.1 supportsinterface ... D-30

D.5.1.4.2 ports .. D-30

D.5.1.5 interfaces .. D-31

D.5.1.6 propertyfile ... D-31

D.6 Software Assembly Descriptor... D-33

D.6.1 softwareassembly .. D-33

D.6.1.1 description .. D-34

D.6.1.2 componentfiles ... D-34

D.6.1.2.1 componentfile .. D-34

D.6.1.3 partitioning ... D-34

D.6.1.3.1 componentplacement ... D-35

D.6.1.3.2 componentfileref .. D-35

D.6.1.3.3 componentinstantiation ... D-36

D.6.1.3.4 hostcollocation .. D-39

D.6.1.4 assemblycontroller ... D-40

D.6.1.5 connections .. D-40

D.6.1.5.1 connectinterface .. D-40

D.6.1.6 externalports ... D-46

D.7 Device Configuration Descriptor ... D-48

D.7.1 deviceconfiguration... D-48

D.7.1.1 description .. D-49

D.7.1.2 devicemanagersoftpkg ... D-49

D.7.1.3 componentfiles ... D-49

D.7.1.4 partitioning ... D-49

D.7.1.4.1 componentplacement ... D-49

D.7.1.5 connections .. D-53

D.7.1.6 domainmanager .. D-53

D.7.1.7 filesystemnames ... D-53

D.8 DomainManager Configuration Descriptor ... D-54

D.8.1 domainmanagerconfiguration ... D-54

D.8.1.1 description .. D-55

D.8.1.2 domainmanagersoftpkg .. D-55

SCA version 2.2.2 FINAL / 15 May 2006

 D-vi

D.8.1.3 services ... D-55

D.9 Profile Descriptor .. D-56

D.10 Document Type Definitions .. D-56

SCA version 2.2.2 FINAL / 15 May 2006

 D-vii

LIST OF FIGURES

Figure D-1. Relationships Between Domain Profile XML File Types D-2

Figure D-2. softpkg Element Relationships ... D-4

Figure D-3: author Element Relationships ... D-6

Figure D-4. implementation Element Relationships .. D-8

Figure D-5. code Element Relationships ... D-10

Figure D-6. dependency Element Relationships .. D-12

Figure D-7. softpkgref Element Relationships ... D-12

Figure D-8. devicepkg Element Relationships ... D-14

Figure D-9. hwdeviceregistration Element Relationships ... D-16

Figure D-10. childhwdevice Element Relationships .. D-18

Figure D-11. properties Element Relationships .. D-19

Figure D-12. simple Element Relationships .. D-20

Figure D-13. simplesequence Element Relationships .. D-23

Figure D-14. test Element Relationships ... D-24

Figure D-15. struct Element Relationships .. D-25

Figure D-16. structsequence Element Relationships ... D-27

Figure D-17. softwarecomponent Element Relationships ... D-28

Figure D-18. componentfeatures Element Relationships .. D-29

Figure D-19. ports Element Relationships... D-30

Figure D-20. softwareassembly Element Relationships .. D-33

Figure D-21. partitioning Element Relationships .. D-35

Figure D-22. componentplacement Element Relationships ... D-35

Figure D-23. componentinstantiation Element Relationships ... D-37

Figure D-24. componentproperties Element Relationships ... D-37

Figure D-25. findcomponent Element Relationships ... D-38

Figure D-26. resourcefactoryproperties Element Relationships ... D-38

Figure D-27. connectinterface Element Relationships .. D-40

Figure D-28. usesport Element Relationships ... D-41

Figure D-29. findby Element Relationships ... D-42

SCA version 2.2.2 FINAL / 15 May 2006

 D-viii

Figure D-30. providesport Element Relationships .. D-44

Figure D-31. componentsupportedinterface Element Relationships D-45

Figure D-32. port Element Relationships .. D-46

Figure D-33. deviceconfiguration Element Relationships ... D-48

Figure D-34. componentplacement Element Relationships ... D-50

Figure D-35. componentinstantiation Element Relationships ... D-51

Figure D-36. componentproperties Element Relationships ... D-52

Figure D-37. domainmanager Element Relationships ... D-53

Figure D-38. domainmanagerconfiguration Element Relationships D-54

Figure D-39. service Element Relationships ... D-55

SCA version 2.2.2 FINAL / 15 May 2006

 D-1

APPENDIX D. DOMAIN PROFILE

The Software Communications Architecture (SCA) specification provides architectural

specifications for the deployment of communications software into a Software Definable Radio

(SDR) device. The intent of the SDR device is to provide a re-configurable platform, which can

host software components written by various vendors to support user functional services. The

SCA specification requires portable software components to provide common information called

a domain profile. The intent of this appendix is to clearly define to the component developers

the requirements of information and format for the delivery of this information. The domain

management functions use the component deployment information expressed in the Domain

Profile. The information is used to start, initialize, and maintain the applications that are

installed into the SCA-compliant system.

This appendix has been designed to follow the philosophy of the CORBA Components

Specification (OMG version 3.0, formal/02-06-65: Chapter 6 - Packaging and Deployment).

Due to the differences between the SCA Core Framework IDL and the CORBA Components

Specification IDL, it was necessary to modify some of the deployment principles for use in the

SCA. This specification defines the XML Document Type Definition (DTD) set for use in

deploying SCA components. The complete DTD set is contained in Attachment 1 to this

Appendix.

D.1 DEPLOYMENT OVERVIEW

The hardware devices and software components that make up an SCA system domain are

described by a set of XML descriptor files that are collectively referred to as a Domain Profile.

A Software Profile is the complete set of XML files needed to describe a particular software

component – the composition depending on the type of component being described. These

descriptor files describe the identity, capabilities, properties, and inter-dependencies of the

hardware devices and software components that make up the system. All of the descriptive data

about a system is expressed in the XML vocabulary. For purposes of this SCA specification, the

elements of the XML vocabulary have been based upon the OMG’s CORBA Components

specification (orbos/99-07-01).

Figure D-1 depicts the relationships between the descriptor files that are used to describe a

system's hardware and software assets. The XML vocabulary within each of these files describes

a distinct aspect of the hardware and software assets.

Within the Domain Profile, all CORBA software elements of the system are described by a

Software Package Descriptor (SPD) and a Software Component Descriptor (SCD) file.

The software profile for an application consists of one SAD file that references (directly or

indirectly) one or more SPD, SCD, and properties (PRF) files. An SPD file contains the details

of an application’s software module that must be loaded and executed..

The SPD provides identification of the software (title, author, etc.) as well as the name of the

code file (executable, library or driver), implementation details (language, OS, etc.),

configuration and initialization properties (contained in a Properties File), dependencies to other

SPDs and devices, and a reference to a Software Component Descriptor. The SPD also specifies

SCA version 2.2.2 FINAL / 15 May 2006

 D-2

the Device implementation requirements for loading dependencies (processor kind, etc.) and

processing capacities (e.g., memory, process) for the application software module.

The Software Component Descriptor (SCD) defines the CORBA interfaces supported and used

by a specific component.

Domain Profile

«DTDElement»

Device Configuration Descriptor

«DTDElement»

Domain Manager Configuration Descriptor

«DTDElement»

Software Assembly Descriptor

«DTDElement»

Software Package Descriptor

0..n 1 0..n

1..n

1..n
1

0..1

0..n

«DTDElement»

Device Package Descriptor

«DTDElement»

Software Component Descriptor

0..1

«DTDElement»

Properties Descriptor
0..1

0..1

«DTDElement»

Properties Descriptor

«DTDElement»

Properties Descriptor

Figure D-1. Relationships Between Domain Profile XML File Types

Since applications are composed of multiple SW components a Software Assembly Descriptor

(SAD) file is defined to determine the composition and configuration of the application. The

SAD references all SPDs needed for this application, defines required connections between

application components (connection of provides and uses ports / interfaces), defines needed

connections to devices and services, provides additional information on how to locate the needed

devices and services, defines any co-location (deployment) dependencies, and identifies a single

component within the application as the assembly controller.

SCA version 2.2.2 FINAL / 15 May 2006

 D-3

Similar to the application SAD, a device manager has an associated Device Configuration

Descriptor (DCD) file. The DCD identifies all devices and services associated with this device

manager, by referencing the associated SPDs. The DCD also defines properties of the specific

device manager, enumerates the needed connections to services (file systems), and provides

additional information on how to locate the domain manager. In addition to an SPD, a device

may have a Device Package Descriptor (DPD) file which provides a description of the hardware

device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the domain manager is itself described by the DomainManager

Configuration Descriptor (DMD) which provides the location of the (SPD) file for the specific

DomainManager implementation to be loaded. It also specifies the connections to other software

components (services and devices) which are required by the domain manager.

SCA version 2.2.2 FINAL / 15 May 2006

 D-4

D.2 SOFTWARE PACKAGE DESCRIPTOR

The Software Package Descriptor is used at deployment time to load a component and its various

implementations. The information contained in the Software Package Descriptor will provide

the basis for the domain management function to manage the component within the SCA

architecture.

The software package descriptor may contain various implementations of any given component.

Within the specification of a software package descriptor several other files are referenced

including a component level propertyfile and a software component descriptor file. Within any

given implementation there may be additional propertyfiles.

D.2.1 Software Package

The softpkg element (Figure D-2) indicates a Software Package Descriptor (SPD) definition.

The softpkg id uniquely identifies the package and is a DCE UUID. The DCE UUID is as

defined by the DCE UUID standard (adopted by CORBA). The DCE UUID format starts with

the characters "DCE:" and is followed by the printable form of the UUID, a colon, and a decimal

minor version number, for example: "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1". The

decimal minor version number is optional. The version attribute specifies the version of the

component. The name attribute is a user-friendly label for the softpkg element. The type

attribute indicates whether or not the component implementation is SCA compliant. All files

referenced by a Software Package are located in the same directory as the SPD file or a directory

that is relative to the directory where the SPD file is located.

Figure D-2. softpkg Element Relationships

The set of properties to be used for a Software Package come from the union of these properties

sources using the following precedence order:

SCA version 2.2.2 FINAL / 15 May 2006

 D-5

1. SPD Implementation Properties

2. SPD level properties

3. SCD properties

Any duplicate properties having the same ID are ignored. Duplicated properties must be the

same property type, only the value can be over-ridden. The implementation properties are only

used for the initial configuration and creation of a component by the CF ApplicationFactory and

cannot be referenced by a SAD componentinstantiation, componentproperties or

resourcefactoryproperties element.

<!ELEMENT softpkg

 (title?

 , author+

 , description?

 , propertyfile?

 , descriptor?

 , implementation+

 , usesdevice*

)>

<!ATTLIST softpkg

id ID #REQUIRED

name CDATA #REQUIRED

type (sca_compliant | sca_non_compliant) "sca_compliant"

version CDATA #IMPLIED >

D.2.1.1 title

The title element is used for indicating a title for the software component being installed in

accordance with the softpkg element.

<!ELEMENT title (#PCDATA)>

D.2.1.2 author

The author element (see Figure D-3) will be used to indicate the name of the person, the

company, and the web page of the developer producing the component being installed into the

system.

SCA version 2.2.2 FINAL / 15 May 2006

 D-6

author

<<DTDElement>>

name

<<DTDElementPCDATA>>

company

<<DTDElementPCDATA>>

webpage

<<DTDElementPCDATA>>

author_grp

(from author)

<<DTDSequenceGroup>>

0..n0..n

{1}

0..10..1

{2}

0..10..1

{3}

Figure D-3: author Element Relationships

<!ELEMENT author

 (name*

 , company?

 , webpage?

)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT webpage (#PCDATA)>

D.2.1.3 description

The description element will be used to describe any pertinent information about the software

component being delivered to the system.

<!ELEMENT description (#PCDATA)>

D.2.1.4 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file

associated with the Software Package. The intent of the propertyfile will be to provide the

definition of properties elements common to all component implementations being deployed in

accordance with the Software Package (softpkg).Property Descriptor files may also contain

properties elements that are used in definition of command and control id value pairs used by the

SCA Resource configure() and query() interfaces. The format of the properties element is

described in the Properties Descriptor (Section D.4).

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

SCA version 2.2.2 FINAL / 15 May 2006

 D-7

D.2.1.4.1 localfile

The localfile element is used to reference a file in the same directory as the SPD file or a

directory that is relative to the directory where the SPD file is located. When the name attribute

is a simple name, the file exists in the same directory as the SPD file. A relative directory

indication begins either with “../” meaning parent directory and “./” means current directory in

the name attribute. Multiple “../” and directory names can follow the initial “../” in the name

attribute. All name attributes must have a simple name at the end of the file name.

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

D.2.1.5 descriptor

The descriptor element points to the local filename of the Software Component Descriptor

(SCD) file used to document the interface information for the component being delivered to the

system. In the case of an SCA Component, the SCD will contain information about three aspects

of the component (the component type, message ports, and IDL interfaces). The SCD file is

optional, since some SCA components are non-CORBA components, like digital signal

processor (DSP) “c” code (see section on software component descriptor file, section D.5).

<!ELEMENT descriptor

 (localfile

)>

<!ATTLIST descriptor

 name CDATA #IMPLIED>

D.2.1.6 implementation

The implementation element (see Figure D-4) contains descriptive information about the

particular implementation template for a software component contained in the softpkg element.

The implementation element is intended to allow multiple component templates to be delivered

to the system in one Software Package. Each implementation element is intended to allow the

same component to support different types of processors, operating systems, etc. The

implementation element will also allow definition of implementation-dependent properties for

use in CF Device, CF Application, or CF Resource creation. The implementation element’s id

attribute uniquely identifies a specific implementation of the component and is a DCE UUID

value, as stated in section D.2.1. The compiler, programminglanguage, humanlanguage, os,

processor, and runtime elements are optional dependency elements.

SCA version 2.2.2 FINAL / 15 May 2006

 D-8

Figure D-4. implementation Element Relationships

<!ELEMENT implementation

 (description?

 , propertyfile?

 , code

 , compiler?

 , programminglanguage?

 , humanlanguage?

 , runtime?

 , (os | processor | dependency)+

, usesdevice*

)>

<!ATTLIST implementation

 id ID #REQUIRED

aepcompliance (aep_compliant | aep_non_compliant)

“aep_compliant”>

D.2.1.6.1 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file

associated with this component package described by the implementation element. Although the

SCA specification does not restrict the specific use of the Property Descriptor file based on

context, it is intended within the implementation element to provide component implementation

specific properties elements for use in command and control id value pair settings to the CF

Resource configure() and query() interfaces. See the description of the properties element

format in the Properties Descriptor, section D.4.

SCA version 2.2.2 FINAL / 15 May 2006

 D-9

<!ELEMENT propertyfile

 (localfile

)>

<!ATTLIST propertyfile

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

D.2.1.6.2 description

The description element will be used to describe any pertinent information about the software

component implementation that the software developer wishes to document within the software

package profile.

<!ELEMENT description (#PCDATA)>

D.2.1.6.3 code

The code element (see Figure D-5) will be used to indicate the local filename of the code that is

described by the softpkg element, for a specific implementation of the software component. The

stack size and priority are options parameters used by the CF ExecutableDevice execute

operation. Data types for the values of these options are unsigned long. The type attribute for

the code element will also indicate the type of file being delivered to the system. The entrypoint

element provides the means for providing the name of the entry point of the component being

delivered. The valid values for the type attribute are: “Executable”, “KernelModule”,

“SharedLibrary”, and “Driver.”

The meaning of the code type attribute:

1. Executable means to use CF LoadableDevice::load and CF ExecutableDevice::execute

operations. This is a “main” process.

2. Driver and Kernel Module means load only.

3. SharedLibrary means dynamic linking.

4. Without a code entrypoint element means load only.

5. With a code entrypoint element means load and CF Device::execute.

SCA version 2.2.2 FINAL / 15 May 2006

 D-10

Figure D-5. code Element Relationships

<!ELEMENT code

 (localfile

 , entrypoint?

, stacksize?

 , priority?

)>

<!ATTLIST code

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT entrypoint (#PCDATA)>

<!ELEMENT stacksize (#PCDATA)>

<!ELEMENT priority (#PCDATA)>

D.2.1.6.4 compiler

The compiler element will be used to indicate the compiler used to build the software component

being described by the softpkg element. The required name attribute will specify the name of the

compiler used, and the version attribute will contain the compiler version.

<!ELEMENT compiler EMPTY>

<!ATTLIST compiler

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

D.2.1.6.5 programminglanguage

The programminglanguage element will be used to indicate the type of programming language

used to build the component implementation. The required name attribute will specify a

language such as “c”, “c++”, or “java”.

SCA version 2.2.2 FINAL / 15 May 2006

 D-11

<!ELEMENT programminglanguage EMPTY>

<!ATTLIST programminglanguage

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

D.2.1.6.6 humanlanguage

The humanlanguage element will be used to indicate the human language for which the software

component was developed.

<!ELEMENT humanlanguage EMPTY>

<!ATTLIST humanlanguage

 name CDATA #REQUIRED>

D.2.1.6.7 os

The os element will be used to indicate the operating system on which the software component is

capable of operating. The required name attribute will indicate the name of the operating system

and the version attribute will contain the operating system. The os attributes will be defined in a

property file as an allocation property of string type and with names os_name and os_version and

with an action element value other than “external”. The os element is automatically interpreted

as a dependency and compared against allocation properties with names of os_name and

os_version. Legal os_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT os EMPTY>

<!ATTLIST os

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

D.2.1.6.8 processor

The processor element will be used to indicate the processor and/or processor family on which

this software component will operate. The processor name attribute will be defined in a property

file as an allocation property of string type and with a name of processor_name and with an

action element value other than “external”. The processor element is automatically interpreted

as a dependency and compared against an allocation property with a name of processor_name.

Legal processor_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT processor EMPTY>

<!ATTLIST processor

 name CDATA #REQUIRED>

D.2.1.6.9 dependency

The dependency element (see Figure D-6) is used to indicate the dependent relationships

between the components being delivered and other components and devices, in an SCA

compliant system. The softpkgref element is used to specify a Software Package file that must

be resident within the system for the component, described by this softpkg element, to load

without errors. The propertyref will reference a specific allocation property, using a unique

identifier, and provide the value that will be used by a CF Device capacity model. The CF

DomainManager will use these dependency definitions to assure that components and devices

SCA version 2.2.2 FINAL / 15 May 2006

 D-12

that are necessary for proper operation of the implementation are present and available. The type

attribute is descriptive information indicating the type of dependency.

Figure D-6. dependency Element Relationships

<!ELEMENT dependency

 (softpkgref | propertyref)>

<!ATTLIST dependency

type CDATA #REQUIRED>

D.2.1.6.9.1 softpkgref

The softpkgref element (see Figure D-7) refers to a softpkg element contained in another

Software Package Descriptor file and indicates a file-load dependency on that file. The other file

is referenced by the localfile element. An optional implref element refers to a particular

implementation-unique identifier, within the Software Package Descriptor of the other file.

Figure D-7. softpkgref Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-13

<!ELEMENT softpkgref

 (localfile

 , implref?

)>

<!ELEMENT implref EMPTY>

<!ATTLIST implref

 refid CDATA #REQUIRED>

D.2.1.6.9.2 propertyref

The propertyref element is used to indicate a unique refid attribute that references a simple

allocation property, defined in the package, and a property value attribute used by the domain

Management function to perform the dependency check. This refid is a DCE UUID, as specified

in section D.2.1.

<!ELEMENT propertyref EMPTY>

<!ATTLIST propertyref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

D.2.1.6.10 runtime

The runtime element specifies a runtime required by a component implementation. An example

of the runtime is a Java VM.

