UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

FINAL /15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

REVISION SUMMARY

Version Revisions
1.0 Formal release for initial validation.
1.1 Incorporate approved Change Proposals, numbers 97, 99, 110, 160, 161, 162, 164, 171,
177,178, 179, 180, 193, 195, 201, 204, 205, 208, 209, 211, 216.
2.0 Incorporate approved Change Proposals, numbers 39, 105, 119, 147, 175, 186, 191, 192,
210, 217, 218, 219, 220, 222, 223, 225, 226, 227, 229, 231, 232, 235, 237, 240, 243, 249,
255, 258, 266, 270, 275, 276, 277, 278, 282, 283, 285, 299, 307, 308, 310, 311, 332, 335,
336, 337, 341, 342, 343, 344, 345.
2.1 Incorporate approved Change Proposals, numbers 88, 102, 142, 306, 316, 353, 357, 358,
359, 360, 365, 366, 367, 369, 370, 371, 372, 373, 419, 468, 471, 472, 473, 475, 476, 477
2.2 Incorporate approved Change Proposals, numbers 138, 250, 279, 338, 388, 466, 486, 487,
488, 495, 497, 504, 508, 509, 513, 514, 515, 517
2.2.1 | Incorporate approved Change Proposals, SCA-CCM* numbers 1, 4, 5, 13, 15, 20, 23, 26,
28, 29, 30, 44, 70, 74, 78, 77, 100, 102, 107,
2.2.2 | Incorporate approved Change Proposals:

SCA-CCM 001, 004, 005, 013, 015, 020, 022, 023, 024, 025, 026, 027, 028, 029, 030, 044,
070, 074, 077, 078, 083, 084, 087, 091, 095, 097, 100, 102, 104, 107, 108, 118, 120, 121,
122,123, 124, 125, 134, 137, 140, 141, 142, 145, 149, 152, 153, 178, 182, 188, 189, 190,
194, 202, 234, 264, 273, 276, 283, 284, 299, 303, 307, 308, 309, 313, 314, 316, 318, 319,
320, 321, 323, 324, 325

* The numbering scheme for change proposals was changed for version 2.2.1.

SCA version 2.2.2 FINAL /15 May 2006

TABLE OF CONTENTS
R I (@ 15 1 L @ I L R SRTR 1-1
000 S oo L= P RPRPRTRI 1-1
1.2 COMPIIANCE ...ttt bbbttt ettt bbbt bt e et et bbb 1-2
1.3 Document conventions, Terminology, and Definitions............ccccocvveviieiiniiieiic e, 1-2
1.3.1 Conventions and TermMinOIOgYccccceiiuieiiiiiieeiie e 1-2
1.3.1.1 File and Directory NOMENCIATUIE..........cccviiiiiiiieiiieee e 1-2
1.3.1.2 Unified MOdeling LanQUAJEcciuieiiieiiieiiee sttt 1-2
1.3.1.3 Interface Definition LANQUAGEccceriririiriniieieieiiesie et 1-2
1.3.1.4 eXtensible Markup LangUAQEcccveueiieieeieiieieesie e e sie e sa e re e anee e 1-2
1.3.1.5 Requirements LANQUAGE.ccoueurrreierieriesiieeeieeieee ettt nneas 1-3
1.3.1.6 Core Framework Interface and Operation Identification.............c.cccccoeviveiiviiernennn. 1-3
R T O o 0 TP 1-3
IS T B 1= 1011 (o] 4TSRS PP 1-3
1.4 DOCUMENT CONTENT ...ttt ettt n e e reesnr e e reennneens 1-3
1.5 INOrmMAatiVe RETEIENCES.cciiiiiiiiie ittt ettt ste e sreesaeanee s 1-4
1.6 INTOrmMative RETEIENCESc.eiiiieiecie et 1-4
2 OVERVIEW ...ttt sttt sttt b s b et ne et neerennenes 2-1
2.1 Architecture Definition MethodolOgy ..o 2-1
2.2 ATCNITECTUIE OVEIVIBW ...ttt bbbttt ettt b b 2-1
2.2.1 GOAIS ANA CONIEXL. .. .cuviuieieiteiiieiesiieieeie ettt bbbt e bt e e e sbesbesbennenreas 2-1
2.2.2 COre FIamMEWOTKoeiiiieciee ettt et et e te e sne e e 2-2
2.2.3 DEIINITIONS. ...ttt bttt b et b et e bt e et e b e nbesbesbesbenreas 2-2
22,4 STTUCTUIE ...ttt ettt bttt ab e be e e a bt e ke e e hb e e ebe e e st e et e e embeeebeesnbeenbeesnneen 2-3
2.2.4.1 Bus Layer (Board SUPPOrt PACKAQGE).........ccvverieeieiieiieeieseesieeie s srs e se e 2-7
2.2.4.2 Network & Serial INterface SEIVICEScooeieiieiieiieie e 2-7
2.2.4.3 OPErating SYSIEMcueiieie ettt e et e e raesreenaenneeeas 2-7
2.24.4 CORBA MIAAIBWAIEcceiiiieieeiecieeseee ettt sne e 2-7
2.2.4.5 APPHICALIONSooiieiiciccie et nra s 2-7
22451 AGAPLETS ..t 2-7

SCA version 2.2.2 FINAL /15 May 2006

2.24.6 ReferenCe MOUEBLooiiiieiie et et 2-8
2.2.5 NEtWOIKING OVEIVIEBW.ciieiiiieiieesie et se et e e steesae e teeste e e ssaesbeeneesreenaeaneesseennas 2-9
3 SOFTWARE ARCHITECTURE DEFINITIONccciiiiiiiece e 3-1
3.1 Operating ENVIFONMENTcciiiiieiece et re et e sta e e neesneenas 3-1
TN S O T o T=T = [0 S} V2] (=11 SR 3-1
3.1.2 CORBA MiddIEWare & SEIVICES......cecuiiieriieieiieesiesiesiee e seesteeste e ssee e sneesreeseesneesseennas 3-1
31,21 NAMING SEIVICE....ecuiiiiieite et etee st eesee st et et e e st e e e s reesteaseesseenteensesreenteaneesneeneas 3-2
3122 LOQ SEIVICE ...ttt bbb bbbt n bbb 3-2
31221 o To o 0o [0 o= S PSUPRTS 3-2
3.1.2.3 CORBA Event Service and Standard EVENS...........cccooeieerenieniienieie e 3-2
3.1.23.1 CORBA EVENE SEIVICEcoiiiiiieiii ettt 3-2
3.1.2.3.2 StandardEVEeNnt MOAUIEccvoiiiiee e 3-3

3. 1.3 COre FIaMEWOIKcuviviiiiiiite sttt b bbb nb et sne b 3-5
3.1.3.1 Base Application INTEIrfaCeSccoviiiieieiiri s 3-6
3.13.1.1 0] o OSSPSR 3-6
3.1.31.2 LITECYCIR. .. s 3-8
3.1.3.1.3 TeStabIEODJECT.o 3-10
31314 POFTSUPPIIET <.t 3-12
3.1.3.1.5 PrOPEITYSEL.. ..o 3-13
3.1.3.16 RESOUICE ...ttt et e s b e e e be e e e nneean 3-15
3.1.3.1.7 RESOUFCEFACIONY ..ottt 3-17
3.1.3.2 Framework Control INTErfaCescueiueieeiiiieie et 3-20
3.13.21 Y o]] o= 11 o] o ISR 3-20
3.1.3.2.2 APPHICAIONFACIONY ..ot 3-26
3.1.3.2.3 DOMAINMANAGETecveevieie ettt re e e 3-32
31324 DEVICEMAENAGET ...ttt ettt nre s 3-50
3.1.3.3 Base DeVICe INtEITACES.......cccceieere ettt e e 3-57
3.1.33.1 DIBVICE ...ttt ettt bbbt eenre e 3-58
3.1.3.3.2 [T To 1] (=] 1= ol S 3-67
3.1.3.3.3 EXECULADIEDEVICE ... 3-70
3.1.334 AQOIEgAEDEBVICE ...ttt 3-73
3.1.3.4 Framework Services INtErfaCesS........ccouueiiiiiiieiiiie e 3-75

SCA version 2.2.2 FINAL /15 May 2006

3.1.34.1 Il e 3-75
3.1.34.2 T (oY) (=] 1 S 3-79
3.1.3.4.3 FHEMANAGET ... 3-86
3.1.3.5 DOMaIN Profile.....ccoiiiiieiiiee e 3-90
3.1351 Software Package DEeSCIIPLONcviiiieiiieieie s 3-91
3.1.35.2 Software Component DESCHIPLONcc.civeiieieiiese e 3-91
3.1.353 Software ASSEMBIY DESCIIPLON.........ccviiiieieieiie et 3-92
3.1.35.4 PropertieS DESCHIPIONccuviiiiieieeie ettt esre e 3-92
3.1.355 Device Package DESCIIPLOLcc.coiiiiiiiiieieie ettt 3-92
3.1.35.6 Device Configuration DESCIIPLONcvevveiieieeiecie e 3-92
3.1.35.7 PrOfile DESCIIPLON ...t 3-92
3.1.35.8 DomainManager Configuration DeSCrPLOrccccevveveiiieiieere e 3-92
3.1.3.6 Core Framework Base TYPES.....ccucueriiiriirieiiieesieeieesie ettt 3-92
3.1.3.6.1 DALATYPE ettt 3-92
3.1.3.6.2 DEVICESEUUENCE ...ttt bbbt nn e nne s 3-93
3.1.3.6.3 1= T (o=T o] £] OSSR 3-93
3.1.3.64 INVAIIAFTIENGME ... 3-93
3.1.3.6.5 INValidODJECtRETEIENCE......ccve e 3-93
3.1.3.6.6 INVAITAPTOFIIE. ... s 3-93
3.1.3.6.7 (O 01 (=] =T [T oSO TPRPR 3-93
3.1.3.6.8 PIOPEITIES ...t 3-93
3.1.3.6.9 SEINGSEUUENCEveeeveitiecte ettt e et ra e e e e nneennas 3-93
3.1.3.6.10 UNKNOWNPIOPEITIES ...ttt 3-94
3.1.3.6.11 DeViCEASSIGNMENTTYPE ..ocivieiiiieiieeiectie sttt et ee e ste e sre e sre e 3-94
3.1.3.6.12 DeViCeASSIGNMENTSEYUEINCEovirveeirieiiieiieieie sttt sr e 3-94
3.1.3.6.13 ErrOrNUMDEITYPE. .oveiieiiieiieee sttt ettt sre e enre e 3-94
3.2 APPHICALIONS ...t b bbbttt bbb 3-94
3.2.1 General Application REQUITEMENTS.......cc.oiuiiiiiiiiiiieiee e 3-95
3.2.1.1 OS SEIVICES ...cueiiteeieattestee st eiee st e st ettt ettt e be et e e st e be et e ese e st e e be e st e s be e beene e beenreanee s 3-95
3.2.1.2 CORBA SEIVICES ..uveiuieiieeiiieiiesieesteaseestaesiaeeesseesteaseessaessaaseesseesseaneesseesseassessenssenneens 3-95
T G T O e 111 (<] - T SRS PR PR PRTRN 3-95
3.2.2 APPHCAION INTEITACESc.eiiieitiiiiieeee bbb 3-95

SCA version 2.2.2 FINAL /15 May 2006

3.2.2.1 Service DEfINITIONS.ccveiiiiiiieiiesie sttt sttt e b 3-96
TR B oo [[or= 1=V [PSSR 3-96
3031 OS SBIVICESeiutieueeeiieiteaiestee sttt et s bt e bt b e be e be e s e sbe e be e st e st e e beeneeebeenbeeneeebeenbeeneens 3-97
3.3.2 CORBA SEIVICES. ..cuviuiiiiie ittt sttt sttt bbbt b st e st et et et e bbb e 3-97
TR T O e] (=T - (o0 X USRS PRRTRN 3-98
BL3u PIOTIIE. ..t bbb 3-98
3.4 General SOftWAE RUIES ..ot 3-98
3.4.1 Software Development LANQUAGEScc.ccvveiierieiieieesieaiesieesieeeesieessesaesseessesaessaesseaneens 3-98
3411 NEW SOTEWAIE......eeeieiiie ittt ettt e s e e te e sreenteeneeas 3-98
3.4.1.2 LegaCy SOTIWAIEecuveieicie ettt e e e e e nre e 3-98

4 ARCHITECTURE COMPLIANCEoo ittt 4-1
4.1 Certification AULNOTITYccoiiiiiee e re et e e e e nas 4-1
4.2 SPECITICALION AUTNOTTEYc.eiiiiiiiii e 4-1
4.3 Responsibility for Compliance Evaluationccccoovviiiiiiiie i 4-1
4.4 EVAluating COMPIANCEoviiiiiiiiie bbb 4-1
T =0T 51 4 = L[] o USSR 4-2

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILES

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

SCA version 2.2.2

FINAL / 15 May 2006

LIST OF FIGURES
Figure 2-1: SCA Architecture Layer DIagram.........ccccoivviiieiiieeiiee e esie e siee e siee e 2-4
Figure 2-2: SCA Management Hierarchy at InStantiationccoceovieieninenensescceee, 2-5
Figure 2-3: Relationship of Domain Profile XML File TYPESccccooviiiiiiiiiiiciicve e 2-6
Figure 2-4: Conceptual Model OF RESOUITEScoviiiiiieiieiesic e 2-8
Figure 3-1: Notional Relationship of OE and Application to the SCA AEP.........ccccovevieinne, 3-1
Figure 3-2: Core Framework IDL RelationShips........c.coeieiiriiiieiiiieeee e 3-6
Figure 3-3: Port INterface UMLcvo it 3-7
Figure 3-4: LifeCycle INterface UMLccoociiiiiiiiiiie e 3-9
Figure 3-5: TestableObject Interface UMLccccoveiiiiiiiiie e 3-10
Figure 3-6: PortSupplier Interface UMLccoiiiiiiiiecree s 3-12
Figure 3-7: PropertySet Interface UMLccooiiiiiiii e 3-13
Figure 3-8: Resource INterface UML.........cooiiiiiiiiiee e 3-15
Figure 3-9: ResourceFactory Interface UMLccccoviiiiiiiie i 3-17
Figure 3-10: Application Interface UMLccoooiiiiiiiiiic s 3-21
Figure 3-11: Application BENAVIOKccciiiiiiiiir e 3-25
Figure 3-12: ApplicationFactory UML ..o 3-26
Figure 3-13: ApplicationFactory BENAVIOr...........c.cccvciiiiiiiiie e 3-31
Figure 3-14: DomainManager Interface UMLccoooiiiiiiiiiiiieccecee s 3-32
Figure 3-15: DomainManager Sequence Diagram for registerDeviceManager Operation..... 3-38
Figure 3-16: DomainManager Sequence Diagram for registerDevice Operation.................... 3-41
Figure 3-17: DomainManager Sequence Diagram for registerService Operation 3-47
Figure 3-18: DeviceMaNagEr UML ..ot 3-50
Figure 3-19: Device Manager Startup SCENANIO..........cccvvverieerieiieie e s 3-54
Figure 3-20: Device INterface UML ...t 3-58
Figure 3-21: State Transition Diagram for adminState...........ccccccevveviiieieece e 3-61
Figure 3-22: State Transition Diagram for allocateCapacity and deallocateCapacity 3-63
Figure 3-23: Release Aggregated DeviCe SCENANIOcceevvveieiieiierie et 3-65
Figure 3-24: Release COMpPOSite DEVICE SCENAIO........ccveiueriirieriirieiieeeie e 3-66
Figure 3-25: Release Composite & Aggregated Device SCenario.........ccccovevveveeveeresieseennn, 3-67

SCA version 2.2.2 FINAL /15 May 2006

Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:
Figure 3-30:
Figure 3-31:
Figure 3-32:
Figure 3-33:

LoadableDevice Interface UMLcccoiiiiiiieiiiie e 3-68
ExecutableDevice Interface UML.........ccoooiiiiiiiiiiieiinieeie s 3-70
AggregateDevice Interface UML.........ccoociiiiiiiiiiiiniecce e 3-74
File INtErface UMLcooviiiiiice e 3-76
FileSystem INterface UMLcoooiiiiiiiec e 3-79
FileManager Interface UMLcccoiieii i 3-87
Relationship of Domain Profile XML File TYPESccccviiviiiiiiiiieeees 3-91
Logical Device Interface Relationshipscccvvieiiieiiiie i 3-97

Vi

SCA version 2.2.2 FINAL /15 May 2006

FOREWORD

Introduction. The Software Communication Architecture (SCA) is published by the Joint
Program Executive Office (JPEO) of the Joint Tactical Radio System (JTRS). This architecture
was developed to assist in the development of software defined radio communication systems,
capturing the benefits of recent technology advances which are expected to greatly enhance
interoperability of communication systems and reduce development and deployment costs. The
SCA has been structured to:

1. provide for portability of applications software between different SCA
implementations,

2. leverage commercial standards to reduce development cost,
3. reduce software development time through the ability to reuse design modules,
4. build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as those
of military applications. Since the SCA is intended to become a self-sustaining standard, a wide
cross-section of industry has been invited to participate in the development and validation of the
SCA. The SCA is not a system specification but an implementation independent set of rules that
constrain the design of systems to achieve the objectives listed above.

Core Framework. The Core Framework (CF) defines the essential, “core” set of open software
interfaces and profiles that provide for the deployment, management, interconnection, and
intercommunication of software application components in an embedded, distributed-computing
communication system. In this sense, all interfaces defined in the SCA are part of the CF.

Support and Rationale Document (SRD). The Support and Rationale document (SRD)
provides the rationale used to determine the requirements contained in this document. The SRD
also contains further supporting material including historical references, examples, and
implementation considerations and should be consulted when attempting to develop a product
compliant with this specification.

Feedback. An open architecture framework is greatly improved through active feedback and
recommended changes from a wide audience of potential users. The JPEO JTRS solicits and
encourages feedback to this document and provides a website for submitting feedback and
change proposals. The website can be found at https://jtrs.spawar.navy.mil/sca . Change
proposals to the SCA shall be unencumbered by copyrights, export restrictions, or intellectual
property rights.

vii

https://jtrs.spawar.navy.mil/sca

SCA version 2.2.2 FINAL /15 May 2006

1 INTRODUCTION

The Software Communications Architecture (SCA) establishes an implementation-independent
framework with baseline requirements for the development of software for software defined
radios. The SCA is an architectural framework that was created to maximize portability,
interoperability, and configurability of the software while still allowing the flexibility to address
domain specific requirements and restrictions. Constraints on software development imposed by
the framework are on the interfaces and the structure of the software and not on the
implementation of the functions that are performed. The framework places an emphasis on areas
where reusability is affected and allows implementation unique requirements to determine a
specific application of the architecture.

1.1 SCOPE

This document together with its appendices as specified in the Table of Contents provides a
complete definition of the SCA.

The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems. The SCA addresses a portion of software portability and
interoperability concerns — other aspects of these properties are addressed by different means as
indicated in Table 1.

Table 1: Portability and Interoperability and the SCA

Goals | Responsibility

Software (operating on the host environment) meets all
original performance specifications; interoperate over the
air (OTA) with other communication systems, and not System Engineering and Testing
conflict with the correct operation of other software
when deployed on a SCA compliant system.

Software (compiled for a target host environment) may
be installed, configured and operated on different SCA Software Communications
compliant operating environments with a minimal Architecture

amount of changes to the original code.

Software implementations may be moved from one
specific host or development environment (i.e. a specific
set of compilers, linkers, libraries, OS, chipsets, etc.) to
another with a minimal amount of changes to the original
code.

Coding Standards, Software
Architecture and Design

The main body of the SCA addresses the goals identified for it in Table 1, while appendices to
this specification are used to extend the scope of the SCA in order to address some of the desired
portability and interoperability characteristics identified elsewhere in the table.

1-1

SCA version 2.2.2 FINAL /15 May 2006

1.2 COMPLIANCE

As the Certification Authority, the JPEO JTRS is the sole entity that may authorize the use of
any trademarks, certification markings, as well as verbal or written claims with respect to a
product’s compliance to this specification. Specific authorities and certification requirements are
found in section 4.

Compliance to this specification requires a product to meet all applicable requirements identified
within the scope of the specification. Applicability of requirements to specific products is
determined by the Certification Authority. Language used to identify requirements within this
specification is defined in section 1.3.1.5. Requirements stated in this specification take
precedence when they are in conflict with other existing standards/specifications, cited or not
cited.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND
DEFINITIONS

1.3.1 Conventions and Terminology

1.3.1.1 File and Directory Nomenclature

The terms “file” and “filename” as used in the SCA, refer to both a “plain file” (equivalent to a
POSIX “regular file”) and a directory. An explicit reference is made within the text when
referring to only one of these.

Pathnames are used in accordance with the POSIX specification definition and may reference
either a plain file or a directory. An “absolute pathname” is a pathname which starts with a «/’
(forward slash) character — a “relative pathname” does not have the leading “/”” character. A
“path prefix” is a pathname which refers to a directory and thus does not include the name of a
plain file.

1.3.1.2 Unified Modeling Language

The Unified Modeling Language (UML) [2], defined by the Object Management Group (OMG),
is used to graphically represent SCA interfaces, operational scenarios, use cases, and
collaboration diagrams. Where feasible, the UML used in this specification conforms to the
syntax recommended by the OMG for Common Object Request Broker Architecture (CORBA)
usage [A].

1.3.1.3 Interface Definition Language

The OMG defined Interface Definition Language (IDL), [E] is used to define the SCA interfaces
within this specification.

1.3.1.4 eXtensible Markup Language

eXtensible Markup Language (XML) [3] is used to create the SCA Domain Profile elements
which identify the capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up an SCA-compliant system. The term “profile” is

1-2

SCA version 2.2.2 FINAL /15 May 2006

used to refer to either the raw XML format of these files as well as these same files in a parsed
format. References to a specific file (e.g. SAD, DCD) refer to the raw XML format per the
definitions in section 3.1.3.5.

1.3.1.5 Requirements Language
The word “shall” is used to indicate absolute requirements of this specification which must be
strictly followed in order to achieve compliance. No deviations are permitted.

The phrase “shall not” is used to indicate a strict and absolute prohibition of this specification.

The word “should* is used to indicate a recommended course of action among several possible
choices, without mentioning or excluding others. “Should not” is used to discourage a course of
action without prohibiting it.

The word “may” is used to indicate a truly optional item or allowable course of action within the
scope of the specification. A product which chooses not to implement the indicated item must be
able to interoperate with one that does without impairment of required behavior.

The word “is” (or equivalently “are”) used in conjunction with the association of a value to a
data type indicates a required value or condition when multiple values or conditions are possible.
1.3.1.6 Core Framework Interface and Operation Identification

References to interface names, their operations and defined XML elements/attributes within this
specification are presented in italicized text. All interface names are capitalized. Interface
attributes, operation parameters, and realized interfaces are presented in plain text. “CF”
precedes references to Core Framework Base Types (3.1.3.6)

1.3.1.7 Figures

The figures contained in this document use coloration to identify elements of the SCA or how an
object in a figure relates to those elements. Brown is used to indicate elements of the OS, orange
for the Framework Control, Framework Service, and Device Interfaces and yellow for the Base
Application Interfaces. Figure objects containing more than one of these colors indicate that the
object relates to more than one SCA element — usually depending on context.

1.3.2 Definitions

A list of acronyms and definitions used in this specification are provided in Appendix A.

1.4 DOCUMENT CONTENT

The Foreword and Section 1 of this document provide an introduction to this specification and
provides the definitions and rules for its usage.

Section 2 provides an overview of the Software Communications Architecture as well as a
description of the interfaces and behaviors prescribed by the specification.

Section 3 provides the detailed description of the architecture framework and the specification
requirements.

SCA version 2.2.2 FINAL /15 May 2006

Section 4 defines the appropriate authorities for incorporating changes, recommendations,
additions, or retractions into this specification, for validating compliance, and for granting
certification.

Appendix A contains a glossary of terms and acronyms used in this specification.

Appendix B provides the specific requirements for the SCA Application Environment Profile
(AEP) required as part of compliance to this specification.

Appendix C contains the Interface Definition Language (IDL) code used to define the interfaces
required by this specification.

Appendix D contains the definitions and requirements for creating the SCA Domain Profile.
1.5 NORMATIVE REFERENCES

The following documents contain provisions or requirements which by reference constitute
requirements of this specification. Applicable versions are as stated.

[1] Information technology - Portable Operating System Interface (POSIX®), ISO/IEC
9945:2003

[2] UML: OMG (Object Management Group) Unified Modeling Language Specification,
Version 1.4.2, formal/05-04-01 (also available as ISO/IEC 19501:2005(E)

[3] XML: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation,
04 February 2004F

[4] IEEE Standard for Information Technology — Standardized Application Environment
Profile (AEP) — POSIX® Realtime and Embedded Application Support, IEEE Std
1003.13-2003.

[5] Minimum CORBA Specification version 1.0: OMG Document formal/02-08-01, August
2001.

[6] OMG Document formal/00-11-01: Interoperable Naming Service Specification.
[7] OMG Lightweight Log Service Specification: OMG Document formal/05-02-02: v1.1

[8] OMG Event Service Specification: OMG Document formal/01-03-01 and Event Service
IDL, v1.1.

[9] DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remote
Procedure Call).

1.6 INFORMATIVE REFERENCES

The following is a list of documents referenced within this specification or used as reference or
guidance material in its development.

[A] OMG Document formal/02-04-01; UML Profile for CORBA, version 1.0.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
1-4

SCA version 2.2.2 FINAL /15 May 2006

[B]
[C]

[D]
[E]

[F]
[C]
[H]

“Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides.

Joint Program Executive Office for the Joint Tactical Radio System (JPEO JTRS), JTRS
Charter 13 October 2005.

JTRS Standards Waiver Process, JPEO JTRS, 2 December 2005, version 1.0.

The Common Object Request Broker: Architecture and Specification, version 3.0.3
formal/04-03-12, Object Management Group, Inc. (OMG)

Joint Technical Architecture, Version 2.0, 26 May 1998.
C Standard: Programming languages — C, ISO/IEC 9899:1999.

ISO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternative and
Additional Time Sequence Diagrams for Two-party Communications.

1-5

SCA version 2.2.2 FINAL /15 May 2006

2 OVERVIEW

This section presents an architectural overview of the SCA which defines the fundamental
organization of the components that compose this specification. A high-level description of the
components, their responsibilities, as well as their relationship to each other and the environment
are also provided. Technical details and specific requirements of the architecture and individual
components are contained in section 3.

2.1 ARCHITECTURE DEFINITION METHODOLOGY

The architecture has been developed using an object-oriented approach including current best
practices from software component models and software design patterns. Unless stated, no
explicit grouping or separation of interfaces is required within an implementation. The interface
definitions and required behaviors that follow in section 3, define the responsibilities, roles, and
relationships of components implementing that interface. Within this specification, the Unified
Modeling Language (UML) [2] is used to graphically represent interfaces and the Interface
Definition Language (IDL) provided in Appendix C contains the textual representation of the
interfaces.

2.2 ARCHITECTURE OVERVIEW

2.2.1 Goals and Context

The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems. This specification is targeted towards facilitating the development of
software defined radios (SDRs) with the additional goals of maximizing software application
portability, reusability, and scalability through the use of commercial protocols and products.

Although there are many definitions of a SDR, it is in essence a radio or communication system
whose output signal is determined by software. In this sense, the output is entirely
reconfigurable at any given time, within the limits of the radio or system hardware capabilities
(e.g. processing elements, power amplifiers, antennas, etc.) merely by loading new software as
required by the user. Since this software determines the output signal of the system, it is
typically referred to as “waveform software” or simply as the “waveform” itself. This ability to
add, remove, or modify the output of the system through reconfigurable and redeployable
software, leads to communication systems capable of multiple mode operation (including
variable signal formatting, data rates, and bandwidths) within a single hardware configuration.
Simultaneous multi-mode operation is possible when a multi-channel configuration is available.

Since the functionality of software itself is virtually limitless, there is a large degree of
dependency placed on the ability to select and configure the appropriate hardware to support the
software available or required for a specific system. The selection of hardware is not restricted to
the input/output (1/0O) devices typically associated with communication systems (analog-to-
digital converters, power amplifiers, etc.). It is also dependent on the type and capabilities of the
processing elements (General Purpose Processors (GPP), Digital Signal Processors (DSP), Field-
Programmable Gate Arrays (FPGA), etc.) that are required to be present, since typically the
software required to generate a given output signal will consist of many components of different

2-1

SCA version 2.2.2 FINAL /15 May 2006

types based on performance requirements. From an illustrative view, this results in a system that
is represented by a variable collection of hardware elements which need to be connected together
to form communication pathways based on the specific software loaded onto the system. The
role of the SCA is then to provide a common infrastructure for managing the software and
hardware elements present in a system and ensuring that their requirements and capabilities are
commensurate. The SCA accomplishes this function by defining a set of interfaces that isolate
the system applications from the underlying hardware. This set of interfaces is referred to as the
Core Framework of the SCA.

Additionally, the SCA provides the infrastructure and support elements needed to ensure that
once software components are deployed on a system, they are able to execute and communicate
with the other hardware and software elements present in the system.

2.2.2 Core Framework

The Core Framework is the essential set of open application-layer CORBA interfaces and
services which provide an abstraction of the underlying system software and hardware. The
Core Framework consists of:

Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource), which provide the management and
control interfaces for all system software components.

Base Device Interfaces: Device, LoadableDevice, ExecutableDevice, and
AggregateDevice, which allows the management and control of hardware devices within
the system through their software interface,

Framework Control Interfaces: Application, ApplicationFactory, DomainManager,
and DeviceManager, which control the instantiation, management, and
destruction/removal of software from the system,

Framework Services Interfaces: File, FileSystem, and FileManager, that provide
additional support functions and services.

2.2.3 Definitions

The SCA differentiates between waveform “application” software — software that manipulates
input data and determines the output of the system — from the software that provides the
capabilities for waveforms to execute and access to the systems hardware resources. The
“application” software implements the Base Application Interfaces identified in section 2.2.2.
The software components that provide access to the system hardware resources are referred to as
SCA “devices” that implement the Base Device Interfaces. Non-hardware (software-only)
resources provided by the system for use by applications are generically referred to as “services”,
however the SCA does not specify an interface that must be realized by these components. The
SCA standardizes the component interfaces but does not place implementation requirements (e.g.
transport mechanisms) on the software.

The software components which provide for the management and execution of the SCA
applications and devices comprise the SCA-defined operating environment (OE). The OE
consists of an operating system (OS), CORBA middleware (including the OMG-defined Event

2-2

SCA version 2.2.2 FINAL /15 May 2006

and Naming Services), and the elements defined by the Framework Control and Service
Interfaces.

2.2.4 Structure

The architectural structure of the SCA is presented in Figure 2-1. In the SCA, an application
consists of multiple software components that are loaded onto a distributed-processing system.
These components are managed by an implementation of the Framework Control Interfaces. The
application components communicate either with each other or with the services and devices
provided by the system through extensions of the SCA-defined Port interface. Similarly,
communications between the application and the Framework Services Interfaces are
accomplished through the CORBA middleware. It is intended that the APIs to the services and
devices (“System Components” in Figure 2-1) be standardized for a given system or domain so
that in conjunction with the Framework Interfaces, all communications between the application
and the system are uniform across multiple systems. However, being system and domain
specific, the standardization of these interfaces is outside the scope of this specification.

An application may access OS functionality but is restricted to the operations enumerated in the
SCA Application Environment Profile (Appendix B) which is a subset of the Portable Operating
System Interface (POSIX) specification [4]. POSIX is an accepted industry standard and its real-
time extensions are compatible with the requirements to support the OMG CORBA
specification. Since defined POSIX profiles can encompass more features than are necessary to
control a typical implementation, this specification defines a minimal POSIX profile to facilitate
attainment of the SCA objectives.

Similar to the application components, system components are managed by the Framework
Control Interfaces through the Base Device Interfaces and are limited . However, unlike
application components, system components are not restricted in their use of functionality
provided by the OS since these components are in general, system specific.

SCA version 2.2.2 FINAL /15 May 2006

5y stem
Component

Application
CGomponent

Application
Component

System
Component

IdY
|d¥
|d¥

o jamll s L ro el s

Operating System

Figure 2-1: SCA Architecture Layer Diagram

All SCA compliant systems require certain software components to be present in order to
provide for component deployment, management, and interconnection. These components
include the DomainManager (including support for the ApplicationFactory and Application
interfaces), DeviceManager, FileManager, and FileSystem interfaces and their required
behaviors. The management hierarchy of these entities is depicted in Figure 2-2.

An SCA compliant system includes a domain manager which contains knowledge of all existing
implementations installed or loaded onto the system including references to all file systems
(through the file manager), device managers, and all applications (and their resources).

Each device manager, in turn, contains complete knowledge of a set of devices and/or services.
A system may have multiple device managers but each device manager registers with the domain
manager to ensure that the domain manager has complete cognizance of the system. A device
manager may have an associated file system (or file manager to support multiple file systems) as
indicated in the Figure 2-2.

The implementation of the Application interface (created by the ApplicationFactory) OE
provided proxy for an application contains all the information regarding a specific application
that is instantiated on the system.

2-4

SCA version 2.2.2 FINAL /15 May 2006

Domain
Manager

Device File
Manager Manager

Application
Factory

1 A
[1

Application

Resource
Factory

Device Service

File Resource

Figure 2-2: SCA Management Hierarchy at Instantiation

In order to describe the characteristics and attributes of the services, devices, and applications
installed on the system, the SCA defines a set of files referred to as the Domain Profile. The
Domain Profile is a hierarchical collection of eXtensible Markup Language (XML) files that
define the properties of all software components in the system. All CORBA software elements
of the system are described by a Software Package Descriptor (SPD) and a Software Component
Descriptor (SCD) file.

The SPD provides identification of the software (title, author, etc.) as well as the name of the
code file (executable, library or driver), implementation details (language, OS, etc.),
configuration and initialization properties (contained in a Properties File), dependencies to other
SPDs and devices, and a reference to a Software Component Descriptor.

The Software Component Descriptor (SCD) defines CORBA interfaces supported and used by a
specific component.

Since applications are composed of multiple SW components a Software Assembly Descriptor
(SAD) file is defined to determine the composition and configuration of the application. The
SAD references all SPDs needed for this application, defines required connections between
application components (connection of provides and uses ports / interfaces), defines needed
connections to devices and services, provides additional information on how to locate the needed
devices and services, defines any co-location (deployment) dependencies, and identifies a single
component within the application as the assembly controller.

SCA version 2.2.2 FINAL /15 May 2006

Domain Profile

0..n 1

0..n
«DTDElement» «DTDElement» «DTDElement»
Device Configuration Descriptor Domain Manager Configuration Descriptor Software Assembly Descriptor
1
0..n 1..n
«DTDElement»
«DTDElement» 1 Software Package Descriptor
Device Package Descriptor -N
«DTDElement»
Properties Descriptor
0..1
0.1 0.1
«DTDElement» «DTDElement»
Properties Descriptor Software Component Descriptor

0.1

«DTDElement»
Properties Descriptor

Figure 2-3: Relationship of Domain Profile XML File Types

An application consists of one or more software modules that, when loaded and executed, create
one or more components (e.g. Resources or ResourceFactories), which comprise the application.
These components use the facilities of the platform devices and services. The software profile for
an application consists of one SAD file that references (directly or indirectly) one or more SPD,
SCD, and properties (PRF) files. An SPD file contains the details of an application’s software
module that is to be loaded and executed. The SPD specifies the Device implementation
requirements for loading dependencies (processor kind, etc.) and processing capacities (e.g.,
memory, process) for an application software module.

Similar to the application SAD, a device manager has an associated Device Configuration
Descriptor (DCD) file. The DCD identifies all devices and services associated with this device
manager, by referencing the associated SPDs. The DCD also defines properties of the specific

2-6

SCA version 2.2.2 FINAL /15 May 2006

device manager, enumerates the needed connections to services (e.g. file systems), and provides
additional information on how to locate the domain manager. In addition to an SPD, a device
may have a Device Package Descriptor (DPD) file which provides a description of the hardware
device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the Domain Manager is itself described by the DomainManager
Configuration Descriptor (DMD) which provides the location of the (SPD) file for the specific
DomainManager implementation to be loaded. It also specifies the connections to other software
components (services and devices) which are required by the domain manager.

2.2.4.1 Bus Layer (Board Support Package)

The SCA is capable of operating on commercial bus architectures. The OE supports reliable
transport mechanisms, which may include error checking and correction at the bus support level.

2.2.4.2 Network & Serial Interface Services

The SCA relies on commercial components to support multiple unique serial and network
interfaces. To support these interfaces, various low-level network protocols may be used.
Elements of waveform networking functionality may also exist at the Operating System layer.

2.2.4.3 Operating System

The SCA includes real-time embedded operating system functions (profiled by the AEP for
applications), to provide multi-threaded support for all software executing on the system,
including applications, devices, and services.

2.2.4.4 CORBA Middleware

CORBA is used as the message passing technique for the distributed processing environment.
CORBA is a cross-platform framework that is used to standardize client/server operations when
using distributed processing. Distributed processing is a fundamental aspect of the system
architecture and CORBA is a widely used “Middleware” service for providing distributed
processing.

2.2.4.5 Applications

Applications consist of one or more resources. The Resource interface provides a common SCA
API for the control and configuration of software components. Application developers may
extend these capabilities by creating specialized Resource interfaces for the application. Ata
minimum, the extension inherits the Resource interface. The design of a resource’s internal
functionality is not dictated by the Software Communications Architecture. This is left to the
application developer.

2.2.4.5.1 Adapters

Adapters are resources or devices used to support the use of non-CORBA capable elements
within the domain. Adapters are used in an implementation to provide the translation between
non-CORBA-capable components or devices and CORBA-capable Resources. The Adapter

2-7

SCA version 2.2.2 FINAL /15 May 2006

concept is based on the industry-accepted Adapter design pattern [B]. Since an Adapter
implements the CF CORBA interfaces known to other CORBA-capable Resources, the
translation service is transparent to the CORBA-capable Resources. Adapters become
particularly useful to support non-CORBA-capable processing elements.

2.2.4.6 Reference Model

The SCA realizes the reference model by defining a standard unit of functionality called a
Resource. All applications are comprised of resources and using devices. Specific resources and
devices can be identified corresponding to the functional entities but this mapping is not
identified or required by this specification.

Figure 2-4 shows examples of inheritance hierarchy for Resources. The operations and attributes
provided by the LifeCycle, TestableObject, PortSupplier, and PropertySet interfaces establish a
common approach for interacting with any resource in a SCA environment. The Port interface is
used for pushing or pulling messages between resources and devices. A resource may consist of
zero or more input and output message ports. The figure also shows examples of more
specialized resources and devices that result in specific functionality.

«CORBAInterface» «CORBAInterface» «CORBAInterface» «CORBAInterface»

CF:LifeCycle CF::PortSupplier CF::PropertySet CF::TestableObject
initialize() +getPort(in name : string(idl)) : object(idl) +configure(in configureProperties : Properties) : void runTest()
releaseObject() +query(inout configProperties : Properties) : void

«inherits» «inherig»

«inherits» «inhgrits»

«CORBAInterface»
. . CF::Resource
«inherits»

/D«readonly» +identifier : string(idl)

+start() : void
+stop() : void

«CORBAInterface»
CF::Device

«readonly» +usageState : UsageType
«readonly» +adminState : AdminType
«readonly» +operationalState : OperationalType
«readonly» +softwareProfile : string(idl)
«readonly» +label : string(idl)
«readonly» +compositeDevice : AggregateDevice
+allocateCapacity(in capacities : Properties) : boolean(idl)
+deallocateCapacity(in capacities : Properties) : void

«CORBAInterface»
::ModemDevice

«CORBAlInterface»|
::I0Device

«CORBAInterface»
::ModemAdapter

«CORBAInterface»
::AudioDevice

2-8

«CORBAInterface»
:LinkResource

Figure 2-4: Conceptual Model of Resources

«CORBAlInterface»
::NetworkResource|

SCA version 2.2.2 FINAL /15 May 2006

2.2.5 Networking Overview

External networking protocols define the communications between a SCA-compliant radio
system and its peer systems. A network of nodes is formed between systems which are
interconnected by repeaters, bridges, routers, and/or gateways. External-networking protocols
will typically communicate peer-to-peer at different layers using physical layer interconnections
with a repeater function, link layer interconnections with a bridge function, network layer
interconnections with standard network routing, or upper layer interconnections with application
gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There
may be multiple levels of interoperability within the same system on a waveform-by-waveform
basis.

1. Physical Layer Interoperability. The external networking protocols provide a
compatible physical interface, including the signaling interface, but no higher
layer processing. This level of interoperability is adequate for a simple bit-by-bit
bridging or relay operation between two interfaces.

2. Link Layer Interoperability. The external networking protocols provide link
layer processing over all physical interfaces. This level of interoperability is
adequate for allowing the radio to be used as transport and for allowing the radio
to use another network as transport. Intelligent routing or switching decisions are
limited to local layer 2 routing.

3. Network Layer Interoperability. The external networking protocols provide
network layer address processing interoperability. The radio and the networks
being inter-operated are sub-networks of the same Inter-network. At this level,
intelligent switching and routing decisions can be made end-to-end.

4. Host Level Interoperability (Layers 4 — 7). Embedded applications can
exchange information with hosts attached to the network. An example of this is a
handheld radio that contains embedded Situation Awareness (SA) application
exchanging SA updates with a vehicular platform in an external sub-network. In
this example, the radio provides message payload translations to allow two
otherwise incompatible hosts to communicate.

In order to support application portability, standard interfaces are required between application
protocol entities.

SCA version 2.2.2 FINAL /15 May 2006

3 SOFTWARE ARCHITECTURE DEFINITION
3.1 OPERATING ENVIRONMENT

This section contains the requirements of the operating system, middleware, and the CF
interfaces and operations that comprise the SCA Operating Environment.

3.1.1 Operating System

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) is defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX specifications are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP is depicted in Figure 3-1. The OE shall provide the functions and
options designated as mandatory by the AEP defined in Appendix B. The OE is not limited to
providing the functions and options designated as mandatory by the profile. Implementations of
the CORBA Object Request Broker (ORB), the CF Framework Control Interfaces, Framework
Services Interfaces, and Base Device Interfaces are not limited to using the services designated
as mandatory by the SCA AEP.

Application Resources

CF Interfaces

Core Framework Control,
Services, Devices, and
File access

ORB and
CORBA
Services

Operating System

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP

The OE and related file systems shall support a filename length of 40 characters and a pathname
length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications perform file access through the CF. (Application requirements are covered in
section 3.2)

3.1.2 CORBA Middleware & Services

The OE shall include middleware that, at a minimum, provides the services and capabilities of
minimumCORBA as specified by the OMG Document in reference [5].

3-1

SCA version 2.2.2 FINAL /15 May 2006

3.1.2.1 Naming Service

The OE shall provide an implementation of a CORBA Naming Service which implements the
CosNaming module NamingContext interface operations: bind, bind_new_context, unbind,
destroy, and resolve as defined in the OMG Interoperable Naming Service Specification [6]
using the IDL found in Appendix A of that reference.

A Naming Service’s NameComponent structure is made up of an id-and-kind pair. The “id”
element of each NameComponent is a string value that uniquely identifies a NameComponent.
The “kind” element of each NameComponent shall be “” (null string).

3.1.2.2 Log Service

An SCA compliant implementation may include a log service. If a log service is implemented,
the log service shall conform to the OMG Lightweight Log Service Specification [7].

3.1.2.2.1 Log Producers

A log producer is a CF component (e.g., DomainManager, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records using the Lightweight Log Service
CosLwLog::LogProducer interface. Log records are of type CosLwLog::ProducerLogRecord.

Log producers shall implement a configure property which is a CF Properties type with an id of
“PRODUCER _LOG LEVEL” and a value that is a CosLwLog::LogLevelSequence. The value of
this configure property contains all log levels that are enabled. A log producer shall only output
log records that contain an enabled CosLwLog::LogLevel value. Log levels that are not in the
CosLwLog::LogLevelSequence are disabled.

Log producers and CF components that are required by this specification to write log records
shall operate normally in the absence of a log service or in the case where the connections to a
log are nil or an invalid reference.

Log producers shall use their component identifier attribute in the producerld field of the
CosLwLog::ProducerLogRecord.

3.1.2.3 CORBA Event Service and Standard Events

3.1.2.3.1 CORBA Event Service

The OE shall provide an implementation of the CORBA Event Service. The Event Service shall
implement the PushConsumer and PushSupplier interfaces of the CosEventComm module as
described in OMG Event Service Specification [8] using the IDL found in that specification.

The CosEventComm CORBA Module is used by consumers for receiving events and by
producers for generating events. A component (e.g., Resource, DomainManager, etc.) that
consumes events shall implement the CosEventComm PushConsumer interface. A component
(e.g., Resource, Device, DomainManager, etc.) that produces events shall implement the
CosEventComm PushSupplier interface and use the CosEventComm PushConsumer interface
for generating the events. A producer component shall not forward or raise any exceptions when
the connection to a CosEventComm PushConsumer is a nil or invalid reference.

3-2

SCA version 2.2.2 FINAL /15 May 2006

The CORBA Event Service has the capability to create event channels. An event channel allows
multiple suppliers to communicate with multiple consumers asynchronously. An event channel is
both a consumer and a producer of events. For example, event channels may be standard
CORBA objects and communicate with those channels is accomplished using standard CORBA
requests. The OE shall provide two standard event channels: Incoming Domain Management and
Outgoing Domain Management. The Incoming Domain Management Channel name shall be
"IDM_Channel". The Outgoing Domain Management Channel name shall be "ODM_Channel".
The Incoming Domain Management event channel is used by components within the domain to
generate events (e.g., Device state change event) that are consumed by domain management
functions (e.g., ApplicationFactory, Application, DomainManager, etc.). The Outgoing Domain
Management Channel is used by domain clients (e.g., HCI) to receive events (e.g., additions or
removals from the domain) generated from domain management functions (e.g.,
ApplicationFactory, Application, DomainManager, etc.). Besides these two standard event
channels, the OE allows other event channels to be set up by application developers.

3.1.2.3.2 StandardEvent Module

The StandardEvent module contains type definitions that are used for passing events from event
producers to event consumers. The IDL for this module is found in Appendix C of this
specification.

3.1.2.3.2.1 Types
3.1.2.3.2.1.1 StateChangeCategoryType

The type StateChangeCategoryType is an enumeration that is utilized in the
StateChangeEventType. It is used to identify the category of state change that has occurred.

enum StateChangeCategoryType

{
ADMINISTRATIVE STATE EVENT,

OPERATIONAL STATE EVENT,
USAGE STATE EVENT

}i
3.1.2.3.2.1.2 StateChangeType

The type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is
used to identify the specific states of the event source before and after the state change occurred.

enum StateChangeType
{

LOCKED, /*Administrative State Event */
UNLOCKED, /*Administrative State Event */
SHUTTING DOWN, /*Administrative State Event */
ENABLED, /*Operational State Event */
DISABLED, /*Operational State Event */
IDLE, /*Usage State Event */

ACTIVE, /*Usage State Event */

BUSY /*Usage State Event */

SCA version 2.2.2 FINAL /15 May 2006

3.1.2.3.2.1.3 StateChangeEventType

The type StateChangeEventType is a structure used to indicate that the state of the event source
has changed.

struct StateChangeEventType
{

string producerId;

string sourceld;
StateChangeCategoryType stateChangeCategory;
StateChangeType stateChangeFrom;
StateChangeType stateChangeTo;

}i
3.1.2.3.2.1.4 SourceCategoryType

The type SourceCategoryType is an enumeration that is utilized in the
DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType. It is used to identify the type of object that has
been added to or removed from the domain.

enum SourceCategoryType

{
DEVICE MANAGER,
DEVICE,
APPLICATION FACTORY,
APPLICATION,
SERVICE

}i

3.1.2.3.2.1.5 DomainManagementObjectRemovedEventType

The type DomainManagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain.

struct DomainManagementObjectRemovedEventType

{

string producerld;
string sourceld;
string sourceName;

SourceCategoryType sourceCategory;

}i
3.1.2.3.2.1.6 DomainManagementObjectAddedEventType

The type DomainManagementObjectAddedEventType is a structure used to indicate that the
event source has been added to the domain.

struct DomainManagementObjectAddedEventType
{

string producerld;
string sourceld;
string sourceName;

3-4

SCA version 2.2.2 FINAL /15 May 2006

SourceCategoryType sourceCategory
Object sourcelIOR;
}:

3.1.3 Core Framework

This section includes a detailed description of the purpose of each CF interface, the purpose of
each supported operation within the interface, and interface class diagrams to support these
descriptions. The corresponding IDL for the CF is found in Appendix C.

Figure 3-2 depicts the key elements of the CF and the IDL relationships between these elements.
A DomainManager component manages the software applications, application factories,
hardware devices (represented by software devices) and device managers within the system.
Some software components may directly control the system’s internal hardware devices; these
components are logical devices, which implement the Device, LoadableDevice, or
ExecutableDevice interfaces. Other software components have no direct relationship with a
hardware device, but perform application services for the user and implement the Resource
interface. This interface provides a consistent way of configuring and tearing down these
components. Each resource can potentially communicate with other resources. An application is
a specific collection of one or more resources which provides a specified service or function and
which is managed through the Application interface. The resources of an application are
allocated to one or more hardware devices by the application factory based upon various factors
including the current availability of hardware devices, the behavior rules of a resource, and the
loading requirements of each resource. The resources may then be created by using the
ResourceFactory interface or through the Device interfaces (Device, LoadableDevice, or
ExecutableDevice) an connected to other resources or devices resident on the system.

SCA version 2.2.2 FINAL /15 May 2006

«CORBAInterface» «CORBAInterface»,
CF::PropertySet CF::PortSupplier

«inhefits»

«CORBAInterface»,
CF:LifeCycle

«CORBAInterface»
CF::TestableObject

«CORBAInterface»|
CF::Port

«inQerits» «inherits» «inherits$

«creates»

«CORBAInterface» «CORBAInterface»|, «CORBAlInterface»
CF::DeviceManager CF::Resource CF::ResourceFactory|

«inherits»

«CORBAInterface»
CF::AggregateDevice|

N ZO
\ |
N
N«uses» <<usies>> «inherifs» «inherits»
N . !
N |
N |
\\ |
AN I\ «creates»
«CORBAlInterface» *\[«CORBAInterface»| «CORBAInterface»|, «CORBAlInterface»
CF::DomainManager, CF::Device CF::Application CF::ApplicationFactory

«inherits»

«CORBAlInterface»
CF::LoadableDevice
/\

«inherits»

«CORBAInterface»
Figure 3-2: Core Framework IDL Relationships

The file service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files, and for loading and unloading application files on the various
processors that the devices execute upon.

3.1.3.1 Base Application Interfaces

Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; see section 3.2 for application requirements.

Base Application Interfaces shall be implemented using the CF IDL presented in Appendix C.
3.1.3.1.1 Port

3.1.3.1.1.1 Description

This interface provides operations for managing associations between ports. The Port interface
UML is depicted in Figure 3-3. An application defines a specific port type by specifying an
interface that inherits the Port interface. An application establishes the operations for
transferring data and control. The application also establishes the meaning of the data and
control values. Examples of how applications may use ports in different ways include: push or
pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,
pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

How components' ports are connected is described in the software assembly descriptor (SAD)
and the device configuration descriptor (DCD) files of the Domain Profile (3.1.3.5).

3-6

SCA version 2.2.2 FINAL /15 May 2006

3.13.1.12 UML

«CORBAInterface»
Port

connectPort(in connection : object(idl), in connectionld : string(idl)) : void
disconnectPort(in connectionld : string(idl)) : void

«uses» .~ T~_ «uses»
7 ~

- ~
- ~
~ ~
s ~
- ~
- ~
- ~

el RS\
«exception» «exception»
InvalidPort OccupiedPort

in errorCode : unsigned short(idl)
in msg : string(idl)

Figure 3-3: Port Interface UML

3.1.3.1.1.3 Types
3.1.3.1.1.3.1 InvalidPort

The InvalidPort exception indicates one of the following errors has occurred in the specification
of a Port association:

1. errorCode 1 means the Port component is invalid (unable to narrow object
reference) or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).
exception InvalidPort { unsigned short errorCode; string msg; };
3.1.3.1.1.3.2 OccupiedPort
The OccupiedPort exception indicates the port is unable to accept any additional connections.
exception OccupiedPort{};
3.1.3.1.1.4 Attributes
N/A.
3.1.3.1.1.5 Operations
3.1.3.1.1.5.1 connectPort
31311511 Brief Rationale

Applications require the connectPort operation to establish associations between ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of a two-way association; therefore two calls are
required to create a two-way association.

3.1.3.1.15.12 Synopsis

void connectPort (in Object connection, in string connectionId)
raises (InvalidPort, OccupiedPort);

3-7

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.15.1.3 Behavior

The connectPort operation shall make a connection to the component identified by its input
parameters.

A port may support several connections. The input connectionld is a unique identifier to be used
by the disconnectPort operation when breaking a specific connection.

3.13.115.14 Returns
This operation does not return a value.
3.1.3.1.1.5.15 Exceptions/Errors

The connectPort operation shall raise the InvalidPort exception when the input connection
parameter is an invalid connection for this port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the
connections because the port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort
3.1.3.1.1521 Brief Rationale

Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

3.1.3.1.1.5.2.2 Synopsis

void disconnectPort (in string connectionId) raises
(InvalidPort) ;

3.1.3.1.15.23 Behavior

The disconnectPort operation shall break the connection to the component identified by the input
connectionld parameter.

31311524 Returns
This operation does not return a value.
3.1.3.1.15.25 Exceptions/Errors

The disconnectPort operation shall raise the InvalidPort exception when the input connectionid
parameter is not a known connection to the Port component.

3.1.3.1.2 LifeCycle
3.1.3.1.2.1 Description

The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-4.

SCA version 2.2.2 FINAL /15 May 2006

3.13.1.22 UML

«CORBAlInterface»
LifeCycle

initialize() : void
releaseObject() : void

<
«uses» - ~. «uses»
P <
. N
. <
. ~
. N
. <
. ~
. <
. <
- Sy
«exception» «exception»
InitializeError ReleaseError
in errorMessages : StringSequence in errorMessages : StringSequence

Figure 3-4: LifeCycle Interface UML

3.1.3.1.2.3 Types
3.1.3.1.2.3.1 InitializeError

The InitializeError exception indicates an error occurred during component initialization. The
message is component-dependent, providing additional information describing the reason why
the error occurred.

exception InitializeError { StringSequence errorMessage; };
3.1.3.1.2.3.2 ReleaseError

The ReleaseError exception indicates an error occurred during the component releaseObject
operation. The message is component-dependent, providing additional information describing
the reason why the error occurred.

exception ReleaseError { StringSequence errorMessage; };
3.1.3.1.2.4 Attributes

N/A.

3.1.3.1.2.5 Operations

3.1.3.1.25.1 initialize

3.1.3.1.25.1.1 Brief Rationale

The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. For example, data structures may be set to initial values, memory may be allocated,
hardware devices may be configured to some state, etc.

3.1.3.1.25.1.2 Synopsis

vold initialize () raises (InitializeError);
3.1.3.1.2513 Behavior

Initialization behavior is implementation dependent.
31312514 Returns

This operation does not return a value.

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.25.15 Exceptions/Errors

The initialize operation shall raise an InitializeError exception when an initialization error
occurs.

3.1.3.1.2.5.2 releaseObject
3.1.3.125.21 Brief Rationale

The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down.

3.1.3.1.25.2.2 Synopsis
void releaseObject () raises (ReleaseError);
3.1.3.1.25.2.3 Behavior

The releaseObject operation shall release all internal memory allocated by the component during
the life of the component. The releaseObject operation shall tear down the component and
release it from the CORBA environment.

3.13.1.25.24 Returns

This operation does not return a value.

3.1.3.1.25.25 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when a release error occurs.
3.1.3.1.3 TestableObject

3.1.3.1.3.1 Description

The TestableObiject interface defines a set of operations that is used to test component
implementations. The TestableObject interface UML is depicted in Figure 3-5.

3.1.3.1.3.2 UML

«exception»
«uses» > UnknownTest
ey

«CORBAlInterface» g
TestableObject g

runTest(in testid : unsigned long(idl), inout testValues : Properties) : void ~ «exception»
>\ UnknownProperties
in invalidProperties : Properties

Figure 3-5: TestableObject Interface UML

3.1.3.1.3.3 Types
3.1.3.1.3.3.1 UnknownTest
The UnknownTest exception indicates the input testld parameter is not known by the component.

exception UnknownTest{};

3-10

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.3.4 Attributes

N/A.

3.1.3.1.3.5 Operations
3.1.3.1.3.5.1 runTest
3.1.3.135.11 Brief Rationale

The runTest operation allows components to be “black box” tested. This allows built-in tests
(BITs) to be implemented which provide a means to isolate faults (both software and hardware)
within the system.

3.1.3.1.35.1.2 Synopsis

void runTest (in unsigned long testId, inout Properties
testValues) raises (UnknownTest, UnknownProperties);

3.1.3.1.35.1.3 Behavior

The runTest operation shall use the input testld parameter to determine which of its predefined
test implementations should be performed. The id/value pair(s) of the testValues parameter shall
be used to provide additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testValues parameter.

Tests to be implemented by a component are component-dependent and are specified in the
component’s Properties Descriptor. Valid testld(s) and both input and output testValues
(properties) for the runTest operation shall at a minimum be the test properties defined in the
properties test element of the component's Properties Descriptor (refer to Appendix D Domain
Profile). The testld parameter corresponds to the XML attribute testld of the property element
test in a propertyfile.

A CF UnknownProperties exception is raised by the runTest operation. All testValues parameter
properties (i.e., test properties defined in the propertyfile(s) referenced in the component’s SPD)
shall be validated.

The runTest operation shall not execute any testing when the input testld or any of the input
testValues are not known by the component or are out of range.

3.1.3.135.14 Returns
This operation does not return a value.
3.1.3.1.3515 Exceptions/Errors

The runTest operation shall raise the UnknownTest exception when there is no underlying test
implementation that is associated with the input testld given.

The runTest operation shall raise the CF UnknownProperties exception when the input parameter
testValues contains any CF DataTypes that are not known by the component’s test
implementation or any values that are out of range for the requested test. The exception
parameter invalidProperties shall contain the invalid testValues properties id(s) that are not
known by the component or the value(s) are out of range.

3-11

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.4 PortSupplier

3.1.3.1.4.1 Description

This interface provides the getPort operation for those components that provide ports.
3.1.3.1.4.2 UML

«CORBAlInterface» «uses»
PortSupplier

«exception»
____________ UnknownPort

getPort(in name : string(idl)) : object(idl)

Figure 3-6: PortSupplier Interface UML

3.1.3.1.4.3 Types

3.1.3.1.4.3.1 UnknownPort

The UnknownPort exception is raised if an undefined port is requested.
exception UnknownPort{};

3.1.3.1.4.4 Attributes

N/A.

3.1.3.1.4.5 Qperations

3.1.3.1.45.1 getPort

31314511 Brief Rationale

The getPort operation provides a mechanism to obtain a specific consumer or producer port. A
port supplier may contain zero-to-many consumer and producer port components. The exact
number is specified in the component’s software profile SCD (section 3.1.3.5). Multiple input
and/or output ports provide flexibility for port suppliers that manage varying priority levels and
categories of incoming and outgoing messages, provide multi-threaded message handling, or
other special message processing.

3.1.3.1.45.1.2 Synopsis
Object getPort (in string name) raises (UnknownPort);
3.1.3.14513 Behavior

The getPort operation returns the object reference to the named port as stated in the component's
SCD.

3.1.3.1451.4 Returns

The getPort operation shall return the CORBA object reference that is associated with the input
port name.

3.1.3.145.15 Exceptions/Errors
The getPort operation shall raise an UnknownPort exception if the port name is invalid.

3-12

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.5 PropertySet
3.1.3.1.5.1 Description

The PropertySet interface defines configure and query operations to access component
properties/attributes. The PropertySet interface UML is depicted in Figure 3-7.

3.1.3.152 UML

«CORBAInterface»

«uses»

PropertySet «exception»
________ UnknownProperties
configure(in configProperties : Properties) : void in invalidProperties : Properties

query(inout configProperties : Properties) : void

770N
b ~
((USeS»// N _«uses»
s ~
- ~
s AN
e ~
s ~
- ~
s N

L >\

«exception» «exception»
InvalidConfiguration PartialConfiguration
in msg : string(idl) in invalidProperties : Properties
in invalidProperties : Properties

Figure 3-7: PropertySet Interface UML

3.1.3.1.5.3 Types
N/A.
3.1.3.1.5.3.1 InvalidConfiguration

The InvalidConfiguration exception indicates the configuration of a component has failed (no
configuration at all was done). The message is component-dependent, providing additional
information describing the reason why the error occurred. The invalidProperties returned
indicate the properties that were invalid.

exception InvalidConfiguration { string msg; Properties
invalidProperties; };

3.1.3.1.5.3.2 PartialConfiguration

The PartialConfiguration exception indicates the configuration of a Component was partially
successful. The invalidProperties returned indicate the properties that were invalid.

exception PartialConfiguration { Properties invalidProperties;

};
3.1.3.1.5.4 Attributes
N/A.

3-13

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.5.5 Operations
3.1.3.1.5.5.1 configure
3.1.3.155.1.1 Brief Rationale

The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.

3.1.3.1.5.5.1.2 Synopsis

void configure (in Properties configProperties) raises
(InvalidConfiguration, PartialConfiguration);

3.1.3.1.55.1.3 Behavior

The configure operation shall assign values to the properties as indicated in the input
configProperties parameter. Valid properties for the configure operation shall at a minimum be
the configure readwrite and writeonly properties referenced in the component’s SPD.

3.1.3.15514 Returns
This operation does not return a value.
3.1.3.1.5.5.15 Exceptions/Errors

The configure operation shall raise a PartialConfiguration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error
occurs and no configuration properties were successfully set.

3.1.3.155.2 query

3.1.3.155.21 Brief Rationale

The query operation allows a component to be queried to retrieve its properties.
3.1.3.1.5.5.2.2 Synopsis

void query (inout Properties configProperties) raises
(UnknownProperties) ;

3.1.3.1.55.2.3 Behavior

The query operation shall return all component properties when the inout parameter
configProperties is zero size. The query operation shall return only those id/value pairs specified
in the configProperties parameter if the parameter is not zero size. Valid properties for the query
operation shall be all configure properties (simple properties whose kind element’s kindtype
attribute is “configure’”) whose mode attribute is “readwrite” or “readonly” and any allocation
properties with an action value of "external” as referenced in the component's SPD.

3.1.3.155.24 Returns
This operation does not return a value.

3-14

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.55.25 Exceptions/Errors

The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.

3.1.3.1.6 Resource
3.1.3.1.6.1 Description

The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-8.

The Resource interface inherits from the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces.

The inherited LifeCycle, PropertySet, TestableObject, and PortSupplier interface operations are
documented in their respective sections of this document.

The Resource interface may also be inherited by other application interfaces as described in the
software profile's Software Component Descriptor (SCD) file (see 3.1.3.5.2).

3.1.3.1.6.2 UML.

«CORBAInterface»
PropertySet

«CORBAInterface»
PortSupplier

configure(in configProperties : Properties) : void
query(inout configProperties : Properties) : void

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»
TestableObject

«CORBAInterface»
LifeCycle

runTest(in testid : unsigned long(idl), inout testValues : Properties) : void

initialize() : void

releaseObject() : void| «inherits» «nhegits»

«inherits»

«CORBAInterface»
Resource

«readonly» identifier : string(idl)
start() : void

stop() : void
<<uses>; T~ - «uses»
/ Tl
/ T~
/ =~ =~
! =~ ~
! T~
«exception» «exception»
StartError StopError
in errorNumber : ErrorNumberType in errorNumber : ErrorNumberType
in msg : string(idl) in msgq : string(idl)

Figure 3-8: Resource Interface UML

3-15

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.6.3 Types
3.1.3.1.6.3.1 StartError

The StartError exception indicates that an error occurred during an attempt to start the resource.
The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

exception StartError { ErrorNumberType errorNumber; string msg;

}i
3.1.3.1.6.3.2 StopError

The StopError exception indicates that an error occurred during an attempt to stop the resource.
The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

exception StopError { ErrorNumberType errorNumber; string msg;

}:

3.1.3.1.6.4 Attributes

3.1.3.1.6.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a Resource instance.
readonly attribute string identifier;

3.1.3.1.6.5 Operations

3.1.3.1.6.5.1 start

3.1.3.165.11 Brief Rationale

The start operation is provided to command the resource implementing this interface to start
internal processing.

3.1.3.1.6.5.1.2 Synopsis

void start()raises (StartError);
3.1.3.1.6.5.1.3 Behavior

The start operation puts the resource in an operating condition.
3.1.3.16.5.14 Returns

This operation does not return a value.

3.1.3.1.6.5.15 Exceptions/Errors

The start operation shall raise the StartError exception if an error occurs while starting the
resource.

3.1.3.1.6.5.2 stop
3.1.3.1.65.21 Brief Rationale

The stop operation is provided to command the resource implementing this interface to stop
internal processing.

3-16

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.6.5.2.2 Synopsis
void stop()raises (StopError);

3.1.3.1.6.5.2.3 Behavior

The stop operation shall disable all current operations and put the resource in a non-operating
condition. The stop operation shall not inhibit subsequent configure, query, and start operations.

3.1.3.1.6.5.24 Returns
This operation does not return a value.
3.1.3.1.6.5.25 Exceptions/Errors

The stop operation shall raise the StopError exception if an error occurs while stopping the
resource.

3.1.3.1.7 ResourceFactory
3.1.3.1.7.1 Description

A resource factory is used to create and tear down a resource. The ResourceFactory interface is
designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted in
Figure 3-9. The factory mechanism provides client-server isolation among resources and
provides a standard mechanism of obtaining a resource without knowing its identity. An
application is not required to use resource factories to obtain, create, or tear down resources. A
software profile specifies which application resource factories are to be used by the application
factory.