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime

 name CDATA #REQUIRED>

 version CDATA #IMPLIED>

D.2.1.7 usesdevice

The usesdevice element describes any “uses” relationships this component has with a device in

the system. The propertyref element references allocation properties, which indicate the CF

Device to be used, and/or the capacity needed from the CF Device to be used.

<!ELEMENT usesdevice

 (propertyref+)>

<!ATTLIST usesdevice

 id ID #REQUIRED

 type CDATA #REQUIRED>

D.2.1.7.1 propertyref

See D.2.1.6.9.2 for a definition of the propertyref element.

SCA version 2.2.2 FINAL / 15 May 2006

 D-14

D.3 DEVICE PACKAGE DESCRIPTOR

The SCA Device Package Descriptor (DPD) is the part of a Device Profile that contains

hardware device Registration attributes, which are typically used by a Human Computer

Interface application to display information about the device(s) resident in an SCA-compliant

radio system. DPD information is intended to provide hardware configuration and revision

information to a radio operator or to radio maintenance personnel. A DPD may be used to

describe a single hardware element residing in a radio or it may be used to describe the complete

hardware structure of a radio.

D.3.1 Device Package

The devicepkg element (see Figure D-8) is the root element of the DPD. The devicepkg id

attribute uniquely identifies the package and is a DCE UUID, as defined in paragraph D.2.1. The

version attribute specifies the version of the devicepkg. The format of the version string is

numerical major and minor version numbers separated by commas (e.g., "1,0,0,0"). The name

attribute is a user-friendly label for the devicepkg.

Figure D-8. devicepkg Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-15

<!ELEMENT devicepkg

(title?

, author+

, description?

, hwdeviceregistration

)>

<!ATTLIST devicepkg

id ID #REQUIRED

name CDATA #REQUIRED

version CDATA #IMPLIED>

D.3.1.1 title

The title element is used for indicating a title for the hardware device being described by

devicepkg.

<!ELEMENT title (#PCDATA)>

D.3.1.2 author

See D.2.1.2 for a definition of the author element.

D.3.1.3 description

The description element is used to describe any pertinent information about the device

implementation that the hardware developer wishes to document within the Device Package.

<!ELEMENT description (#PCDATA)>

D.3.1.4 hwdeviceregistration

The hwdeviceregistration element (see Figure D-9) provides device-specific information for a

hardware device. The hwdeviceregistration id attribute uniquely identifies the device and is a

DCE UUID, as defined in paragraph D.2.1. The version attribute specifies the version of the

hwdeviceregistration element. The format of the version string is numerical major and minor

version numbers separated by commas (e.g., "1,0,0,0"). The name attribute is a user-

friendlylabel for the hardware device being registered. At a minimum, the hwdeviceregistration

element must include a description, the manufacturer, the model number and the device’s

hardware class(es).

SCA version 2.2.2 FINAL / 15 May 2006

 D-16

Figure D-9. hwdeviceregistration Element Relationships

<!ELEMENT hwdeviceregistration

(propertyfile?

, description

, manufacturer

, modelnumber

, deviceclass

, childhwdevice*

)>

<!ATTLIST hwdeviceregistration

id ID #REQUIRED

name CDATA #REQUIRED

version CDATA #IMPLIED>

D.3.1.4.1 propertyfile

The propertyfile element is used to indicate the local filename of the property file associated with

the hwdeviceregistration element. The format of a property file is described in the Properties

Descriptor (Section D.4).

The intent of the property file is to provide the definition of properties elements for the hardware

device being deployed and described in the Device Package (devicepkg) or hwdeviceregistration

element.

SCA version 2.2.2 FINAL / 15 May 2006

 D-17

<!ELEMENT propertyfile

 (localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

D.3.1.4.2 description

See D.2.1.3 for definition of the description element.

D.3.1.4.3 manufacturer

The manufacturer element is used to convey the name of manufacturer of the device being

installed.

<!ELEMENT manufacturer (#PCDATA)>

D.3.1.4.4 modelnumber

The modelnumber element is used to indicate the manufacture's model number, for the device

being installed.

<!ELEMENT modelnumber (#PCDATA)>

D.3.1.4.5 deviceclass

The deviceclass element is used to identify one or more hardware classes that make up the device

being installed.

<!ELEMENT deviceclass

(class+

)>

<!ELEMENT class (#PCDATA)>

D.3.1.4.6 childhwdevice

The childhwdevice element (see Figure D-10) indicates additional device-specific information

for hardware devices that make up the root or parent hardware device registration. An example

of childhwdevice would be a radio's RF module that has receiver and exciter functions within it.

In this case, a CF Device representing the RF module itself would be a parent Device with its

DPD, and the receiver and exciter are child devices to the module. The parent / child

relationship indicates that when the RF module is removed from the system, the receiver and

exciter devices are also removed.

SCA version 2.2.2 FINAL / 15 May 2006

 D-18

Figure D-10. childhwdevice Element Relationships

<!ELEMENT childhwdevice

 (hwdeviceregistration | devicepkgref)>

D.3.1.4.7 hwdeviceregistration

The hwdeviceregistration element provides device-specific information for the child hardware

device. See D.3.1.4 for definition of the hwdeviceregistration element.

D.3.1.4.8 devicepkgref

The devicepkgref element is used to indicate the local filename of a Device Package Descriptor

file pointed to by Device Package Descriptor (e.g., a devicepkg within a devicepkg).

<!ELEMENT devicepkgref

(localfile)>

<!ATTLIST devicepkgref

 type CDATA #IMPLIED>

SCA version 2.2.2 FINAL / 15 May 2006

 D-19

D.4 PROPERTIES DESCRIPTOR

The Properties Descriptor file details component and device attribute settings. For purposes of

the SCA, Property Descriptor files will contain simple, simplesequence, test, struct or

structsequence elements. These elements will be used to describe attributes of a component that

will be used for dependency checking. These elements will also be used for SCA component

values used by a CF Resource component’s configure, query, and runTest operations..

D.4.1 properties

The properties element (see Figure D-11) is used to describe property attributes that will be used

in the configure and query operations for SCA CF Resource components and for definition of

attributes used for dependency checking. The properties element can also used in the CF

TestableObject::runTest operation to configure tests and provide test results.

simple

<<DTDElement>>

simplesequence

<<DTDElement>>

test

<<DTDElement>>

struct

<<DTDElement>>

structsequence

<<DTDElement>>

properties

<<DTDElement>>

properties_grp_grp

(from properties_grp)

<<DTDChoiceGroup>>

properties_grp

(from properties)

<<DTDSequenceGroup>>

1..n1..n
{2}

description

<<DTDElementPCDATA>>

0..10..1
{1}

Figure D-11. properties Element Relationships

<!ELEMENT properties

(description?

 ,(simple | simplesequence | test | struct | structsequence

)+

)>

D.4.1.1 simple

The simple element (see Figure D-12) provides for the definition of a property which includes a

unique id, type, name and mode attributes of the property that will be used in the CF Resource

configure() and query() operations, for indication of component capabilities, or in the CF

TestableObject runTest operation. The simple element is specifically designed to support id-

value pair definitions. A simple property id attribute corresponds to the id of the id-value pair.

SCA version 2.2.2 FINAL / 15 May 2006

 D-20

The value and range of a simple property correspond to the value of the id-value pair. The

optional enumerations element allows for the definition of a label-to-value for a particular

property. The mode attribute defines whether the properties element is “readonly”, “writeonly”

or “readwrite”. The id attribute is an identifier for the simple property element. The id attribute

for a simple property that is an allocation type is a DCE UUID value, as specified in section

D.2.1. The id attribute for all other simple property elements can be any valid XML ID type.

The mode attribute is only meaningful when the type of the kind element is “configure”.

Figure D-12. simple Element Relationships

<!ELEMENT simple

 (description?

, value?

 , units?

 , range?

 , enumerations?

 , kind*

 , action?

)>

<!ATTLIST simple

 id ID #REQUIRED

type (boolean | char | double | float | short | long |

objref | octet | string | ulong | ushort) #REQUIRED

 name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) “readwrite”>

D.4.1.1.1 description

The description element is used to provide a description of the properties element that is being

defined.

SCA version 2.2.2 FINAL / 15 May 2006

 D-21

<!ELEMENT description (#PCDATA)>

D.4.1.1.2 value

The value element is used to provide a value setting to the properties element.

<!ELEMENT value (#PCDATA)>

D.4.1.1.3 units

The units element describes the intended practical data representation to be used for the

properties element.

<!ELEMENT units (#PCDATA)>

D.4.1.1.4 range

The range element describes the specific min and max values that are legal for the simple

element. The intent of the range element is to provide a means to perform range validation.

This element is not used by the CF ApplicationFactory or CF Application implementations.

<!ELEMENT range EMPTY

<!ATTLIST range

 min CDATA #REQUIRED

 max CDATA #REQUIRED>

D.4.1.1.5 enumerations

The enumerations element is used to specify one or more enumeration elements.

<!ELEMENT enumerations

 (enumeration+)>

The enumeration element is used to associate a value attribute with a label attribute..

Enumerations are legal for various integer type properties elements. An Enumeration value is

assigned to a property that implements the CORBA long type. Enumeration values are implied;

if not specified by a developer, the initial implied value is 0 and subsequent values are

incremented by 1.

Note: The advantage of the enumeration element over the sequence element from the CORBA

components specification is that the enumeration element provides a mechanism to associate a

value of a property to a label. The sequence element of the CORBA component specification

does not allow association of values (only lists of sequences).

<!ELEMENT enumeration EMPTY>

<!ATTLIST enumeration

label CDATA #REQUIRED

 value CDATA #IMPLIED>

D.4.1.1.6 kind

The kind element’s kindtype attribute is used to specify the kind of property. The types of

kindtype attributes are:

1. configure, which is used in the configure and query operations of the CF Resource

interface. The application factory will use the configure kind of properties to build the

SCA version 2.2.2 FINAL / 15 May 2006

 D-22

CF Properties input parameter to the configure operation that is invoked on the

assemblycontroller component during application creation. The device manager will use

the configure kind of properties to build the CF Properties input parameter to the

configure operation that is invoked on components implementing the Device interface,

during device creation. The application factory will also use the configure kind of

properties for CF ResourceFactory create options parameters. When the mode is

readonly, only the query behavior is supported. When the mode is writeonly, only the

configure behavior is supported. When the mode is readwrite, both configure and query

are supported.

2. test, which is used in the runTest operation of the CF TestableObject interface. The test

kind of properties will be used as the testValues parameter to the runTest operation that is

invoked on CF Resource components.

3. allocation, which is used in the allocateCapacity and deallocateCapacity operations of

the Device interface. The application factory and device manager will use the simple

properties of kindtype allocation to build the input capacities parameter to the

allocateCapacity operation that is invoked on device components during application

creation, when the action element of those properties is external. The application factory

and device manager manage simple properties of kindtype allocation when the action is

not external. Allocation properties that are external can also be queried using the CF

PropertySet query operation.

4. execparam,. which is used in the execute operations of the Device interface. The CF

ApplicationFactory and DeviceManager will use the execparam kind of properties to

build the CF Properties input parameter to the execute operation that is invoked on the

CF ExecutableDevice components during CF Device and/or CF Application creation.

Only simple elements can be used as execparam types.

5. factoryparam, which is used in the createResource operations of the CF ResourceFactory

interface. The CF ApplicationFactory will use the factoryparam type of properties to

build the CF Properties input parameter to the createResource operation.

A property can have multiple kind elements and the default kindtype is configure.

<!ELEMENT kind EMPTY>

<!ATTLIST kind

kindtype (allocation | configure | test | execparam |

factoryparam) “configure”>

D.4.1.1.7 action

The action element is used to define the type of comparison used to compare an SPD property

value to a device property value, during the process of checking SPD dependencies. The kindtype

attribute of the action element, will determine the type of comparison to be made (e.g., equal, not

equal, greater than, etc.). The default value for kindtype is external.

In principle, the action element defines the operation executed during the comparison of the

allocation property value, provided by an SPD dependency element, to the associated allocation

property value of a CF Device. The allocation property is on the left side of the action and the

dependency value is on the right side of the action. This process allows for the allocation of

SCA version 2.2.2 FINAL / 15 May 2006

 D-23

appropriate objects within the system based on their attributes, as defined by their dependent

relationships.

For example, if a CF Device's properties file defines a DeviceKind allocation property whose

action element is set to "equal", then at the time of dependency checking a valid DeviceKind

property is checked for equality. If a software component implementation is dependent on a

DeviceKind property with its value set to "NarrowBand", then the component's SPD dependency

propertyref element will reference the id of the DeviceKind allocation property with a value of

"NarrowBand". At the time of dependency checking, the CF ApplicationFactory will check CF

Devices whose properties kind element is set to “allocation” and property id is DeviceKind for

equality against a "NarrowBand" value.

<!ELEMENT action EMPTY>

<ATTLIST action

 type (eq | ne | gt | lt | ge | le | external

)"external">

D.4.1.2 simplesequence

The simplesequence element (see Figure D-13) is used to specify a list of properties with the

same characteristics (e.g., type, range, units, etc.). The simplesequence element definition is

similar to the simple element definition except that it has a list of values instead of one value.

The simplesequence element maps to the sequence types for CF and PortTypes CORBA

modules, defined in SCA Appendix C section C.2, based upon the type attribute.

Figure D-13. simplesequence Element Relationships

<!ELEMENT simplesequence

 (description?

 , values?

 , units?

 , range?

 , kind*

 , action?

)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-24

<!ATTLIST simplesequence

 id ID #REQUIRED

type (boolean | char | double | float | short | long |

objref | octet | string | ulong |ushort) #REQUIRED

name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) “readwrite”>

<!ELEMENT values

 (value+)>

D.4.1.3 test

The test element (see Figure D-14) is used to specify a list of test properties for executing the

runTest operation in order to perform a component specific test. This element contains

inputvalue and resultvalue elements and it has an id attribute for grouping test properties to a

specific test. The id attribute will be represented by a numeric value. Inputvalues are used to

configure the test to be performed (e.g., frequency and RF power output level). When the test

has completed, resultvalues contain the results of the testing (e.g., pass or a fault code/message)

Figure D-14. test Element Relationships

<!ELEMENT test

 (description

 , inputvalue?

 , resultvalue

)>

<!ATTLIST test

 id CDATA #REQUIRED>

D.4.1.3.1 inputvalue

The inputvalue element is used to provide test configuration properties. The simple properties it

contains must have a kindtype value of test.

<!ELEMENT inputvalue

 (simple+)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-25

D.4.1.3.2 resultvalue

The resultvalue element is used to specify the desired results of the runTest operation. The

simple properties it contains must have a kindtype value of test.

<!ELEMENT resultvalue

 (simple+)>

D.4.1.4 struct

The struct element (see Figure D-15) is used to group properties with different characteristics

(i.e., similar to a structure or record entry). Each item in the struct element can be a different

simple type (e.g., short, long, etc.). The struct element corresponds to the CF Properties type

where each struct item (ID, value) corresponds to a properties element list item. The properties

element list size is based on the number of struct items.

Figure D-15. struct Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-26

<!ELEMENT struct

(description?

, simple+

, configurationkind?

)>

<!ATTLIST struct

id ID #REQUIRED

name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">”

D.4.1.4.1 configurationkind

The configurationkind element’s kindtype attribute is used to specify the kind of property. The

kindtypes are:

1. configure, which is used in the configure() and query() operations of the SCA Resource

interface. The CF ApplicationFactory and DeviceManager will use the configure kind of

properties to build the CF Properties input parameter to the configure() operation that is

invoked on the CF Resource components during application creation. When the mode is

readonly, only the query behavior is supported. When the mode is writeonly, only the

configure behavior is supported. When the mode is readwrite, both configure and query

are supported.

2. factoryparam, which is used in the createResource operations of the CF ResourceFactory

interface. The CF ApplicationFactory will use the factoryparam kind of properties to

build the CF Properties input parameter to the createResource() operation. A property

can have multiple configurationkind elements and their default kindtype is “configure”.

<!ELEMENT configurationkind EMPTY>

<!ATTLIST configurationkind

kindtype (configure | factoryparam) “configure”>

D.4.1.5 structsequence

The structsequence element (see Figure D-16) is used to specify a list of properties with the same

struct characteristics. The structsequence element maps to a properties element having the CF

Properties type. Each item in the CF Properties type will be the same struct definition as

referenced by the structrefid attribute.

SCA version 2.2.2 FINAL / 15 May 2006

 D-27

Figure D-16. structsequence Element Relationships

<!ELEMENT structsequence

(description?

, structvalue+

, configurationkind?

)>

<!ATTLIST structsequence

id ID #REQUIRED

structrefid CDATA #REQUIRED

name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue

(simpleref+)>

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

SCA version 2.2.2 FINAL / 15 May 2006

 D-28

D.5 SOFTWARE COMPONENT DESCRIPTOR

This descriptor file is based on the CORBA Component Descriptor specification. The SCA

components CF Resource, CF Device, and CF ResourceFactory that are described by the

software component descriptor are based on the SCA CF specification, and the following

specification concentrates on definition of the elements necessary for describing the ports and

interfaces of these components.

D.5.1 softwarecomponent

The softwarecomponent element (see Figure D-17) is the root element of the software

component descriptor file. For use within the SCA the sub-elements that are supported include:

1. corbaversion – indicates which version of CORBA the component is developed for.

2. componentrepid – is the repository id of the component

3. componenttype – identifies the type of software component object

4. componentfeatures – provides the supported message ports for the component

5. interface – describes the component unique id and name for supported interfaces.

Figure D-17. softwarecomponent Element Relationships

<!ELEMENT softwarecomponent

(corbaversion

, componentrepid

, componenttype

, componentfeatures

, interfaces

, propertyfile?

)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-29

D.5.1.1 corbaversion

The corbaversion element is intended to indicate the version of CORBA that the delivered

component supports.

<!ELEMENT corbaversion (#PCDATA)>

D.5.1.2 componentrepid

The componentrepid uniquely identifies the interface that the component is implementing. The

componentrepid may be referred to by the componentfeatures element. The componentrepid is

derived from the CF Resource, CF Device, or CF ResourceFactory.

<!ELEMENT componentrepid EMPTY>

<!ATTLIST componentrepid

repid CDATA #REQUIRED>

D.5.1.3 componenttype

The componenttype describes properties of the component. For SCA components, the

component types include resource, device, resourcefactory, domainmanager, log, filesystem,

filemanager, devicemanager, namingservice and eventservice.

<!ELEMENT componenttype (#PCDATA)>

D.5.1.4 componentfeatures

The componentfeatures element (see Figure D-18) is used to describe a component with respect

to the components that it inherits from, the interfaces the component supports, and its provides

and uses ports. At a minimum, the component interface has to be a CF Resource, CF

ResourceFactory, or CF Device interface. If a component extends the CF Resource or CF

Device interface then all the inherited interfaces (e.g., CF Resource) are depicted as

supportsinterface elements.

Figure D-18. componentfeatures Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-30

<!ELEMENT componentfeatures

(supportsinterface*

, ports

)>

D.5.1.4.1 supportsinterface

The supportsinterface element is used to identify an IDL interface that the component supports.

These interfaces are distinct interfaces that were inherited by the component’s specific interface.

One can widen the component’s interface to be a supportsinterface. The repid is used to refer to

the interface element (see interfaces section D.5.1.5).

<!ELEMENT supportsinterface EMPTY>

<!ATTLIST supportsinterface

repid CDATA #REQUIRED

supportsname CDATA #REQUIRED>

D.5.1.4.2 ports

The ports element (see Figure D-19) describes what interfaces a component provides and uses.

The provides elements are interfaces that are not part of a component’s interface but are

independent interfaces known as facets (in CORBA Components terminology) (i.e. a provides

port at the end of a path, like I/O Device or Modem Device, does not need to be a CF Port type).

The uses element is a CF Port interface type that is connected to a provides or supportinterfaces

interface. Any number of uses and provides elements can be given in any order. Each ports

element has a name and references an interface by repid (see interfaces section D.5.1.5). The

port names are used in the Software Assembly Descriptor to connect ports together. A ports

element also has an optional porttype element that allows for identification of port classification.

Values for porttype include “data”, “control”, “responses”, and “test”. If a porttype is not given

then “control” is assumed.

Figure D-19. ports Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-31

<!ELEMENT ports

(provides | uses)*

>

<!ELEMENT provides

 (porttype*)>

<!ATTLIST provides

repid CDATA #REQUIRED

providesname CDATA #REQUIRED>

<!ELEMENT uses

(porttype*

)>

<!ATTLIST uses

repid CDATA #REQUIRED

usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>

<!ATTLIST porttype

type (data | control | responses | test) #REQUIRED>

D.5.1.5 interfaces

The interfaces element is made up of one to many interface elements.

<!ELEMENT interfaces

(interface+)>

The interface element describes an interface that the component, either directly or through

inheritance, provides, uses, or supports. The name attribute is the character-based non-qualified

name of the interface. The repid attribute is the unique repository id of the interface, which has

formats specified in the CORBA specification. The repid is also used to reference an interface

element elsewhere in the SCD, for example from the inheritsinterface element.

<!ELEMENT interface

(inheritsinterface*) >

<!ATTLIST interface

repid CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>

<!ATTLIST inheritsinterface

repid CDATA #REQUIRED

D.5.1.6 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file

associated with the software component. The definition of the propertyfile element can be found

in section D.2.1.4 . Within the Software Component Descriptor, the localfile sub-element of the

SCA version 2.2.2 FINAL / 15 May 2006

 D-32

propertyfile element is a relative pathname referencing a file in the same directory as the SCD or

in a directory that is relative to the directory where the SCD file is located.

SCA version 2.2.2 FINAL / 15 May 2006

 D-33

D.6 SOFTWARE ASSEMBLY DESCRIPTOR

This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file;

the softwareassembly element (see Figure D-20). The SAD is based on the CORBA

Components Specification Component Assembly Descriptor. The intent of the software

assembly is to provide the means of describing the assembled functional application and the

interconnection characteristics of the SCA components within that application. The component

assembly provides four basic types of application information for domain management. The first

is partitioning information that indicates special requirements for collocation of components, the

second is the assembly controller for the software assembly, the third is connection information

for the various components that make up the application assembly, and the fourth is the visible

ports for the application assembly.

D.6.1 softwareassembly

The installation of an application into the system involves the installation of a SAD file. The

SAD file references component’s SPD files to obtain deployment information for these

components. The softwareassembly element’s id attribute is a DCE UUID, as specified in section

D.2.1, which uniquely identifies the assembly. The softwareassembly element’s name attribute is

the user-friendly name for the ApplicationFactory name attribute. The softwareassembly

element's version attribute is the version of the application.

id : ID

name : CDATA

version : CDATA

«DTDElement»

softwareassembly

«DTDElement»

description

#:PCDATA

«DTDElement»

componentfiles

«DTDElement»

partitioning
«DTDElement»

assemblycontroller

«DTDElement»

connections

«DTDElement»

externalports
0..1

0..1
0..1

Figure D-20. softwareassembly Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-34

<!ELEMENT softwareassembly

(description?

, componentfiles

, partitioning

, assemblycontroller

, connections?

, externalports?

)>

<!ATTLIST softwareassembly

id ID #REQUIRED

name CDATA #IMPLIED

version CDATA #IMPLIED>

D.6.1.1 description

The description element of the component assembly may be used to describe any information the

developer would like to indicate about the assembly.

<!ELEMENT description (#PCDATA)>

D.6.1.2 componentfiles

The componentfiles element is used to indicate that an assembly is made up of 1..n component

files. The componentfile element contains a reference to a local file, which is a Software

Package Descriptor file.

<!ELEMENT componentfiles

(componentfile+)>

D.6.1.2.1 componentfile

The componentfile element is a reference to a local file. See section D.2.1.4.1 for the definition

of the localfile element. The type attribute is “Software Package Descriptor”.

<!ELEMENT componentfile

(localfile)>

<!ATTLIST componentfile

id ID #REQUIRED

type CDATA #IMPLIED>

D.6.1.3 partitioning

A component partitioning element (see Figure D-21) specifies a deployment pattern of

components and their components-to-hosts relationships. A component instantiation is captured

inside a componentplacement element. The hostcollocation element allows the components to be

placed on a common device. When the componentplacement is by itself and not inside a

hostcollocation, it then has no collocation constraints.

SCA version 2.2.2 FINAL / 15 May 2006

 D-35

Figure D-21. partitioning Element Relationships

<!ELEMENT partitioning

(componentplacement | hostcollocation)+>

D.6.1.3.1 componentplacement

The componentplacement element (see Figure D-22) defines a particular deployment of a

component. The component can be deployed either directly or by using a CF ResourceFactory. .

Figure D-22. componentplacement Element Relationships

<!ELEMENT componentplacement

(componentfileref

, componentinstantiation+

)>

D.6.1.3.2 componentfileref

The componentfileref element is used to reference a particular Software PackageDescriptor file.

The componentfileref element’s refid attribute corresponds to the componentfile element’s id

attribute.

SCA version 2.2.2 FINAL / 15 May 2006

 D-36

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

refid CDATA #REQUIRED>

D.6.1.3.3 componentinstantiation

The componentinstantiation element (see Figure D-23) is intended to describe a particular

instantiation of a component relative to a componentplacement element. The

componentinstantiation’s id attribute is a DCE UUID that uniquely identifies the component.

The id is a DCE UUID value as specified in section D.2.1. . The componentinstantiation

element’s id may be referenced by the usesport and providesport elements within the SAD file. It

is the component name for the instantiation not the application name.

The optional componentproperties element (see Figure D-24) is a list of configure, factoryparam,

and/or execparam properties values that are used in creating the component or for the initial

configuration of the component.

The following sources will be searched in the given precedence order for initial values for simple

properties with a kindtype of “execparam” or “configure” and a mode attribute of “readwrite” or

“writeonly”:

1. The SAD partitioning : componentplacement : componentinstantiation element,

2. The value or default value, if any, from the SPD using the properties precedence stated in

D.2.1.

If no values are found in the sources above, the property is discarded.

The following sources will be searched in the given precedence order for initial values for simple

properties with a kindtype of “factoryparam”:

1. The SAD partitioning : componentplacement : componentinstantiation : findcomponent :

componentresourcefactoryref : resourcefactoryproperties element,

2. The SAD partitioning : componentplacement : componentinstantiation :

componentproperties element,

3. The value or default value, if any, from the SPD using the properties precedence stated in

D.2.1.

If no values are found in the sources above, the property is discarded.

The optional findcomponent element (see Figure D-25) is used to obtain the CORBA object

reference for the component instance. The two sources for obtaining a CORBA object reference

are:

1. The componentresourcefactoryref element, which refers to a particular CF

ResourceFactory componentinstantiation element found in the SAD, which is used to

obtain a CF Resource instance for this componentinstantiation element. The refid

attribute refers to a unique componentinstantiation id attribute. The

componentresourcefactoryref element contains an optional resourcefactoryproperties

element (see Figure D-26), which specifies the properties “qualifiers”, for the CF

ResourceFactory create call.

SCA version 2.2.2 FINAL / 15 May 2006

 D-37

2. The CORBA Naming Service, which is used to find the component’s CORBA object

reference. The name specified in the namingservice element is a partial name that is used

by the CF ApplicationFactory to form the complete context name.

The optional findcomponent element should be specified except when there is no CORBA object

reference for the component instance (e.g., DSP code).

Figure D-23. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation

(usagename?

, componentproperties?

, findcomponent?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

Figure D-24. componentproperties Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-38

<!ELEMENT componentproperties

 (simpleref | simplesequenceref | structref |

structsequenceref)+ >

Figure D-25. findcomponent Element Relationships

<!ELEMENT findcomponent

 (componentresourcefactoryref | namingservice)>

<!ELEMENT componentresourcefactoryref

(resourcefactoryproperties?)>

<!ATTLIST componentresourcefactoryref

refid CDATA #REQUIRED>

Figure D-26. resourcefactoryproperties Element Relationships

<!ELEMENT resourcefactoryproperties

 (simpleref | simplesequenceref | structref |

structsequenceref)+ >

<!ELEMENT simpleref EMPTY>

SCA version 2.2.2 FINAL / 15 May 2006

 D-39

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

 (values)>

<!ATTLIST simplesequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structref

 (simpleref+)>

<!ATTLIST structref

 refid CDATA #REQUIRED>

<!ELEMENT structsequenceref

(structvalue+)>

<!ATTLIST structsequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structvalue

(simpleref+)>

<!ELEMENT values

(value+)>

<!ELEMENT value (#PCDATA)>

D.6.1.3.4 hostcollocation

The hostcollocation element specifies a group of component instances that are to be deployed

together on a single host. For purposes of the SCA, the componentplacement element will be

used to describe the 1...n components that will be collocated on the same host platform. Within

the SCA specification, a host platform will be interpreted as a single device. The id and name

attributes are optional but may be used to uniquely identify a set of collocated components

within a SAD file.

<!ELEMENT hostcollocation

(componentplacement)+>

<!ATTLIST hostcollocation

 id ID #IMPLIED

 name CDATA #IMPLIED>

D.6.1.3.4.1 componentplacement

See componentplacement, section D.6.1.3.1.

SCA version 2.2.2 FINAL / 15 May 2006

 D-40

D.6.1.4 assemblycontroller

The assemblycontroller element indicates the component that is the main CF Resource controller

for the assembly. The CF Application object delegates its CF Resource::configure, query, start,

stop, and runTest operations to the CF Resource’s Assembly Controller component.

<!ELEMENT assemblycontroller

 (componentinstantiationref)>

D.6.1.5 connections

The connections element is a child element of the softwareassembly element. The connections

element is intended to provide the connection map between components in the assembly.

!ELEMENT connections

(connectinterface*)>

D.6.1.5.1 connectinterface

The connectinterface element (see Figure D-27) is used when application components are being

assembled to describe connections between their port interfaces. The connectinterface element

consists of a usesport element and a providesport, componentsupportedinterface, or findby

element. These elements are intended to connect two compatible components.

Figure D-27. connectinterface Element Relationships

<!ELEMENT connectinterface

 (usesport

 , (providesport | componentsupportedinterface | findby)

)>

<!ATTLIST connectinterface

 id ID #IMPLIED>

SCA version 2.2.2 FINAL / 15 May 2006

 D-41

D.6.1.5.1.1 usesport

The usesport element (see Figure D-28) identifies, using the usesidentifier element, the

component port that is using the provided interface from the providesport element. A CF

Resource type component may be referenced by one of four elements. One element is the

componentinstantiationref that refers to the componentinstantiation id attribute (see

componentinstantiation) within the assembly; the other elements are findby,

devicethatloadedthiscomponentref, and deviceusedbythiscomponentref.

Figure D-28. usesport Element Relationships

<!ELEMENT usesport

(usesidentifier

, (componentinstantiationref |

devicethatloadedthiscomponentref |

deviceusedbythiscomponentref | findby)

)>

D.6.1.5.1.1.1 usesidentifier

The usesidentifier element identifies which “uses port” on the component is to participate in the

connection relationship. This identifier will correspond with an id for one of the component

ports specified in the Software Component Descriptor.

<!ELEMENT usesidentifier (#PCDATA)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-42

D.6.1.5.1.1.2 componentinstantiationref

The componentinstantiationref element refers to the id attribute of the componentinstantiation

element within the Software Assembly Descriptor file. The refid attribute will correspond to the

unique componentinstantiation id attribute.

<!ELEMENT componentinstantiationref EMPTY>

<!ATTLIST componentinstantiationref

 refid CDATA #REQUIRED>

D.6.1.5.1.1.3 findby

The findby element (see Figure D-29) is used to resolve a connection between two components.

It tells the domain management function how to locate a component interface involved in a

connection relationship. The namingservice element specifies a naming service name to search

for the desired component interface.

The domainfinder element specifies an element within the domain that is known to the domain

management function.

Figure D-29. findby Element Relationships

<!ELEMENT findby

 (namingservice | domainfinder)>

D.6.1.5.1.1.4 namingservice

The namingservice element is a child element of the findby element. The namingservice element

is used to indicate to the CF ApplicationFactory the requirement to find a component interface.

The CF ApplicationFactory will use the name attribute to search the CORBA Naming Service

for the appropriate interface.

SCA version 2.2.2 FINAL / 15 May 2006

 D-43

<!ELEMENT namingservice EMPTY

<!ATTLIST namingservice

 name CDATA #REQUIRED>

D.6.1.5.1.1.5 domainfinder

The domainfinder element is a child element of the findby element. The domainfinder element is

used to indicate to the CF ApplicationFactory the necessary information to find an object

reference that is of specific type and may also be known by an optional name within the domain.

The valid type attributes are “filemanager”, “log”, “eventchannel”, and “namingservice”. If a

name attribute is not supplied, then the component reference returned is the CF

DomainManager’s FileManager, or Naming Service corresponding to the type attribute

provided. If a name attribute is not supplied and the type attribute has a value of “log”, then a

null reference is returned. The type attribute value of “eventchannel” is used to specify the event

channel to be used in the OE’s CORBA Event Service for producing or consuming events. If the

name attribute is not supplied and the type attribute has a value of “eventchannel” then the

Incoming domain management event channel is used.

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

 type (filemanager | log | eventchannel | namingservice)

#REQUIRED

 name CDATA #IMPLIED>

D.6.1.5.1.1.6 devicethatloadedthiscomponentref

The devicethatloadedthiscomponentref element refers to a specific component found in the

assembly, which is used to obtain the logical CF Device that was used to load the referenced

component from the CF ApplicationFactory. The logical CF Device obtained is then associated

with this component instance. This relationship is needed when a component (e.g., modem

adapter) is pushing data and/or commands to a non-CORBA capable device such as modem.

<!ELEMENT devicethatloadedthiscomponentref EMPTY>

<!ATTLIST devicethatloadedthiscomponentref

 refid CDATA #REQUIRED>

D.6.1.5.1.1.7 deviceusedbythiscomponentref

The deviceusedbythiscomponentref element refers to a specific component, within the assembly,

which is used to obtain the CF Device (e.g., logical Device) that is being used by the specific

component from the CF ApplicationFactory. This relationship is needed when a component is

pushing or pulling data and/or commands to another component that exists in the system such as

an audio device.

<!ELEMENT deviceusedbythiscomponentref EMPTY>

<!ATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED

usesrefid CDATA #REQUIRED>

D.6.1.5.1.2 providesport

The providesport element (see Figure D-30) identifies, using the providesidentifier element, the

SCA version 2.2.2 FINAL / 15 May 2006

 D-44

component port that is provided to the usesport interface within the connectinterface element. A

CF Resource type component may be referenced by one of four elements. One element is the

componentinstantiationref that refers to the componentinstantiation id within the assembly; the

other elements are findby, devicethatloadedthiscomponentref, and

deviceusedbythiscomponentref. The findby element by itself is used when the object reference is

not a CF Resource type.

Figure D-30. providesport Element Relationships

<!ELEMENT providesport

(providesidentifier

, (componentinstantiationref |

devicethatloadedthiscomponentref |

deviceusedbythiscomponentref | findby)

)>

D.6.1.5.1.2.1 providesidentifier

The providesidentifier element identifies which “provides port” on the component is to

participate in the connection relationship. This identifier will correspond with a repid attribute

for one of the component ports elements, specified in the Software Component Descriptor.

<!ELEMENT providesidentifier (#PCDATA)>

D.6.1.5.1.2.2 componentinstantiationref

See D.6.1.5.1.1.2 for a description of the componentinstantiationref element.

SCA version 2.2.2 FINAL / 15 May 2006

 D-45

D.6.1.5.1.2.3 findby.

See section D.6.1.5.1.1.3 for a description of the findby element. The namingservice element’s

name attribute denotes a complete naming context.

D.6.1.5.1.2.4 devicethatloadedthiscomponentref.

See D.6.1.5.1.1.6 for a description of the devicethatloadedthiscomponentref element.

D.6.1.5.1.2.5 deviceusedbythiscomponentref.

See D.6.1.5.1.1.7 for a description of the deviceusedbythiscomponentref element.

D.6.1.5.1.3 componentsupportedinterface

The componentsupportedinterface element (see Figure D-31) specifies a component, which has a

supportsinterface element, that can satisfy an interface connection to a port specified by the

usesport element, within a connectinterface element. This component is identified by a

componentinstantiationref or a findby element. The componentinstantiationref identifies a

component within the assembly. The findby element points to an existing component that can be

found within a Naming Service.

Figure D-31. componentsupportedinterface Element Relationships

<!ELEMENT componentsupportedinterface

 (supportedidentifier

 , (componentinstantiationref | findby)

)>

D.6.1.5.1.3.1 supportedidentifier

The supportedidentifier element identifies which supported interface on the component is to

participate in the connection relationship. This identifier will correspond with the repid attribute

SCA version 2.2.2 FINAL / 15 May 2006

 D-46

of one of the component’s supportsinterface elements, specified in the Software Component

Descriptor.

<!ELEMENT supportedidentifier (#PCDATA)>

D.6.1.5.1.3.2 componentinstantiationref.

See section D.6.1.5.1.1.2 for a description of the componentinstantiationref element.

D.6.1.5.1.3.3 findby.

See section D.6.1.5.1.1.3 for a description of the findby element.

D.6.1.6 externalports

The optional externalports element is a child element of the softwareassembly element (see

Figure D-32). The externalports element is used to identify the visible ports for the software

assembly. The CF Application getport() operation is used to access the assembly’s visible ports.

<!ELEMENT externalports

 (port+

)>

Figure D-32. port Element Relationships

SCA version 2.2.2 FINAL / 15 May 2006

 D-47

<!ELEMENT port

 (description?

 , (usesidentifier | providesidentifier |

supportedidentifier)

 , componentinstantiationref

)>

<!ELEMENT description (#PCDATA)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-48

D.7 DEVICE CONFIGURATION DESCRIPTOR

This section describes the XML elements of the Device Configuration Descriptor (DCD) XML

file; the deviceconfiguration element (see Figure D-33). The DCD is based on the SAD (e.g.,

componentfiles, partitioning, etc.) DTD. The intent of the DCD is to provide the means of

describing the components that are initially started on the CF DeviceManager node, how to

obtain the CF DomainManager object reference, connections of services to components (CF

Devices, CF DeviceManager), and the characteristics (file system names, etc.) for a CF

DeviceManager. The componentfiles and partitioning elements are optional; if not provided,

that means no components are started up on the node, except for a CF DeviceManager. If the

partitioning element is specified then a componentfiles element has to be specified also.

D.7.1 deviceconfiguration

The deviceconfiguration element’s id attribute is a unique identifier within the domain for the

device configuration. This id attribute is a UUID value as specified in section D.2.1. The name

attribute is the user-friendly name for the CF DeviceManager’s label attribute.

Figure D-33. deviceconfiguration Element Relationships

<!ELEMENT deviceconfiguration

 (description?

 , devicemanagersoftpkg

 , componentfiles?

 , partitioning?

 , connections?

 , domainmanager

 , filesystemnames?