3.13.1.7.2 UML

«CORBAInterface»
ResourceFactory
«readonly» identifier : string(idl)
createResource(in resourceld : string(idl), in qualifiers : Properties) : Resource
releaseResource(in resourceld : string(idl)) : void
shutdown() : void

- ~

«USES» _«USesS» N «uses»
PR / RN
- - - / = ~ ~
- , ~o
- / ~
-7 / RS
- / ~
L= \/ ~3
«exception» «exception» «exception»
InvalidResourceld ShutdownFailure CreateResourceFailure
in msg : string(idl) in errorNumber : ErrorNumberType

in msg : string(idl)

Figure 3-9: ResourceFactory Interface UML

3.1.3.1.7.3 Types
3.1.3.1.7.3.1 InvalidResourceld

The InvalidResourceld exception indicates the resourceld does not reference a resource created
by this resource factory.

exception InvalidResourceId{};

3-17

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.7.3.2 ShutdownFailure

The ShutdownFailure exception indicates that the shutdown method failed to release the resource
factory from the CORBA environment. The message is component-dependent, providing
additional information describing why the shutdown failed.

exception ShutdownFailure { string msg; };
3.1.3.1.7.3.3 CreateResourceFailure

The CreateResourceFailure exception indicates that the createResource operation failed to create
the resource. The error number shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

exception CreateResourceFailure { ErrorNumberType errorNumber;
string msg; };

3.1.3.1.7.4 Attributes
3.1.3.1.7.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a ResourceFactory
instance.

readonly attribute string identifier;
3.1.3.1.7.5 Operations

3.1.3.1.7.5.1 createResource

3.1.3.1.751.1 Brief Rationale

The createResource operation provides the capability to create resources in the same process
space as the resource factory or to return a reference to a resource that has already been created.
This behavior is an alternative approach to the Device::execute operation for creating a resource.

3.1.3.1.7.5.1.2 Synopsis

Resource createResource (in string resourceld, in Properties
qualifiers) raises (CreateResourceFailure);

3.1.3.1.75.1.3 Behavior

The resourceld parameter is the identifier for a resource. The qualifiers parameter contains
values used by the resource factory in creation of the Resource. The application factory
determines the values to be supplied for the qualifiers from the description in the resource
factory’s software profile. The qualifiers may be used to identify, for example, specific subtypes
of resources created by a resource factory.

The createResource operation shall create a resource if no resource exists for the given
resourceld and shall assign the given resourceld to a new resource. If the resource already exists
for the given resourceld, the input qualifiers parameter is ignored and the resource's reference is
returned. The createResource operation shall set a reference count to one, when the resource is
initially created, or increment the reference count by one, when the resource already exists. The
reference count is used to indicate the number of times that a specific resource reference has
been given to requesting clients. This ensures that the resource factory does not release a
resource that has a reference count greater than zero (0). When multiple clients have obtained a

3-18

SCA version 2.2.2 FINAL /15 May 2006

reference to the same resource, each client requests release of the resource when it is through
with the resource. However, the resource is not released until the release request comes from the
last client in existence.

3.1.3.1.75.1.4 Returns

The createResource operation shall return a reference to the created resource. If the resource
already exists, the createResource operation shall return a reference to the existing resource.

3.1.3.1.7.5.15 Exceptions/Errors

The createResource operation shall raise the CreateResourceFailure exception when it cannot
create the resource.

3.1.3.1.7.5.2 releaseResource
3.1.3.1.75.21 Brief Rationale

In CORBA there is client side and server side representation of a resource. The releaseResource
operation provides the mechanism of releasing the resource in the CORBA environment on the
server side when all clients are through with a specific resource. The client still has to release its
client side reference of the resource.

3.1.3.1.7.5.2.2 Synopsis

void releaseResource (in string resourceld) raises
{InvalidResourcelId);

3.1.3.1.75.2.3 Behavior

The releaseResource operation shall decrement the reference count for the specified resource, as
indicated by the resourceld parameter. The releaseResource operation shall release the resource
from the CORBA environment and make the resource no longer available when the resource’s
reference count is zero.

3.1.3.1.75.24 Returns
This operation does not return a value.
3.1.3.1.75.25 Exceptions/Errors

The releaseResource operation shall raise the InvalidResourceld exception if an invalid
resourceld is received.

3.1.3.1.7.5.3 shutdown
3.1.3.1.7531 Brief Rationale

In CORBA there is client side and server side representation of a resource factory. The shutdown
operation provides the mechanism for releasing the resource factory from the CORBA
environment on the server side. The client has the responsibility to release its client side
reference of the resource factory.

3.1.3.1.7.5.3.2 Synopsis

void shutdown () raises {ShutdownFailure):;

3-19

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.1.7.5.3.3 Behavior

The shutdown operation shall release the resource factory from the CORBA environment and
make it unavailable to any subsequent calls to its object reference.

3.1.3.1.7.5.34 Returns
This operation does not return a value.
3.1.3.1.7.5.35 Exceptions/Errors

The shutdown operation shall raise the ShutdownFailure exception when processing errors
prevent the release of the resource factory from the CORBA environment or when all resources
have not been released from the resource factory.

3.1.3.2 Framework Control Interfaces

Framework control within a Domain is accomplished by domain management and device
management interfaces.

The management interfaces are Application, ApplicationFactory, DeviceManager and
DomainManager. These interfaces manage the registration and unregistration of applications,
devices, and device managers within the domain and the controlling of applications within the
domain. The implementation of the Application, ApplicationFactory, and DomainManager
interfaces are coupled together and are delivered together as a complete domain management
implementation and service.

Device management is accomplished by the DeviceManager interface. The device manager is
responsible for creation of logical devices and launching service applications on these logical
devices.

Framework Control Interfaces shall be implemented using the CF IDL presented in Appendix C.
3.1.3.2.1 Application
3.1.3.2.1.1 Description

The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.

The Application interface inherits the IDL interface of Resource. A created application instance
may contain Resource components and/or non-CORBA components. The Application interface
UML is depicted in Figure 3-10.

The Application interface releaseObject operation provides the interface to release the
computing resources allocated during the instantiation of the application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

3-20

SCA version 2.2.2 FINAL /15 May 2006

3.13.21.2 UML

«CORBAlInterface»
Resource

«readonly» identifier : string(idl)

start() : void
stop() : void

«inherits»

«CORBAInterface»
Application

«readonly» profile : string(idl)
«readonly» name : string(idl)
«readonly» componentNamingContexts : ComponentElementSequence
«readonly» componentProcesslds : ComponentProcessldSequence
«readonly» componentDevices : DeviceAssignmentSequence
«readonly» componentimplementations : ComponentElementSequence

Figure 3-10: Application Interface UML

3.1.3.2.1.3 Types
3.1.3.2.1.3.1 ComponentProcessldType
The ComponentProcessldType defines a type for associating a component with its process ID.

struct ComponentProcessIdType

{
string componentId;
unsigned long processId;

}i
3.1.3.2.1.3.2 ComponentProcessldSequence

The ComponentProcessldSequence type defines an unbounded sequence of components’ process
IDs.

typedef sequence <ComponentProcessIdType>
ComponentProcessIdSequence;

3.1.3.2.1.3.3 ComponentElementType

The ComponentElementType defines a type for associating a component with an element (e.g.,
naming context, implementation 1D).

struct ComponentElementType

{
string componentId;
string elementId;

i

3.1.3.2.1.3.4 ComponentElementSequence

The ComponentElementSequence defines an unbounded sequence of ComponentElementType.
3-21

SCA version 2.2.2 FINAL /15 May 2006

typedef sequence <ComponentElementType>
ComponentElementSequence;

3.1.3.2.1.4 Attributes
3.1.3.2.1.4.1 profile

The readonly profile attribute shall contain a profile element (Profile Descriptor) with a file
reference to the application’s SAD file. Files referenced within the profile are obtained via a
FileManager.

readonly attribute string profile;
3.1.3.2.1.4.2 name

This readonly name attribute shall contain the name of the created application. The
ApplicationFactory interface’s create operation name parameter provides the name content.

readonly attribute string name;
3.1.3.2.1.4.3 componentNamingContexts

The componentNamingContexts attribute shall contain the list of components” Naming Service
Context within the application for those components using CORBA Naming Service.

readonly attribute ComponentElementSequence
componentNamingContexts;

3.1.3.2.1.4.4 componentProcesslds

The componentProcesslds attribute shall contain the list of components’ process IDs within the
Application for components that are executing on a device.

readonly attribute ComponentProcessIdSegquence
componentProcessIds;

3.1.3.2.1.4.5 componentDevices

The componentDevices attribute shall contain a list of devices, which each component either
uses, is loaded on or is executed on. Each component (identified by the componentinstantiation
element in the application’s software profile) is associated with at least one device.

readonly attribute DeviceAssignmentSequence componentDevices;
3.1.3.2.1.4.6 componentimplementations

The componentImplementations attribute shall contain the list of components’ SPD
implementation IDs within the application for those components created.

readonly attribute ComponentElementSequence
componentImplementations;

3.1.3.2.1.5 General Class Behavior

The application shall delegate the implementation of the inherited Resource operations (runTest,
start, stop, configure, and query) to the Application Resource component identified by the
application’s SAD assemblycontroller element (Assembly Controller). The application shall
propagate exceptions raised by the application’s Assembly Controller’s operations. The

3-22

SCA version 2.2.2 FINAL /15 May 2006

initialize operation shall not be propagated to the application’s components or its Assembly
Controller.

3.1.3.2.1.6 Operations
3.1.3.2.1.6.1 releaseObject
3.1.3.2.16.1.1 Brief Rationale

The releaseObject operation terminates execution of the application, returns all allocated
computing resources, and de-allocates the resources’ capacities in use by the devices associated
with the application. Before terminating, the application removes the message connectivity with
its associated applications (e.g., ports, resources, and logs) in the domain.

3.1.3.2.1.6.1.2 Synopsis

void releaseObject () raises (ReleaseError);

3.1.3.2.1.6.1.3 Behavior
The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The Application::releaseObject operation shall release each application component not created
by a resource factory by utilizing the component’s Resource::releaseObject operation. The
Application::releaseObject operation shall release each component created by a resource factory
via the ResourceFactory::releaseResource operation. The Application::releaseObject operation
shall terminate a resource factory when no more resources are managed by the resource factory
via the ResourceFactory::shutdown operation. The Application::releaseObject operation shall
terminate the processes / tasks on allocated executable devices belonging to each application
component by utilizing the ExecutableDevice:terminate operation.

The releaseObject operation shall de-allocate the memory associated with each application
component instance from its allocated device by utilizing the LoadableDevice::unload operation.

The releaseObject operation shall deallocate the device capacities that were allocated during
application creation. The actual devices deallocated (Device::deallocateCapacity) reflect
changes in their capacity based upon component capacity requirements deallocated from them,
which may also cause state changes for the devices.

The application shall release all object references to the components making up the application.

The releaseObject operation shall disconnect ports that were previously connected based upon
the application’s software profile.

The releaseObject operation shall disconnect consumers and producers from a CORBA Event
Service’s event channel based upon the software profile. The releaseObject operation may
destroy a CORBA Event Service’s event channel when no more consumers and producers are
connected to it.

For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming
contexts as necessary from the Naming Service.

3-23

SCA version 2.2.2 FINAL /15 May 2006

The releaseObject operation for an application shall disconnect ports first, then release the
resources and the resource factories, then call the terminate operation, and lastly call the unload
operation on the devices.

The releaseObject operation shall, upon successful application release, write an
ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful application release, write a
FAILURE_ALARM log record.

The releaseObject operation shall send a DomainManagementObjectRemovedEventType event
to the Outgoing Domain Management event channel upon successful release of an application.
For this event,

1 The producerld is the identifier attribute of the released application.
2. The sourceld is the identifier attribute of the released application.

3 The sourceName is the name attribute of the released application.
4. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the application’s behavior for the release of an
application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.
Disconnect Ports.

Release the ResourceFactory components.
Shutdown the ResourceFactory components.
Release the Resource components.
Terminate the components’ processes.

Unload the components’ executable images.

© N o g bk~ D

Change the state of the associated devices to be available, along with device(s)
memory utilization availability and processor utilization availability based upon
the Device Profile and software profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the application was either successfully or
unsuccessfully released.

11. Remove the application reference from the applications attribute and generate an
event to indicate the application has been removed from the domain.

Figure 3-11 is a collaboration diagram depicting the behavior as described above.

3-24

SCA version 2.2.2 FINAL /15 May 2006

1: releaseObject()—> 11: push:=push(DomainManagementOjbjectRemovedEventType)—»

Q «CORBAInterface» «CORBAInterface»

: Application

ODM Event Channel

CF::Comm User

«CORBAInterface»
Log

«CORBAInterface»
Port

«CORBAInterface»
Naming Service

«CORBAInterface»
ResourceFactory

«CORBAInterface» «CORBAInterface»
Resource ExecutableDevice

Figure 3-11: Application Behavior

3.1.3.21.6.14 Returns
This operation does not return a value.
3.1.3.2.1.6.15 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when internal processing errors
prevent the successful release of any application component.

3.1.3.2.1.6.2 getPort

3.1.3.216.21 Brief Rationale

The getPort operation obtains an object reference to a specific visible port of the application.
3.1.3.2.1.6.2.2 Synopsis

Object getPort (in string name) raises (UnknownPort);
3.1.3.2.1.6.2.3 Behavior

The getPort operation returns object references for port names that are in the application SAD
externalports element.

3.1.3.2.1.6.24 Returns

The getPort operation shall return object references only for input port names that match the port
names that are in the application SAD externalports element.

3-25

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.1.6.25 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port is invalid.
3.1.3.2.2 ApplicationFactory

3.1.3.2.2.1 Description

The ApplicationFactory interface class provides an interface to request the creation of a specific
type of application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The
software profile determines the type of application that is created by the application factory.

3.13.222 UML

«CORBAInterface»
ApplicationFactory

«readonly» name : string(idl)
«readonly» identifier : string(idl)
«readonly» softwareProfile : string(idl)

create(in name : string(idl), in initConfiguration : Properties, in deviceAssignments : DeviceAssignmentSequence) : Application

«uses» -7 «USESH™ = _ «uses»

_-- \ T~
- \ ~~_
- \ T~
- \ ~~_
- \ T~
- \ -
= \/ S~
«exception» «exception» «exception»
CreateApplicationRequestError CreateApplicationError InvalidinitConfiguration
in invalidAssignments : DeviceAssignmentSequence in errorNumber : ErrorNumberType in invalidProperties : Properties
in msg : string(idl)

Figure 3-12: ApplicationFactory UML

3.1.3.2.2.3 Types
3.1.3.2.2.3.1 CreateApplicationRequestError Exception

The CreateApplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one (1) or more invalid application component-to-device
assignment(s).

exception CreateApplicationRequestError
DeviceAssignmentSequence invalidAssignment; };

3.1.3.2.2.3.2 CreateApplicationError Exception

The CreateApplicationError exception is raised when a create request is valid but the application
is unsuccessfully instantiated due to internal processing errors. The error number shall indicate a
CF ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.

exception CreateApplicationError { ErrorNumberType errorNumber;
string msg; };

3.1.3.2.2.3.3 Exception InvalidInitConfiguration
The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is
invalid.

3-26

SCA version 2.2.2 FINAL /15 May 2006

exception InvalidInitConfiguration { Properties
invalidProperties; };

3.1.3.2.2.4 Attributes
3.1.3.2.2.4.1 name

The readonly name attribute contains the user-friendly name of the application instantiated by an
application factory. The name attribute shall be identical to the softwareassembly element name
attribute of the application’s Software Assembly Descriptor file.

readonly attribute string name;
3.1.3.2.2.4.2 softwareProfile

The softwareProfile attribute contains the Profile Descriptor for the application that is created by
the application factory.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a
file reference to the application’s SAD file. Files referenced within the profile are obtained via
FileManager.

readonly attribute string softwareProfile;
3.1.3.2.2.4.3 identifier

The readonly identifier attribute shall contain the unique identifier for an ApplicationFactory
instance. The identifier shall be identical to the softwareassembly element id attribute of the
application factory’s Software Assembly Descriptor file.

readonly attribute string identifier;

3.1.3.2.2.5 Qperations

3.1.3.2.25.1 create

3.1.3.2.25.1.1 Brief Rationale

The create operation is used to create an application within the system domain.

The create operation provides a client interface to request the creation of an application on client
requested device(s) and/or the creation of an application in which the application factory
determines the necessary device(s) required for instantiation of the application.

3.1.3.2.25.1.2 Synopsis

Application create (in string name, in Properties
initConfiguration, in DeviceAssignmentSequence
deviceAssignments) raises (CreateApplicationError,
CreateApplicationRequestError, InvalidInitConfiguration);

3.1.3.2.25.1.3 Behavior

The create operation shall use the SPD implementation element to locate candidate devices
capable of loading and executing application software modules.

The create operation validates all component-device associations in the input deviceAssignments
parameter by verifying that the device indicated by the assignedDeviceld element provides the

3-27

SCA version 2.2.2 FINAL /15 May 2006

necessary capacities and properties required by the component indicated by the componentid
element. Device assignments should not be given for resources created via a resource factory
since instantiation of these Resources is controlled by the creating ResourceFactory.

The create operation shall perform the comparison of allocation properties of the application to
those of each candidate device, according to the allocation property’s action element, for those
application component properties whose kindtype is allocation and whose action element is not
external.

The create operation shall use the allocateCapacity operation to perform the comparison of
allocation properties of the application to those of each candidate device for those application
component properties whose kindtype is allocation and whose action element is external

The create operation shall deallocate any capacity allocations on devices that do not satisfy the
application components allocation requirements or that are not utilized due to an unsuccessful
application creation.

The create operation shall load application modules onto devices that have been granted
successful capacity allocations and that satisfy the application components allocation
requirements.

The create operation shall execute the application software modules as specified in the
application’s Software Assembly Descriptor (SAD) file. The create operation shall use each
software module’s SPD implementation code’s stack size and priority elements, when specified,
for the execute options parameters.

The create operation shall include the mandatory execute parameters Naming Context IOR,
Name Binding, and Component Identifier, as described in this section, in the parameters
parameter of the ExecutableDevice::execute operation when the CORBA instance’s
componentinstantiation element of the SAD contains a findcomponent element with a
namingservice sub-element.

The execute parameter for the Naming Context IOR shall be a CF Properties type with an id
element set to "NAMING_CONTEXT _IOR" and a value element set to the stringified IOR of
the naming context to which the component will bind. The create operation shall create any
naming contexts that do not exist but which are required for successful binding to the Naming
Context IOR. The structure of the naming context path shall be "'/ DomainName / [optional
naming context sequences]". In the naming context path, each "slash" (/) represents a separate
naming context.

The Name Binding execute parameter shall be a CF Properties type with an id element set to
"NAME_BINDING" and a value element set to a string in the format of
"ComponentName_Uniqueldentifier. The ComponentName value is the SAD
componentinstantiation findcomponent namingservice element’s name attribute. The
Uniqueldentifier is determined by the implementation. The Name Binding parameter is used by
the component to bind its object reference to the Naming Context IOR parameter.

The Component Identifier execute parameter shall be a CF Properties type with an id element set
to "COMPONENT _IDENTIFIER" and a value element set to a string in the format of
“Component_Instantiation_Identifier: Application Name”. The
Component_Instantiation_Identifier is the componentinstantiation element id attribute for the

3-28

SCA version 2.2.2 FINAL /15 May 2006

component in the application’s SAD file. The Application Name field shall be identical to the
create operation’s input name parameter. The Application Name field provides a specific
instance qualifier for executed components.

The create operation shall pass the values of the “execparam” properties of the
componentinstantiation componentproperties element contained in the SAD, as parameters to the
execute operation. The create operation passes “execparam” parameters values as string values.

Upon execution of a software module by the create operation, a Resource or a ResourceFactory
component shall register with the Naming Service. The create operation uses
"ComponentName_Uniqueldentifier” to retrieve the component’s CORBA object reference from
the Naming Context IOR.

The create operation obtains a resource in accordance with the SAD via the CORBA Naming
Service or a resource factory. The ResourceFactory object reference is obtained by using the
CORBA Naming Service. The create operation, when creating a resource from a resource
factory, shall pass the componentinstantiation componentresourcefactoryref element properties
whose kindtype element is factoryparam as the qualifiers parameter to the referenced
ResourceFactory component’s createResource operation.

The create operation shall, in order, initialize all application resources, then establish
connections for those resources, and finally configure the application component indicated by the
assemblycontroller element in the SAD. The create operation connects the ports of the
application resources with the ports of other resources within the application as well as the
devices and services they use in accordance with the SAD.

The create operation shall establish connections for an application which are specified in the
SAD domainfinder element. The create operation obtains object references to the required Port
interfaces in via PortSupplier::getPort operation. The create operation uses the SAD
connectinterface element id attribute as the unique identifier for a specific connection when
provided. The create operation creates a connection id when no SAD connectinterface element
id attribute is specified for a connection. For connections to an event channel, the create
operation shall connect a CosEventComm::PushConsumer or CosEventComm::PushSupplier
object to the event channel as specified in the SAD's domainfinder element. The create operation
shall create the specified event channel if the event channel does not exist.

The create operation shall configure the application component indicated by the
assemblycontroller element in the SAD if that component has properties with a kindtype of
“configure” and a mode of “readwrite” or “writeonly”. The create operation shall use the union
of the properties contained in the input initConfiguration parameter of the create operation and
the assembly controller’s componentinstantiation element properties with a kindtype of
“configure” and a mode of “readwrite” or “writeonly”. Values contained in the input
initConfiguration parameter shall have precedence over the values of the assembly controller’s
componentinstantiation element properties when they reference the same property.

The TestableObject::runTest operation (3.1.3.1.3.5.1), Resource::stop operation (3.1.3.1.6.5.1),
and Resource::start operation (3.1.3.1.6.5.1) are not called at start-up.

The create operation shall return an Application object reference for the created application
when the application is successfully created.

3-29

SCA version 2.2.2 FINAL /15 May 2006

The create operation shall, upon successful application creation, write an
ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful application creation, write a FAILURE_ALARM
log record.

The create operation shall send a DomainManagementObjectAddedEventType event to the
Outgoing Domain Management event channel upon successful creation of an application. For
this event:

1. The producerld is the identifier attribute of the application factory.

2. The sourceld is the identifier attribute of the created application.
3. The sourceName is the name attribute of the created application.
4. The sourcelOR is the object reference for the created application.

5. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the behavior of an application factory for the
creation of an application:

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available devices that meet the application’s
memory and processor requirements, available dependent applications, and
dependent libraries needed by the application. Create an instance of an
Application, if the requested application can be created. Update the memory and
processor utilization of the devices.

Allocate the device(s) memory and processor utilization.

4. Load the application software modules on the devices using the appropriate
Device(s) interface provided the application software modules haven’t already
been loaded.

5. Execute the application software modules on the devices using the appropriate
Device interface as indicated by the application’s software profile.

6. Obtain the object reference (Resource or ResourceFactory) as described by the
SAD.

7. If the component obtained from the CORBA Naming Service is a resource factory

as indicated by the SAD, then narrow the object reference to be a
ResourceFactory component.

8. If the component is a ResourceFactory, then create a resource using the
ResourceFactory interface.

9. If the components obtained from the Naming Services is a resource supporting the
Resource interface as indicated by the SCDs, then narrow the components
reference to Resource components.

10. Initialize the resource.

11. Get Port object references for the resources.

3-30

SCA version 2.2.2 FINAL /15 May 2006

12. Connect the ports that interconnect the resources’ ports together.

13. Configure the assemblycontroller component using the Resource interface.
14, Return the Application object reference and log message.

15. Generate an event to indicate the application has been added to the domain.

Figure 3-13 is a collaboration diagram depicting the behavior as described above.

1: ¢ —
O reate:=create(name, initConfiguragi,) i al ementOb]ectAddedEvemType)»
on, devnceAsSignmems)__, 15: push:spush(DOma‘“Man g «CORBAInterface»
' ODM Event Channel
«CORBAlInterface»
ApplicationFactory “One,
ot "y, %
) 7-
CF::Comm User R 9\\3'&\ “’f/}e
o‘o\a\“ ~/ec,
R N s,
e B 0!
2 NCAe R L.
. o NN ‘¢
N T o/)
i . FE 9 &
Domain Profile q}\o 8 Q;‘g, 5 e @ (28 «CORBAlInterface»
5 ¥ ¢ A %, Log
Q = RN 0.
¥ ¥ g 8 29%% b
& & £3 23%%
s & S @ 2 2 %o
S @ £t o AN
g @ 3 38XV
& S c % ld ¥
o & g ¥
19 3
v § « &
IS Lo
s &
& v
«CORBAInterface» &L
O «CORBAInterface»

ExecutableDevice
Port

«CORBAInterface»
Resource

«CORBAlInterface»

Naming Service «CORBAInterface»
ResourceFactory

Figure 3-13: ApplicationFactory Behavior

3.1.3.225.14 Returns
The create operation returns a duplicated Application reference for the created application.

3.1.3.2.25.15 Exceptions/Errors

The create operation shall raise the Create ApplicationRequestError exception when the input CF
DeviceAssignmentSequence parameter contains one (1) or more invalid application component

to device assignment(s).

The create operation shall raise the CreateApplicationError exception when the create request is
valid but the application cannot be successfully instantiated due to internal processing error(s).
The create operation shall raise the InvalidinitConfiguration exception when the input
initConfiguration parameter is invalid. The InvalidInitConfiguration invalidProperties parameter
shall identify the invalid properties.

3-31

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3 DomainManager
3.1.3.2.3.1 Description
The DomainManager interface is for the control and configuration of the system domain.

The DomainManager interface operations may be logically grouped into three categories:
Human Computer Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (devices,
services, and applications), and initiate maintenance functions. Host operations are performed
by an HCI client capable of interfacing to the domain manager.

The registration operations are used to register / unregister device managers, device manager’s
devices, device manager’s services, and applications at startup or during run-time for dynamic
device, service, and application extraction and insertion.

The administration operations are used to access the interfaces of registered device managers and
domain manager's file manager.

3.1.3.23.2 UML
The DomainManager Interface UML is depicted in Figure 3-14.

«CORBAlInterface»
PropertySet

configure(in configProperties : Properties) : void
query(inout configProperties : Properties) : void

«inherits»

«CORBAlInterface»
DomainManager

«readonly» identifier : string(idl)

«readonly» deviceManagers : DeviceManagerSequence
«readonly» applications : ApplicationSequence

«readonly» applicationFactories : ApplicationFactorySequence
«readonly» fileMgr : FileManager

«readonly» domainManagerProfile : string(idl)

registerDevice(in registeringDevice : Device, in registeredDeviceMgr : DeviceManager) : void

registerDeviceManager(in deviceMgr : DeviceManager) : void

unregisterDevice(in unregisteringDevice : Device) : void

unregisterDeviceManager(in deviceMgr : DeviceManager) : void

installApplication(in profileFileName : string(idl)) : void

uninstallApplication(in applicationld : string(idl)) : void

registerService(in registeringService : object(idl), in registeredDeviceMgr : DeviceManager, in name : string(idl)) : void
unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void

registerWithEventChannel(in registeringObject : object(idl), in registeringld : string(idl), in eventChannelName : string(idl)) : void
unregisterFromEventChannel(in unregisteringld : string(idl), in eventChannelName : string(idl)) : void

Figure 3-14: DomainManager Interface UML

3-32

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.3 Types
3.1.3.2.3.3.1 ApplicationinstallationError

The ApplicationinstallationError exception type is raised when an application installation has not
completed correctly. The error number shall indicate a CF ErrorNumberType value. The
message is component-dependent, providing additional information describing the reason for the
error.

exception ApplicationInstallationError { ErrorNumberType
errorNumber; string msg; };

3.1.3.2.3.3.2 Invalidldentifier

The Invalidldentifier exception indicates an application identifier is invalid.
exception InvalidIdentifier{};

3.1.3.2.3.3.3 DeviceManagerSequence

This type defines an unbounded sequence of DeviceManager(s).

typedef sequence <DeviceManager> DeviceManagerSequence
3.1.3.2.3.3.4 ApplicationSequence

This type defines an unbounded sequence of Application(s).

typedef sequence < Application> ApplicationSequence
3.1.3.2.3.3.5 ApplicationFactorySequence

This type defines an unbounded sequence of ApplicationFactory(s).

typedef sequence < ApplicationFactory>
ApplicationFactorySequence

3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception

The DeviceManagerNotRegistered exception indicates the registering device’s device manager is
not registered in the domain manager. A device’s device manager has to be registered prior to
device registration to the domain manager.

exception DeviceManagerNotRegistered{};
3.1.3.2.3.3.7 RegisterError

The RegisterError exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The error number shall
indicate a CF ErrorNumberType value. The message is component-dependent, providing
additional information describing the reason for the error.

exception RegisterError { ErrorNumberType errorNumber; string
msg; };

3.1.3.2.3.3.8 UnregisterError

The UnregisterError exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The error number shall

3-33

SCA version 2.2.2 FINAL /15 May 2006

indicate a CF ErrorNumberType value. The message is component-dependent, providing
additional information describing the reason for the error.

exception UnregisterError { ErrorNumberType errorNumber; string
msg; };

3.1.3.2.3.3.9 ApplicationUninstallationError

The ApplicationUninstallationError exception type is raised when the uninstallation of an
application has not completed correctly. The error number shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.

exception ApplicationUninstallationError { ErrorNumberType
errorNumber; string msg; };

3.1.3.2.3.3.10 InvalidEventChannelName

The InvalidEventChannelName exception indicates that a domain manager was not able to locate
the event channel.

exception InvalidEventChannelName{};
3.1.3.2.3.3.11 AlreadyConnected

The AlreadyConnected exception indicates that a registering consumer is already connected to
the specified event channel.

exception AlreadyConnected{};
3.1.3.2.3.3.12 NotConnected

The NotConnected exception indicates that the unregistering consumer was not connected to the
specified event channel.

exception NotConnected{};
3.1.3.2.3.3.13 ApplicationAlreadylnstalled

The ApplicationAlreadylInstalled exception indicates that the application being installed is
already installed.

exception ApplicationAlreadyInstalled{};
3.1.3.2.3.4 Attributes.
3.1.3.2.3.4.1 deviceManagers

The deviceManagers attribute is read-only containing a sequence of registered device managers
in the domain. The readonly deviceManagers attribute shall contain a list of registered device
managers that have registered with the domain manager. The domain manager shall write an
ADMINISTRATIVE_EVENT log to a domain manager’s log, when the deviceManagers
attribute is obtained by a client.

readonly attribute DeviceManagerSequence deviceManagers;

3-34

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.4.2 applications

The applications attribute is read-only containing a sequence of instantiated Applications in the
domain. The readonly applications attribute shall contain the list of Applications that have been
instantiated. The domain manager shall write an ADMINISTRATIVE_EVENT log record to a
domain manager’s log, when the application’s attribute is obtained by a client.

readonly attribute ApplicationSequence applications;
3.1.3.2.3.4.3 applicationFactories

The readonly applicationFactories attribute shall contain a list with one application factory per
application (SAD file and associated files) successfully installed (i.e. no exception raised). The
domain manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s
log, when the applicationFactories attribute is obtained by a client.

readonly attribute ApplicationFactorySequence
applicationFactories;

3.1.3.2.3.4.4 fileMgr

The readonly fileMgr attribute shall contain the domain manager file manager. The domain
manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s log,
when the fileMgr attribute is obtained by a client.

readonly attribute FileManager fileMgr;

3.1.3.2.3.4.5 domainManagerProfile
The domainManagerProfile attribute contains the domain manager’s Profile Descriptor.

The readonly domainManagerProfile attribute shall contain a profile element (Profile Descriptor)
with a file reference to the DomainManager Configuration Descriptor (DMD) file. Files
referenced within the profile are obtained via the domain manager’s FileManager.

readonly attribute string domainManagerProfile;

3.1.3.2.3.4.6 identifier

The readonly identifier attribute shall contain a unique identifier for a DomainManager instance.
The identifier shall be identical to the domainmanagerconfiguration element id attribute of the
domain manager’s Descriptor (DMD) file.

readonly attribute string identifier;

3.1.3.2.3.5 General Class Behavior

The domain manager shall register itself with the CORBA Naming Service during component
construction. The domain manager shall create a naming context using "/DomainName" as the id
attribute to the input name parameter, and " (Null string) as the kind attribute. The domain
manager shall create a name binding to the created naming context using "/DomainName" as the
id attribute to the input name parameter, and " (Null string) as the kind attribute, where
DomainName is identical to the name attribute of the domain manager’s DMD
domainmanagerconfiguration element and the input object parameter is the domain manager
object reference. [6]

3-35

SCA version 2.2.2 FINAL /15 May 2006

Since a log service is not a required component, a domain manager implementation may, or may
not have access to a log. However, if log service(s) are available, a DomainManager
implementation may use one or more of them. The logs utilized by the DomainManager
implementation shall be defined in the DMD.

The domain manager shall begin to use a service specified in the DMD once the service is
successfully registered with the domain manager via the registerDeviceManager or
registerService operations.

The domain manager shall create its own FileManager component that consists of all registered
device manager’s FileSystems.

Upon system startup, the domain manager shall restore application factories for applications that
were previously installed by the DomainManager::installApplication operation. The domain
manager shall add the restored application factories to the DomainManager applicationFactories
attribute.

The domain manager shall create the Incoming Domain Management and Outgoing Domain
Management event channels.

3.1.3.2.3.6 Operations
3.1.3.2.3.6.1 registerDeviceManager
3.1.3.236.1.1 Brief Rationale

The registerDeviceManager operation is used to register a device manager, its device(s), and its
services. Software profiles may be obtained from the device manager's FileSystem.

3.1.3.2.3.6.1.2 Synopsis

void registerDeviceManager (in DeviceManager deviceMgr) raises
(InvalidObjectReference, InvalidProfile, RegisterError);

3.1.3.2.3.6.1.3 Behavior

The registerDeviceManager operation verifies that the input deviceMgr parameter is a not a nil
CORBA object reference.

The registerDeviceManager operation shall add the device manager indicated by the input
deviceMgr parameter to the DomainManager deviceManagers attribute, if it does not already
exist. The registerDeviceManager operation shall add the input device manager’s registered
devices and each registered device’s attributes (e.g., identifier, softwareProfile, allocation
properties, etc.) to the domain manager. The domain manager associates the input device
manager’s registered devices with the device manager in order to support the
unregisterDeviceManager operation.

The registerDeviceManager operation shall add all the services contained in the registering
device manager’s registeredServices attribute to the domain manager. The
registerDeviceManager operation associates the device manager indicated by the input
deviceMgr parameter with its registered services in the domain manager in order to support the
unregisterDeviceManager operation.

The registerDeviceManager operation shall return without exception and not register a new
device manager when that device manager, indicated by the input deviceMgr parameter, has the

3-36

SCA version 2.2.2 FINAL /15 May 2006

same identifier attribute as a previously registered device manager and the reference to the
registered device manager refers to an existing object.

The registerDeviceManager operation shall register the new device manager indicated by the
input deviceMgr parameter, when the previously registered device manager has the same
identifier attribute as the new device manager and the reference to the registered device manager
refers to a nonexistent object.

The registerDeviceManager operation shall write an ADMINISTRATIVE_EVENT log record
when reference to the registered device manager refers to a nonexistent object.

The registerDeviceManager operation shall establish any connections for the device manager
indicated by the input deviceMgr parameter, which are specified in the connections element of
the device manager’s Device Configuration Descriptor (DCD) file, that are possible with the
current set of registered devices and services. Connections not currently possible are left
unconnected pending future device / service registrations.

For connections established for a CORBA Event Service’s event channel, the
registerDeviceManager operation shall connect a CosEventComm::PushConsumer or
CosEventComm::PushSupplier object to the event channel as specified in the DCD’s
domainfinder element. If the event channel does not exist, the registerDeviceManager operation
shall create the event channel.

The registerDeviceManager operation shall obtain all the software profiles from the registering
device manager's file systems.

The registerDeviceManager operation shall mount the device manager's file system to the
domain manager’s file manager. The mounted FileSystem name shall have the format,
“/DomainName/HostName”, where DomainName is the name of the domain and HostName is
the input deviceMgr’s label attribute.

The registerDeviceManager operation shall, upon unsuccessful device manager registration,
write a FAILURE_ALARM log record to a domain manager’s Log.

The registerDeviceManager operation shall send a DomainManagementObjectAddedEventType
event to the Outgoing Domain Management event channel upon successful registration of a
device manager. For this event,

1. The producerld is the identifier attribute of the domain manager.

2. The sourceld is the identifier attribute of the registered device manager.
3. The sourceName is the label attribute of the registered device manager.
4. The sourcelOR is the object reference for the registered device manager.

5. The sourceCategory is “DEVICE_MANAGER”.

The following UML sequence diagram (Figure 3-15) illustrates the domain manager’s behavior
for the registerDeviceManager operation.

3-37

SCA version 2.2.2

1:

«CORBAlInterface»
DeviceManager

«CORBAlInterface»
DomainManager

«CORBAInterface»
Device

XML Parser

FINAL / 15 May 2006

«CORBAInterface»
Port

«CORBAInterface»
Log

«CORBAInterface»
ODM Channel

1

registerDeviceManager:=registerDeviceManager(deviceMgr)

3: getfileSys()

b -

a

getregisteredDevices()

6: getdeviceConfigurationProfiles()

7: get attributes

‘::1 2: Add DeviceManager to DomainManager

‘::1 4: mount FileSystem to FileManager

the Domain.

registration.

Steps 6 thru 14 need to be repeated for each device
and service. Steps 11 thru 14 are optional, provided
the Device requires a service and the service exists in

Devices that were previously registered that are
waiting for Services are also connected to services thaf|
come into existence during a Device Manager

Device attributes (identifier, softwareProfile, etc.)
Repeated for each attribute

8: getregisteredServices()

15: getPort:=getPort(name)

i

9: Parse and get service properties (e.g. allocatio

11: getPort:=getPort(name]

-

]

]

‘::1 10: add devices to domain manager

">, 12: narrow to Port interface reference

‘::1 13: Obtain a service from the Domain

14: connectPort:=connectPort(connection, connectionld)

This step is optional provided the

changed and has already been parsed

XML has not

3.1.3.236.14
This operation does not return a value.

::1 16: narrow to Port interface reference

‘::) 17: Obtain a service from the Domain

18: connectPort:=connectPort(connection, connectionld)

domain

Steps 15 thru 18 are optional,
manager is using a service and the service exists in the

provided the device

«oneway» 19:

write_record:=write_

]

record(record:ProducerLogRecord)

20: push:=push(DomainManagerObjectAddedEventType)

Returns

3-38

Figure 3-15: DomainManager Sequence Diagram for registerDeviceManager Operation

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.6.1.5 Exceptions/Errors

The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when
the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

The registerDeviceManager operation shall raise the CF InvalidProfile exception when the
device manager’s DCD file and the DCD’s referenced files do not exist.

The registerDeviceManager operation shall raise the RegisterError exception when an internal
error exists which causes an unsuccessful registration.

3.1.3.2.3.6.2 registerDevice
3.1.3.2.3.6.21 Brief Rationale

The registerDevice operation is used to register a device for a specific device manager with the
domain manager.

3.1.3.2.3.6.2.2 Synopsis

void registerDevice (in Device registeringDevice, in
DeviceManager registeredDeviceMgr) raises
(InvalidObjectReference, InvalidProfile,
DeviceManagerNotRegistered, RegisterError);

3.1.3.2.36.2.3 Behavior

The registerDevice operation shall verify that the input parameters, registeringDevice and
registeredDeviceMgr, are not nil CORBA object references.

The registerDevice operation shall add the device indicated by the input registeringDevice
parameter and the device’s attributes to the domain manager, if it does not already exist.

The registerDevice operation shall return without exception and not register a new device when
that device, indicated by the input registeringDevice parameter, has the same identifier attribute
as a previously registered device and the reference to the registered device refers to an existing
object.

The registerDevice operation shall register the new device indicated by the input
registeringDevice parameter, when the previously registered device has the same identifier
attribute as the new device and the reference to the registered device refers to a nonexistent
object.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record when
reference to the registered device refers to a nonexistent object.

The registerDevice operation associates the device indicated by the input registeringDevice
parameter with the device manager indicated by the input registeredDeviceMgr parameter when
the device manager is a valid registered DeviceManager in the domain manager.

The registerDevice operation shall establish any pending connections from previously registered
device managers when the registering device completes these connections.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record to a
domain manager log upon successful device registration.

3-39

SCA version 2.2.2 FINAL /15 May 2006

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log, when the CF InvalidProfile exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the DeviceManagerNotRegistered exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the CF InvalidObjectReference exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the RegisterError exception is raised.

The registerDevice operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel, upon successful registration of a device. For
this event,

1. The producerld is the identifier attribute of the domain manager.
2. The sourceld is the identifier attribute of the registered device.
3. The sourceName is the label attribute of the registered device.

4. The sourcelOR is the object reference for the registered device.

5. The sourceCategory is “DEVICE”.

The following UML sequence diagram (Figure 3-16) illustrates the domain manager's behavior
for the registerDevice operation.

3-40

SCA version 2.2.2

«CORBAInterface»
DeviceManager

«CORBAlInterface»
DomainManager

«CORBAlInterface»
Device

XML Parser

FINAL /1

5 May 2006

«CORBAInterface»
Port

«CORBAInterface»
Log

«CORBAlInterface»
ODM Channel

T T
| |
| | | | |

— | |

1: registerDevice:=registerDevice(registeringDevice, registeredDeviceMgr) | |
| | |

| |

|

| |

| | Device attributes (identifier, softwareProfile, etc.)
| |

1 |

2: get attributes _—"| Repeated for each attribute
T T T
| 1
|

1
This step is optional provided the XML has not

|
|
I
|
|
| |
| |
| |
| 3: Parse and get device properties (e.g. allocation)
| : [¢] prop -g- \/ changed and has already been parsed
| | |
| | | | 1 1
		m		
4l				
} } _ 2> 4: associate registering device with a registered device manager in the domain manager				
-				
ﬁ—				
-				
} } > 5: add registering device to domain manager } }				
—--"				
‘ 9				

|

! Steps 7 thru 9 are optional, provided the registering

device is using a service and the service exists in the
domain

|
| |
| |
| |
: : | |
6: getdeviceConfigurationProfiles() | |
| |
| |
|

">, 7: narrow to Port interface reference
| |
| |
| |

|
1
i
|
K
|
|
IT——_ _ | |
} _ > 8: Obtian a service from the Domain
S i i
| | |
| | |
|
|
|
T
|
|
|
|
|
I
|
|
|
|
|
|
|
|
N
|
|
|

9: connectPort:=connectPort(connection, connectionld)
‘ '

ELAAAAAAAAAAAAAA

|

|

} 10: push:=push(DomainManagmentObjectAddedEventType)
| |

T

|

«oneway>» write_record:=write_record(record:ProducerLogRecord)
I I I

f

D

Figure 3-16: DomainManager Sequence Diagram for registerDevice Operation

3.1.3.2.3.6.24
This operation does not return a value.
3.1.3.2.3.6.25
The registerDevice operation shall raise the CF InvalidProfile exception when:
1.
2.

The registerDevice operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and the referenced device manager is
not registered with the domain manager.

Returns

Exceptions/Errors

The device's SPD file and the SPD’s referenced files do not exist, or
The device profile does not reference allocation properties.

The registerDevice operation shall raise the CF InvalidObjectReference exception when input
parameters registeringDevice or registeredDeviceMgr contains an invalid reference.

The registerDevice operation shall raise the RegisterError exception when an internal error exists
which causes an unsuccessful registration.

3-41

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.6.3 installApplication

3.1.3.2.3.6.3.1 Brief Rationale

The installApplication operation is used to install new application software in the domain.
3.1.3.2.3.6.3.2 Synopsis

void installApplication (in string profileFileName) raises
(InvalidProfile, InvalidFileName, ApplicationInstallationError,
ApplicationAlreadyInstalled);

3.1.3.2.3.6.3.3 Behavior
The input profileFileName parameter is the absolute pathname of the application SAD.

The installApplication operation shall verify the existence of the application's SAD file and all
files upon which the SAD depends, within the domain manager's file manager.

The installApplication operation shall write an ADMINISTRATIVE_EVENT log record to a
domain manager's log, upon successful application installation.

The installApplication operation shall, upon unsuccessful application installation, write a
FAILURE_ALARM log record to a domain manager's log.

The installApplication operation shall send a DomainManagementObjectAddedEventType event
to the Outgoing Domain Management event channel, upon successful installation of an
application. For this event,

1. The producerld is the identifier attribute of the domain manager.

2. The sourceld is the identifier attribute of the installed application factory.

3. The sourceName is the name attribute of the installed application factory.

4. The sourcelOR is the object reference for the installed application factory.

5. The sourceCategory is “APPLICATION_FACTORY”.
3.1.3.2.3.6.34 Returns
This operation does not return a value.
3.1.3.2.3.6.35 Exceptions/Errors

The installApplication operation shall raise the ApplicationInstallationError exception when the
installation of the application file(s) was not successfully completed.

The installApplication operation shall raise the CF InvalidFileName exception when the input
SAD file or any of the SAD’s referenced filenames do not exist in the file system identified by
the absolute path of the input profileFileName parameter. The installApplication operation shall
log a FAILURE_ALARM log record to a domain manager's Log with a message consisting of
"install Application::invalid file is xxx", where "xxx" is the input or referenced filename, when
the CF InvalidFileName exception occurs.

The installApplication operation shall raise the CF InvalidProfile exception when any referenced
property definition is missing.

3-42

SCA version 2.2.2 FINAL /15 May 2006

The installApplication operation shall write a FAILURE_ALARM log record to a domain
manager's log when the CF InvalidProfile exception is raised. The value of the logData attribute
of this record is "installApplication::invalid Profile is yyy", where "yyy" is the input or
referenced file name.

The installApplication operation shall raise the ApplicationAlreadylnstalled exception when the
softwareassembly element id attribute of the referenced application is the same as a previously
registered application.

3.1.3.2.3.6.4 unregisterDeviceManager
3.1.3.23.6.4.1 Brief Rationale

The unregisterDeviceManager operation is used to unregister a DeviceManager component from
the domain manager. A device manager may be unregistered during run-time for dynamic
extraction or maintenance of the device manager.

3.1.3.2.3.6.4.2 Synopsis

void unregisterDeviceManager (in DeviceManager deviceMgr) raises
(InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.4.3 Behavior

The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with
the device manager that is being unregistered.

The unregisterDeviceManager operation shall disconnect the established connections (including
those made to the CORBA Event Service event channels) of the unregistering device manager as
well as for its registered devices and services. Connections broken as a result of the
unregisterDeviceManager operation shall be considered as “pending” for future connections
when the component to which the device manager or its registered devices and services were
connected still exists. The unregisterDeviceManager operation may destroy the CORBA Event
Service channel when no more consumers and producers are connected to it.

The unregisterDeviceManager operation shall unmount all device manager's file systems from
its file manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a device
manager, write an ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a device
manager, write a FAILURE_ALARM log record to a domain manager's log.

The unregisterDeviceManager operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel, upon successful unregistration of a device manager. For this event,

1. The producerld is the identifier attribute of the domain manager.
2. The sourceld is the identifier attribute of the unregistered device manager.
3. The sourceName is the label attribute of the unregistered device manager.

3-43

SCA version 2.2.2 FINAL /15 May 2006

4. The sourceCategory is “DEVICE. MANAGER”.
3.1.3.2.3.6.44 Returns
This operation does not return a value.
3.1.3.2.3.6.45 Exceptions/Errors

The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the
input deviceMgr parameter contains an invalid reference to a DeviceManager interface.

The unregisterDeviceManager operation shall raise the UnregisterError exception when an
internal error exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.5 unregisterDevice
3.1.3.2.3.6.5.1 Brief Rationale

The unregisterDevice operation is used to remove a device entry from the domain manager for a
specific device manager.

3.1.3.2.3.6.5.2 Synopsis

void unregisterDevice (in Device unregisteringDevice) raises
(InvalidObjectReference, UnregisterError)

3.1.3.2.3.6.5.3 Behavior
The unregisterDevice operation shall remove a device entry from the domain manager.

The unregisterDevice operation shall release (client-side CORBA release) the
unregisteringDevice from the domain manager.

The unregisterDevice operation shall disconnect the established connections (including those
made to the CORBA Event Service event channels) of the unregistering device. Connections
broken as a result of the unregisterDevice operation shall be considered as “pending” for future
connections when the component to which the device was connected still exists.

The unregisterDevice operation may destroy the CORBA Event Service event channel when no
more consumers and producers are connected to it.

The unregisterDevice operation shall, upon the successful unregistration of a device, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDevice operation shall, upon unsuccessful unregistration of a device, write a
FAILURE_ALARM log record to a domain manager's log.

The unregisterDevice operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon successful unregistration of a
device. For this event,

1. The producerld is the identifier attribute of the domain manager.
2 The sourceld is the identifier attribute of the unregistered device.
3. The sourceName is the label attribute of the unregistered device.
4 The sourceCategory is “DEVICE”.

3-44

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.6.54 Returns
This operation does not return a value.
3.1.3.2.3.6.5.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Device interface.

The unregisterDevice operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.6 uninstallApplication

3.1.3.2.3.6.6.1 Brief Rationale

The uninstallApplication operation is used to uninstall an application factory from the domain.
3.1.3.2.3.6.6.2 Synopsis

void uninstallApplication (in string applicationId)raises
(InvalidIdentifier, ApplicationUninstallationError);

3.1.3.2.3.6.6.3 Behavior

The Applicationld parameter is the softwareassembly element id attribute of the
ApplicationFactory’s Software Assembly Descriptor file.

The uninstallApplication operation shall make the ApplicationFactory unavailable from the
domain manager (i.e. its services no longer provided for the application).

The uninstallApplication operation shall, upon successful uninstall of an application, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The uninstallApplication operation shall, upon unsuccessful uninstall of an application, write a
FAILURE_ALARM log record to a domain manager's log.

The uninstallApplication operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon the successful uninstallation of
an application. For this event,

1. The producerld is the identifier attribute of the domain manager.
2. The sourceld is the identifier attribute of the uninstalled application factory.
3. The sourceName is the name attribute of the uninstalled application factory.

4, The sourceCategory is “APPLICATION_FACTORY”.
3.1.3.2.3.6.6.4 Returns
This operation does not return a value.
3.1.3.2.3.6.6.5 Exceptions/Errors

The uninstallApplication operation shall raise the Invalidldentifier exception when the
Applicationld is invalid.

The uninstallApplication operation shall raise the ApplicationUninstallationError exception
when an internal error causes an unsuccessful uninstallation of the application.

3-45

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.6.7 registerService
3.1.3.2.3.6.7.1 Brief Rationale

The registerService operation is used to register a service for a specific device manager with the
domain manager.

3.1.3.2.3.6.7.2 Synopsis

void registerService (in Object registeringService, 1in
DeviceManager registeredDeviceMgr, in string name) raises
(InvalidObjectReference, DeviceManagerNotRegistered,
RegisterError) ;

3.1.3.2.3.6.7.3 Behavior

The registerService operation shall verify the input registeringService and registeredDeviceMgr
are valid object references.

The registerService operation shall verify the input registeredDeviceMgr has been previously
registered with the domain manager.

The registerService operation shall add the registeringService’s object reference and the
registeringService’s name to the domain manager, if the name for the type of service being
registered does not exist within the domain manager. The registerService operation shall return
without exception and not register a new service when that service, indicated by the input
registeringService parameter, has the same name and type as a previously registered service and
the reference to the registered service refers to an existing object.

The registerService operation shall register the new service, indicated by the input
registeringService parameter, when the previously registered service has the same name and type
as the new service and the reference to the registered service refers to a nonexistent object.

The registerService operation shall write an ADMINISTRATIVE_EVENT log record when
reference to the registered service refers to a nonexistent object.

The registerService operation shall associate the input registeringService parameter with the
input registeredDeviceMgr parameter in the domain manager, when the registeredDeviceMgr
parameter indicates a device manager that is registered with the domain manager.

The registerService operation shall establish any pending connections from previously registered
device managers when the registering service completes these connections.

The registerService operation shall, upon successful service registration, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The registerService operation shall, upon unsuccessful service registration, write a
FAILURE_ALARM log record to a domain manager's log.

The registerService operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel, upon successful registration of a service. For
this event,

1. The producerld is the identifier attribute of the domain manager.

3-46

SCA version 2.2.2 FINAL /15 May 2006

2. The sourceld is the identifier attribute of the componentinstantiation element
associated with the registered service.

3. The sourceName is the input name parameter for the registering service.

4. The sourcelOR is the object reference for the registered service.

5. The sourceCategory is “SERVICE”.

The following UML sequence diagram (Figure 3-17) illustrates the domain manager's behavior
for the registerService operation.

«CORBAInterface» «CORBAInterface» «CORBAInterface» «CORBAInterface» «CORBAInterface»
Device Manager Domain Manager Device Uses Port ODM Channel Log

| | | |

| | |
. . !
1: registerService:=registerService(registeringService, registeredDeviceMgr, name)}
|
I I
|
|

‘\:) 2: associate registering service with registered Device manager in the Domain Manager
- |

/N

|

|

|

_ |
‘:) 3: add registering service to domain manager
- | |
|

|

|

|

|

|

|

|

———-

ViN

I I
| |
| |
4: connectPort:=connectPort(connection, connectionld)
P

§] |

5: push::push(DomainManagmentobjectAddedEventType)

>

3]

«oneway» 6: write_records:=write_records(records)

|
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| F |
t + + P	
= =	

Figure 3-17: DomainManager Sequence Diagram for registerService Operation

3.1.3.2.3.6.7.4 Returns
This operation does not return a value.
3.1.3.2.3.6.7.5 Exceptions/Errors.

The registerService operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and is not registered with the domain
manager.

The registerService operation shall raise the CF InvalidObjectReference exception when input
parameters registeringService or registeredDeviceMgr contains an invalid reference.

The registerService operation shall raise the RegisterError exception when an internal error
exists which causes an unsuccessful registration.

3.1.3.2.3.6.8 unregisterService
3.1.3.2.3.6.8.1 Brief Rationale

The unregisterService operation is used to remove a service entry from the domain manager for a
specific device manager.

3-47

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.6.8.2 Synopsis

void unregisterService (in Object unregisteringService, in
string name) raises (InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.8.3 Behavior

The unregisterService operation shall disconnect the established connections (including those
made to the CORBA Event Service event channels) of the unregistering service indicated by the
input unregisteringService parameter. Connections broken as a result of the unregisterService
operation shall be considered as “pending” for future connections when the component to which
the service was connected still exists.

The unregisterService operation shall remove the unregisteringService entry specified by the
input name parameter from the domain manager.

The unregisterService operation shall release (client-side CORBA release) the
unregisteringService from the domain manager.

The unregisterService operation shall, upon the successful unregistration of a service, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterService operation shall, upon unsuccessful unregistration of a service, write a
FAILURE_ALARM log record to a domain manager's log.

The unregisterService operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon successful unregistration of a
service. For this event,

1. The producerld is the identifier attribute of the domain manager.

2. The sourceld is the identifier attribute of the componentinstantiation element
associated with the unregistered service.

3. The sourceName is the input name parameter for the unregistering service.
4. The sourceCategory is “SERVICE”.

3.1.3.2.3.6.8.4 Returns

This operation does not return a value.

3.1.3.2.3.6.8.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a service interface.

The unregisterService operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.9 registerWithEventChannel
3.1.3.23.6.9.1 Brief Rationale

The registerWithEventChannel operation is used to connect a consumer to a domain’s event
channel.

3-48

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.3.6.9.2 Synopsis

void registerWithEventChannel (in Object registeringObject, in
string registeringld, in string eventChannelName) raises
(InvalidObjectReference, InvalidEventChannelName,
AlreadyConnected) ;

3.1.3.2.3.6.9.3 Behavior

The registerWithEventChannel operation shall connect the object identified by the input
registeringObject parameter to an event channel as specified by the input eventChannelName
parameter.

3.1.3.2.3.6.9.4 Returns
This operation does not return a value.
3.1.3.2.3.6.9.5 Exceptions/Errors

The registerWithEventChannel operation shall raise the CF InvalidObjectReference exception
when the input registeringObject parameter contains an invalid reference to a
CosEventComm::PushConsumer interface.

The registerWithEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid event channel name.

The registerWithEventChannel operation shall raise AlreadyConnected exception when the input
parameter contains a connection to the event channel for the input registeringld parameter.

3.1.3.2.3.6.10 unregisterFromEventChannel
3.1.3.2.3.6.10.1 Brief Rationale

The unregisterFromEventChannel operation is used to disconnect a consumer from a domain’s
event channel.

3.1.3.2.3.6.10.2 Synopsis

vold unregisterFromEventChannel (in string unregisteringId, in
string eventChannelName) raises (InvalidEventChannelName,
NotConnected) ;

3.1.3.2.3.6.10.3 Behavior

The unregisterFromEventChannel operation shall disconnect a registered component from the
event channel as identified by the input parameters.

3.1.3.2.3.6.10.4 Returns
This operation does not return a value.
3.1.3.2.3.6.10.5 Exceptions/Errors

The unregisterFromEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid reference to an event channel.

The unregisterFromEventChannel operation shall raise the NotConnected exception when the
input parameter unregisteringld parameter is not connected to specified input event channel.

3-49

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.4 DeviceManager
3.1.3.2.4.1 Description

The DeviceManager interface is used to manage a set of logical devices and services. The
interface for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to
meaningful labels (e.g., audiol, seriall, etc.), along with the devices and services
to be deployed.

File System - the FileSystem associated with this device manager.
Device Manager Identifier - the instance-unique identifier for this device

manager.

4. Device Manager Label - the meaningful name given to this device manager.
Registered Devices - a list of devices that have registered with this device
manager.

6. Registered Services - a list of services that have registered with this device
manager.

3.1.3.24.2 UML

«CORBAlInterface»
PropertySet

«CORBAInterface»
PortSupplier

configure(in configProperties : Properties) : void

getPort(in name : string(idl)) : object(idl) query(inout configProperties : Properties) : void

«inherits» «inherits»

«CORBAInterface»
DeviceManager

«readonly» deviceConfigurationProfile : string(idl)

«readonly» fileSys : FileSystem

«readonly» identifier : string(idl)

«readonly» label : string(idl)

«readonly» registeredDevices : DeviceSequence

«readonly» registeredServices : ServiceSequence

registerDevice(in registeringDevice : Device) : void

unregisterDevice(in registeredDevice : Device) : void

shutdown() : void

registerServce(in registeringService : object(idl), in name : string(idl)) : void
unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void
getComponentimplementationld(in componentinstantiationld : string(idl)) : string(idl)

Figure 3-18: DeviceManager UML

3.1.3.2.4.3 Types
This section describes the types defined in the interface DeviceManager.
3.1.3.24.3.1 ServiceType

This structure provides the object reference and name of a service that has registered with the
device manager.

3-50

SCA version 2.2.2 FINAL /15 May 2006

struct ServiceType

{
Object serviceObject;
string serviceName;

};
3.1.3.2.4.3.2 ServiceSequenceType

This type provides an unbounded sequence of ServiceType structures for services that have
registered with the device manager.

typedef sequence <ServiceType> ServiceSequence;
3.1.3.2.4.4 Attributes
3.1.3.2.4.4.1 identifier

The readonly identifier attribute shall contain the instance-unique identifier for a device
manager. The identifier shall be identical to the deviceconfiguration element id attribute of the
device manager's Device Configuration Descriptor (DCD) file.

readonly attribute string identifier;
3.1.3.2.4.4.2 label

The readonly label attribute shall contain the device manager's label. The label is the meaningful
name given to a device manager.

readonly attribute string label;

3.1.3.24.43 fileSys

The readonly fileSys attribute shall contain the FileSystem associated with this device manager.
readonly attribute FileSystem fileSys;

3.1.3.2.4.4.4 deviceConfigurationProfile

The readonly deviceConfigurationProfile attribute contains the device manager’s profile
descriptor.

The readonly deviceConfigurationProfile attribute shall contain a profile element (Profile
Descriptor) with a file reference to the device manager’s Device Configuration Descriptor
(DCD) file. Files referenced within the profile are obtained via the FileSystem.

readonly attribute string deviceConfigurationProfile;
3.1.3.2.4.45 registeredDevices

The readonly registeredDevices attribute shall contain a list of devices that have registered with
this device manager or a sequence length of zero if no devices have registered with the device
manager.

readonly attribute DeviceSequence registeredDevices;

3-51

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.4.4.6 registeredServices

The readonly registeredServices attribute shall contain a list of services that have registered with
this device manager or a sequence length of zero if no services have registered with the device
manager.

readonly attribute ServiceSequence registeredServices;
3.1.3.2.4.5 General Behavior

The device manager upon start up shall register itself with a domain manager. This requirement
allows the system to be developed where at a minimum only the DomainManager’s object
reference needs to be known. A device manager shall use the information in the device
manager’s DCD for determining;:

1. Services to be deployed for this device manager (for example, log(s)),

2. Devices to be created for this device manager (when the DCD deployondevice
element is not specified then the DCD componentinstantiation element is
deployed on the same hardware device as the device manager),

Devices to be deployed on (executing on) another device,
Devices to be aggregated to another device,
Mount point names for file systems,

© o b~ w

The DeviceManager’s identifier attribute value which is the DCD’s id attribute
value, and

7. The DeviceManager’s label attribute value which is the DCD’s name attribute
value.

The device manager shall create FileSystem components implementing the FileSystem interface
for each OS file system. If multiple file systems are to be created, the device manager shall
mount created file systems to a FileManager component (widened to a FileSystem through the
FileSys attribute). The mount points used for the created file systems are identical to the values
identified in the filesystemnames element of the device manager’s Device Configuration
Descriptor. Each mounted file system name shall be unique within the device manager.

The device manager shall supply execute operation parameters for a device consisting of:

1. Device manager IOR — The ID is “DEVICE_MGR _IOR” and the value is a string
that is the DeviceManager stringified IOR.

2. Profile Name — The ID is “PROFILE_NAME” and the value is a CORBA string
that is the full mounted file system file path name.

3. Device Identifier — The ID is “DEVICE ID” and the value is a string that
corresponds to the DCD componentinstantiation id attribute.

4. Device Label — The ID is “DEVICE_LABEL” and the value is a string that
corresponds to the DCD componentinstantiation usage element. This parameter
is only used when the DCD componentinstantiation usage element is specified.

5. Composite Device IOR - The ID is “Composite. DEVICE IOR” and the value is
a string that is an AggregateDevice stringified IOR. This parameter is only used

3-52

SCA version 2.2.2 FINAL /15 May 2006

when the DCD componentinstantiation element represents the child device of
another componentinstantiation element.

The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

The device manager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute operation options parameters.

The device manager shall initialize and then configure logical devices that are started by the
device manager, after they have successfully registered with the device manager. The device
manager shall configure a DCD’s componentinstantiation element provided the
componentinstantiation element has “configure” readwrite or writeonly properties with values.
Figure 3-19 depicts a device manager startup scenario.

If a service is deployed by the device manager, the device manager shall supply execute
operation parameters consisting of:

1.

Device manager IOR — The ID is “DEVICE_MGR _IOR” and the value is a string
that is the DeviceManager stringified IOR.

Service Name — The ID is “SERVICE_NAME” and the value is a string that
corresponds to the DCD componentinstantiation usagename element.

The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

3-53

SCA version 2.2.2

FINAL / 15 May 2006

«CORBAInterface»

DeviceMan. . XML Parser

Node Boot Up

|

«CORBAInterface»
Device

«CORBAInterface»
AggregateDevice

«CORBAInterface»
DomainManager

1: create

T
|
|
|
|
|
|
|
|

7454447\“7“4 T
@
(0]
v}
O
v}
Q
=]
Qo
n
Y
o
o)

4: launch
|

|
> 2: create FileSystem

T
|
|
|
|
|
|
|
|
|
I

T
|
|
|
|
|
|
|
|
|
I

This step is optional provided
the XML has not changed and
has already been processed

Ve ——

5: register

ervce:=registerServce(registeringService, name)

Steps 4 and 5 should be
performed on any other
deployed services

Log executable parameters:
Device Mgr IOR, Log Name.

I
I
6: launch }
I
I
I
I

!
8: registerDevice:=registerDevice(registeringDevice)

L

7: addDevice:=addDevice(associatedDevice) |
L »l

T
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Device executable parameters:
Device Mgr IOR, identifier, label,
softwareprofile.

Steps 6-9 are repeated for each
Device in the DCD file

!

9: initialize:=initialize()

|
|
|

10: configure:=configure(configProperties)

I
I
J
I
I
I
I
I
I
I
I
I
I
I
I
|
11: registerDeviceManager:=registerDeviceManager(deviceMgr)

This step is not performed
if there 1s no relationship to
a parent device

:
I
I

o
I
I
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-
I
I

44+44<_44444 "

!

Figure 3-19: Device Manager Startup Scenario

3.1.3.2.4.6 Qperations

The registerDevice operation provides the mechanism to register a device with a device

3.1.3.2.4.6.1 registerDevice
3.13.246.11 Brief Rationale
manager.

3.1.3.24.6.1.2 Synopsis

void registerDevice
(InvalidObjectReference) ;

3.1.3.246.1.3 Behavior

(in Device registeringDevice)

ralses

The registerDevice operation shall add the input registeringDevice to the DeviceManager
registeredDevices attribute when the input registeringDevice does not already exist in the
registeredDevices attribute. The registeringDevice is ignored when duplicated.

3-54

SCA version 2.2.2 FINAL /15 May 2006

The registerDevice operation shall register the registeringDevice with the domain manager when
the device manager has already registered to the domain manager and the registeringDevice has
been successfully added to the DeviceManager registeredDevices attribute.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain
manager's log, upon unsuccessful registration of a device to the DeviceManager
registeredDevices attribute.

3.1.3.246.14 Returns
This operation does not return any value.
3.1.3.24.6.15 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidObjectReference when the input
registeringDevice is a nil CORBA object reference.

3.1.3.2.4.6.2 unregisterDevice

3.1.3.246.21 Brief Rationale

The unregisterDevice operation unregisters a device from a device manager.
3.1.3.24.6.2.2 Synopsis

void unregisterDevice (in Device registeredDevice) raises
(InvalidObjectReference) ;

3.1.3.246.2.3 Behavior

The unregisterDevice operation shall remove the input registeredDevice from the
DeviceManager registeredDevices attribute. The unregisterDevice operation shall unregister the
input registeredDevice from the domain manager when the input registeredDevice is registered
with the device manager and the device manager is not shutting down.

The unregisterDevice operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove a registeredDevice from the DeviceManager registeredDevices attribute.

3.1.3.246.24 Returns
This operation does not return any value.
3.1.3.24.6.25 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference when the input
registeredDevice is a nil CORBA object reference or does not exist in the DeviceManager’s
registeredDevices attribute.

3.1.3.2.4.6.3 registerService
3.1.3.246.31 Brief Rationale

The registerService operation provides the mechanism to register a service with a device
manager.

3.1.3.2.4.6.3.2 Synopsis

void registerService (in Object registeringService, in string
name) raises (InvalidObjectReference);

3-55

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.2.4.6.3.3 Behavior

The registerService operation shall add the input registeringService to the DeviceManager
registeredServices attribute when the input registeringService does not already exist in the
registeredServices attribute. The registeringService is ignored when duplicated.

The registerService operation shall register the registeringService with the domain manager
when the device manager has already registered to the domain manager and the
registeringService has been successfully added to the DeviceManager’s registeredServices
attribute.

The registerService operation shall write a FAILURE_ALARM log record, upon unsuccessful
registration of a service to the DeviceManager registeredServices attribute.

3.1.3.24.6.34 Returns
This operation does not return any value.
3.1.3.2.4.6.35 Exceptions/Errors

The registerService operation shall raise the CF InvalidObjectReference exception when the
input registeringService is a nil CORBA object reference.

3.1.3.2.4.6.4 unregisterService

3.1.3.246.4.1 Brief Rationale.

The unregisterService operation unregisters a service from a device manager.
3.1.3.24.6.4.2 Synopsis

void unregisterService (in Object unregisteringService, in
string name) raises (InvalidObjectReference);

3.1.3.24643 Behavior

The unregisterService operation shall remove the input registered service specified by the input
name parameter from the DeviceManager::registeredServices attribute. The unregisterService
operation shall unregister the input unregistering service from the domain manager when the
device manager is not in the SHUTTING_DOWN state.

The unregisterService operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove a registeredService from the DeviceManager registeredServices attribute.

3.1.3.246.44 Returns
This operation does not return any value.
3.1.3.24.6.45 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference when the input
unregistering service is a nil CORBA object reference or does not exist in the DeviceManager
registeredServices attribute.

3.1.3.2.4.6.5 shutdown
3.1.3.24.6.5.1 Brief Rationale
The shutdown operation provides the mechanism to terminate a device manager.

3-56

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.24.6.5.2 Synopsis

void shutdown () ;

3.1.3.24.6.5.3 Behavior

The shutdown operation shall unregister the device manager from the domain manager.

The shutdown operation shall perform releaseObject on all of the device manager's registered
devices (DeviceManager registeredDevices attribute).

The shutdown operation shall cause the device manager to be unavailable (i.e. released from the
CORBA environment and its process terminated on the OS), when all of the device manager's
registered devices are unregistered from the device manager.

3.1.3.24.6.54 Returns

This operation does not return any value.
3.1.3.2.4.6.55 Exceptions/Errors

This operation does not raise any exceptions.
3.1.3.2.4.6.6 getComponentimplementationld.
3.1.3.24.6.6.1 Brief Rational

The getComponentimplementationld operation returns the SPD implementation ID that the
DeviceManager interface used to create a component.

3.1.3.2.4.6.6.2 Synopsis

string getComponentImplementationId (in string
componentInstantiationId);

3.1.3.2.4.6.6.3 Behavior

The getComponentimplementationld operation returns the SPD implementation element’s id
attribute that matches the id attribute of the SPD implementation element used to create the
component specified by the input componentinstantiationld parameter.

3.1.3.246.6.4 Returns

The getComponentimplementationld operation shall return the SPD implementation element’s id
attribute that matches the SPD implementation element used to create the component identified
by the input componentinstantiationld parameter. The getComponentimplementationld
operation shall return an empty string when the input componentinstantiationld parameter does
not match the id attribute of any SPD implementation element used to create the component.

3.1.3.2.4.6.6.5 Exceptions/Errors
This operation does not raise any exceptions.

3.1.3.3 Base Device Interfaces
The device interfaces are for the implementation and management of logical devices within the

domain. The devices within the domain may be simple devices with no loadable, executable, or

3-57

SCA version 2.2.2 FINAL /15 May 2006

aggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice and ExecutableDevice.

Base Device Interfaces shall be implemented using the CF IDL presented in Appendix C.
3.1.3.3.1 Device
3.1.3.3.1.1 Description

A device is a type of resource and has all the requirements associated with the Resource
interface. The Device interface defines additional capabilities and attributes for any logical
device in the domain. A logical device is a software abstraction for a physical hardware device
and provides the following attributes and operations:

1. Software Profile Attribute — The SPD referenced by this profile element (Profile
Descriptor) defines the logical device capabilities (data/command uses and
provides ports, configure and query properties, capacity properties, status
properties, etc.), which could be a subset of the hardware device’s capabilities.

2. State Management & Status Attributes — This information describes the
administrative, usage, and operational states of the device.

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) are obtained from the device. A device may have multiple
capacities which need to be allocated, since each device has its own unique
capacity model which is described in the associated software profile.

3.1.3.3.1.2 UML
The Device Interface UML is depicted in Figure 3-20.
«CORBAInterface»

Resource
«readonly» identifier : string(idl)

start() : void

stop() : void
«inherits»
«CORBAInterface» «uses» «exception»
Device > InvalidState
«readonly» usageState : UsageType " in msg : string(idl)

«readonly» adminState : AdminType
«readonly» operationalState : OperationalType
«readonly» softwareProfile : string(idl)
«readonly» label : string(idl) «uses»
«readonly» compositeDevice : AggregateDevice L _
allocateCapacity(in capacities : Properties) : boolean(idl)
deallocateCapacity(in capacities : Properties) : void

«exception»

- InvalidCapacity

in msg : string(idl)

in capacities : Properties

Figure 3-20: Device Interface UML

3-58

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.3.1.3 Types
3.1.3.3.1.3.1 InvalidState

The InvalidState exception indicates that the device is not capable of the behavior being
attempted due to the state the device is in.

exception InvalidState {string msg;};

3.1.3.3.1.3.2 InvalidCapacity

The InvalidCapacity exception returns the capacities that are not valid for this device.
exception InvalidCapacity {string msg; Properties capacities;};
3.1.3.3.1.3.3 AdminType

This is a CORBA IDL enumeration type that defines a device's administrative states. The
administrative state indicates the permission to use or prohibition against using the device.

enum AdminType

{
LOCKED,

SHUTTING DOWN,
UNLOCKED

}i
3.1.3.3.1.3.4 Operational Type

This is a CORBA IDL enumeration type that defines a device’s operational states. The
operational state indicates whether or not the object is functioning.

enum OperationalType

{
ENABLED,

DISABLED
}i

3.1.3.3.1.3.5 UsageType

This is a CORBA IDL enumeration type that defines the device’s usage states. The usage state
indicates which of the following states a device is in:

IDLE — not in use
ACTIVE - in use, with capacity remaining for allocation, or
BUSY - in use, with no capacity remaining for allocation

enum UsageType
{
IDLE,
ACTIVE,
BUSY

3-59

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.3.1.4 Attributes
3.1.3.3.1.4.1 usageState.

The readonly usageState attribute shall contain the device’s usage state (IDLE, ACTIVE, or
BUSY). UsageState indicates whether or not a device is actively in use at a specific instant, and
if so, whether or not it has spare capacity for allocation at that instant.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the usageState attribute changes. For this event,

1. The producerld field is the identifier attribute of the device.

2 The sourceld field is the identifier attribute of the device.

3. The stateChangeCategory field is “USAGE_STATE EVENT”.
4

The stateChangeFrom field is the value of the usageState attribute before the state
change

5. The stateChangeTo field is the value of the usageState attribute after the state
change.

readonly attribute UsageType usageState;

3.1.3.3.1.4.2 adminState

The administrative state indicates the permission to use or prohibition against using the device.
The adminState attribute shall contain the device’s admin state value. The adminState attribute
shall only allow the setting of LOCKED and UNLOCKED values, where setting “LOCKED” is
only effective when the adminState attribute value is UNLOCKED, and setting “UNLOCKED”
is only effective when the adminState attribute value is LOCKED or SHUTTING_DOWN.
Illegal state transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the
UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire
aggregation of devices (if it has any). The adminState shall then transition to the LOCKED state
when the device’s usageState is IDLE and its entire aggregation of devices are LOCKED. Refer
to Figure 3-21 for an illustration of the above state behavior.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the adminState attribute changes. For this event,

1. The producerld field is the identifier attribute of the device.

2 The sourceld field is the identifier attribute of the device.

3. The stateChangeCategory field is “ADMINISTRATIVE_STATE _EVENT”.
4

The stateChangeFrom field is the value of the adminState attribute before the
state change

5. The stateChangeTo field is the value of the adminState attribute after the state
change.

attribute AdminType adminState;

3-60

SCA version 2.2.2 FINAL /15 May 2006

UNLOCKED

adminState = adminState :=
UNLOCKED LOCKED

SHUTTING_DOWN

usageState := IDLE
adminState := LOCKED (child devices)

LOCKED

Figure 3-21: State Transition Diagram for adminState

adminState :=
UNLOCKED

3.1.3.3.1.4.3 operationalState

The readonly operationalState attribute shall contain the device’s operational state (ENABLED
or DISABLED). The operational state indicates whether or not the device is functioning.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the operationalState attribute changes. For this event,

1. The producerld field is the identifier attribute of the device.

2 The sourceld field is the identifier attribute of the device.

3. The stateChangeCategory field is “OPERATIONAL STATE EVENT”.
4

The stateChangeFrom field is the value of the operationalState attribute before
the state change.

5. The stateChangeTo field is the value of the operationalState attribute after the
state change.

readonly attribute OperationalType operationalState;
3.1.3.3.1.4.4 softwareProfile
The softwareProfile attribute contains the profile descriptor for this device.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a
file reference to the SPD file. Files referenced within the profile are obtained via the
FileManager.

SCA version 2.2.2 FINAL /15 May 2006

readonly attribute string softwareProfile;

3.1.3.3.1.45 label

The readonly label attribute shall contain the device’s label. The label attribute is the meaningful
name given to a device. The attribute could convey location information within the system (e.g.,
audiol, seriall, etc.).

readonly attribute string label;
3.1.3.3.1.4.6 compositeDevice

The readonly compositeDevice attribute shall contain the object reference of the aggregate
device when this device is a parent device. The readonly compositeDevice attribute shall contain
a nil CORBA object reference when this device is not a parent device.

readonly attribute AggregateDevice compositeDevice;
3.1.3.3.1.5 Operations

3.1.3.3.1.5.1 allocateCapacity

3.1.3.3.1.5.1.1 Brief Rationale

The allocateCapacity operation provides the mechanism to request and allocate capacity from
the Device.

3.1.3.3.1.5.1.2 Synopsis

boolean allocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);

3.1.3.3.1.5.1.3 Behavior

The allocateCapacity operation shall reduce the current capacities of the device based upon the
input capacities parameter, when the device’s adminState is UNLOCKED, device’s
operationalState is ENABLED, and device’s usageState is not BUSY.

The allocateCapacity operation shall set the Device’s usageState attribute to BUSY, when the
device determines that it is not possible to allocate any further capacity. The allocateCapacity
operation shall set the usageState attribute to ACTIVE, when capacity is being used and any
capacity is still available for allocation (reference Figure 3-22).

The allocateCapacity operation shall only accept properties for the input capacities parameter
which are simple properties whose kindtype is allocation and whose action element is external
contained in the component’s SPD.

3.1.3.3.15.1.4 Returns

The allocateCapacity operation shall return TRUE, if the capacities have been allocated, or
FALSE, if not allocated.

3.1.3.3.1.5.1.5 Exceptions/Errors

The allocateCapacity operation shall raise the InvalidCapacity exception, when the input
capacities parameter contains invalid properties or when attributes of those CF Properties contain
an unknown id or a value of the wrong data type.

3-62

SCA version 2.2.2 FINAL /15 May 2006

The allocateCapacity operation shall raise the InvalidState exception, when the Device’s
adminState is not UNLOCKED or operationalState is DISABLED.

3.1.3.3.1.5.2 deallocateCapacity
3.1.3.3.15.21 Brief Rationale

The deallocateCapacity operation provides the mechanism to return capacities back to the
device, making them available to other users.

3.1.3.3.1.5.2.2 Synopsis

void deallocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);

3.1.3.3.1.5.2.3 Behavior

The deallocateCapacity operation shall adjust the current capacities of the device based upon the
input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after
adjusting capacities, any of the device’s capacities are still being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting
capacities, none of the device’s capacities are still being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in
3.1.3.2.4.4.2.

IDLE

all capacities in use
capacities and
unused available

all capacities no available
unused ACTIVE capacity

capacities in use
and
available

BUSY

Figure 3-22: State Transition Diagram for allocateCapacity and deallocateCapacity

no available
capacity

3-63

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.3.1.5.24 Returns
This operation does not return any value.
3.1.3.3.15.25 Exceptions/Errors

The deallocateCapacity operation shall raise the InvalidCapacity exception, when the capacity
ID is invalid or the capacity value is the wrong type. The InvalidCapacity exception msg
parameter describes the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the device’s
adminState is LOCKED or operationalState is DISABLED.

3.1.3.3.1.5.3 releaseObject

3.1.3.3.1.5.3.1 Description

This section describes additional release behavior for a logical device.

3.1.3.3.1.5.3.2 Synopsis

void releaseObject () raises (ReleaseError);

3.1.3.3.1.5.3.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The releaseObject operation shall assign the LOCKED state to the Device adminState attribute,
when the Device adminState attribute is UNLOCKED.

The releaseObject operation shall call the releaseObject operation on all those devices that are
contained within the AggregateDevice devices attribute, when this device is a parent device.

The releaseObject operation shall cause the removal of the device from the Device
compositeDevice attribute, when this device is a child device.

The releaseObject operation shall cause the device to be unavailable and released from the
CORBA environment when the Device adminState attribute transitions to LOCKED. The
transition to the LOCKED state signifies that the Device usageState attribute is IDLE and, if the
device is a parent device, that its child devices have been removed.

The releaseObject operation shall unregister its device from its device manager.

The following three figures (Figure 3-23, Figure 3-24, and Figure 3-25) depict different release
scenarios depending on the type of device and the state the device is in.

3-64

SCA version 2.2.2 FINAL /15 May 2006

. I
2: removeDevice:=removeDevice(associatedDevice)
f)

>

|] ‘

3: unregisterDevice:=unregisterDevice(registeredDevice)
H ~

«CORBAInterface» «CORBAInterface» «CORBAlInterface» «CORBAlInterface»
User Child Device Parent Device Device Manager Domain Manager ORB os
i) I I I
| | | | |
—_ ' | |
1: releaseObject:=releaseObject() | | This Parent device supports both the|
H— I I Device and the AggregateDevice
} | | interfaces
|
|
|
|
|
|

T
|
I
|
I
|
I
|
I
4: unregisterDevice:=unregisterDevice(unregisteringDevice)
'
|

r

|
|

|

I I

| |

I

5: deactivate device |
| |

T

— A
J

|
After the deactivation of the device from m
the ORB, the process / thread can be
terminated

T
|
|
|
|
|
|
|

6: terminate device process / threads
| |

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
1 |
|
| For this scenario, the child device’s }
| adminState = LOCKED and the device i
I has been requested to terminate. How a !
} device indicates to its process / thread to |
| |

|

|

|

|

|

|

terminate is implementation specific.

X

t
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| I
| |
| |
| |
(I |

Figure 3-23: Release Aggregated Device Scenario

3-65

SCA version 2.2.2 FINAL /15 May 2006

User «CORBAInterface» «CORBAInterface» «CORBAInterface» «CORBAInterface» ORB
P Devi Child Devi Device M D inM
T T
I I
I I

|
This Parent device supports both the

Device and the AggregateDevice
interfaces

1: releaseObject:=releaseOpject()
I

[
I
- . M
I
I
I
I
I

2: releaseObject:=releaseObject()

3: removeDeyice:=removeDevice(associatedDevice)

H \

4: unregisterDevice:=unregisterDevice(registeredDevice)

f

5: unregisterDevice:=unregisterDevice(unregisteringDevice)

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

6: deactivate device

|
|
|
|
|
|

I
|
|
|
|
|
|
|
|
|
|
|
r
|
|
|
|
|

7: terminate device process / threads

4

X

8: lunregisterDevice:=unregisterDevice(registeredDevice)

|
|
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
|
'

9: unregisterDevice:=unregisterDevice(unregisteringDevice)
| |

10: deactivate device
I

T
|
|

|
|
T
I
I
11: terminate devce process / threads
| |
T
I
|
|
|

>

Figure 3-24: Release Composite Device Scenario

os
T T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
l l
> |
m |
| |
|
| |
| |
I m
| |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
o |
|
A
| |
|
| |
[R
T
| |
| |
| |
| |

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|

3-66

SCA version 2.2.2 FINAL /15 May 2006

«CORBAInterface» «CORBAInterface» «CORBAInterface» «CORBAInterface»
User Parent Device Child Device Device Manager Domain Manager ORB os

7 I
| |
— L

|

|

1: releaseObject:=releaseObject() !
N

This Parent device supports both the
Device and the AggregateDevice

interfaces

|
releaseObject:=releaseObject() | Step 2 is repeated for
L F every Child Device
! I
! I

adminState = LOCKED

I
. . . . |
removeDevice:=removeDevice(associatedDevice) |
+ |

]
|

unregisterDevice:=unregisterDevice(registeredDevice)
: >

|

unregisterDevice:=unregisterDevice(unregisteringDevice)

|

T
|
|
|
|
|
|
|
|
|
} For this scenario all device’s
I
|
|
|
|
|
|
|
I
|
|

deactivate device

terminate deivce process / threads

|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
L

X

nregisterDevice:=unregisterDevice(registeredDevic

O e]C

)

Il
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

unregisterDevice:=unregisterDevice(unregisteringDevice)

>
Lo

L

|

|

I
deactivate device

1

|

terminate device process / threads
H

How a device informs its process to
terminate is implementation specific

u
1
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
|
|
|
|

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

! |

! |

| »l

! |

! |

|
|
|
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

R
»
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|

—
I
I
I
|
|
|
|
|
I
I
I
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
I
I
|
I
|
|
|
I
|
|
I
I
|
|
|
I
I
|
I
|
|
|
|
I
I
|
I
I
|
|
|
|
|
|
|
|
I
L
I
|
|

|
|
|
|
|
+
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|

X |

Figure 3-25: Release Composite & Aggregated Device Scenario

3.1.3.3.15.34 Returns
The releaseObject operation does not return a value.
3.1.3.3.1.5.35 Exceptions/Errors

The releaseObject operation shall raise the ReleaseError exception when releaseObject is not
successful in releasing a logical device due to internal processing errors that occurred within the
device being released.

3.1.3.3.2 LoadableDevice
3.1.3.3.2.1 Description

This interface extends the Device interface by adding software loading and unloading behavior to
a device.

3-67

SCA version 2.2.2

3.1.3.3.22 UML
The LoadableDevice Interface UML is depicted in Figure 3-26.

«CORBAInterface»
Device

«readonly» usageState : UsageType
«readonly» adminState : AdminType

«readonly» operationalState : OperationalType

«readonly» softwareProfile : string(idl)
«readonly» label : string(idl)

«readonly» compositeDevice : AggregateDevice

allocateCapacity(in capacities : Properties) : boolean(idl)
deallocateCapacity(in capacities : Properties) : void

«inherits»

FINAL / 15 May 2006

«CORBAlInterface»
LoadableDevice

«uses» -
«exception»

______ > InvalidState

unload(in fileName : string(idl)) : void

load(in fs : FileSystem, in fileName : string(idl), in loadKind : LoadType) : void

in msg : string(idl)

J-

«uses» /,/’/ «use! =
- \
~ \
- \
- \

\

S» "=

«exception»

«exception»

InvalidLoadKind LoadFail

in msg : string(idl)

in errorNumber : ErrorNumberType

«uses»

«exception»
InvalidFileName
in errorNumber : ErrorNumberType
in msg : string(idl)

Figure 3-26: LoadableDevice Interface UML

3.1.3.3.2.3 Types

3.1.33.23.1

LoadType

The LoadType defines the type of load to be performed. The load types are in accordance with
the code element within the softpkg element’s implementation element, which is defined in
Appendix D.2.1.

enum LoadType

{
KERNEL MODULE,
DRIVER,
SHARED LIBRARY,
EXECUTABLE

b

3.1.3.3.2.3.2 InvalidLoadKind

The InvalidLoadKind exception indicates that the device is unable to load the type of file
designated by the loadKind parameter.

exception

InvalidLoadKind{};

3-68

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.3.2.3.3 LoadFail.

The LoadFail exception indicates that the load operation failed due to device dependent reasons.
The LoadFail exception indicates that an error occurred during an attempt to load the device. The
error number shall indicate a CF ErrorNumberType. The message is component-dependent,
providing additional information describing the reason for the error.

exception LoadFail { ErrorNumberType errorNumber; string msg; };
3.1.3.3.2.4 Attributes

N/A

3.1.3.3.25 Operations

3.1.3.3.25.1 load

3.1.3.3.25.1.1 Brief Rationale

The load operation provides the mechanism for loading software on a specific device. The
loaded software may be subsequently executed on the device, if the device is an executable
device.

3.1.3.3.25.1.2 Synopsis

void load (in FileSystem fs, in string fileName, in LoadType
loadKind) raises (InvalidState, InvalidLoadKind,
InvalidFileName, LoadFail);

3.1.3.3.25.13 Behavior

The load operation shall load the file identified by the input filename parameter on the device
based upon the input loadKind parameter. The input filename parameter is a pathname relative
to the file system identified by the input FileSystem parameter

The load operation shall support the load types as stated in the device’s software profile
LoadType allocation properties.

Multiple loads of the same file as indicated by the input fileName parameter shall not result in an
exception. However, the load operation should account for this multiple load so that the unload
operation behavior can be performed.

3.1.3.3.25.14 Returns
This operation does not return any value.
3.1.3.3.25.1.5 Exceptions/Errors

The load operation shall raise the InvalidState exception if upon entry the Device's adminState
attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is
DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind
parameter is not supported.

The load operation shall raise the CF InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

3-69

SCA version 2.2.2 FINAL /15 May 2006

The load operation shall raise the LoadFail exception when an attempt to load the device is
unsuccessful.

3.1.3.3.2.5.2 unload

3.1.3.3.25.2.1 Brief Rationale

The unload operation provides the mechanism to unload software that is currently loaded.
3.1.3.3.2.5.2.2 Synopsis

void unload (in string fileName) raises (InvalidState,
InvalidFileName) ;

3.1.3.3.25.2.3 Behavior

The unload operation shall unload the file identified by the input fileName parameter from the
device when the number of unload requests matches the number of load requests for the
indicated file.

3.1.3.3.25.24 Returns
This operation does not return a value.
3.1.3.3.25.25 Exceptions/Errors

The unload operation shall raise the InvalidState exception if upon entry the device's adminState
attribute is LOCKED or its operationalState attribute is DISABLED.

The unload operation shall raise the CF InvalidFileName exception when the file designated by
the input filename parameter cannot be found.

3.1.3.3.3 ExecutableDevice
3.1.3.3.3.1 Description

This interface extends the LoadableDevice interface by adding execute and terminate behavior to
a device.

3.1.3.3.3.2 UML
The ExecutableDevice Interface UML is depicted in Figure 3-27.

«CORBAInterface»
LoadableDevice

load(in fs : FileSystem, in fileName : string(idl), in loadKind : LoadType) : void
unload(in fileName : string(idl)) : void

«inhérits»

«CORBAInterface»
ExecutableDevice
«const» STACK_SIZE_ID : string(idl) = "STACK_SIZE"
«const» PRIORITY_ID : string(idl) = "PRIORITY"
execute(in name : string(idl), in options : Properties, in parameters : Properties) : ProcessID_Type
terminate(in processID : ProcessID_Type) : void

Figure 3-27: ExecutableDevice Interface UML
3-70

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.3.3.3 Types
3.1.3.3.3.3.1 InvalidProcess

The InvalidProcess exception indicates that a process, as identified by the processld parameter,
does not exist on this device. The errorNumber parameter shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.

exception InvalidProcess { ErrorNumberType errorNumber; string
msg; };

3.1.3.3.3.3.2 InvalidFunction

The InvalidFunction exception indicates that a function, as identified by the input name
parameter, hasn’t been loaded on this device.

exception InvalidFunction{};
3.1.3.3.3.3.3 ProcessID_Type

The ProcessID_Type defines a process number within the system. The process number is unique
to the Processor operating system that created the process.

typedef long ProcessID Type;
3.1.3.3.3.3.4 InvalidParameters

The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
The invalidParms parameter is a list of invalid parameters specified in the execute operation.

exception InvalidParameters { Properties invalidParms; };
3.1.3.3.3.3.5 InvalidOptions

The InvalidOptions exception indicates the input options are invalid on the execute operation.
The invalidOpts parameter is a list of invalid options specified in the execute operation.

exception InvalidOptions { Properties invalidOpts; };
3.1.3.3.3.3.6 STACK_ SIZE ID

The STACK_SIZE_ID is the identifier for the ExecutableDevice::execute operation options
parameter. The value for a stack size shall be an unsigned long.

Constant string STACK SIZE ID = “STACK SIZE”;
3.1.3.3.3.3.7 PRIORITY_ID

The PRIORITY _ID is the identifier for the ExecutableDevice::execute operation options
parameters. The value for a priority shall be an unsigned long.

Constant string PRIORITY ID = “PRIORITY”;
3.1.3.3.3.3.8 ExecuteFail

The ExecuteFail exception indicates that the execute operation failed due to device dependent
reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke

3-71

SCA version 2.2.2 FINAL /15 May 2006

the execute function on the device. The error number shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.

exception ExecuteFail { ErrorNumberType errorNumber; string msg;
i

3.1.3.3.3.4 Attributes

N/A.

3.1.3.3.3.5 Operations

3.1.3.3.3.5.1 execute

3.1.3335.11 Brief Rationale

The execute operation provides the mechanism for starting up and executing a software
process/thread on a device.

3.1.3.3.35.1.2 Synopsis

ProcessID Type execute (in string name, in Properties options,
in Properties parameters) raises (InvalidState, InvalidFunction,
InvalidParameters, InvalidOptions, InvalidFileName,
ExecuteFail) ;

3.1.3.3.35.1.3 Behavior

The execute operation shall execute the function or file identified by the input name parameter
using the input parameters and options parameters. Whether the input name parameter is a
function or a file name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the
standard argv of the POSIX exec family of functions, where argv(0) is the function name. The
execute operation shall map the input parameters parameter to argv starting at index 1 as follows,
argv (1) maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so
forth. The execute operation passes argv through the operating system “execute” function.

The execute operation input options parameters are STACK_SIZE_ID and PRIORITY_ID. The
execute operation shall use these options, when specified, to set the operating system’s
process/thread stack size and priority, for the executable image of the given input name
parameter.

3.1.3.3.35.14 Returns
The execute operation shall return a unique process ID for the process that it created.
3.1.3.3.35.15 Exceptions/Errors

The execute operation shall raise the InvalidState exception if upon entry the device's adminState
attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is
DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by
the input name parameter does not exist for the device.

3-72

SCA version 2.2.2 FINAL /15 May 2006

The execute operation shall raise the CF InvalidFileName exception when the file name
indicated by the input name parameter does not exist for the device.

The execute operation shall raise the InvalidParameters exception when the input parameter ID
or value attributes are not valid strings.

The execute operation shall raise the InvalidOptions exception when the input options parameter
does not comply with sections 3.1.3.3.3.3.6 STACK_SIZE _ID and 3.1.3.3.3.3.7 PRIORITY_ID.

The execute operation shall raise the ExecuteFail exception when the operating system “execute”
function for the device is not successful.

3.1.3.3.3.5.2 terminate
3.1.3.3.35.21 Brief Rationale

The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.

3.1.3.3.3.5.2.2 Synopsis

void terminate (in ProcessID Type processId) raise
(InvalidProcess, InvalidState);

3.1.3.3.35.2.3 Behavior

The terminate operation shall terminate the execution of the process/thread designated by the
processld input parameter on the device.

3.1.3.3.35.24 Returns
This operation does not return a value.
3.1.3.3.35.25 Exceptions/Errors

The terminate operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is LOCKED or its operationalState attribute is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the process Id does not
exist for the device.

3.1.3.3.4 AggregateDevice
3.1.3.3.4.1 Description

The AggregateDevice interface provides the required behavior that is needed to add and remove
child devices from a parent device. This interface may be provided via inheritance or as a
“provides port” for any device that is used as a parent device. Child devices use this interface to
add or remove themselves to a parent device when being created or torn-down.

3.1.3.34.2 UML
The AggregateDevice Interface UML is depicted in Figure 3-28.

3-73

SCA version 2.2.2 FINAL /15 May 2006

«CORBAInterface»
AggregateDevice

devices : DeviceSequence

addDevice(in associatedDevice : Device) : void
removeDevice(in associatedDevice : Device) : void

«uses»
I

«exception»
InvalidObjectReference

Figure 3-28: AggregateDevice Interface UML

3.1.3.3.4.3 Types
N/A.

3.1.3.3.4.4 Attributes
3.1.3.3.4.4.1 devices

The readonly devices attribute shall contain a list of devices that have been added to this device
or a sequence length of zero if the device has no aggregation relationships with other devices.

readonly attribute DeviceSequence devices;
3.1.3.3.4.5 Operations

3.1.3.3.45.1 addDevice

3.1.3.3.451.1 Brief Rationale

The addDevice operation provides the mechanism to associate a device with another device.
When a device changes state or it is being torn down, its associated devices are affected.

3.1.3.34.5.1.2 Synopsis

void addDevice (in Device associatedDevice) raises
(InvalidObjectReference) ;

3.1.3.345.13 Behavior

The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice’s devices attribute when the associatedDevice does not exist in the devices
attribute. The associatedDevice is ignored when duplicated.

The addDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful adding
of an associatedDevice to the AggregateDevice’s devices attribute.

3.1.3.345.14 Returns
This operation does not return any value.

3-74

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.345.15 Exceptions/Errors

The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil CORBA object reference.

3.1.3.3.45.2 removeDevice
3.1.3.345.2.1 Brief Rationale

The removeDevice operation provides the mechanism to disassociate a device from another
device.

3.1.3.3.45.2.2 Synopsis

vold removeDevice (in Device associatedDevice) raises
(InvalidObjectReference) ;

3.1.3.3.45.2.3 Behavior

The removeDevice operation shall remove the input associatedDevice parameter from the
AggregateDevice’s devices attribute.

The removeDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful
removal of the associatedDevice from the AggregateDevice devices attribute.

3.1.3.34.5.24 Returns
This operation does not return any value.
3.1.3.345.25 Exceptions/Errors

The removeDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil CORBA object reference or does not exist in the
AggregateDevice devices attribute.

3.1.3.4 Framework Services Interfaces

Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.
3.1.3.4.1 File
3.1.3.4.1.1 Description

The File interface provides the ability to read and write files residing within a compliant,
distributed file system. A file can be thought of conceptually as a sequence of octets with a
current filePointer describing where the next read or write will occur. This filePointer points to
the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C file interface.

3-75

SCA version 2.2.2 FINAL /15 May 2006

3.134.12 UML

«CORBAlInterface»
File
«readonly» fileName : string(idl)
«readonly» filePointer : unsigned long(idl)
read(out data : OctetSequence, in length : unsigned long(idl)) : void
write(in data : OctetSequence) : void
sizeOf() : unsigned long(idl)
close() : void
setFilePointer(in filePointer : unsigned long(idl)) : void
T

V2 ~N
«uses»’ «uses» \\\«uses»
s | AN
7 ~
// : So
d | N
/ | ~
4 N/ RN
«exception» «exception» «exception»
InvalidFilePointer FileException I0OException
in errorNumber : ErrorNumberType| |in errorNumber : ErrorNumberType
in msg : string(idl) in msg : string(idl)

Figure 3-29: File Interface UML

3.1.3.4.1.3 Types
3.1.3.4.1.3.1 10Exception

The IOException exception indicates an error occurred during a read or write operation to a file.
The error number shall indicate a CF ErrorNumberType value. The message is component-
dependent, providing additional information describing the reason for the error.

exception IOException { ErrorNumberType errorNumber; string msg;

b
3.1.3.4.1.3.2 InvalidFilePointer

The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
file size.

exception InvalidFilePointer{};
3.1.3.4.1.4 Attributes
3.1.3.4.14.1 fileName

The readonly fileName attribute shall contain the pathname used as the input fileName parameter
of the FileSystem::create operation when the file was created .

readonly attribute string fileName;

3.1.3.4.1.4.2 filePointer

The readonly filePointer attribute shall contain the current file position. The filePointer attribute
value dictates where the next read or write will occur.

readonly attribute unsigned long filePointer;

3-76

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.1.5 QOperations

3.1.34.15.1 read

31341511 Brief Rationale

Applications require the read operation in order to retrieve data from remote files.
3.1.3.4.15.12 Synopsis

void read (out OctetSequence data, in unsigned long length)
raises (IOException);

3.1.34.15.13 Behavior

The read operation shall read, from the referenced file, the number of octets specified by the
input length parameter and advance the value of the filePointer attribute by the number of octets
actually read. The read operation shall read less than the number of octets specified in the input-
length parameter, when an end of file is encountered.

3.134.1514 Returns

The read operation shall return via the out Message parameter a CF OctetSequence that equals
the number of octets actually read from the File. If the filePointer attribute value reflects the end
of the File, the read operation shall return a zero-length CF OctetSequence.

3.1.34.15.15 Exceptions/Errors

The read operation shall raise the IOException when a read error occurs.
3.1.3.4.15.2 write

3.134.1521 Brief Rationale

Applications require the write operation in order to write data to remote files.
3.1.3.4.15.2.2 Synopsis

void write (in OctetSequence data) raises (IOException);
3.1.3.4.15.23 Behavior

The write operation shall write data to the file referenced. The write operation shall increment
the filePointer attribute to reflect the number of octets written, when the operation is successful.
If the write is unsuccessful, the value of the filePointer attribute shall maintain or be restored to
its value prior to the write operation call. If the file was opened using the FileSystem::open
operation with an input read_Only parameter value of TRUE, writes to the file are considered to
be in error.

3.1.34.1524 Returns

This operation does not return any value.

3.1.3.4.15.25 Exceptions/Errors

The write operation shall raise the IOException when a write error occurs.

3-77

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.1.5.3 sizeOf
3.1.34.153.1 Brief Rationale

An application may need to know the size of a file in order to determine memory allocation
requirements.

3.1.3.4.1.53.2 Synopsis

unsigned long sizeOf () raises (FileException);

3.1.3.4.1.5.3.3 Behavior

There is no significant behavior beyond the behavior described by the following section.
3.1.34.1534 Returns

The sizeOf operation shall return the number of octets stored in the file.

3.1.3.4.1.5.35 Exceptions/Errors

The sizeOf operation shall raise the CF FileException when a file-related error occurs (e.g., file
does not exist anymore).

3.1.3.4.1.54 close

3.1.34.154.1 Brief Rationale

The close operation is needed in order to release file resources once they are no longer needed.
3.1.3.4.154.2 Synopsis

void close () raises (FileException);

3.1.34.1543 Behavior

The close operation shall release any OE file resources associated with the component. The
close operation shall make the file unavailable to the component.

31341544 Returns

This operation does not return any value.

3.1.3.4.1545 Exceptions/Errors.

The close operation shall raise the CF FileException when it cannot successfully close the file.
3.1.3.4.1.55 setFilePointer

3.1.3.4.1.55.1 Brief Rationale

The setFilePointer operation positions the file pointer where the next read or write will occur.
3.1.3.4.1.55.2 Synopsis

vold setFilePointer (in unsigned long filePointer) raises
(InvalidFilePointer, FileException);

3.1.3.4.1.553 Behavior
The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

3-78

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.1554 Returns
This operation does not return any value.
3.1.34.1555 Exceptions/Errors

The setFilePointer operation shall raise the CF FileException when the file pointer for the
referenced file cannot be set to the value of the input filePointer parameter.

The setFilePointer operation shall raise the InvalidFilePointer exception when the value of the
filePointer parameter exceeds the file size.

3.1.3.4.2 FileSystem
3.1.3.4.2.1 Description

The FileSystem interface defines CORBA operations that enable remote access to a physical file
system. (see Figure 3-30)

The files stored on a file system may be plain files or directories. Valid individual filenames and
directory names shall be 40 characters or less. Valid characters for a filename or directory name
are the 62 alphanumeric characters (Upper, and lowercase letters and the numbers 0 to 9) in
addition to the “.” (period), “ ” (underscore) and “-“ (hyphen) characters. The filenames “.”
(“dot”) and “..” (“‘dot-dot™) are invalid in the context of a file system.

Valid pathnames are structured according to the POSIX specification whose valid characters
include the “/” (forward slash) character in addition to the valid filename characters. A valid
pathname may consist of a single filename. A valid pathname shall not exceed 1024 characters.

3.134.22 UML

«CORBAInterface»
FileSystem

«const» SIZE : string(idl)
«const» AVAILABLE_SPACE : string(idl)
«const» CREATED_TIME_ID : string(idl)
«const» MODIFIED_TIME_ID : string(idl)
«const» LAST_ACCESS_TIME_ID : string(idl)
remove(in filename : string(idl)) : void{sequential}
copy(in sourceFileName : string(idl), in destinationFileName : string(idl)) : void{sequential}
exists(in fleName : string(idl)) : boolean(idl){sequential}
list(in pattern : string(idl)) : FileInformationSequence{sequential}
create(in fileName : string(idl)) : File{sequential}
open(in fileName : string(idl), in read_Only : boolean(idl)) : File{sequential}
mkdir(in directoryName : string(idl)) : void{sequential}
rmdir(in directoryName : string(idl)) : void{sequential}
query(inout fileSystemProperties : Properties) : void{sequential}
T

7/ AN

«uses»’ «uses» AN «uses»
/, ‘l \\
4 | \\
/ | AN
4 | N
// | AN
L/ \'/. AN -
cexception invalidFieName FileException
UnknownFileSystemProperties - - p
in invalidProperties : Properties in errorNumbe(: ErrorNumberType in errorNumberl : ErrorNumberType
in msg : string(idl) in msgq : string(idl)

Figure 3-30: FileSystem Interface UML

3-79

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.2.3 Types
3.1.3.4.2.3.1 UnknownFileSystemProperties.

The UnknownFileSystemProperties exception indicates a set of properties unknown by the
component.

exception UnknownFileSystemProperties { properties
invalidProperties; };

3.1.3.4.2.3.2 fileSystemProperties Query Constants
Constants are defined to be used for the query operation (see section 3.1.3.4.2.5.9).

const string SIZE = “SIZE”;
const string AVAILABLE SPACE = “AVAILABLE SPACE”;

3.1.3.4.2.3.3 FilelnformationType

The FileInformationType indicates the information returned for a file. Not all the fields in the
FileInformationType are applicable for all file systems. At a minimum, the file system shall
support name, kind, and size information for a file. Examples of other file properties that may be
specified are created time, modified time, and last access time.

struct FileInformationType

{

string name;
FileType kind;
unsigned long long size;
Properties fileProperties;

}i

The name element of the FileInformationType indicates the simple name of the file. The kind
element of the FileInformationType indicates the type of the file entry. The size element of the
FileInformationType indicates the size in octets.

3.1.3.4.2.3.4 FilelnformationSequence

The FileInformationSequence type defines an unbounded sequence of FileInformationTypes.
typedef sequence<FileInformationType>FileInformationSequence;
3.1.3.4.2.3.5 FileType

The FileType indicates the type of file entry. A file system may have PLAIN or DIRECTORY
files and mounted file systems contained in a FileSystem.

enum FileType

{
PLAIN,
DIRECTORY,
FILE SYSTEM

}i

3-80

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.23.6 CREATED_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was
created. For this property, the identifier is CREATED_TIME_ID and the value shall be an
unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan. 1,
1970.

Constant string CREATED TIME ID = “CREATED TIME”;
3.1.3.423.7 MODIFIED_TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was
last modified. For this property, the identifier is MODIFIED_TIME_ID and the value shall be an
unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan. 1,
1970.

Constant string MODIFIED_TIME_IDZ"MODIFIED_TIME";
3.1.3.4.23.8 LAST _ACCESS TIME_ID

The fileProperies element of the FileInformationType may be used to indicate the time a file was
last accessed. For this property, the identifier is LAST_ACCESS_TIME_ID and the value shall
be an unsigned long long data type containing the number of seconds since 00:00:00 UTC, Jan.
1, 1970.

Constant string LAST ACCESS TIME ID="LAST ACCESS TIME”;
3.1.3.4.2.4 Attributes

N/A.

3.1.3.4.2.5 QOperations

3.1.3.4.25.1 remove

31342511 Brief Rationale

The remove operation provides the ability to remove a plain file from a file system.
3.1.3.4.25.1.2 Synopsis

void remove (in string fileName) raises (FileException,
InvalidFileName) ;

3.1.3.4.251.3 Behavior

The remove operation shall remove the plain file which corresponds to the input fileName
parameter.

31342514 Returns
This operation does not return any value.
3.1.3.4.25.15 Exceptions/Errors

The remove operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

The remove operation shall raise the CF FileException when a file-related error occurs.

3-81

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.25.2 copy

3.1.3.4.25.2.1 Brief Rationale

The copy operation provides the ability to copy a plain file to another plain file.
3.1.3.4.25.2.2 Synopsis

void copy (in string sourceFileName, in string
destinationFileName) raises (InvalidFileName, FileException);

3.1.3.4.25.2.3 Behavior

The copy operation shall copy the source file identified by the input sourceFileName parameter
to the destination file identified by the input destinationFileName parameter.

The copy operation shall overwrite the destination file, when the destination file already exists
and is not identical to the source file.

3.1.3.4.25.24 Returns

This operation does not return any value.

3.1.3.4.25.25 Exceptions/Errors

The copy operation shall raise the CF FileException exception when a file-related error occurs.

The copy operation shall raise the CF InvalidFileName exception when the destination pathname
is identical to the source pathname.

The copy operation shall raise the CF InvalidFileName exception when the sourceFileName or
destinationFileName input parameters are not a valid absolute pathnames.

3.1.3.4.2.5.3 exists

3.1.3.4.25.3.1 Brief Rationale

The exists operation provides the ability to verify the existence of a file within a file system.
3.1.3.4.25.3.2 Synopsis

boolean exists (in string fileName) raises (InvalidFileName) ;
3.1.3.4.25.3.3 Behavior

The exists operation shall check to see if a file exists based on the fileName parameter.
3.1.3.4.2534 Returns

The exists operation shall return TRUE if the file exists, or FALSE if it does not.
3.1.3.4.25.35 Exceptions/Errors

The exists operation shall raise the CF InvalidFileName exception when input fileName
parameter is not a valid absolute pathname.

3-82

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.254 list
3.1.34.254.1 Brief Rationale

The list operation provides the ability to obtain a list of files along with their information in the
file system according to a given search pattern. The list operation may be used to return
information for one file or for a set of files.

3.1.3.4.25.4.2 Synopsis

FileInformationSequence list (in string pattern) raises
(FileException, InvalidFileName) ;

3.1.3.4.254.3 Behavior

The list operation shall support the “*”” and “?” wildcard characters (used to match any sequence
of characters (including null) and any single character, respectively. These wildcards shall only
be applied following the right-most forward-slash character (“/”’) in the pathname contained in
the input pattern parameter.

3.1.3.4.254.4 Returns

The list operation shall return a FileInformationSequence for files that match the search pattern
specified in the input pattern parameter. The list operation shall return a zero length sequence
when no file is found which matches the search pattern.

3.1.3.4.2545 Exceptions/Errors

The list operation shall raise the CF InvalidFileName exception when the input pattern parameter
is not an absolute pathname or cannot be interpreted due to unexpected characters.

The list operation shall raise the CF FileException when a file-related error occurs.
3.1.3.4.255 create

3.1.3.4.255.1 Brief Rationale

The create operation provides the ability to create a new plain file on the file system.
3.1.3.4.255.2 Synopsis

File create (in string fileName) raises (InvalidFileName,
FileException);

3.1.3.4.2553 Behavior

The create operation shall create a new File based upon the input fileName parameter.
3.1.34.2554 Returns

The create operation shall return a file object reference to the opened file.
3.1.3.42555 Exceptions/Errors

The create operation shall raise the CF FileException if the file already exists or another file
error occurred.

The create operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

3-83

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.2.5.6 open

3.1.3.4.25.6.1 Brief Rationale

The open operation provides the ability to open a plain file for read or write.
3.1.3.4.25.6.2 Synopsis

File open (in string fileName, in boolean read Only) raises
(InvalidFileName, FileException);

3.1.3.4.25.6.3 Behavior

The open operation shall open the file referenced by the input fileName parameter. The open
operation shall open the file with read-only access when the input read_Only parameter is
TRUE. The open operation shall open the file for write access when the input read_Only
parameter is FALSE.

3.1.3.4.25.6.4 Returns

The open operation shall return a File instance on successful completion. The open operation
shall set the filePointer attribute of the returned file instance to the beginning of the file.

3.1.3.4.25.6.5 Exceptions/Errors

The open operation shall raise the CF FileException if the file does not exist or another file error
occurred.

The open operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

3.1.3.4.25.7 mkdir

31342571 Brief Rationale

The mkdir operation provides the ability to create a directory on the file system.
3.1.3.4.25.7.2 Synopsis

void mkdir (in string directoryName) raises (InvalidFileName,
FileException);

3.1.3.4.25.7.3 Behavior

The mkdir operation shall create a file system directory based on the directoryName given. The
mkdir operation shall create all parent directories required to create the directoryName path
given.

3.1.34.2574 Returns.
This operation does not return any value.
3.1.3.4.25.75 Exceptions/Errors

The mkdir operation shall raise the CF FileException if the directory indicated by the input
directoryName parameter already exists or if a file-related error occurred during the operation.

The mkdir operation shall raise the CF InvalidFileName exception when the directoryName is
not a valid directory name.

3-84

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.2.5.8 rmdir.

3.1.3.4.25.8.1 Brief Rationale

The rmdir operation provides the ability to remove a directory from the file system.
3.1.3.4.25.8.2 Synopsis

void rmdir (in string directoryName) raises (InvalidFileName,
FileException);

3.1.3.4.25.8.3 Behavior
The rmdir operation shall remove the directory identified by the input directoryName parameter.

The rmdir operation shall not remove the directory identified by the input directoryName
parameter when the directory contains files.

3.1.3.4.258.4 Returns
This operation does not return any value.
3.1.3.4.25.85 Exceptions/Errors

The rmdir operation shall raise the CF FileException when the directory identified by the input
directoryName parameter does not exist, the directory contains files, or an error occurs which
prohibits the directory from being deleted.

The rmdir operation shall raise the CF InvalidFileName exception when the input directoryName
parameter is not a valid path prefix.

3.1.3.4.25.9 query

3.1.34.259.1 Brief Rationale

The query operation provides the ability to retrieve information about a file system.
3.1.3.4.259.2 Synopsis

void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);

3.1.3.4.2593 Behavior

The query operation shall return file system information to the calling client based upon the
given fileSystemProperties' ID.

The FileSystem::query operation shall recognize and provide the designated return values for the
following fileSystemProperties (section 3.1.3.4.2.3.2):

1. SIZE - an ID value of "SIZE” causes the query operation to return an unsigned
long long containing the file system size (in octets).

2. AVAILABLE SPACE - an ID value of "AVAILABLE SPACE" causes the query
operation to return an unsigned long long containing the available space on the
file system (in octets)

See section 3.1.3.4.2.3.2 for the constants for the fileSystemProperties.

3-85

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.2594 Returns
This operation does not return any value.
3.1.3.4.25.95 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the given file
system property is not recognized.

3.1.3.4.3 FileManager
3.1.3.4.3.1 Description

Multiple, distributed file systems may be accessed through a file manager. The FileManager
interface appears to be a single file system although the actual file storage may span multiple
physical file systems. (Reference the FileManager interface UML in Figure 3-31.)

This is called a federated file system. A federated file system is created using the mount and
unmount operations. Typically, the domain manager or system initialization software will
invoke these operations.

The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted file systems, the file manager delegates the FileSystem
operations to the appropriate file system. For example, if a file system is mounted at “/ppc2”, an
open operation for a file called “/ppc2/profile.xml” would be delegated to the mounted file
system. The mounted file system will be given the filename relative to it. In this example the
FileSystem’s open operation would receive “/profile.xml” as the fileName argument.

Another example of this concept is shown using the copy operation. When a client invokes the
copy operation, the file manager delegates the operation to the appropriate file systems (based
upon supplied pathnames) thereby allowing copy of files between file systems.

If a client does not need to mount and unmount file systems, it may treat the file manager as a
file system by CORBA widening a FileManager reference to a FileSystem reference. One can
always widen a FileManager to a FileSystem since the FileManager is derived from a
FileSystem.

3-86

SCA version 2.2.2 FINAL /15 May 2006

3.1.343.2 UML

«CORBAlInterface»
FileSystem

«inherits»

«CORBAlInterface»
FileManager

mount(in mountPoint : string(idl), in file_system : FileSystem) : void
unmount(in mountPoint : string(idl)) : void
getMounts() : MountSequence

. ~

/N ~
«uses» -~ «uses» «uses» S~ «uses»
e /s N NN
// // \\ ~ N
e ’ \ AN
// // \\ ~ N
1~ % N BN
«exception» «exception» «exception» «exception»
MountPointAlreadyEXxists NonExistentMount| InvalidFileSystem InvalidFileName

in errorNumber : ErrorNumberType
in msg : string(idl)

Figure 3-31: FileManager Interface UML

3.1.3.4.3.3 Types
3.1.3.4.3.3.1 MountType
The MountType structure identifies the file systems mounted within the file manager.

struct MountType
{

string mountPoint;
FileSystem fs;

}i

3.1.3.4.3.3.2 MountSequence

The MountSequence is an unbounded sequence of Mount types.
typedef sequence <MountType> MountSequence;
3.1.3.4.3.3.3 NonExistentMount

The NonExistentMount exception indicates a mount point does not exist within the
FileManager.

exception NonExistentMount{};
3.1.3.4.3.3.4 MountPointAlreadyEXxists

The MountPointAlreadyEXists exception indicates the mount point is already in use in the
FileManager.

exception MountPointAlreadyExists{};

3-87

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.3.3.5 InvalidFileSystem

The InvalidFileSystem exception indicates the FileSystem is a null (nil) object reference.
exception InvalidFileSystem{};

3.1.3.4.3.4 Attributes

N/A

3.1.3.4.3.5 QOperations

3.1.3.4.3.5.1 mount

3.1.3.4.35.1.1 Brief Rationale

The file manager supports the notion of a federated file system. To create a federated file
system, the mount operation associates a file system with a mount point (a directory name).

3.1.3.4351.2 Synopsis

void mount (in string mountPoint, in FileSystem file System)
raises (InvalidFileName, InvalidFileSystem,
MountPointAlreadyExists);

3.1.3.4.35.13 Behavior

The mount operation shall associate the specified file system with the mount point referenced by
the input mountPoint parameter. A mount point name shall begin with a “/ (forward slash
character). The input mountPoint parameter is a logical directory name for a file system.

31343514 Returns.
This operation does not return any value.
3.1.3.435.15 Exceptions/Errors.

The mount operation shall raise the CF InvalidFileName exception when the input mount point
does not conform to the file name syntax in section 3.1.3.4.2.1.

The mount operation shall raise the MountPointAlreadyExists exception when the mount point
already exists in the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystem is a
null object reference.

3.1.3.4.3.5.2 unmount

3.1.3.4.35.2.1 Brief Rationale

Mounted file systems may need to be removed from a file manager.

3.1.3.43.5.2.2 Synopsis

void unmount (in string mountPoint) raises (NonExistentMount);
3.1.3.4.35.2.3 Behavior

The unmount operation shall remove a mounted file system from the file manager whose
mounted name matches the input mountPoint name.

3-88

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.435.24 Returns
This operation does not return any value.
3.1.3.4.35.25 Exceptions/Errors

The unmount operation shall raise the NonExistentMount exception when the mount point does
not exist.

3.1.3.4.3.5.3 getMounts

3.1.3.4.35.3.1 Brief Rationale

File management user interfaces may need to list a file manager’s mounted file systems.
3.1.3.43.5.3.2 Synopsis

MountSequence getMounts() ;

3.1.3.4.3.5.3.3 Behavior

The getMounts operation returns a MountSequence that describes the mounted file systems.
3.1.3.4.35.34 Returns

The getMounts operation shall return a MountSequence that contains the file systems mounted
within the file manager.

3.1.3.4.35.35 Exceptions/Errors
This operation does not raise any exceptions.
3.1.3.4.3.5.4 File System Operations.

The system may support multiple FileSystem implementations. Some file systems correspond
directly to a physical file system within the system. The FileManager interface shall support a
federated, or distributed, file system that may span multiple FileSystem components. From the
client perspective, the FileManager may be used just like any other FileSystem component since
the FileManager inherits all the FileSystem operations.

A file manager shall implement the inherited FileSystem operations as required under section
3.1.3.4.2 for each mounted file system. The FileSystem operations ensure that the
filename/directory arguments given are absolute pathnames relative to a mounted file system.
The FileSystem operations inherited by a file manager shall remove the name of the mounted file
system from input pathnames before passing the pathnames to any operation on a mounted file
system. The file manager shall propagate exceptions raised by a mounted file system.

The file manager shall use the FileSystem operations of the file system whose associated mount
point exactly matches the input fileName parameter to the lowest matching subdirectory.

3.1.3.4.35.5 query
3.1.3.4.355.1 Brief Rationale

The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

3-89

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.4.35.5.2 Synopsis

void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);

3.1.3.4.3553 Behavior

The query operation shall return the combined mounted file systems information to the calling
client based upon the given input fileSystemProperties’ ID elements. As a minimum, the query
operation shall support the following input fileSystemProperties 1D elements:

SIZE - a property item ID value of "SIZE" causes the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

AVAILABLE_SPACE - a property item ID value of "AVAILABLE_SPACE" causes the
query operation to return the combined total available space (in octets) of all the mounted
file system as unsigned long long property value.

3.1.3.4.3.5.54 Returns
This operation does not return any value.
3.1.3.4.3555 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the input
fileSystemProperties parameter contains an invalid property ID element

3.1.3.5 Domain Profile

The hardware devices and software components that make up an SCA system domain are
described by a set of files that are collectively referred to as a Domain Profile. These files
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary.

The types of XML files that are used to describe a system's hardware and software assets are
depicted in Figure 3-32. The XML vocabulary within each of these files describes a distinct
aspect of the hardware and software assets. The collection of XML which are associated with a
particular software component is referred to as that component’s software profile. The contents
of a profile depends on the component being described, although every profile contains a
Software Package Descriptor — all profiles for CORBA components contain a Software
Component Descriptor. A software profile for an application contains a Software Assembly
descriptor (3.1.3.2.1.4.1), the device manager profile contains a Device Configuration Descriptor
(3.1.3.2.4.4.4), and the domain manager software profile contains a DomainManager
Configuration Descriptor (3.1.3.2.3.4.5).

Domain Profile files shall be complaint to the Document Type Definitions (DTDs) provided in
Appendix D. DTD files are installed in the domain and shall have “.dtd” as their filename
extension. All XML files shall have as the first two lines as an XML declaration (?xml) and a
document type declaration ('DOCTYPE). The XML declaration specifies the XML version and
whether the document is standalone. The document type declaration specifies the DTD for the
document. Example declarations are as follows:

3-90

SCA version 2.2.2 FINAL /15 May 2006

<?xml version="1.0" standalone="no”’?>

<IDOCTYPE softwareassembly SYSTEM “softwarcassembly.2.2.2.dtd”>

Domain Profile

0..n
1 0..n
«DTDElement» «DTDElement» «DTDElement»
Device Configuration Descriptor Domain Manager Configuration Descriptor Software Assembly Descriptor
1
0..n 1..n
«DTDElement»
«DTDElement» 1 Software Package Descriptor
Device Package Descriptor -Nn
«DTDElement»
Properties Descriptor
0.1
0.1 0..1
«DTDElement» «DTDElement»
Properties Descriptor Software Component Descriptor
0..1
«DTDElement»

Properties Descriptor

Figure 3-32: Relationship of Domain Profile XML File Types

3.1.3.5.1 Software Package Descriptor

A Software Package Descriptor (SPD) identifies a software component implementation(s). A
Software Package Descriptor file shall have a “.spd.xml” extension. General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3.1.3.5.2 Software Component Descriptor

A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall

3-91

SCA version 2.2.2 FINAL /15 May 2006

have a “.scd.xml” extension. A Software Component Descriptor file contains information about
the interfaces that a component provides and/or uses. A Software Component Descriptor for a
Device type has a reference to Device Package Descriptor file.

3.1.3.5.3 Software Assembly Descriptor

A Software Assembly Descriptor (SAD) contains information about the components that make
up an application. The application factory uses this information when creating an application. A
Software Assembly Descriptor file shall have a “.sad.xml” extension.

3.1.3.5.4 Properties Descriptor

A Property File contains information about the properties applicable to a software package or a
device package. A Properties File shall have a “.prf.xml” extension. A Properties File contains
information about the properties of a component such as configuration, test, execute, and
allocation types.

3.1.3.5.5 Device Package Descriptor

A Device Package Descriptor (DPD) identifies a class of a device. A Device Package Descriptor
File shall have a “.dpd.xml” extension. A Device Package Descriptor also has Properties that
define specific properties (capacity, serial number, etc.) for this class of device.

3.1.3.5.6 Device Configuration Descriptor

A Device Configuration Descriptor (DCD) contains information about the devices associated
with a device manager, how to find the domain manager, and the configuration information (Log,
FileSystems, etc.) for a device. A Device Configuration Descriptor file shall have a “.dcd.xml”
extension.

3.1.3.5.7 Profile Descriptor

A Profile Descriptor is an XML element which contains an absolute pathname for a Software
Package Descriptor (SPD), Software Assembly Descriptor (SAD), DomainManager
Configuration Descriptor (DMD), or a Device Configuration Descriptor (DCD), depending upon
the context. This element is used as the parameter for interface profile attributes (e.g., CF
Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF DomainManager).

3.1.3.5.8 DomainManager Configuration Descriptor

A DomainManager Configuration Descriptor (DMD) contains configuration information for the
domain manager. A DomainManager Configuration Descriptor file shall have a “.dmd.xml”
extension.

3.1.3.6 Core Framework Base Types

The CF Base Types are the underlying types used in the CF interfaces.
3.1.3.6.1 DataType

This type is a CORBA IDL structure, which may be used to hold any CORBA basic type or
static IDL type. The id attribute indicates the kind of value and type (e.g., frequency, preset,
etc.). The id may be an UUID string, an integer string, or a name identifier depending on
context. The value attribute may be any static IDL type or CORBA basic type.

3-92

SCA version 2.2.2 FINAL /15 May 2006

struct DataType
{

string id;
any value;

};

3.1.3.6.2 DeviceSequence

The CF DeviceSequence type defines an unbounded sequence of devices.
typedef sequence <Device> DeviceSequence;

3.1.3.6.3 FileException

The CF FileException indicates a file-related error occurred. The error number shall indicate a
CF ErrorNumberType value. The message provides information describing the error. The
message may be used for logging the error.

exception FileException {ErrorNumberType errorNumber; string
msg; };

3.1.3.6.4 InvalidFileName

The CF InvalidFileName exception indicates an invalid file name was passed to a file service
operation. The error number shall indicate a CF ErrorNumberType value. The message provides
information describing why the filename was invalid.

exception InvalidFileName {ErrorNumberType errorNumber; string
msg; };

3.1.3.6.5 InvalidObjectReference

The CF InvalidObjectReference exception indicates an invalid CORBA object reference error.
exception InvalidObjectReference {string msg;};

3.1.3.6.6 InvalidProfile

The CF InvalidProfile exception indicates an invalid profile error.

exception InvalidProfile{};

3.1.3.6.7 OctetSequence

This type is a CORBA unbounded sequence of octets.

typedef sequence <octet> OctetSequence;

3.1.3.6.8 Properties

The CF Properties is a CORBA IDL unbounded sequence of CF DataType(s), which is used in
defining a sequence of name and value pairs.

typedef sequence <DataType> Properties;
3.1.3.6.9 StringSequence
This type defines a sequence of strings.

typedef sequence <string> StringSequence;

3-93

SCA version 2.2.2 FINAL /15 May 2006

3.1.3.6.10 UnknownProperties

The CF UnknownProperties exception indicates a set of properties unknown by the component.
exception UnknownProperties {Properties invalidProperties; };
3.1.3.6.11 DeviceAssignmentType

The CF DeviceAssignmentType defines a structure that associates a component with the device
which the component either uses, is loaded upon or on which it is executed.

struct DeviceAssignmentType
{

string componentId;
string assignedDevicelId;

}i
3.1.3.6.12 DeviceAssignmentSequence

The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of CF
DeviceAssignmentTypes.

typedef sequence <DeviceAssignmentType>
DeviceAssignmentSequence;

3.1.3.6.13 ErrorNumberType.

This enum is used to pass error number information in various exceptions. Those exceptions
starting with “CF_E” map the POSIX definitions (with the "CF_" removed), and is found in
reference [4].

CF_NOTSET CF_NOTSET is not defined in the POSIX specification. CF_NOTSET is an SCA
specific value that is applicable for any exception when the method specific or standard POSIX
error values are not appropriate.)

enum ErrorNumberType

{

CF NOTSET, CF E2BIG, CF EACCES, CF EAGAIN, CF EBADF, CF EBADMSG,
CF _EBUSY, CF ECANCELED, CF ECHILD, CF EDEADLK, CF EDOM,
CF_EEXIST, CF _EFAULT, CF EFBIG, CF _EINPROGRESS,

CF EINTR,CF EINVAL, CF EIO, CF EISDIR, CF EMFILE, CF EMLINK,
CF_EMSGSIZE, CF ENAMETOOLONG, CF ENFILE, CF ENODEV, CF ENOENT,
CF_ENOEXEC, CF _ENOLCK, CF ENOMEM, CF ENOSPC, CF ENOSYS,

CF ENOTDIR, CF ENOTEMPTY, CF ENOTSUP ,CEF ENOTTY, CF ENXIO,
CF_EPERM, CF EPIPE, CF ERANGE , CF EROFS, CF ESPIPE, CF ESRCH,
CF _ETIMEDOUT ,CF_EXDEV

}i

3.2 APPLICATIONS

Applications are programs that perform the functions of a specific SCA-compliant product.
They are designed to meet the requirements of a specific acquisition and are not defined by the
SCA except as they interface to the OE.

3-94

SCA version 2.2.2 FINAL /15 May 2006

3.2.1 General Application Requirements

An application’s dependencies to the log, file manager, file system, CORBA Event Service, and
CORBA Naming Service are specified as connections in the SAD using the domainfinder
element.

3.2.1.1 OS Services

Applications shall be limited to using the OS services that are designated as mandatory in the
SCA Application Environment Profile (Appendix B).

Applications shall perform file access through the CF File interfaces. The application filename
syntax is specified in section 3.1.3.4.2.1.

All application processes shall have a handler registered for the POSIX-defined SIGQUIT signal.
3.2.1.2 CORBA Services

Applications shall be limited to using CORBA and CORBA services defined in the referenced
minimumCORBA specification [5]. Dynamically-created stringified IORs may be used to
provide an IOR reference value parameter. Applications shall not utilize static stringified IORs.

Applications may support the LogProducer interface of the CORBA Lightweight Log
Specification [7].

3.2.1.3 CF Interfaces

Applications shall implement the Base Application Interfaces as specified in section 3.1.3.1
using the corresponding IDL in Appendix C. Use of the ResourceFactory interface per section
3.1.3.1.7 is optional.

Each application component shall support the mandatory Naming Context IOR, Name Binding,
and the identifier execute parameters as described in 3.1.3.2.2.5.1, in addition to their user-
defined execute properties in the component’s SPD. Each application component shall bind its
object reference to the Naming Context IOR using the Name Binding parameter. Each
executable component of an application shall set its identifier attribute using the component
identifier execute parameter.

Each executable component of an application shall accept the standard argv arguments of the
POSIX exec family of functions [4].

An application, each application component, and each device manager shall be accompanied by
the appropriate Domain Profile files per section 3.1.3.5.

3.2.2 Application Interfaces

Applications consist of one to many components. These components may be CORBA-capable
or not CORBA-capable components. For CORBA-capable components, in addition to
supporting the CF Base Application interfaces, the component may implement and use
component-specific interfaces for data and/or control. Interfaces provided by a component shall

3-95

SCA version 2.2.2 FINAL /15 May 2006

be described in a Software Component Descriptor file as provides ports. Interfaces required by a
component shall be described in a Software Component Descriptor file as uses ports.

An application may define interfaces that are visible to entities external to the application. These
external interfaces are Ports, referenced in the application SAD externalports element. An
application interface shall be referenced in the application’s SAD externalports element, and
thus declared “external”, if the interface provides a service that is used by other applications.

All non-standard interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction to the extent that interfacing or replacement hardware and
software can be developed by other parties without restriction.

3.2.2.1 Service Definitions

SCA service definitions consist of APIs, behavior, state, priority and additional information that
provide the contract between the Service Provider and the Service User. IDL is used to define
the interfaces for service definitions to foster reuse and interoperability. IDL provides a method
to inherit from multiple interfaces to form a new service definition.

All SCA APIs shall have their interfaces described in IDL. All non-IDL interfaces shall provide
an IDL mapping within the service definition.

3.3 LOGICAL DEVICE

A logical device is a software component that implements one of the Base Device Interfaces. The
Base Device Interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice as
stated in section 2.2.2. and depicted in Figure 3-33.

3-96

SCA version 2.2.2 FINAL /15 May 2006

«CORBAInterface»
CF::Resource

«readonly» +identifier : string(idl)

+start() : void
+stop() : void

«inherits»

«CORBAInterface»

CF::Device
«CORBAInterface» «readonly» +usageState : UsageType
CF::AggregateDevice «readonly» +adminState : AdminType
Wdevices : DeviceSequence fo————-2 N «readonly» +operationalState : OperationalType
«readonly» +softwareProfile : string(idl)
+addDevice(in associatedDevice : Device) : void «readonly» +label : string(idl)

+removeDevice(in associatedDevice : Device) : void «readonly» +compositeDevice : AggregateDevice

+allocateCapacity(in capacities : Properties) : boolean(idl)
+deallocateCapacity(in capacities : Properties) : void

«in ts»

«CORBAInterface»
CF::LoadableDevice

+load(in fs : FileSystem, in fileName : string(idl), in loadKind : LoadType) : void
+unload(in fileName : string(idl)) : void

«inhefits»

«CORBAInterface»
CF::ExecutableDevice
«const» -STACK_SIZE_ID : string(idl) = "STACK_SIZE"
«const» -PRIORITY_ID : string(idl) = "PRIORITY"
+execute(in name : string(idl), in options : Properties, in parameters : Properties) : ProcessID_Type
+terminate(in processliD : ProcessID_Type) : void

Figure 3-33: Logical Device Interface Relationships

3.3.1 OS Services

Logical devices may use any service provided by the OE and as such are not restricted to using
the services specified in the SCA Application Environment Profile (Appendix B).