)>

<!ATTLIST deviceconfiguration

 id ID #REQUIRED

 name CDATA #IMPLIED>

SCA version 2.2.2 FINAL / 15 May 2006

 D-49

D.7.1.1 description

The optional description element, of the deviceconfiguration element, may be used to provide

information about the device configuration.

<!ELEMENT description (#PCDATA)>

D.7.1.2 devicemanagersoftpkg

The devicemanagersoftpkg element refers to the SPD for the CF DeviceManager that

corresponds to this DCD. The SPD file is referenced by a localfile element. The referenced file

can be used to describe the CF DeviceManager implementation and to specify the usesports for

the services (Log(s), etc.) used by the CF DeviceManager. See (section D.2.1.4.1) for

description of the localfile element.

<!ELEMENT devicemanagersoftpkg

 (localfile

)>

D.7.1.3 componentfiles

The optional componentfiles element is used to reference deployment information for

components that are started up on the device. The componentfile element references a Software

Package Descriptor (SPD). The SPD, for example, can be used to describe logical Devices, a CF

DeviceManager, a CF DomainManager, a Naming Service, and CF FileSystems. See section

D.6.1.2 for the definition of the componentfiles element.

D.7.1.4 partitioning

The optional partitioning element consists of a set of componentplacement elements. A

component instantiation is captured inside a componentplacement element.

<!ELEMENT partitioning

 (componentplacement)*>

D.7.1.4.1 componentplacement

The componentplacement element (see Figure D-34) is used to define a particular deployment of

a component. The componentfileref element identifies the component to be deployed. The

componentinstantiation element identifies the actual component created and its id attribute is a

DCE UUID value with the format as specified in section D.2.1. Multiple components of the

same kind can be created within the same componentplacement element.

The optional deployondevice element indicates the device on which the componentinstantiation

element is deployed. The optional compositepartofdevice element indicates the parent device of

the componentinstantiation element. When the component is a logical device, the devicepkgfile

element indicates the hardware device information for the logical device.

SCA version 2.2.2 FINAL / 15 May 2006

 D-50

Figure D-34. componentplacement Element Relationships

<!ELEMENT componentplacement

 (componentfileref

 , deployondevice?

 , compositepartofdevice?

 , devicepkgfile?

 , componentinstantiation+

)>

D.7.1.4.1.1 componentfileref

The componentfileref element is used to reference a componentfile element within the

componentfiles element. The componentfileref element’s refid attribute corresponds to a

componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

 refid CDATA #REQUIRED>

D.7.1.4.1.2 deployondevice

The deployondevice element is used to reference a componentinstantiation element on which this

componentinstantiation is deployed.

<!ELEMENT deployondevice EMPTY>

<!ATTLIST deployondevice

 refid CDATA #REQUIRED>

D.7.1.4.1.3 devicepkgfile

The devicepkgfile element is used to refer to a device package file that contains the hardware

device definition.

SCA version 2.2.2 FINAL / 15 May 2006

 D-51

<!ELEMENT devicepkgfile

 (localfile

)>

<!ATTLIST devicepkgfile

 type CDATA #IMPLIED>

D.7.1.4.1.4 localfile

See D.2.1.4.1 for a definition of the localfile element.

D.7.1.4.1.5 compositepartofdevice

The compositepartofdevice element is used when a parent-child relationship exists between

devices to reference the componentinstantiation element that describes the parent device when

this device’s componentinstantiation element describes the child device.

<!ELEMENT compositepartofdevice EMPTY>

<!ATTLIST compositepartofdevice

 refid CDATA #REQUIRED>

D.7.1.4.1.6 componentinstantiation

The componentinstantiation element (see Figure D-35) is intended to describe a particular

instantiation of a component relative to a componentplacement element. The

componentinstantiation‘s id attribute is a DCE UUID that uniquely identifier the component.

The id is a DCE UUID value as specified in section D.2.1. The componentinstantiation contains

a usagename element that is intended for an applicable name for the component. The optional

componentproperties element (see Figure D-36) is a list of property values that are used in

configuring the component. D.6.1.3.3 defines the property list for the componentinstantiation

element, which contains initial properties values. For a component service type (e.g,, Log), the

usagename element is not optional and needs to be unique for each service type.

Figure D-35. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation

 (usagename?

 ,componentproperties?

)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-52

<!ATTLIST componentinstantiation

 id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

Figure D-36. componentproperties Element Relationships

<!ELEMENT componentproperties

 (simpleref | simplesequenceref | structref |

structsequenceref)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

 (values)>

<!ATTLIST simplesequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structref

 (simpleref+)>

<!ATTLIST structref

 refid CDATA #REQUIRED>

<!ELEMENT structsequenceref

 (structvalue+)>

<!ATTLIST structsequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structvalue

 (simpleref+)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-53

<!ELEMENT values

 (value+)>

<!ELEMENT value (#PCDATA)>

D.7.1.5 connections

The connections element in the DCD is the same as the connections element in the SAD in

section D.6.1.5. The connections element in the DCD is used to indicate the services (Log,

etc…) instances that are used by the CF DeviceManager and CF Device components in the DCD.

To establish connections to a CF DeviceManager, the DCD’s deviceconfiguration element’s id

attribute value is used for the SAD’s usesport element’s componentinstantiationref element’s

refid attribute value.

D.7.1.6 domainmanager

The domainmanager element (see Figure D-37) indicates how to obtain the CF DomainManager

object reference.

See sections D.6.1.5.1.1.4 for description of the namingservice

Figure D-37. domainmanager Element Relationships

<!ELEMENT domainmanager

 (namingservice)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

 name CDATA #REQUIRED>

D.7.1.7 filesystemnames

The optional filesystemnames element indicates the mounted file system names for CF

DeviceManager's FileManager.

SCA version 2.2.2 FINAL / 15 May 2006

 D-54

The optional filesystemnames element indicates the names for file systems mounted within a CF

DeviceManager's FileManager. The mountname attribute contains a file system name that

uniquely identifies a mount point. The deviceid attribute is the unique identifier (UUID) for a

specific component, within the DCD, which represents the device hosting this file system. The

use of the deviceid attribute value is implementation dependent.

<!ELEMENT filesystemnames

 (filesystemname+)>

<!ELEMENT filesystemname EMPTY>

<!ATTLIST filesystemname

 mountname CDATA #REQUIRED

 deviceid CDATA #REQUIRED>

D.8 DOMAINMANAGER CONFIGURATION DESCRIPTOR

This section describes the XML elements of the DomainManager Configuration Descriptor

(DMD) XML file; the domainmanagerconfiguration element (see Figure D-38).

D.8.1 domainmanagerconfiguration

The domainmanagerconfiguration element id attribute is a DCE UUID that uniquely identifies

the DomainManager. The id is a DCE UUID value as specified in section D.2.1.

Figure D-38. domainmanagerconfiguration Element Relationships

<!ELEMENT domainmanagerconfiguration

 (description?

 , domainmanagersoftpkg

 , services

)>

<!ATTLIST domainmanagerconfiguration

 id ID #required

 name #CDATA #required>

SCA version 2.2.2 FINAL / 15 May 2006

 D-55

D.8.1.1 description

The optional description element of the DMD may be used to provide information about the

configuration.

<!ELEMENT description (#PCDATA)>

D.8.1.2 domainmanagersoftpkg

The domainmanagersoftpkg element refers to the SPD for the CF DomainManager. The SPD

file is referenced by a localfile element. This SPD can be used to describe the CF

DomainManager implementation and to specify the usesports for the services (Log(s), etc…)

used by the CF DomainManager. See section D.2.1.4.1 for description of the localfile element.

<!ELEMENT domainmanagersoftpkg

 (localfile) >

D.8.1.3 services

The services element in the DMD is used by the CF DomainManager to determine which service

(Log, etc.) instances to use; it makes use of the service element (see Figure D-39). See section

D.6.1.5.1.1.3 for a description of the findby element. See section D.6.1.5.1.1.1 for a description

of the usesidentifier element.

<!ELEMENT services

(service+) >

service

<<DTDElement>>

usesidentifier

<<DTDElementPCDATA>>

findby

<<DTDElement>>

service_grp
(from service)

<<DTDSequenceGroup>>

{1} {2}

Figure D-39. service Element Relationships

<!ELEMENT service

(usesidentifier

, findby)>

SCA version 2.2.2 FINAL / 15 May 2006

 D-56

D.9 PROFILE DESCRIPTOR

The profile element is used to specify an absolute file pathname relative to a mounted CF

FileSystem. The filename attribute is the absolute pathname relative to a mounted FileSystem.

This filename can also be used to access any other local file elements in the profile. The type

attribute indicates the type of profile being referenced. The valid type attribute values are

“SAD”, “SPD”, “DCD”, and “DMD”. This element is used as the parameter for interface profile

attributes (e.g., CF Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF

DomainManager).

<!ELEMENT profile EMPTY>

<!ATTLIST profile

 filename CDATA #REQUIRED

 type CDATA #IMPLIED>

D.10 DOCUMENT TYPE DEFINITIONS

Attachment 1 to Appendix D contains the complete DTDs for the Domain Profile.

		Software Communications Architecture Specification

		Appendix D: Domain Profile

		Revision Summary

		Table of Contents

		List of Figures

		Appendix D. Domain Profile

		D.1 Deployment Overview

		D.2 Software Package Descriptor

		D.2.1 Software Package

		D.2.1.1 title

		D.2.1.2 author

		D.2.1.3 description

		D.2.1.4 propertyfile

		D.2.1.4.1 localfile

		D.2.1.5 descriptor

		D.2.1.6 implementation

		D.2.1.6.1 propertyfile

		D.2.1.6.2 description

		D.2.1.6.3 code

		D.2.1.6.4 compiler

		D.2.1.6.5 programminglanguage

		D.2.1.6.6 humanlanguage

		D.2.1.6.7 os

		D.2.1.6.8 processor

		D.2.1.6.9 dependency

		D.2.1.6.9.1 softpkgref

		D.2.1.6.9.2 propertyref

		D.2.1.6.10 runtime

		D.2.1.7 usesdevice

		D.2.1.7.1 propertyref

		D.3 Device Package Descriptor

		D.3.1 Device Package

		D.3.1.1 title

		D.3.1.2 author

		D.3.1.3 description

		D.3.1.4 hwdeviceregistration

		D.3.1.4.1 propertyfile

		D.3.1.4.2 description

		D.3.1.4.3 manufacturer

		D.3.1.4.4 modelnumber

		D.3.1.4.5 deviceclass

		D.3.1.4.6 childhwdevice

		D.3.1.4.7 hwdeviceregistration

		D.3.1.4.8 devicepkgref

		D.4 Properties Descriptor

		D.4.1 properties

		D.4.1.1 simple

		D.4.1.1.1 description

		D.4.1.1.2 value

		D.4.1.1.3 units

		D.4.1.1.4 range

		D.4.1.1.5 enumerations

		D.4.1.1.6 kind

		D.4.1.1.7 action

		D.4.1.2 simplesequence

		D.4.1.3 test

		D.4.1.3.1 inputvalue

		D.4.1.3.2 resultvalue

		D.4.1.4 struct

		D.4.1.4.1 configurationkind

		D.4.1.5 structsequence

		D.5 Software Component Descriptor

		D.5.1 softwarecomponent

		D.5.1.1 corbaversion

		D.5.1.2 componentrepid

		D.5.1.3 componenttype

		D.5.1.4 componentfeatures

		D.5.1.4.1 supportsinterface

		D.5.1.4.2 ports

		D.5.1.5 interfaces

		D.5.1.6 propertyfile

		D.6 Software Assembly Descriptor

		D.6.1 softwareassembly

		D.6.1.1 description

		D.6.1.2 componentfiles

		D.6.1.2.1 componentfile

		D.6.1.3 partitioning

		D.6.1.3.1 componentplacement

		D.6.1.3.2 componentfileref

		D.6.1.3.3 componentinstantiation

		D.6.1.3.4 hostcollocation

		D.6.1.3.4.1 componentplacement

		D.6.1.4 assemblycontroller

		D.6.1.5 connections

		D.6.1.5.1 connectinterface

		D.6.1.5.1.1 usesport

		D.6.1.5.1.1.1 usesidentifier

		D.6.1.5.1.1.2 componentinstantiationref

		D.6.1.5.1.1.3 findby

		D.6.1.5.1.1.4 namingservice

		D.6.1.5.1.1.5 domainfinder

		D.6.1.5.1.1.6 devicethatloadedthiscomponentref

		D.6.1.5.1.1.7 deviceusedbythiscomponentref

		D.6.1.5.1.2 providesport

		D.6.1.5.1.2.1 providesidentifier

		D.6.1.5.1.2.2 componentinstantiationref

		D.6.1.5.1.2.3 findby.

		D.6.1.5.1.2.4 devicethatloadedthiscomponentref.

		D.6.1.5.1.2.5 deviceusedbythiscomponentref.

		D.6.1.5.1.3 componentsupportedinterface

		D.6.1.5.1.3.1 supportedidentifier

		D.6.1.5.1.3.2 componentinstantiationref.

		D.6.1.5.1.3.3 findby.

		D.6.1.6 externalports

		D.7 Device Configuration Descriptor

		D.7.1 deviceconfiguration

		D.7.1.1 description

		D.7.1.2 devicemanagersoftpkg

		D.7.1.3 componentfiles

		D.7.1.4 partitioning

		D.7.1.4.1 componentplacement

		D.7.1.4.1.1 componentfileref

		D.7.1.4.1.2 deployondevice

		D.7.1.4.1.3 devicepkgfile

		D.7.1.4.1.4 localfile

		D.7.1.4.1.5 compositepartofdevice

		D.7.1.4.1.6 componentinstantiation

		D.7.1.5 connections

		D.7.1.6 domainmanager

		D.7.1.7 filesystemnames

		D.8 DomainManager Configuration Descriptor

		D.8.1 domainmanagerconfiguration

		D.8.1.1 description

		D.8.1.2 domainmanagersoftpkg

		D.8.1.3 services

		D.9 Profile Descriptor

		D.10 Document Type Definitions

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

ATTACHMENT 2 TO APPENDIX D

COMMON PROPERTIES DEFINITIONS

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

 2

REVISION SUMMARY

Version Revision

2.0 Initial Release per CP 309

2.1 Incorporate approved Change Proposal, number 477

2.2 No changes.

2.2.1 No changes.

2.2.2 No Changes

SCA version 2.2.2 FINAL / 15 May 2006

 3

COMMON PROPERTIES

The following are common properties to be used for component definitions. The common allocation

properties definitions are to be used for device allocation properties as appropriate in order to

promote the portability of waveform’s components and to enforce standardization of allocation type

usage across vendors.

OS ELEMENT

 <simple id="DCE:80BF17F0-6C7F-11d4-A226-0050DA314CD6"

type="string"

 name="os_name" mode="readonly">

 <description> This property identifies the os_name XML

allocation property.

 </description>

 <!-- Valid values for the os_name element are: -->

 <!-- AIX, BSDi, VMS, DigitalUnix, DOS, HPBLS, HPUX,

IRIX, -->

 <!-- Linux, LynxOS, MacOS, OS/2, AS/400, MVS, SCO CMW, -

->

 <!-- SCO ODT, Solaris, SunOS, UnixWare, VxWorks, Win95,

WinNT -->

 <!-- pSOS, RTXC -->

 <!-- The os_name values are case sensitive. -->

 <value></value>

 <kind kindtype="allocation"/>

 <action type="eq"/>

 </simple>

PROCESSOR ELEMENT

 <simple id="DCE:9B445600-6C7F-11d4-A226-0050DA314CD6"

type="string"

 name="processor_name" mode="readonly">

 <description> This property identifies the

processor_name XML allocation property.

 </description>

 <!-- Valid values for the processor_name element are: --

>

 <!-- x86, mips, alpha, ppc, sparc, 680x0, vax, AS/400,

S/390, -->

 <!-- ppcG3, ppcG4, ppcG5, C5x, C6x, ADSP21xx -->

 <!-- The processor_name values are case sensitive. -->

 <value></value>

SCA version 2.2.2 FINAL / 15 May 2006

 4

 <kind kindtype="allocation"/>

 <action type="eq"/>

 </simple>

		Software Communications Architecture Specification

		Attachment 2 to Appendix D

		Common Properties Definitions

		Revision Summary

		Common properties

		os element

		processor element

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

EXTENSIONS

FINAL / 22 December 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (22 December 2006)

ii

TABLE OF CONTENTS

1 INTRODUCTION.. 1

2 SCA MAIN DOCUMENT EXTENSIONS .. 1

2.1 Registerservice Behavior (3.1.3.2.3.6.7.3) ... 1

2.2 Unregisterservice Behavior (3.1.3.2.3.6.8.3) ... 1

2.3 Create Behavior (3.1.3.2.2.5.1.3) .. 1

2.4 Create Exceptions/Errors (3.1.3.2.2.5.1.5) .. 2

2.5 Device Manager General Behavior (3.1.3.2.4.5) ... 2

2.6 Software Component Descriptor (3.1.3.5.2) ... 3

2.7 General Application Requirements (3.2.1) ... 3

2.8 Deployment Platform Descriptor .. 3

2.9 Application Deployment Descriptor .. 3

3 SCA APPENDIX A EXTENSIONS ... 3

4 SCA APPENDIX B EXTENSIONS ... 4

5 SCA APPENDIX C EXTENSIONS ... 4

6 SCA APPENDIX D EXTENSIONS ... 4

6.1 Domain Profile .. 4

6.2 Software Component Descriptor (D.5) ... 5

6.3 SCD Componentrepid (D.5.1.2) ... 5

6.4 SCD Componenttype (D.5.1.3) ... 5

6.5 SCD Componentfeatures (D.5.1.4) .. 5

6.6 SCD Interfaces (D.5.1.5) ... 5

6.7 SCD Propertyfile (D.5.1.6) ... 6

6.8 SAD Softwareassembly (D.6.1) .. 6

6.8.1 deploymentprefs .. 6

6.9 SAD Findby (D.6.1.5.1.1.3) ... 7

6.10 SAD Domainfinder (D.6.1.5.1.1.5) ... 7

6.11 Deployment Platform Descriptor .. 8

iii

6.11.1 deploymentplatform .. 8

6.11.2 description... 8

6.11.3 platformlayout ... 8

6.11.4 channel .. 8

6.11.5 devicelist ... 9

6.11.6 deviceref .. 9

6.11.7 servicelist .. 9

6.11.8 serviceref ... 9

6.12 Application Deployment Descriptor .. 9

6.12.1 deploymentprecedence .. 9

6.12.2 description... 10

6.12.3 deploymentoptions .. 10

6.12.4 deploymentoption .. 10

6.12.5 channelref ... 10

6.13 DMD Domainmanagerconfiguration (D.8.1) .. 10

6.13.1 deploymentlayout .. 11

SCA version 2.2.2 Extension FINAL / 15 May 2006

1

1 INTRODUCTION

The intent of this extension to the Software Communications Architecture (SCA) is to address

two areas which are under specified within SCA 2.2.2. Specifically this extension addresses the

deployment of non-SCA services (i.e. those other than Log, FileSystem, Event and Naming) and

the introduction of a minimally intrusive mechanism to manage and optimize application

deployment. The underlying design constraint behind this extension was to introduce an

approach that was fully backward compatible with the existing 2.2.2 specification. There are

behavioral requirements that must be implemented within an SCA 2.2.2 compliant Core

Framework if the capabilities described within this extension are supported; however the

decision of whether or not to include these capabilities is at the discretion of the Platform

provider.