The executable parameters of a logical device shall accept the standard argv arguments as used
in the POSIX exec family of functions [4].

A logical device shall accept the executable parameters as specified in section 3.1.3.3.3.5.1.3
(ExecutableDevice::execute).

3.3.2 CORBA Services.

Logical devices shall be limited to using CORBA and CORBA services defined in the referenced
minimumCORBA specification [5].

Logical devices may support the LogProducer interface of the CORBA Lightweight Log
Specification [7].

3-97

SCA version 2.2.2 FINAL /15 May 2006

3.3.3 CF Interfaces

A logical device implements one of the following CF interfaces: Device, LoadableDevice or
ExecutableDevice.

In addition to the requirements stated in the Device interface (section 3.1.3.3.1), a logical device
has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier and
TestableObject interfaces.

A logical device shall register itself with a device manager using the value associated with the
DEVICE_MGR_IOR parameter per 3.1.3.2.4.5.

A child device shall add itself to a parent device using the executable Composite Device IOR
parameter per 3.1.3.2.4.5.

The values associated with the parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR,
DEVICE_ID and DEVICE_LABEL) as described in 3.1.3.2.4.5 shall be used to set the Device’s
softwareProfile, compositeDevice, identifier, and label attributes, respectively.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of a replaceable device that are required for the operation and maintenance of the device.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in
section 3.2.2.

3.3.4 Profile

Each logical device shall have a SPD, SCD, DPD, and one or more Properties Descriptors as
described in section 3.1.3.5. For each logical device, allocation properties shall be defined in its
referenced SPD’s property file.

3.4 GENERAL SOFTWARE RULES

This section identifies those rules and recommendations specific to the Software
Communications Architecture that are not specifically addressed elsewhere in this specification.

3.4.1 Software Development Languages

3.4.1.1 New Software

Software developed for an SCA-compliant system shall be developed in a standard higher order
language. The goal of new development should be to provide software that is independent from
platform and environment dependencies, ensuring minimal portability issues.

3.4.1.2 Legacy Software

Legacy software is not required to be rewritten in a standard higher order language. Legacy
software shall interface with the Core Framework in accordance with this specification.

3-98

SCA version 2.2.2 FINAL /15 May 2006

4 ARCHITECTURE COMPLIANCE

This section defines the authorities as well as the requirements and criteria for the certification of
any product to this specification.

Certification may be requested for any product meeting all applicable requirements identified
within the scope of the specification. The applicable requirements for any product not fulfilling
all requirements of this specification are determined at the sole discretion of the Certification
Authority (section 4.1)

This process is based on the existence of three distinct organizations: a Certification Authority
(CA), a Specification Authority (SA), and a Test and Evaluation Authority (TA). The CAis
given the sole responsibility for granting certification for all products to the specified standard,
based on the data and recommendations provided. The Certification Authority is supported by
the Specification Authority (SA), which is responsible for developing, maintaining, evolving and
interpreting the standard, and the Test and Evaluation Authority (TA) which is responsible for
the definition of all test procedures, development and maintenance of all test tools, and for
providing formal certification test results.

4.1 CERTIFICATION AUTHORITY

The Joint Program Executive Office (JPEO) JTRS is the Certification Authority (CA) for the
SCA and is given the sole responsibility and authority for granting certification of all products to
this specification and to certify that a product meets the requirements of this specification. The
JPEO JTRS authority is derived from its Charter [C].

4.2 SPECIFICATION AUTHORITY

The Joint Program Executive Office (JPEO) JTRS is the Specification Authority (SA) for the
SCA and is given the sole responsibility and authority to incorporate changes, recommendations,
additions, or retractions into this specification.

4.3 RESPONSIBILITY FOR COMPLIANCE EVALUATION

The Joint Program Executive Office (JPEO) JTRS shall assign one or more test organizations as
the Test and Evaluation Authority (TA) for the SCA. The TA has the responsibility for
providing formal certification test results to the Certification Authority.

4.4 EVALUATING COMPLIANCE

Compliance to this specification requires a product to meet all applicable requirements identified
within the scope of the specification. Applicability of requirements to specific products is
determined by the Certification Authority. Products are submitted to the Test and Evaluation
Authority for verification. Results of that verification are submitted to the Certification Authority
for evaluation.

The CA grants three levels of product certification for all JTRS standards: Fully Compliant,
Compliant with Waivers, and Non-Compliant. A certification of Fully Compliant will be granted
when a product has passed all requirements identified by the TA, without exception, for a

4-1

SCA version 2.2.2 FINAL /15 May 2006

specific version of the standard. A product will be certified as Compliant with Waivers when all
requirements not validated according to the criteria for a Fully Compliant certification, are
granted waivers under the process defined in the JTRS Standards Waiver Process [D]. A product
will be declared Non-Compliant when any failed requirement exists for which a waiver is not
approved.

45 REGISTRATION.

Some elements of an SCA implementation are identified with a Universally Unique Identifier
(UUID). As used in this specification, the UUID is defined by the DCE UUID standard adopted
by the Common Object Request Broker Architecture (CORBA) [9]. No centralized authority is
required to administer UUIDs under this specification.

4-2

	Software Communications Architecture Specification
	Revision Summary
	Table of Contents
	List of Figures
	Foreword
	1 INTRODUCTION
	1.1 Scope
	1.2 Compliance
	1.3 Document conventions, Terminology, and Definitions
	1.3.1 Conventions and Terminology
	1.3.1.1 File and Directory Nomenclature
	1.3.1.2 Unified Modeling Language
	1.3.1.3 Interface Definition Language
	1.3.1.4 eXtensible Markup Language
	1.3.1.5 Requirements Language
	1.3.1.6 Core Framework Interface and Operation Identification
	1.3.1.7 Figures

	1.3.2 Definitions

	1.4 Document Content
	1.5 Normative References
	1.6 Informative References

	2 Overview
	2.1 Architecture Definition Methodology
	2.2 Architecture Overview
	2.2.1 Goals and Context
	2.2.2 Core Framework
	2.2.3 Definitions
	2.2.4 Structure
	2.2.4.1 Bus Layer (Board Support Package)
	2.2.4.2 Network & Serial Interface Services
	2.2.4.3 Operating System
	2.2.4.4 CORBA Middleware
	2.2.4.5 Applications
	2.2.4.5.1 Adapters

	2.2.4.6 Reference Model

	2.2.5 Networking Overview

	3 Software Architecture Definition
	3.1 Operating Environment
	3.1.1 Operating System
	3.1.2 CORBA Middleware & Services
	3.1.2.1 Naming Service
	3.1.2.2 Log Service
	3.1.2.2.1 Log Producers

	3.1.2.3 CORBA Event Service and Standard Events
	3.1.2.3.1 CORBA Event Service
	3.1.2.3.2 StandardEvent Module
	3.1.2.3.2.1 Types
	3.1.2.3.2.1.1 StateChangeCategoryType
	3.1.2.3.2.1.2 StateChangeType
	3.1.2.3.2.1.3 StateChangeEventType
	3.1.2.3.2.1.4 SourceCategoryType
	3.1.2.3.2.1.5 DomainManagementObjectRemovedEventType
	3.1.2.3.2.1.6 DomainManagementObjectAddedEventType

	3.1.3 Core Framework
	3.1.3.1 Base Application Interfaces
	3.1.3.1.1 Port
	3.1.3.1.1.1 Description
	3.1.3.1.1.2 UML
	3.1.3.1.1.3 Types
	3.1.3.1.1.3.1 InvalidPort
	3.1.3.1.1.3.2 OccupiedPort

	3.1.3.1.1.4 Attributes
	3.1.3.1.1.5 Operations
	3.1.3.1.1.5.1 connectPort
	3.1.3.1.1.5.1.1 Brief Rationale
	3.1.3.1.1.5.1.2 Synopsis
	3.1.3.1.1.5.1.3 Behavior
	3.1.3.1.1.5.1.4 Returns
	3.1.3.1.1.5.1.5 Exceptions/Errors

	3.1.3.1.1.5.2 disconnectPort
	3.1.3.1.1.5.2.1 Brief Rationale
	3.1.3.1.1.5.2.2 Synopsis
	3.1.3.1.1.5.2.3 Behavior
	3.1.3.1.1.5.2.4 Returns
	3.1.3.1.1.5.2.5 Exceptions/Errors

	3.1.3.1.2 LifeCycle
	3.1.3.1.2.1 Description
	3.1.3.1.2.2 UML
	3.1.3.1.2.3 Types
	3.1.3.1.2.3.1 InitializeError
	3.1.3.1.2.3.2 ReleaseError

	3.1.3.1.2.4 Attributes
	3.1.3.1.2.5 Operations
	3.1.3.1.2.5.1 initialize
	3.1.3.1.2.5.1.1 Brief Rationale
	3.1.3.1.2.5.1.2 Synopsis
	3.1.3.1.2.5.1.3 Behavior
	3.1.3.1.2.5.1.4 Returns
	3.1.3.1.2.5.1.5 Exceptions/Errors

	3.1.3.1.2.5.2 releaseObject
	3.1.3.1.2.5.2.1 Brief Rationale
	3.1.3.1.2.5.2.2 Synopsis
	3.1.3.1.2.5.2.3 Behavior
	3.1.3.1.2.5.2.4 Returns
	3.1.3.1.2.5.2.5 Exceptions/Errors

	3.1.3.1.3 TestableObject
	3.1.3.1.3.1 Description
	3.1.3.1.3.2 UML
	3.1.3.1.3.3 Types
	3.1.3.1.3.3.1 UnknownTest

	3.1.3.1.3.4 Attributes
	3.1.3.1.3.5 Operations
	3.1.3.1.3.5.1 runTest
	3.1.3.1.3.5.1.1 Brief Rationale
	3.1.3.1.3.5.1.2 Synopsis
	3.1.3.1.3.5.1.3 Behavior
	3.1.3.1.3.5.1.4 Returns
	3.1.3.1.3.5.1.5 Exceptions/Errors

	3.1.3.1.4 PortSupplier
	3.1.3.1.4.1 Description
	3.1.3.1.4.2 UML
	3.1.3.1.4.3 Types
	3.1.3.1.4.3.1 UnknownPort

	3.1.3.1.4.4 Attributes
	3.1.3.1.4.5 Operations
	3.1.3.1.4.5.1 getPort
	3.1.3.1.4.5.1.1 Brief Rationale
	3.1.3.1.4.5.1.2 Synopsis
	3.1.3.1.4.5.1.3 Behavior
	3.1.3.1.4.5.1.4 Returns
	3.1.3.1.4.5.1.5 Exceptions/Errors

	3.1.3.1.5 PropertySet
	3.1.3.1.5.1 Description
	3.1.3.1.5.2 UML
	3.1.3.1.5.3 Types
	3.1.3.1.5.3.1 InvalidConfiguration
	3.1.3.1.5.3.2 PartialConfiguration

	3.1.3.1.5.4 Attributes
	3.1.3.1.5.5 Operations
	3.1.3.1.5.5.1 configure
	3.1.3.1.5.5.1.1 Brief Rationale
	3.1.3.1.5.5.1.2 Synopsis
	3.1.3.1.5.5.1.3 Behavior
	3.1.3.1.5.5.1.4 Returns
	3.1.3.1.5.5.1.5 Exceptions/Errors

	3.1.3.1.5.5.2 query
	3.1.3.1.5.5.2.1 Brief Rationale
	3.1.3.1.5.5.2.2 Synopsis
	3.1.3.1.5.5.2.3 Behavior
	3.1.3.1.5.5.2.4 Returns
	3.1.3.1.5.5.2.5 Exceptions/Errors

	3.1.3.1.6 Resource
	3.1.3.1.6.1 Description
	3.1.3.1.6.2 UML.
	3.1.3.1.6.3 Types
	3.1.3.1.6.3.1 StartError
	3.1.3.1.6.3.2 StopError

	3.1.3.1.6.4 Attributes
	3.1.3.1.6.4.1 identifier

	3.1.3.1.6.5 Operations
	3.1.3.1.6.5.1 start
	3.1.3.1.6.5.1.1 Brief Rationale
	3.1.3.1.6.5.1.2 Synopsis
	3.1.3.1.6.5.1.3 Behavior
	3.1.3.1.6.5.1.4 Returns
	3.1.3.1.6.5.1.5 Exceptions/Errors

	3.1.3.1.6.5.2 stop
	3.1.3.1.6.5.2.1 Brief Rationale
	3.1.3.1.6.5.2.2 Synopsis
	3.1.3.1.6.5.2.3 Behavior
	3.1.3.1.6.5.2.4 Returns
	3.1.3.1.6.5.2.5 Exceptions/Errors

	3.1.3.1.7 ResourceFactory
	3.1.3.1.7.1 Description
	3.1.3.1.7.2 UML
	3.1.3.1.7.3 Types
	3.1.3.1.7.3.1 InvalidResourceId
	3.1.3.1.7.3.2 ShutdownFailure
	3.1.3.1.7.3.3 CreateResourceFailure

	3.1.3.1.7.4 Attributes
	3.1.3.1.7.4.1 identifier

	3.1.3.1.7.5 Operations
	3.1.3.1.7.5.1 createResource
	3.1.3.1.7.5.1.1 Brief Rationale
	3.1.3.1.7.5.1.2 Synopsis
	3.1.3.1.7.5.1.3 Behavior
	3.1.3.1.7.5.1.4 Returns
	3.1.3.1.7.5.1.5 Exceptions/Errors

	3.1.3.1.7.5.2 releaseResource
	3.1.3.1.7.5.2.1 Brief Rationale
	3.1.3.1.7.5.2.2 Synopsis
	3.1.3.1.7.5.2.3 Behavior
	3.1.3.1.7.5.2.4 Returns
	3.1.3.1.7.5.2.5 Exceptions/Errors

	3.1.3.1.7.5.3 shutdown
	3.1.3.1.7.5.3.1 Brief Rationale
	3.1.3.1.7.5.3.2 Synopsis
	3.1.3.1.7.5.3.3 Behavior
	3.1.3.1.7.5.3.4 Returns
	3.1.3.1.7.5.3.5 Exceptions/Errors

	3.1.3.2 Framework Control Interfaces
	3.1.3.2.1 Application
	3.1.3.2.1.1 Description
	3.1.3.2.1.2 UML
	3.1.3.2.1.3 Types
	3.1.3.2.1.3.1 ComponentProcessIdType
	3.1.3.2.1.3.2 ComponentProcessIdSequence
	3.1.3.2.1.3.3 ComponentElementType
	3.1.3.2.1.3.4 ComponentElementSequence

	3.1.3.2.1.4 Attributes
	3.1.3.2.1.4.1 profile
	3.1.3.2.1.4.2 name
	3.1.3.2.1.4.3 componentNamingContexts
	3.1.3.2.1.4.4 componentProcessIds
	3.1.3.2.1.4.5 componentDevices
	3.1.3.2.1.4.6 componentImplementations

	3.1.3.2.1.5 General Class Behavior
	3.1.3.2.1.6 Operations
	3.1.3.2.1.6.1 releaseObject
	3.1.3.2.1.6.1.1 Brief Rationale
	3.1.3.2.1.6.1.2 Synopsis
	3.1.3.2.1.6.1.3 Behavior
	3.1.3.2.1.6.1.4 Returns
	3.1.3.2.1.6.1.5 Exceptions/Errors

	3.1.3.2.1.6.2 getPort
	3.1.3.2.1.6.2.1 Brief Rationale
	3.1.3.2.1.6.2.2 Synopsis
	3.1.3.2.1.6.2.3 Behavior
	3.1.3.2.1.6.2.4 Returns
	3.1.3.2.1.6.2.5 Exceptions/Errors

	3.1.3.2.2 ApplicationFactory
	3.1.3.2.2.1 Description
	3.1.3.2.2.2 UML
	3.1.3.2.2.3 Types
	3.1.3.2.2.3.1 CreateApplicationRequestError Exception
	3.1.3.2.2.3.2 CreateApplicationError Exception
	3.1.3.2.2.3.3 Exception InvalidInitConfiguration

	3.1.3.2.2.4 Attributes
	3.1.3.2.2.4.1 name
	3.1.3.2.2.4.2 softwareProfile
	3.1.3.2.2.4.3 identifier

	3.1.3.2.2.5 Operations
	3.1.3.2.2.5.1 create
	3.1.3.2.2.5.1.1 Brief Rationale
	3.1.3.2.2.5.1.2 Synopsis
	3.1.3.2.2.5.1.3 Behavior
	3.1.3.2.2.5.1.4 Returns
	3.1.3.2.2.5.1.5 Exceptions/Errors

	3.1.3.2.3 DomainManager
	3.1.3.2.3.1 Description
	3.1.3.2.3.2 UML
	3.1.3.2.3.3 Types
	3.1.3.2.3.3.1 ApplicationInstallationError
	3.1.3.2.3.3.2 InvalidIdentifier
	3.1.3.2.3.3.3 DeviceManagerSequence
	3.1.3.2.3.3.4 ApplicationSequence
	3.1.3.2.3.3.5 ApplicationFactorySequence
	3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception
	3.1.3.2.3.3.7 RegisterError
	3.1.3.2.3.3.8 UnregisterError
	3.1.3.2.3.3.9 ApplicationUninstallationError
	3.1.3.2.3.3.10 InvalidEventChannelName
	3.1.3.2.3.3.11 AlreadyConnected
	3.1.3.2.3.3.12 NotConnected
	3.1.3.2.3.3.13 ApplicationAlreadyInstalled

	3.1.3.2.3.4 Attributes.
	3.1.3.2.3.4.1 deviceManagers
	3.1.3.2.3.4.2 applications
	3.1.3.2.3.4.3 applicationFactories
	3.1.3.2.3.4.4 fileMgr
	3.1.3.2.3.4.5 domainManagerProfile
	3.1.3.2.3.4.6 identifier

	3.1.3.2.3.5 General Class Behavior
	3.1.3.2.3.6 Operations
	3.1.3.2.3.6.1 registerDeviceManager
	3.1.3.2.3.6.1.1 Brief Rationale
	3.1.3.2.3.6.1.2 Synopsis
	3.1.3.2.3.6.1.3 Behavior
	3.1.3.2.3.6.1.4 Returns
	3.1.3.2.3.6.1.5 Exceptions/Errors

	3.1.3.2.3.6.2 registerDevice
	3.1.3.2.3.6.2.1 Brief Rationale
	3.1.3.2.3.6.2.2 Synopsis
	3.1.3.2.3.6.2.3 Behavior
	3.1.3.2.3.6.2.4 Returns
	3.1.3.2.3.6.2.5 Exceptions/Errors

	3.1.3.2.3.6.3 installApplication
	3.1.3.2.3.6.3.1 Brief Rationale
	3.1.3.2.3.6.3.2 Synopsis
	3.1.3.2.3.6.3.3 Behavior
	3.1.3.2.3.6.3.4 Returns
	3.1.3.2.3.6.3.5 Exceptions/Errors

	3.1.3.2.3.6.4 unregisterDeviceManager
	3.1.3.2.3.6.4.1 Brief Rationale
	3.1.3.2.3.6.4.2 Synopsis
	3.1.3.2.3.6.4.3 Behavior
	3.1.3.2.3.6.4.4 Returns
	3.1.3.2.3.6.4.5 Exceptions/Errors

	3.1.3.2.3.6.5 unregisterDevice
	3.1.3.2.3.6.5.1 Brief Rationale
	3.1.3.2.3.6.5.2 Synopsis
	3.1.3.2.3.6.5.3 Behavior
	3.1.3.2.3.6.5.4 Returns
	3.1.3.2.3.6.5.5 Exceptions/Errors

	3.1.3.2.3.6.6 uninstallApplication
	3.1.3.2.3.6.6.1 Brief Rationale
	3.1.3.2.3.6.6.2 Synopsis
	3.1.3.2.3.6.6.3 Behavior
	3.1.3.2.3.6.6.4 Returns
	3.1.3.2.3.6.6.5 Exceptions/Errors

	3.1.3.2.3.6.7 registerService
	3.1.3.2.3.6.7.1 Brief Rationale
	3.1.3.2.3.6.7.2 Synopsis
	3.1.3.2.3.6.7.3 Behavior
	3.1.3.2.3.6.7.4 Returns
	3.1.3.2.3.6.7.5 Exceptions/Errors.

	3.1.3.2.3.6.8 unregisterService
	3.1.3.2.3.6.8.1 Brief Rationale
	3.1.3.2.3.6.8.2 Synopsis
	3.1.3.2.3.6.8.3 Behavior
	3.1.3.2.3.6.8.4 Returns
	3.1.3.2.3.6.8.5 Exceptions/Errors

	3.1.3.2.3.6.9 registerWithEventChannel
	3.1.3.2.3.6.9.1 Brief Rationale
	3.1.3.2.3.6.9.2 Synopsis
	3.1.3.2.3.6.9.3 Behavior
	3.1.3.2.3.6.9.4 Returns
	3.1.3.2.3.6.9.5 Exceptions/Errors

	3.1.3.2.3.6.10 unregisterFromEventChannel
	3.1.3.2.3.6.10.1 Brief Rationale
	3.1.3.2.3.6.10.2 Synopsis
	3.1.3.2.3.6.10.3 Behavior
	3.1.3.2.3.6.10.4 Returns
	3.1.3.2.3.6.10.5 Exceptions/Errors

	3.1.3.2.4 DeviceManager
	3.1.3.2.4.1 Description
	3.1.3.2.4.2 UML
	3.1.3.2.4.3 Types
	3.1.3.2.4.3.1 ServiceType
	3.1.3.2.4.3.2 ServiceSequenceType

	3.1.3.2.4.4 Attributes
	3.1.3.2.4.4.1 identifier
	3.1.3.2.4.4.2 label
	3.1.3.2.4.4.3 fileSys
	3.1.3.2.4.4.4 deviceConfigurationProfile
	3.1.3.2.4.4.5 registeredDevices
	3.1.3.2.4.4.6 registeredServices

	3.1.3.2.4.5 General Behavior
	3.1.3.2.4.6 Operations
	3.1.3.2.4.6.1 registerDevice
	3.1.3.2.4.6.1.1 Brief Rationale
	3.1.3.2.4.6.1.2 Synopsis
	3.1.3.2.4.6.1.3 Behavior
	3.1.3.2.4.6.1.4 Returns
	3.1.3.2.4.6.1.5 Exceptions/Errors

	3.1.3.2.4.6.2 unregisterDevice
	3.1.3.2.4.6.2.1 Brief Rationale
	3.1.3.2.4.6.2.2 Synopsis
	3.1.3.2.4.6.2.3 Behavior
	3.1.3.2.4.6.2.4 Returns
	3.1.3.2.4.6.2.5 Exceptions/Errors

	3.1.3.2.4.6.3 registerService
	3.1.3.2.4.6.3.1 Brief Rationale
	3.1.3.2.4.6.3.2 Synopsis
	3.1.3.2.4.6.3.3 Behavior
	3.1.3.2.4.6.3.4 Returns
	3.1.3.2.4.6.3.5 Exceptions/Errors

	3.1.3.2.4.6.4 unregisterService
	3.1.3.2.4.6.4.1 Brief Rationale.
	3.1.3.2.4.6.4.2 Synopsis
	3.1.3.2.4.6.4.3 Behavior
	3.1.3.2.4.6.4.4 Returns
	3.1.3.2.4.6.4.5 Exceptions/Errors

	3.1.3.2.4.6.5 shutdown
	3.1.3.2.4.6.5.1 Brief Rationale
	3.1.3.2.4.6.5.2 Synopsis
	3.1.3.2.4.6.5.3 Behavior
	3.1.3.2.4.6.5.4 Returns
	3.1.3.2.4.6.5.5 Exceptions/Errors

	3.1.3.2.4.6.6 getComponentImplementationId.
	3.1.3.2.4.6.6.1 Brief Rational
	3.1.3.2.4.6.6.2 Synopsis
	3.1.3.2.4.6.6.3 Behavior
	3.1.3.2.4.6.6.4 Returns
	3.1.3.2.4.6.6.5 Exceptions/Errors

	3.1.3.3 Base Device Interfaces
	3.1.3.3.1 Device
	3.1.3.3.1.1 Description
	3.1.3.3.1.2 UML
	3.1.3.3.1.3 Types
	3.1.3.3.1.3.1 InvalidState
	3.1.3.3.1.3.2 InvalidCapacity
	3.1.3.3.1.3.3 AdminType
	3.1.3.3.1.3.4 OperationalType
	3.1.3.3.1.3.5 UsageType

	3.1.3.3.1.4 Attributes
	3.1.3.3.1.4.1 usageState.
	3.1.3.3.1.4.2 adminState
	3.1.3.3.1.4.3 operationalState
	3.1.3.3.1.4.4 softwareProfile
	3.1.3.3.1.4.5 label
	3.1.3.3.1.4.6 compositeDevice

	3.1.3.3.1.5 Operations
	3.1.3.3.1.5.1 allocateCapacity
	3.1.3.3.1.5.1.1 Brief Rationale
	3.1.3.3.1.5.1.2 Synopsis
	3.1.3.3.1.5.1.3 Behavior
	3.1.3.3.1.5.1.4 Returns
	3.1.3.3.1.5.1.5 Exceptions/Errors

	3.1.3.3.1.5.2 deallocateCapacity
	3.1.3.3.1.5.2.1 Brief Rationale
	3.1.3.3.1.5.2.2 Synopsis
	3.1.3.3.1.5.2.3 Behavior
	3.1.3.3.1.5.2.4 Returns
	3.1.3.3.1.5.2.5 Exceptions/Errors

	3.1.3.3.1.5.3 releaseObject
	3.1.3.3.1.5.3.1 Description
	3.1.3.3.1.5.3.2 Synopsis
	3.1.3.3.1.5.3.3 Behavior
	3.1.3.3.1.5.3.4 Returns
	3.1.3.3.1.5.3.5 Exceptions/Errors

	3.1.3.3.2 LoadableDevice
	3.1.3.3.2.1 Description
	3.1.3.3.2.2 UML
	3.1.3.3.2.3 Types
	3.1.3.3.2.3.1 LoadType
	3.1.3.3.2.3.2 InvalidLoadKind
	3.1.3.3.2.3.3 LoadFail.

	3.1.3.3.2.4 Attributes
	3.1.3.3.2.5 Operations
	3.1.3.3.2.5.1 load
	3.1.3.3.2.5.1.1 Brief Rationale
	3.1.3.3.2.5.1.2 Synopsis
	3.1.3.3.2.5.1.3 Behavior
	3.1.3.3.2.5.1.4 Returns
	3.1.3.3.2.5.1.5 Exceptions/Errors

	3.1.3.3.2.5.2 unload
	3.1.3.3.2.5.2.1 Brief Rationale
	3.1.3.3.2.5.2.2 Synopsis
	3.1.3.3.2.5.2.3 Behavior
	3.1.3.3.2.5.2.4 Returns
	3.1.3.3.2.5.2.5 Exceptions/Errors

	3.1.3.3.3 ExecutableDevice
	3.1.3.3.3.1 Description
	3.1.3.3.3.2 UML
	3.1.3.3.3.3 Types
	3.1.3.3.3.3.1 InvalidProcess
	3.1.3.3.3.3.2 InvalidFunction
	3.1.3.3.3.3.3 ProcessID_Type
	3.1.3.3.3.3.4 InvalidParameters
	3.1.3.3.3.3.5 InvalidOptions
	3.1.3.3.3.3.6 STACK_SIZE_ID
	3.1.3.3.3.3.7 PRIORITY_ID
	3.1.3.3.3.3.8 ExecuteFail

	3.1.3.3.3.4 Attributes
	3.1.3.3.3.5 Operations
	3.1.3.3.3.5.1 execute
	3.1.3.3.3.5.1.1 Brief Rationale
	3.1.3.3.3.5.1.2 Synopsis
	3.1.3.3.3.5.1.3 Behavior
	3.1.3.3.3.5.1.4 Returns
	3.1.3.3.3.5.1.5 Exceptions/Errors

	3.1.3.3.3.5.2 terminate
	3.1.3.3.3.5.2.1 Brief Rationale
	3.1.3.3.3.5.2.2 Synopsis
	3.1.3.3.3.5.2.3 Behavior
	3.1.3.3.3.5.2.4 Returns
	3.1.3.3.3.5.2.5 Exceptions/Errors

	3.1.3.3.4 AggregateDevice
	3.1.3.3.4.1 Description
	3.1.3.3.4.2 UML
	3.1.3.3.4.3 Types
	3.1.3.3.4.4 Attributes
	3.1.3.3.4.4.1 devices

	3.1.3.3.4.5 Operations
	3.1.3.3.4.5.1 addDevice
	3.1.3.3.4.5.1.1 Brief Rationale
	3.1.3.3.4.5.1.2 Synopsis
	3.1.3.3.4.5.1.3 Behavior
	3.1.3.3.4.5.1.4 Returns
	3.1.3.3.4.5.1.5 Exceptions/Errors

	3.1.3.3.4.5.2 removeDevice
	3.1.3.3.4.5.2.1 Brief Rationale
	3.1.3.3.4.5.2.2 Synopsis
	3.1.3.3.4.5.2.3 Behavior
	3.1.3.3.4.5.2.4 Returns
	3.1.3.3.4.5.2.5 Exceptions/Errors

	3.1.3.4 Framework Services Interfaces
	3.1.3.4.1 File
	3.1.3.4.1.1 Description
	3.1.3.4.1.2 UML
	3.1.3.4.1.3 Types
	3.1.3.4.1.3.1 IOException
	3.1.3.4.1.3.2 InvalidFilePointer

	3.1.3.4.1.4 Attributes
	3.1.3.4.1.4.1 fileName
	3.1.3.4.1.4.2 filePointer

	3.1.3.4.1.5 Operations
	3.1.3.4.1.5.1 read
	3.1.3.4.1.5.1.1 Brief Rationale
	3.1.3.4.1.5.1.2 Synopsis
	3.1.3.4.1.5.1.3 Behavior
	3.1.3.4.1.5.1.4 Returns
	3.1.3.4.1.5.1.5 Exceptions/Errors

	3.1.3.4.1.5.2 write
	3.1.3.4.1.5.2.1 Brief Rationale
	3.1.3.4.1.5.2.2 Synopsis
	3.1.3.4.1.5.2.3 Behavior
	3.1.3.4.1.5.2.4 Returns
	3.1.3.4.1.5.2.5 Exceptions/Errors

	3.1.3.4.1.5.3 sizeOf
	3.1.3.4.1.5.3.1 Brief Rationale
	3.1.3.4.1.5.3.2 Synopsis
	3.1.3.4.1.5.3.3 Behavior
	3.1.3.4.1.5.3.4 Returns
	3.1.3.4.1.5.3.5 Exceptions/Errors

	3.1.3.4.1.5.4 close
	3.1.3.4.1.5.4.1 Brief Rationale
	3.1.3.4.1.5.4.2 Synopsis
	3.1.3.4.1.5.4.3 Behavior
	3.1.3.4.1.5.4.4 Returns
	3.1.3.4.1.5.4.5 Exceptions/Errors.

	3.1.3.4.1.5.5 setFilePointer
	3.1.3.4.1.5.5.1 Brief Rationale
	3.1.3.4.1.5.5.2 Synopsis
	3.1.3.4.1.5.5.3 Behavior
	3.1.3.4.1.5.5.4 Returns
	3.1.3.4.1.5.5.5 Exceptions/Errors

	3.1.3.4.2 FileSystem
	3.1.3.4.2.1 Description
	3.1.3.4.2.2 UML
	3.1.3.4.2.3 Types
	3.1.3.4.2.3.1 UnknownFileSystemProperties.
	3.1.3.4.2.3.2 fileSystemProperties Query Constants
	3.1.3.4.2.3.3 FileInformationType
	3.1.3.4.2.3.4 FileInformationSequence
	3.1.3.4.2.3.5 FileType
	3.1.3.4.2.3.6 CREATED_TIME_ID
	3.1.3.4.2.3.7 MODIFIED_TIME_ID
	3.1.3.4.2.3.8 LAST_ACCESS_TIME_ID

	3.1.3.4.2.4 Attributes
	3.1.3.4.2.5 Operations
	3.1.3.4.2.5.1 remove
	3.1.3.4.2.5.1.1 Brief Rationale
	3.1.3.4.2.5.1.2 Synopsis
	3.1.3.4.2.5.1.3 Behavior
	3.1.3.4.2.5.1.4 Returns
	3.1.3.4.2.5.1.5 Exceptions/Errors

	3.1.3.4.2.5.2 copy
	3.1.3.4.2.5.2.1 Brief Rationale
	3.1.3.4.2.5.2.2 Synopsis
	3.1.3.4.2.5.2.3 Behavior
	3.1.3.4.2.5.2.4 Returns
	3.1.3.4.2.5.2.5 Exceptions/Errors

	3.1.3.4.2.5.3 exists
	3.1.3.4.2.5.3.1 Brief Rationale
	3.1.3.4.2.5.3.2 Synopsis
	3.1.3.4.2.5.3.3 Behavior
	3.1.3.4.2.5.3.4 Returns
	3.1.3.4.2.5.3.5 Exceptions/Errors

	3.1.3.4.2.5.4 list
	3.1.3.4.2.5.4.1 Brief Rationale
	3.1.3.4.2.5.4.2 Synopsis
	3.1.3.4.2.5.4.3 Behavior
	3.1.3.4.2.5.4.4 Returns
	3.1.3.4.2.5.4.5 Exceptions/Errors

	3.1.3.4.2.5.5 create
	3.1.3.4.2.5.5.1 Brief Rationale
	3.1.3.4.2.5.5.2 Synopsis
	3.1.3.4.2.5.5.3 Behavior
	3.1.3.4.2.5.5.4 Returns
	3.1.3.4.2.5.5.5 Exceptions/Errors

	3.1.3.4.2.5.6 open
	3.1.3.4.2.5.6.1 Brief Rationale
	3.1.3.4.2.5.6.2 Synopsis
	3.1.3.4.2.5.6.3 Behavior
	3.1.3.4.2.5.6.4 Returns
	3.1.3.4.2.5.6.5 Exceptions/Errors

	3.1.3.4.2.5.7 mkdir
	3.1.3.4.2.5.7.1 Brief Rationale
	3.1.3.4.2.5.7.2 Synopsis
	3.1.3.4.2.5.7.3 Behavior
	3.1.3.4.2.5.7.4 Returns.
	3.1.3.4.2.5.7.5 Exceptions/Errors

	3.1.3.4.2.5.8 rmdir.
	3.1.3.4.2.5.8.1 Brief Rationale
	3.1.3.4.2.5.8.2 Synopsis
	3.1.3.4.2.5.8.3 Behavior
	3.1.3.4.2.5.8.4 Returns
	3.1.3.4.2.5.8.5 Exceptions/Errors

	3.1.3.4.2.5.9 query
	3.1.3.4.2.5.9.1 Brief Rationale
	3.1.3.4.2.5.9.2 Synopsis
	3.1.3.4.2.5.9.3 Behavior
	3.1.3.4.2.5.9.4 Returns
	3.1.3.4.2.5.9.5 Exceptions/Errors

	3.1.3.4.3 FileManager
	3.1.3.4.3.1 Description
	3.1.3.4.3.2 UML
	3.1.3.4.3.3 Types
	3.1.3.4.3.3.1 MountType
	3.1.3.4.3.3.2 MountSequence
	3.1.3.4.3.3.3 NonExistentMount
	3.1.3.4.3.3.4 MountPointAlreadyExists
	3.1.3.4.3.3.5 InvalidFileSystem

	3.1.3.4.3.4 Attributes
	3.1.3.4.3.5 Operations
	3.1.3.4.3.5.1 mount
	3.1.3.4.3.5.1.1 Brief Rationale
	3.1.3.4.3.5.1.2 Synopsis
	3.1.3.4.3.5.1.3 Behavior
	3.1.3.4.3.5.1.4 Returns.
	3.1.3.4.3.5.1.5 Exceptions/Errors.

	3.1.3.4.3.5.2 unmount
	3.1.3.4.3.5.2.1 Brief Rationale
	3.1.3.4.3.5.2.2 Synopsis
	3.1.3.4.3.5.2.3 Behavior
	3.1.3.4.3.5.2.4 Returns
	3.1.3.4.3.5.2.5 Exceptions/Errors

	3.1.3.4.3.5.3 getMounts
	3.1.3.4.3.5.3.1 Brief Rationale
	3.1.3.4.3.5.3.2 Synopsis
	3.1.3.4.3.5.3.3 Behavior
	3.1.3.4.3.5.3.4 Returns
	3.1.3.4.3.5.3.5 Exceptions/Errors

	3.1.3.4.3.5.4 File System Operations.
	3.1.3.4.3.5.5 query
	3.1.3.4.3.5.5.1 Brief Rationale
	3.1.3.4.3.5.5.2 Synopsis
	3.1.3.4.3.5.5.3 Behavior
	3.1.3.4.3.5.5.4 Returns
	3.1.3.4.3.5.5.5 Exceptions/Errors

	3.1.3.5 Domain Profile
	3.1.3.5.1 Software Package Descriptor
	3.1.3.5.2 Software Component Descriptor
	3.1.3.5.3 Software Assembly Descriptor
	3.1.3.5.4 Properties Descriptor
	3.1.3.5.5 Device Package Descriptor
	3.1.3.5.6 Device Configuration Descriptor
	3.1.3.5.7 Profile Descriptor
	3.1.3.5.8 DomainManager Configuration Descriptor

	3.1.3.6 Core Framework Base Types
	3.1.3.6.1 DataType
	3.1.3.6.2 DeviceSequence
	3.1.3.6.3 FileException
	3.1.3.6.4 InvalidFileName
	3.1.3.6.5 InvalidObjectReference
	3.1.3.6.6 InvalidProfile
	3.1.3.6.7 OctetSequence
	3.1.3.6.8 Properties
	3.1.3.6.9 StringSequence
	3.1.3.6.10 UnknownProperties
	3.1.3.6.11 DeviceAssignmentType
	3.1.3.6.12 DeviceAssignmentSequence
	3.1.3.6.13 ErrorNumberType.

	3.2 Applications
	3.2.1 General Application Requirements
	3.2.1.1 OS Services
	3.2.1.2 CORBA Services
	3.2.1.3 CF Interfaces

	3.2.2 Application Interfaces
	3.2.2.1 Service Definitions

	3.3 Logical Device
	3.3.1 OS Services
	3.3.2 CORBA Services.
	3.3.3 CF Interfaces
	3.3.4 Profile

	3.4 General Software Rules
	3.4.1 Software Development Languages
	3.4.1.1 New Software
	3.4.1.2 Legacy Software

	4 Architecture Compliance
	4.1 Certification Authority
	4.2 Specification Authority
	4.3 Responsibility for Compliance Evaluation
	4.4 Evaluating Compliance
	4.5 Registration.

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

APPENDIX B

SCAAPPLICATION ENVIRONMENT PROFILE

AMENDED / 22 October 2008
Version 2.2.2A <ICWG Approved>

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (22 October 2008)

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

REVISION SUMMARY

Version Revisions
1.0 Initial Release
1.1 no changes
2.0 no changes
2.1 no changes
2.2 no changes
2.2.1 Incorporate approved Change Proposals, SCA-CCM number 2
2.2.2 Incorporate Approved Change Proposal, SCA-CCM-264
2.2.2A Incorporate Changes Resulting from SCA AEP Amendment — Included 20 new
<Final operations within the profile, removed 10 operations and clarified the specification
Draft> position regarding the incorporation of the Standard C Libraries.
2.2.2A Included memmove operation per JTRS Community discussion
<ICWG

Approved>

ICWG Approved

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

TABLE OF CONTENTS

Bl SCOPE ..ottt bttt n et ettt ne et 1
B.2 CONVENTIONS. ... oot e e et e e et e e e ae e e sae e e snbe e e snteeeanneeenneeas 1
B.3 STANDARDS ..ottt ettt b et r bt bt neere s 1
B4 CONST RAINT S et e e e e et e e e te e e ate e e anae e e snneeeanneeenneeas 1
B4.1l 0 13 1 0t SR 2
B.4.1.1 Single Process FUNCLION BENAVIOKcccciuiiiiiiieiieccie e 3
B.4.1.2 Multi Process FUNCLION BENAVIOL..........cccoiiiiiiieecie s 3
B.4.1.3 Job Control FUNCLION BENAVIONc.ooiiiiiiiiecce e 4
B.4.1.4 Signals FUNCLION BENAVIONccociiiiiiiie e 4
B.4.1.5 Signal Jump FUNCLION BENAVIOT...........ccveiiiiiicece s 5
B.4.1.6 User Group FUNCLION BENAVIONcciiiiiiiiicicic e 6
B.4.1.7 File System FUNCLION BENAVION..........c.civiiiiiieiie e 6
B.4.1.8 File Attributes FUNCLION BENAVIONccooiiiiiieicecee e 7
B.4.1.9 File and Directory Management Function BEhaviorcccccvveiiveveicicciecie e, 8
B.4.1.10 Device I/O FUNCLION BENAVIONc.oiiiiiiiiiie e 8
B.4.1.11 Device-Specific FUNCtion BEhaVIOr............ccoveiieiiiicce e 9
B.4.1.12 System Database FUNCtion BENAVIONcccoeiiiiiiiiiiiiecc s 10
B.4.1.13 Pipe FUNCLION BENAVIOL..........coviiiiiicc e 10
B.4.1.14 FIFO FUNCLION BENAVIONcoiiiiieiieie et 10
B.4.1.15 C Language-Specific Support Services Function Behavior............cc.cccccvevvivicieennenn, 10
B.4.1.16 C Language-Specific Mathematical Function Behavior..............cccccociiiiinniennne. B-12
B.4.1.17 C Language-Specific Non-local Jump Function Behavior.ccccccovvveviiieinennnnn, 16
B.4.1.18 POSIX Semaphore FUNCtION BENAVIONcccoiiiiiiiiiiiiecceeee s 16
B.4.1.19 POSIX Timer FUNCtiON BENAVIOLcovoiiiiiiieiie e 17
B.4.1.20 POSIX Threading FUNCtION BENAVIONccoiiiiiiiiiiiiiieceeeee s 17
B.4.1.21 POSIX Thread Safe Option Requirements Behavior.............cccccoveviiveiiene e, 18
B.4.1.22 XSI Thread Mutex Ext Option Requirements Behavior...........c.ccccocveniiiiinnennn. 19

B.5 POSIXSTANDARD C LIBRARY HEADER FILES.........cccooiiiieeeee e 19
B5.1 DIAgNOSTICS @SS @It . H> ittt ettt 20
B.5.2 COMPIEX < COMPLEX . B> ciiieiiiiiiiecie ettt e e beeste e sneesneeneenrs 20
B.5.3 Character NandliNg < ctyPe . B> i s 22

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

B.5.4
B.5.5
B.5.6
B.5.7
B.5.8
B.5.9
B.5.10
B.511
B.5.12
B.5.13
B.5.14
B.5.15
B.5.16
B.5.17

Floating-point eNVIFONMENT < £@nv . B> ..ooiiiiiiiiiiieiierie e 22
Format conversion of integer typeS <inttypes . B> .iiiiiiiieiieeieeie e seeie e 23
[0 Jo 1 72 LU (0] (IR A= T A USROS 23
MathemMALICS KMa Eh . B> it bbbt nes 23
NONIOCAl JUMPS K S@EIMP . B> coviiiiiiiiiesieee e 29
Signal handliNng < s2gnal . B> coiiiiiiiiiicie et 29
Variable argumMENTS < S £Aarg . B> wooiiiiiiieiieie ettt 29
INPUL/OULPUL < S £ 50 . B> tovviiiieiicie ettt te et e st e snaenre e ans 29
General ULIITIES < S £ A1 Ab . N> coiiiiiiiie et nrs 31
String handliNg < s tLing . B> i s 33
Type-generic Math < tgmath . B> oo 33
Date and fiMe < £Eime . B> wiviiiiiiiieieie ettt bbbt re s 35
Extended multibyte/wide character utilities <wchar . h> .cocociiiieiiiiiiicic e, 36
Wide character classification and mapping utilities <wctype . h> .oooveviverviiieieennenn, 38

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Foreword

SCA 2.2.2 incorporated a number of modifications that were intended to reduce ambiguity
within the specification, address implementation concerns of SCA developers and ensure that the
specification maintained its commercial relevance.

Lessons learned after the SCA 2.2.2 publication necessitated a modification of the set of
permissible RTOS capabilities for SCA compliant applications. The combination of a
demonstrated need and commercial availability of several new OS functions resulted in the
creation of this revised AEP. SCA Appendix B 2.2.2A contains new material and technical
corrections to the content of JPEO JTRS Standards specification — SCA 2.2.2 Appendix B.

This AEP revision better aligns the specification with the emerging needs of waveform
developers while balancing the challenges of SCA compliance faced by radio set providers. The
design objectives of the amended AEP were focused on the following tenets:

1. Maximizing the commercial content of the OE — the newly incorporated operations are
widely supported by commercially available products;

2. Preserving the minimalist nature of the waveform/OE interface — the revision does not
expand the profile to full POSIX profile 53 compliance or a set of operations which
would significantly impact the number of functions that the OE must provide;

3. Minimizing the amount of development required by JTR set developers —the OE is
allowed to provide more required functionality, thus relieving the developer’s
implementation responsibilities.

This document also formalizes the SCA 2.2.2 position on the incorporation of the Standard C
Libraries. The SCA 2.2.2 reference to the C Standard “C Standard: Programming languages — C,
ISO/TEC 9899:1999 [C99]” contains a chapter that defines the Standard C Library and its
incorporated header files. Earlier versions of Appendix B were focused on operations and silent
on whether or not the standard C libraries or header files could be used. The document from
which Appendix B was modeled, IEEE 1003.13 IEEE Standard for Information Technology —

Standardized Application Environment Profile (AEP) — POSIX® Real-time and Embedded
Application Support contains explicit language regarding the interpretation of symbols defined
within header files. In summary, the specification supports the visibility of all symbols within a

®
header file other than those governed by feature test macros associated with the POSIX Real-
time profiles.

The amended Appendix B accounts for the lack of clarity pertaining to the sanctioned usage of
Standard C Library elements within the SCA documentation. The revised AEP identifies a subset
of the Standard C Library header files that are required by the profile and explicitly permits the
utilization of the symbols defined in those header files.

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

APPENDIX B SCAAPPLICATION ENVIRONMENT PROFILE

B.1 SCOPE

This appendix defines the Application Environment Profile (AEP) for the SCA, based on
Standardized Application Environment Profile - POSIX® Realtime Application Support (AEP),
IEEE Std 1003.13-2003.

The application environment profile (AEP), is the SCA required profile referenced in sections

3.1.1, 3.2.1, and 3.3.1 of the main document. The SCA dictates that an Operating Environment
provides the options and functions designated as mandatory within this AEP and constrains an
application to only use those services.

B.2 CONVENTIONS

Within this appendix, the following abbreviations are used:

1. “MAN” indicates that the identified function or option is mandatory for the
indicated profile

2. “NRQ” indicates that the identified function or option is not required for the
indicated profile

3. “PRT” indicates that only a subset of the indicated option or unit of functionality
is required. This designation will be followed by a note or cross-reference
indicating which elements are required.

B.3 STANDARDS

The standards identified in Table B-1 are required in whole or in part by the SCA AEP
application environment profile.

Table B-1: Required Standards

Standard SCA AEP

C Standard (ISO/IEC 9899:1999) PRT'
POSIX (ISO/IEC 9945:2003) PRT"

B.4 CONSTRAINTS

The real-time profile defined in this appendix requires only specific Units of Functionality of the
included standards. The absence of particular elements of these standards introduces constraints
on the use of some of the features of particular functions. These constraints must be observed by
an application that conforms to the profile when using each of the required functions.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
! Specific functions and options are identified in section B.4

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

An Ada AEP has not been explicitly defined. Any Ada application shall be restricted to using
the equivalent Ada functionality, as defined in POSIX Ada language binding (ISO/IEC
14519:2001), designated as mandatory by the AEP or may use the C interface.

B.4.1 POSIX.1

The options, limits, and any other constraints on POSIX.1 shall be provided as described in
Table B-2.

Table B-2: POSIX.1 Option Requirements

Option AEP |
{ POSIX_ASYNCHRONOUS_|0} MAN
{ POSIX_CHOWN_RESTRICTED} NRQ
{ POSIX_CLOCK_SELECTION} NRQ
{ POSIX_FSYNC} PRT?
{ POSIX_MAPPED_FILES} NRQ
{ POSIX_MEMLOCK_RANGE} MAN
{ POSIX_MEMLOCK} MAN
{ POSIX_MEMORY_PROTECTION} NRQ
{ POSIX_MESSAGE_PASSING} MAN
{ POSIX_MONOTONIC_CLOCK} NRQ
{ POSIX_NO_TRUNC} PRI
{ POSIX_PRIORITIZED_|O} NRQ
{ POSIX_PRIORITY_SCHEDULING} NRQ
{ POSIX_REALTIME_SIGNALS} MAN
{ POSIX_SAVED_IDS} NRQ
{ POSIX_SEMAPHORES} MAN
{ POSIX_SHARED_MEMORY_OBJECTS} NRQ
{ POSIX_SYNCHRONIZED_IO} PRT?
{ POSIX_THREAD_ATTR_STACKADDRY} MAN
{ POSIX_THREAD_ATTR_STACKSIZE} MAN
{ POSIX_THREAD_CPUTIME} NRQ
{ POSIX_THREAD_PRIO_INHERIT} MAN
{ POSIX_THREAD_PRIO_PROTECT} MAN
{ POSIX_THREAD_PRIORITY_SCHEDULING} | MAN
{ POSIX_THREAD_PROCESS_SHARED} NRQ

2 fsync not required
¥ fdatasync not required

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Option ‘ AEP ‘
{_POSIX_THREAD_SAFE_FUNCTIONS} PRT*
{_POSIX_THREAD_SPORADIC_SERVER} NRQ
{ POSIX_TIMEOUTS} NRQ
{_POSIX_TIMERS} MAN
{ POSIX_TRACE_EVENT_FILTER} NRQ
{ POSIX_TRACE_LOG} NRQ
{ POSIX_TRACE} NRQ
{_POSIX_VDISABLE} NRQ

NOTES:

= PRI - The primary file system shall generate an error for pathname components longer than
NAME_MAX. The user is responsible for semantics of other file systems that may be mounted.

= Embedded processor C/C++ run-time libraries typically do not support stdio.h or iostream.h.

= Heavy weight processes are typically not supported in embedded operating systems. The
mandatory POSIX.1b options can be implemented without the use of heavy weight signaling.

B.4.1.1 Single Process Function Behavior

The functions in Table B-3 shall behave as described in the applicable clauses of the referenced
POSIX referenced POSIX specifications contained in Table B-1.

Table B-3: POSIX_SINGLE_PROCESS Functions

Function AEP ‘
confstr() NRQ
environ NRQ
erro NRQ
getenv () NRQ
setenv() NRQ
sysconf () NRQ
uname() NRQ
unsetenv() NRQ

B.4.1.2 Multi Process Function Behavior

The functions listed in Table B-4 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

* See Table B-23: POSIX_THREAD_SAFE_FUNCTIONS Functions

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Table B-4: POSIX_MULTI_PROCESS Functions

Function AEP ‘
_exit () NRQ
_Exit() NRQ
assert () NRQ
atexit() NRQ
clock() NRQ
execl () NRQ
execle () NRQ
execlp () NRQ
execv () NRQ
execve () NRQ
execvp () NRQ
exit () NRQ
fork() NRQ
getpgrp() NRQ
getpid () NRQ
getppid () NRQ
setsid() NRQ
sleep () NRQ
times () NRQ
wait() NRQ
waitpid () NRQ

B.4.1.3 Job Control Function Behavior

The functions listed in Table B-5 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-5: POSIX_JOB_CONTROL Functions

Function AEP ‘
setpgid() NRQ
tcgetpgrp() NRQ
tcsetpgrp() NRQ

B.4.1.4 Signals Function Behavior

Operating systems on embedded processors typically support neither signaling nor exception
handling. POSIX does not define behaviors associated with divide by zero or overflow /

4

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

underflow. Signaling methods introduced as part of POSIX.1c are more consistent with the
multi-threaded, single process model of a resource constrained processing environment.

The functions listed in Table B-6 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1, except for the following constraints:

1. An application that conforms to the AEP shall not result in abnormal termination
of the process because this profile does not support multiple processes.

2. An application that conforms to the AEP shall not call the kill() function with a
negative argument because this profile does not require process group
functionality.

Table B-6: POSIX_SIGNALS Functions

Function AEP
abort() MAN
alarm()* NRQ
kill() MAN
pause() MAN
raise() MAN
sigaction() MAN
sigaddset() MAN
sigdelset() MAN
sigemptyset() MAN
sigfillset() MAN
sigismember() MAN
signal() MAN
sigpending() MAN
sigprocmask() MAN
sigsupend() MAN
sigwait() MAN

NOTES:
= * Functionality provided through the POSIX timers
= abort() is used to support assert() which is widely supported.

B.4.1.5 Signal Jump Function Behavior

The functions listed in Table B-7 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Table B-7: POSIX_SIGNAL_JUMP Functions

Function AEP ‘
siglongjmp() NRQ
sigsetimp() NRQ

B.4.1.6 User Group Function Behavior

The functions listed in Table B-8 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-8: POSIX_USER_GROUPS Functions

Function AEP ‘
getegid() NRQ
geteuid() NRQ
getgid() NRQ
getgroups() NRQ
getlogin() NRQ
getlogin_r() NRQ
getuid() NRQ
setegid() NRQ
seteuid() NRQ
setgid() NRQ
setuid() NRQ

B.4.1.7 File System Function Behavior

The functions listed in Table B-9 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-9: POSIX_FILE_SYSTEM Functions

Function AEP ‘
access() MAN
chdir() MAN
closedir() MAN
creat() MAN
fpathconf() MAN
fstat() MAN
getcwd() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘
link() MAN
mkdir() MAN
opendir() MAN
pathconf() MAN
readdir() MAN
readdir_r() MAN
remove() MAN
rename() MAN
rewinddir() MAN
rmdir() MAN
stat() MAN
tmpfile() NRQ
tmpnam() NRQ
unlink() MAN
utime() MAN

NOTE:
= POSIX file system not generally supported in embedded operating systems.

B.4.1.8 File Attributes Function Behavior

The functions listed in Table B-10 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1, except for the following constraint:

1. An application that conforms to the AEP shall be guaranteed that the file mode
creation mask for any object created by any process is S-IRWXU; that is, the
object shall be fully accessible to the creator.

Table B-10: POSIX_FILE_ATTRIBUTES Functions

Function AEP ‘
chmod() NRQ
chown() NRQ
fchmod() NRQ
fchown() NRQ
umask() NRQ

NOTE:
= POSIX file system not generally supported in embedded operating systems

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

B.4.1.9 File and Directory Management Function Behavior

The functions listed in Table B-11 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-11: POSIX_FD_MGMT Functions

Function AEP
dup() NRQ
dup2() NRQ
fentl() NRQ
fgetpos() NRQ
fseek() MAN
fseeko() MAN
fsetpos() NRQ
ftell() MAN
ftello() MAN
ftruncate() NRQ
Iseek() MAN
rewind() MAN

NOTE:
= POSIX file system not generally supported in embedded operating systems.

B.4.1.10 Device I/O Function Behavior

The functions listed in Table B-12 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-12: POSIX_DEVICE_IO Functions

Function AEP ‘ Function AEP ‘
clearerr() MAN fgets() MAN
close() MAN fileno() MAN
fclose() MAN fopen() MAN
fdopen() MAN fprintf() MAN
feof() MAN fputc() MAN
ferror() MAN fputs() MAN
fflush() MAN fread() MAN
fgetc() MAN freopen() MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘ Function AEP ‘
fscanf() MAN read() MAN
fwrite() MAN scanf() NRQ
getc() MAN setbuf() MAN
getchar() MAN setvbuf() MAN
gets() NRQ ungetc() MAN
open() MAN viprintf() NRQ
perror() MAN vfscanf() NRQ
printf() MAN vprintf() NRQ
putc() MAN vscanf() NRQ
putchar() MAN write() MAN
puts() NRQ

NOTE:

= POSIX streams not generally supported in embedded operating systems.

B.4.1.11 Device-Specific Function Behavior

The functions listed in Table B-13 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-13: POSIX_DEVICE_SPECIFIC Functions

Function AEP
cfgetispeed() NRQ
cfgetospeed() NRQ
cfsetispeed() NRQ
cfsetospeed() NRQ
ctermid() NRQ
isatty() NRQ
tcdrain() NRQ
tcflow() NRQ
tcflush() NRQ
tcgetattr() NRQ
tcsendbreak() NRQ
tcsetattr() NRQ
ttyname() NRQ
ttyname_r() NRQ

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

B.4.1.12 System Database Function Behavior

The functions listed in Table B-14 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-14: POSIX_SYSTEM_DATABASE Functions

Function AEP ‘
getgrgid() NRQ
getgrgid_r() NRQ
getgrnam() NRQ
getgrnam_r() NRQ
getpwnam() NRQ
getpwnam_r() NRQ
getpwuid() NRQ
getpwuid_r() NRQ

B.4.1.13 Pipe Function Behavior

The function listed in Table B-15 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-15: POSIX_PIPE_Function

Function AEP ‘
pipe() NRQ

B.4.1.14 FIFO Function Behavior

The function listed in Table B-16 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-16: POSIX_FIFO Function

Function ‘ AEP
mkfifo() NRQ

B.4.1.15 C Language-Specific Support Services Function Behavior

The functions listed in Table B-17 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

10

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Table B-17: POSIX_C LANG_SUPPORT Functions

Function AEP ‘ Function AEP ‘
fesetenv() NRQ isdigit() MAN
abs() MAN isgraph() MAN
asctime() MAN islower() MAN
asctime_r() MAN isprint() MAN
atof() MAN ispunct() MAN
atoi() MAN isspace() MAN
atol() MAN isupper() MAN
atoll() NRQ isxdigit() MAN
bsearch() MAN labs() MAN
calloc() MAN Idiv() NRQ
ctime() MAN llabs() NRQ
ctime_r() MAN ldiv() NRQ
difftime() NRQ localeconv() NRQ
div() NRQ localtime() MAN
feclearexcept() NRQ localtime_r() MAN
fegetenv() NRQ malloc() MAN
fegetexceptflag() NRQ memchr() MAN
fegetround() NRQ memcmp() MAN
feholdexcept() NRQ memcpy() MAN
feraiseexcept() NRQ memmove() MAN
fesetexceptflag() NRQ memset() MAN
fesetround() NRQ mktime() MAN
fetestexcept() NRQ gsort() MAN
feupdateenv() NRQ rand() MAN
free() MAN rand_r() MAN
gmtime() MAN realloc() MAN
gmtime_r() MAN setlocale () MAN
imaxabs() NRQ snprintf() MAN
imaxdiv() NRQ sprintf() NRQ
isalnum() MAN srand() MAN
isalpha() MAN sscanf() MAN
isblank() MAN strcat() NRQ
iscntrl() MAN strchr() MAN

11

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function Y= ‘ Function AEP ‘
stremp() MAN strtol() MAN
strcoll() MAN strtold() NRQ
strepy() NRQ strtoll() NRQ
strespn() MAN strtoul() MAN
strerror() MAN strtoull() NRQ
strerror_r() MAN strtoumax() NRQ
strftime() MAN strxfrm() MAN
strlen() MAN time() MAN
strncat() MAN tolower() MAN
strncmp() MAN toupper() MAN
strnepy() MAN tzname, NRQ
strpbrk() MAN tzset() NRQ
strrchr() MAN va_arg() MAN
strspn() MAN va_copy() NRQ
strstr() MAN va_end() MAN
strtod() MAN va_start() MAN
strtof() NRQ vsnprintf() MAN
strtoimax() NRQ vsprintf() NRQ
strtok() MAN vsscanf() NRQ
strtok_r() MAN

NOTE:
= Support for dynamic memory allocation is essential to re-entrant object-oriented design.

B.4.1.16 C Language-Specific Mathematical Function Behavior

The functions listed in Table B-18 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-18: POSIX_C_LANG_MATH Functions

Function AEP ‘ Function AEP ‘
acos() MAN asin() MAN
acosf() NRQ asinf() NRQ
acosh() NRQ asinh() NRQ
acoshf() NRQ asinhf() NRQ
acoshl() NRQ asinhl() NRQ
acosl() NRQ asinl() NRQ

12

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘ Function AEP ‘
atan() MAN cbrtl() NRQ
atan2() MAN ccos() NRQ
atan2f() NRQ ccosf() NRQ
atan2l() NRQ Ccosh() NRQ
atanf() NRQ ccoshf() NRQ
atanh() NRQ ccoshl() NRQ
atanhf() NRQ ccosl() NRQ
atanhl() NRQ ceil() MAN
atanl() NRQ ceilf() NRQ
cabs() NRQ ceill() NRQ
cabsf() NRQ cexp() NRQ
cabsl() NRQ cexpf() NRQ
cacos() NRQ cexpl() NRQ
cacosf() NRQ Cimag() NRQ
cacosh() NRQ cimagf() NRQ
cacoshf() NRQ cimagl() NRQ
cacoshl() NRQ clog() NRQ
cacosl() NRQ clogf() NRQ
carg() NRQ clogl() NRQ
cargf() NRQ conj() NRQ
cargl() NRQ conijf() NRQ
casin() NRQ conjl() NRQ
casinf() NRQ copysign() NRQ
casinh() NRQ copysignf() NRQ
casinhf() NRQ copysignl() NRQ
casinhl() NRQ cos() MAN
casinl() NRQ cosf() NRQ
catan() NRQ cosh() MAN
catanf() NRQ coshf() NRQ
catanh() NRQ coshl() NRQ
catanhf() NRQ cosl() NRQ
catanhl() NRQ cpow() NRQ
catanl() NRQ cpowfi() NRQ
cbrt() NRQ cpowl() NRQ
cbrtf() NRQ cproj() NRQ

13

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘ Function AEP ‘
cprojf() NRQ fabs() MAN
cprojl() NRQ fabsf() NRQ
creal() NRQ fabsl() NRQ
crealf() NRQ fdim() NRQ
creall() NRQ fdimf() NRQ
csin() NRQ fdiml() NRQ
csinf() NRQ floor() MAN
csinh() NRQ floorf() NRQ
csinhf() NRQ floorl() NRQ
csinhl() NRQ fma() NRQ
csinl() NRQ fmaf() NRQ
csart() NRQ fmal() NRQ
csqrtf() NRQ fmax() NRQ
csqrtl() NRQ fmaxf() NRQ
ctan() NRQ fmaxl() NRQ
ctanf() NRQ fmin() NRQ
ctanh() NRQ fminf() NRQ
ctanhf() NRQ fminl() NRQ
ctanhl() NRQ fmod() MAN
ctanl() NRQ fmodf() NRQ
erf() NRQ fmodl() NRQ
erfc() NRQ fpclassify() NRQ
erfcf() NRQ frexp() MAN
erfcl() NRQ frexpf() NRQ
erff() NRQ frexpl() NRQ
erfl() NRQ hypot() NRQ
exp() MAN hypot() NRQ
exp2() NRQ hypotl() NRQ
exp2f() NRQ ilogb() NRQ
exp2l() NRQ ilogbf() NRQ
expf() NRQ ilogbl() NRQ
expl() NRQ isfinite() NRQ
expm1() NRQ isgreater() NRQ
expmaf() NRQ isgreaterequal() NRQ
expm1l() NRQ isinf() NRQ

14

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘ Function AEP ‘
isless() NRQ Irintl() NRQ
islessequal() NRQ Iround() NRQ
islessgreater() NRQ Iroundf() NRQ
isnan() NRQ Iroundl() NRQ
isnormal() NRQ modf() MAN
isunordered() NRQ modff() NRQ
Idexp() MAN modfl() NRQ
[dexpfi() NRQ nan() NRQ
Idexpl() NRQ nanf() NRQ
lgammay() NRQ nanl() NRQ
lgammarf() NRQ nearbyint() NRQ
lgammal() NRQ nearbyintf() NRQ
Irint() NRQ nearbyintl() NRQ
[Irintf() NRQ nextafter() NRQ
lIrintl() NRQ nextafterf() NRQ
lIround() NRQ nextafterl() NRQ
lIroundf() NRQ nexttoward() NRQ
lIroundI() NRQ nexttowardf() NRQ
log() MAN nexttowardI() NRQ
l0g10() MAN pow() MAN
log10f£() NRQ powfi() NRQ
l0g10I() NRQ powl() NRQ
log1p() NRQ remainder() NRQ
log1pf() NRQ remainderf() NRQ
log1pl() NRQ remainderl() NRQ
log2() NRQ remquo() NRQ
log2f() NRQ remquof() NRQ
log2l() NRQ remquol() NRQ
logb() NRQ rint() NRQ
logbf() NRQ rintf() NRQ
logbl() NRQ rintl() NRQ
logf() NRQ round() NRQ
logl() NRQ roundf() NRQ
Irint() NRQ roundl() NRQ
Irintf() NRQ scalbin() NRQ

15

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘ Function AEP ‘
scalblnf() NRQ sqrtl() NRQ
scalbinl() NRQ tan() MAN
scalbn() NRQ tanf() NRQ
scalbnf() NRQ tanh() MAN
scalbnl() NRQ tanhf() NRQ
signbit() NRQ tanhl() NRQ
sin() MAN tanl() NRQ
sinf() NRQ tgammay() NRQ
sinh() MAN tgammarf() NRQ
sinhf() NRQ tgammal() NRQ
sinhl() NRQ trunc() NRQ
sinl() NRQ truncf() NRQ
sqrt() MAN truncl() NRQ
sqrtf() NRQ

B.4.1.17 C Language-Specific Non-local Jump Function Behavior.

The functions listed in Table B-19 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-19: POSIX_C_LANG_JUMP Functions

Function AEP ‘
longjmp() NRQ
setjmp() NRQ

NOTE:
= This is a form of context switch used to support a non-local exit.

B.4.1.18 POSIX Semaphore Function Behavior

The functions listed in Table B-20 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-20. POSIX_SEMAPHORES Functions

Function AEP ‘
sem_close() MAN
sem_destroy() MAN
sem_getvalue() MAN
sem_init() MAN

16

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘
sem_open() MAN
sem_post() MAN
sem_trywait() MAN
sem_unlink() MAN
sem_wait() MAN

B.4.1.19 POSIX Timer Function Behavior

The functions listed in Table B-21 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-21. POSIX_TIMERS Functions

Function AEP

clock _getres() MAN
clock gettime() MAN
clock_settime() MAN
nanosleep() MAN
timer_create() MAN
timer_delete() MAN
timer_getoverrun() MAN
timer_gettime() MAN
timer_settime() MAN

B.4.1.20 POSIX Threading Function Behavior

The functions listed in Table B-22 shall behave as described in the applicable clauses of the
referenced POSIX specifications contained in Table B-1.

Table B-22. POSIX_THREADS_BASE Functions

Function AEP ‘
pthread_atfork() NRQ
pthread_attr xxx() MAN
pthread_cancel() MAN
pthread_cleanup_xxx() MAN
pthread_cond_xxx() MAN
pthread_condattr xxx() MAN
pthread_create() MAN
pthread_detach() MAN

17

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘
pthread_equal() MAN
pthread_exit() MAN
pthread_getschedparam() MAN
pthread_getspecific() MAN
pthread_join() MAN
pthread_key xxx() MAN
pthread_kill() MAN
pthread_mutex_xxx() MAN
pthread_mutexattr_xxx() MAN
pthread_once() MAN
pthread_self() MAN
pthread_setcancelstate() MAN
pthread_setcanceltype() MAN
pthread_setschedparam() MAN
pthread_setspecific() MAN
pthread_sigmask() MAN
pthread_testcancel() MAN

B.4.1.21 POSIX Thread Safe Option Requirements Behavior
The function listed in Table B-23shall behave as described in the referenced clause.

Table B-23: POSIX_THREAD_SAFE_FUNCTIONS Functions

Function AEP Function AEP
asctime_r() MAN getpwuid_r() NRQ
ctime_r() MAN gmtime_r() MAN
flockfile() NRQ localtime_r() MAN
ftrylockfile() NRQ putc_unlocked() NRQ
funlockfile() NRQ putchar_unlocked() NRQ
getc_unlocked() NRQ rand_r() MAN
getchar_unlocked() NRQ readdir_r() MAN
getgrgid_r() NRQ strerror_r() MAN
getgrnam_r() NRQ strtok_r() MAN
getlogin_r() NRQ ttyname_r() NRQ
getpwnam_r() NRQ

18

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

B.4.1.22 XSI Thread Mutex Ext Option Requirements Behavior
The function listed in Table B-24 shall behave as described in the referenced clause.

Table B-24 XSI_THREAD_MUTEX_EXT Functions

Function AEP
pthread_mutexattr_gettype() MAN
pthread_mutexattr_settype() MAN

B.5 POSIX STANDARD C LIBRARY HEADER FILES

The Standard C Library header files listed in Table B-25 shall be included within the AEP as
described in the referenced clause. All symbols (other than operations) included within the
header files with a MAN or PRT designation are considered elements of the profile.

Table B-25 POSIX Standard C Library Header Files

Header File AEP Header File AEP
assert.h NRQ signal.h MAN
complex.h NRQ stdarg.h PRT
ctype.h MAN stdbool.h NRQ
errno.h MAN stddef.h NRQ
fenv.h NRQ stdint.h NRQ
float.h NRQ stdio.h PRT
inttypes.h NRQ stdlib.h PRT
iS0646.h NRQ string.h PRT
limits.h MAN tgmath.h NRQ
locale.h PRT time.h PRT
math.h PRT wchar.h NRQ
setjmp.h NRQ wctype.h NRQ

The remainder of this section is non-normative and provides a detailed view of the Standard C
Library Functions that are included within the AEP relative to the header file in which they are
defined.

19

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

B.5.1 DiagnosticS<assert.h>

Table B-26: <assert.h> Functions

void assert(scalar expression) ; NRQ

B.5.2 Comp|ex<complex .h>

Table B-27: <complex.h> Functions

Function AEP ‘
double complex cacos(double complex z); NRQ
float complex cacosf(float complex z); NRQ
long double complex cacosl(long double complex z); NRQ
double complex casin(double complex z) ; NRQ
float complex casinf (float complex z); NRQ
long double complex casinl (long double complex z); NRQ
double complex catan(double complex z); NRQ
float complex catanf(float complex z); NRQ
long double complex catanl (long double complex z); NRQ
double complex ccos (double complex z) ; NRQ
float complex ccosf(float complex z); NRQ
long double complex ccosl(long double complex z); NRQ
double complex csin(double complex z) ; NRQ
float complex csinf (float complex z); NRQ
long double complex csinl (long double complex z); NRQ
double complex ctan(double complex z) ; NRQ
float complex ctanf (float complex z); NRQ
long double complex ctanl (long double complex z); NRQ
double complex cacosh(double complex z) ; NRQ
float complex cacoshf (float complex z); NRQ
long double complex cacoshl (long double complex z); NRQ
double complex casinh(double complex z) ; NRQ
float complex casinhf (float complex z); NRQ
long double complex casinhl (long double complex z); NRQ
double complex catanh(double complex z); NRQ
float complex catanhf (float complex z); NRQ

20

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function AEP ‘
long double complex catanhl (long double complex z) ; NRQ
double complex ccosh(double complex z); NRQ
float complex ccoshf (float complex z); NRQ
long double complex ccoshl (long double complex z) ; NRQ
double complex csinh(double complex z) ; NRQ
float complex csinhf (float complex z); NRQ
long double complex csinhl (long double complex z) ; NRQ
double complex ctanh(double complex z); NRQ
float complex ctanhf (float complex z); NRQ
long double complex ctanhl (long double complex z); NRQ
double complex cexp (double complex z) ; NRQ
float complex cexpf (float complex z); NRQ
long double complex cexpl (long double complex z); NRQ
double complex clog(double complex z) ; NRQ
float complex clogf (float complex z); NRQ
long double complex clogl (long double complex z); NRQ
double cabs (double complex z) ; NRQ
float cabsf(float complex z); NRQ
long double cabsl (long double complex z); NRQ
dOljlble complex cpow(double complex x, double complex NRQ
y);
float complex cpowf (float complex x, float complex y); NRQ
long double complex cpowl (long double complex x, long NRQ
double complex y) ;
double complex csqgrt(double complex z); NRQ
float complex csqgrtf(float complex z); NRQ
long double complex csgrtl(long double complex z) ; NRQ
double carg(double complex z); NRQ
float cargf(float complex z); NRQ
long double cargl (long double complex z); NRQ
double cimag(double complex z) ; NRQ
float cimagf (float complex z); NRQ
long double cimagl (long double complex z); NRQ
double complex conj(double complex z); NRQ
float complex conjf (float complex z); NRQ
long double complex conjl(long double complex z); NRQ

21

SCA version 2.2.2A <ICWG Approved>

AMENDED / 22 October 2008

Function AEP ‘
double complex cproj(double complex z); NRQ
float complex cprojf(float complex z); NRQ
long double complex cprojl(long double complex z); NRQ
double creal (double complex z) ; NRQ
float crealf (float complex z); NRQ
long double creall (long double complex z); NRQ

B.5.3 Character handling<ctype .h>
Table B-28: <ctype . h> Functions
Function ‘ AEP

int isalnum(int c); MAN

int isalpha(int c); MAN

int isblank(int c); MAN

int iscntrl(int c); MAN

int isdigit(int c); MAN

int isgraph(int c); MAN

int islower (int c); MAN

int isprint(int c); MAN

int ispunct(int c); MAN

int isspace(int c); MAN

int isupper (int c); MAN

int isxdigit(int c); MAN

int tolower (int c); MAN

int toupper (int c); MAN

B.5.4 Floating-point environment<fenv.h>
Table B-29: <fenv . h> Functions
Function ‘ AEP ‘

void feclearexcept(int excepts) ; NRQ
void fegetexceptflag(fexcept t *flagp, int excepts); NRQ
void feraiseexcept(int excepts) ; NRQ
void fesetexceptflag(const fexcept t *flagp, int excepts); NRQ
int fetestexcept(int excepts) ; NRQ

22

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
int fegetround(void) ; NRQ
int fesetround(int round) ; NRQ
void fegetenv(fenv_t *envp); NRQ
int feholdexcept(fenv_t *envp); NRQ
void fesetenv(const fenv_t *envp); NRQ
void feupdateenv(const fenv_t *envp) ; NRQ

B.5.5 Format conversion of integer typeS<inttypes.h>

Table B-30: <inttypes.h> Functions

Function ‘ AEP ‘
intmax t imaxabs (intmax_t j); NRQ
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom); NRQ
intmax_t strtoimax(const char * restrict nptr, char ** NRQ

restrict endptr, int base);

uintmax_t strtoumax(const char * restrict nptr, char ** NRQ
restrict endptr, int base);

intmax_t wcstoimax (const wchar_t * restrict nptr, wchar_t NRQ
** restrict endptr, int base);

uintmax_t wcstoumax (const wchar t * restrict nptr, wchar_t NRQ
** restrict endptr, int base);

B.5.6 Localization<1ocale.h>

Table B-25: <10cale.h> Functions

Function ‘ AEP ‘
char *setlocale(int category, const char *locale); MAN
struct lconv *localeconv(void) ; NRQ

B.5.7 MathematicS <math .h>

The Macros and definitions introduced by C99 and IEEE TR 19768 are not required by the
profile.

Table B-26: <math.h> Functions

Function ‘ AEP ‘
double acos(double x); MAN
long double acosl(long double x); NRQ
double asin(double x); MAN

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
long double asinl (long double x); NRQ
double atan(double x); MAN
long double atanl (long double x); NRQ
double atan2(double y, double x); MAN
long double atan2l (long double y, long double x); NRQ
double cos (double x); MAN
long double cosl(long double x); NRQ
double sin(double x); MAN
long double sinl(long double x); NRQ
double tan (double x); MAN
long double tanl(long double x); NRQ
double acosh(double x); NRQ
long double acoshl (long double x); NRQ
double asinh(double x) ; NRQ
long double asinhl (long double x) ; NRQ
double atanh(double x) ; NRQ
long double atanhl (long double x) ; NRQ
double cosh(double x); MAN
long double coshl (long double x); NRQ
double sinh(double x); MAN
long double sinhl(long double x); NRQ
double tanh(double x); MAN
long double tanhl (long double x); NRQ
double exp (double x); MAN
long double expl(long double x); NRQ
double exp2 (double x); NRQ
long double exp2l(long double x); NRQ
double expml (double x); NRQ
long double expmll (long double x) ; NRQ
double frexp (double value, int *exp); MAN
long double frexpl (long double value, int *exp); NRQ
int ilogb (double x); NRQ
int ilogbl (long double x); NRQ
double ldexp (double x, int exp); MAN

24

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
long double ldexpl (long double x, int exp); NRQ
double log(double x) ; MAN
long double logl(long double x); NRQ
double 1loglO (double x); MAN
long double 1logl0l(long double x) ; NRQ
double loglp(double x) ; NRQ
long double loglpl(long double x) ; NRQ
double log2(double x); NRQ
long double log2l(long double x); NRQ
double logb (double x); NRQ
long double logbl (long double x); NRQ
double modf (double value, double *iptr); MAN
long double modfl (long double value, long double *iptr); NRQ
double scalbn(double x, int n); NRQ
long double scalbnl(long double x, int n); NRQ
double scalbln(double x, long int n); NRQ
long double scalblnl (long double x, long int n); NRQ
double cbrt(double x); NRQ
long double cbrtl(long double x); NRQ
double fabs (double x); MAN
long double fabsl (long double x); NRQ
double hypot(double x, double y); NRQ
long double hypotl (long double x, long double y); NRQ
double pow(double x, double y); MAN
long double powl (long double x, long double y); NRQ
double sqgrt(double x); MAN
long double sgrtl(long double x); NRQ
double erf (double x); NRQ
long double erfl(long double x); NRQ
double erfc(double x); NRQ
long double erfcl (long double x); NRQ
double lgamma (double x) ; NRQ

25

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
long double lgammal (long double x); NRQ
double tgamma (double x) ; NRQ
long double tgammal (long double x); NRQ
double ceil (double x); MAN
long double ceill(long double x); NRQ
double floor (double x); MAN
long double floorl (long double x); NRQ
double nearbyint (double x); NRQ
long double nearbyintl (long double x); NRQ
double rint(double x); NRQ
long double rintl (long double x); NRQ
long int lrint(double x); NRQ
long int lrintl (long double x); NRQ
long long int 1llrint(double x) ; NRQ
long long int 1llrintl (long double x) ; NRQ
double round(double x); NRQ
long double roundl (long double x) ; NRQ
long int lround(double x) ; NRQ
long int lroundl (long double x); NRQ
long long int llround(double x); NRQ
long long int 1llroundl (long double x); NRQ
double trunc(double x); NRQ
long double truncl (long double x); NRQ
double fmod(double x, double y); MAN
long double fmodl (long double x, long double y); NRQ
double remainder (double x, double y); NRQ
long double remainderl (long double x, long double y); NRQ
double remquo (double x, double y, int *quo); NRQ
iong double remquol (long double x, long double y,int NRQ

quo) ;

double copysign(double x, double y); NRQ
long double copysignl (long double x, long double y); NRQ
double nan(const char *tagp); NRQ

26

SCA version 2.2.2A <ICWG Approved>

AMENDED / 22 October 2008

Function ‘ AEP ‘
long double nanl (const char *tagp); NRQ
double nextafter (double x, double y); NRQ
long double nextafterl (long double x, long double y); NRQ
double nexttoward(double x, long double y); NRQ
long double nexttowardl (long double x, long double y); NRQ
double fdim(double x, double y); NRQ
long double fdiml (long double x, long double y); NRQ
double fmax(double x, double y); NRQ
long double fmaxl (long double x, long double y); NRQ
double fmin(double x, double y); NRQ
long double fminl (long double x, long double y); NRQ
double fma(double x, double y, double z); NRQ
i())r.lg double fmal (long double x, long double y,long double NRQ
float acosf(float x); NRQ
float asinf (float x); NRQ
float atanf (float x); NRQ
float atan2f (float y, float x); NRQ
float cosf(float x); NRQ
float sinf (float x); NRQ
float tanf (float x); NRQ
float acoshf (float x); NRQ
float asinhf (float x); NRQ
float atanhf (float x); NRQ
float coshf (float x); NRQ
float sinhf (float x); NRQ
float tanhf (float x); NRQ
float expf (float x); NRQ
float exp2f(float x); NRQ
float expmlf (float x); NRQ
float frexpf (float value, int *exp); NRQ
int ilogbf (float x); NRQ
float ldexpf (float x, int exp); NRQ

27

SCA version 2.2.2A <ICWG Approved>

AMENDED / 22 October 2008

Function ‘ AEP ‘
float logf(float x); NRQ
float loglOf (float x); NRQ
float loglpf (float x); NRQ
float log2f(float x); NRQ
float logbf (float x); NRQ
float modff (float value, float *iptr); NRQ
float scalbnf(float x, int n); NRQ
float scalblnf(float x, long int n); NRQ
float cbrtf(float x); NRQ
float fabsf (float x); NRQ
float hypotf (float x, float y); NRQ
float powf (float x, float y); NRQ
float sqrtf(float x); NRQ
float erff(float x); NRQ
float erfcf(float x); NRQ
float lgammaf (float x); NRQ
float tgammaf (float x); NRQ
float ceilf (float x); NRQ
float floorf (float x); NRQ
float nearbyintf (float x); NRQ
float rintf (float x); NRQ
long int lrintf (float x); NRQ
long long int llrintf (float x); NRQ
float roundf (float x); NRQ
long int lroundf (float x); NRQ
long long int llroundf (float x); NRQ
float truncf (float x); NRQ
float fmodf (float x, float y); NRQ
float remainderf (float x, float y); NRQ
float remquof (float x, float y, int *quo); NRQ
float copysignf (float x, float y); NRQ
float nanf (const char *tagp); NRQ

28

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ ==
float nextafterf(float x, float y); NRQ
float nexttowardf (float x, long double y); NRQ
float fdimf (float x, float y); NRQ
float fmaxf (float x, float y); NRQ
float fminf (float x, float y); NRQ
float fmaf(float x, float y, float z); NRQ

B.5.8 Nonlocal jumps<setimp.h>

Table B-27: <setjmp . h> Functions

Function ‘ AEP ‘
int setjmp (jmp_buf env); NRQ
void longjmp (jmp_buf env, int val); NRQ

B.5.9 Signal handling<signal.h>

Table B-28: <signal.h> Functions

Function ‘ AEP
void (*signal (int sig, void (*func) (int))) (int) ; MAN
int raise(int sig); MAN

B.5.10Variable arguments<stdarg.h>

Table B-29: <stdarg.h> Functions

Function ‘ AEP ‘
void va_arg(va_list ap, type); MAN
void va_copy(va_list dest, va_list src); NRQ
void va_end(va_list ap); MAN
void va_start(va_list ap, parmN); MAN

B.5.11 Input/output <stdio.h>

Table B-30: <stdio.h> Functions

Function ‘ AEP
int remove (const char *filename) ; MAN
int rename (const char *old, const char *new); MAN

29

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP
int fclose (FILE *stream) ; MAN
int £flush(FILE *stream); MAN
FILE *fopen(const char * restrict filename, const char * MAN

restrict mode) ;

FILE *freopen(const char * restrict filename, const char * | MAN
restrict mode,FILE * restrict stream);

void setbuf (FILE * restrict stream, char * restrict buf); MAN

int setvbuf (FILE * restrict stream, char * restrict MAN
buf,int mode, size_t size);

int fprintf(FILE * restrict stream, const char * restrict MAN

format, ...);

int fscanf (FILE * restrict stream, const char * restrict MAN
format, ...);

int printf(const char * restrict format, ...); MAN
int snprintf(char * restrict s, size_t n, const char * MAN
restrict format, ...);

int sscanf(const char * restrict s, const char * restrict MAN
format, ...);

int fgetc(FILE *stream); MAN
char *fgets(char * restrict s, int n, FILE * restrict MAN
stream) ;

int fputc(int c, FILE *stream); MAN
int fputs(const char * restrict s, FILE * restrict MAN
stream) ;

int getc(FILE *stream) ; MAN
int getchar (void) ; MAN
int putc(int ¢, FILE *stream); MAN
int putchar (int c); MAN
int ungetc(int ¢, FILE *stream); MAN
size_t fread(void * restrict ptr,size_t size, size_t MAN

nmemb, FILE * restrict stream);

size_t fwrite(const void * restrict ptr, size_t size, MAN
size_t nmemb, FILE * restrict stream);

int fseek (FILE *stream, long int offset, int whence); MAN
long int ftell (FILE *stream); MAN
void rewind (FILE *stream) ; MAN
void clearerr (FILE *stream) ; MAN
int feof (FILE *stream) ; MAN
int ferror (FILE *stream) ; MAN
void perror (const char *s); MAN

30

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP
FILE *tmpfile (void) ; NRQ
char *tmpnam(char *s); NRQ
int fgetpos (FILE * restrict stream, fpos t * restrict NRQ
pos) ;
int fsetpos (FILE *stream, const fpos_t *pos); NRQ
char *gets(char *s); NRQ
int puts(const char *s); NRQ
int scanf (const char * restrict format, ...); NRQ

int vfscanf (FILE * restrict stream, const char * restrict
: NRQ
format, va_list arg);

int vscanf (const char * restrict format, va_list arg); NRQ

int vsscanf (const char * restrict s, const char * restrict
C NRQ
format, va_list arg);

int sprintf(char * restrict s, const char * restrict

)
format, ...); NRQ

int vfprintf (FILE * restrict stream, const char * restrict NRQ
format, va_list argqg);

int vprintf(const char * restrict format, va_list arg); NRQ

int vsnprintf (char * restrict s, size t n, const char * MAN
restrict format, va_list arg);

int vsprintf (char * restrict s, const char * restrict

format, va_list arg); NRQ
(1) removed in favor of snprintf
B.5.12General utilitiesS<std1ib.h>
Table B-31: <std1ib.h> Functions
Function ‘ AEP ‘
double atof(const char *nptr); MAN
int atoi(const char *nptr); MAN
long int atol (const char *nptr); MAN
long long int atoll (const char *nptr); NRQ
double strtod(const char * restrict nptr, char ** restrict MAN
endptr) ;
long double strtold(const char * restrict nptr,char ** NRQ

restrict endptr);

long int strtol(const char * restrict nptr,char ** MAN
restrict endptr, int base);

long long int strtoll (const char * restrict nptr,char ** NRQ
restrict endptr, int base);

31

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
unsigned long int strtoul (const char * restrict nptr,char MAN
** restrict endptr, int base);
unsigned long long int strtoull (const char * restrict NRQ
nptr,char ** restrict endptr, int base);
int rand(void) ; MAN
void srand(unsigned int seed); MAN
void *calloc(size_t nmemb, size_t size); MAN
void free (void *ptr); MAN
void *malloc(size_t size); MAN
void *realloc(void *ptr, size_t size); MAN
void abort(void) ; MAN
void *bsearch(const void *key, const void *base,size_t MAN

nmemb, size_t size,int (*compar) (const void *, const void

*))

void gsort(void *base, size_t nmemb, size_t size,int MAN
(*compar) (const void *, const void ¥*));
int abs(int j); MAN
long int labs(long int j); MAN
long long int llabs(long long int j); NRQ
div_t div(int numer, int denom); NRQ
ldiv_t ldiv(long int numer, long int denom) ; NRQ
lldiv_t 1lldiv(long long int numer, long long int denom) ; NRQ
int mblen(const char *s, size_t n); NRQ
int mbtowc (wchar_t * restrict pwc,const char * restrict s, NRQ
size_t n);
int wctomb (char *s, wchar_t wchar); NRQ
size_t mbstowcs (wchar_t * restrict pwcs,const char * NRQ
restrict s, size_t n);
size_t wcstombs (char * restrict s, const wchar t * NRQ
restrict pwes, size_t n);
float strtof(const char * restrict nptr,char ** restrict

NRQ
endptr) ;
int atexit(void (*func) (void)) ; NRQ
void exit(int status); NRQ
void _Exit(int status); NRQ
char *getenv(const char *name) ; NRQ
int system(const char *string); NRQ

32

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

B.5.13String handling<string.h>

Table B-32: <string.h> Functions

Function ‘ AEP ‘
v<_>id *memcpy (void * restrict sl,const void * restrict s2, MAN
size_t n);
cl:xar *strncpy (char * restrict sl,const char * restrict s2, MAN
size_t n);
c1:1ar *strncat (char * restrict sl,const char * restrict s2, MAN
size_t n);
int memcmp (const void *sl, const void *s2, size_t n); MAN
int strcmp(const char *sl, const char *s2); MAN
int strcoll (const char *sl, const char *s2); MAN
int strncmp(const char *sl, const char *s2, size_t n); MAN
size_i.: strxfrm(char * restrict sl,const char * restrict MAN
s2, size_t n);
void *memchr (const void *s, int c, size_t n); MAN
char *strchr (const char *s, int c); MAN
size_t strcspn(const char *sl, const char *s2); MAN
char *strpbrk(const char *sl, const char *s2); MAN
char *strrchr (const char *s, int c); MAN
size_t strspn(const char *sl, const char *s2); MAN
char *strstr(const char *sl, const char *s2); MAN
char *strtok(char * restrict sl,const char * restrict s2); MAN
void *memset(void *s, int c, size_t n); MAN
size_t strlen(const char *s); MAN
void *memmove (void *sl, const void *s2, size_t n); MAN
char *strcat(char * restrict sl,const char * restrict s2); NRQ
char *strcpy(char * restrict sl,const char * restrict s2); NRQ
char *strerror (int errnum) ; MAN

B.5.14 Type-generic math <tgmath.h>

Table B-33: <tgmath.h> Functions

Function ‘ AEP ‘
acos NRQ
asin NRQ
atan NRQ

33

SCA version 2.2.2A <ICWG Approved>

AMENDED / 22 October 2008

Function ‘ AEP ‘
acosh NRQ
asinh NRQ
atanh NRQ
cos NRQ
sin NRQ
tan NRQ
cosh NRQ
sinh NRQ
tanh NRQ
exp NRQ
log NRQ
pow NRQ
sqgrt NRQ
fabs NRQ
atan2 NRQ
cbrt NRQ
ceil NRQ
copysign NRQ
erf NRQ
erfc NRQ
exp2 NRQ
expml NRQ
fdim NRQ
floor NRQ
fma NRQ
fmax NRQ
fmin NRQ
fmod NRQ
frexp NRQ
hypot NRQ
ilogb NRQ
ldexp NRQ
lgamma NRQ
llrint NRQ
llround NRQ

34

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
loglo0 NRQ
loglp NRQ
log2 NRQ
logb NRQ
lrint NRQ
lround NRQ
nearbyint NRQ
nextafter NRQ
nexttoward NRQ
remainder NRQ
remquo NRQ
rint NRQ
round NRQ
scalbn NRQ
scalbln NRQ
tgamma NRQ
trunc NRQ
carg NRQ
cimag NRQ
conj NRQ
cproj NRQ
creal NRQ

B.5.15Date and time <time . h>

Table B-34: <time . h> Functions

Function ‘ AEP ‘
clock_t clock(veid); MAN
time_t mktime (struct tm *timeptr); MAN
time_t time(time_t *timer); MAN
char *asctime (const struct tm *timeptr); MAN
char *ctime(const time_t *timer); MAN
struct tm *gmtime (const time_t *timer); MAN
struct tm *localtime(const time_t *timer); MAN

35

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
size_t strftime(char * restrict s,size_t maxsize,const MAN
char * restrict format,const struct tm * restrict
timeptr) ;
double difftime (time_t timel, time_t time0); NRQ

B.5.16 Extended multibyte/wide character utilitieS <wchar . h>

Table B-35: <wchar.h> Functions

Function ‘ AEP ‘
int fwprintf (FILE * restrict stream,const wchar t * NRQ
restrict format, ...);
int fwscanf (FILE * restrict stream,const wchar t * NRQ
restrict format, ...);
int swprintf(wchar t * restrict s, size t n,const wchar t NRQ
* restrict format, ...);
int swscanf (const wchar t * restrict s,const wchar t *

) NRQ
restrict format, ...);
int vfwprintf (FILE * restrict stream,const wchar t * NRQ
restrict format, va_list arg);
int vfwscanf (FILE * restrict stream,const wchar t * NRQ
restrict format, va_list arg):;
int vswprintf (wchar t * restrict s, size t n,const wchar t NRQ
* restrict format,va_list arg);
int vswscanf (const wchar t * restrict s,const wchar t * NRQ
restrict format,va_ list arg);
int vwprintf (const wchar t * restrict format,va_list arg); NRQ
int vwscanf (const wchar t * restrict format,va list arg); NRQ
int wprintf(const wchar_t * restrict format, ...); NRQ
int wscanf (const wchar t * restrict format, ...); NRQ
wint_t fgetwc (FILE *stream) ; NRQ
wchar t *fgetws (wchar t * restrict s, int n,FILE *

i NRQ
restrict stream);
wint_t fputwc(wchar_t c, FILE *stream); NRQ
int fputws(const wchar t * restrict s,FILE * restrict NRQ
stream) ;
int fwide (FILE *stream, int mode) ; NRQ
wint_t getwc(FILE *stream); NRQ
wint_t getwchar (void); NRQ
wint_t putwc(wchar t c, FILE *stream); NRQ
wint_t putwchar (wchar_t c); NRQ
wint_t ungetwc(wint_t c, FILE *stream); NRQ

36

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
double wcstod(const wchar t * restrict nptr,wchar t ** NRQ
restrict endptr);
float wcstof (const wchar t * restrict nptr,wchar t ** NRQ

restrict endptr) ;

long double wcstold(const wchar t * restrict nptr,wchar t NRQ
** restrict endptr);

long int wcstol (const wchar t * restrict nptr,wchar t ** NRQ
restrict endptr, int base);
long long int wcstoll (const wchar t * restrict NRQ
nptr,wchar t ** restrict endptr, int base);
unsigned long int wcstoul (const wchar t * restrict NRQ
nptr,wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull (const wchar t * restrict NRQ
nptr, wchar t ** restrict endptr, int base);
wchar t *wcscpy(wchar t * restrict sl,const wchar t * NRQ
restrict s2);
wchar t *wcsncpy(wchar t * restrict sl,const wchar t * NRQ
restrict s2, size_t n);
wchar t *wcscat(wchar t * restrict sl,const wchar t * NRQ
restrict s2);
wchar t *wcsncat(wchar t * restrict sl,const wchar t *

. - . NRQ
restrict s2, size_t n);
int wcscmp (const wchar_t *sl, const wchar_t *s2); NRQ
int wcscoll (const wchar_t *sl, const wchar_ t *s2); NRQ
int wcsncmp (const wchar t *sl, const wchar t *s2,size t NRQ
n) ;
size t wecsxfrm(wchar t * restrict sl,const wchar t * NRQ
restrict s2, size_t n);
wchar_t *wcschr(const wchar t *s, wchar t c); NRQ
size_t wcscspn(const wchar_t *sl, const wchar t *s2); NRQ
size_t wcslen(const wchar t *s); NRQ
wchar t *wcspbrk(const wchar t *sl, const wchar t *s2); NRQ
wchar_t *wcsrchr(const wchar_t *s, wchar_t c); NRQ
size_t wcsspn(const wchar t *sl, const wchar_t *s2); NRQ
wchar_t *wcsstr(const wchar_ t *sl, const wchar_t *s2); NRQ
wchar t *wcstok(wchar t * restrict sl, const wchar t * NRQ

restrict s2,wchar t ** restrict ptr);

wchar_t *wmemchr (const wchar_t *s, wchar_t c, size_t n); NRQ

int wmemcmp (wchar t * restrict sl,const wchar t * restrict NRQ
s2, size_t n);

wchar t *wmemcpy (wchar t * restrict sl,const wchar t *

i : . NRQ
restrict s2, size_t n);
wchar t *wmemmove (wchar t *sl, const wchar t *s2,size t NRQ
n);

37

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
wchar t *wmemset(wchar t *s, wchar t ¢, size_t n); NRQ
size t wcsftime (wchar t * restrict s, size t maxsize,const
wchar t * restrict format,const struct tm * restrict NRQ
timeptr) ;
wint_t btowc(int c); NRQ
int wctob(wint_t c); NRQ
int mbsinit(const mbstate_t *ps); NRQ
size t mbrlen(const char * restrict s, size t n,mbstate t NRQ

* restrict ps);

size t mbrtowc(wchar t * restrict pwc, const char *

restrict s, size_t n,mbstate_t * restrict ps); NRQ
size t wcrtomb (char * restrict s, wchar t wc,mbstate t * NRQ
restrict ps);

size F mbsrtowc;(wchar t * restrict dst,co?st cha? *x NRQ
restrict src, size_t len,mbstate_t * restrict ps);

size F wcsrtomb§(char * restrict dst,const_wchar F *x NRQ
restrict src, size_t len,mbstate_t * restrict ps);

B.5.17Wide character classification and mapping utilitieS <wctype . h>
Table B-36: <wctype . h> Functions
Function ‘ AEP ‘

wint_t wctrans_t wctype_ t WEOF NRQ
int iswalnum(wint_t wc); NRQ
int iswalpha(wint_t wc); NRQ
int iswblank(wint_t wc); NRQ
int iswentrl(wint_t wc); NRQ
int iswdigit(wint_t wc); NRQ
int iswgraph(wint_t wc); NRQ
int iswlower (wint_t wc); NRQ
int iswprint(wint_t wc); NRQ
int iswpunct(wint_t wc); NRQ
int iswspace(wint_t wc); NRQ
int iswupper (wint_t wc); NRQ
int iswxdigit(wint_t wc); NRQ
int iswctype(wint_t wc, wctype_ t desc); NRQ
wctype t wctype (const char *property) ; NRQ
wint_t towlower (wint_t wc); NRQ
wint_t towupper (wint_t wc); NRQ

38

SCA version 2.2.2A <ICWG Approved> AMENDED / 22 October 2008

Function ‘ AEP ‘
wint_t towctrans(wint_t wc, wctrans_t desc); NRQ
wctrans_t wctrans(const char *property); NRQ

39

		Software Communications Architecture Specification

		Appendix B

		SCA APPLICATION ENVironment PROFILE

		Revision Summary

		Table of Contents

		Appendix B SCA Application Environment Profile

		B.1 Scope

		B.2 Conventions

		B.3 Standards

		B.4 Constraints

		B.4.1 POSIX.1

		B.4.1.1 Single Process Function Behavior

		B.4.1.2 Multi Process Function Behavior

		B.4.1.3 Job Control Function Behavior

		B.4.1.4 Signals Function Behavior

		B.4.1.5 Signal Jump Function Behavior

		B.4.1.6 User Group Function Behavior

		B.4.1.7 File System Function Behavior

		B.4.1.8 File Attributes Function Behavior

		B.4.1.9 File and Directory Management Function Behavior

		B.4.1.10 Device I/O Function Behavior

		B.4.1.11 Device-Specific Function Behavior

		B.4.1.12 System Database Function Behavior

		B.4.1.13 Pipe Function Behavior

		B.4.1.14 FIFO Function Behavior

		B.4.1.15 C Language-Specific Support Services Function Behavior

		B.4.1.16 C Language-Specific Mathematical Function Behavior

		B.4.1.17 C Language-Specific Non-local Jump Function Behavior.

		B.4.1.18 POSIX Semaphore Function Behavior

		B.4.1.19 POSIX Timer Function Behavior

		B.4.1.20 POSIX Threading Function Behavior

		B.4.1.21 POSIX Thread Safe Option Requirements Behavior

		B.4.1.22 XSI Thread Mutex Ext Option Requirements Behavior

		B.5 POSIX Standard C Library header FILES

		B.5.1 Diagnostics <assert.h>

		B.5.2 Complex <complex.h>

		B.5.3 Character handling <ctype.h>

		B.5.4 Floating-point environment <fenv.h>

		B.5.5 Format conversion of integer types <inttypes.h>

		B.5.6 Localization <locale.h>

		B.5.7 Mathematics <math.h>

		B.5.8 Nonlocal jumps <setjmp.h>

		B.5.9 Signal handling <signal.h>

		B.5.10 Variable arguments <stdarg.h>

		B.5.11 Input/output <stdio.h>

		B.5.12 General utilities <stdlib.h>

		B.5.13 String handling <string.h>

		B.5.14 Type-generic math <tgmath.h>

		B.5.15 Date and time <time.h>

		B.5.16 Extended multibyte/wide character utilities <wchar.h>

		B.5.17 Wide character classification and mapping utilities <wctype.h>

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

APPENDIX A: GLOSSARY

FINAL /15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

REVISION SUMMARY

Version Revisions

1.0 Initial Release

1.1 no changes

2.0 no changes

2.1 no changes

2.2 no changes

2.2.1 | no changes

2.2.2 | Updated

SCA version 2.2.2

APPENDIX A GLOSSARY

A.1l ABBREVIATIONS AND ACRONYMS

Abbreviation

Definition

FINAL / 15 May 2006

AEP Application Environment Profile

API Application Program Interface

CF Core Framework

CORBA Common Object Request Broker Architecture
DCD Device Configuration Descriptor

DMD DomainManager Configuration Descriptor
DPD Device Package Descriptor

DSP Digital Signal Processor

DTD Document Type Definition

FPGA Field Programmable Gate Array

GPP General Purpose Processor

HCI Human-Computer Interface

ID Identification, Identifier

IDL Interface Definition Language

IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IOR Interoperable Object Reference

ISO International Standards Organization

N/A Not Applicable

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

oS Operating System

SCA version 2.2.2 FINAL /15 May 2006

Abbreviation ‘ Definition
OsSl Open System Interconnection
POSIX® Portable Operating System Interface
SAD Software Assembly Descriptor
SCA Software Communications Architecture
SCD Software Component Descriptor
SPD Software Package Descriptor
SRD Support and Rationale Document (for the SCA)
SW Software
UML Unified Modeling Language
uulID Universally Unique ldentifier
XML eXtensible Markup Language

A.2 DEFINITIONS

Application

The SCA defines an Application interface class that provides the interface for the control,
configuration, and status of an instantiated application. An Application controls its components
and establishes connections to other applications.

application

Generically, an executable software program which may contain one or more modules. Within the
SCA, an application consists of one or more software modules which implement the Base
Application Interfaces and which are identified within a Software Assembly Descriptor file. When
loaded and executed, these modules create one or more components which comprise the
application.

Software designed to fulfill the needs of a user.

ApplicationFactory

An instantiation of the ApplicationFactory interface is used to create an instance of an application.
The domain manager creates an application factory for each Software Assembly Descriptor that is
installed.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
! |[EEE Standard Glossary of Software Engineering Terminology, Std. 610.12-1990

A-2

SCA version 2.2.2 FINAL /15 May 2006

Application Program Interface

An Application Program Interface (API) is the definition of operations and attributes contained in a
set of related interfaces that provide a coherent functional capability.

assemblycontroller

The assemblycontroller element of the Software Assembly Descriptor indicates the component that
is the main resource controller for an application.

Attribute (IDL)

An IDL attribute is a variable that contains a value of a specific type. Attributes may be declared
with read-write or read-only access, and the appropriate get and set operations are generated when
the IDL is compiled.

Child Device

A device intended to be strongly associated to a related parent device. See Parent Device.
Client

A component that invokes an operation of another component.

Commercial Standard

A commercial standard is a set of requirements maintained for common use by industry. As used
in this specification, commercial standards are available for use without restrictive licensing and
are supported by commercially available hardware or software.

Component

A software module or element that conforms to and implements an set of interfaces.
Consumer

A software component that can receive user data traffic.

CORBA Component

A software component that implements one ore more CORBA interfaces. A CORBA component
within this specification is described by a Software Component Descriptor.

Core Application
A software implementation of one or more of the Framework Control or Service Interfaces.
Core Framework (CF)

The Core Framework is the set of open application-layer interfaces and services defined within this
specification. The CF is to provide the essential (“core”) set of interfaces needed to provide an
abstraction of the underlying software and hardware layers for software application designers.

A-3

SCA version 2.2.2 FINAL /15 May 2006

Destroy

The act of releasing / terminating a software object or component.

Device

1. Hardware device refers to a physical hardware element (typically a module performing a
function or set of functions).

2. The SCA defines a Device interface class. This interface is an abstraction of a hardware
device that defines the capabilities, attributes, and interfaces for that device.

Device Configuration Description (DCD)

A Device Configuration Descriptor is an element of the Domain Profile that contains information
regarding a software component implementing the Device interface. It provides information about
the children Devices when implementing the AggregateDevice interface, how to find the domain
manager, and the device-specific configuration information.

Device Driver

The low-level software, at the physical layer, that controls the physical interface a device uses for
communication, e.g. to a hardware bus.

Device Package Descriptor (DPD)

A Device Package Descriptor is an element of the Domain Profile that contains information about a
hardware device. The DPD has properties that define specific information (manufacturer, model
number, serial number, etc.) about the device.

Device Profile

The Device Profile is the set of XML files within the Domain Profile which fully describe a
hardware device. The Device Profile contains a Device Package Descriptor, a Device
Configuration Descriptor, and an optional Properties File. Information about the software
associated with this hardware device is found in the associated Software Profile.

Document Type Definition (DTD)

“XML provides a mechanism, the Document Type Declaration, to define constraints on the logical
structure and to support the use of predefined storage units. An XML document is valid if it has an
associated document type declaration and if the document complies with the constraints expressed
in it... The XML document type declaration contains or points to [a] markup declaration that
provide a grammar for a class of documents.””

2 XML: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04
February 2004.

A-4

http://www.stylusstudio.com/w3c/xml11/sec-prolog-dtd.htm#dt-doctype

http://www.stylusstudio.com/w3c/xml11/sec-prolog-dtd.htm#dt-markupdecl

SCA version 2.2.2 FINAL /15 May 2006

Domain

A Domain defines a set of hardware devices and available applications under the control of a single
domain manager component.

Domain Manager

An implementation of the DomainManager interface, a domain manager manages the complete set
of available hardware devices and applications. It is responsible for the set-up and shut-down of
applications and for allocating resources, devices, and non-CORBA components to hardware
devices.

Domain Profile

The hardware devices and software components that make up an SCA system domain are described
by a set of XML files that are collectively referred to as a Domain Profile. The domain manager
uses the Domain Profile to build its internal information base from the descriptions of the
individual hardware devices, software components, and application assemblies under its control.

Event Service

The Event Service is a CORBA service that decouples the communication between components.
The CORBA Event Service defines two roles for components: the producer role (produce event
data) and the consumer role (process event data). Event data are communicated between producers
and consumers by issuing standard CORBA requests.

Event Channel

An Event Channel is an intervening component that allows multiple producers to communicate
with multiple consumers asynchronously. An event channel is both a consumer and a supplier of
events. Event Channel is the intermediary between the components (producers) being changed and
components (consumers) interested in knowing about changes. Event Channels that provide change
notification can be general purpose, well-known components (Incoming and Outgoing Domain
Management Event Channels) that are run as part of a domain-wide framework or specific-to-task
components (e.g., temporary Event Channels that are created at application deployment).

Host

A host is a computer/processor and/or software application that provides services to one or more
elements connected to it. These services may include, but are not limited to, network access,
program loading, database storage, and HMI. The element or elements connected to a host may be
hardware elements (e.g. FPGAS), processing elements (e.g. DSPs), or a combination of elements
(e.g. a JTRS radio).

Incoming Domain Management Event Channel

Incoming Domain Management Event Channel is an event channel that is internal to the domain
and is used by domain’s components to send events to the domain management components
(Application, ApplicationFactory, DomainManager).

A-5

SCA version 2.2.2 FINAL /15 May 2006

Initialize

The operation of setting a component to a known initial state.

Name

A user-friendly label such as the name used in DTDs of the Domain Profile.
Outgoing Domain Management Event Channel

Outgoing Domain Management Event Channel is an event channel that is external to the domain
and is used by external domain’s components (e.g., HCI) to receive events by domain management
components (Application, ApplicationFactory, DomainManager).

Parent Device

A parent device uses the AggregateDevice interface and is composed of one or more child devices.
The parent device and its children are strongly associated and have the same lifetime (i.e. removal
of the parent device removes all child devices).

Port

A Port interface identifies a source /consumer (Provides Port) or a sink /producer (Uses Port) for
data and/or commands.

Primitive

An abstract, implementation-independent representation of the interactions between service users
and service providers.

Private

As used in the SCA, a proprietary interface definition.
Producer

A software component that can supply user data traffic.
Profile Descriptor

A Profile Descriptor is an element of the Domain Profile that contains an absolute pathname for
either a Software Package Descriptor, Software Assembly Descriptor, DomainManager
Configuration Descriptor, or a Device Configuration Descriptor.

Properties Descriptor

A Properties Descriptor is an element of the Domain Profile that contains information about the
properties applicable to a software package or a device package such as configuration, test, execute,
and allocation types.

A-6

SCA version 2.2.2 FINAL /15 May 2006

Property

An SCA Property is a variable that contains a value of a specific type. Configuration Properties are
parameters to the configure and query operations of the PropertySet interface. Allocation
Properties define the capabilities required of a Device by a Resource.

Public

As used in the SCA, an open, publicly defined, non-license bearing interface definition.

Release (from the CORBA Environment)

When a CORBA object is released, it is no longer able to process object requests; its CORBA
object reference unavailable to other objects. A release is analogous to the POA concept of
deactivation. When a server object is deactivated, the association between the CORBA object and
its implementation is removed. Inthe SCA, a component is removed from the OE and OE
resources consumed by a component are returned back to the OE. For CORBA components, this
includes deactivation. After a component is removed from the OE, a client is unable to
communicate with the component.

Resource

A software component that implements the SCA defined Resource base application interface. All
visible SCA-conformant components of a user application must implement the Resource interface.

Service Applications

Service applications (or services) are software programs running in the system that provide
functionality available for use by other applications. Services are not defined by a particular
interface but are recognized by within a domain by use of the SCA-defined registerService
operations.

Software Assembly Descriptor (SAD)

A Software Assembly Descriptor is an element of the Domain Profile that contains information
about the components that make up an application.

Software Component Descriptor (SCD)

A Software Component Descriptor is an element of the Domain Profile that contains information
about a specific SCA software component (Resource, ResourceFactory, or Device).

Software Package Descriptor (SPD)

A Software Package Descriptor is an element of the Domain Profile that identifies a software
component implementation(s). General information about a software package, such as the name,
author, property file, and implementation code information and hardware and/or software
dependencies are contained in a Software Package Descriptor file.

A-7

SCA version 2.2.2 FINAL /15 May 2006

Software Profile

A Software Profile is a set of Domain Profile files which pertain to a specific SCA component. All
software profiles for CORBA components include a Software Package Descriptor and a Software
Component Descriptor (as well as optional Properties Descriptor files), but the other files contained
in the profile depend on the SCA component in question. The profile for an application will include
a Software Assembly Descriptor, a domain manager profile includes a DomainManager
Configuration Descriptor, and a profile for a device manager will include a Device Configuration
Descriptor.

Waveform

A waveform is the set of transformations applied to information that is transmitted over the air and
the corresponding set of transformations to convert received signals back to their information
content.

Waveform Application

A waveform application is the collection of software elements (modules or components) which
perform any or all of the transformations defined for a specific waveform. This may include (SCA)
application components as well as Core Applications, Services, and (SCA) devices.

A-8

		Software Communications Architecture Specification

		Appendix A: Glossary

		Revision Summary

		Appendix A GLOSSARY

		A.1 Abbreviations and Acronyms

		A.2 Definitions

		Application

		application

		ApplicationFactory

		Application Program Interface

		assemblycontroller

		Attribute (IDL)

		Child Device

		Client

		Commercial Standard

		Component

		Consumer

		CORBA Component

		Core Application

		Core Framework (CF)

		Destroy

		Device

		Device Configuration Description (DCD)

		Device Driver

		Device Package Descriptor (DPD)

		Device Profile

		Document Type Definition (DTD)

		Domain

		Domain Manager

		Domain Profile

		Event Service

		Event Channel

		Host

		Incoming Domain Management Event Channel

		Initialize

		Name

		Outgoing Domain Management Event Channel

		Parent Device

		Port

		Primitive

		Private

		Producer

		Profile Descriptor

		Properties Descriptor

		Property

		Public

		Release (from the CORBA Environment)

		Resource

		Service Applications

		Software Assembly Descriptor (SAD)

		Software Component Descriptor (SCD)

		Software Package Descriptor (SPD)

		Software Profile

		Waveform

		Waveform Application

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

APPENDIX C: CORE FRAMEWORK IDL

FINAL /15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

REVISION SUMMARY

Version Revision

1.0 Initial Release

1.1 Updated IDL to reflect SCAS changes made for v1.1; updated comments.

Incorporate approved Change Proposals, numbers 175, 245, 277, 278, 282, 311, 336,

20 345.

Incorporate approved Change Proposals, numbers 142, 175, 245, 277, 278, 282, 306,

2.1 | 311 336, 345, 360.

2.2 Incorporate approved Change Proposals, numbers 138, 496, 509

2.2.1 Incorporate approved Change Proposals, numbers 15, 77, 26, 44, 45, 70, 74, 101, 102

Updated IDL
2.2.2 Reduced comment text
Incorporated Change Proposals SCA-CCM 44, 178, 202, and 210

SCA version 2.2.2 FINAL /15 May 2006

TABLE OF CONTENTS
APPENDIX C CORE FRAMEWORK IDL ..o ee e eeeneees C-1
C.1 COre FramMEWOTK DL it nsnnnsnnnnnnnn C-1
C.2 POrtTYPES MOAUIE. ..ot C-35
C.3 StandardEVENT IMOQUIE.eeeeee e eeneenennnennnnnnns C-36

C-iii

SCA version 2.2.2 FINAL /15 May 2006

APPENDIX C CORE FRAMEWORK IDL

The CF interfaces are expressed in CORBA IDL. Any IDL compiler for the target language of
choice may compile the generated IDL.

The CF interfaces are contained in the CF CORBA module. Additionally, IDL modules are
provided for interfaces that extend the Port interface by defining basic data sequence types. The
StandardEvent CORBA Module contains the standard event types to be passed via the event
service.

Attachment 1 to this appendix contains this same IDL.

C.1 CORE FRAMEWORK IDL
—

ApplicationFactory @ CF © LoadableDevice

Applcation

DeviceManager Device

DomainManager ExecutableDevice
AggregateDevice
Resource
Port File
PortSupplier FileManager
PropertySet FileSystem
LifeCycle
ResourceFactory

Figure C-1: CF CORBA Module

//Source file: CF.idl

#ifndef CF DEFINED
#define _ CF DEFINED

module CF {

interface Device;

interface File;

interface Resource;

interface Application;
interface ApplicationFactory;
interface DeviceManager;

/* This type is a CORBA IDL struct type which can be used
to hold any CORBA basic type or static IDL type. */

C-1

SCA version 2.2.2 FINAL /15 May 2006

struct DataType {
/* The i1d attribute indicates the kind of value and
type. The id can be an UUID string, an integer string, or a name
identifier. */

string 1id;

/* The value attribute can be any static IDL type or
CORBA basic type. */

any value;

}s

/* This exception indicates an invalid component profile
error. */

exception InvalidProfile {

i
/* The Properties i1s a CORBA IDL unbounded sequence of CF
DataType (s), which can be used in defining a sequence of name and
value pairs. */

typedef sequence <DataType> Properties;

/* This exception indicates an invalid CORBA object
reference error. */

exception InvalidObjectReference {
string msg;
i
/* This type is a CORBA unbounded sequence of octets. */
typedef sequence <octet> OctetSequence;
/* This type defines a sequence of strings */

typedef sequence <string> StringSequence;

/* This exception indicates a set of properties unknown by
the component. */

exception UnknownProperties {
CF::Properties invalidProperties;

}i

C-2

SCA version 2.2.2 FINAL /15 May 2006

/* DeviceAssignmentType defines a structure that associates
a component with the device upon which the component is executing
on. */

struct DeviceAssignmentType {
string componentId;
string assignedDeviceld;

}i

/* The IDL sequence, DeviceAssignmentSequence, provides a
unbounded sequence of 0..n of DeviceAssignmentType. */

typedef sequence <DeviceAssignmentType>
DeviceAssignmentSequence;

/* This enum is used to pass error number information in
various exceptions. Those exceptions starting with "CF E" map to
the POSIX definitions. The "CF " has been added to the POSIX
exceptions to avoid namespace conflicts. CEF NOTSET is not defined
in the POSIX specification. CF NOTSET is an SCA specific value
that is applicable for any exception when the method specific or
standard POSIX error values are not appropriate.) */

enum ErrorNumberType {

CF_NOTSET,
CF_E2BIG,
CF_EACCES,
CF_EAGAIN,
CF_EBADF,
CF_EBADMSG,
CF_EBUSY,
CF_ECANCELED,
CF_ECHILD,
CF_EDEADILK,
CF_EDOM,
CF_EEXIST,
CF_EFAULT,
CF_EFBIG,
CF_EINPROGRESS,
CF_EINTR,
CF_EINVAL,
CF_ETO,
CF_EISDIR,
CF_EMFILE,
CF_EMLINK,
CF_EMSGSIZE,

C-3

SCA version 2.2.2

}s

CF_ENAMETOOLONG,
CF_ENFILE,
CF_ENODEV,
CF_ENOENT,
CF_ENOEXEC,
CF_ENOLCK,
CF_ENOMEM,
CF_ENOSPC,
CF_ENOSYS,
CF_ENOTDIR,
CF_ENOTEMPTY,
CF_ENOTSUP,
CF_ENOTTY,
CF_ENXIO,
CF_EPERM,
CF_EPIPE,
CF_ERANGE,
CF_EROFS,
CF_ESPIPE,
CF_ESRCH,
CF_ETIMEDOUT,
CF_EXDEV

FINAL / 15 May 2006

/* The InvalidFileName exception indicates an invalid file

name was passed to a file service operation. The message provides

information describing why the filename was invalid. */

exception InvalidFileName ({
CF::ErrorNumberType errorNumber;

}i

occurred.

*/

exception FileException ({
CF::ErrorNumberType errorNumber;

}i

string msg;

string msg;

/* The CF FileException indicates a file-related error
The message provides information describing the error.

/* This type defines an unbounded sequence of Devices. */

typedef sequence <Device> DeviceSequence;

Cc-4

SCA version 2.2.2 FINAL /15 May 2006

/* The AggregateDevice interface provides aggregate behavior
that can be used to add and remove Devices from a parent device.
This interface can be provided via inheritance or as a "provides
port". Child devices use this interface to add or remove
themselves from parent device when being created or torn-down. */

interface AggregateDevice {

/* The readonly devices attribute contains a list of
devices that have been added to this device or a sequence length
of zero if the device has no aggregation relationships with other
devices. */

readonly attribute CF::DeviceSequence devices;

/* The addDevice operation provides the mechanism to
associate a device with another device. */

vold addDevice (
in CF::Device assoclatedDevice

)

raises (CF::InvalidObjectReference);

/* The removeDevice operation provides the mechanism to
disassociate
a device from another device. */

void removeDevice (
in CF::Device associatedDevice

)

raises (CF::InvalidObjectReference);

/* The FileSystem interface defines the CORBA operations to
enable remote access to a physical file system. */

interface FileSystem {

/* This exception indicates a set of properties unknown
by the FileSystem object. */

exception UnknownFileSystemProperties {

CF::Properties invalidProperties;

}i

C-5

SCA version 2.2.2 FINAL /15 May 2006

/* This constant indicates file system size. */
const string SIZE = "SIZE";

/* This constant indicates the available space on the
file system. */

const string AVAILABLE SPACE = "AVAILABLE SPACE";

/* The FileType indicates the type of file entry. A file
system can have PLAIN or DIRECTORY files and mounted file systems
contained in a FileSystem. */

enum FileType {
PLAIN,
DIRECTORY,
FILE SYSTEM

}s

/* The FileInformationType indicates the information
returned for a file. */

struct FileInformationType {
string name;
CF::FileSystem::FileType kind;
unsigned long long size;
CF::Properties fileProperties;

i

typedef sequence <FileInformationType>
FileInformationSequence;

/* The CREATED TIME ID is the identifier for the created
time file property. */
const string CREATED_TIME_ID = "CREATED_TIME";

/* The MODIFIED TIME ID is the identifier for the
modified time file property. */
const string MODIFIED TIME ID = "MODIFIED TIME";

/* The LAST ACCESS TIME ID is the identifier for the
last access time file property. */

const string LAST ACCESS TIME ID = "LAST ACCESS TIME";

/* The remove operation removes the file with the given
filename. */

C-6

SCA version 2.2.2 FINAL /15 May 2006

void remove (
in string fileName

)

raises (CF::FileException,CF::InvalidFileName) ;

/* The copy operation copies the source file with the
specified sourceFileName to the destination file with the
specified destinationFileName. */

void copy (

in string sourceFileName,
in string destinationFileName

)

raises (CF::InvalidFileName,CF::FileException);

/* The exists operation checks to see if a file exists
based on the filename parameter. */

boolean exists (
in string fileName

)

raises (CF::InvalidFileName) ;

/* The 1list operation provides the ability to obtain a
list of files along with their information in the file system
according to a given search pattern. */

CF::FileSystem::FileInformationSequence list (

in string pattern

)

raises (CF::FileException,CF::InvalidFileName) ;

/* The create operation creates a new File based upon
the provided file name and returns a File to the opened file. */

CF::File create (
in string fileName

)

raises (CF::InvalidFileName,CF::FileException);

/* The open operation opens a file for reading or
writing based upon the input fileName. */

C-7

SCA version 2.2.2 FINAL /15 May 2006

CF::File open (
in string fileName,
in boolean read Only
)

raises (CF::InvalidFileName,CF::FileException);

/* The mkdir operation creates a file system directory
based on the directoryName given. */

void mkdir (
in string directoryName
)

raises (CF::InvalidFileName,CF::FileException);

/* The rmdir operation removes a file system directory
based on the directoryName given. */

vold rmdir (
in string directoryName
)

raises (CF::InvalidFileName,CF::FileException);

/* The query operation returns file system information
to the calling client based upon the given fileSystemProperties'
ID. */

void query (
inout CF::Properties fileSystemProperties
)

raises (CF::FileSystem::UnknownFileSystemProperties);

/* The File interface provides the ability to read and write
files residing within a distributed FileSystem. A file can be
thought of conceptually as a sequence of octets with a current
filePointer describing where the next read or write will occur. */

interface File {

/* The IOException exception indicates an error occurred
during a read or write operation to a File. The message is
component-dependent, providing additional information describing
the reason for the error. */

C-8

SCA version 2.2.2 FINAL /15 May 2006

exception IOException {
CF: :ErrorNumberType errorNumber;
string msg;

}s

/* This exception indicates the file pointer is out of
range based upon the current file size. */

exception InvalidFilePointer {

}i

/* The readonly fileName attribute contains the file
name given to the FileSystem open/create operation. */

readonly attribute string fileName;

/* The readonly filePointer attribute contains the file
position where the next read or write will occur. */

readonly attribute unsigned long filePointer;

/* RApplications require the read operation in order to
retrieve data from remote files. */

void read (
out CF::0ctetSequence data,
in unsigned long length

)

raises (CF::File::IOException);

/* The write operation writes data to the file
referenced. */

void write (
in CF::0ctetSequence data

)

raises (CF::File::IOException);

/* The sizeOf operation returns the current size of the
file. */

unsigned long sizeOf ()
raises (CF::FileException);

/* The close operation releases any OE file resources
associated with the component. */

C-9

SCA version 2.2.2 FINAL /15 May 2006

volid close ()
raises (CF::FileException);

/* The setFilePointer operation positions the file
pointer where next read or write will occur. */

void setFilePointer (
in unsigned long filePointer
)
raises
(CF::File::InvalidFilePointer,CF::FileException);

}i

/* A ResourceFactory can be used to create and tear down a
Resource. */

interface ResourceFactory {

/* This exception indicates the resourceID does not
exist in the ResourceFactory. */

exception InvalidResourceId {

}i

/* This exception indicates that the shutdown method
failed to release the ResourceFactory from the CORBA environment
because the Factory still contains Resources. The message is
component-dependent, providing additional information describing
why the shutdown failed. */

exception ShutdownFailure {
string msg;

}i

/* The CreateResourceFailure exception indicates that
the createResource operation failed to create the Resource. The
message is component-dependent, providing additional
information describing the reason for the error. */

exception CreateResourceFailure {
CF::ErrorNumberType errorNumber;
string msg;

i

C-10

SCA version 2.2.2 FINAL /15 May 2006

/* The readonly identifier attribute contains the unique
identifier for a ResourceFactory instance. */

readonly attribute string identifier;

/* The createResource operation provides the capability
to create Resources in the same process space as the
ResourceFactory or to return a Resource that has already been
created. This behavior is an alternative approach to the Device's
execute operation for creating a Resource. */

CF::Resource createResource (
in string resourceld,
in CF::Properties qualifiers
)

raises (CF::ResourceFactory::CreateResourceFailure);

/* In CORBA there is client side and server side
representation of a Resource. This operation provides the
mechanism of releasing the Resource in the CORBA environment on
the server side when all clients are through with a specific
Resource. The client still has to release its client side
reference of the Resource. */

void releaseResource (
in string resourceld
)

raises (CF::ResourceFactory::InvalidResourcelId);

/* In CORBA there is client side and server side
representation of a ResourceFactory. This operation provides the
mechanism for releasing the ResourceFactory from the CORBA
environment on the server side. The client has the responsibility
to release its client side reference of the ResourceFactory. */

void shutdown ()
raises (CF::ResourceFactory::ShutdownFailure);

i
/* Multiple, distributed FileSystems may be accessed through
a FileManager. The FileManager interface appears to be a single
FileSystem although the actual file storage may span multiple
physical file systems. */

interface FileManager : FileSystem {

C-11

SCA version 2.2.2 FINAL /15 May 2006

/* The Mount structure identifies the FileSystems
mounted within the FileManager. */

struct MountType {
string mountPoint;
CF::FileSystem fs;
i

/* This type defines an unbounded sequence of mounted
FileSystems. */
typedef sequence <MountType> MountSequence;

/* This exception indicates a mount point does not exist
within the FileManager */
exception NonExistentMount ({

}i

/* This exception indicates the FileSystem is a null
(nil) object reference. */
exception InvalidFileSystem {

}i

/* This exception indicates the mount point is already
in use in the FileManager. */
exception MountPointAlreadyExists {

}s

/* The mount operation associates a FileSystem with a
mount point (a directory name). */

void mount (
in string mountPoint,
in CF::FileSystem file System
)
raises
(CF::InvalidFileName,CF::FileManager::InvalidFileSystem,CF::FileMa
nager: :MountPointAlreadyExists) ;

/* The unmount operation removes a mounted FileSystem
from the FileManager whose mounted name matches the input
mountPoint name. */

void unmount (
in string mountPoint

)

raises (CF::FileManager::NonkExistentMount) ;

C-12

SCA version 2.2.2 FINAL /15 May 2006

/* The getMounts operation returns the FileManager's
mounted FileSystems. */

CF::FileManager: :MountSequence getMounts ()

/* This interface provides operations for managing
associations between ports. An application defines a specific
Port type by specifying an interface that inherits the Port
interface. */

interface Port {

/* This exception indicates one of the following errors
has occurred in the specification of a Port association. */

exception InvalidPort {
unsigned short errorCode;
string msg;

}i

/* This exception indicates the Port is unable to accept
any additional connections. */

exception OccupiedPort {

i

/* The connectPort operation makes a connection to the
component identified by the input parameters. The connectPort
operation establishes only half of the association; therefore two
calls are required to create a two-way association. A port may
support several connections. */

void connectPort (
in Object connection,
in string connectionId

)
raises (CF::Port::InvalidPort,CF::Port::0OccupiedPort);

/* The disconnectPort operation breaks the connection to
the component identified by the input parameters. */

C-13

SCA version 2.2.2 FINAL /15 May 2006

void disconnectPort (
in string connectionId

)

raises (CF::Port::InvalidPort);

/* The LifeCycle interface defines the generic operations
for initializing or releasing instantiated component-specific data
and/or processing elements. */

interface LifeCycle {

/* This exception indicates an error occurred during
component initialization. The messages provide additional
information describing the reason why the error occurred. */

exception InitializeError {
CF::StringSequence errorMessages;

}i

/* This exception indicates an error occurred during
component releaseObject. The messages provide additional
information describing the reason why the error occurred. */

exception ReleaseError {
CF::StringSequence errorMessages;

}s

/* The purpose of the initialize operation is to provide
a mechanism to set an object to an known initial state. */

void initialize ()
raises (CF::LifeCycle::InitializeError);
/* The purpose of the releaseObject operation is to
provide a means by which an instantiated component may be torn

down. */

void releaseObject ()
raises (CF::LifeCycle::Releasekrror);

C-14

SCA version 2.2.2 FINAL /15 May 2006

/* The TestableObject interface defines a set of operations
that can be used to test component implementations. */

interface TestableObject {

/* This exception indicates the requested testid for a
test to be performed is not known by the component. */

exception UnknownTest {

}i

/* The runTest operation allows components to be
"blackbox" tested. This allows Built-In Tests to be implemented
which provides a means to isolate faults (both software and
hardware) within the system. */

void runTest (
in unsigned long testid,
inout CF::Properties testValues
)
raises
(CF::TestableObject: :UnknownTest, CF: :UnknownProperties) ;

}i

/* The PropertySet interface defines configure and query
operations to access component properties/attributes. */

interface PropertySet {

/* This exception indicates the configuration of a
component has failed (no configuration at all was done). The
message provides additional information describing the reason why
the error occurred. The invalid properties returned indicates the
properties that were invalid. */

exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;

}i

/* The PartialConfiguration exception indicates the
configuration of a Component was partially successful. The invalid
properties returned indicates the properties that were invalid.

*/

C-15

SCA version 2.2.2 FINAL /15 May 2006

exception PartialConfiguration {
CF::Properties invalidProperties;

}s

/* The purpose of this operation is to allow id/value
pair configuration properties to be assigned to components
implementing this interface. */

void configure (
in CF::Properties configProperties

)

raises
(CF::PropertySet::InvalidConfiguration,CF: :PropertySet::PartialCon
figuration);

/* The purpose of this operation is to allow a component
to be queried to retrieve its properties. */

void query (
inout CF::Properties configProperties
)

raises (CF::UnknownProperties);

/* The DomainManager interface is for the control and
configuration of the radio domain. */

interface DomainManager : PropertySet {

/* This exception is raised when an Application
installation has not completed correctly. The message provides
additional information describing the reason for the error. */

exception ApplicationInstallationError {
CF::ErrorNumberType errorNumber;
string msg;

i

exception ApplicationAlreadyInstalled {

i

/* This type defines an unbounded sequence of
Applications. */

typedef sequence <Application> ApplicationSequence;

C-16

SCA version 2.2.2 FINAL /15 May 2006

/* This type defines an unbounded sequence of
ApplicationFactories. */

typedef sequence <ApplicationFactory>
ApplicationFactorySequence;

/* This type defines an unbounded sequence of
DeviceManagers. */
typedef sequence <DeviceManager> DeviceManagerSequence;

/* This exception indicates the application ID is
invalid. */
exception InvalidIdentifier {

s

/* This exception indicates the registering Device's
DeviceManager is not registered in the DomainManager. A Device's
DeviceManager has to be registered prior to a Device registration
to the DomainManager. */

exception DeviceManagerNotRegistered {

}i

/* This exception is raised when an Application
uninstallation has not completed correctly. The message provides
additional information describing the reason for the error. */

exception ApplicationUninstallationError {
CF::ErrorNumberType errorNumber;
string msg;

i

/* This exception indicates that an internal error has
occurred to prevent DomainManager registration operations from
successful completion. The message provides additional information
describing the reason for the error. */

exception RegisterError ({
CF::ErrorNumberType errorNumber;
string msg;

}i

/* This exception indicates that an internal error has
occurred to prevent DomainManager unregister operations from
successful completion. The message provides additional information
describing the reason for the error. */

C-17

SCA version 2.2.2 FINAL /15 May 2006

exception UnregisterError {
CF: :ErrorNumberType errorNumber;
string msg;

}s

/* This exception indicates that a registering consumer
is already connected to the specified event channel. */

exception AlreadyConnected {

}i

/* This exception indicates that a DomainManager was not
able to locate the event channel. */

exception InvalidEventChannelName ({

}i

/* The NotConnected exception indicates that the
unregistering consumer was not connected to the specified event
channel. */

exception NotConnected {

i
/* The readonly domainManagerProfile attribute contains
a profile element with a file reference to the DomainManager
Configuration Descriptor (DMD) profile. */

readonly attribute string domainManagerProfile;

/* The deviceManagers attribute is read-only containing
a sequence of registered DeviceManagers in the domain. */

readonly attribute
CF::DomainManager: :DeviceManagerSequence deviceManagers;

/* The applications attribute contains a list of
Applications that have been instantiated in the domain. */

readonly attribute CF::DomainManager: :ApplicationSequence
applications;

/* The readonly applicationFactories attribute contains

a list with one ApplicationFactory per application (SAD file and
associated files) successfully installed. */

C-18

SCA version 2.2.2 FINAL /15 May 2006

readonly attribute
CF::DomainManager: :ApplicationFactorySequence
applicationFactories;

/* The readonly fileMgr attribute contains the
DomainManager's FileManager. */

readonly attribute CF::FileManager fileMgr;

/* The readonly identifier attribute contains a unique
identifier for a DomainManager instance. The identifier is
identical to the domainmanagerconfiguration element id attribute
of the DomainManager's Descriptor (DMD) file. */

readonly attribute string identifier;

/* The registerDevice operation is used to register a
Device for a specific DeviceManager in the DomainManager's Domain
Profile. */

void registerDevice (
in CF::Device registeringDevice,
in CF::DeviceManager registeredDeviceMgr
)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager: :DeviceManagerNotRegistered,
CF::DomainManager: :RegisterError) ;

/* The registerDeviceManager operation is used to
register a DeviceManager, its Device(s), and its Services. */

void registerDeviceManager (
in CF::DeviceManager deviceMgr
)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF::DomainManager: :RegisterError) ;

/* The unregisterDeviceManager operation is used to
unregister a DeviceManager component from the DomainManager's
Domain Profile. A DeviceManager may be unregistered during run-
time for dynamic extraction or maintenance of the DeviceManager.