2 SCA MAIN DOCUMENT EXTENSIONS

2.1 REGISTERSERVICE BEHAVIOR (3.1.3.2.3.6.7.3)

The registerService operation shall, upon successful service registration of a non-SCA service

with an input name parameter in the “identifier\type” format, make the value provided in the

“identifier” potion of the name accessible via the domainfinder servicename mechanism.

The registerService operation shall, upon successful service registration of a non-SCA service

with an input name parameter in the “identifier\type” format, make the value provided in the

“type” potion of the name accessible via the domainfinder servicetype mechanism.

2.2 UNREGISTERSERVICE BEHAVIOR (3.1.3.2.3.6.8.3)

The unregisterService operation shall remove non-SCA services (i.e. those with a name in the

“identifier\type” format) by matching either a fully qualified name in the “identifier\type” format

or a simple name with only the “identifier” portion.

2.3 CREATE BEHAVIOR (3.1.3.2.2.5.1.3)

The create operation shall recognize application deployment channel preferences contained

within an Application Deployment Descriptor file if the CF implementation provides enhanced

deployment support via the use of both a Deployment Platform Descriptor and an Application

Deployment Descriptor file.

The create operation shall recognize a property which is a CF Properties type with an id of

“DEPLOYMENT_CHANNEL” and a value that is a string sequence if the CF implementation

provides enhanced deployment support via the use of a Deployment Platform Descriptor file.

The create operation shall recognize channel preferences contained within a

“DEPLOYMENT_CHANNEL” property contained within the initConfiguration parameter if the

CF implementation provides enhanced deployment support via the use of a Deployment Platform

Descriptor file.

SCA version 2.2.2 Extension FINAL / 15 May 2006

2

The create operation shall attempt to allocate an application to the Deployment Platform

Descriptor file channel alternatives provided within a “DEPLOYMENT_CHANNEL” property

or an Application Deployment Descriptor file in a sequential manner.

The create operation shall utilize channel preferences expressed within a

“DEPLOYMENT_CHANNEL” property rather than those contained within an Application

Deployment Descriptor file if both exist and the CF implementation provides enhanced

deployment support via the use of a Deployment Platform Descriptor file.

The create operation shall recognize a deployment option with a deployedname attribute value of

“DEFAULT” which matches all application instance names that are not explicitly identified by a

deployedname attribute value within the same descriptor file if the CF implementation provides

enhanced deployment support via the use of an Application Deployment Descriptor file.

For connections to a non-SCA service using the servicename type of the domainfinder element,

the create operation will search for a matching name from the set of service name identifiers that

have been registered with the domain. For connections to a non-SCA service using the

servicetype type of the domainfinder element, the create operation will search for a matching

type from the set of service types that have been registered with the domain. The search strategy

used to select a specific instance of a service type when multiple instances of the same service

type have been registered with the domain is implementation dependent.

For domainfinder element “servicetype” connections to a non-SCA service whose service type is

provided by a service contained within a channel element servicelist, the create operation shall

only attempt to establish connections to services within the list if the CF implementation

provides enhanced deployment support via the use of a Deployment Platform Descriptor file. If

multiple instances of the same service type exist with the servicelist, then an implementation

dependent search strategy used to select a specific instance.

2.4 CREATE EXCEPTIONS/ERRORS (3.1.3.2.2.5.1.5)

The create operation shall raise the InvalidInitConfiguration exception when the input

initConfiguration parameter “DEPLOYMENT_CHANNEL” property contains an invalid

channel reference. The InvalidInitConfiguration invalidProperties parameter shall identify the

invalid channels.

The create operation shall raise the CreateApplicationError exception when the CF

implementation provides enhanced deployment support via the use of a Deployment Platform

Descriptor file but the CF is not able to allocate the application to any of the provided channel

alternatives.

The create operation shall raise the CreateApplicationError exception when the CF

implementation provides enhanced deployment support via the use of a Deployment Platform

Descriptor file and a domainfinder element “servicetype” connection to a non-SCA service

whose service type is provided by a service contained within a channel element servicelist can

not be established to a service identified within that list.

2.5 DEVICE MANAGER GENERAL BEHAVIOR (3.1.3.2.4.5)

If a non-SCA service is deployed by the device manager, the device manager shall supply

execute operation parameters consisting of:

SCA version 2.2.2 Extension FINAL / 15 May 2006

3

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string

that is the DeviceManager stringified IOR.

2. Service Name – The ID is “SERVICE_NAME” and the value is a string in an

“identifier\type” format where the identifier corresponds to the DCD

componentinstantiation usagename element and the type corresponds to a service

type repository identifier from the SCD.

3. The execute (“execparam”) properties as specified in the DCD for a

componentinstantiation element. The device manager shall pass the

componentinstantiation element “execparam” properties that have values as

parameters. The device manager shall pass “execparam” parameters’ IDs and

values as string values.

2.6 SOFTWARE COMPONENT DESCRIPTOR (3.1.3.5.2)

A Software Component Descriptor (SCD) contains information about a specific SCA software

component (Resource, ResourceFactory, Device or non-SCA service).

2.7 GENERAL APPLICATION REQUIREMENTS (3.2.1)

An application’s dependencies to the log, file manager, file system, CORBA Event Service,

CORBA Naming Service, and non-SCA services are specified as connections in the SAD using

the domainfinder element

2.8 DEPLOYMENT PLATFORM DESCRIPTOR

A Deployment Platform Descriptor (PDD) identifies the logical relationships between platform

resources within the operating environment’s registered services and devices. A Deployment

Platform Descriptor file shall have a “.pdd.xml” extension. The use of the PDD is optional

within a system, however if it is used the reference to this file will be made from the DMD file.

A Deployment Platform Descriptor File may be used to exert a greater degree of control over the

application deployment process. The file contains information that describes the composition

(i.e. included services and devices) of virtual channels within a platform domain.

2.9 APPLICATION DEPLOYMENT DESCRIPTOR

An Application Deployment Descriptor (ADD) contains precedence lists that are used for

deploying application instances within a platform domain. An Application Deployment

Descriptor file shall have an “.add.xml” extension. The use of the ADD is optional within a

system, however if it is used the reference to this file will be made from a SAD file. An

Application Deployment Descriptor file contains application names and references the virtual

channels defined in the Deployment Platform Descriptor file.

3 SCA APPENDIX A EXTENSIONS

None

SCA version 2.2.2 Extension FINAL / 15 May 2006

4

4 SCA APPENDIX B EXTENSIONS

None

5 SCA APPENDIX C EXTENSIONS

None

6 SCA APPENDIX D EXTENSIONS

6.1 DOMAIN PROFILE

 Domain Profile

«DTDElement»
Device Configuration Descriptor

«DTDElement»
Domain Manager Configuration Descriptor

«DTDElement»
Software Assembly Descriptor

«DTDElement»
Software Package Descriptor

0..n 1 0..n

1..n

1..n
1

0..1

0..n

«DTDElement»
Device Package Descriptor

«DTDElement»
Software Component Descriptor

0..1

0..1

«DTDElement»
Properties Descriptor

«DTDElement»
Properties Descriptor

«DTDElement»
Deployment Platform Descriptor

«DTDElement»
Application Deployment Descriptor

«DTDElement»

Properties Descriptor
0..1

0..1

0..1

Figure 6-1: Relationship of Domain Profile XML File Types

SCA version 2.2.2 Extension FINAL / 15 May 2006

5

6.2 SOFTWARE COMPONENT DESCRIPTOR (D.5)

This descriptor file is based on the CORBA Component Descriptor specification. The SCA

components CF Resource, CF Device, and CF ResourceFactory and the non-SCA service

components that are described by the software component descriptor are based on the SCA CF

specification, and the following specification concentrates on definition of the elements

necessary for describing the ports and interfaces of these components

6.3 SCD COMPONENTREPID (D.5.1.2)

The componentrepid uniquely identifies the interface that the component is implementing. The

componentrepid may be referred to by the componentfeatures element. The componentrepid is

either derived from the CF Resource, CF Device, or CF ResourceFactory or represents a non-

SCA service. For non-SCA services the repid will be used as the type identity for domainfinder

servicetype searches.

6.4 SCD COMPONENTTYPE (D.5.1.3)

The componenttype describes properties of the component. For SCA components, the

component types include resource, device, resourcefactory, domainmanager, log, filesystem,

filemanager, devicemanager, namingservice, eventservice and service. The “service” type is used

for all non-SCA services.

6.5 SCD COMPONENTFEATURES (D.5.1.4)

The componentfeatures element does not need to contain information when used in conjunction

with a non-SCA service.

6.6 SCD INTERFACES (D.5.1.5)

For non-SCA services the interfaces element is made up of zero to many interface elements.

<!ELEMENT interfaces

(interface*)>

For non-SCA services the interface element describes any services interfaces in addition to the

one identified in the componentrepid element that need to be registered as services. The name

attribute value contains the unique “identifier” portion of the “identifier\type” format service

name. The repid attribute is the unique repository id of the interface, which contains the “type”

portion of the name. This information should be passed to a service as execparams and the

service will need to register these items as services using the “identifier\type” format. For non-

SCA services the inheritsinterface element is not expected to contain a value.

<!ELEMENT interface

(inheritsinterface*) >

<!ATTLIST interface

repid CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>

<!ATTLIST inheritsinterface

SCA version 2.2.2 Extension FINAL / 15 May 2006

6

repid CDATA #REQUIRED

6.7 SCD PROPERTYFILE (D.5.1.6)

No propertyfile element entries are expected for non-SCA services.

6.8 SAD SOFTWAREASSEMBLY (D.6.1)

<!ELEMENT softwareassembly

 (description?

 , componentfiles

 , partitioning

 , assemblycontroller

 , connections?

 , externalports?

 , deploymentprefs?

)>

<!ATTLIST softwareassembly

 id ID #REQUIRED

 name CDATA #IMPLIED

 version CDATA #IMPLIED>

6.8.1 deploymentprefs

The optional deploymentprefs element is a reference to a local file. See section D.2.1.4.1 for the

definition of the localfile element. The file refers to an Application Deployment Descriptor file.

<!ELEMENT deploymentprefs

 (localfile

)>

SCA version 2.2.2 Extension FINAL / 15 May 2006

7

6.9 SAD FINDBY (D.6.1.5.1.1.3)

Figure 6-2. findby Element Relationships

6.10 SAD DOMAINFINDER (D.6.1.5.1.1.5)

The domainfinder element is a child element of the findby element. The domainfinder element is

used to indicate to the CF ApplicationFactory the necessary information to find an object

reference that is of specific type and may also be known by an optional name within the domain.

The valid type attributes are “filemanager”, “log”, “eventchannel”, “namingservice”,

“servicename” and “servicetype”. If a name attribute is not supplied, then the component

reference returned is the CF DomainManager’s FileManager, or Naming Service corresponding

to the type attribute provided. If a name attribute is not supplied and the type attribute has a

value of “log”, then a null reference is returned. The type attribute value of “eventchannel” is

used to specify the event channel to be used in the OE’s CORBA Event Service for producing or

consuming events. If the name attribute is not supplied and the type attribute has a value of

“eventchannel” then the Incoming domain management event channel is used. The type attribute

value of “servicename” is used to locate registered non-SCA services on a per name basis. The

type attribute value of “servicetype” is used to locate registered non-SCA services on a per type

basis where the corresponding type information is provided in a service Software Component

Descriptor file.

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

 type (filemanager | log | eventchannel | namingservice |

servicename | servicetype) #REQUIRED

 name CDATA #IMPLIED>

findby
<<DTDElement>>

namingservice
name : CDATA

<<DTDElementEMPTY>>

findby_grp
(from findby)

<<DTDChoiceGroup>>

domainfinder
type : (filemanager | log | eventchannel | namingservice |

<<DTDElementEMPTY>>

servicename | servicetype)
name : CDATA

SCA version 2.2.2 Extension FINAL / 15 May 2006

8

6.11 DEPLOYMENT PLATFORM DESCRIPTOR

This section describes the XML elements of the Deployment Platform Descriptor (PDD) XML

file; the deploymentplatform element. The intent of the PDD is to provide a means of describing

the collection of services and devices that are associated with a virtual channel. The knowledge

of the channel composition can be utilized as part of an overall systems engineering strategy to

control the allocation of applications to system resources. Another use of the information could

be to improve the efficiency of application deployment as the channel elements would be used to

constrain the search space for the allocation of individual application components. The use of the

PDD is optional within a system, a system designer is free to use allocation properties or other

approaches to manage the allocation of application components to platform resources.

6.11.1 deploymentplatform

The deploymentplatform element contains the layout of the virtual channels within a platform

domain.

<!ELEMENT deploymentplatform

 (description?

 , platformlayout

) >

6.11.2 description

The optional description element of the PDD may be used to provide information about the

platform domain.

<!ELEMENT description (#PCDATA)>

6.11.3 platformlayout

The platformlayout element references the definitions of the virtual channels that exist within the

platform domain.

<!ELEMENT platformlayout

 (channel+

)>

6.11.4 channel

The channel element in the PDD defines the collections of devices and services that are used by

the CF ApplicationFactory as target resource pools for application deployment. The channel

element’s name attribute contains the identifier for the channel that is used by the CF

ApplicationFactory and the Application Deployment Descriptor.

<!ELEMENT channel

 (devicelist?

 , servicelist?

) >

<!ATTLIST channel

 name ID #REQUIRED>

SCA version 2.2.2 Extension FINAL / 15 May 2006

9

6.11.5 devicelist

The optional devicelist element in the PDD defines the collection of devices for a given channel

that are used by the CF ApplicationFactory as target resource pools for application deployment.

<!ELEMENT devicelist

 (deviceref*

)>

6.11.6 deviceref

The deviceref element is used to reference a componentinstantiation element which is part of the

channel. The refid attribute points to a componentinstantiation identifier for a device that has

registered with the platform.

<!ELEMENT deviceref EMPTY>

<!ATTLIST deviceref

 refid CDATA #REQUIRED>

6.11.7 servicelist

The optional servicelist element in the PDD defines the collection of services for a given channel

that are used by the CF ApplicationFactory as target resource pools for application deployment.

<!ELEMENT servicelist

 (serviceref*

)>

6.11.8 serviceref

The serviceref element identifies a service which is part of the channel. The servicename

attribute is identical to a usagename identifier for a service that has registered with the platform.

<!ELEMENT serviceref EMPTY>

<!ATTLIST serviceref

 servicename CDATA #REQUIRED>

6.12 APPLICATION DEPLOYMENT DESCRIPTOR

This section describes the XML elements of the Application Deployment Descriptor (ADD)

XML file; the deploymentprecedence element. The intent of the ADD is to provide prioritized

lists of deployment alternatives for application instances.

6.12.1 deploymentprecedence

The deploymentprecedence element contains the relationship between application instances and

their candidate virtual channels.

<!ELEMENT deploymentprecedence

 (description?

 , deploymentoptions

) >

SCA version 2.2.2 Extension FINAL / 15 May 2006

10

6.12.2 description

The optional description element of the ADD may be used to provide information about the

application.

<!ELEMENT description (#PCDATA)>

6.12.3 deploymentoptions

The deploymentoptions element refers to the definition of the deployment preferences that exist

for each application instance.

<!ELEMENT deploymentoptions

 (deploymentoption+

)>

6.12.4 deploymentoption

The deploymentoption element in the ADD identifies the ordered list of channels that provide

deployment alternatives for a specific application instance. The deployedname attribute

corresponds to a named application instance (e.g. the name parameter passed to the CF

ApplicationFactory create operation). The optional description element may be used to provide

information about the application instance.

<!ELEMENT deploymentoption

 (description?

 , channelref+

)>

<!ATTLIST deploymentoption

 deployedname CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

6.12.5 channelref

The channelref element is used to reference a channel element from the Deployment Platform

Descriptor which provides a deployment alternative. The refname attribute points to a channel

element name attribute that identifies a channel.

<!ELEMENT channelref EMPTY>

<!ATTLIST channelref

 refname CDATA #REQUIRED>

6.13 DMD DOMAINMANAGERCONFIGURATION (D.8.1)

<!ELEMENT domainmanagerconfiguration

 (description?

 , domainmanagersoftpkg

 , deploymentlayout?

 , services

)>

<!ATTLIST domainmanagerconfiguration

 id ID #REQUIRED

SCA version 2.2.2 Extension FINAL / 15 May 2006

11

 name CDATA #REQUIRED>

6.13.1 deploymentlayout

The optional deploymentlayout element is a reference to a local file. See section D.2.1.4.1 for

the definition of the localfile element. The file refers to a Deployment Platform Descriptor file.

<!ELEMENT deploymentlayout

 (localfile

)>

		Software Communications Architecture EXTENSIONS

		Table of Contents

		1 INTRODUCTION

		2 SCA Main document Extensions

		2.1 Registerservice Behavior (3.1.3.2.3.6.7.3)

		2.2 Unregisterservice Behavior (3.1.3.2.3.6.8.3)

		2.3 Create Behavior (3.1.3.2.2.5.1.3)

		2.4 Create Exceptions/Errors (3.1.3.2.2.5.1.5)

		2.5 Device Manager General Behavior (3.1.3.2.4.5)

		2.6 Software Component Descriptor (3.1.3.5.2)

		2.7 General Application Requirements (3.2.1)

		2.8 Deployment Platform Descriptor

		2.9 Application Deployment Descriptor

		3 SCA appendix A extensions

		4 sca appendix b extensions

		5 sca appendix c extensions

		6 sca appendix d extensions

		6.1 Domain Profile

		6.2 Software Component Descriptor (D.5)

		6.3 SCD Componentrepid (D.5.1.2)

		6.4 SCD Componenttype (D.5.1.3)

		6.5 SCD Componentfeatures (D.5.1.4)

		6.6 SCD Interfaces (D.5.1.5)

		6.7 SCD Propertyfile (D.5.1.6)

		6.8 SAD Softwareassembly (D.6.1)

		6.8.1 deploymentprefs

		6.9 SAD Findby (D.6.1.5.1.1.3)

		6.10 SAD Domainfinder (D.6.1.5.1.1.5)

		6.11 Deployment Platform Descriptor

		6.11.1 deploymentplatform

		6.11.2 description

		6.11.3 platformlayout

		6.11.4 channel

		6.11.5 devicelist

		6.11.6 deviceref

		6.11.7 servicelist

		6.11.8 serviceref

		6.12 Application Deployment Descriptor

		6.12.1 deploymentprecedence

		6.12.2 description

		6.12.3 deploymentoptions

		6.12.4 deploymentoption

		6.12.5 channelref

		6.13 DMD Domainmanagerconfiguration (D.8.1)

		6.13.1 deploymentlayout

domainmanagerconfiguration_ext.2.2.2.dtd UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

<?xml version="1.0" encoding="UTF-8"?>

<!-- RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
-->

<!--
** JTNC STANDARD:
** SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
** SOFTWARE COMMUNICATIONS ARCHITECTURE EXTENSIONS
** Version: 2.2.2, 22 December 2006
-->

<!ELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, deploymentlayout?
, services
)>

<!ATTLIST domainmanagerconfiguration
id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT domainmanagersoftpkg
(localfile
)>

<!ELEMENT deploymentlayout
(localfile
)>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>

<!ELEMENT services
(service+
)>

<!ELEMENT service
(usesidentifier
, findby
)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT findby
(namingservice
| domainfinder
)>

<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice

name CDATA #REQUIRED>

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

domainmanagerconfiguration_ext.2.2.2.dtd UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

type CDATA #REQUIRED
name CDATA #IMPLIED>

softwareassembly_ext.2.2.2.dtd UNCLASSIFIED 1 / 4

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

<?xml version="1.0" encoding="UTF-8"?>

<!-- RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
-->

<!--
** JTNC STANDARD:
** SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
** SOFTWARE COMMUNICATIONS ARCHITECTURE EXTENSIONS
** Version: 2.2.2, 22 December 2006
-->