*/

C-19

SCA version 2.2.2 FINAL /15 May 2006

void unregisterDeviceManager (
in CF::DeviceManager deviceMgr
)
raises (CF::InvalidObjectReference,
CF::DomainManager: :UnregisterError) ;

/* The unregisterDevice operation is used to remove a
device entry from the DomainManager for a specific DeviceManager.

*/

void unregisterDevice (
in CF::Device unregisteringDevice
)
raises (CF::InvalidObjectReference,
CF::DomainManager: :UnregisterError);

/* The installApplication operation is used to register
new application software in the DomainManager's Domain Profile. */

void installApplication (
in string profileFileName
)
raises (CF::InvalidProfile,CF::InvalidFileName,
CF::DomainManager: :ApplicationInstallationError,
CF::DomainManager:: ApplicationAlreadyInstalled);

/* The uninstallApplication operation is used to
uninstall an application and its associated ApplicationFactory
from the DomainManager. */

void uninstallApplication (
in string applicationId
)
raises (CF::DomainManager::InvalidIdentifier,
CF::DomainManager: :ApplicationUninstallationError);

/* The registerService operation is used to register a
service for a specific DeviceManager with the DomainManager. */

void registerService (
in Object registeringService,
in CF::DeviceManager registeredDeviceMgr,
in string name
)
raises (CF::InvalidObjectReference,
CF::DomainManager: :DeviceManagerNotRegistered,
CF::DomainManager: :RegisterError) ;

C-20

SCA version 2.2.2 FINAL /15 May 2006

/* The unregisterService operation is used to remove a
service entry from the DomainManager for a specific DeviceManager.

*/

void unregisterService (
in Object unregisteringService,
in string name
)
raises (CF::InvalidObjectReference,
CF::DomainManager: :UnregisterError) ;

/* The registerWithEventChannel operation is used to
connect a consumer to a domain's event channel. */

void registerWithEventChannel (
in Object registeringObject,
in string registeringId,
in string eventChannelName
)
raises (CF::InvalidObjectReference,
CF::DomainManager: :InvalidEventChannelName,
CF::DomainManager: :AlreadyConnected) ;

/* The unregisterFromEventChannel operation is used to
disconnect a consumer from a domain's event channel. */

void unregisterFromEventChannel (
in string unregisteringld,
in string eventChannelName

)

raises (CF::DomainManager::InvalidEventChannelName,
CF::DomainManager: :NotConnected) ;

/* The ApplicationFactory interface class provides an
interface to request the creation of a specific type of
Application in the domain.The Software Profile determines the type
of Application that is created by the ApplicationFactory. */

interface ApplicationFactory {
/* This exception is raised when the parameter

DeviceAssignmentSequence contains one or more invalid Application
component-to-device assignment(s). */

C-21

SCA version 2.2.2 FINAL /15 May 2006

exception CreateApplicationRequestError
CF::DeviceAssignmentSequence invalidAssignments;

}s

/* This exception 1s raised when a create request is
valid but the Application is unsuccessfully instantiated due to
internal processing errors. The message provides additional
information describing the reason for the error. */

exception CreateApplicationError {
CF::ErrorNumberType errorNumber;
string msg;

s

/* This exception is raised when the input
initConfiguration parameter is invalid. */

exception InvalidInitConfiguration {
CF::Properties invalidProperties;

}i

/* The name attribute contains the name of the type of
Application that can be instantiated by the ApplicationFactory. */

readonly attribute string name;

/* The readonly identifier attribute contains the unique
identifier for an ApplicationFactory instance. The identifier is
identical to the softwareassembly element id attribute of the
ApplicationFactory's Software Assembly Descriptor file. */

readonly attribute string identifier;

/* This attribute contains the application software
profile that the factory uses when creating an application. The
string value contains a profile element with a file reference to
the SAD */

readonly attribute string softwareProfile;

/* The create operation is used to create an Application
within the system domain. */

C-22

SCA version 2.2.2 FINAL /15 May 2006

CF::Application create (
in string name,
in CF::Properties initConfiguration,
in CF::DeviceAssignmentSequence deviceAssignments

)

raises
(CF::ApplicationFactory::CreateApplicationkrror,

CF::ApplicationFactory: :CreateApplicationRequestError,
CF::ApplicationFactory::InvalidInitConfiguration);

/* The PortSupplier interface provides the getPort operation
for those objects that provide ports. */

interface PortSupplier {

/* This exception is raised if an undefined port is
requested. */

exception UnknownPort {

}s

/* The getPort operation provides a mechanism to obtain
a specific consumer or producer Port. A PortSupplier may contain
zero—-to-many consumer and producer port components. */

Object getPort (
in string name

)

raises (CF::PortSupplier::UnknownPort):;

/* The Resource interface provides a common interface for
the control and configuration of a software component. */

interface Resource : LifeCycle, TestableObject, PropertySet,
PortSupplier {

/* This exception indicates that an error occurred
during an attempt to start the Resource. The message provides
additional information describing the reason for the error. */

C-23

SCA version 2.2.2 FINAL /15 May 2006

exception StartError {
CF: :ErrorNumberType errorNumber;
string msg;

}s

/* The StopError exception indicates that an error
occurred during an attempt to stop the Resource. The message
provides additional information describing the reason for the
error. */

exception StopError {
CF::ErrorNumberType errorNumber;
string msg;

s

/* The readonly identifier attribute shall contain the
unique identifier for a resource instance. */

readonly attribute string identifier;

/* The start operation is provided to command a Resource
implementing this interface to start internal processing. */

void start ()
raises (CF::Resource::StartError);

/* The stop operation is provided to command a Resource
implementing this interface to stop all internal processing. */

void stop ()
raises (CF::Resource::StopError);

/* The Device interface defines additional capabilities and
attributes for any logical Device in the domain. */

interface Device : Resource {

/* This exception indicates that the device is not
capable of the behavior being attempted due to the state the
Device is in. */

exception InvalidState {

string msg;

}i

C-24

SCA version 2.2.2 FINAL /15 May 2006

/* The InvalidCapacity exception returns the capacities
that are not valid for this device. */

exception InvalidCapacity {

/* The message indicates the reason for the invalid
capacity. */
string msg;

/* The invalid capacities sent to the
allocateCapacity operation.*/
CF::Properties capacities;

s

/* This enumeration type defines a Device's
administrative states. The administrative state indicates the
permission to use or prohibition against using the Device. */

enum AdminType {

LOCKED,
SHUTTING DOWN,
UNLOCKED

}i

/* This enumeration type defines a Device's operational
states. The operational state indicates whether or not the object
is functioning. */

enum OperationalType {

ENABLED,
DISABLED

}i

/* This enumeration type defines the Device's usage
states. */
enum UsageType {

IDLE,
ACTIVE,
BUSY

}i

C-25

SCA version 2.2.2 FINAL /15 May 2006

/* The readonly usageState attribute contains the
Device's usage state The usageState indicates whether or not a
device is actively in use at a specific instant, and if so,
whether or not it has spare capacity for allocation at that
instant. */

readonly attribute CF::Device::UsageType usageState;

/* The administrative state indicates the permission to
use or prohibition against using the device. The adminState
attribute contains the device's admin state value. */

attribute CF::Device::AdminType adminState;

/* The operationalState attribute contains the device's

operational state. The operational state indicates whether or not

the device is functioning. */

readonly attribute CF::Device::0OperationalType
operationalState;

/* The softwareProfile attribute is the XML description
for this logical Device. The softwareProfile attribute contains a
profile DTD element with a file reference to the SPD profile file.
*/

readonly attribute string softwareProfile;

/* The label attribute is the meaningful name given to a
Device. */

readonly attribute string label;

/* The compositeDevice attribute contains the object
reference of the AggregateDevice with which this Device is
associated or a nil CORBA object reference if no association
exists. */

readonly attribute CF::AggregateDevice compositeDevice;

/* The allocateCapacity operation provides the mechanism
to request and allocate capacity from the Device. */

C-26

SCA version 2.2.2 FINAL /15 May 2006

boolean allocateCapacity (
in CF::Properties capacities
)
raises (CF::Device::InvalidCapacity,
CF::Device::InvalidState);

/* The deallocateCapacity operation provides the
mechanism to return capacities back to the Device, making them
available to other users. */

void deallocateCapacity (
in CF::Properties capacities
)
raises (CF::Device::InvalidCapacity,
CF::Device::InvalidState);

/* The Application interface provides for the control,
configuration, and status of an instantiated application in the
domain. */

interface Application : Resource {

/* The ComponentProcessIdType defines a type for
associating a component with its process ID. This type can be
used to retrieve a process ID for a specific component. */

struct ComponentProcessIdType {
string componentId;
unsigned long processId;

}i

/* The ComponentProcessIdSequence type defines an
unbounded sequence of components' process IDs. */

typedef sequence <ComponentProcessIdType>
ComponentProcessIdSequence;

/* The ComponentElementType defines a type for
associating a component with an element. */

struct ComponentElementType {
string componentId;
string elementId;

}i

C-27

SCA version 2.2.2 FINAL /15 May 2006

/* This type is an unbounded sequence of
ComponentElementTypes. */

typedef sequence <ComponentElementType>
ComponentElementSequence;

/* This attribute contains the list of components'
Naming Service Context within the Application for those components
using CORBA Naming Service. */

readonly attribute
CF::Application: :ComponentElementSequence
componentNamingContexts;

/* This attribute contains the list of components'
process IDs within the Application for components that are
executing on a device. */

readonly attribute
CF::Application: :ComponentProcessIdSequence
componentProcessIds;

/* The componentDevices attribute shall contain a list
of devices which each component either uses, is loaded on or is
executed on. Each component (componentinstantiation element in the
Application's software profile) is associated with a device. */

readonly attribute CF::DeviceAssignmentSequence
componentDevices;

/* This attribute contains the list of components' SPD
implementation IDs within the Application for those components
created. */

readonly attribute
CF::Application: :ComponentElementSequence
componentImplementations;
/* This attribute is the XML profile information for the
application. The string value contains a profile element with a

file reference to the SAD. */

readonly attribute string profile;

C-28

SCA version 2.2.2 FINAL /15 May 2006

/* This name attribute contains the name of the created
Application. The ApplicationFactory interfaces's create operation
name parameter provides the name content. */

readonly attribute string name;

}s

/* This interface extends the Device interface by adding
software loading and unloading behavior to a Device. */

interface LoadableDevice : Device {

/* This LoadType defines the type of load to be
performed. The load types are in accordance with the code element
within the softpkg element's implementation element. */

enum LoadType {

KERNEL MODULE,
DRIVER,

SHARED LIBRARY,
EXECUTABLE

}s

/* The InvalidLoadKind exception indicates that the
Device is unable to load the type of file designated by the
loadKind parameter. */

exception InvalidLoadKind {

}i

/* The LoadFail exception indicates that an error
occurred during an attempt to load the device. The message
provides additional information describing the reason for the
error. */

exception LoadFail {
CF::ErrorNumberType errorNumber;
string msg;

}s

/* The load operation provides the mechanism for loading
software on a specific device. The loaded software may be
subsequently executed on the Device, if the Device is an
ExecutableDevice. */

C-29

SCA version 2.2.2 FINAL /15 May 2006

void load (
in CF::FileSystem fs,
in string fileName,
in CF::LoadableDevice: :LoadType loadKind
)
raises (CF::Device::InvalidState,
CF::LoadableDevice: :InvalidLoadKind,
CF::InvalidFileName, CF::LoadableDevice::LoadFail);

/* The unload operation provides the mechanism to unload
software that is currently loaded. */

void unload (
in string fileName

)

raises (CF::Device::InvalidState,CF::InvalidFileName) ;
b

/* This interface extends the LoadableDevice interface by
adding execute and terminate behavior to a Device. */

interface ExecutableDevice : LoadableDevice {

/* The InvalidProcess exception indicates that a
process, as identified by the processID parameter, does not exist
on this device. The message provides additional information
describing the reason for the error. */

exception InvalidProcess {
CF::ErrorNumberType errorNumber;
string msg;

}i

/* This exception indicates that a function, as
identified by the input name parameter, hasn't been loaded on this
device. */

exception InvalidFunction {
i
/* This type defines a process number within the system.
The process number is unique to the Processor operating system

that created the process. */

typedef long ProcessID Type;

C-30

SCA version 2.2.2 FINAL /15 May 2006

/* The InvalidParameters exception indicates that input
parameters are invalid for the execute operation. Each
parameter's ID and value must be a valid string type. The
invalidParms is a list of invalid parameters specified in the
execute operation. */

exception InvalidParameters {
CF::Properties invalidParms;

s

/* The InvalidOptions exception indicates the input
options are invalid on the execute operation. The invalidOpts is
a list of invalid options specified in the execute operation. */

exception InvalidOptions {
CF::Properties invalidOpts;
}:

/* The STACK SIZE ID is the identifier for the
ExecutableDevice's execute options parameter. */

const string STACK SIZE ID = "STACK SIZE";

/* The PRIORITY ID is the identifier for the
ExecutableDevice's execute options parameters. */

const string PRIORITY ID = "PRIORITY";

/* The ExecuteFail exception indicates that an attempt
to invoke the execute operation on a device failed. The message
provides additional information describing the reason for the
error. */

exception ExecuteFail {
CF::ErrorNumberType errorNumber;
string msg;

}s

/* The terminate operation provides the mechanism for
terminating the execution of a process/thread on a specific device
that was started up with the execute operation. */

void terminate (
in CF::ExecutableDevice::ProcessID Type processId

)
raises (CF::ExecutableDevice::InvalidProcess,
CF::Device::InvalidState) ;

C-31

SCA version 2.2.2 FINAL /15 May 2006

/* The execute operation provides the mechanism for
starting up and executing a software process/thread on a device.

*/

CF::ExecutableDevice: :ProcessID Type execute (
in string name,
in CF::Properties options,
in CF::Properties parameters
)
raises (CF::Device::InvalidState,
CF: :ExecutableDevice: :InvalidFunction,
CF: :ExecutableDevice::InvalidParameters,
CF::ExecutableDevice::InvalidOptions,
CF::InvalidFileName,
CF::ExecutableDevice: :ExecuteFail) ;

}s

/* The DeviceManager interface 1s used to manage a set of
logical Devices and services. */

interface DeviceManager : PropertySet, PortSupplier {

/* This structure provides the object reference and name
of services that have registered with the DeviceManager. */

struct ServiceType {
Object serviceObject;
string serviceName;

i

/* This type provides an unbounded sequence of
ServiceType structures for services that have registered with the
DeviceManager. */

typedef sequence <ServiceType> ServiceSequence;
/* The deviceConfigurationProfile attribute contains the
DeviceManager's profile, a profile element with a file reference
to the DeviceManager's Device Configuration Descriptor (DCD)

profile. */

readonly attribute string deviceConfigurationProfile;

C-32

SCA version 2.2.2 FINAL /15 May 2006

/* The fileSys attribute contains the FileSystem
associated with this DeviceManager or a nil CORBA object reference
if no FileSystem is associated with this DeviceManager. */

readonly attribute CF::FileSystem fileSys;

/* The identifier attribute contains the instance-unique
identifier for a DeviceManager. The identifier is identical to
the deviceconfiguration element id attribute of the
DeviceManager's Device Configuration Descriptor (DCD) file. */

readonly attribute string identifier;

/* The label attribute contains the DeviceManager's
label. The label attribute is the meaningful name given to a
DeviceManager. */

readonly attribute string label;

/* The registeredDevices attribute contains a list of
Devices that have registered with this DeviceManager or a sequence
of length zero if no Devices have registered with the
DeviceManager. */

readonly attribute CF::DeviceSequence registeredDevices;

/* The registeredServices attribute contains a list of
Services that have registered with this DeviceManager or a
sequence of length zero if no Services have registered with the
DeviceManager. */

readonly attribute CF::DeviceManager: :ServiceSequence
registeredServices;

/* The registerDevice operation provides the mechanism
to register a Device with a DeviceManager. */

void registerDevice (
in CF::Device registeringDevice
)

raises (CF::InvalidObjectReference);

/* This operation unregisters a Device from a
DeviceManager. */

C-33

SCA version 2.2.2 FINAL /15 May 2006

void unregisterDevice (
in CF::Device registeredDevice

)

raises (CF::InvalidObjectReference);

/* The shutdown operation provides the mechanism to
terminate a DeviceManager, unregistering it from the
DomainManager. */

void shutdown ();

/* The registerService operation provides mechanisms to
register a Service with a DeviceManager and its DomainManager. */

void registerService (
in Object registeringService,
in string name
)

raises (CF::InvalidObjectReference);

/* This operation provides mechanisms to unregister a
Service from a DeviceManager and its DomainManager. */

voild unregisterService (
in Object unregisteringService,
in string name

)
raises (CF::InvalidObjectReference);
/* The getComponentImplementationId operation returns
the SPD implementation ID that the DeviceManager interface used to

create a component. */

string getComponentImplementationId (
in string componentInstantiationId

) ;

}s

#fendif

C-34

SCA version 2.2.2

C.2 PORTTYPES MODULE.

This CORBA Module contains a set of unbundled CORBA sequence types based on CORBA types

not in the CF CORBA Module.

//Source file:

PortTypes.idl

#ifndef PORTTYPES DEFINED
#define _ PORTTYPES DEFINED

module PortTypes {

*/

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

/* This
typedef

#endif

type is a unbounded sequence of booleans. */
sequence <boolean> BooleanSequence;

type is a unbounded sequence of characters. */
sequence <char> CharSequence;

type is a unbounded sequence of doubles. */
sequence <double> DoubleSequence;

type is a unbounded sequence of longlongs. */
sequence <long long> LongLongSequence;

type is a unbounded sequence of longs. */
sequence <long> LongSequence;

type is a unbounded sequence of shorts. */
sequence <short> ShortSequence;

type is a unbounded sequence of unsigned long longs.
sequence <unsigned long long> UlongLongSequence;

type is a unbounded sequence of unsigned longs. */
sequence <unsigned long> UlongSequence;

type is a unbounded sequence of unsigned shorts. */
sequence <unsigned short> UshortSequence;

type is a unbounded sequence of floats. */
sequence <float> FloatSequence;

C-35

FINAL / 15 May 2006

SCA version 2.2.2 FINAL /15 May 2006

C.3 STANDARDEVENT MODULE.

The StandardEvent module contains the types necessary for a standard event producer to generate
standard SCA events as depicted in Figure C-2.

«struct»
StateChangeEventType

producerld : string(idl)

sourceld : string(idl)

stateChangeCatagory : StateChangeCatagoryType
stateChangeFrom : StateChangeType
stateChangeTo : StateChangeType

/ \

«uses» «uses»
/ \
// \\
/ \
/ \
7/ \
\/ N/
«enumeration» «enumeration»
StateChangeCatagoryType StateChangeType
ADMINISTRATIVE_STATE_EVENT. LOCKED
OPERATIONAL_STATE_EVENT UNLOCKED
USAGE_STATE_EVENT SHUTTING_DOWN
ENABLED
DISABLED
IDLE
ACTIVE
BUSY
«struct» «struct»
DomainManagementObjectAddedEventType| |DomainManagementObjectRemovedEventType
producerld : string(idl) producerld : string(idl)
sourceld : string(idl) sourceld : string(idl)
sourceName : string(idl) sourceName : string(idl)
sourceCategory : SourceCategoryType sourceCategory : SourceCategoryType
sourcelOR : object(idl)
U
/

N «uses»
N.«uses» J

N

SN /
«enumeration»
SourceCategoryType

DEVICE_MANAGER
DEVICE
APPLICATION_FACTORY
APPLICATION

SERVICE

Figure C-2: StandardEvent Module

//Source file: StandardEvent.idl

#ifndef STANDARDEVENT DEFINED
#define _ STANDARDEVENT DEFINED

C-36

SCA version 2.2.2 FINAL /15 May 2006

module StandardEvent ({

/* Type StateChangeCategoryType is an enumeration that is
utilized in the StateChangeEventType. It is used to identify the
category of state change that has occurred. */

enum StateChangeCategoryType {

ADMINISTRATIVE STATE EVENT,
OPERATIONAL STATE EVENT,
USAGE STATE EVENT

}s

/* Type StateChangeType 1s an enumeration that is utilized in
the StateChangeEventType. It is used to identify the specific
states of the event source before and after the state change
occurred. */

enum StateChangeType {

LOCKED,
UNLOCKED,
SHUTTING DOWN,
ENABLED,
DISABLED,
IDLE,

ACTIVE,

BUSY

}s

/* Type StateChangeEventType 1s a structure used to indicate
that the state of the event source has changed. The event producer
will send this structure into an event channel on behalf of the
event source. */

struct StateChangeEventType {
string producerId;
string sourcelId;
StandardEvent: :StateChangeCategoryType
stateChangeCategory;
StandardEvent::StateChangeType stateChangeFrom;
StandardEvent: :StateChangeType stateChangeTo;

}s

C-37

SCA version 2.2.2 FINAL /15 May 2006

/* Type SourceCategoryType 1s an enumeration that is utilized
in the DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType. Is used to identify the
type of object that has been added to or removed from the domain.

*/

enum SourceCategoryType {

}s

DEVICE MANAGER,
DEVICE,

APPLICATION FACTORY,
APPLICATION,

SERVICE

/* Type DomainManagementObjectRemovedEventType is a structure
used to indicate that the event source has been removed from the

domain.

The event producer will send this structure into an event

channel on behalf of the event source. */

struct DomainManagementObjectRemovedEventType {

}s

string producerId;

string sourcelId;

string sourceName;

StandardEvent: :SourceCategoryType sourceCategory;

/* Type DomainManagementObjectAddedEventType 1s a structure
used to indicate that the event source has been added to the

domain.

The event producer will send this structure into an event

channel on behalf of the event source. */

struct DomainManagementObjectAddedEventType {

}i

#endif

string producerId;

string sourcelId;

string sourceName;

StandardEvent: :SourceCategoryType sourceCategory;
Object sourcelIOR;

C-38

		Software Communications Architecture Specification

		Appendix C: Core Framework IDL

		Revision Summary

		Table of Contents

		Appendix C Core Framework IDL

		C.1 Core Framework IDL

		C.2 PortTypes Module.

		C.3 StandardEvent Module.

UNCLASSIFIED
SCA version 2.2.2 FINAL /15 May 2006

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

APPENDIX D: DOMAIN PROFILE

FINAL / 15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

REVISION SUMMARY
Version Revision
1.0 release for prototype implementation and validation
correction of XML syntax errors; deleted deploymentattributedefinition element
(D.4.2), which was redundant with simple (with the addition of action element to
simple) and more in line with the CORBA components spec.; deleted
deploymentattribute (D.4.3) for same reason; changed deploymentattributedef element
to propertyref (D.2.1.8.10.1) for consistency with those changes; changed "access" to
1.0.1 | "jo" to be consistent with SCAS terminology; added softpkgrefid attribute to SPD and
SAD to allow profile to refer to a file already loaded in radio; clarified the initial
implied value of the enumeration element (D.4.1.1.6); corrected and clarified
description of ports element in D.5.1.4.2.
Added section D.7 and Attachment 1 for complete DTDs.
11 Incorporate approved Change Proposals, numbers 162, 163, 164, 165, 166, 167, 168,
' 169, 170, 171, 172, 173, 174, 176, 202, 203, 212, 214, 216.
2.0 Incorporate approved Change Proposals, numbers 152, 270, 281, 308, 309, 318, 321.
21 Incorporate approved Change Proposals, numbers 88, 183, 306, 355, 384, 468 also
' complete some changes from CP 88, 142, 318, 473, 477 not incorporated in v2.0.
2.2 Incorporate approved Change Proposals, numbers 388, 415, 486, 495, 499, 512
2.2.1 | Incorporate approved Change Proposals, SCA-CCM numbers 3, 73, 106, 80
2.2.2 Incorporate Change Proposals 85, 97, 124, 182, 194, 234, 284, 323

SCA version 2.2.2 FINAL /15 May 2006

TABLE OF CONTENTS
APPENDIX D. DOMAIN PROFILEcoiiiiiictseee et D-1
D.1 DePlOoYMENT OVEIVIEWooviiiitiriiiiieiieieie sttt st bbbttt b e bbb be s s e D-1
D.2 Software Package DESCIIPLONcuiiiiiie ettt be e D-4
D.2.1 SOftWare PACKAQE.......ciiiiiieiie ittt et D-4
5 2020 0 A 1)1 - PSPPSR D-5
D.2.1.2 AULNOT .t bbb bbb e D-5
D.2.1.3 dESCIIPLION .. .etiitiitietieiiei ettt ettt b ettt D-6
DB R o o] o =T 1 1Y 1 SRS D-6
D.2.1.4.1 10CAHTIE. ...ttt ns D-7
D200 T o (=T] o] (o] OSSR D-7
D.2.1.6 IMPIEMENTALION ..ottt bbb D-7
D.2.1.6.1 ProPertyfile.....ccuiiieiecie et D-8
D.2.1.6.2 ESCIIPLION.cuiiiiiiieiieieteete ettt sttt D-9
D.2.1.6.3 COUB ...ttt ettt bbbttt ettt bt bbb D-9
D.2.1.6.4 COMPIIEE ...ttt D-10
D.2.1.6.5 programminglangUAagE..........ccueieeueiieiieeiieseesieesieseesre e e sre e sraesaeesee e e D-10
D.2.1.6.6 NUMANIANGUAGEcouiiiiiiiiite et D-11
D 200 T A o OSSR D-11
D.2.1.6.8 PrOCESSOI ...ttt bbbttt D-11
D.2.1.6.9 dEPENUENCYecvieieeiecie ettt ettt e e see e e sre e e D-11
D.2.1.6.10 FUNTIME ...oouiiiiiiiieeie ettt e st se e s e teeneesneeeeeneesreenee e D-13
D.2. 1.7 USESUBVICE ...eeveieitieieetietie ettt sttt b et b et s e st e et st nbe sttt beeneene e D-13
D.2.1.7.1 PrOPEITYIET ..ot b bbbt D-13
D.3 DeVice Package DESCIIPIONc.iiiiiiieitisieiiieiieie ettt bttt D-14
D.3.1 DEVICE PACKAGEciueiieiiieiiiieterte ettt bbbt D-14
D 0 1 O 1 =SSOSR PRSP D-15
920 00 1 o PRSP D-15
D20 00 G T o (=Y Tox] o] [o PSSR D-15

SCA version 2.2.2 FINAL /15 May 2006

D.3.1.4 NWOEVICEIEQISIIAtIONeviiiieiieitee ettt sttt nb e D-15
D.3.1.4.1 ProPertyfile ... oo D-16
D.3.1.4.2 dESCIIPION.....eiiiiiiteeteiie sttt sttt sttt ettt sbe et e sreesre e e D-17
D.3.1.4.3 MANUFBCTUIEEiiiiiiieiieie ettt bbb D-17
D.3.1.4.4 MOUEINUMDETciiiieiiiie et sre e D-17
D.3.1.4.5 UEVICECIASSoiviiiiiiieiieieie ettt bbbt D-17
D.3.1.4.6 ChIlANWABVICEueiieieieciiee et D-17
D.3.1.4.7 hwdeViCeregiStratiOncccceeiierieiieie ettt D-18
D.3.1.4.8 deVICEPKGIETeeieiiieciieee e D-18

D.4 Properties DESCIIPTONc.ciiiiiiiieie ettt b bbbt D-19
D o1 o] o[]S TSSOSO TP UPURPROPPP D-19

D 2t T 0 o -SSR D-19
D.4. 1. 1.1 dESCIIPLION.iitiiiiiiieiietet ettt e bbbt ene e D-20
D41 1.2 VAIUB ...ttt D-21
D 2R O G T U 1 (PSSP D-21
DR O = 3T [TP POU P OPR D-21
D.4.1.1.5 ENUMETATIONSviitieiieiiieiiieieeiee ettt sttt e sbe st e teeseesneeeeereesreenee e D-21
D I T T (1o SO D-21
I3 2t = Vo 1 [o TP D-22

D.4.1.2 SIMPIESEUENCE ...c.veeueeeeieitieie ettt ettt s e te e teete e st e saaeteeneenreenee e D-23

D R [TPV OPRUUPTOPRPRTOR D-24
D.4.1.3.1 INPUIVAIUE.......oceiiieciece ettt re e D-24
D.4.1.3.2 TESUIVAIUB ...t D-25

D4 14 SHUCT......eeeei ettt b e et e e e b e e nneenre e D-25
D.4.1.4.1 configurationKindccooiiiiiiiiiiecee e D-26

D20 I T 1 U T 7= [U= Lo PSPPSR D-26

D.5 Software CompoNent DESCHIPTONccoiiiiiieieieie ettt D-28
D.5.1 SOftWAIrECOMPONENTeiiiiiiiiieieie ittt bbb D-28

D.5.1.1 COMDAVEISIONcuiiiiieieiie sttt ettt sttt et reenbe et D-29

D.5.1.2 COMPONENTIEPIU. ... ciueiiiiiiiieierie sttt bbbttt sttt D-29

D.5.1.3 COMPONENTIYPEiiiieiiii ettt st e et e et e e srae e e enseeeanseeennes D-29

D.5.1.4 COMPONENITIRALUIESecveeivieieeiic ettt e e te e nreenee e D-29

SCA version 2.2.2 FINAL /15 May 2006

D.5.1.4.1 SUPPOITSINEEITACE.iiiiiieieiiiiie ettt D-30
DR TN R S o To] o £ T PSP P PP D-30
D.5.1.5 INEITACESeeeeieiee ettt bttt ettt sbe et neenbe et D-31
D.5.1.6 PrOPEITYTIlE...c.ei et D-31
D.6 Software AsSemMBDIY DESCHIPTON........c.iiieiiiieiie st re e D-33
D.6.1 SOTtWAreaSSEMBIYeciieiieiieie et re e D-33
D.B.1. 1 dESCIIPLION....ctitiiiieieeie ettt bbbttt bbbt D-34
D.6.1.2 COMPONENLIIIEScveeieiiecie e D-34
D.6.1.2.1 COMPONENEIIIEcuiiiiiiiec e D-34

D 2T G T o= 1 o 1o SRS D-34
D.6.1.3.1 cOMPONENEPIACEMENT.c..iiiiitiiiriiiiieiiee e D-35
D.6.1.3.2 cOMPONENtfilEref........ocieiieice e D-35
D.6.1.3.3 cOMPONENEINSTANTIALIONoveviiiiiieiieie e D-36
D.6.1.3.4 NOStCOIHOCALIONcvviviiiiiie e D-39
D.6.1.4 asSemMBIYCONIOIETc..oviiiiiie e D-40
D.6.1.5 CONMNEBCHIONS ..c.viviiiiiieiieiieie ettt bbbttt bbb bbb eene e ens D-40
D.6.1.5.1 CONNECHINIEITACEeouviiiieieieie ettt D-40
D.6.1.6 EXIEMNAIPOITS. .. .cviiiieiece ettt nta et nre e D-46
D.7 Device Configuration DESCIIPIONvciuiiiiiieiece ettt D-48
D.7.1 deviCeCoNfIQUIALION.ccvi ittt ae e re e e D-48
D.7. 1.1 dESCIIPLION....ctitiitieieeieeee et bbbttt bbbt D-49
D.7.1.2 devicemanagerSOftPKQcovviiiiieiece e D-49
D.7.1.3 COMPONENTIIIES ..o D-49

D 0 S o=) o 1o PSR D-49
D.7.1.4.1 compPONENtPIACEMENT........oiviiiiiiiiiiiieiie et D-49
D.7.1.5 CONMNEBCHIONS ..c.viiiitieieeiietieie ettt sttt bbbt e et e bbbt st eebeeneene e D-53
D.7.1.6 dOMAINMANAGETttt eitie ittt e a e te e b e e b e e s b e e s teesnseesreeanbeenrees D-53
D.7.1.7 TIlESYSIEMNAIMIESueiiiiiiiieterie sttt bbbt D-53
D.8 DomainManager Configuration DeSCrIPLOrccooeiiiiiiiinisieeeie e D-54
D.8.1 domainmanagerCoONfIgUIatiON...........cceiiiiiiiieieieie et D-54
D28 0 00 A o[- Yo o o USSP USRS D-55
D.8.1.2 domainmanagerSOfPKGccviieiiereiiese et D-55

SCA version 2.2.2

D.8.1.3 Services........cc.ceuun
D.9 Profile Descriptor................
D.10 Document Type Definitions

FINAL / 15 May 2006

D-vi

SCA version 2.2.2

FINAL / 15 May 2006

LIST OF FIGURES
Figure D-1. Relationships Between Domain Profile XML File TYPesccoccvvveviiiiieiiieninnns D-2
Figure D-2. softpkg Element RelationShipsccoiiiiiiiiiiiiec s D-4
Figure D-3: author Element RelationShips........ccoiiiiiiiiiciic st D-6
Figure D-4. implementation Element Relationships..........cccceiiiiiiiiiiienccee D-8
Figure D-5. code Element RelationShipsccviiieiiiiiiiiic i D-10
Figure D-6. dependency Element RelationsShips..........ccocoiiiiiiiiniiiieee e D-12
Figure D-7. softpkgref Element RelationShips..........ccoiiviiiiiic i D-12
Figure D-8. devicepkg Element RelationsShips...........cccooiiiiiiiiiiiiieeee e D-14
Figure D-9. hwdeviceregistration Element Relationships..........cccccovviieiicie i D-16
Figure D-10. childhwdevice Element Relationships..........cccooeiiiininiiiiiscececc e D-18
Figure D-11. properties Element Relationshipsccccovevviiiiiiieiicie s D-19
Figure D-12. simple Element RelationShipscccoiiiiiiiiiiieee e D-20
Figure D-13. simplesequence Element Relationships.........cccoovvieiieie i D-23
Figure D-14. test Element RelationShipsooiiiiiiiiiiiiieecece e D-24
Figure D-15. struct Element RelationShips...........ccoviiiiiiiiiccie e D-25
Figure D-16. structsequence Element Relationships.........ccccooeiiiiniiiiiiinieeee e D-27
Figure D-17. softwarecomponent Element Relationshipscccocveveiieiicie i D-28
Figure D-18. componentfeatures Element Relationships ... D-29
Figure D-19. ports Element RelationShips........ccoveiiiiiiicie e D-30
Figure D-20. softwareassembly Element Relationships ... D-33
Figure D-21. partitioning Element RelationShips...........ccovviiiiiieiicic e D-35
Figure D-22. componentplacement Element Relationships. ... D-35
Figure D-23. componentinstantiation Element Relationships...........c.ccccevvveveiiieiicvecieseens D-37
Figure D-24. componentproperties Element Relationships..........c.ccooiiiiiiiiiiiiiice D-37
Figure D-25. findcomponent Element Relationships...........ccoceiveiieiiiieieccc e D-38
Figure D-26. resourcefactoryproperties Element Relationships...........ccccovviiiieiiicicinnens D-38
Figure D-27. connectinterface Element Relationships...........cccccevviiiiiiicie e D-40
Figure D-28. usesport Element Relationships ... D-41
Figure D-29. findby Element RelationShips.........ccciviiiiiiieiecie e D-42

SCA version 2.2.2 FINAL /15 May 2006

Figure D-30.
Figure D-31.
Figure D-32.
Figure D-33.
Figure D-34.
Figure D-35.
Figure D-36.
Figure D-37.
Figure D-38.
Figure D-39.

providesport Element Relationshipscccccooeiiiiiiiniiee e D-44
componentsupportedinterface Element Relationships...........cccccevvivevivenieninne, D-45
port Element RelationShipsooviiiiiiiieee e D-46
deviceconfiguration Element Relationships...........cccocevveveiieieeie e D-48
componentplacement Element Relationships...........cccooviiiininieieicnccce D-50
componentinstantiation Element Relationships..........ccccccoovviieiiciiic e, D-51
componentproperties Element Relationships...........ccocoviiiiiieieicicncce D-52
domainmanager Element Relationships...........cccooveviiieiieie i D-53
domainmanagerconfiguration Element Relationships............ccccooviinnnnnnn D-54
service Element Relationshipsccvieiieiiii e D-55

D-viii

SCA version 2.2.2 FINAL /15 May 2006

APPENDIX D. DOMAIN PROFILE

The Software Communications Architecture (SCA) specification provides architectural
specifications for the deployment of communications software into a Software Definable Radio
(SDR) device. The intent of the SDR device is to provide a re-configurable platform, which can
host software components written by various vendors to support user functional services. The
SCA specification requires portable software components to provide common information called
a domain profile. The intent of this appendix is to clearly define to the component developers
the requirements of information and format for the delivery of this information. The domain
management functions use the component deployment information expressed in the Domain
Profile. The information is used to start, initialize, and maintain the applications that are
installed into the SCA-compliant system.

This appendix has been designed to follow the philosophy of the CORBA Components
Specification (OMG version 3.0, formal/02-06-65: Chapter 6 - Packaging and Deployment).
Due to the differences between the SCA Core Framework IDL and the CORBA Components
Specification IDL, it was necessary to modify some of the deployment principles for use in the
SCA. This specification defines the XML Document Type Definition (DTD) set for use in
deploying SCA components. The complete DTD set is contained in Attachment 1 to this
Appendix.

D.1 DEPLOYMENT OVERVIEW

The hardware devices and software components that make up an SCA system domain are
described by a set of XML descriptor files that are collectively referred to as a Domain Profile.
A Software Profile is the complete set of XML files needed to describe a particular software
component — the composition depending on the type of component being described. These
descriptor files describe the identity, capabilities, properties, and inter-dependencies of the
hardware devices and software components that make up the system. All of the descriptive data
about a system is expressed in the XML vocabulary. For purposes of this SCA specification, the
elements of the XML vocabulary have been based upon the OMG’s CORBA Components
specification (orbos/99-07-01).

Figure D-1 depicts the relationships between the descriptor files that are used to describe a
system's hardware and software assets. The XML vocabulary within each of these files describes
a distinct aspect of the hardware and software assets.

Within the Domain Profile, all CORBA software elements of the system are described by a
Software Package Descriptor (SPD) and a Software Component Descriptor (SCD) file.

The software profile for an application consists of one SAD file that references (directly or
indirectly) one or more SPD, SCD, and properties (PRF) files. An SPD file contains the details
of an application’s software module that must be loaded and executed..

The SPD provides identification of the software (title, author, etc.) as well as the name of the
code file (executable, library or driver), implementation details (language, OS, etc.),
configuration and initialization properties (contained in a Properties File), dependencies to other
SPDs and devices, and a reference to a Software Component Descriptor. The SPD also specifies

D-1

SCA version 2.2.2 FINAL /15 May 2006

the Device implementation requirements for loading dependencies (processor kind, etc.) and
processing capacities (e.g., memory, process) for the application software module.

The Software Component Descriptor (SCD) defines the CORBA interfaces supported and used
by a specific component.

Domain Profile

0..n
1 0..n
«DTDElement» «DTDElement» «DTDElement»
Device Configuration Descriptor Domain Manager Configuration Descriptor Software Assembly Descriptor
1
0..n 1..n
«DTDElement»
«DTDElement» 1 Software Package Descriptor
Device Package Descriptor -Nn
«DTDElement»
Properties Descriptor
0.1
0.1 0..1
«DTDElement» «DTDElement»
Properties Descriptor Software Component Descriptor
0..1

«DTDElement»
Properties Descriptor

Figure D-1. Relationships Between Domain Profile XML File Types

Since applications are composed of multiple SW components a Software Assembly Descriptor
(SAD) file is defined to determine the composition and configuration of the application. The
SAD references all SPDs needed for this application, defines required connections between
application components (connection of provides and uses ports / interfaces), defines needed
connections to devices and services, provides additional information on how to locate the needed
devices and services, defines any co-location (deployment) dependencies, and identifies a single
component within the application as the assembly controller.

D-2

SCA version 2.2.2 FINAL /15 May 2006

Similar to the application SAD, a device manager has an associated Device Configuration
Descriptor (DCD) file. The DCD identifies all devices and services associated with this device
manager, by referencing the associated SPDs. The DCD also defines properties of the specific
device manager, enumerates the needed connections to services (file systems), and provides
additional information on how to locate the domain manager. In addition to an SPD, a device
may have a Device Package Descriptor (DPD) file which provides a description of the hardware
device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the domain manager is itself described by the DomainManager
Configuration Descriptor (DMD) which provides the location of the (SPD) file for the specific
DomainManager implementation to be loaded. It also specifies the connections to other software
components (services and devices) which are required by the domain manager.

SCA version 2.2.2 FINAL /15 May 2006

D.2 SOFTWARE PACKAGE DESCRIPTOR

The Software Package Descriptor is used at deployment time to load a component and its various
implementations. The information contained in the Software Package Descriptor will provide
the basis for the domain management function to manage the component within the SCA
architecture.

The software package descriptor may contain various implementations of any given component.
Within the specification of a software package descriptor several other files are referenced
including a component level propertyfile and a software component descriptor file. Within any
given implementation there may be additional propertyfiles.

D.2.1 Software Package

The softpkg element (Figure D-2) indicates a Software Package Descriptor (SPD) definition.
The softpkg id uniquely identifies the package and is a DCE UUID. The DCE UUID is as
defined by the DCE UUID standard (adopted by CORBA). The DCE UUID format starts with
the characters "DCE:" and is followed by the printable form of the UUID, a colon, and a decimal
minor version number, for example: "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1". The
decimal minor version number is optional. The version attribute specifies the version of the
component. The name attribute is a user-friendly label for the softpkg element. The type
attribute indicates whether or not the component implementation is SCA compliant. All files
referenced by a Software Package are located in the same directory as the SPD file or a directory
that is relative to the directory where the SPD file is located.

Figure D-2. softpkg Element Relationships

The set of properties to be used for a Software Package come from the union of these properties
sources using the following precedence order:

SCA version 2.2.2 FINAL /15 May 2006

1. SPD Implementation Properties
2. SPD level properties
3. SCD properties

Any duplicate properties having the same ID are ignored. Duplicated properties must be the
same property type, only the value can be over-ridden. The implementation properties are only
used for the initial configuration and creation of a component by the CF ApplicationFactory and
cannot be referenced by a SAD componentinstantiation, componentproperties or
resourcefactoryproperties element.

<!ELEMENT softpkg
(title?
, author+
, description?
, propertyfile?
, descriptor?
, ilmplementation+
, usesdevice*

) >

<!ATTLIST softpkg

id ID #REQUIRED

name CDATA #REQUIRED

type (sca compliant | sca non compliant) "sca compliant"
version CDATA #IMPLIED >

D.2.1.1 title

The title element is used for indicating a title for the software component being installed in
accordance with the softpkg element.

<!ELEMENT title (#PCDATA)>
D.2.1.2 author

The author element (see Figure D-3) will be used to indicate the name of the person, the
company, and the web page of the developer producing the component being installed into the
system.

D-5

SCA version 2.2.2 FINAL /15 May 2006

<<DTDElement>>
author

<<DTDSequenceGroup>>
author_grp
(from author)
0..n 0.1 0.1
{1} @ {3
<<DTDElementPCDATA>> <<DTDElementPCDATA>> <<DTDElementPCDATA>>
name company webpage

Figure D-3: author Element Relationships

<!ELEMENT author

(name*

, company?

, webpage?
) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT company (#PCDATA) >
<!ELEMENT webpage (#PCDATA) >

D.2.1.3 description

The description element will be used to describe any pertinent information about the software
component being delivered to the system.

<!ELEMENT description (#PCDATA)>
D.2.1.4 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file
associated with the Software Package. The intent of the propertyfile will be to provide the
definition of properties elements common to all component implementations being deployed in
accordance with the Software Package (softpkg).Property Descriptor files may also contain
properties elements that are used in definition of command and control id value pairs used by the
SCA Resource configure() and query() interfaces. The format of the properties element is
described in the Properties Descriptor (Section D.4).

<!ELEMENT propertyfile

(localfile

) >

<!ATTLIST propertyfile

type CDATA #IMPLIED>

D-6

SCA version 2.2.2 FINAL /15 May 2006

D.2.1.4.1 localfile

The localfile element is used to reference a file in the same directory as the SPD file or a
directory that is relative to the directory where the SPD file is located. When the name attribute
is a simple name, the file exists in the same directory as the SPD file. A relative directory
indication begins either with “../”” meaning parent directory and ““./”” means current directory in
the name attribute. Multiple “../” and directory names can follow the initial “../” in the name
attribute. All name attributes must have a simple name at the end of the file name.

<!ELEMENT localfile EMPTY>
<I!ATTLIST localfile
name CDATA #REQUIRED>

D.2.1.5 descriptor

The descriptor element points to the local filename of the Software Component Descriptor
(SCD) file used to document the interface information for the component being delivered to the
system. In the case of an SCA Component, the SCD will contain information about three aspects
of the component (the component type, message ports, and IDL interfaces). The SCD file is
optional, since some SCA components are non-CORBA components, like digital signal
processor (DSP) “c” code (see section on software component descriptor file, section D.5).

<!ELEMENT descriptor

(localfile
) >
<!ATTLIST descriptor
name CDATA #IMPLIED>

D.2.1.6 implementation

The implementation element (see Figure D-4) contains descriptive information about the
particular implementation template for a software component contained in the softpkg element.
The implementation element is intended to allow multiple component templates to be delivered
to the system in one Software Package. Each implementation element is intended to allow the
same component to support different types of processors, operating systems, etc. The
implementation element will also allow definition of implementation-dependent properties for
use in CF Device, CF Application, or CF Resource creation. The implementation element’s id
attribute uniquely identifies a specific implementation of the component and is a DCE UUID
value, as stated in section D.2.1. The compiler, programminglanguage, humanlanguage, os,
processor, and runtime elements are optional dependency elements.

D-7

SCA version 2.2.2 FINAL /15 May 2006

P —
o R WYY =
-
s Sam

b
e
— e - BT

" r—
eI REATL

Figure D-4. implementation Element Relationships

<!ELEMENT implementation
(description?
, propertyfile?
, code
, compiler?
, programminglanguage?
, humanlanguage?
, runtime?
, (os | processor | dependency)+
, usesdevice*
) >
<!ATTLIST implementation
id ID #REQUIRED
aepcompliance (aep compliant | aep non compliant)
“aep compliant”>

D.2.1.6.1 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file
associated with this component package described by the implementation element. Although the
SCA specification does not restrict the specific use of the Property Descriptor file based on
context, it is intended within the implementation element to provide component implementation
specific properties elements for use in command and control id value pair settings to the CF
Resource configure() and query() interfaces. See the description of the properties element
format in the Properties Descriptor, section D.4.

D-8

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT propertyfile

(localfile
) >
<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<I!ATTLIST localfile
name CDATA #REQUIRED>

D.2.1.6.2 description

The description element will be used to describe any pertinent information about the software
component implementation that the software developer wishes to document within the software
package profile.

<!ELEMENT description (#PCDATA)>
D.2.1.6.3 code

The code element (see Figure D-5) will be used to indicate the local filename of the code that is
described by the softpkg element, for a specific implementation of the software component. The
stack size and priority are options parameters used by the CF ExecutableDevice execute
operation. Data types for the values of these options are unsigned long. The type attribute for
the code element will also indicate the type of file being delivered to the system. The entrypoint
element provides the means for providing the name of the entry point of the component being
delivered. The valid values for the type attribute are: “Executable”, “KernelModule”,
“SharedLibrary”, and “Driver.”

The meaning of the code type attribute:

1. Executable means to use CF LoadableDevice::load and CF ExecutableDevice::execute
operations. This is a “main” process.

Driver and Kernel Module means load only.
SharedLibrary means dynamic linking.
Without a code entrypoint element means load only.

o~ DN

With a code entrypoint element means load and CF Device::execute.

D-9

SCA version 2.2.2

<!ELEMENT

FINAL / 15 May 2006

te<{NIErrats>
ol
<y - AN
¥
m
m n o
TIP3 re< NSl T > << el TR > < <{IIErralF Ty >
= d exirppmint shacircirr
o~ - CONER

Figure D-5. code Element Relationships

code

(localfile

, entrypoint?
, stacksize?
, priority?

) >
<!ATTLIST code

type CDATA #IMPLIED>
<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>
<!ELEMENT entrypoint (#PCDATA)>
<!ELEMENT stacksize (#PCDATA)>
<!ELEMENT priority (#PCDATA)>

D.2.1.6.4 compiler

The compiler element will be used to indicate the compiler used to build the software component
being described by the softpkg element. The required name attribute will specify the name of the
compiler used, and the version attribute will contain the compiler version.

<!ELEMENT compiler EMPTY>
<!ATTLIST compiler
name CDATA
version CDATA

#REQUIRED
#IMPLIED>

D.2.1.6.5 programminglanguage

The programminglanguage element will be used to indicate the type of programming language
used to build the component implementation. The required name attribute will specify a
language such as “c”, “c++”, or “java”.

D-10

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage
name CDATA #REQUIRED
version CDATA #IMPLIED>

D.2.1.6.6 humanlanguage

The humanlanguage element will be used to indicate the human language for which the software
component was developed.

<!ELEMENT humanlanguage EMPTY>
<!ATTLIST humanlanguage
name CDATA #REQUIRED>

D.2.1.6.7 0s

The os element will be used to indicate the operating system on which the software component is
capable of operating. The required name attribute will indicate the name of the operating system
and the version attribute will contain the operating system. The os attributes will be defined in a
property file as an allocation property of string type and with names os_name and os_version and
with an action element value other than “external”. The 0s element is automatically interpreted
as a dependency and compared against allocation properties with names of os_name and
os_version. Legal os_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT os EMPTY>

<!ATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

D.2.1.6.8 processor

The processor element will be used to indicate the processor and/or processor family on which
this software component will operate. The processor name attribute will be defined in a property
file as an allocation property of string type and with a name of processor_name and with an
action element value other than “external”. The processor element is automatically interpreted
as a dependency and compared against an allocation property with a name of processor_name.
Legal processor_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT processor EMPTY>
<!ATTLIST processor
name CDATA #REQUIRED>

D.2.1.6.9 dependency

The dependency element (see Figure D-6) is used to indicate the dependent relationships
between the components being delivered and other components and devices, in an SCA
compliant system. The softpkgref element is used to specify a Software Package file that must
be resident within the system for the component, described by this softpkg element, to load
without errors. The propertyref will reference a specific allocation property, using a unique
identifier, and provide the value that will be used by a CF Device capacity model. The CF
DomainManager will use these dependency definitions to assure that components and devices

D-11

SCA version 2.2.2 FINAL /15 May 2006

that are necessary for proper operation of the implementation are present and available. The type
attribute is descriptive information indicating the type of dependency.

<< NDEement>>

deperdency
shype - COATA

)
<<DTDCHho ceGroup™> >
deperndency prp
(fom dependency)

VAN

<<DICE lemendEMPTY>> << ement>>
popertyref suriiphgyet

el - CDATA

owlue - COATA

Figure D-6. dependency Element Relationships

<!ELEMENT dependency

(softpkgref | propertyref)>
<!ATTLIST dependency

type CDATA #REQUIRED>

D.2.1.6.9.1 softpkgref

The softpkgref element (see Figure D-7) refers to a softpkg element contained in another
Software Package Descriptor file and indicates a file-load dependency on that file. The other file
is referenced by the localfile element. An optional implref element refers to a particular
implementation-unique identifier, within the Software Package Descriptor of the other file.

<< DNCE lemeng> >
aiiphgyref

)

<<DTDSeruenceGup> >
sufipiqyef prp

m/ “-\a

<< NDBemendEMPTY>> <<DTDH emendEMPTY>>
Iocaliie implref
srmame - COATA oreid - CDATA

Figure D-7. softpkgref Element Relationships

D-12

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT softpkgref
(localfile
, implref?
) >

<!ELEMENT implref EMPTY>
<!ATTLIST implref
refid CDATA #REQUIRED>

D.2.1.6.9.2 propertyref

The propertyref element is used to indicate a unique refid attribute that references a simple
allocation property, defined in the package, and a property value attribute used by the domain
Management function to perform the dependency check. This refid is a DCE UUID, as specified
in section D.2.1.

<!ELEMENT propertyref EMPTY>
<!ATTLIST propertyref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

D.2.1.6.10 runtime

The runtime element specifies a runtime required by a component implementation. An example
of the runtime is a Java VM.

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime
name CDATA #REQUIRED>
version CDATA #IMPLIED>

D.2.1.7 usesdevice

The usesdevice element describes any “uses” relationships this component has with a device in
the system. The propertyref element references allocation properties, which indicate the CF
Device to be used, and/or the capacity needed from the CF Device to be used.

<!ELEMENT usesdevice
(propertyref+)>
<!ATTLIST usesdevice
id ID #REQUIRED
type CDATA #REQUIRED>

D.2.1.7.1 propertyref
See D.2.1.6.9.2 for a definition of the propertyref element.

D-13

SCA version 2.2.2 FINAL /15 May 2006

D.3 DEVICE PACKAGE DESCRIPTOR

The SCA Device Package Descriptor (DPD) is the part of a Device Profile that contains
hardware device Registration attributes, which are typically used by a Human Computer
Interface application to display information about the device(s) resident in an SCA-compliant
radio system. DPD information is intended to provide hardware configuration and revision
information to a radio operator or to radio maintenance personnel. A DPD may be used to
describe a single hardware element residing in a radio or it may be used to describe the complete
hardware structure of a radio.

D.3.1 Device Package

The devicepkg element (see Figure D-8) is the root element of the DPD. The devicepkg id
attribute uniquely identifies the package and is a DCE UUID, as defined in paragraph D.2.1. The
version attribute specifies the version of the devicepkg. The format of the version string is
numerical major and minor version numbers separated by commas (e.g., "1,0,0,0"). The name
attribute is a user-friendly label for the devicepkg.

<<ADHemerd>>
¢ud-D
<mame - CDNATA
<weraon - COAER
<<ﬂw>
lL1/ \\A
[] ,
<DEemend>> | < <<m> <<ﬂ[Emum>>
erwcereppcsion =i plion
¢ud-D
oname - COATA
S - CDATA

Figure D-8. devicepkg Element Relationships

D-14

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT devicepkg
(title?
, author+
, description?
, hwdeviceregistration

) >
<!ATTLIST devicepkg
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>
D.3.1.1 title

The title element is used for indicating a title for the hardware device being described by
devicepkg.

<!ELEMENT title (#PCDATA)>

D.3.1.2 author

See D.2.1.2 for a definition of the author element.
D.3.1.3 description

The description element is used to describe any pertinent information about the device
implementation that the hardware developer wishes to document within the Device Package.

<!ELEMENT description (#PCDATA)>
D.3.1.4 hwdeviceregistration

The hwdeviceregistration element (see Figure D-9) provides device-specific information for a
hardware device. The hwdeviceregistration id attribute uniquely identifies the device and is a
DCE UUID, as defined in paragraph D.2.1. The version attribute specifies the version of the
hwdeviceregistration element. The format of the version string is numerical major and minor
version numbers separated by commas (e.g., "1,0,0,0"). The name attribute is a user-
friendlylabel for the hardware device being registered. At a minimum, the hwdeviceregistration
element must include a description, the manufacturer, the model number and the device’s
hardware class(es).

D-15

SCA version 2.2.2 FINAL /15 May 2006

LH:D
s - COANR
swrrdiem - CIRER

“ilw-bb
[~ 4 =
<« T rwred> > ﬂmi
deceriews chilacieics
I. A
= ¢
<« MEeraliPTIA R > -m «mm:
sl -_
(.- COAER

Figure D-9. hwdeviceregistration Element Relationships

<!ELEMENT hwdeviceregistration
(propertyfile?
, description
, manufacturer
, modelnumber
, deviceclass
, childhwdevice*

) >

<!ATTLIST hwdeviceregistration
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>

D.3.1.4.1 propertyfile

The propertyfile element is used to indicate the local filename of the property file associated with
the hwdeviceregistration element. The format of a property file is described in the Properties

Descriptor (Section D.4).

The intent of the property file is to provide the definition of properties elements for the hardware
device being deployed and described in the Device Package (devicepkg) or hwdeviceregistration

element.

D-16

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT propertyfile

(localfile
) >
<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<I!ATTLIST localfile
name CDATA #REQUIRED>

D.3.1.4.2 description
See D.2.1.3 for definition of the description element.
D.3.1.4.3 manufacturer

The manufacturer element is used to convey the name of manufacturer of the device being
installed.

<!ELEMENT manufacturer (#PCDATA)>
D.3.1.4.4 modelnumber

The modelnumber element is used to indicate the manufacture's model number, for the device
being installed.

<!ELEMENT modelnumber (#PCDATA)>
D.3.1.4.5 deviceclass

The deviceclass element is used to identify one or more hardware classes that make up the device
being installed.

<!ELEMENT deviceclass

(class+

) >

<!ELEMENT class (#PCDATA)>

D.3.1.4.6 childhwdevice

The childhwdevice element (see Figure D-10) indicates additional device-specific information
for hardware devices that make up the root or parent hardware device registration. An example
of childhwdevice would be a radio's RF module that has receiver and exciter functions within it.
In this case, a CF Device representing the RF module itself would be a parent Device with its
DPD, and the receiver and exciter are child devices to the module. The parent/ child
relationship indicates that when the RF module is removed from the system, the receiver and
exciter devices are also removed.

D-17

SCA version 2.2.2 FINAL /15 May 2006

<< DiDEement>>
childbwdevce
<<TADChoceGauys >
childhedevce pp
{fom childhedewce)
<<NEemert>> < <D ement>>

m dewiceplgyref |
¢ud:D ohype - CONIR
<mame - CDATA
<wersin - COAIR

Figure D-10. childhwdevice Element Relationships

<!ELEMENT childhwdevice
(hwdeviceregistration | devicepkgref)>

D.3.1.4.7 hwdeviceregistration

The hwdeviceregistration element provides device-specific information for the child hardware
device. See D.3.1.4 for definition of the hwdeviceregistration element.

D.3.1.4.8 devicepkgref

The devicepkgref element is used to indicate the local filename of a Device Package Descriptor
file pointed to by Device Package Descriptor (e.g., a devicepkg within a devicepkg).

<!ELEMENT devicepkgref
(localfile)>
<!ATTLIST devicepkgref
type CDATA #IMPLIED>

D-18

SCA version 2.2.2 FINAL /15 May 2006

D.4 PROPERTIES DESCRIPTOR

The Properties Descriptor file details component and device attribute settings. For purposes of
the SCA, Property Descriptor files will contain simple, simplesequence, test, struct or
structsequence elements. These elements will be used to describe attributes of a component that
will be used for dependency checking. These elements will also be used for SCA component
values used by a CF Resource component’s configure, query, and runTest operations..

D.4.1 properties

The properties element (see Figure D-11) is used to describe property attributes that will be used
in the configure and query operations for SCA CF Resource components and for definition of
attributes used for dependency checking. The properties element can also used in the CF
TestableObject::runTest operation to configure tests and provide test results.

<<DTDElement>>
properties

!

<<DTDSequenceGroup>>
properties_grp
(from properties)

i 0.1 1_\\ o

<<DTDElementP CDATA>> <<DTDChoiceGroup>>
description properties_grp_grp
(from properties_grp)

.

<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>
simple simplesequence test struct structsequence

Figure D-11. properties Element Relationships

<!ELEMENT properties
(description?
, (simple | simplesequence | test | struct | structsequence
) +

) >

D.4.1.1 simple

The simple element (see Figure D-12) provides for the definition of a property which includes a
unique id, type, name and mode attributes of the property that will be used in the CF Resource
configure() and query() operations, for indication of component capabilities, or in the CF
TestableObject runTest operation. The simple element is specifically designed to support id-
value pair definitions. A simple property id attribute corresponds to the id of the id-value pair.

D-19

SCA version 2.2.2 FINAL /15 May 2006

The value and range of a simple property correspond to the value of the id-value pair. The
optional enumerations element allows for the definition of a label-to-value for a particular
property. The mode attribute defines whether the properties element is “readonly”, “writeonly”
or “readwrite”. The id attribute is an identifier for the simple property element. The id attribute
for a simple property that is an allocation type is a DCE UUID value, as specified in section
D.2.1. The id attribute for all other simple property elements can be any valid XML ID type.
The mode attribute is only meaningful when the type of the kind element is “configure”.

s - m——
e

oMz D
Sy - PecOdemmn e | dmdste [Homd | sheosd | fomgy | Obgesd |osched | sideg | st | sl
| e CDATA

LS
- /
AN DA PN D X e
= o=
~
=
AN Dl D X e
=
L8]
L
D VOl M Ve A TH e IO FTT
="} -t
e |t [bl e ()] O] gE |l] e — e

Figure D-12. simple Element Relationships

<!ELEMENT simple

(description?
, value?

, units?

, range?

, enumerations?
, kind*

, action?

) >
<!ATTLIST simple
id ID #REQUIRED
type (boolean | char | double | float | short | long |
objref | octet | string | ulong | ushort) #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) “readwrite”>

D.4.1.1.1 description

The description element is used to provide a description of the properties element that is being
defined.

D-20

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT description (#PCDATA)>

D.4.1.1.2 value

The value element is used to provide a value setting to the properties element.
<!ELEMENT value (#PCDATA)>

D.4.1.1.3 units

The units element describes the intended practical data representation to be used for the
properties element.

<!ELEMENT units (#PCDATA)>
D.4.1.1.4 range

The range element describes the specific min and max values that are legal for the simple
element. The intent of the range element is to provide a means to perform range validation.
This element is not used by the CF ApplicationFactory or CF Application implementations.

<!ELEMENT range EMPTY
<!ATTLIST range
min CDATA #REQUIRED
max CDATA #REQUIRED>

D.4.1.1.5 enumerations
The enumerations element is used to specify one or more enumeration elements.

<!ELEMENT enumerations
(enumeration+)>

The enumeration element is used to associate a value attribute with a label attribute..
Enumerations are legal for various integer type properties elements. An Enumeration value is
assigned to a property that implements the CORBA long type. Enumeration values are implied;
if not specified by a developer, the initial implied value is 0 and subsequent values are
incremented by 1.

Note: The advantage of the enumeration element over the sequence element from the CORBA
components specification is that the enumeration element provides a mechanism to associate a
value of a property to a label. The sequence element of the CORBA component specification
does not allow association of values (only lists of sequences).

<!ELEMENT enumeration EMPTY>

<!ATTLIST enumeration

label CDATA #REQUIRED
value CDATA #IMPLIED>

D.4.1.1.6 kind

The kind element’s kindtype attribute is used to specify the kind of property. The types of
kindtype attributes are:

1. configure, which is used in the configure and query operations of the CF Resource
interface. The application factory will use the configure kind of properties to build the

D-21

SCA version 2.2.2 FINAL /15 May 2006

CF Properties input parameter to the configure operation that is invoked on the
assemblycontroller component during application creation. The device manager will use
the configure kind of properties to build the CF Properties input parameter to the
configure operation that is invoked on components implementing the Device interface,
during device creation. The application factory will also use the configure kind of
properties for CF ResourceFactory create options parameters. When the mode is
readonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query
are supported.

2. test, which is used in the runTest operation of the CF TestableObject interface. The test
kind of properties will be used as the testValues parameter to the runTest operation that is
invoked on CF Resource components.

3. allocation, which is used in the allocateCapacity and deallocateCapacity operations of
the Device interface. The application factory and device manager will use the simple
properties of kindtype allocation to build the input capacities parameter to the
allocateCapacity operation that is invoked on device components during application
creation, when the action element of those properties is external. The application factory
and device manager manage simple properties of kindtype allocation when the action is
not external. Allocation properties that are external can also be queried using the CF
PropertySet query operation.

4. execparam,. which is used in the execute operations of the Device interface. The CF
ApplicationFactory and DeviceManager will use the execparam kind of properties to
build the CF Properties input parameter to the execute operation that is invoked on the
CF ExecutableDevice components during CF Device and/or CF Application creation.
Only simple elements can be used as execparam types.

5. factoryparam, which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use the factoryparam type of properties to
build the CF Properties input parameter to the createResource operation.

A property can have multiple kind elements and the default kindtype is configure.

<!ELEMENT kind EMPTY>

<!ATTLIST kind
kindtype (allocation | configure | test | execparam |
factoryparam) “configure”>

D.4.1.1.7 action

The action element is used to define the type of comparison used to compare an SPD property
value to a device property value, during the process of checking SPD dependencies. The kindtype
attribute of the action element, will determine the type of comparison to be made (e.g., equal, not
equal, greater than, etc.). The default value for kindtype is external.

In principle, the action element defines the operation executed during the comparison of the
allocation property value, provided by an SPD dependency element, to the associated allocation
property value of a CF Device. The allocation property is on the left side of the action and the
dependency value is on the right side of the action. This process allows for the allocation of

D-22

SCA version 2.2.2 FINAL /15 May 2006

appropriate objects within the system based on their attributes, as defined by their dependent
relationships.

For example, if a CF Device's properties file defines a DeviceKind allocation property whose
action element is set to "equal”, then at the time of dependency checking a valid DeviceKind
property is checked for equality. If a software component implementation is dependent on a
DeviceKind property with its value set to "NarrowBand", then the component's SPD dependency
propertyref element will reference the id of the DeviceKind allocation property with a value of
"NarrowBand". At the time of dependency checking, the CF ApplicationFactory will check CF
Devices whose properties kind element is set to “allocation” and property id is DeviceKind for
equality against a "NarrowBand" value.

<!ELEMENT action EMPTY>

<ATTLIST action
type (eg | ne | gt | 1t | ge | le | external
) "external">

D.4.1.2 simplesequence

The simplesequence element (see Figure D-13) is used to specify a list of properties with the
same characteristics (e.g., type, range, units, etc.). The simplesequence element definition is
similar to the simple element definition except that it has a list of values instead of one value.
The simplesequence element maps to the sequence types for CF and PortTypes CORBA
modules, defined in SCA Appendix C section C.2, based upon the type attribute.

A W —
h——

=

—
e

Figure D-13. simplesequence Element Relationships

<!ELEMENT simplesequence
(description?
, values?
, units?

range?

kind*

action?

~ ~ ~ ~

D-23

SCA version 2.2.2 FINAL /15 May 2006

<!ATTLIST simplesequence
id ID #REQUIRED

type (boolean | char | double | float | short | long |
objref | octet | string | ulong |ushort) #REQUIRED
name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) “readwrite”>

<!ELEMENT values
(value+)>

D.4.1.3 test

The test element (see Figure D-14) is used to specify a list of test properties for executing the
runTest operation in order to perform a component specific test. This element contains
inputvalue and resultvalue elements and it has an id attribute for grouping test properties to a
specific test. The id attribute will be represented by a numeric value. Inputvalues are used to
configure the test to be performed (e.g., frequency and RF power output level). When the test
has completed, resultvalues contain the results of the testing (e.g., pass or a fault code/message)

<< CNDEemend >
et

il - CIDNIA

<< OIS e G >
el pp
(o el

o B .

< < CNCE lemendP COA TA- > =< NDEemend- = <& CNDBement>>
degcapimn ek T T

Figure D-14. test Element Relationships

<!ELEMENT test
(description
, 1lnputvalue?
, resultvalue

) >
<!ATTLIST test
id CDATA #REQUIRED>

D.4.1.3.1 inputvalue

The inputvalue element is used to provide test configuration properties. The simple properties it
contains must have a kindtype value of test.

<!ELEMENT inputvalue
(simple+)>

D-24

SCA version 2.2.2 FINAL /15 May 2006

D.4.1.3.2 resultvalue

The resultvalue element is used to specify the desired results of the runTest operation. The
simple properties it contains must have a kindtype value of test.

<!ELEMENT resultvalue
(simple+)>

D.4.1.4 struct

The struct element (see Figure D-15) is used to group properties with different characteristics
(i.e., similar to a structure or record entry). Each item in the struct element can be a different
simple type (e.g., short, long, etc.). The struct element corresponds to the CF Properties type
where each struct item (ID, value) corresponds to a properties element list item. The properties
element list size is based on the number of struct items.

<<OIDEemert>>
sincd

¢ul-D
<rame - COATA
<mde - {resdonty | resderile | wnileonly) = resdesi e

< <NDSeqpenceGmys >
E T
(iom sénech
D1
[U] g//// :3\\& 8
<<DIDBemerfPCONTA> > <<{ACE lemendEMPTY> >
descaplion cxaviguraloniind
Shandiype - (coniguee | Bciorypanam) = conigue
1in |
&
<<DIDBemert> >
Smple
oud-D
oype - (ke | char | doubie | foed | shord | long | obyref | octed | sfing | uong | ushorf)
smame - COATA
ormude - {readonly | esderile fenieonly) = readerile

Figure D-15. struct Element Relationships

D-25

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT struct
(description?
, Simple+
, configurationkind?

) >

<!ATTLIST struct
id ID #REQUIRED
name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">"
D.4.1.4.1 configurationkind

The configurationkind element’s kindtype attribute is used to specify the kind of property. The
Kindtypes are:

1. configure, which is used in the configure() and query() operations of the SCA Resource
interface. The CF ApplicationFactory and DeviceManager will use the configure kind of
properties to build the CF Properties input parameter to the configure() operation that is
invoked on the CF Resource components during application creation. When the mode is
readonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query
are supported.

2. factoryparam, which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use the factoryparam kind of properties to
build the CF Properties input parameter to the createResource() operation. A property
can have multiple configurationkind elements and their default kindtype is “configure”.

<!ELEMENT configurationkind EMPTY>
<!ATTLIST configurationkind
kindtype (configure | factoryparam) “configure”>

D.4.1.5 structsequence

The structsequence element (see Figure D-16) is used to specify a list of properties with the same
struct characteristics. The structsequence element maps to a properties element having the CF
Properties type. Each item in the CF Properties type will be the same struct definition as
referenced by the structrefid attribute.

D-26

SCA version 2.2.2 FINAL /15 May 2006

<< NDSerpenceGaupn>>
sfuciserpEnce rp
(iom séncseyg ence)
(4] s a8
<<DADEemendPCDAIA> > | (< <DNDBement>> <<DIE lemer@EMPTY>>
desoripiion afuchehe coviguraioniand
<hindiype - fooigure |clorypea) = conigue

Figure D-16. structsequence Element Relationships

<!ELEMENT structsequence
(description?
, structvalue+
, configurationkind?

) >
<!ATTLIST structsequence
id ID #REQUIRED
structrefid CDATA #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue
(simpleref+)>

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

D-27

SCA version 2.2.2 FINAL /15 May 2006

D.5 SOFTWARE COMPONENT DESCRIPTOR

This descriptor file is based on the CORBA Component Descriptor specification. The SCA
components CF Resource, CF Device, and CF ResourceFactory that are described by the
software component descriptor are based on the SCA CF specification, and the following
specification concentrates on definition of the elements necessary for describing the ports and
interfaces of these components.

D.5.1 softwarecomponent

The softwarecomponent element (see Figure D-17) is the root element of the software
component descriptor file. For use within the SCA the sub-elements that are supported include:

1. corbaversion — indicates which version of CORBA the component is developed for.
2. componentrepid — is the repository id of the component
3. componenttype — identifies the type of software component object
4. componentfeatures — provides the supported message ports for the component
5. interface — describes the component unique id and name for supported interfaces.
<< DiDEemend>>
ayesrecTporend
b
<<DNDSepeceGuup>>
mm_yp
<¢:Bmufunm» <¢IEHH'°
(Mm(ﬂﬂh
<<Il[l§lmn£m> <TADBement>>

aqii:m

Figure D-17. softwarecomponent Element Relationships

<!ELEMENT softwarecomponent
(corbaversion
componentrepid
componenttype
componentfeatures
interfaces
propertyfile?

~ ~ ~ ~ ~ ~

D-28

SCA version 2.2.2 FINAL /15 May 2006

D.5.1.1 corbaversion

The corbaversion element is intended to indicate the version of CORBA that the delivered
component supports.

<!ELEMENT corbaversion (#PCDATA) >
D.5.1.2 componentrepid

The componentrepid uniquely identifies the interface that the component is implementing. The
componentrepid may be referred to by the componentfeatures element. The componentrepid is
derived from the CF Resource, CF Device, or CF ResourceFactory.

<!ELEMENT componentrepid EMPTY>
<!ATTLIST componentrepid
repid CDATA #REQUIRED>

D.5.1.3 componenttype

The componenttype describes properties of the component. For SCA components, the
component types include resource, device, resourcefactory, domainmanager, log, filesystem,
filemanager, devicemanager, namingservice and eventservice.

<!ELEMENT componenttype (#PCDATA)>
D.5.1.4 componentfeatures

The componentfeatures element (see Figure D-18) is used to describe a component with respect
to the components that it inherits from, the interfaces the component supports, and its provides
and uses ports. At a minimum, the component interface has to be a CF Resource, CF
ResourceFactory, or CF Device interface. If a component extends the CF Resource or CF
Device interface then all the inherited interfaces (e.g., CF Resource) are depicted as
supportsinterface elements.

<<DTH emend>>
compnent Eaf res

!
<< DIDSeqpenceGmup>>
compoentbahees pp
{Fom component Eak se)

07 \a

<<OTIHemendEMPTY> > | | << DIDEement>>
s nferbce poria
¢repud - COATA
¢upprianame - COATA

Figure D-18. componentfeatures Element Relationships

D-29

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT componentfeatures
(supportsinterface~*
, ports

) >

D.5.1.4.1 supportsinterface

The supportsinterface element is used to identify an IDL interface that the component supports.
These interfaces are distinct interfaces that were inherited by the component’s specific interface.
One can widen the component’s interface to be a supportsinterface. The repid is used to refer to
the interface element (see interfaces section D.5.1.5).

<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface
repid CDATA #REQUIRED
supportsname CDATA #REQUIRED>

D.5.1.4.2 ports

The ports element (see Figure D-19) describes what interfaces a component provides and uses.
The provides elements are interfaces that are not part of a component’s interface but are
independent interfaces known as facets (in CORBA Components terminology) (i.e. a provides
port at the end of a path, like 1/0 Device or Modem Device, does not need to be a CF Port type).
The uses element is a CF Port interface type that is connected to a provides or supportinterfaces
interface. Any number of uses and provides elements can be given in any order. Each ports
element has a name and references an interface by repid (see interfaces section D.5.1.5). The
port names are used in the Software Assembly Descriptor to connect ports together. A ports
element also has an optional porttype element that allows for identification of port classification.
Values for porttype include “data”, “control”, “responses”, and “test”. If a porttype is not given
then “control” is assumed.

<< DNCE lemend> >

<< IDChoiceGaup> >
poris_pgp
(fom por)

VAN

<<DTDBement>> <<DIDEement>>

crepd - COATA crepd - CDATA
opradeaname - COATA | | ¢usesname - COATA

Figure D-19. ports Element Relationships

D-30

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT ports
(provides | uses)~*
>

<!ELEMENT provides
(porttype*)>

<!ATTLIST provides
repid CDATA #REQUIRED
providesname CDATA #REQUIRED>

<!ELEMENT uses

(porttypex*

) >

<!ATTLIST uses
repid CDATA #REQUIRED
usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>
<!ATTLIST porttype
type (data | control | responses | test) #REQUIRED>

D.5.1.5 interfaces
The interfaces element is made up of one to many interface elements.

<!ELEMENT interfaces
(interface+)>

The interface element describes an interface that the component, either directly or through
inheritance, provides, uses, or supports. The name attribute is the character-based non-qualified
name of the interface. The repid attribute is the unique repository id of the interface, which has
formats specified in the CORBA specification. The repid is also used to reference an interface
element elsewhere in the SCD, for example from the inheritsinterface element.

<!ELEMENT interface
(inheritsinterface*) >
<!ATTLIST interface
repid CDATA #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface
repid CDATA #REQUIRED

D.5.1.6 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file
associated with the software component. The definition of the propertyfile element can be found
in section D.2.1.4 . Within the Software Component Descriptor, the localfile sub-element of the

D-31

SCA version 2.2.2 FINAL /15 May 2006

propertyfile element is a relative pathname referencing a file in the same directory as the SCD or
in a directory that is relative to the directory where the SCD file is located.

D-32

SCA version 2.2.2 FINAL /15 May 2006

D.6 SOFTWARE ASSEMBLY DESCRIPTOR

This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file;
the softwareassembly element (see Figure D-20). The SAD is based on the CORBA
Components Specification Component Assembly Descriptor. The intent of the software
assembly is to provide the means of describing the assembled functional application and the
interconnection characteristics of the SCA components within that application. The component
assembly provides four basic types of application information for domain management. The first
IS partitioning information that indicates special requirements for collocation of components, the
second is the assembly controller for the software assembly, the third is connection information
for the various components that make up the application assembly, and the fourth is the visible
ports for the application assembly.

D.6.1 softwareassembly

The installation of an application into the system involves the installation of a SAD file. The
SAD file references component’s SPD files to obtain deployment information for these
components. The softwareassembly element’s id attribute is a DCE UUID, as specified in section
D.2.1, which uniquely identifies the assembly. The softwareassembly element’s name attribute is
the user-friendly name for the ApplicationFactory name attribute. The softwareassembly
element’s version attribute is the version of the application.

«DTDElement»
softwareassembly
id: ID
DTDElement
————————— name : CDATA 01 (;xternal orts?
— #:PCDATA _! version : CDATA =
«DTDElement»
description
0.1 0..1
«DTDElement»
connections
«DTDElement»
componentfiles
«DTDElement» «DTDElement»
partitioning assemblycontroller

Figure D-20. softwareassembly Element Relationships

D-33

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT softwareassembly
(description?
, componentfiles
, partitioning
, assemblycontroller
, connections?
, externalports?

) >

<IATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

D.6.1.1 description

The description element of the component assembly may be used to describe any information the
developer would like to indicate about the assembly.

<!ELEMENT description (#PCDATA)>
D.6.1.2 componentfiles

The componentfiles element is used to indicate that an assembly is made up of 1..n component
files. The componentfile element contains a reference to a local file, which is a Software
Package Descriptor file.

<!ELEMENT componentfiles
(componentfilet+)>

D.6.1.2.1 componentfile

The componentfile element is a reference to a local file. See section D.2.1.4.1 for the definition
of the localfile element. The type attribute is “Software Package Descriptor”.

<!ELEMENT componentfile
(localfile)>
<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED>

D.6.1.3 partitioning

A component partitioning element (see Figure D-21) specifies a deployment pattern of
components and their components-to-hosts relationships. A component instantiation is captured
inside a componentplacement element. The hostcollocation element allows the components to be
placed on a common device. When the componentplacement is by itself and not inside a
hostcollocation, it then has no collocation constraints.

D-34

SCA version 2.2.2 FINAL /15 May 2006

Figure D-21. partitioning Element Relationships

<!ELEMENT partitioning
(componentplacement | hostcollocation)+>

D.6.1.3.1 componentplacement

The componentplacement element (see Figure D-22) defines a particular deployment of a
component. The component can be deployed either directly or by using a CF ResourceFactory. .

<<OTIBement>>
compreniplecemend

!

<<DTDSerpenceGoup> >
componeniplecemend prp
[ﬁmm‘nml

o / "\ a

<< DICE lemendEM PTY> >
componenteref

<<[DNCE lemend>>
componend nefeniadion

oeld - COATA

¢d:-D

Figure D-22. componentplacement Element Relationships

<!ELEMENT componentplacement

(componentfileref

, componentinstantiation+
) >

D.6.1.3.2 componentfileref

The componentfileref element is used to reference a particular Software PackageDescriptor file.
The componentfileref element’s refid attribute corresponds to the componentfile element’s id

attribute.

D-35

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref
refid CDATA #REQUIRED>

D.6.1.3.3 componentinstantiation

The componentinstantiation element (see Figure D-23) is intended to describe a particular
instantiation of a component relative to a componentplacement element. The
componentinstantiation’s id attribute is a DCE UUID that uniquely identifies the component.
The id is a DCE UUID value as specified in section D.2.1. . The componentinstantiation
element’s id may be referenced by the usesport and providesport elements within the SAD file. It
is the component name for the instantiation not the application name.

The optional componentproperties element (see Figure D-24) is a list of configure, factoryparam,
and/or execparam properties values that are used in creating the component or for the initial
configuration of the component.

The following sources will be searched in the given precedence order for initial values for simple
properties with a kindtype of “execparam” or “configure” and a mode attribute of “readwrite” or
“writeonly”:

1. The SAD partitioning : componentplacement : componentinstantiation element,

2. The value or default value, if any, from the SPD using the properties precedence stated in
D.2.1.

If no values are found in the sources above, the property is discarded.

The following sources will be searched in the given precedence order for initial values for simple
properties with a kindtype of “factoryparam”:

1. The SAD partitioning : componentplacement : componentinstantiation : findcomponent :
componentresourcefactoryref : resourcefactoryproperties element,

2. The SAD partitioning : componentplacement : componentinstantiation :
componentproperties element,

3. The value or default value, if any, from the SPD using the properties precedence stated in
D.2.1.

If no values are found in the sources above, the property is discarded.

The optional findcomponent element (see Figure D-25) is used to obtain the CORBA object
reference for the component instance. The two sources for obtaining a CORBA object reference
are:

1. The componentresourcefactoryref element, which refers to a particular CF
ResourceFactory componentinstantiation element found in the SAD, which is used to
obtain a CF Resource instance for this componentinstantiation element. The refid
attribute refers to a unique componentinstantiation id attribute. The
componentresourcefactoryref element contains an optional resourcefactoryproperties
element (see Figure D-26), which specifies the properties “qualifiers”, for the CF
ResourceFactory create call.

D-36

SCA version 2.2.2

FINAL / 15 May 2006

2. The CORBA Naming Service, which is used to find the component’s CORBA object
reference. The name specified in the namingservice element is a partial name that is used
by the CF ApplicationFactory to form the complete context name.

The optional findcomponent element should be specified except when there is no CORBA object
reference for the component instance (e.g., DSP code).

<<DIDEBement>>
componendnsdantaion

«u:-D

4

{fom

<<DIDSepenceGrup>>
compreniinesieniaon pp

D1 D_1

D1

<< DIDEemendPCDATA> > << IDEement>>

<<DTDH ement> >
ndcormponend

Figure D-23. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
, findcomponent?

) >

<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<= CADEement->
compreniaoperien

1n

< <IN i cels mp >
urqln!ﬂlqnﬁ!l 1 [pp

N

< <O el M PTY > > «[l[Ehn!lbb ﬂdJIIEImb <« [NCE kel >
et sinwiaerp et
el - COATA {mﬂ:ﬂl‘[ﬁ .:'n!ii COATA el - CDATA
gl - COATA

Figure D-24. componentproperties Element Relationships

D-37

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT componentproperties
(simpleref | simplesequenceref | structref |
structsequenceref)+ >

(o rckomporerd)

L

<<DIHemerd>> <<DIEewverdE AP TY>>

rEmrgEanKe
<veiid - CODATA <rame - COATA

Figure D-25. findcomponent Element Relationships

<!ELEMENT findcomponent
(componentresourcefactoryref | namingservice)>

<!ELEMENT componentresourcefactoryref
(resourcefactoryproperties?)>

<!ATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

<<[DNDH emend>>
resmece Boioryproper e

1n
<<DIDChoices > >
resmacefectonpoperies_pp
(fom esmsrcebcionpmper ies)

S AN

< <DNCE lemend>> << ement>>
smpleref smplesergenceret sénwdref sfuctaeny enceref
oreld - COATA oreld - CDATA orefd - CDATA <=l - CDATA
owhme - COATA

Figure D-26. resourcefactoryproperties Element Relationships
<!ELEMENT resourcefactoryproperties
(simpleref | simplesequenceref | structref |

structsequenceref)+ >

<!ELEMENT simpleref EMPTY>

D-38

SCA version 2.2.2

<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref
(values)>
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+)>
<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+)>
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>

<!ELEMENT structvalue
(simpleref+)>

<!ELEMENT wvalues
(value+)>

<!ELEMENT value (#PCDATA)>
D.6.1.3.4 hostcollocation

FINAL / 15 May 2006

The hostcollocation element specifies a group of component instances that are to be deployed
together on a single host. For purposes of the SCA, the componentplacement element will be
used to describe the 1...n components that will be collocated on the same host platform. Within
the SCA specification, a host platform will be interpreted as a single device. The id and name
attributes are optional but may be used to uniquely identify a set of collocated components

within a SAD file.

<!ELEMENT hostcollocation

(componentplacement)+>
<!ATTLIST hostcollocation

id 1D #IMPLIED

name CDATA #IMPLIED>

D.6.1.3.4.1 componentplacement

See componentplacement, section D.6.1.3.1.

D-39

SCA version 2.2.2 FINAL /15 May 2006

D.6.1.4 assemblycontroller

The assemblycontroller element indicates the component that is the main CF Resource controller
for the assembly. The CF Application object delegates its CF Resource::configure, query, start,
stop, and runTest operations to the CF Resource’s Assembly Controller component.

<!ELEMENT assemblycontroller
(componentinstantiationref)>

D.6.1.5 connections

The connections element is a child element of the softwareassembly element. The connections
element is intended to provide the connection map between components in the assembly.

!ELEMENT connections
(connectinterface*)>

D.6.1.5.1 connectinterface

The connectinterface element (see Figure D-27) is used when application components are being
assembled to describe connections between their port interfaces. The connectinterface element
consists of a usesport element and a providesport, componentsupportedinterface, or findby
element. These elements are intended to connect two compatible components.

<<DNDEement>>
comecinderbee

¢d:-D

Figure D-27. connectinterface Element Relationships

<!ELEMENT connectinterface
(usesport
, (providesport | componentsupportedinterface | findby)
) >
<!ATTLIST connectinterface
id ID #IMPLIED>

D-40

SCA version 2.2.2 FINAL /15 May 2006

D.6.1.5.1.1 usesport

The usesport element (see Figure D-28) identifies, using the usesidentifier element, the
component port that is using the provided interface from the providesport element. A CF
Resource type component may be referenced by one of four elements. One element is the
componentinstantiationref that refers to the componentinstantiation id attribute (see
componentinstantiation) within the assembly; the other elements are findby,
devicethatloadedthiscomponentref, and deviceusedbythiscomponentref.

<<DIDEement>>

<< DDSerpenceGup>>
Lee=yprd_pyp
(from veepod)

o Ny @
<<DIDHemendPCOATA>> | [<<DTDChoi ceGuoup>>
ueesirdend fer ey prp_prp
(fom useapord)

Ny

<<DNDEement>>

<<[DNCE lemenEMPTY>>

oreid - CDATA

<<DIDBemendEM PTY>>
<<[NCE lemeniEMPTY>> devceedingdh scomponente f
dewcedhad oadediscomponentre f <=l - CDATA

orefd - CDATA e - CDATA

Figure D-28. usesport Element Relationships

<!ELEMENT usesport
(usesidentifier
, (componentinstantiationref |
devicethatloadedthiscomponentref |
deviceusedbythiscomponentref | findby)
) >

D.6.1.5.1.1.1 usesidentifier

The usesidentifier element identifies which “uses port” on the component is to participate in the
connection relationship. This identifier will correspond with an id for one of the component
ports specified in the Software Component Descriptor.

<!ELEMENT usesidentifier (#PCDATA)>

D-41

SCA version 2.2.2 FINAL /15 May 2006

D.6.1.5.1.1.2 componentinstantiationref

The componentinstantiationref element refers to the id attribute of the componentinstantiation
element within the Software Assembly Descriptor file. The refid attribute will correspond to the
unique componentinstantiation id attribute.

<!ELEMENT componentinstantiationref EMPTY>
<!ATTLIST componentinstantiationref
refid CDATA #REQUIRED>

D.6.1.5.1.1.3 findby

The findby element (see Figure D-29) is used to resolve a connection between two components.
It tells the domain management function how to locate a component interface involved in a
connection relationship. The namingservice element specifies a naming service name to search
for the desired component interface.

The domainfinder element specifies an element within the domain that is known to the domain
management function.

<<PJIDBamneni=>>

<<DIDChoceGrp=>
indby_op
(i indy)

<<DIDBanentEMPTY > >
<DIDBemeniE .
< i pwa> 3 o

- - <lype - @amanages | log | evenichannd | namingsenice)
— oname : CDATA

Figure D-29. findby Element Relationships

<!ELEMENT findby
(namingservice | domainfinder)>

D.6.1.5.1.1.4 namingservice

The namingservice element is a child element of the findby element. The namingservice element
is used to indicate to the CF ApplicationFactory the requirement to find a component interface.
The CF ApplicationFactory will use the name attribute to search the CORBA Naming Service
for the appropriate interface.

D-42

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT namingservice EMPTY
<!ATTLIST namingservice
name CDATA #REQUIRED>

D.6.1.5.1.1.5 domainfinder

The domainfinder element is a child element of the findby element. The domainfinder element is
used to indicate to the CF ApplicationFactory the necessary information to find an object
reference that is of specific type and may also be known by an optional name within the domain.
The valid type attributes are “filemanager”, “log”, “eventchannel”, and “namingservice”. If a
name attribute is not supplied, then the component reference returned is the CF
DomainManager’s FileManager, or Naming Service corresponding to the type attribute
provided. If a name attribute is not supplied and the type attribute has a value of “log”, then a
null reference is returned. The type attribute value of “eventchannel” is used to specify the event
channel to be used in the OE’s CORBA Event Service for producing or consuming events. If the
name attribute is not supplied and the type attribute has a value of “eventchannel” then the
Incoming domain management event channel is used.

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

type (filemanager | log | eventchannel | namingservice)
#REQUIRED
name CDATA #IMPLIED>

D.6.1.5.1.1.6 devicethatloadedthiscomponentref

The devicethatloadedthiscomponentref element refers to a specific component found in the
assembly, which is used to obtain the logical CF Device that was used to load the referenced
component from the CF ApplicationFactory. The logical CF Device obtained is then associated
with this component instance. This relationship is needed when a component (e.g., modem
adapter) is pushing data and/or commands to a non-CORBA capable device such as modem.

<!ELEMENT devicethatloadedthiscomponentref EMPTY>
<!ATTLIST devicethatloadedthiscomponentref
refid CDATA #REQUIRED>

D.6.1.5.1.1.7 deviceusedbythiscomponentref

The deviceusedbythiscomponentref element refers to a specific component, within the assembly,
which is used to obtain the CF Device (e.g., logical Device) that is being used by the specific
component from the CF ApplicationFactory. This relationship is needed when a component is
pushing or pulling data and/or commands to another component that exists in the system such as
an audio device.

<!ELEMENT deviceusedbythiscomponentref EMPTY>
<!ATTLIST deviceusedbythiscomponentref
refid CDATA #REQUIRED
usesrefid CDATA #REQUIRED>

D.6.1.5.1.2 providesport
The providesport element (see Figure D-30) identifies, using the providesidentifier element, the

D-43

SCA version 2.2.2 FINAL /15 May 2006

component port that is provided to the usesport interface within the connectinterface element. A
CF Resource type component may be referenced by one of four elements. One element is the
componentinstantiationref that refers to the componentinstantiation id within the assembly; the
other elements are findby, devicethatloadedthiscomponentref, and
deviceusedbythiscomponentref. The findby element by itself is used when the object reference is
not a CF Resource type.

<< NDBement> >
proreciepad
|
<< DNDS equenceGrup>>
pursiespord_gp
(fom prodespo)
(] g/ N @
<< > | |<<DIDChoiceGrup> >
peredesiend fer prodespod prp_grp
(fom prosdespord_pp)
<<DITEemenEMPTY> > <<DNDEement>>
. . fnudtry
el - COATA

<< IDEBemendEM PTY>>
P —— devea serdindhscomponentne f

<1elid - COATA sumeweid - COATA

Figure D-30. providesport Element Relationships

<!ELEMENT providesport
(providesidentifier
, (componentinstantiationref |
devicethatloadedthiscomponentref |
deviceusedbythiscomponentref | findby)
) >

D.6.1.5.1.2.1 providesidentifier

The providesidentifier element identifies which “provides port” on the component is to
participate in the connection relationship. This identifier will correspond with a repid attribute
for one of the component ports elements, specified in the Software Component Descriptor.

<!ELEMENT providesidentifier (#PCDATA)>
D.6.1.5.1.2.2 componentinstantiationref
See D.6.1.5.1.1.2 for a description of the componentinstantiationref element.

D-44

SCA version 2.2.2 FINAL /15 May 2006

D.6.15.1.2.3 findby.

See section D.6.1.5.1.1.3 for a description of the findby element. The namingservice element’s
name attribute denotes a complete naming context.

D.6.1.5.1.2.4 devicethatloadedthiscomponentref.

See D.6.1.5.1.1.6 for a description of the devicethatloadedthiscomponentref element.
D.6.1.5.1.2.5 deviceusedbythiscomponentref.

See D.6.1.5.1.1.7 for a description of the deviceusedbythiscomponentref element.
D.6.1.5.1.3 componentsupportedinterface

The componentsupportedinterface element (see Figure D-31) specifies a component, which has a
supportsinterface element, that can satisfy an interface connection to a port specified by the
usesport element, within a connectinterface element. This component is identified by a
componentinstantiationref or a findby element. The componentinstantiationref identifies a
component within the assembly. The findby element points to an existing component that can be
found within a Naming Service.

<<[NCE lemeng> >

<<DNDS expuerceG mp> >
componentsupporfedinger oe
{fom components ppored ey bee)

0oy N\ @

> <<OTDChoce(hp)
- OFP_OFP

o))

<

i y

<< IDBemendEMPTY>> << DNCE lemend> >
componeninestentaionef findry

Figure D-31. componentsupportedinterface Element Relationships

<!ELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref | findby)
) >

D.6.1.5.1.3.1 supportedidentifier

The supportedidentifier element identifies which supported interface on the component is to
participate in the connection relationship. This identifier will correspond with the repid attribute

D-45

SCA version 2.2.2 FINAL /15 May 2006

of one of the component’s supportsinterface elements, specified in the Software Component
Descriptor.

<!ELEMENT supportedidentifier (#PCDATA)>

D.6.1.5.1.3.2 componentinstantiationref.

See section D.6.1.5.1.1.2 for a description of the componentinstantiationref element.
D.6.1.5.1.3.3 findby.

See section D.6.1.5.1.1.3 for a description of the findby element.

D.6.1.6 externalports

The optional externalports element is a child element of the softwareassembly element (see
Figure D-32). The externalports element is used to identify the visible ports for the software
assembly. The CF Application getport() operation is used to access the assembly’s visible ports.

<!ELEMENT externalports
(port+
) >

<<DIDEement> >
pod

4

<<DNDS epenceGup>>
pord_prp
(from paord)

o o N

<< DICE lemendPCDATA>> | [<<DIDChoiceGmoup>> | | <<DTDHemeniEMPTY>>
decripfion pord_pp compreniedaniaone

(fom pod _pp) <vefd - COATA

el NN

<< DTDBemeniPCDATA>> | [<<OTCE lemendP COATA> > | | << DTDEBemendPCOATA > >

Figure D-32. port Element Relationships

D-46

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT port
(description?
, (usesidentifier | providesidentifier |
supportedidentifier)
, componentinstantiationref
) >

<!ELEMENT description (#PCDATA)>

D-47

SCA version 2.2.2 FINAL /15 May 2006

D.7 DEVICE CONFIGURATION DESCRIPTOR

This section describes the XML elements of the Device Configuration Descriptor (DCD) XML
file; the deviceconfiguration element (see Figure D-33). The DCD is based on the SAD (e.g.,
componentfiles, partitioning, etc.) DTD. The intent of the DCD is to provide the means of
describing the components that are initially started on the CF DeviceManager node, how to
obtain the CF DomainManager object reference, connections of services to components (CF
Devices, CF DeviceManager), and the characteristics (file system names, etc.) for a CF
DeviceManager. The componentfiles and partitioning elements are optional; if not provided,
that means no components are started up on the node, except for a CF DeviceManager. If the
partitioning element is specified then a componentfiles element has to be specified also.

D.7.1 deviceconfiguration

The deviceconfiguration element’s id attribute is a unique identifier within the domain for the
device configuration. This id attribute is a UUID value as specified in section D.2.1. The name
attribute is the user-friendly name for the CF DeviceManager’s label attribute.

< <{IErwrat> >
deshorresiipesiien
B H

s COANR

‘dl.m—a
dedcrresiipesiiey g
eyl]
o .
< NP TIAR> _b_—\-‘-"“—-_) <TEErmrat>>
e iplien L) e tem—
[+ 3 o
< <{THIErwrat> > <« NErarat> >
e] (R (R (X | Chmmb—ey |
< 4 ",
PRI —— S —— Y = ——

Figure D-33. deviceconfiguration Element Relationships

<!ELEMENT deviceconfiguration

(description?
devicemanagersoftpkg
componentfiles?
partitioning?
connections?

, domainmanager

, filesystemnames?

) >
<!ATTLIST deviceconfiguration

id ID #REQUIRED

name CDATA #IMPLIED>

~ ~ ~ ~

D-48

SCA version 2.2.2 FINAL /15 May 2006

D.7.1.1 description

The optional description element, of the deviceconfiguration element, may be used to provide
information about the device configuration.

<!ELEMENT description (#PCDATA)>
D.7.1.2 devicemanagersoftpkg

The devicemanagersoftpkg element refers to the SPD for the CF DeviceManager that
corresponds to this DCD. The SPD file is referenced by a localfile element. The referenced file
can be used to describe the CF DeviceManager implementation and to specify the usesports for
the services (Log(s), etc.) used by the CF DeviceManager. See (section D.2.1.4.1) for
description of the localfile element.

<!ELEMENT devicemanagersoftpkg
(localfile
) >

D.7.1.3 componentfiles

The optional componentfiles element is used to reference deployment information for
components that are started up on the device. The componentfile element references a Software
Package Descriptor (SPD). The SPD, for example, can be used to describe logical Devices, a CF
DeviceManager, a CF DomainManager, a Naming Service, and CF FileSystems. See section
D.6.1.2 for the definition of the componentfiles element.

D.7.1.4 partitioning

The optional partitioning element consists of a set of componentplacement elements. A
component instantiation is captured inside a componentplacement element.

<!ELEMENT partitioning
(componentplacement) *>

D.7.1.4.1 componentplacement

The componentplacement element (see Figure D-34) is used to define a particular deployment of
a component. The componentfileref element identifies the component to be deployed. The
componentinstantiation element identifies the actual component created and its id attribute is a
DCE UUID value with the format as specified in section D.2.1. Multiple components of the
same kind can be created within the same componentplacement element.

The optional deployondevice element indicates the device on which the componentinstantiation
element is deployed. The optional compositepartofdevice element indicates the parent device of
the componentinstantiation element. When the component is a logical device, the devicepkgfile
element indicates the hardware device information for the logical device.

D-49

SCA version 2.2.2 FINAL /15 May 2006

<<{JIE bk ment>o
o gt mewt
me
g et op
o oy
I
m / \\ -]
oI e et AT > 1- <EDEr— t>->
St e iasy g joloam sl i s A
e - COAT o1 'R R <MD
a A [,]
<D el WP TV >o- | |-o<DN0E e oiE MPTY > | (-<-<I0E et
Ee pITFe=ntce o Aty
<m8d : CONTA < - CDATA iy - COATA

Figure D-34. componentplacement Element Relationships

<!ELEMENT componentplacement
(componentfileref
, deployondevice?
, compositepartofdevice?
, devicepkgfile?
, componentinstantiation+

D.7.1.4.1.1 componentfileref

The componentfileref element is used to reference a componentfile element within the
componentfiles element. The componentfileref element’s refid attribute corresponds to a
componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref
refid CDATA #REQUIRED>

D.7.1.4.1.2 deployondevice

The deployondevice element is used to reference a componentinstantiation element on which this
componentinstantiation is deployed.

<!ELEMENT deployondevice EMPTY>
<!ATTLIST deployondevice
refid CDATA #REQUIRED>

D.7.1.4.1.3 devicepkgfile

The devicepkgfile element is used to refer to a device package file that contains the hardware
device definition.

D-50

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT devicepkgfile

(localfile
) >
<!ATTLIST devicepkgfile
type CDATA #IMPLIED>

D.7.1.4.1.4 localfile
See D.2.1.4.1 for a definition of the localfile element.
D.7.1.4.1.5 compositepartofdevice

The compositepartofdevice element is used when a parent-child relationship exists between
devices to reference the componentinstantiation element that describes the parent device when
this device’s componentinstantiation element describes the child device.

<!ELEMENT compositepartofdevice EMPTY>
<!ATTLIST compositepartofdevice
refid CDATA #REQUIRED>

D.7.1.4.1.6 componentinstantiation

The componentinstantiation element (see Figure D-35) is intended to describe a particular
instantiation of a component relative to a componentplacement element. The
componentinstantiation‘s id attribute is a DCE UUID that uniquely identifier the component.
The id is a DCE UUID value as specified in section D.2.1. The componentinstantiation contains
a usagename element that is intended for an applicable name for the component. The optional
componentproperties element (see Figure D-36) is a list of property values that are used in
configuring the component. D.6.1.3.3 defines the property list for the componentinstantiation
element, which contains initial properties values. For a component service type (e.g,, Log), the
usagename element is not optional and needs to be unique for each service type.

<<DIDEement>>
componeniedandaion
¢ud:-D

<<DSepenvceGmp>>
compreniinaieniaion pp

D1 D1
0 z// a

<< DNCE lemend” CDATA> > << IDBement>>
LT compnenipropesf es

Figure D-35. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
) >

D-51

SCA version 2.2.2 FINAL /15 May 2006

<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<<EDErm et >>
1 i e ey e
i
<TIDCHmiCE Gam o>
o w1y

P e —gom——t o=t

o TIE el MY >0 | <<JIDErm eat>o- «ol:s\ ocJIE e ab>>
et ED PrEAp ETr e e (e T

+1ei - COREA ¢ - COAT oo - DR <M - OO
sale: CODARR

Figure D-36. componentproperties Element Relationships

<!ELEMENT componentproperties
(simpleref | simplesequenceref | structref |
structsequenceref)+ >

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref
(values)>
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+)>
<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+)>
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>

<!ELEMENT structvalue
(simpleref+)>

D-52

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT wvalues
(value+)>

<!ELEMENT value (#PCDATA)>
D.7.1.5 connections

The connections element in the DCD is the same as the connections element in the SAD in
section D.6.1.5. The connections element in the DCD is used to indicate the services (Log,
etc...) instances that are used by the CF DeviceManager and CF Device components in the DCD.
To establish connections to a CF DeviceManager, the DCD’s deviceconfiguration element’s id
attribute value is used for the SAD’s usesport element’s componentinstantiationref element’s
refid attribute value.

D.7.1.6 domainmanager

The domainmanager element (see Figure D-37) indicates how to obtain the CF DomainManager
object reference.

See sections D.6.1.5.1.1.4 for description of the namingservice

<=DTDElement==
|_domammanager |

v

<<DTDElementEMPTY >

cname - CDATA

Figure D-37. domainmanager Element Relationships

<!ELEMENT domainmanager
(namingservice)>

<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice
name CDATA #REQUIRED>

D.7.1.7 filesystemnames

The optional filesystemnames element indicates the mounted file system names for CF
DeviceManager's FileManager.

D-53

SCA version 2.2.2 FINAL /15 May 2006

The optional filesystemnames element indicates the names for file systems mounted within a CF
DeviceManager's FileManager. The mountname attribute contains a file system name that
uniquely identifies a mount point. The deviceid attribute is the unique identifier (UUID) for a
specific component, within the DCD, which represents the device hosting this file system. The
use of the deviceid attribute value is implementation dependent.

<!ELEMENT filesystemnames
(filesystemname+) >

<!ELEMENT filesystemname EMPTY>
<!ATTLIST filesystemname
mountname CDATA #REQUIRED
deviceid CDATA #REQUIRED>

D.8 DOMAINMANAGER CONFIGURATION DESCRIPTOR

This section describes the XML elements of the DomainManager Configuration Descriptor
(DMD) XML file; the domainmanagerconfiguration element (see Figure D-38).

D.8.1 domainmanagerconfiguration

The domainmanagerconfiguration element id attribute is a DCE UUID that uniquely identifies
the DomainManager. The id is a DCE UUID value as specified in section D.2.1.

<< DIDEement>>
domanmenagerconipprsad on
«ud:-D
<mame - CDATA

|

<< DDSepenceGmup>>
m@lﬁm_ﬂ
rescani

o 2 o\ a

<<ﬂ[&lum> <<NDEement>> <<NDEement>>
dewcemanapesariiphy SETeCEs

Figure D-38. domainmanagerconfiguration Element Relationships

<!ELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, services
) >

<!ATTLIST domainmanagerconfiguration
id ID frequired
name #CDATA #frequired>

D-54

SCA version 2.2.2 FINAL /15 May 2006

D.8.1.1 description

The optional description element of the DMD may be used to provide information about the
configuration.

<!ELEMENT description (#PCDATA)>
D.8.1.2 domainmanagersoftpkg

The domainmanagersoftpkg element refers to the SPD for the CF DomainManager. The SPD
file is referenced by a localfile element. This SPD can be used to describe the CF
DomainManager implementation and to specify the usesports for the services (Log(s), etc...)
used by the CF DomainManager. See section D.2.1.4.1 for description of the localfile element.

<!ELEMENT domainmanagersoftpkg
(localfile) >

D.8.1.3 services

The services element in the DMD is used by the CF DomainManager to determine which service
(Log, etc.) instances to use; it makes use of the service element (see Figure D-39). See section
D.6.1.5.1.1.3 for a description of the findby element. See section D.6.1.5.1.1.1 for a description
of the usesidentifier element.

<!ELEMENT services
(service+) >

<<DTDElement>>
senice

v

<<DTDSequenceGroup>>
senice_grp
(from service)

! / @

<<DTDElementPCDATA>> <<DTDElement>>
usesidentifier findby

Figure D-39. service Element Relationships
<!ELEMENT service

(usesidentifier
, findby) >

D-55

SCA version 2.2.2 FINAL /15 May 2006

D.9 PROFILE DESCRIPTOR

The profile element is used to specify an absolute file pathname relative to a mounted CF
FileSystem. The filename attribute is the absolute pathname relative to a mounted FileSystem.
This filename can also be used to access any other local file elements in the profile. The type
attribute indicates the type of profile being referenced. The valid type attribute values are
“SAD”, “SPD”, “DCD”, and “DMD”. This element is used as the parameter for interface profile
attributes (e.g., CF Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF
DomainManager).

<!ELEMENT profile EMPTY>

<!ATTLIST profile
filename CDATA #REQUIRED
type CDATA #TMPLIED>

D.10 DOCUMENT TYPE DEFINITIONS
Attachment 1 to Appendix D contains the complete DTDs for the Domain Profile.

D-56

		Software Communications Architecture Specification

		Appendix D: Domain Profile

		Revision Summary

		Table of Contents

		List of Figures

		Appendix D. Domain Profile

		D.1 Deployment Overview

		D.2 Software Package Descriptor

		D.2.1 Software Package

		D.2.1.1 title

		D.2.1.2 author

		D.2.1.3 description

		D.2.1.4 propertyfile

		D.2.1.4.1 localfile

		D.2.1.5 descriptor

		D.2.1.6 implementation

		D.2.1.6.1 propertyfile

		D.2.1.6.2 description

		D.2.1.6.3 code

		D.2.1.6.4 compiler

		D.2.1.6.5 programminglanguage

		D.2.1.6.6 humanlanguage

		D.2.1.6.7 os

		D.2.1.6.8 processor

		D.2.1.6.9 dependency

		D.2.1.6.9.1 softpkgref

		D.2.1.6.9.2 propertyref

		D.2.1.6.10 runtime

		D.2.1.7 usesdevice

		D.2.1.7.1 propertyref

		D.3 Device Package Descriptor

		D.3.1 Device Package

		D.3.1.1 title

		D.3.1.2 author

		D.3.1.3 description

		D.3.1.4 hwdeviceregistration

		D.3.1.4.1 propertyfile

		D.3.1.4.2 description

		D.3.1.4.3 manufacturer

		D.3.1.4.4 modelnumber

		D.3.1.4.5 deviceclass

		D.3.1.4.6 childhwdevice

		D.3.1.4.7 hwdeviceregistration

		D.3.1.4.8 devicepkgref

		D.4 Properties Descriptor

		D.4.1 properties

		D.4.1.1 simple

		D.4.1.1.1 description

		D.4.1.1.2 value

		D.4.1.1.3 units

		D.4.1.1.4 range

		D.4.1.1.5 enumerations

		D.4.1.1.6 kind

		D.4.1.1.7 action

		D.4.1.2 simplesequence

		D.4.1.3 test

		D.4.1.3.1 inputvalue

		D.4.1.3.2 resultvalue

		D.4.1.4 struct

		D.4.1.4.1 configurationkind

		D.4.1.5 structsequence

		D.5 Software Component Descriptor

		D.5.1 softwarecomponent

		D.5.1.1 corbaversion

		D.5.1.2 componentrepid

		D.5.1.3 componenttype

		D.5.1.4 componentfeatures

		D.5.1.4.1 supportsinterface

		D.5.1.4.2 ports

		D.5.1.5 interfaces

		D.5.1.6 propertyfile

		D.6 Software Assembly Descriptor

		D.6.1 softwareassembly

		D.6.1.1 description

		D.6.1.2 componentfiles

		D.6.1.2.1 componentfile

		D.6.1.3 partitioning

		D.6.1.3.1 componentplacement

		D.6.1.3.2 componentfileref

		D.6.1.3.3 componentinstantiation

		D.6.1.3.4 hostcollocation

		D.6.1.3.4.1 componentplacement

		D.6.1.4 assemblycontroller

		D.6.1.5 connections

		D.6.1.5.1 connectinterface

		D.6.1.5.1.1 usesport

		D.6.1.5.1.1.1 usesidentifier

		D.6.1.5.1.1.2 componentinstantiationref

		D.6.1.5.1.1.3 findby

		D.6.1.5.1.1.4 namingservice

		D.6.1.5.1.1.5 domainfinder

		D.6.1.5.1.1.6 devicethatloadedthiscomponentref

		D.6.1.5.1.1.7 deviceusedbythiscomponentref

		D.6.1.5.1.2 providesport

		D.6.1.5.1.2.1 providesidentifier

		D.6.1.5.1.2.2 componentinstantiationref

		D.6.1.5.1.2.3 findby.

		D.6.1.5.1.2.4 devicethatloadedthiscomponentref.

		D.6.1.5.1.2.5 deviceusedbythiscomponentref.

		D.6.1.5.1.3 componentsupportedinterface

		D.6.1.5.1.3.1 supportedidentifier

		D.6.1.5.1.3.2 componentinstantiationref.

		D.6.1.5.1.3.3 findby.

		D.6.1.6 externalports

		D.7 Device Configuration Descriptor

		D.7.1 deviceconfiguration

		D.7.1.1 description

		D.7.1.2 devicemanagersoftpkg

		D.7.1.3 componentfiles

		D.7.1.4 partitioning

		D.7.1.4.1 componentplacement

		D.7.1.4.1.1 componentfileref

		D.7.1.4.1.2 deployondevice

		D.7.1.4.1.3 devicepkgfile

		D.7.1.4.1.4 localfile

		D.7.1.4.1.5 compositepartofdevice

		D.7.1.4.1.6 componentinstantiation

		D.7.1.5 connections

		D.7.1.6 domainmanager

		D.7.1.7 filesystemnames

		D.8 DomainManager Configuration Descriptor

		D.8.1 domainmanagerconfiguration

		D.8.1.1 description

		D.8.1.2 domainmanagersoftpkg

		D.8.1.3 services

		D.9 Profile Descriptor

		D.10 Document Type Definitions

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

ATTACHMENT 2 TO APPENDIX D
COMMON PROPERTIES DEFINITIONS

FINAL /15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

REVISION SUMMARY

Version Revision
2.0 Initial Release per CP 309
2.1 Incorporate approved Change Proposal, number 477

2.2 No changes.

2.2.1 | No changes.

2.2.2 | No Changes

SCA version 2.2.2 FINAL /15 May 2006

COMMON PROPERTIES

The following are common properties to be used for component definitions. The common allocation
properties definitions are to be used for device allocation properties as appropriate in order to
promote the portability of waveform’s components and to enforce standardization of allocation type
usage across vendors.

OS ELEMENT

<simple id="DCE:80BF17F0-6C7F-11d4-A226-0050DA314CD6"
type="string"
name="os name" mode="readonly">
<description> This property identifies the os name XML
allocation property.

</description>

<!-- Valid values for the os name element are: -->

<!-- AIX, BSDi, VMS, DigitalUnix, DOS, HPBLS, HPUX,
IRIX, -->

<!-- Linux, Lynx0S, MacOS, 0S/2, AS/400, MVS, SCO CMW, -
->

<!-- SCO ODT, Solaris, SunOS, UnixWare, VxWorks, Win95,
WinNT -->

<!-- pS0S, RTXC -->

<!-- The os name values are case sensitive. -->

<value></value>

<kind kindtype="allocation"/>
<action type="eq"/>
</simple>

PROCESSOR ELEMENT

<simple id="DCE:9B445600-6C7F-11d4-A226-0050DA314CD6"
type="string"
name="processor name" mode="readonly">
<description> This property identifies the

processor name XML allocation property.

</description>

<!-- Valid values for the processor name element are: --
>

<!-- x86, mips, alpha, ppc, sparc, 680x0, wvax, AS/400,
S/390, -->

<!-- ppcG3, ppcG4, ppcG5, Cbx, C6bx, ADSP2lxx -->

<!-- The processor name values are case sensitive. -->

<value></value>

SCA version 2.2.2 FINAL /15 May 2006

<kind kindtype="allocation"/>
<action type="eqg"/>
</simple>

		Software Communications Architecture Specification

		Attachment 2 to Appendix D

		Common Properties Definitions

		Revision Summary

		Common properties

		os element

		processor element

UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE
EXTENSIONS

FINAL / 22 December 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (22 December 2006)

TABLE OF CONTENTS

1 INTRODUCTION. . ..ciiiiiiiiee bttt nb e n e b e b nne s

2 SCA MAIN DOCUMENT EXTENSIONS.......coo e
2.1 Registerservice BENaVIOr (3.1.3.2.3.6.7.3) ...uiiiiieiiieiie sttt
2.2 Unregisterservice Behavior (3.1.3.2.3.6.8.3) ...cocuiiiiiiiiiiie e
2.3 Create BENaVIOor (3.1.3.2.2.5.1.3) . ittt
2.4 Create ExceptionS/Errors (3.1.3.2.2.5.1.5) ..ot
2.5 Device Manager General Behavior (3.1.3.2.4.5).....cccciiiiiiiiiice e
2.6 Software Component DesCriptor (3.1.3.5.2) ..o
2.7 General Application ReqUITemMeNts (3.2.1)cciveieeieieeie e seesie e sre s
2.8 Deployment PIatform DeSCIIPLONcoviiiiiiiiiiiiiieieie et
2.9 Application Deployment DESCIIPLOL..........coviiiiieiecie et sre e ens

3 SCA APPENDIX A EXTENSIONSooiiii s

4 SCA APPENDIX B EXTENSIONS ..o

5 SCA APPENDIX C EXTENSIONSooiiiii s

6 SCA APPENDIX D EXTENSIONS ..ottt
TN A B To o T U] I o (o) 1 OSSR
6.2 Software Component DeSCriptor (D.5)coiviiiiieieie e
6.3 SCD Componentrepid (D.5.1.2) . ..ot
6.4 SCD Componenttype (D.5.1.3) ..ottt
6.5 SCD Componentfeatures (D.5.1.4) ..ot
6.6 SCD INerfaces (D.5.1.5) ...cciiiiiiiiieie ettt rs
6.7 SCD Propertyfile (D.5.1.6)cociiiiiiiieieieieste sttt
6.8 SAD Softwareassembly (D.6.1)cccvoiiiieiiiie e

6.8.1 dePlOYMENTPIEfSo s
6.9 SAD FINADY (D.6.1.5.1.1.3) . ucieiiieiieieiiiesieeee ettt sttt sttt nenne s
6.10 SAD Domainfinder (D.6.1.5.1.1.5) ..ot
6.11 Deployment Platform DESCIIPLOLc.eiieiiic et

6.11.1 deploymentplatformmcoo i e 8

T I A o LT ol) o o USSR 8
6.11.3 PIAtfOrMIAYOUL........oiuiiieiieie ettt sae e aeeneenres 8
B.11.4 CNANNEL.... .ot bbbttt bbb 8
B.110.5 AEVICEIIST ...ttt ettt e bt et e e ne e b e e beene e eneenae e nres 9
B.11.6 JEVICEIET ...ttt bbb bbbttt bbbt eneas 9
TN B T Y ot 1] PR RRR 9
B.11.8 SEIVICEIET ...ttt bbb b bbbttt bbbt 9
6.12 Application Deployment DESCIIPLON........c.coviieiieie et sre e e 9
LT I A L=t o] ()Y 1 o 0] =T o0=T0 (< ot OSSR 9
6.12.2 JESCIIPTION. ...ttt bbbt bbbt e bbbt bt b e 10
T e I [=T o] [0) V71 T 1 (0] 01 o] USROS 10
6.12.4 deploYMENTOPIIONoiiieiieteee bbb bbb 10
B.12.5 CRANNEITET ... ettt sttt e e 10
6.13 DMD Domainmanagerconfiguration (D.8.1).........cccccviiieiiiiiiiieiiese e 10
6.13.1 deploymeNntlayOULccviiieie e 11

SCA version 2.2.2 Extension FINAL /15 May 2006

1 INTRODUCTION

The intent of this extension to the Software Communications Architecture (SCA) is to address
two areas which are under specified within SCA 2.2.2. Specifically this extension addresses the
deployment of non-SCA services (i.e. those other than Log, FileSystem, Event and Naming) and
the introduction of a minimally intrusive mechanism to manage and optimize application
deployment. The underlying design constraint behind this extension was to introduce an
approach that was fully backward compatible with the existing 2.2.2 specification. There are
behavioral requirements that must be implemented within an SCA 2.2.2 compliant Core
Framework if the capabilities described within this extension are supported; however the
decision of whether or not to include these capabilities is at the discretion of the Platform
provider.

2 SCAMAIN DOCUMENT EXTENSIONS
2.1 REGISTERSERVICE BEHAVIOR (3.1.3.2.3.6.7.3)

The registerService operation shall, upon successful service registration of a non-SCA service
with an input name parameter in the “identifier\type” format, make the value provided in the
“identifier” potion of the name accessible via the domainfinder servicename mechanism.

The registerService operation shall, upon successful service registration of a non-SCA service
with an input name parameter in the “identifier\type” format, make the value provided in the
“type” potion of the name accessible via the domainfinder servicetype mechanism.

2.2 UNREGISTERSERVICE BEHAVIOR (3.1.3.2.3.6.8.3)

The unregisterService operation shall remove non-SCA services (i.e. those with a name in the
“identifier\type” format) by matching either a fully qualified name in the “identifier\type” format
or a simple name with only the “identifier” portion.

2.3 CREATE BEHAVIOR (3.1.3.2.25.1.3)

The create operation shall recognize application deployment channel preferences contained
within an Application Deployment Descriptor file if the CF implementation provides enhanced
deployment support via the use of both a Deployment Platform Descriptor and an Application
Deployment Descriptor file.

The create operation shall recognize a property which is a CF Properties type with an id of
“DEPLOYMENT CHANNEL” and a value that is a string sequence if the CF implementation
provides enhanced deployment support via the use of a Deployment Platform Descriptor file.

The create operation shall recognize channel preferences contained within a

“DEPLOYMENT CHANNEL” property contained within the initConfiguration parameter if the
CF implementation provides enhanced deployment support via the use of a Deployment Platform
Descriptor file.

SCA version 2.2.2 Extension FINAL /15 May 2006

The create operation shall attempt to allocate an application to the Deployment Platform
Descriptor file channel alternatives provided within a “DEPLOYMENT CHANNEL” property
or an Application Deployment Descriptor file in a sequential manner.

The create operation shall utilize channel preferences expressed within a
“DEPLOYMENT CHANNEL” property rather than those contained within an Application
Deployment Descriptor file if both exist and the CF implementation provides enhanced
deployment support via the use of a Deployment Platform Descriptor file.

The create operation shall recognize a deployment option with a deployedname attribute value of
“DEFAULT” which matches all application instance names that are not explicitly identified by a
deployedname attribute value within the same descriptor file if the CF implementation provides
enhanced deployment support via the use of an Application Deployment Descriptor file.

For connections to a non-SCA service using the servicename type of the domainfinder element,
the create operation will search for a matching name from the set of service name identifiers that
have been registered with the domain. For connections to a non-SCA service using the
servicetype type of the domainfinder element, the create operation will search for a matching
type from the set of service types that have been registered with the domain. The search strategy
used to select a specific instance of a service type when multiple instances of the same service
type have been registered with the domain is implementation dependent.

For domainfinder element “servicetype” connections to a non-SCA service whose service type is
provided by a service contained within a channel element servicelist, the create operation shall
only attempt to establish connections to services within the list if the CF implementation
provides enhanced deployment support via the use of a Deployment Platform Descriptor file. If
multiple instances of the same service type exist with the servicelist, then an implementation
dependent search strategy used to select a specific instance.

2.4 CREATE EXCEPTIONS/ERRORS (3.1.3.2.2.5.1.5)

The create operation shall raise the InvalidinitConfiguration exception when the input
initConfiguration parameter “DEPLOYMENT CHANNEL” property contains an invalid
channel reference. The InvalidInitConfiguration invalidProperties parameter shall identify the
invalid channels.

The create operation shall raise the CreateApplicationError exception when the CF
implementation provides enhanced deployment support via the use of a Deployment Platform
Descriptor file but the CF is not able to allocate the application to any of the provided channel
alternatives.

The create operation shall raise the CreateApplicationError exception when the CF
implementation provides enhanced deployment support via the use of a Deployment Platform
Descriptor file and a domainfinder element “servicetype” connection to a non-SCA service
whose service type is provided by a service contained within a channel element servicelist can
not be established to a service identified within that list.

2.5 DEVICE MANAGER GENERAL BEHAVIOR (3.1.3.2.4.5)

If a non-SCA service is deployed by the device manager, the device manager shall supply
execute operation parameters consisting of:

SCA version 2.2.2 Extension FINAL /15 May 2006

1. Device manager IOR — The ID is “DEVICE_ MGR _IOR” and the value is a string
that is the DeviceManager stringified IOR.

2. Service Name — The ID is “SERVICE_NAME” and the value is a string in an
“identifier\type” format where the identifier corresponds to the DCD
componentinstantiation usagename element and the type corresponds to a service
type repository identifier from the SCD.

3. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

2.6 SOFTWARE COMPONENT DESCRIPTOR (3.1.3.5.2)

A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device or non-SCA service).

2.7 GENERAL APPLICATION REQUIREMENTS (3.2.1)

An application’s dependencies to the log, file manager, file system, CORBA Event Service,
CORBA Naming Service, and non-SCA services are specified as connections in the SAD using
the domainfinder element

2.8 DEPLOYMENT PLATFORM DESCRIPTOR

A Deployment Platform Descriptor (PDD) identifies the logical relationships between platform
resources within the operating environment’s registered services and devices. A Deployment
Platform Descriptor file shall have a “.pdd.xml” extension. The use of the PDD is optional
within a system, however if it is used the reference to this file will be made from the DMD file.
A Deployment Platform Descriptor File may be used to exert a greater degree of control over the
application deployment process. The file contains information that describes the composition
(i.e. included services and devices) of virtual channels within a platform domain.

2.9 APPLICATION DEPLOYMENT DESCRIPTOR

An Application Deployment Descriptor (ADD) contains precedence lists that are used for
deploying application instances within a platform domain. An Application Deployment
Descriptor file shall have an “.add.xml” extension. The use of the ADD is optional within a
system, however if it is used the reference to this file will be made from a SAD file. An
Application Deployment Descriptor file contains application names and references the virtual
channels defined in the Deployment Platform Descriptor file.

3 SCAAPPENDIX AEXTENSIONS

None

SCA version 2.2.2 Extension

4 SCAAPPENDIX B EXTENSIONS

None

5 SCAAPPENDIX C EXTENSIONS

None

6 SCAAPPENDIX D EXTENSIONS

6.1

DOMAIN PROFILE

0..n

Domain Profile

1

FINAL / 15 May 2006

«DTDElement»
Device Configuration Descrigtor

«DTDElement»

Domain Manager Configuration Descri

ptor

«DTDElement»
Software Assembly Descriptor

0..n

«DTDElement»
Device Package Descrip

0.1

«DTDElement»
Properties Descriptpr

«DTDElement»
Deployment Platform Descriptor

1

«DTDElement»
Software Package Descriptor

0.1

«DTDElement»
Software Component Descripjtor

0.1

«DTDElement»
Properties Descriptpr

0.1

«DTDElement»

Application Deployment Deschiptor

0.1

«DTDElement»
Properties Descriptpr

Figure 6-1: Relationship of Domain Profile XML File Types

SCA version 2.2.2 Extension FINAL /15 May 2006

6.2 SOFTWARE COMPONENT DESCRIPTOR (D.5)

This descriptor file is based on the CORBA Component Descriptor specification. The SCA
components CF Resource, CF Device, and CF ResourceFactory and the non-SCA service
components that are described by the software component descriptor are based on the SCA CF
specification, and the following specification concentrates on definition of the elements
necessary for describing the ports and interfaces of these components

6.3 SCD COMPONENTREPID (D.5.1.2)

The componentrepid uniquely identifies the interface that the component is implementing. The
componentrepid may be referred to by the componentfeatures element. The componentrepid is
either derived from the CF Resource, CF Device, or CF ResourceFactory or represents a non-
SCA service. For non-SCA services the repid will be used as the type identity for domainfinder
servicetype searches.

6.4 SCD COMPONENTTYPE (D.5.1.3)

The componenttype describes properties of the component. For SCA components, the
component types include resource, device, resourcefactory, domainmanager, log, filesystem,
filemanager, devicemanager, namingservice, eventservice and service. The “service” type is used
for all non-SCA services.

6.5 SCD COMPONENTFEATURES (D.5.1.4)

The componentfeatures element does not need to contain information when used in conjunction
with a non-SCA service.

6.6 SCD INTERFACES (D.5.1.5)

For non-SCA services the interfaces element is made up of zero to many interface elements.

<!ELEMENT interfaces
(interface*)>

For non-SCA services the interface element describes any services interfaces in addition to the
one identified in the componentrepid element that need to be registered as services. The name
attribute value contains the unique “identifier” portion of the “identifier\type” format service
name. The repid attribute is the unique repository id of the interface, which contains the “type”
portion of the name. This information should be passed to a service as execparams and the
service will need to register these items as services using the “identifier\type” format. For non-
SCA services the inheritsinterface element is not expected to contain a value.

<!ELEMENT interface
(inheritsinterface*) >
<!ATTLIST interface
repid CDATA #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<IATTLIST inheritsinterface

5

SCA version 2.2.2 Extension FINAL /15 May 2006

repid CDATA #REQUIRED

6.7 SCD PROPERTYFILE (D.5.1.6)

No propertyfile element entries are expected for non-SCA services.

6.8 SAD SOFTWAREASSEMBLY (D.6.1)

<!ELEMENT softwareassembly
(description?
componentfiles
partitioning
assemblycontroller
connections?
externalports?
deploymentprefs?

~ ~ ~ ~ ~ ~

) >

<IATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

6.8.1 deploymentprefs

The optional deploymentprefs element is a reference to a local file. See section D.2.1.4.1 for the
definition of the localfile element. The file refers to an Application Deployment Descriptor file.

<!ELEMENT deploymentprefs
(localfile
) >

SCA version 2.2.2 Extension FINAL /15 May 2006

6.9 SAD FINDBY (D.6.1.5.1.1.3)

<<DTDElement>>

findby
<<DTDChoiceGroup>>
findby_grp
(from findby)
<<DTDElementEMPTY>>
<<DTDElementEMPTY>> domainfinder

namingservice

ctype : (filemanager | log | eventchannel | namingservice |
“name : CDATA servicename | servicetype)

#* name : CDATA

Figure 6-2. findby Element Relationships

6.10 SAD DOMAINFINDER (D.6.1.5.1.1.5)

The domainfinder element is a child element of the findby element. The domainfinder element is
used to indicate to the CF ApplicationFactory the necessary information to find an object
reference that is of specific type and may also be known by an optional name within the domain.
The valid type attributes are “filemanager”, “log”, “eventchannel”, “namingservice”,
“servicename” and “servicetype”. If a name attribute is not supplied, then the component
reference returned is the CF DomainManager’s FileManager, or Naming Service corresponding
to the type attribute provided. If a name attribute is not supplied and the type attribute has a
value of “log”, then a null reference is returned. The type attribute value of “eventchannel” is
used to specify the event channel to be used in the OE’s CORBA Event Service for producing or
consuming events. If the name attribute is not supplied and the type attribute has a value of
“eventchannel” then the Incoming domain management event channel is used. The type attribute
value of “servicename” is used to locate registered non-SCA services on a per name basis. The
type attribute value of “servicetype” is used to locate registered non-SCA services on a per type
basis where the corresponding type information is provided in a service Software Component
Descriptor file.

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

type (filemanager | log | eventchannel | namingservice |
servicename | servicetype) #REQUIRED
name CDATA #IMPLIED>

SCA version 2.2.2 Extension FINAL /15 May 2006

6.11 DEPLOYMENT PLATFORM DESCRIPTOR

This section describes the XML elements of the Deployment Platform Descriptor (PDD) XML
file; the deploymentplatform element. The intent of the PDD is to provide a means of describing
the collection of services and devices that are associated with a virtual channel. The knowledge
of the channel composition can be utilized as part of an overall systems engineering strategy to
control the allocation of applications to system resources. Another use of the information could
be to improve the efficiency of application deployment as the channel elements would be used to
constrain the search space for the allocation of individual application components. The use of the
PDD is optional within a system, a system designer is free to use allocation properties or other
approaches to manage the allocation of application components to platform resources.

6.11.1 deploymentplatform

The deploymentplatform element contains the layout of the virtual channels within a platform
domain.

<!ELEMENT deploymentplatform
(description?
, platformlayout
) >

6.11.2 description

The optional description element of the PDD may be used to provide information about the
platform domain.

<!ELEMENT description (#PCDATA)>

6.11.3 platformlayout

The platformlayout element references the definitions of the virtual channels that exist within the
platform domain.

<!ELEMENT platformlayout
(channel+
) >

6.11.4 channel

The channel element in the PDD defines the collections of devices and services that are used by
the CF ApplicationFactory as target resource pools for application deployment. The channel
element’s name attribute contains the identifier for the channel that is used by the CF
ApplicationFactory and the Application Deployment Descriptor.

<!ELEMENT channel
(devicelist?
, servicelist?
) >
<!ATTLIST channel
name ID #REQUIRED>

SCA version 2.2.2 Extension FINAL /15 May 2006

6.11.5 devicelist

The optional devicelist element in the PDD defines the collection of devices for a given channel
that are used by the CF ApplicationFactory as target resource pools for application deployment.