<!ELEMENT softwareassembly
(description?
, componentfiles
, partitioning
, assemblycontroller
, connections?
, externalports?
, deploymentprefs?
)>

<!ATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT componentfiles
(componentfile+
)>

<!ELEMENT componentfile
(localfile
)>

<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>

<!ELEMENT partitioning
(componentplacement | hostcollocation
)+>

<!ELEMENT componentplacement
(componentfileref
, componentinstantiation+
)>

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref

refid CDATA #REQUIRED>

<!ELEMENT componentinstantiation
(usagename?

softwareassembly_ext.2.2.2.dtd UNCLASSIFIED 2 / 4

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

, componentproperties?
, findcomponent?
)>

<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<!ELEMENT componentproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >

<!ELEMENT findcomponent
(componentresourcefactoryref
| namingservice
)>

<!ELEMENT componentresourcefactoryref
(resourcefactoryproperties?
)>

<!ATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

<!ELEMENT resourcefactoryproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref

refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref
(values
)>

<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+
)>

<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+

)>
<!ATTLIST structsequenceref

refid CDATA #REQUIRED>

<!ELEMENT structvalue
(simpleref+
)>

<!ELEMENT values
(value+
)>

<!ELEMENT value (#PCDATA)>

softwareassembly_ext.2.2.2.dtd UNCLASSIFIED 3 / 4

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

<!ELEMENT hostcollocation
(componentplacement)+>

<!ATTLIST hostcollocation
id ID #IMPLIED
name CDATA #IMPLIED>

<!ELEMENT assemblycontroller
(componentinstantiationref
)>

<!ELEMENT connections
(connectinterface*
)>

<!ELEMENT connectinterface
(usesport
, (providesport | componentsupportedinterface | findby)
)>

<!ATTLIST connectinterface
id ID #IMPLIED>

<!ELEMENT usesport
(usesidentifier
, (componentinstantiationref

| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref
| findby
)

)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>
<!ATTLIST componentinstantiationref

refid CDATA #REQUIRED>

<!ELEMENT findby
(namingservice
| domainfinder
)>

<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice

name CDATA #REQUIRED>

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

type (filemanager | log | eventchannel | namingservice | servicename | servicetype) #
REQUIRED

name CDATA #IMPLIED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>
<!ATTLIST devicethatloadedthiscomponentref

refid CDATA #REQUIRED>

<!ELEMENT deviceusedbythiscomponentref EMPTY>
<!ATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED
usesrefid CDATA #REQUIRED>

<!ELEMENT providesport
(providesidentifier
, (componentinstantiationref
| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref

softwareassembly_ext.2.2.2.dtd UNCLASSIFIED 4 / 4

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

| findby)
)>

<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref
| findby)

)>

<!ELEMENT supportedidentifier (#PCDATA)>

<!ELEMENT externalports
(port+
)>

<!ELEMENT port
(description?
, (usesidentifier | providesidentifier | supportedidentifier)
, componentinstantiationref
)>

<!ELEMENT deploymentprefs
(localfile
)>

softwarecomponent_ext.2.2.2.dtd UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

<?xml version="1.0" encoding="UTF-8"?>

<!-- RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
-->

<!--
** JTNC STANDARD:
** SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
** SOFTWARE COMMUNICATIONS ARCHITECTURE EXTENSIONS
** Version: 2.2.2, 22 December 2006
-->

<!ELEMENT softwarecomponent
(corbaversion
, componentrepid
, componenttype
, componentfeatures
, interfaces
, propertyfile?
)>

<!ELEMENT corbaversion (#PCDATA)>

<!ELEMENT componentrepid EMPTY>
<!ATTLIST componentrepid

repid CDATA #REQUIRED>

<!ELEMENT componenttype (#PCDATA)>

<!ELEMENT componentfeatures
(supportsinterface*
, ports
)>

<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface

repid CDATA #REQUIRED
supportsname CDATA #REQUIRED>

<!ELEMENT ports
(provides
| uses
)*>

<!ELEMENT provides
(porttype*)>

<!ATTLIST provides
repid CDATA #REQUIRED
providesname CDATA #REQUIRED>

<!ELEMENT uses
(porttype*)>

<!ATTLIST uses
repid CDATA #REQUIRED
usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>

softwarecomponent_ext.2.2.2.dtd UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

<!ATTLIST porttype
type (data | control | responses | test) #REQUIRED>

<!ELEMENT interfaces
(interface*
)>

<!ELEMENT interface
(inheritsinterface*)>

<!ATTLIST interface
repid CDATA #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface

repid CDATA #REQUIRED>

<!ELEMENT propertyfile
(localfile
)>

<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX C

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

Attachment 1 to Appendix C of the Software Communications Architecture is a

collection of IDL files in the Zip electronic file compression format. These files contains

the complete IDL defined in the SCA. The files included in the attachment are as follows:

CF.idl

PortTypes.idl

StandardEvent.idl

These files have been verified to compile without errors using the following:

1. Object Computing Inc. (OCI) Multiplatform Distribution of TAO version 1.4a –

patch 7.

2. Objective Interface Systems (OIS) Orbexpress RT version 2.6.3 for

INTEGRITY/PPC

3. Objective Interface Systems (OIS) Orbexpress RT version 2.6.4 for Windows/x86

		ATTACHMENT 1 TO APPENDIX C

		DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

CF.idl UNCLASSIFIED 1 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 2.2.2, 15 May 2006
*/

//Source file: CF.idl

#ifndef __CF_DEFINED
#define __CF_DEFINED

module CF {

interface Device;
interface File;
interface Resource;
interface Application;
interface ApplicationFactory;
interface DeviceManager;

/* This type is a CORBA IDL struct type which can be used to hold any CORBA basic
type or static IDL type. */

struct DataType {
/* The id attribute indicates the kind of value and type. The id can be an UUID

string, an integer string, or a name identifier. */

string id;

/* The value attribute can be any static IDL type or CORBA basic type. */

any value;
};

/* This exception indicates an invalid component profile error. */

exception InvalidProfile {
};

/* The Properties is a CORBA IDL unbounded sequence of CF DataType(s), which can be
used in defining a sequence of name and value pairs. */

typedef sequence <DataType> Properties;

/* This exception indicates an invalid CORBA object reference error. */

exception InvalidObjectReference {
string msg;

};

/* This type is a CORBA unbounded sequence of octets. */

CF.idl UNCLASSIFIED 2 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

typedef sequence <octet> OctetSequence;

/* This type defines a sequence of strings */

typedef sequence <string> StringSequence;

/* This exception indicates a set of properties unknown by the component. */

exception UnknownProperties {
CF::Properties invalidProperties;

};

/* DeviceAssignmentType defines a structure that associates a component with the
device upon which the component is executing on. */

struct DeviceAssignmentType {
string componentId;
string assignedDeviceId;

};

/* The IDL sequence, DeviceAssignmentSequence, provides a unbounded sequence of 0..n of
DeviceAssignmentType. */

typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

/* This enum is used to pass error number information in various exceptions. Those
exceptions starting with "CF_E" map to the POSIX definitions. The "CF_" has been
added to the POSIX exceptions to avoid namespace conflicts. CF_NOTSET is not
defined in the POSIX specification. CF_NOTSET is an SCA specific value that is
applicable for any exception when the method specific or standard POSIX error
values are not appropriate.) */

enum ErrorNumberType {

CF_NOTSET,
CF_E2BIG,
CF_EACCES,
CF_EAGAIN,
CF_EBADF,
CF_EBADMSG,
CF_EBUSY,
CF_ECANCELED,
CF_ECHILD,
CF_EDEADLK,
CF_EDOM,
CF_EEXIST,
CF_EFAULT,
CF_EFBIG,
CF_EINPROGRESS,
CF_EINTR,
CF_EINVAL,
CF_EIO,
CF_EISDIR,
CF_EMFILE,
CF_EMLINK,
CF_EMSGSIZE,
CF_ENAMETOOLONG,
CF_ENFILE,
CF_ENODEV,
CF_ENOENT,
CF_ENOEXEC,
CF_ENOLCK,
CF_ENOMEM,
CF_ENOSPC,
CF_ENOSYS,
CF_ENOTDIR,

CF.idl UNCLASSIFIED 3 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF_ENOTEMPTY,
CF_ENOTSUP,
CF_ENOTTY,
CF_ENXIO,
CF_EPERM,
CF_EPIPE,
CF_ERANGE,
CF_EROFS,
CF_ESPIPE,
CF_ESRCH,
CF_ETIMEDOUT,
CF_EXDEV

};

/* The InvalidFileName exception indicates an invalid file name was passed to a file
service operation. The message provides information describing why the filename
was invalid. */

exception InvalidFileName {
CF::ErrorNumberType errorNumber;
string msg;

};

/* The CF FileException indicates a file-related error occurred. The message provides
information describing the error. */

exception FileException {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This type defines an unbounded sequence of Devices. */

typedef sequence <Device> DeviceSequence;

/* The AggregateDevice interface provides aggregate behavior that can be used to add
and remove Devices from a parent device. This interface can be provided via
inheritance or as a "provides port". Child devices use this interface to add or
remove themselves from parent device when being created or torn-down. */

interface AggregateDevice {

/* The readonly devices attribute contains a list of devices that have been added
to this device or a sequence length of zero if the device has no aggregation
relationships with other devices. */

readonly attribute CF::DeviceSequence devices;

/* The addDevice operation provides the mechanism to associate a device with
another device. */

void addDevice (
in CF::Device associatedDevice
)
raises (CF::InvalidObjectReference);

/* The removeDevice operation provides the mechanism to disassociate
a device from another device. */

void removeDevice (
in CF::Device associatedDevice
)
raises (CF::InvalidObjectReference);

};

CF.idl UNCLASSIFIED 4 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* The FileSystem interface defines the CORBA operations to enable remote access to a
physical file system. */

interface FileSystem {

/* This exception indicates a set of properties unknown by the FileSystem object.
*/

exception UnknownFileSystemProperties {
CF::Properties invalidProperties;

};

/* This constant indicates file system size. */

const string SIZE = "SIZE";

/* This constant indicates the available space on the file system. */

const string AVAILABLE_SPACE = "AVAILABLE_SPACE";

/* The FileType indicates the type of file entry. A file system can have PLAIN or
DIRECTORY files and mounted file systems contained in a FileSystem. */

enum FileType {
PLAIN,
DIRECTORY,
FILE_SYSTEM

};

/* The FileInformationType indicates the information returned for a file. */

struct FileInformationType {
string name;
CF::FileSystem::FileType kind;
unsigned long long size;
CF::Properties fileProperties;

};

typedef sequence <FileInformationType> FileInformationSequence;

/* The CREATED_TIME_ID is the identifier for the created time file property. */
const string CREATED_TIME_ID = "CREATED_TIME";

/* The MODIFIED_TIME_ID is the identifier for the modified time file property. */
const string MODIFIED_TIME_ID = "MODIFIED_TIME";

/* The LAST_ACCESS_TIME_ID is the identifier for the last access time file
property. */

const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

/* The remove operation removes the file with the given filename. */

void remove (
in string fileName
)
raises (CF::FileException,CF::InvalidFileName);

/* The copy operation copies the source file with the specified sourceFileName to
the destination file with the specified destinationFileName. */

void copy (
in string sourceFileName,
in string destinationFileName
)

CF.idl UNCLASSIFIED 5 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

raises (CF::InvalidFileName,CF::FileException);

/* The exists operation checks to see if a file exists based on the filename
parameter. */

boolean exists (
in string fileName
)
raises (CF::InvalidFileName);

/* The list operation provides the ability to obtain a list of files along with
their information in the file system according to a given search pattern. */

CF::FileSystem::FileInformationSequence list (
in string pattern
)
raises (CF::FileException,CF::InvalidFileName);

/* The create operation creates a new File based upon the provided file name and
returns a File to the opened file. */

CF::File create (
in string fileName
)
raises (CF::InvalidFileName,CF::FileException);

/* The open operation opens a file for reading or writing based upon the input
fileName. */

CF::File open (
in string fileName,
in boolean read_Only
)
raises (CF::InvalidFileName,CF::FileException);

/* The mkdir operation creates a file system directory based on the directoryName
given. */

void mkdir (
in string directoryName
)
raises (CF::InvalidFileName,CF::FileException);

/* The rmdir operation removes a file system directory based on the directoryName
given. */

void rmdir (
in string directoryName
)
raises (CF::InvalidFileName,CF::FileException);

/* The query operation returns file system information to the calling client based
upon the given fileSystemProperties' ID. */

void query (
inout CF::Properties fileSystemProperties
)
raises (CF::FileSystem::UnknownFileSystemProperties);

};

/* The File interface provides the ability to read and write files residing within a
distributed FileSystem. A file can be thought of conceptually as a sequence of
octets with a current filePointer describing where the next read or write will
occur. */

CF.idl UNCLASSIFIED 6 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

interface File {

/* The IOException exception indicates an error occurred during a read or write
operation to a File. The message is component-dependent, providing additional
information describing the reason for the error. */

exception IOException {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates the file pointer is out of range based upon the
current file size. */

exception InvalidFilePointer {
};

/* The readonly fileName attribute contains the file name given to the FileSystem
open/create operation. */

readonly attribute string fileName;

/* The readonly filePointer attribute contains the file position where the next
read or write will occur. */

readonly attribute unsigned long filePointer;

/* Applications require the read operation in order to retrieve data from remote
files. */

void read (
out CF::OctetSequence data,
in unsigned long length
)
raises (CF::File::IOException);

/* The write operation writes data to the file referenced. */

void write (
in CF::OctetSequence data
)
raises (CF::File::IOException);

/* The sizeOf operation returns the current size of the file. */

unsigned long sizeOf ()
raises (CF::FileException);

/* The close operation releases any OE file resources associated with the
component. */

void close ()
raises (CF::FileException);

/* The setFilePointer operation positions the file pointer where next read or
write will occur. */

void setFilePointer (
in unsigned long filePointer
)
raises (CF::File::InvalidFilePointer,CF::FileException);

};

CF.idl UNCLASSIFIED 7 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* A ResourceFactory can be used to create and tear down a Resource. */

interface ResourceFactory {

/* This exception indicates the resourceID does not exist in the ResourceFactory.
*/

exception InvalidResourceId {
};

/* This exception indicates that the shutdown method failed to release the
ResourceFactory from the CORBA environment because the Factory still contains
Resources. The message is component-dependent, providing additional
information describing why the shutdown failed. */

exception ShutdownFailure {
string msg;

};

/* The CreateResourceFailure exception indicates that the createResource operation
failed to create the Resource. The message is component-dependent, providing
additional information describing the reason for the error. */

exception CreateResourceFailure {
CF::ErrorNumberType errorNumber;
string msg;

};

/* The readonly identifier attribute contains the unique identifier for a
ResourceFactory instance. */

readonly attribute string identifier;

/* The createResource operation provides the capability to create Resources in the
same process space as the ResourceFactory or to return a Resource that has
already been created. This behavior is an alternative approach to the Device's
execute operation for creating a Resource. */

CF::Resource createResource (
in string resourceId,
in CF::Properties qualifiers
)
raises (CF::ResourceFactory::CreateResourceFailure);

/* In CORBA there is client side and server side representation of a Resource.
This operation provides the mechanism of releasing the Resource in the CORBA
environment on the server side when all clients are through with a specific
Resource. The client still has to release its client side reference of the
Resource. */

void releaseResource (
in string resourceId
)
raises (CF::ResourceFactory::InvalidResourceId);

/* In CORBA there is client side and server side representation of a
ResourceFactory. This operation provides the mechanism for releasing the
ResourceFactory from the CORBA environment on the server side. The client has
the responsibility to release its client side reference of the
ResourceFactory. */

void shutdown ()
raises (CF::ResourceFactory::ShutdownFailure);

};

CF.idl UNCLASSIFIED 8 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* Multiple, distributed FileSystems may be accessed through a FileManager. The
FileManager interface appears to be a single FileSystem although the actual file
storage may span multiple physical file systems. */

interface FileManager : FileSystem {

/* The Mount structure identifies the FileSystems mounted within the FileManager.
*/

struct MountType {
string mountPoint;
CF::FileSystem fs;

};

/* This type defines an unbounded sequence of mounted FileSystems. */
typedef sequence <MountType> MountSequence;

/* This exception indicates a mount point does not exist within the FileManager */
exception NonExistentMount {
};

/* This exception indicates the FileSystem is a null (nil) object reference. */
exception InvalidFileSystem {
};

/* This exception indicates the mount point is already in use in the FileManager.
*/

exception MountPointAlreadyExists {
};

/* The mount operation associates a FileSystem with a mount point (a directory
name). */

void mount (
in string mountPoint,
in CF::FileSystem file_System
)
raises (CF::InvalidFileName,CF::FileManager::InvalidFileSystem,CF::FileManager::

MountPointAlreadyExists);

/* The unmount operation removes a mounted FileSystem from the FileManager whose
mounted name matches the input mountPoint name. */

void unmount (
in string mountPoint
)
raises (CF::FileManager::NonExistentMount);

/* The getMounts operation returns the FileManager's mounted FileSystems. */

CF::FileManager::MountSequence getMounts ();

};

/* This interface provides operations for managing associations between ports. An
application defines a specific Port type by specifying an interface that inherits
the Port interface. */

interface Port {

/* This exception indicates one of the following errors has occurred in the
specification of a Port association. */

exception InvalidPort {
unsigned short errorCode;

CF.idl UNCLASSIFIED 9 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

string msg;
};

/* This exception indicates the Port is unable to accept any additional
connections. */

exception OccupiedPort {
};

/* The connectPort operation makes a connection to the component identified by the
input parameters. The connectPort operation establishes only half of the
association; therefore two calls are required to create a two-way association.
A port may support several connections. */

void connectPort (
in Object connection,
in string connectionId
)
raises (CF::Port::InvalidPort,CF::Port::OccupiedPort);

/* The disconnectPort operation breaks the connection to the component identified
by the input parameters. */

void disconnectPort (
in string connectionId
)
raises (CF::Port::InvalidPort);

};

/* The LifeCycle interface defines the generic operations for initializing or
releasing instantiated component-specific data and/or processing elements. */

interface LifeCycle {

/* This exception indicates an error occurred during component initialization. The
messages provide additional information describing the reason why the error
occurred. */

exception InitializeError {
CF::StringSequence errorMessages;

};

/* This exception indicates an error occurred during component releaseObject. The
messages provide additional information describing the reason why the error
occurred. */

exception ReleaseError {
CF::StringSequence errorMessages;

};

/* The purpose of the initialize operation is to provide a mechanism to set an
object to an known initial state. */

void initialize ()
raises (CF::LifeCycle::InitializeError);

/* The purpose of the releaseObject operation is to provide a means by which an
instantiated component may be torn down. */

void releaseObject ()
raises (CF::LifeCycle::ReleaseError);

};

CF.idl UNCLASSIFIED 10 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* The TestableObject interface defines a set of operations that can be used to test
component implementations. */

interface TestableObject {

/* This exception indicates the requested testid for a test to be performed is not
known by the component. */

exception UnknownTest {
};

/* The runTest operation allows components to be "blackbox" tested. This allows
Built-In Tests to be implemented which provides a means to isolate faults (
both software and hardware) within the system. */

void runTest (
in unsigned long testid,
inout CF::Properties testValues
)
raises (CF::TestableObject::UnknownTest,CF::UnknownProperties);