<!ELEMENT devicelist
(deviceref*
) >

6.11.6 deviceref

The deviceref element is used to reference a componentinstantiation element which is part of the
channel. The refid attribute points to a componentinstantiation identifier for a device that has
registered with the platform.

<!ELEMENT deviceref EMPTY>
<!ATTLIST deviceref
refid CDATA #REQUIRED>

6.11.7 servicelist

The optional servicelist element in the PDD defines the collection of services for a given channel
that are used by the CF ApplicationFactory as target resource pools for application deployment.

<!ELEMENT servicelist
(serviceref*
) >

6.11.8 serviceref

The serviceref element identifies a service which is part of the channel. The servicename
attribute is identical to a usagename identifier for a service that has registered with the platform.

<!ELEMENT serviceref EMPTY>
<!ATTLIST serviceref
servicename CDATA #REQUIRED>

6.12 APPLICATION DEPLOYMENT DESCRIPTOR

This section describes the XML elements of the Application Deployment Descriptor (ADD)
XML file; the deploymentprecedence element. The intent of the ADD is to provide prioritized
lists of deployment alternatives for application instances.

6.12.1 deploymentprecedence

The deploymentprecedence element contains the relationship between application instances and
their candidate virtual channels.

<!ELEMENT deploymentprecedence
(description?
, deploymentoptions
) >

SCA version 2.2.2 Extension FINAL /15 May 2006

6.12.2 description

The optional description element of the ADD may be used to provide information about the
application.

<!ELEMENT description (#PCDATA)>

6.12.3 deploymentoptions

The deploymentoptions element refers to the definition of the deployment preferences that exist
for each application instance.

<!ELEMENT deploymentoptions
(deploymentoption+
) >

6.12.4 deploymentoption

The deploymentoption element in the ADD identifies the ordered list of channels that provide
deployment alternatives for a specific application instance. The deployedname attribute
corresponds to a named application instance (e.g. the name parameter passed to the CF
ApplicationFactory create operation). The optional description element may be used to provide
information about the application instance.

<!ELEMENT deploymentoption

(description?

, Cchannelref+

) >
<!ATTLIST deploymentoption

deployedname CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>

6.12.5 channelref

The channelref element is used to reference a channel element from the Deployment Platform
Descriptor which provides a deployment alternative. The refname attribute points to a channel
element name attribute that identifies a channel.

<!ELEMENT channelref EMPTY>
<!ATTLIST channelref
refname CDATA #REQUIRED>

6.13 DMD DOMAINMANAGERCONFIGURATION (D.8.1)

<!ELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, deploymentlayout?
, services
) >
<!ATTLIST domainmanagerconfiguration
id ID #REQUIRED

10

SCA version 2.2.2 Extension FINAL /15 May 2006

name CDATA #REQUIRED>

6.13.1 deploymentlayout

The optional deploymentlayout element is a reference to a local file. See section D.2.1.4.1 for
the definition of the localfile element. The file refers to a Deployment Platform Descriptor file.

<!ELEMENT deploymentlayout
(localfile
) >

11

		Software Communications Architecture EXTENSIONS

		Table of Contents

		1 INTRODUCTION

		2 SCA Main document Extensions

		2.1 Registerservice Behavior (3.1.3.2.3.6.7.3)

		2.2 Unregisterservice Behavior (3.1.3.2.3.6.8.3)

		2.3 Create Behavior (3.1.3.2.2.5.1.3)

		2.4 Create Exceptions/Errors (3.1.3.2.2.5.1.5)

		2.5 Device Manager General Behavior (3.1.3.2.4.5)

		2.6 Software Component Descriptor (3.1.3.5.2)

		2.7 General Application Requirements (3.2.1)

		2.8 Deployment Platform Descriptor

		2.9 Application Deployment Descriptor

		3 SCA appendix A extensions

		4 sca appendix b extensions

		5 sca appendix c extensions

		6 sca appendix d extensions

		6.1 Domain Profile

		6.2 Software Component Descriptor (D.5)

		6.3 SCD Componentrepid (D.5.1.2)

		6.4 SCD Componenttype (D.5.1.3)

		6.5 SCD Componentfeatures (D.5.1.4)

		6.6 SCD Interfaces (D.5.1.5)

		6.7 SCD Propertyfile (D.5.1.6)

		6.8 SAD Softwareassembly (D.6.1)

		6.8.1 deploymentprefs

		6.9 SAD Findby (D.6.1.5.1.1.3)

		6.10 SAD Domainfinder (D.6.1.5.1.1.5)

		6.11 Deployment Platform Descriptor

		6.11.1 deploymentplatform

		6.11.2 description

		6.11.3 platformlayout

		6.11.4 channel

		6.11.5 devicelist

		6.11.6 deviceref

		6.11.7 servicelist

		6.11.8 serviceref

		6.12 Application Deployment Descriptor

		6.12.1 deploymentprecedence

		6.12.2 description

		6.12.3 deploymentoptions

		6.12.4 deploymentoption

		6.12.5 channelref

		6.13 DMD Domainmanagerconfiguration (D.8.1)

		6.13.1 deploymentlayout

domainmanagerconfiguration_ext.2.2_.2_dtd UNCLASSIFIED 172

<?xml version="1.0" encoding=""UTF-8"?>

<I-- RELEASE STATEMENT(S):
Fox UNLIMITED RIGHTS

** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or

** authorize others to do so.

** Distribution Statement A - Approved for public release; distribution is

** unlimited (29 July 2014).
——>

<I--

** JTNC STANDARD:

** SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
** SOFTWARE COMMUNICATIONS ARCHITECTURE EXTENSIONS

** Version: 2.2.2, 22 December 2006

-

<IELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, deploymentlayout?
, services
)>
<IATTLIST domainmanagerconfiguration
id ID #REQUIRED
name CDATA #REQUIRED>

<IELEMENT description (#PCDATA)>

<IELEMENT domainmanagersoftpkg
(localfile

)>

<IELEMENT deploymentlayout
(localTile

)>

<IELEMENT Hlocalfile EMPTY>
<IATTLIST localTfile
name CDATA #REQUIRED>

<IELEMENT services
(service+

)>

<IELEMENT service
(usesidentifier
, Findby
)>

<IELEMENT usesidentifier (#PCDATA)>

<IELEMENT findby
(namingservice
| domainfinder

)>

<IELEMENT namingservice EMPTY>
<IATTLIST namingservice
name CDATA #REQUIRED>

<IELEMENT domainfinder EMPTY>
<IATTLIST domainfinder

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

domainmanagerconfiguration_ext.2.2_.2_dtd UNCLASSIFIED 2/ 2

type CDATA #REQUIRED
name CDATA #IMPLIED>

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

softwareassembly ext.2.2_2._dtd UNCLASSIFIED 174

<?xml version="1.0" encoding=""UTF-8"?>

<I-- RELEASE STATEMENT(S):
Fox UNLIMITED RIGHTS

** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or

** authorize others to do so.

** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
-—>

<l__

** JTNC STANDARD:

** SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
** SOFTWARE COMMUNICATIONS ARCHITECTURE EXTENSIONS

** Version: 2.2.2, 22 December 2006
-

<IELEMENT softwareassembly
(description?
, componentfiles
, partitioning
, assemblycontroller
, connections?
, externalports?
, deploymentprefs?
)>

<IATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

<IELEMENT description (#PCDATA)>

<IELEMENT componentfiles
(componentfile+

)>

<IELEMENT componentfile
(localfile

)>
<IATTLIST componentfile
id ID #REQUIRED

type CDATA #IMPLIED>

<IELEMENT Hlocalfile EMPTY>
<IATTLIST localTfile
name CDATA #REQUIRED>

<IELEMENT partitioning
(componentplacement | hostcollocation
)+>

<IELEMENT componentplacement
(componentfileref
, componentinstantiation+

)>

<IELEMENT componentfileref EMPTY>
<IATTLIST componentfileref
refid CDATA #REQUIRED>

<IELEMENT componentinstantiation
(usagename?

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

softwareassembly ext.2.2_2._dtd UNCLASSIFIED 27 4

, componentproperties?
, Findcomponent?
)>
<IATTLIST componentinstantiation
id ID #REQUIRED>

<IELEMENT usagename (#PCDATA)>

<IELEMENT componentproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >

<IELEMENT findcomponent
(componentresourcefactoryref
| namingservice

)>

<IELEMENT componentresourcefactoryref
(resourcefactoryproperties?
)>

<IATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

<IELEMENT resourcefactoryproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >

<IELEMENT simpleref EMPTY>
<IATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<IELEMENT simplesequenceref
(values
)>

<IATTLIST simplesequenceref
refid CDATA #REQUIRED>

<IELEMENT structref
(simpleref+
)>

<IATTLIST structref
refid CDATA #REQUIRED>

<IELEMENT structsequenceref
(structvalue+
)>
<IATTLIST structsequenceref
refid CDATA #REQUIRED>

<IELEMENT structvalue
(simpleref+

)>

<IELEMENT values
(value+

)>
<IELEMENT value (#PCDATA)>

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

softwareassembly ext.2.2_2._dtd UNCLASSIFIED 37 4

<IELEMENT hostcollocation
(componentplacement)+>

<IATTLIST hostcollocation
id ID #IMPLIED
name CDATA #IMPLIED>

<IELEMENT assemblycontroller
(componentinstantiationref

)>

<IELEMENT connections
(connectinterface*

)>

<IELEMENT connectinterface
(usesport
, (providesport | componentsupportedinterface | Ffindby)

)>
<IATTLIST connectinterface
id ID #IMPLIED>

<IELEMENT usesport

(usesidentifier

, (componentinstantiationref
| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref
| Findby
)

)>

<IELEMENT usesidentifier (#PCDATA)>

<IELEMENT componentinstantiationref EMPTY>
<IATTLIST componentinstantiationref
refid CDATA #REQUIRED>

<IELEMENT findby
(namingservice
| domainfinder

)>

<IELEMENT namingservice EMPTY>
<IATTLIST namingservice
name CDATA #REQUIRED>

<IELEMENT domainfinder EMPTY>
<IATTLIST domainfinder
type (filemanager | log | eventchannel | namingservice | servicename | servicetype) #
REQUIRED
name CDATA #IMPLIED>

<IELEMENT devicethatloadedthiscomponentref EMPTY>
<IATTLIST devicethatloadedthiscomponentref
refid CDATA #REQUIRED>

<IELEMENT deviceusedbythiscomponentref EMPTY>
<IATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED
usesrefid CDATA #REQUIRED>

<IELEMENT providesport
(providesidentifier
, (componentinstantiationref
| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

softwareassembly ext.2.2_2._dtd UNCLASSIFIED 4 / 4

, | findby)
>

<IELEMENT providesidentifier (#PCDATA)>

<IELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref
| findby)
)>

<IELEMENT supportedidentifier (#PCDATA)>

<IELEMENT externalports
(port+
)>

<IELEMENT port
(description?
, (usesidentifier | providesidentifier | supportedidentifier)
, componentinstantiationref

)>

<IELEMENT deploymentprefs
(localfile

)>

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

softwarecomponent_ext.2.2.2_dtd UNCLASSIFIED 172

<?xml version="1.0" encoding=""UTF-8"?>

<I-- RELEASE STATEMENT(S):
Fox UNLIMITED RIGHTS

** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or

** authorize others to do so.

** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).
-—>

<l__

** JTNC STANDARD:

** SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
** SOFTWARE COMMUNICATIONS ARCHITECTURE EXTENSIONS

** Version: 2.2.2, 22 December 2006
-

<IELEMENT softwarecomponent
(corbaversion
, componentrepid
, componenttype
, componentfeatures
, Interfaces
, propertyfile?
)>
<IELEMENT corbaversion (#PCDATA)>

<IELEMENT componentrepid EMPTY>
<IATTLIST componentrepid
repid CDATA #REQUIRED>

<IELEMENT componenttype (#PCDATA)>

<IELEMENT componentfeatures
(supportsinterface*
, ports

)>

<IELEMENT supportsinterface EMPTY>
<IATTLIST supportsinterface
repid CDATA #REQUIRED
supportsname CDATA #REQUIRED>

<IELEMENT ports
(provides
| uses
)*>

<IELEMENT provides
(porttype*)>

<IATTLIST provides
repid CDATA #REQUIRED
providesname CDATA #REQUIRED>

<IELEMENT uses
(_porttype™)>

<IATTLIST uses
repid CDATA #REQUIRED
usesname CDATA #REQUIRED>

<IELEMENT porttype EMPTY>

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

softwarecomponent_ext.2.2.2_dtd UNCLASSIFIED 2/ 2

<IATTLIST porttype
type (data | control | responses | test) #REQUIRED>

<IELEMENT interfaces
(interface*

)>

<IELEMENT interface
(inheritsinterface*)>
<IATTLIST interface
repid CDATA #REQUIRED
name CDATA #REQUIRED>

<TELEMENT inheritsinterface EMPTY>
<IATTLIST inheritsinterface
repid CDATA #REQUIRED>

<IELEMENT propertyfile
(localfile
)>

<IATTLIST propertyfile
type CDATA #IMPLIED>

<IELEMENT localfile EMPTY>
<IATTLIST localfile
name CDATA #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

UNCLASSIFIED
SCA version 2.2.2 FINAL /15 May 2006

ATTACHMENT 1 TO APPENDIX C
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

FINAL /15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

Attachment 1 to Appendix C of the Software Communications Architecture is a
collection of IDL files in the Zip electronic file compression format. These files contains
the complete IDL defined in the SCA. The files included in the attachment are as follows:

Cr.idl
PortTypes.idl

StandardEvent.idl
These files have been verified to compile without errors using the following:

1. Object Computing Inc. (OCI) Multiplatform Distribution of TAO version 1.4a —
patch 7.

2. Objective Interface Systems (OIS) Orbexpress RT version 2.6.3 for
INTEGRITY/PPC

3. Objective Interface Systems (OIS) Orbexpress RT version 2.6.4 for Windows/x86

		ATTACHMENT 1 TO APPENDIX C

		DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

CF.idl UNCLASSIFIED 17 22

** RELEASE STATEMENT(S):

*x UNLIMITED RIGHTS

** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or

** authorize others to do so.

** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).

** JTNC Standard:

** Software Communications Architecture

** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 2.2.2, 15 May 2006

//Source fTile: CF.idl

#ifndef __ CF_DEFINED
#define __CF_DEFINED

module CF {

interface Device;

interface File;

interface Resource;

interface Application;
interface ApplicationFactory;
interface DeviceManager;

/* This type is a CORBA IDL struct type which can be used to hold any CORBA basic
type or static IDL type. */
struct DataType {
/* The id attribute indicates the kind of value and type. The id can be an UUID
string, an integer string, or a name identifier. */
string id;
/* The value attribute can be any static IDL type or CORBA basic type. */

any value;

}:
/* This exception indicates an invalid component profile error. */

exception InvalidProfile {

¥

/* The Properties is a CORBA IDL unbounded sequence of CF DataType(s), which can be
used in defining a sequence of name and value pairs. */

typedef sequence <DataType> Properties;
/* This exception indicates an invalid CORBA object reference error. */

exception InvalidObjectReference {
string msg;

/* This type is a CORBA unbounded sequence of octets. */

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 2/ 22

typedef sequence <octet> OctetSequence;
/* This type defines a sequence of strings */
typedef sequence <string> StringSequence;
/* This exception indicates a set of properties unknown by the component. */

exception UnknownProperties {
CF: :Properties invalidProperties;
};

/* DeviceAssignmentType defines a structure that associates a component with the
device upon which the component is executing on. */

struct DeviceAssignmentType {
string componentld;
string assignedDeviceld;

/* The IDL sequence, DeviceAssignmentSequence, provides a unbounded sequence of 0..n of
DeviceAssignmentType. */

typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

/* This enum is used to pass error number information in various exceptions. Those
exceptions starting with "CF_E"™ map to the POSIX definitions. The "CF_'" has been
added to the POSIX exceptions to avoid namespace conflicts. CF_NOTSET is not
defined in the POSIX specification. CF_NOTSET is an SCA specific value that is
applicable for any exception when the method specific or standard POSIX error
values are not appropriate.) */

enum ErrorNumberType {

CF_NOTSET,
CF_E2BIG,
CF_EACCES,
CF_EAGAIN,
CF_EBADF,
CF_EBADMSG,
CF_EBUSY,
CF_ECANCELED,
CF_ECHILD,
CF_EDEADLK,
CF_EDOM,
CF_EEXIST,
CF_EFAULT,
CF_EFBIG,
CF_EINPROGRESS,
CF_EINTR,
CF_EINVAL,
CF_EIO,
CF_EISDIR,
CF_EMFILE,
CF_EMLINK,
CF_EMSGSIZE,
CF_ENAMETOOLONG,
CF_ENFILE,
CF_ENODEV,
CF_ENOENT,
CF_ENOEXEC,
CF_ENOLCK,
CF_ENOMEM,
CF_ENOSPC,
CF_ENOSYS,
CF_ENOTDIR,

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 37 22

CF_ENOTEMPTY,
CF_ENOTSUP,
CF_ENOTTY,
CF_ENXI0,
CF_EPERM,
CF_EPIPE,
CF_ERANGE,
CF_EROFS,
CF_ESPIPE,
CF_ESRCH,
CF_ETIMEDOUT,
CF_EXDEV

¥

/* The InvalidFileName exception indicates an invalid file name was passed to a file
service operation. The message provides information describing why the Ffilename
was invalid. */

exception InvalidFileName {
CF: :ErrorNumberType errorNumber;
string msg;

¥

/* The CF FileException indicates a file-related error occurred. The message provides
information describing the error. */

exception FileException {
CF: :ErrorNumberType errorNumber ;
string msg;
};
/* This type defines an unbounded sequence of Devices. */
typedef sequence <Device> DeviceSequence;

/* The AggregateDevice interface provides aggregate behavior that can be used to add
and remove Devices from a parent device. This interface can be provided via
inheritance or as a "provides port"”. Child devices use this interface to add or
remove themselves from parent device when being created or torn-down. */

interface AggregateDevice {

/* The readonly devices attribute contains a list of devices that have been added
to this device or a sequence length of zero if the device has no aggregation
relationships with other devices. */

readonly attribute CF::DeviceSequence devices;

/* The addDevice operation provides the mechanism to associate a device with
another device. */

void addDevice (
in CF::Device associatedDevice

raises (CF::InvalidObjectReference);

/* The removeDevice operation provides the mechanism to disassociate
a device from another device. */

void removeDevice (
in CF::Device associatedDevice

raises (CF::InvalidObjectReference);
};
Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 4 / 22

/* The FileSystem interface defines the CORBA operations to enable remote access to a
physical file system. */

interface FileSystem {

/* This exception indicates a set of properties unknown by the FileSystem object.
*/

exception UnknownFileSystemProperties {
CF::Properties invalidProperties;
}:

/* This constant indicates file system size. */
const string SIZE = "SIZE";

/* This constant indicates the available space on the file system. */
const string AVAILABLE_SPACE = "AVAILABLE_SPACE";

/* The FileType indicates the type of file entry. A file system can have PLAIN or
DIRECTORY files and mounted file systems contained in a FileSystem. */

enum FileType {
PLAIN,
DIRECTORY,
FILE_SYSTEM

}:
/* The FilelnformationType indicates the information returned for a file. */

struct FilelnformationType {
string name;
CF::FileSystem: :FileType kind;
unsigned long long size;
CF::Properties fileProperties;

}:
typedef sequence <FilelnformationType> FilelnformationSequence;

/* The CREATED TIME_ID is the identifier for the created time file property. */
const string CREATED _TIME_ID = "CREATED_TIME";

/* The MODIFIED TIME_ID is the identifier for the modified time Ffile property. */
const string MODIFIED_TIME_ID = "MODIFIED_TIME";

/* The LAST _ACCESS TIME_ID is the identifier for the last access time file
property. */
const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";
/* The remove operation removes the file with the given filename. */

void remove (
in string fileName

raises (CF::FileException,CF::InvalidFileName);

/* The copy operation copies the source file with the specified sourceFileName to
the destination file with the specified destinationFileName. */

void copy (
in string sourceFileName,
in string destinationFileName

)

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 57 22

raises (CF::InvalidFileName,CF::FileException);

/* The exists operation checks to see if a file exists based on the filename
parameter. */

boolean exists (
in string fileName

raises (CF::InvalidFileName);

/* The list operation provides the ability to obtain a list of files along with
their information in the file system according to a given search pattern. */

CF: :FileSystem: :FilelnformationSequence list (
in string pattern

raises (CF::FileException,CF::InvalidFileName);

/* The create operation creates a new File based upon the provided file name and
returns a File to the opened file. */

CF::File create (
in string fileName

raises (CF::InvalidFileName,CF::FileException);

/* The open operation opens a File for reading or writing based upon the input
fileName. */

CF::File open (
in string fileName,
in boolean read Only
raises (CF::InvalidFileName,CF::FileException);

/* The mkdir operation creates a file system directory based on the directoryName
given. */

void mkdir (
in string directoryName

raises (CF::InvalidFileName,CF::FileException);

/* The rmdir operation removes a file system directory based on the directoryName
given. */

void rmdir (
in string directoryName

raises (CF::InvalidFileName,CF::FileException);

/* The query operation returns file system information to the calling client based
upon the given fileSystemProperties®™ ID. */

void query (
inout CF::Properties fileSystemProperties

raises (CF::FileSystem::UnknownFileSystemProperties);

¥

/* The File interface provides the ability to read and write files residing within a
distributed FileSystem. A file can be thought of conceptually as a sequence of
octets with a current FilePointer describing where the next read or write will
occur. */

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 6 /7 22

interface File {

/* The 10Exception exception indicates an error occurred during a read or write
operation to a File. The message is component-dependent, providing additional
information describing the reason for the error. */

exception I0Exception {
CF: :ErrorNumberType errorNumber;
string msg;

¥

/* This exception indicates the file pointer is out of range based upon the
current file size. */

exception InvalidFilePointer {

/* The readonly fileName attribute contains the file name given to the FileSystem
open/create operation. */

readonly attribute string fileName;

/* The readonly filePointer attribute contains the file position where the next
read or write will occur. */

readonly attribute unsigned long filePointer;

/* Applications require the read operation in order to retrieve data from remote
files. */

void read (
out CF::OctetSequence data,
in unsigned long length
raises (CF::File::l10Exception);
/* The write operation writes data to the file referenced. */

void write (
in CF::OctetSequence data

raises (CF::File::l10Exception);
/* The sizeOf operation returns the current size of the file. */

unsigned long sizeOf ()
raises (CF::FileException);

/* The close operation releases any OE file resources associated with the
component. */

void close ()
raises (CF::FileException);

/* The setFilePointer operation positions the file pointer where next read or
write will occur. */

void setFilePointer (
in unsigned long filePointer

raises (CF::File::InvalidFilePointer,CF::FileException);

¥

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 7/ 22

/* A ResourceFactory can be used to create and tear down a Resource. */
interface ResourceFactory {

/* This exception indicates the resourcelD does not exist in the ResourceFactory.
*/

exception InvalidResourceld {

};

/* This exception indicates that the shutdown method failed to release the
ResourceFactory from the CORBA environment because the Factory still contains
Resources. The message is component-dependent, providing additional
information describing why the shutdown failed. */

exception ShutdownFailure {
string msg;
}:

/* The CreateResourceFailure exception indicates that the createResource operation
failed to create the Resource. The message is component-dependent, providing
additional information describing the reason for the error. */

exception CreateResourceFailure {
CF: :ErrorNumberType errorNumber;
string msg;

¥

/* The readonly identifier attribute contains the unique identifier for a
ResourceFactory instance. */

readonly attribute string identifier;

/* The createResource operation provides the capability to create Resources in the
same process space as the ResourceFactory or to return a Resource that has
already been created. This behavior is an alternative approach to the Device"s
execute operation for creating a Resource. */

CF::Resource createResource (
in string resourceld,
in CF::Properties qualifiers

raises (CF::ResourceFactory::CreateResourceFailure);

/* In CORBA there is client side and server side representation of a Resource.
This operation provides the mechanism of releasing the Resource in the CORBA
environment on the server side when all clients are through with a specific
Resource. The client still has to release its client side reference of the
Resource. */

void releaseResource (
in string resourceld

raises (CF::ResourceFactory::InvalidResourceld);

/* In CORBA there is client side and server side representation of a
ResourceFactory. This operation provides the mechanism for releasing the
ResourceFactory from the CORBA environment on the server side. The client has
the responsibility to release its client side reference of the
ResourceFactory. */

void shutdown
raises (CF::ResourceFactory::ShutdownFailure);

¥

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 8 /7 22

/* Multiple, distributed FileSystems may be accessed through a FileManager. The
FileManager interface appears to be a single FileSystem although the actual file
storage may span multiple physical file systems. */

interface FileManager : FileSystem {

/* The Mount structure identifies the FileSystems mounted within the FileManager.
*/

struct MountType {
string mountPoint;
CF::FileSystem fs;

}:
/* This type defines an unbounded sequence of mounted FileSystems. */
typedef sequence <MountType> MountSequence;

/* This exception indicates a mount point does not exist within the FileManager */
exception NonExistentMount {

¥

/* This exception indicates the FileSystem is a null (nil) object reference. */
exception InvalidFileSystem {

/* This exception indicates the mount point is already in use in the FileManager.
*/
exception MountPointAlreadyExists {

};

/* The mount operation associates a FileSystem with a mount point (a directory
name). */

void mount (
in string mountPoint,
in CF::FileSystem file_System

raises (CF::InvalidFileName,CF::FileManager::InvalidFileSystem,CF::FileManager::
MountPointAlreadyExists);

/* The unmount operation removes a mounted FileSystem from the FileManager whose
mounted name matches the input mountPoint name. */

void unmount (
in string mountPoint

raises (CF::FileManager::NonExistentMount);
/* The getMounts operation returns the FileManager®s mounted FileSystems. */
CF::FileManager: :MountSequence getMounts ();

¥

/* This interface provides operations for managing associations between ports. An
application defines a specific Port type by specifying an interface that inherits
the Port interface. */

interface Port {

/* This exception indicates one of the following errors has occurred in the
specification of a Port association. */

exception InvalidPort {
unsigned short errorCode;

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 9/ 22

string msg;

};

/* This exception indicates the Port is unable to accept any additional
connections. */

exception OccupiedPort {

¥

/* The connectPort operation makes a connection to the component identified by the
input parameters. The connectPort operation establishes only half of the
association; therefore two calls are required to create a two-way association.
A port may support several connections. */

void connectPort (
in Object connection,
in string connectionld

)
raises (CF::Port::InvalidPort,CF::Port::OccupiedPort);

/* The disconnectPort operation breaks the connection to the component identified
by the input parameters. */

void disconnectPort (
in string connectionlid

raises (CF::Port::InvalidPort);

¥

/* The LifeCycle interface defines the generic operations for initializing or
releasing instantiated component-specific data and/or processing elements. */

interface LifeCycle {

/* This exception indicates an error occurred during component initialization. The
messages provide additional information describing the reason why the error
occurred. */

exception InitializeError {
CF::StringSequence errorMessages;

¥

/* This exception indicates an error occurred during component releaseObject. The
messages provide additional information describing the reason why the error
occurred. */

exception ReleaseError {
CF: :StringSequence errorMessages;

¥

/* The purpose of the initialize operation is to provide a mechanism to set an
object to an known initial state. */

void initialize O
raises (CF::LifeCycle::InitializeError);

/* The purpose of the releaseObject operation is to provide a means by which an
instantiated component may be torn down. */

void releaseObject ()
raises (CF::LifeCycle::ReleaseError);

¥

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 10 /7 22

/* The TestableObject interface defines a set of operations that can be used to test
component implementations. */

interface TestableObject {

/* This exception indicates the requested testid for a test to be performed is not
known by the component. */

exception UnknownTest {

¥

/* The runTest operation allows components to be "blackbox"™ tested. This allows
Buillt-In Tests to be implemented which provides a means to isolate faults (
both software and hardware) within the system. */

void runTest (
in unsigned long testid,
inout CF::Properties testValues

raises (CF::TestableObject: :UnknownTest,CF: :UnknownProperties);

¥

/* The PropertySet interface defines configure and query operations to access
component properties/attributes. */

interface PropertySet {

/* This exception indicates the configuration of a component has failed (no
configuration at all was done). The message provides additional information
describing the reason why the error occurred. The invalid properties returned
indicates the properties that were invalid. */

exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;
}:

/* The PartialConfiguration exception indicates the configuration of a Component
was partially successful. The invalid properties returned indicates the
properties that were invalid. */

exception PartialConfiguration {
CF::Properties invalidProperties;
}:

/* The purpose of this operation is to allow id/value pair configuration

properties to be assigned to components implementing this interface. */

void configure (
in CF::Properties configProperties

raises (CF::PropertySet::InvalidConfiguration,CF::PropertySet::
PartialConfiguration);

/* The purpose of this operation is to allow a component to be queried to retrieve
its properties. */

void query (
inout CF::Properties configProperties

raises (CF::UnknownProperties);
};
Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 11 /7 22

/* The DomainManager interface is for the control and configuration of the radio
domain. */

interface DomainManager : PropertySet {

/* This exception is raised when an Application installation has not completed
correctly. The message provides additional information describing the reason
for the error. */

exception ApplicationlnstallationError {
CF: :ErrorNumberType errorNumber;
string msg;

}:

exception ApplicationAlreadylnstalled {

/* This type defines an unbounded sequence of Applications. */
typedef sequence <Application> ApplicationSequence;

/* This type defines an unbounded sequence of ApplicationFactories. */
typedef sequence <ApplicationFactory> ApplicationFactorySequence;

/* This type defines an unbounded sequence of DeviceManagers. */
typedef sequence <DeviceManager> DeviceManagerSequence;

/* This exception indicates the application ID is invalid. */
exception Invalidldentifier {

};

/* This exception indicates the registering Device"s DeviceManager is not
registered in the DomainManager. A Device"s DeviceManager has to be registered
prior to a Device registration to the DomainManager. */

exception DeviceManagerNotRegistered {

};

/* This exception is raised when an Application uninstallation has not completed
correctly. The message provides additional information describing the reason
for the error. */

exception ApplicationUninstallationError {
CF: :ErrorNumberType errorNumber;
string msg;

¥

/* This exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The message
provides additional information describing the reason for the error. */

exception RegisterError {
CF: :ErrorNumberType errorNumber;
string msg;

¥

/* This exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The message
provides additional information describing the reason for the error. */

exception UnregisterError {
CF: :ErrorNumberType errorNumber;
string msg;

¥

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 12 /7 22

/* This exception indicates that a registering consumer is already connected to
the specified event channel. */

exception AlreadyConnected {

};

/* This exception indicates that a DomainManager was not able to locate the event
channel. */

exception InvalidEventChannelName {

/* The NotConnected exception indicates that the unregistering consumer was not
connected to the specified event channel. */

exception NotConnected {

¥

/* The readonly domainManagerProfile attribute contains a profile element with a
file reference to the DomainManager Configuration Descriptor (DMD) profile. */

readonly attribute string domainManagerProfile;

/* The deviceManagers attribute is read-only containing a sequence of registered
DeviceManagers in the domain. */

readonly attribute CF::DomainManager::DeviceManagerSequence deviceManagers;

/* The applications attribute contains a list of Applications that have been
instantiated in the domain. */

readonly attribute CF::DomainManager::ApplicationSequence applications;

/* The readonly applicationFactories attribute contains a list with one
ApplicationFactory per application (SAD file and associated files)
successfully installed. */

readonly attribute CF::DomainManager ::ApplicationFactorySequence
applicationFactories;

/* The readonly fileMgr attribute contains the DomainManager®s FileManager. */
readonly attribute CF::FileManager fileMgr;

/* The readonly identifier attribute contains a unique identifier for a
DomainManager instance. The identifier is identical to the
domainmanagerconfiguration element id attribute of the DomainManager®s
Descriptor (DMD) file. */

readonly attribute string identifier;

/* The registerDevice operation is used to register a Device for a specific
DeviceManager in the DomainManager®s Domain Profile. */

void registerDevice (
in CF::Device registeringDevice,
in CF::DeviceManager registeredDeviceMgr

raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF: :DomainManager : :DeviceManagerNotRegistered,
CF: :DomainManager : :RegisterError);

/* The registerDeviceManager operation is used to register a DeviceManager, its
Device(s), and its Services. */

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 13 /7 22

void registerDeviceManager (
in CF::DeviceManager deviceMgr

)
raises (CF::InvalidObjectReference,CF::InvalidProfile,
CF: :DomainManager : :RegisterError);

/* The unregisterDeviceManager operation is used to unregister a DeviceManager
component from the DomainManager®s Domain Profile. A DeviceManager may be
unregistered during run-time for dynamic extraction or maintenance of the

DeviceManager. */

void unregisterDeviceManager (
in CF::DeviceManager deviceMgr

)
raises (CF::InvalidObjectReference,
CF: :DomainManager : :UnregisterError);

/* The unregisterDevice operation is used to remove a device entry from the
DomainManager for a specific DeviceManager. */

void unregisterDevice (
in CF::Device unregisteringDevice

)
raises (CF::InvalidObjectReference,
CF: :DomainManager : :UnregisterError);

/* The installApplication operation is used to register new application software
in the DomainManager®s Domain Profile. */

void installApplication (
in string profileFileName

raises (CF::InvalidProfile,CF::InvalidFileName,
CF: :DomainManager: :ApplicationlnstallationError,
CF: :DomainManager:: ApplicationAlreadylnstalled);

/* The uninstallApplication operation is used to uninstall an application and its
associated ApplicationFactory from the DomainManager. */

void uninstallApplication (
in string applicationid

raises (CF::DomainManager::Invalidldentifier,
CF: :DomainManager: :ApplicationUninstal lationError);

/* The registerService operation is used to register a service for a specific
DeviceManager with the DomainManager. */

void registerService (
in Object registeringService,
in CF::DeviceManager registeredDeviceMgr,

in string name

)
raises (CF::InvalidObjectReference,
CF: :DomainManager : :DeviceManagerNotRegistered,

CF: :DomainManager : :RegisterError);

/* The unregisterService operation is used to remove a service entry from the
DomainManager for a specific DeviceManager. */

void unregisterService (
in Object unregisteringService,

in string name

)
raises (CF::InvalidObjectReference,
CF: :DomainManager : :UnregisterError);

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 14 7/ 22

/* The registerWithEventChannel operation is used to connect a consumer to a
domain®s event channel. */

void registerWithEventChannel (
in Object registeringObject,
in string registeringld,
in string eventChannelName

raises (CF::InvalidObjectReference,
CF: :DomainManager : : Inval idEventChannelName,
CF: :DomainManager : :AlreadyConnected) ;

/* The unregisterFromEventChannel operation is used to disconnect a consumer from
a domain®s event channel. */

void unregisterFromeEventChannel (
in string unregisteringld,
in string eventChannelName

raises (CF::DomainManager::InvalidEventChannelName,
CF: :DomainManager : :NotConnected) ;

¥

/* The ApplicationFactory interface class provides an interface to request the
creation of a specific type of Application in the domain.The Software Profile
determines the type of Application that is created by the ApplicationFactory. */

interface ApplicationFactory {

/* This exception is raised when the parameter DeviceAssignmentSequence contains
one or more invalid Application component-to-device assignment(s). */

exception CreateApplicationRequestError {
CF: :DeviceAssignmentSequence invalidAssignments;
}:

/* This exception is raised when a create request is valid but the Application is
unsuccessfully instantiated due to internal processing errors. The message
provides additional information describing the reason for the error. */

exception CreateApplicationError {
CF: :ErrorNumberType errorNumber;
string msg;
}:
/* This exception is raised when the input initConfiguration parameter is invalid.
*/
exception InvalidlinitConfiguration {
CF::Properties invalidProperties;
}:

/* The name attribute contains the name of the type of Application that can be
instantiated by the ApplicationFactory. */

readonly attribute string name;

/* The readonly identifier attribute contains the unique identifier for an
ApplicationFactory instance. The identifier is identical to the
softwareassembly element id attribute of the ApplicationFactory®s Software
Assembly Descriptor file. */

readonly attribute string identifier;

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 15 /7 22

/* This attribute contains the application software profile that the factory uses
when creating an application. The string value contains a profile element
with a file reference to the SAD */

readonly attribute string softwareProfile;

/* The create operation is used to create an Application within the system domain.
*/
CF::Application create (
in string name,

in CF::Properties initConfiguration,
in CF::DeviceAssignmentSequence deviceAssignments

raises (CF::ApplicationFactory: :CreateApplicationError,
CF: :ApplicationFactory: :CreateApplicationRequestError,
CF::ApplicationFactory::InvalidlnitConfiguration);

¥

/* The PortSupplier interface provides the getPort operation for those objects that
provide ports. */

interface PortSupplier {

/* This exception is raised if an undefined port is requested. */

exception UnknownPort {
};
/* The getPort operation provides a mechanism to obtain a specific consumer or
producer Port. A PortSupplier may contain zero-to-many consumer and producer
port components. */

Object getPort (
in string name

)
raises (CF::PortSupplier::UnknownPort);
};

/* The Resource interface provides a common interface for the control and
configuration of a software component. */

interface Resource : LifeCycle, TestableObject, PropertySet, PortSupplier {

/* This exception indicates that an error occurred during an attempt to start the
Resource. The message provides additional information describing the reason

for the error. */

exception StartError {
CF: :ErrorNumberType errorNumber;

string msg;
};
/* The StopError exception indicates that an error occurred during an attempt to
stop the Resource. The message provides additional information describing the
reason for the error. */

exception StopError {
CF: :ErrorNumberType errorNumber;

string msg;
}:
Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 16 / 22

/* The readonly identifier attribute shall contain the unique identifier for a
resource instance. */

readonly attribute string identifier;

/* The start operation is provided to command a Resource implementing this
interface to start internal processing. */

void start ()
raises (CF::Resource::StartError);

/* The stop operation is provided to command a Resource implementing this
interface to stop all internal processing. */

void stop ()
raises (CF::Resource::StopError);

¥

/* The Device interface defines additional capabilities and attributes for any logical
Device in the domain. */

interface Device : Resource {

/* This exception indicates that the device is not capable of the behavior being
attempted due to the state the Device is in. */

exception InvalidState {
string msg;
}:

/* The InvalidCapacity exception returns the capacities that are not valid for
this device. */

exception InvalidCapacity {

/* The message indicates the reason for the invalid capacity. */
string msg;

/* The invalid capacities sent to the allocateCapacity operation.*/
CF: :Properties capacities;

¥

/* This enumeration type defines a Device"s administrative states. The
administrative state indicates the permission to use or prohibition against
using the Device. */

enum AdminType {

LOCKED,
SHUTTING_DOWN,
UNLOCKED

};

/* This enumeration type defines a Device"s operational states. The operational
state indicates whether or not the object is functioning. */

enum OperationalType {

ENABLED,
DISABLED

¥

/* This enumeration type defines the Device"s usage states. */

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 17 /7 22

enum UsageType {
IDLE,

ACTIVE,
BUSY

}:

/* The readonly usageState attribute contains the Device"s usage state The
usageState indicates whether or not a device is actively in use at a specific
instant, and if so, whether or not it has spare capacity for allocation at
that instant. */

readonly attribute CF::Device::UsageType usageState;

/* The administrative state indicates the permission to use or prohibition against
using the device. The adminState attribute contains the device®s admin state
value. */

attribute CF::Device::AdminType adminState;

/* The operationalState attribute contains the device®s operational state. The
operational state indicates whether or not the device is functioning. */

readonly attribute CF::Device: :OperationalType operationalState;

/* The softwareProfile attribute is the XML description for this logical Device.
The softwareProfile attribute contains a profile DTD element with a file
reference to the SPD profile file. */

readonly attribute string softwareProfile;
/* The label attribute is the meaningful name given to a Device. */
readonly attribute string label;
/* The compositeDevice attribute contains the object reference of the
AggregateDevice with which this Device is associated or a nil CORBA object
reference if no association exists. */

readonly attribute CF::AggregateDevice compositeDevice;

/* The allocateCapacity operation provides the mechanism to request and allocate
capacity from the Device. */

boolean allocateCapacity (
in CF::Properties capacities

raises (CF::Device::InvalidCapacity, CF::Device::InvalidState);

/* The deallocateCapacity operation provides the mechanism to return capacities
back to the Device, making them available to other users. */

void deallocateCapacity (
in CF::Properties capacities

raises (CF::Device::InvalidCapacity, CF::Device::InvalidState);
};
/* The Application interface provides for the control, configuration, and status of an
instantiated application in the domain. */
interface Application : Resource {

/* The ComponentProcessldType defines a type for associating a component with its

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 18 /7 22

process ID. This type can be used to retrieve a process ID for a specific
component. */

struct ComponentProcessldType {
string componentld;
unsigned long processlid;

¥

/* The ComponentProcessldSequence type defines an unbounded sequence of components
" process IDs. */

typedef sequence <ComponentProcessldType> ComponentProcessldSequence;

/* The ComponentElementType defines a type for associating a component with an
element. */

struct ComponentElementType {

string componentld;
string elementld;

};
/* This type is an unbounded sequence of ComponentElementTypes. */
typedef sequence <ComponentElementType> ComponentElementSequence;

/* This attribute contains the list of components® Naming Service Context within
the Application for those components using CORBA Naming Service. */

readonly attribute CF::Application::ComponentElementSequence
componentNamingContexts;

/* This attribute contains the list of components® process IDs within the
Application for components that are executing on a device. */

readonly attribute CF::Application::ComponentProcessldSequence
componentProcesslds;

/* The componentDevices attribute shall contain a list of devices which each
component either uses, is loaded on or is executed on. Each component (
componentinstantiation element in the Application®s software profile) is
associated with a device. */

readonly attribute CF::DeviceAssignmentSequence componentDevices;

/* This attribute contains the list of components® SPD implementation IDs within
the Application for those components created. */

readonly attribute CF::Application::ComponentElementSequence
componentimplementations;

/* This attribute is the XML profile information for the application. The string
value contains a profile element with a file reference to the SAD. */

readonly attribute string profile;
/* This name attribute contains the name of the created Application. The
ApplicationFactory interfaces®s create operation name parameter provides the
name content. */

readonly attribute string name;

¥

/* This interface extends the Device interface by adding software loading and
unloading behavior to a Device. */

interface LoadableDevice : Device {

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 19 /7 22

/* This LoadType defines the type of load to be performed. The load types are in
accordance with the code element within the softpkg element®s implementation

element. */
enum LoadType {

KERNEL_MODULE,
DRIVER,
SHARED_LI1BRARY,
EXECUTABLE

}:
/* The InvalidLoadKind exception indicates that the Device is unable to load the
type of file designated by the loadKind parameter. */

exception InvalidLoadKind {
}:
/* The LoadFail exception indicates that an error occurred during an attempt to

load the device. The message provides additional information describing the
reason for the error. */

exception LoadFail {
CF: :ErrorNumberType errorNumber;
string msg;
}:
/* The load operation provides the mechanism for loading software on a specific
device. The loaded software may be subsequently executed on the Device, if
the Device is an ExecutableDevice. */

void load (
in CF::FileSystem fs,
in string fileName,
in CF::LoadableDevice::LoadType loadKind

raises (CF::Device::InvalidState,
CF::LoadableDevice: : InvalidLoadKind,
CF::InvalidFileName, CF::LoadableDevice::LoadFail);

/* The unload operation provides the mechanism to unload software that is
currently loaded. */

void unload (
in string fileName

raises (CF::Device::InvalidState,CF::InvalidFileName);

¥

/* This interface extends the LoadableDevice interface by adding execute and terminate
behavior to a Device. */

interface ExecutableDevice : LoadableDevice {

/* The InvalidProcess exception indicates that a process, as identified by the
processlID parameter, does not exist on this device. The message provides
additional information describing the reason for the error. */

exception InvalidProcess {
CF: :ErrorNumberType errorNumber;
string msg;

¥

/* This exception indicates that a function, as identified by the input name

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 20 /7 22

parameter, hasn®t been loaded on this device. */

exception InvalidFunction {

¥

/* This type defines a process number within the system. The process number is
unique to the Processor operating system that created the process. */

typedef long ProcesslID _Type;

/* The InvalidParameters exception indicates that input parameters are invalid for
the execute operation. Each parameter®s ID and value must be a valid string
type. The invalidParms is a list of invalid parameters specified in the
execute operation. */

exception InvalidParameters {
CF: :Properties invalidParms;

¥

/* The InvalidOptions exception indicates the input options are invalid on the
execute operation. The invalidOpts is a list of invalid options specified in
the execute operation. */

exception InvalidOptions {
CF::Properties invalidOpts;

};

/* The STACK_SIZE ID is the identifier for the ExecutableDevice®s execute options
parameter. */

const string STACK_SIZE_ID = "STACK_SIZE";

/* The PRIORITY_ID is the identifier for the ExecutableDevice®s execute options
parameters. */

const string PRIORITY_ID = "PRIORITY";

/* The ExecuteFail exception indicates that an attempt to invoke the execute
operation on a device failed. The message provides additional information
describing the reason for the error. */

exception ExecuteFail {
CF: :ErrorNumberType errorNumber;
string msg;

};

/* The terminate operation provides the mechanism for terminating the execution of
a process/thread on a specific device that was started up with the execute
operation. */

void terminate (
in CF::ExecutableDevice: :ProcessID_Type processlid

raises (CF::ExecutableDevice::InvalidProcess,
CF::Device::InvalidState);

/* The execute operation provides the mechanism for starting up and executing a
software process/thread on a device. */

CF: :ExecutableDevice: :ProcessID_Type execute (
in string name,
in CF::Properties options,
in CF::Properties parameters

raises (CF::Device::InvalidState,
CF: :ExecutableDevice: : InvalidFunction,

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 21 /7 22

CF: :ExecutableDevice:: InvalidParameters,
CF: :ExecutableDevice:: InvalidOptions,
CF::InvalidFileName,

CF: :ExecutableDevice: :ExecuteFail);

¥

/* The DeviceManager interface is used to manage a set of logical Devices and
services. */

interface DeviceManager : PropertySet, PortSupplier {

/* This structure provides the object reference and name of services that have
registered with the DeviceManager. */

struct ServiceType {
Object serviceObject;
string serviceName;

};

/* This type provides an unbounded sequence of ServiceType structures for services
that have registered with the DeviceManager. */

typedef sequence <ServiceType> ServiceSequence;

/* The deviceConfigurationProfile attribute contains the DeviceManager®s profile,
a profile element with a file reference to the DeviceManager®s Device
Configuration Descriptor (DCD) profile. */

readonly attribute string deviceConfigurationProfile;

/* The TileSys attribute contains the FileSystem associated with this
DeviceManager or a nil CORBA object reference if no FileSystem is associated
with this DeviceManager. */

readonly attribute CF::FileSystem fileSys;

/* The identifier attribute contains the instance-unique identifier for a
DeviceManager. The identifier is identical to the deviceconfiguration element
id attribute of the DeviceManager®s Device Configuration Descriptor (DCD)
file. */

readonly attribute string identifier;

/* The label attribute contains the DeviceManager®s label. The label attribute is
the meaningful name given to a DeviceManager. */

readonly attribute string label;

/* The registeredDevices attribute contains a list of Devices that have registered
with this DeviceManager or a sequence of length zero if no Devices have
registered with the DeviceManager. */

readonly attribute CF::DeviceSequence registeredDevices;

/* The registeredServices attribute contains a list of Services that have
registered with this DeviceManager or a sequence of length zero if no Services
have registered with the DeviceManager. */

readonly attribute CF::DeviceManager: :ServiceSequence registeredServices;

/* The registerDevice operation provides the mechanism to register a Device with a
DeviceManager. */

void registerDevice (
in CF::Device registeringDevice

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

CF.idl UNCLASSIFIED 22 / 22

raises (CF::InvalidObjectReference);
/* This operation unregisters a Device from a DeviceManager. */

void unregisterDevice (
in CF::Device registeredDevice

raises (CF::InvalidObjectReference);

/* The shutdown operation provides the mechanism to terminate a DeviceManager,
unregistering it from the DomainManager. */

void shutdown ();

/* The registerService operation provides mechanisms to register a Service with a
DeviceManager and its DomainManager. */

void registerService (
in Object registeringService,
in string name
raises (CF::InvalidObjectReference);

/* This operation provides mechanisms to unregister a Service from a DeviceManager
and its DomainManager. */

void unregisterService (
in Object unregisteringService,
in string name
raises (CF::InvalidObjectReference);

/* The getComponentimplementationld operation returns the SPD implementation ID
that the DeviceManager interface used to create a component. */

string getComponentimplementationld (
in string componentlnstantiationld

E
}:
};
#endif

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

PortTypes.idl UNCLASSIFIED 171

/*

** RELEASE STATEMENT(S):

*x UNLIMITED RIGHTS

** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or

** authorize others to do so.

** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).

** JTNC Standard:

** Software Communications Architecture

** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 2.2.2, 15 May 2006

//Source file: PortTypes.idl

#ifndef _ PORTTYPES_DEFINED
#define _ PORTTYPES_DEFINED

module PortTypes {

/* This type is a unbounded sequence of booleans. */
typedef sequence <boolean> BooleanSequence;

/* This type is a unbounded sequence of characters. */
typedef sequence <char> CharSequence;

/* This type is a unbounded sequence of doubles. */
typedef sequence <double> DoubleSequence;

/* This type is a unbounded sequence of longlongs. */
typedef sequence <long long> LongLongSequence;

/* This type is a unbounded sequence of longs. */
typedef sequence <long> LongSequence;

/* This type is a unbounded sequence of shorts. */
typedef sequence <short> ShortSequence;

/* This type is a unbounded sequence of unsigned long longs. */
typedef sequence <unsigned long long> UlonglLongSequence;

/* This type is a unbounded sequence of unsigned longs. */
typedef sequence <unsigned long> UlongSequence;

/* This type is a unbounded sequence of unsigned shorts. */
typedef sequence <unsigned short> UshortSequence;

/* This type is a unbounded sequence of floats. */
typedef sequence <float> FloatSequence;

¥
#endi f

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

StandardEvent. idl UNCLASSIFIED 17 2

/*

** RELEASE STATEMENT(S):

*x UNLIMITED RIGHTS

** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or

** authorize others to do so.

** Distribution Statement A - Approved for public release; distribution is
** unlimited (29 July 2014).

** JTNC Standard:

** Software Communications Architecture

** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 2.2.2, 15 May 2006

//Source fTile: StandardEvent.idl

#ifndef _ STANDARDEVENT_DEFINED
#define __ STANDARDEVENT_DEFINED

module StandardEvent {

/* Type StateChangeCategoryType is an enumeration that is utilized in the
StateChangeEventType. It is used to identify the category of state change that has
occurred. */

enum StateChangeCategoryType {

ADMINISTRATIVE_STATE_EVENT,
OPERATIONAL_STATE_EVENT,
USAGE_STATE_EVENT

¥

/* Type StateChangeType is an enumeration that is utilized in the StateChangeEventType.
It is used to identify the specific states of the event source before and after the
state change occurred. */

enum StateChangeType {

LOCKED,
UNLOCKED,
SHUTTING_DOWN,
ENABLED,
DISABLED,
IDLE,

ACTIVE,

BUSY

¥

/* Type StateChangeEventType is a structure used to indicate that the state of the event
source has changed. The event producer will send this structure into an event
channel on behalf of the event source. */

struct StateChangeEventType {
string producerld;
string sourceld;
StandardEvent: : StateChangeCategoryType stateChangeCategory;
StandardEvent: : StateChangeType stateChangeFrom;
StandardEvent: : StateChangeType stateChangeTo;

¥

/* Type SourceCategoryType is an enumeration that is utilized in the

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

StandardEvent. idl UNCLASSIFIED 2/ 2

DomainManagementObjectAddedEventType and DomainManagementObjectRemovedEventType. Is
used to identify the type of object that has been added to or removed from the
domain. */

enum SourceCategoryType {

DEVICE_MANAGER,
DEVICE,
APPLICATION_FACTORY,
APPLICATION,

SERVICE

};

/* Type DomainManagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain. The event producer will send this
structure into an event channel on behalf of the event source. */

struct DomainManagementObjectRemovedEventType {
string producerld;
string sourceld;
string sourceName;
StandardEvent: :SourceCategoryType sourceCategory;

}:

/* Type DomainManagementObjectAddedEventType is a structure used to indicate that the
event source has been added to the domain. The event producer will send this
structure into an event channel on behalf of the event source. */

struct DomainManagementObjectAddedEventType {
string producerld;
string sourceld;
string sourceName;
StandardEvent: :SourceCategoryType sourceCategory;
Object sourcelOR;

}:
¥
#endi

Distribution Statement A - Approved for public release; distribution is unlimited (29 July 2014).

UNCLASSIFIED
SCA version 2.2.2 FINAL /15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

FINAL /15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

Attachment 1 to Appendix D of the Software Communications Architecture is a
collection of XML files in the Zip electronic file compression format. These files contain
the XML for the SCA Domain Profile as defined in Appendix D. The files include in the
attachment are as follows:

deviceconfiguration.2.2.2.dtd
devicepkg.2.2.2.dtd
domainmanagerconfiguration.2.2.2.dtd
profile.2.2.2.dtd
properties.2.2.2.dtd
softpkg.2.2.2.dtd
softwareassembly.2.2.2.dtd

softwarecomponent.2.2.2.dtd

		readmeattachment_1_to_appendix d.pdf

		ATTACHMENT 1 TO APPENDIX D

		DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
DEVICE CONFIGURATION DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT deviceconfiguration
(description?
, devicemanagersoftpkg
, componentfiles?
, partitioning?
, connections?
, domainmanager
, filesystemnames?
) >
<!ATTLIST deviceconfiguration
id ID #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT devicemanagersoftpkg
(localfile
) >

<!ELEMENT componentfiles
(componentfile+
) >

<!ELEMENT componentfile
(localfile
) >
<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile
name CDATA #REQUIRED>

<!ELEMENT partitioning
(componentplacement) *>

<!ELEMENT componentplacement
(componentfileref
, deployondevice?
, compositepartofdevice?
, devicepkgfile?
, componentinstantiation+

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref
refid CDATA #REQUIRED>

<!ELEMENT deployondevice EMPTY>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
DEVICE CONFIGURATION DESCRIPTOR

<!ATTLIST deployondevice
refid CDATA #REQUIRED>

<!ELEMENT compositepartofdevice EMPTY>
<!ATTLIST compositepartofdevice
refid CDATA #REQUIRED>

<!ELEMENT devicepkgfile

(localfile
) >
<!ATTLIST devicepkgfile
type CDATA #IMPLIED>

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
) >
<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA) >

<!ELEMENT componentproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >
<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref

refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

(values
) >
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+
) >
<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+
) >
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
DEVICE CONFIGURATION DESCRIPTOR

<!ELEMENT structvalue
(simpleref+
) >

<!ELEMENT values
(value+
) >

<!ELEMENT value (#PCDATA)>

<!ELEMENT connections
(connectinterface*
) >

<!ELEMENT connectinterface
(usesport
, (providesport
| componentsupportedinterface
| findby
)
) >
<!ATTLIST connectinterface
id ID #IMPLIED>

<!ELEMENT usesport
(usesidentifier
, (componentinstantiationref
| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref
| findby
)
) >
<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>
<!ATTLIST componentinstantiationref
refid CDATA #REQUIRED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>
<!ATTLIST devicethatloadedthiscomponentref
refid CDATA #REQUIRED>

<!ELEMENT deviceusedbythiscomponentref EMPTY>
<!ATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED

usesrefid CDATA #REQUIRED>

<!ELEMENT providesport
(providesidentifier
, (componentinstantiationref
| devicethatloadedthiscomponentref

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2

FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D

DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS

DEVICE CONFIGURATION DESCRIPTOR

| deviceusedbythiscomponentref
| findby

) >
<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref
| findby
)
) >

<!ELEMENT supportedidentifier (#PCDATA)>

<!ELEMENT domainmanager
(namingservice)>

<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice
name CDATA #REQUIRED>

<!ELEMENT findby
(namingservice
| domainfinder
) >

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder
type (filemanager |log | eventchannel
name CDATA #IMPLIED>

<!ELEMENT filesystemnames
(filesystemname+
) >

<!ELEMENT filesystemname EMPTY>
<!ATTLIST filesystemname
mountname CDATA #REQUIRED
deviceid CDATA #REQUIRED>

namingservice)

#REQUIRED

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
DEVICE PACKAGE DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT devicepkg

(title?
, author+
, description?
, hwdeviceregistration
) >
<!ATTLIST devicepkg
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT title (#PCDATA)>
<!ELEMENT author

(namex*

, company?

, webpage?

) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT company (#PCDATA)>
<!ELEMENT webpage (#PCDATA) >

<!ELEMENT description (#PCDATA)>

<!ELEMENT hwdeviceregistration

(propertyfile?
, description
, manufacturer
, modelnumber
, deviceclass
, childhwdevice*
) >
<!ATTLIST hwdeviceregistration
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT propertyfile
(localfile
) >
<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile
name CDATA #REQUIRED>

<!ELEMENT manufacturer (#PCDATA)>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
DEVICE PACKAGE DESCRIPTOR

<!ELEMENT modelnumber (#PCDATA)>

<!ELEMENT deviceclass
(class+
) >

<!ELEMENT class (#PCDATA)>

<!ELEMENT childhwdevice
(hwdeviceregistration
|devicepkgref
) >

<!ELEMENT devicepkgref
(localfile
) >
<!ATTLIST devicepkgref
type CDATA #IMPLIED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
DOMAIN MANAGER CONFIGURATION DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, deploymentlayout?
, services
) >
<!ATTLIST domainmanagerconfiguration
id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT domainmanagersoftpkg
(localfile
) >

<!ELEMENT deploymentlayout
(localfile
) >

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile
name CDATA #REQUIRED>

<!ELEMENT services
(service+
) >

<!ELEMENT service
(usesidentifier
, findby
) >

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT findby
(namingservice
| domainfinder
) >

<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice
name CDATA #REQUIRED>

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder
type CDATA #REQUIRED
name CDATA #IMPLIED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
PROFILE DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT profile EMPTY>
<!ATTLIST profile
filename CDATA #REQUIRED
type CDATA #IMPLIED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
PROPERTIES DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT properties
(description?
, (simple | simplesequence | test | struct | structsequence)+
) >

<!ELEMENT simple

(description?

, value?

, units?

, range?

, enumerations?

, kind*

, action?

) >
<!ATTLIST simple

id ID #REQUIRED

type (boolean | char | double | float | short | long
objref | octet

| string | ulong | ushort) #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT description (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT units (#PCDATA) >

<!ELEMENT range EMPTY>

<!ATTLIST range
min CDATA #REQUIRED
max CDATA #REQUIRED>

<!ELEMENT enumerations
(enumeration+
) >

<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration
label CDATA #REQUIRED
value CDATA #IMPLIED>

<!ELEMENT kind EMPTY>
<!ATTLIST kind

kindtype (allocation | configure | test | execparam | factoryparam)

"configure">

<!ELEMENT action EMPTY>
<!ATTLIST action
type (eqg | ne | gt | 1t | ge | le | external) "external">

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
PROPERTIES DESCRIPTOR

<!ELEMENT simplesequence

(description?
, values?
, units?
, range?
, kind*
, action?
) >
<!ATTLIST simplesequence
id ID #REQUIRED
type (boolean | char | double | float
| short | long | objref | octet
| string | ulong | ushort) #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT values
(value+
) >

<!ELEMENT test
(description
, inputvalue?
, resultvalue
) >
<!ATTLIST test
id CDATA #REQUIRED>

<!ELEMENT inputvalue
(simple+
) >

<!ELEMENT resultvalue
(simple+

) >

<!ELEMENT struct

(description?
, Simple+
, configurationkind?
) >
<!ATTLIST struct
id ID #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT configurationkind EMPTY>
<!ATTLIST configurationkind
kindtype (configure | factoryparam) "configure">

<!ELEMENT structsequence
(description?

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
PROPERTIES DESCRIPTOR

, structvalue+
, configurationkind?
) >

<!ATTLIST structsequence

id ID #REQUIRED
structrefid CDATA #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue
(simpleref+
) >

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE PACKAGE DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT softpkg
(title?
, author+
, description?
, propertyfile?
, descriptor?
, ilmplementation+
, usesdevice*
) >
<!ATTLIST softpkg
id ID #REQUIRED
name CDATA #REQUIRED
type (sca _compliant | sca non_compliant) "sca compliant"
version CDATA #IMPLIED >

<!ELEMENT propertyfile
(localfile
) >

<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile
name CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author
(name*
, company?
, webpage?
) >

<!ELEMENT name (#PCDATA)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT webpage (#PCDATA) >

<!ELEMENT descriptor
(localfile
) >

<!ATTLIST descriptor
name CDATA #IMPLIED>

<!ELEMENT implementation
(description?
, propertyfile?
, code
, compiler?
, programminglanguage?

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE PACKAGE DESCRIPTOR

, humanlanguage?
, runtime?
, (os | processor | dependency)+
, usesdevice*
) >
<!ATTLIST implementation
id ID #REQUIRED
aepcompliance (aep compliant | aep non compliant) "aep compliant™>

<!ELEMENT description (#PCDATA)>

<!ELEMENT code
(localfile
, entrypoint?
, stacksize?
, priority?
) >
<!ATTLIST code
type CDATA #IMPLIED>

<!ELEMENT entrypoint (#PCDATA)>
<!ELEMENT stacksize (#PCDATA)>
<!ELEMENT priority (#PCDATA)>

<!ELEMENT compiler EMPTY>
<!ATTLIST compiler
name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage
name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT humanlanguage EMPTY>
<!ATTLIST humanlanguage
name CDATA #REQUIRED>

<!ELEMENT os EMPTY>

<!ATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT processor EMPTY>
<!ATTLIST processor
name CDATA #REQUIRED>

<!ELEMENT dependency
(softpkgref
| propertyref
) >

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE PACKAGE DESCRIPTOR

<!ATTLIST dependency
type CDATA #REQUIRED>

<!ELEMENT softpkgref
(localfile
, implref?
) >

<!ELEMENT implref EMPTY>
<!ATTLIST implref
refid CDATA #REQUIRED>

<!ELEMENT propertyref EMPTY>
<!ATTLIST propertyref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime
name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT wusesdevice
(propertyref+
) >
<!ATTLIST usesdevice
id ID #REQUIRED
type CDATA #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE ASSEMBLY DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT softwareassembly
(description?
, componentfiles
, partitioning
, assemblycontroller
, connections?
, externalports?
, deploymentprefs?
) >
<!ATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT componentfiles
(componentfile+
) >

<!ELEMENT componentfile
(localfile
) >
<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile
name CDATA #REQUIRED>

<!ELEMENT partitioning
(componentplacement | hostcollocation
) +>

<!ELEMENT componentplacement
(componentfileref
, componentinstantiation+
) >

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref
refid CDATA #REQUIRED>

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
, findcomponent?
) >
<!ATTLIST componentinstantiation
id ID #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE ASSEMBLY DESCRIPTOR

<!ELEMENT usagename (#PCDATA)>

<!ELEMENT componentproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >
<!ELEMENT findcomponent
(componentresourcefactoryref

| namingservice
) >

<!ELEMENT componentresourcefactoryref
(resourcefactoryproperties?

) >
<!ATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

<!ELEMENT resourcefactoryproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
Y+ >
<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

(values
) >
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+
) >
<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+
) >
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>

<!ELEMENT structvalue
(simpleref+

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE ASSEMBLY DESCRIPTOR

) >

<!ELEMENT values
(value+
) >

<!ELEMENT value (#PCDATA)>

<!ELEMENT hostcollocation
(componentplacement) +>

<!ATTLIST hostcollocation
id ID #IMPLIED
name CDATA #IMPLIED>

<!ELEMENT assemblycontroller
(componentinstantiationref
) >

<!ELEMENT connections
(connectinterfacex*

) >

<!ELEMENT connectinterface

(usesport
, (providesport | componentsupportedinterface | findby)
) >
<!ATTLIST connectinterface
id ID #IMPLIED>

<!ELEMENT usesport
(usesidentifier
, (componentinstantiationref
| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref
| findby
)
) >
<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>
<!ATTLIST componentinstantiationref
refid CDATA #REQUIRED>

<!ELEMENT findby
(namingservice
| domainfinder
) >

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice
name CDATA #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE ASSEMBLY DESCRIPTOR

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

type (filemanager | log | eventchannel | namingservice |
servicename | servicetype) #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>
<!ATTLIST devicethatloadedthiscomponentref
refid CDATA #REQUIRED>

<!ELEMENT deviceusedbythiscomponentref EMPTY>
<!ATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED
usesrefid CDATA #REQUIRED>

<!ELEMENT providesport
(providesidentifier
, (componentinstantiationref
| devicethatloadedthiscomponentref
| deviceusedbythiscomponentref
| findby)
) >

<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref
| findby)
) >

<!ELEMENT supportedidentifier (#PCDATA)>
<!ELEMENT externalports
(port+

) >

<!ELEMENT port

(description?

, (usesidentifier | providesidentifier | supportedidentifier)
, componentinstantiationref

) >

<!ELEMENT deploymentprefs
(localfile
) >

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

UNCLASSIFIED
SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE COMPONENT DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT softwarecomponent

(corbaversion

, componentrepid

, componenttype

, componentfeatures

, interfaces

, propertyfile?

<!ELEMENT corbaversion (#PCDATA)>

<!ELEMENT componentrepid EMPTY>
<!ATTLIST componentrepid
repid CDATA #REQUIRED>

<!ELEMENT componenttype (#PCDATA)>

<!ELEMENT componentfeatures
(supportsinterface*
, ports
) >

<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface
repid CDATA #REQUIRED
supportsname CDATA #REQUIRED>

<!ELEMENT ports
(provides
| uses
) *>

<!ELEMENT provides
(porttype*)>

<!ATTLIST provides
repid CDATA #REQUIRED
providesname CDATA #REQUIRED>

<!ELEMENT uses
(porttype*)>

<!ATTLIST uses
repid CDATA #REQUIRED
usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>
<!ATTLIST porttype
type (data | control | responses | test) #REQUIRED>

<!ELEMENT interfaces
(interface*

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

ATTACHMENT 1 TO APPENDIX D
DOMAIN PROFILE DOCUMENT TYPE DEFINITIONS
SOFTWARE COMPONENT DESCRIPTOR

) >

<!ELEMENT interface
(inheritsinterface*)>
<!ATTLIST interface
repid CDATA #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface
repid CDATA #REQUIRED>

<!ELEMENT propertyfile
(localfile
) >
<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile
name CDATA #REQUIRED>

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