};

/* The PropertySet interface defines configure and query operations to access
component properties/attributes. */

interface PropertySet {

/* This exception indicates the configuration of a component has failed (no
configuration at all was done). The message provides additional information
describing the reason why the error occurred. The invalid properties returned
indicates the properties that were invalid. */

exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;

};

/* The PartialConfiguration exception indicates the configuration of a Component
was partially successful. The invalid properties returned indicates the
properties that were invalid. */

exception PartialConfiguration {
CF::Properties invalidProperties;

};

/* The purpose of this operation is to allow id/value pair configuration
properties to be assigned to components implementing this interface. */

void configure (
in CF::Properties configProperties
)
raises (CF::PropertySet::InvalidConfiguration,CF::PropertySet::

PartialConfiguration);

/* The purpose of this operation is to allow a component to be queried to retrieve
its properties. */

void query (
inout CF::Properties configProperties
)
raises (CF::UnknownProperties);

};

CF.idl UNCLASSIFIED 11 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* The DomainManager interface is for the control and configuration of the radio
domain. */

interface DomainManager : PropertySet {

/* This exception is raised when an Application installation has not completed
correctly. The message provides additional information describing the reason
for the error. */

exception ApplicationInstallationError {
CF::ErrorNumberType errorNumber;
string msg;

};
exception ApplicationAlreadyInstalled {
};

/* This type defines an unbounded sequence of Applications. */

typedef sequence <Application> ApplicationSequence;

/* This type defines an unbounded sequence of ApplicationFactories. */

typedef sequence <ApplicationFactory> ApplicationFactorySequence;

/* This type defines an unbounded sequence of DeviceManagers. */
typedef sequence <DeviceManager> DeviceManagerSequence;

/* This exception indicates the application ID is invalid. */
exception InvalidIdentifier {
};

/* This exception indicates the registering Device's DeviceManager is not
registered in the DomainManager. A Device's DeviceManager has to be registered
prior to a Device registration to the DomainManager. */

exception DeviceManagerNotRegistered {
};

/* This exception is raised when an Application uninstallation has not completed
correctly. The message provides additional information describing the reason
for the error. */

exception ApplicationUninstallationError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The message
provides additional information describing the reason for the error. */

exception RegisterError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The message
provides additional information describing the reason for the error. */

exception UnregisterError {
CF::ErrorNumberType errorNumber;
string msg;

};

CF.idl UNCLASSIFIED 12 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* This exception indicates that a registering consumer is already connected to
the specified event channel. */

exception AlreadyConnected {
};

/* This exception indicates that a DomainManager was not able to locate the event
channel. */

exception InvalidEventChannelName {
};

/* The NotConnected exception indicates that the unregistering consumer was not
connected to the specified event channel. */

exception NotConnected {
};

/* The readonly domainManagerProfile attribute contains a profile element with a
file reference to the DomainManager Configuration Descriptor (DMD) profile. */

readonly attribute string domainManagerProfile;

/* The deviceManagers attribute is read-only containing a sequence of registered
DeviceManagers in the domain. */

readonly attribute CF::DomainManager::DeviceManagerSequence deviceManagers;

/* The applications attribute contains a list of Applications that have been
instantiated in the domain. */

readonly attribute CF::DomainManager::ApplicationSequence applications;

/* The readonly applicationFactories attribute contains a list with one
ApplicationFactory per application (SAD file and associated files)
successfully installed. */

readonly attribute CF::DomainManager::ApplicationFactorySequence
applicationFactories;

/* The readonly fileMgr attribute contains the DomainManager's FileManager. */

readonly attribute CF::FileManager fileMgr;

/* The readonly identifier attribute contains a unique identifier for a
DomainManager instance. The identifier is identical to the
domainmanagerconfiguration element id attribute of the DomainManager's
Descriptor (DMD) file. */

readonly attribute string identifier;

/* The registerDevice operation is used to register a Device for a specific
DeviceManager in the DomainManager's Domain Profile. */

void registerDevice (
in CF::Device registeringDevice,
in CF::DeviceManager registeredDeviceMgr
)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager::DeviceManagerNotRegistered,
CF::DomainManager::RegisterError);

/* The registerDeviceManager operation is used to register a DeviceManager, its
Device(s), and its Services. */

CF.idl UNCLASSIFIED 13 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

void registerDeviceManager (
in CF::DeviceManager deviceMgr
)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager::RegisterError);

/* The unregisterDeviceManager operation is used to unregister a DeviceManager
component from the DomainManager's Domain Profile. A DeviceManager may be
unregistered during run-time for dynamic extraction or maintenance of the
DeviceManager. */

void unregisterDeviceManager (
in CF::DeviceManager deviceMgr
)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);

/* The unregisterDevice operation is used to remove a device entry from the
DomainManager for a specific DeviceManager. */

void unregisterDevice (
in CF::Device unregisteringDevice
)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);

/* The installApplication operation is used to register new application software
in the DomainManager's Domain Profile. */

void installApplication (
in string profileFileName
)
raises (CF::InvalidProfile,CF::InvalidFileName,
CF::DomainManager::ApplicationInstallationError,
CF::DomainManager:: ApplicationAlreadyInstalled);

/* The uninstallApplication operation is used to uninstall an application and its
associated ApplicationFactory from the DomainManager. */

void uninstallApplication (
in string applicationId
)
raises (CF::DomainManager::InvalidIdentifier,
CF::DomainManager::ApplicationUninstallationError);

/* The registerService operation is used to register a service for a specific
DeviceManager with the DomainManager. */

void registerService (
in Object registeringService,
in CF::DeviceManager registeredDeviceMgr,
in string name
)
raises (CF::InvalidObjectReference,
CF::DomainManager::DeviceManagerNotRegistered,
CF::DomainManager::RegisterError);

/* The unregisterService operation is used to remove a service entry from the
DomainManager for a specific DeviceManager. */

void unregisterService (
in Object unregisteringService,
in string name
)
raises (CF::InvalidObjectReference,
CF::DomainManager::UnregisterError);

CF.idl UNCLASSIFIED 14 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* The registerWithEventChannel operation is used to connect a consumer to a
domain's event channel. */

void registerWithEventChannel (
in Object registeringObject,
in string registeringId,
in string eventChannelName
)
raises (CF::InvalidObjectReference,
CF::DomainManager::InvalidEventChannelName,
CF::DomainManager::AlreadyConnected);

/* The unregisterFromEventChannel operation is used to disconnect a consumer from
a domain's event channel. */

void unregisterFromEventChannel (
in string unregisteringId,
in string eventChannelName
)
raises (CF::DomainManager::InvalidEventChannelName,
CF::DomainManager::NotConnected);

};

/* The ApplicationFactory interface class provides an interface to request the
creation of a specific type of Application in the domain.The Software Profile
determines the type of Application that is created by the ApplicationFactory. */

interface ApplicationFactory {

/* This exception is raised when the parameter DeviceAssignmentSequence contains
one or more invalid Application component-to-device assignment(s). */

exception CreateApplicationRequestError {
CF::DeviceAssignmentSequence invalidAssignments;

};

/* This exception is raised when a create request is valid but the Application is
unsuccessfully instantiated due to internal processing errors. The message
provides additional information describing the reason for the error. */

exception CreateApplicationError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception is raised when the input initConfiguration parameter is invalid.
*/

exception InvalidInitConfiguration {
CF::Properties invalidProperties;

};

/* The name attribute contains the name of the type of Application that can be
instantiated by the ApplicationFactory. */

readonly attribute string name;

/* The readonly identifier attribute contains the unique identifier for an
ApplicationFactory instance. The identifier is identical to the
softwareassembly element id attribute of the ApplicationFactory's Software
Assembly Descriptor file. */

readonly attribute string identifier;

CF.idl UNCLASSIFIED 15 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* This attribute contains the application software profile that the factory uses
when creating an application. The string value contains a profile element
with a file reference to the SAD */

readonly attribute string softwareProfile;

/* The create operation is used to create an Application within the system domain.
*/

CF::Application create (
in string name,
in CF::Properties initConfiguration,
in CF::DeviceAssignmentSequence deviceAssignments
)
raises (CF::ApplicationFactory::CreateApplicationError,
CF::ApplicationFactory::CreateApplicationRequestError,
CF::ApplicationFactory::InvalidInitConfiguration);

};

/* The PortSupplier interface provides the getPort operation for those objects that
provide ports. */

interface PortSupplier {

/* This exception is raised if an undefined port is requested. */

exception UnknownPort {
};

/* The getPort operation provides a mechanism to obtain a specific consumer or
producer Port. A PortSupplier may contain zero-to-many consumer and producer
port components. */

Object getPort (
in string name
)
raises (CF::PortSupplier::UnknownPort);

};

/* The Resource interface provides a common interface for the control and
configuration of a software component. */

interface Resource : LifeCycle, TestableObject, PropertySet, PortSupplier {

/* This exception indicates that an error occurred during an attempt to start the
Resource. The message provides additional information describing the reason
for the error. */

exception StartError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* The StopError exception indicates that an error occurred during an attempt to
stop the Resource. The message provides additional information describing the
reason for the error. */

exception StopError {
CF::ErrorNumberType errorNumber;
string msg;

};

CF.idl UNCLASSIFIED 16 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* The readonly identifier attribute shall contain the unique identifier for a
resource instance. */

readonly attribute string identifier;

/* The start operation is provided to command a Resource implementing this
interface to start internal processing. */

void start ()
raises (CF::Resource::StartError);

/* The stop operation is provided to command a Resource implementing this
interface to stop all internal processing. */

void stop ()
raises (CF::Resource::StopError);

};

/* The Device interface defines additional capabilities and attributes for any logical
Device in the domain. */

interface Device : Resource {

/* This exception indicates that the device is not capable of the behavior being
attempted due to the state the Device is in. */

exception InvalidState {
string msg;

};

/* The InvalidCapacity exception returns the capacities that are not valid for
this device. */

exception InvalidCapacity {

/* The message indicates the reason for the invalid capacity. */
string msg;

/* The invalid capacities sent to the allocateCapacity operation.*/
CF::Properties capacities;

};

/* This enumeration type defines a Device's administrative states. The
administrative state indicates the permission to use or prohibition against
using the Device. */

enum AdminType {

LOCKED,
SHUTTING_DOWN,
UNLOCKED

};

/* This enumeration type defines a Device's operational states. The operational
state indicates whether or not the object is functioning. */

enum OperationalType {

ENABLED,
DISABLED

};

/* This enumeration type defines the Device's usage states. */

CF.idl UNCLASSIFIED 17 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

enum UsageType {

IDLE,
ACTIVE,
BUSY

};

/* The readonly usageState attribute contains the Device's usage state The
usageState indicates whether or not a device is actively in use at a specific
instant, and if so, whether or not it has spare capacity for allocation at
that instant. */

readonly attribute CF::Device::UsageType usageState;

/* The administrative state indicates the permission to use or prohibition against
using the device. The adminState attribute contains the device's admin state
value. */

attribute CF::Device::AdminType adminState;

/* The operationalState attribute contains the device's operational state. The
operational state indicates whether or not the device is functioning. */

readonly attribute CF::Device::OperationalType operationalState;

/* The softwareProfile attribute is the XML description for this logical Device.
The softwareProfile attribute contains a profile DTD element with a file
reference to the SPD profile file. */

readonly attribute string softwareProfile;

/* The label attribute is the meaningful name given to a Device. */

readonly attribute string label;

/* The compositeDevice attribute contains the object reference of the
AggregateDevice with which this Device is associated or a nil CORBA object
reference if no association exists. */

readonly attribute CF::AggregateDevice compositeDevice;

/* The allocateCapacity operation provides the mechanism to request and allocate
capacity from the Device. */

boolean allocateCapacity (
in CF::Properties capacities
)
raises (CF::Device::InvalidCapacity, CF::Device::InvalidState);

/* The deallocateCapacity operation provides the mechanism to return capacities
back to the Device, making them available to other users. */

void deallocateCapacity (
in CF::Properties capacities
)
raises (CF::Device::InvalidCapacity, CF::Device::InvalidState);

};

/* The Application interface provides for the control, configuration, and status of an
instantiated application in the domain. */

interface Application : Resource {

/* The ComponentProcessIdType defines a type for associating a component with its

CF.idl UNCLASSIFIED 18 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

process ID. This type can be used to retrieve a process ID for a specific
component. */

struct ComponentProcessIdType {
string componentId;
unsigned long processId;

};

/* The ComponentProcessIdSequence type defines an unbounded sequence of components
' process IDs. */

typedef sequence <ComponentProcessIdType> ComponentProcessIdSequence;

/* The ComponentElementType defines a type for associating a component with an
element. */

struct ComponentElementType {
string componentId;
string elementId;

};

/* This type is an unbounded sequence of ComponentElementTypes. */

typedef sequence <ComponentElementType> ComponentElementSequence;

/* This attribute contains the list of components' Naming Service Context within
the Application for those components using CORBA Naming Service. */

readonly attribute CF::Application::ComponentElementSequence
componentNamingContexts;

/* This attribute contains the list of components' process IDs within the
Application for components that are executing on a device. */

readonly attribute CF::Application::ComponentProcessIdSequence
componentProcessIds;

/* The componentDevices attribute shall contain a list of devices which each
component either uses, is loaded on or is executed on. Each component (
componentinstantiation element in the Application's software profile) is
associated with a device. */

readonly attribute CF::DeviceAssignmentSequence componentDevices;

/* This attribute contains the list of components' SPD implementation IDs within
the Application for those components created. */

readonly attribute CF::Application::ComponentElementSequence
componentImplementations;

/* This attribute is the XML profile information for the application. The string
value contains a profile element with a file reference to the SAD. */

readonly attribute string profile;

/* This name attribute contains the name of the created Application. The
ApplicationFactory interfaces's create operation name parameter provides the
name content. */

readonly attribute string name;
};

/* This interface extends the Device interface by adding software loading and
unloading behavior to a Device. */

interface LoadableDevice : Device {

CF.idl UNCLASSIFIED 19 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/* This LoadType defines the type of load to be performed. The load types are in
accordance with the code element within the softpkg element's implementation
element. */

enum LoadType {

KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE

};

/* The InvalidLoadKind exception indicates that the Device is unable to load the
type of file designated by the loadKind parameter. */

exception InvalidLoadKind {
};

/* The LoadFail exception indicates that an error occurred during an attempt to
load the device. The message provides additional information describing the
reason for the error. */

exception LoadFail {
CF::ErrorNumberType errorNumber;
string msg;

};

/* The load operation provides the mechanism for loading software on a specific
device. The loaded software may be subsequently executed on the Device, if
the Device is an ExecutableDevice. */

void load (
in CF::FileSystem fs,
in string fileName,
in CF::LoadableDevice::LoadType loadKind
)
raises (CF::Device::InvalidState,
CF::LoadableDevice::InvalidLoadKind,
CF::InvalidFileName, CF::LoadableDevice::LoadFail);

/* The unload operation provides the mechanism to unload software that is
currently loaded. */

void unload (
in string fileName
)
raises (CF::Device::InvalidState,CF::InvalidFileName);

};

/* This interface extends the LoadableDevice interface by adding execute and terminate
behavior to a Device. */

interface ExecutableDevice : LoadableDevice {

/* The InvalidProcess exception indicates that a process, as identified by the
processID parameter, does not exist on this device. The message provides
additional information describing the reason for the error. */

exception InvalidProcess {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates that a function, as identified by the input name

CF.idl UNCLASSIFIED 20 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

parameter, hasn't been loaded on this device. */

exception InvalidFunction {
};

/* This type defines a process number within the system. The process number is
unique to the Processor operating system that created the process. */

typedef long ProcessID_Type;

/* The InvalidParameters exception indicates that input parameters are invalid for
the execute operation. Each parameter's ID and value must be a valid string
type. The invalidParms is a list of invalid parameters specified in the
execute operation. */

exception InvalidParameters {
CF::Properties invalidParms;

};

/* The InvalidOptions exception indicates the input options are invalid on the
execute operation. The invalidOpts is a list of invalid options specified in
the execute operation. */

exception InvalidOptions {
CF::Properties invalidOpts;

};

/* The STACK_SIZE_ID is the identifier for the ExecutableDevice's execute options
parameter. */

const string STACK_SIZE_ID = "STACK_SIZE";

/* The PRIORITY_ID is the identifier for the ExecutableDevice's execute options
parameters. */

const string PRIORITY_ID = "PRIORITY";

/* The ExecuteFail exception indicates that an attempt to invoke the execute
operation on a device failed. The message provides additional information
describing the reason for the error. */

exception ExecuteFail {
CF::ErrorNumberType errorNumber;
string msg;

};

/* The terminate operation provides the mechanism for terminating the execution of
a process/thread on a specific device that was started up with the execute
operation. */

void terminate (
in CF::ExecutableDevice::ProcessID_Type processId
)
raises (CF::ExecutableDevice::InvalidProcess,
CF::Device::InvalidState);

/* The execute operation provides the mechanism for starting up and executing a
software process/thread on a device. */

CF::ExecutableDevice::ProcessID_Type execute (
in string name,
in CF::Properties options,
in CF::Properties parameters
)
raises (CF::Device::InvalidState,
CF::ExecutableDevice::InvalidFunction,

CF.idl UNCLASSIFIED 21 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF::ExecutableDevice::InvalidParameters,
CF::ExecutableDevice::InvalidOptions,
CF::InvalidFileName,
CF::ExecutableDevice::ExecuteFail);

};

/* The DeviceManager interface is used to manage a set of logical Devices and
services. */

interface DeviceManager : PropertySet, PortSupplier {

/* This structure provides the object reference and name of services that have
registered with the DeviceManager. */

struct ServiceType {
Object serviceObject;
string serviceName;

};

/* This type provides an unbounded sequence of ServiceType structures for services
that have registered with the DeviceManager. */

typedef sequence <ServiceType> ServiceSequence;

/* The deviceConfigurationProfile attribute contains the DeviceManager's profile,
a profile element with a file reference to the DeviceManager's Device
Configuration Descriptor (DCD) profile. */

readonly attribute string deviceConfigurationProfile;

/* The fileSys attribute contains the FileSystem associated with this
DeviceManager or a nil CORBA object reference if no FileSystem is associated
with this DeviceManager. */

readonly attribute CF::FileSystem fileSys;

/* The identifier attribute contains the instance-unique identifier for a
DeviceManager. The identifier is identical to the deviceconfiguration element
id attribute of the DeviceManager's Device Configuration Descriptor (DCD)
file. */

readonly attribute string identifier;

/* The label attribute contains the DeviceManager's label. The label attribute is
the meaningful name given to a DeviceManager. */

readonly attribute string label;

/* The registeredDevices attribute contains a list of Devices that have registered
with this DeviceManager or a sequence of length zero if no Devices have
registered with the DeviceManager. */

readonly attribute CF::DeviceSequence registeredDevices;

/* The registeredServices attribute contains a list of Services that have
registered with this DeviceManager or a sequence of length zero if no Services
have registered with the DeviceManager. */

readonly attribute CF::DeviceManager::ServiceSequence registeredServices;

/* The registerDevice operation provides the mechanism to register a Device with a
DeviceManager. */

void registerDevice (
in CF::Device registeringDevice

CF.idl UNCLASSIFIED 22 / 22

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

)
raises (CF::InvalidObjectReference);

/* This operation unregisters a Device from a DeviceManager. */

void unregisterDevice (
in CF::Device registeredDevice
)
raises (CF::InvalidObjectReference);

/* The shutdown operation provides the mechanism to terminate a DeviceManager,
unregistering it from the DomainManager. */

void shutdown ();

/* The registerService operation provides mechanisms to register a Service with a
DeviceManager and its DomainManager. */

void registerService (
in Object registeringService,
in string name
)
raises (CF::InvalidObjectReference);

/* This operation provides mechanisms to unregister a Service from a DeviceManager
and its DomainManager. */

void unregisterService (
in Object unregisteringService,
in string name
)
raises (CF::InvalidObjectReference);

/* The getComponentImplementationId operation returns the SPD implementation ID
that the DeviceManager interface used to create a component. */

string getComponentImplementationId (
in string componentInstantiationId
);

};

};

#endif

PortTypes.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 2.2.2, 15 May 2006
*/

//Source file: PortTypes.idl

#ifndef __PORTTYPES_DEFINED
#define __PORTTYPES_DEFINED

module PortTypes {

/* This type is a unbounded sequence of booleans. */
typedef sequence <boolean> BooleanSequence;

/* This type is a unbounded sequence of characters. */
typedef sequence <char> CharSequence;

/* This type is a unbounded sequence of doubles. */
typedef sequence <double> DoubleSequence;

/* This type is a unbounded sequence of longlongs. */
typedef sequence <long long> LongLongSequence;

/* This type is a unbounded sequence of longs. */
typedef sequence <long> LongSequence;

/* This type is a unbounded sequence of shorts. */
typedef sequence <short> ShortSequence;

/* This type is a unbounded sequence of unsigned long longs. */
typedef sequence <unsigned long long> UlongLongSequence;

/* This type is a unbounded sequence of unsigned longs. */
typedef sequence <unsigned long> UlongSequence;

/* This type is a unbounded sequence of unsigned shorts. */
typedef sequence <unsigned short> UshortSequence;

/* This type is a unbounded sequence of floats. */
typedef sequence <float> FloatSequence;

};

#endif

StandardEvent.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 2.2.2, 15 May 2006
*/

//Source file: StandardEvent.idl

#ifndef __STANDARDEVENT_DEFINED
#define __STANDARDEVENT_DEFINED

module StandardEvent {

/* Type StateChangeCategoryType is an enumeration that is utilized in the
StateChangeEventType. It is used to identify the category of state change that has
occurred. */

enum StateChangeCategoryType {

ADMINISTRATIVE_STATE_EVENT,
OPERATIONAL_STATE_EVENT,
USAGE_STATE_EVENT

};

/* Type StateChangeType is an enumeration that is utilized in the StateChangeEventType.
It is used to identify the specific states of the event source before and after the
state change occurred. */

enum StateChangeType {

LOCKED,
UNLOCKED,
SHUTTING_DOWN,
ENABLED,
DISABLED,
IDLE,
ACTIVE,
BUSY

};

/* Type StateChangeEventType is a structure used to indicate that the state of the event
source has changed. The event producer will send this structure into an event
channel on behalf of the event source. */

struct StateChangeEventType {
string producerId;
string sourceId;
StandardEvent::StateChangeCategoryType stateChangeCategory;
StandardEvent::StateChangeType stateChangeFrom;
StandardEvent::StateChangeType stateChangeTo;

};

/* Type SourceCategoryType is an enumeration that is utilized in the

StandardEvent.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

DomainManagementObjectAddedEventType and DomainManagementObjectRemovedEventType. Is
used to identify the type of object that has been added to or removed from the
domain. */

enum SourceCategoryType {

DEVICE_MANAGER,
DEVICE,
APPLICATION_FACTORY,
APPLICATION,
SERVICE

};

/* Type DomainManagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain. The event producer will send this
structure into an event channel on behalf of the event source. */

struct DomainManagementObjectRemovedEventType {
string producerId;
string sourceId;
string sourceName;
StandardEvent::SourceCategoryType sourceCategory;

};

/* Type DomainManagementObjectAddedEventType is a structure used to indicate that the
event source has been added to the domain. The event producer will send this
structure into an event channel on behalf of the event source. */

struct DomainManagementObjectAddedEventType {
string producerId;
string sourceId;
string sourceName;
StandardEvent::SourceCategoryType sourceCategory;
Object sourceIOR;

};

};

#endif

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

Attachment 1 to Appendix D of the Software Communications Architecture is a

collection of XML files in the Zip electronic file compression format. These files contain

the XML for the SCA Domain Profile as defined in Appendix D. The files include in the

attachment are as follows:

deviceconfiguration.2.2.2.dtd

devicepkg.2.2.2.dtd

domainmanagerconfiguration.2.2.2.dtd

profile.2.2.2.dtd

properties.2.2.2.dtd

softpkg.2.2.2.dtd

softwareassembly.2.2.2.dtd

softwarecomponent.2.2.2.dtd

		readmeattachment_1_to_appendix d.pdf

		ATTACHMENT 1 TO APPENDIX D

		DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

PROFILE DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT profile EMPTY>

<!ATTLIST profile

 filename CDATA #REQUIRED

 type CDATA #IMPLIED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

PROPERTIES DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT properties

 (description?

 , (simple | simplesequence | test | struct | structsequence)+

)>

<!ELEMENT simple

 (description?

 , value?

 , units?

 , range?

 , enumerations?

 , kind*

 , action?

)>

<!ATTLIST simple

 id ID #REQUIRED

 type (boolean | char | double | float | short | long |

objref | octet

 | string | ulong | ushort) #REQUIRED

 name CDATA #IMPLIED

 mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT description (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT units (#PCDATA)>

<!ELEMENT range EMPTY>

<!ATTLIST range

 min CDATA #REQUIRED

 max CDATA #REQUIRED>

<!ELEMENT enumerations

 (enumeration+

)>

<!ELEMENT enumeration EMPTY>

<!ATTLIST enumeration

 label CDATA #REQUIRED

 value CDATA #IMPLIED>

<!ELEMENT kind EMPTY>

<!ATTLIST kind

 kindtype (allocation | configure | test | execparam | factoryparam)

"configure">

<!ELEMENT action EMPTY>

<!ATTLIST action

 type (eq | ne | gt | lt | ge | le | external) "external">

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

PROPERTIES DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ELEMENT simplesequence

 (description?

 , values?

 , units?

 , range?

 , kind*

 , action?

)>

<!ATTLIST simplesequence

 id ID #REQUIRED

 type (boolean | char | double | float

 | short | long | objref | octet

 | string | ulong | ushort) #REQUIRED

 name CDATA #IMPLIED

 mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT values

 (value+

)>

<!ELEMENT test

 (description

 , inputvalue?

 , resultvalue

)>

<!ATTLIST test

 id CDATA #REQUIRED>

<!ELEMENT inputvalue

 (simple+

)>

<!ELEMENT resultvalue

 (simple+

)>

<!ELEMENT struct

 (description?

 , simple+

 , configurationkind?

)>

<!ATTLIST struct

 id ID #REQUIRED

 name CDATA #IMPLIED

 mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT configurationkind EMPTY>

<!ATTLIST configurationkind

 kindtype (configure | factoryparam) "configure">

<!ELEMENT structsequence

 (description?

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

PROPERTIES DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

 , structvalue+

 , configurationkind?

)>

<!ATTLIST structsequence

 id ID #REQUIRED

 structrefid CDATA #REQUIRED

 name CDATA #IMPLIED

 mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue

 (simpleref+

)>

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE PACKAGE DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT softpkg

 (title?

 , author+

 , description?

 , propertyfile?

 , descriptor?

 , implementation+

 , usesdevice*

)>

<!ATTLIST softpkg

 id ID #REQUIRED

 name CDATA #REQUIRED

 type (sca_compliant | sca_non_compliant) "sca_compliant"

 version CDATA #IMPLIED >

<!ELEMENT propertyfile

 (localfile

)>

<!ATTLIST propertyfile

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author

 (name*

 , company?

 , webpage?

)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT webpage (#PCDATA)>

<!ELEMENT descriptor

 (localfile

)>

<!ATTLIST descriptor

 name CDATA #IMPLIED>

<!ELEMENT implementation

 (description?

 , propertyfile?

 , code

 , compiler?

 , programminglanguage?

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE PACKAGE DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

 , humanlanguage?

 , runtime?

 , (os | processor | dependency)+

 , usesdevice*

)>

<!ATTLIST implementation

 id ID #REQUIRED

 aepcompliance (aep_compliant | aep_non_compliant) "aep_compliant">

<!ELEMENT description (#PCDATA)>

<!ELEMENT code

 (localfile

 , entrypoint?

 , stacksize?

 , priority?

)>

<!ATTLIST code

 type CDATA #IMPLIED>

<!ELEMENT entrypoint (#PCDATA)>

<!ELEMENT stacksize (#PCDATA)>

<!ELEMENT priority (#PCDATA)>

<!ELEMENT compiler EMPTY>

<!ATTLIST compiler

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

<!ELEMENT programminglanguage EMPTY>

<!ATTLIST programminglanguage

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

<!ELEMENT humanlanguage EMPTY>

<!ATTLIST humanlanguage

 name CDATA #REQUIRED>

<!ELEMENT os EMPTY>

<!ATTLIST os

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

<!ELEMENT processor EMPTY>

<!ATTLIST processor

 name CDATA #REQUIRED>

<!ELEMENT dependency

 (softpkgref

 | propertyref

)>

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE PACKAGE DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ATTLIST dependency

 type CDATA #REQUIRED>

<!ELEMENT softpkgref

 (localfile

 , implref?

)>

<!ELEMENT implref EMPTY>

<!ATTLIST implref

 refid CDATA #REQUIRED>

<!ELEMENT propertyref EMPTY>

<!ATTLIST propertyref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

<!ELEMENT usesdevice

 (propertyref+

)>

<!ATTLIST usesdevice

 id ID #REQUIRED

 type CDATA #REQUIRED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE ASSEMBLY DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT softwareassembly

 (description?

 , componentfiles

 , partitioning

 , assemblycontroller

 , connections?

 , externalports?

 , deploymentprefs?

)>

<!ATTLIST softwareassembly

 id ID #REQUIRED

 name CDATA #IMPLIED

 version CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT componentfiles

 (componentfile+

)>

<!ELEMENT componentfile

 (localfile

)>

<!ATTLIST componentfile

 id ID #REQUIRED

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT partitioning

 (componentplacement | hostcollocation

)+>

<!ELEMENT componentplacement

 (componentfileref

 , componentinstantiation+

)>

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

 refid CDATA #REQUIRED>

<!ELEMENT componentinstantiation

 (usagename?

 , componentproperties?

 , findcomponent?

)>

<!ATTLIST componentinstantiation

 id ID #REQUIRED>

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE ASSEMBLY DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ELEMENT usagename (#PCDATA)>

<!ELEMENT componentproperties

 (simpleref

 | simplesequenceref

 | structref

 | structsequenceref

)+ >

<!ELEMENT findcomponent

 (componentresourcefactoryref

 | namingservice

)>

<!ELEMENT componentresourcefactoryref

 (resourcefactoryproperties?

)>

<!ATTLIST componentresourcefactoryref

 refid CDATA #REQUIRED>

<!ELEMENT resourcefactoryproperties

 (simpleref

 | simplesequenceref

 | structref

 | structsequenceref

)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

 (values

)>

<!ATTLIST simplesequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structref

 (simpleref+

)>

<!ATTLIST structref

 refid CDATA #REQUIRED>

<!ELEMENT structsequenceref

 (structvalue+

)>

<!ATTLIST structsequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structvalue

 (simpleref+

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE ASSEMBLY DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

)>

<!ELEMENT values

 (value+

)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT hostcollocation

 (componentplacement)+>

<!ATTLIST hostcollocation

 id ID #IMPLIED

 name CDATA #IMPLIED>

<!ELEMENT assemblycontroller

 (componentinstantiationref

)>

<!ELEMENT connections

 (connectinterface*

)>

<!ELEMENT connectinterface

 (usesport

 , (providesport | componentsupportedinterface | findby)

)>

<!ATTLIST connectinterface

 id ID #IMPLIED>

<!ELEMENT usesport

 (usesidentifier

 , (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>

<!ATTLIST componentinstantiationref

 refid CDATA #REQUIRED>

<!ELEMENT findby

 (namingservice

 | domainfinder

)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

 name CDATA #REQUIRED>

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE ASSEMBLY DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

 type (filemanager | log | eventchannel | namingservice |

servicename | servicetype) #REQUIRED

 name CDATA #IMPLIED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>

<!ATTLIST devicethatloadedthiscomponentref

 refid CDATA #REQUIRED>

<!ELEMENT deviceusedbythiscomponentref EMPTY>

<!ATTLIST deviceusedbythiscomponentref

 refid CDATA #REQUIRED

usesrefid CDATA #REQUIRED>

<!ELEMENT providesport

 (providesidentifier

 , (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby)

)>

<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface

 (supportedidentifier

 , (componentinstantiationref

 | findby)

)>

<!ELEMENT supportedidentifier (#PCDATA)>

<!ELEMENT externalports

 (port+

)>

<!ELEMENT port

 (description?

 , (usesidentifier | providesidentifier | supportedidentifier)

 , componentinstantiationref

)>

<!ELEMENT deploymentprefs

 (localfile

)>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE COMPONENT DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT softwarecomponent

 (corbaversion

 , componentrepid

 , componenttype

 , componentfeatures

 , interfaces

 , propertyfile?

)>

<!ELEMENT corbaversion (#PCDATA)>

<!ELEMENT componentrepid EMPTY>

<!ATTLIST componentrepid

 repid CDATA #REQUIRED>

<!ELEMENT componenttype (#PCDATA)>

<!ELEMENT componentfeatures

 (supportsinterface*

 , ports

)>

<!ELEMENT supportsinterface EMPTY>

<!ATTLIST supportsinterface

 repid CDATA #REQUIRED

 supportsname CDATA #REQUIRED>

<!ELEMENT ports

 (provides

 | uses

)*>

<!ELEMENT provides

 (porttype*)>

<!ATTLIST provides

 repid CDATA #REQUIRED

 providesname CDATA #REQUIRED>

<!ELEMENT uses

 (porttype*)>

<!ATTLIST uses

 repid CDATA #REQUIRED

 usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>

<!ATTLIST porttype

 type (data | control | responses | test) #REQUIRED>

<!ELEMENT interfaces

 (interface*

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

SOFTWARE COMPONENT DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

)>

<!ELEMENT interface

 (inheritsinterface*)>

<!ATTLIST interface

 repid CDATA #REQUIRED

 name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>

<!ATTLIST inheritsinterface

 repid CDATA #REQUIRED>

<!ELEMENT propertyfile

 (localfile

)>

<!ATTLIST propertyfile

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE CONFIGURATION DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT deviceconfiguration

 (description?

 , devicemanagersoftpkg

 , componentfiles?

 , partitioning?

 , connections?

 , domainmanager

 , filesystemnames?

)>

<!ATTLIST deviceconfiguration

 id ID #REQUIRED

 name CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT devicemanagersoftpkg

 (localfile

)>

<!ELEMENT componentfiles

 (componentfile+

)>

<!ELEMENT componentfile

 (localfile

)>

<!ATTLIST componentfile

 id ID #REQUIRED

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT partitioning

 (componentplacement)*>

<!ELEMENT componentplacement

 (componentfileref

 , deployondevice?

 , compositepartofdevice?

 , devicepkgfile?

 , componentinstantiation+

)>

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

 refid CDATA #REQUIRED>

<!ELEMENT deployondevice EMPTY>

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE CONFIGURATION DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ATTLIST deployondevice

 refid CDATA #REQUIRED>

<!ELEMENT compositepartofdevice EMPTY>

<!ATTLIST compositepartofdevice

 refid CDATA #REQUIRED>

<!ELEMENT devicepkgfile

 (localfile

)>

<!ATTLIST devicepkgfile

 type CDATA #IMPLIED>

<!ELEMENT componentinstantiation

 (usagename?

 ,componentproperties?

)>

<!ATTLIST componentinstantiation

 id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<!ELEMENT componentproperties

 (simpleref

 | simplesequenceref

 | structref

 | structsequenceref

)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

 (values

)>

<!ATTLIST simplesequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structref

 (simpleref+

)>

<!ATTLIST structref

 refid CDATA #REQUIRED>

<!ELEMENT structsequenceref

 (structvalue+

)>

<!ATTLIST structsequenceref

 refid CDATA #REQUIRED>

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE CONFIGURATION DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ELEMENT structvalue

 (simpleref+

)>

<!ELEMENT values

 (value+

)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT connections

 (connectinterface*

)>

<!ELEMENT connectinterface

 (usesport

 , (providesport

 | componentsupportedinterface

 | findby

)

)>

<!ATTLIST connectinterface

 id ID #IMPLIED>

<!ELEMENT usesport

 (usesidentifier

 , (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>

<!ATTLIST componentinstantiationref

 refid CDATA #REQUIRED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>

<!ATTLIST devicethatloadedthiscomponentref

 refid CDATA #REQUIRED>

<!ELEMENT deviceusedbythiscomponentref EMPTY>

<!ATTLIST deviceusedbythiscomponentref

 refid CDATA #REQUIRED

 usesrefid CDATA #REQUIRED>

<!ELEMENT providesport

 (providesidentifier

 , (componentinstantiationref

 | devicethatloadedthiscomponentref

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE CONFIGURATION DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface

 (supportedidentifier

 , (componentinstantiationref

 | findby

)

)>

<!ELEMENT supportedidentifier (#PCDATA)>

<!ELEMENT domainmanager

 (namingservice)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

 name CDATA #REQUIRED>

<!ELEMENT findby

 (namingservice

 | domainfinder

)>

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

 type (filemanager |log | eventchannel | namingservice) #REQUIRED

 name CDATA #IMPLIED>

<!ELEMENT filesystemnames

 (filesystemname+

)>

<!ELEMENT filesystemname EMPTY>

<!ATTLIST filesystemname

 mountname CDATA #REQUIRED

 deviceid CDATA #REQUIRED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE PACKAGE DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT devicepkg

 (title?

 , author+

 , description?

 , hwdeviceregistration

)>

<!ATTLIST devicepkg

 id ID #REQUIRED

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author

 (name*

 , company?

 , webpage?

)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT webpage (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT hwdeviceregistration

 (propertyfile?

 , description

 , manufacturer

 , modelnumber

 , deviceclass

 , childhwdevice*

)>

<!ATTLIST hwdeviceregistration

 id ID #REQUIRED

 name CDATA #REQUIRED

 version CDATA #IMPLIED>

<!ELEMENT propertyfile

 (localfile

)>

<!ATTLIST propertyfile

 type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT manufacturer (#PCDATA)>

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE PACKAGE DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<!ELEMENT modelnumber (#PCDATA)>

<!ELEMENT deviceclass

 (class+

)>

<!ELEMENT class (#PCDATA)>

<!ELEMENT childhwdevice

 (hwdeviceregistration

 |devicepkgref

)>

<!ELEMENT devicepkgref

 (localfile

)>

<!ATTLIST devicepkgref

 type CDATA #IMPLIED>

UNCLASSIFIED

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DOMAIN MANAGER CONFIGURATION DESCRIPTOR

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT domainmanagerconfiguration

 (description?

 , domainmanagersoftpkg

 , deploymentlayout?

 , services

)>

<!ATTLIST domainmanagerconfiguration

 id ID #REQUIRED

 name CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT domainmanagersoftpkg

 (localfile

)>

<!ELEMENT deploymentlayout

 (localfile

)>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT services

 (service+

)>

<!ELEMENT service

 (usesidentifier

 , findby

)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT findby

 (namingservice

 | domainfinder

)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

 name CDATA #REQUIRED>

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

 type CDATA #REQUIRED

 name CDATA #IMPLIED>

