
UNCLASSIFIED

 i

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

APPENDIX C: CORE FRAMEWORK INTERFACE DEFINITION

LANGUAGE

20 August 2015

Version: 4.1

Prepared by:

Joint Tactical Networking Center (JTNC)

33000 Nixie Way

San Diego, CA 92147-5110

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. ii

REVISION SUMMARY

Version Revision Date

Next <Draft> Initial Draft Release 30 November 2010

Candidate

Release
Initial Release 27 December 2011

4.0 ICWG Approved Release 28 February 2012

4.0.1
Incorporated transition to JTNC and applied SCA 4.0

Errata Sheet v1.0
01 October 2012

4.1<DRAFT>

Naming Proposal Changes, Backwards Compatibility

Changes, Scalable Components Changes, Scalable

Managers Changes, Device Registration Changes

31 December 2014

4.1

New :Process Collocation and Core Affinity Deployment

Enhancement,

Moved definition of CFPrimitiveTypes and

CFPrimitiveSeqTypes to Appendix E

Changes: Domain Late Registration, Allocation

Properties, Domain Component Type Uniformity,

Deployment Data, DomainManager and DeviceManager

Instance Level Property Value

ICWG Approved

20 August 2015

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. iii

TABLE OF CONTENTS

C.1 SCOPE ..5

C.2 CONFORMANCE ...5

C.3 CONVENTIONS ..5

C.4 NORMATIVE REFERENCES ..5

C.5 INFORMATIVE REFERENCES ..5

C.6 CONDENSED IDL ..5

C.6.1 CF IDL ..5

C.6.2 StandardEvent IDL ...6

C.7 CORE FRAMEWORK IDL ...6

C.7.1 Base Elements ...6

C.7.1.1 CFPrimitiveTypes IDL ..6

C.7.1.2 CFPrimitiveSeqTypes IDL ..6

C.7.1.2.1 CF BooleanSeq ... 7

C.7.1.2.2 CF CharSeq ... 7

C.7.1.2.3 CF DoubleSeq ... 7

C.7.1.2.4 CF FloatSeq ... 7

C.7.1.2.5 CF LongSeq .. 7

C.7.1.2.6 CF LongLongSeq .. 7

C.7.1.2.7 CF OctetSeq .. 7

C.7.1.2.8 CF ShortSeq .. 7

C.7.1.2.9 CF StringSeq ... 7

C.7.1.2.10 CF ULongSeq ... 7

C.7.1.2.11 CF ULongLongSeq ... 7

C.7.1.2.12 CF UShortSeq ... 7

C.7.1.3 CFCommonTypes IDL ..7

C.7.1.4 CFPlatformTypes IDL ...10

C.7.1.5 CFSpecializedInfoIDL ...10

C.7.1.6 CFProperties IDL ...12

C.7.2 Base Application...13

C.7.2.1 CFComponentIdentifer IDL...13

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. iv

C.7.2.2 CFControllableInterface IDL ...13

C.7.2.3 CFLifeCycle IDL ...14

C.7.2.4 CFPortAccessor IDL ..15

C.7.2.5 CFPropertySet IDL ..16

C.7.2.6 CFTestableInterface IDL ...17

C.7.3 Base Device ...17

C.7.3.1 CFAggregateDevice IDL ...17

C.7.3.2 CFCapacityManagement IDL ..18

C.7.3.3 CFDeviceAttributes IDL ..19

C.7.3.4 CFExecutableInterface IDL ...20

C.7.3.5 CFLoadableInterface IDL ..22

C.7.3.6 CFAdministratableInterface IDL ...23

C.7.3.7 CFAggregateDeviceAttributes IDL ...23

C.7.4 Framework Control ...24

C.7.4.1 CFApplicationManager IDL ..24

C.7.4.2 CFDeploymentAttributes IDL ...24

C.7.4.3 CFApplicationFactory IDL ..25

C.7.4.4 CFComponentRegistry IDL ...26

C.7.4.5 CFDomainInstallation IDL ..27

C.7.4.6 CFDomainManager IDL ..28

C.7.4.7 CFEventChannelRegistry IDL ...29

C.7.4.8 CFFullComponentRegistry IDL ..30

C.7.4.9 CFReleasableManager IDL ...30

C.7.5 Framework Services ..31

C.7.5.1 CFComponentFactory IDL ..31

C.7.5.2 CFFile IDL ...31

C.7.5.3 CFFileManager IDL...33

C.7.5.4 CFFileSystem IDL ...34

C.8 STANDARDEVENT MODULE...36

C.8.1 SE_DomainEvent IDL ...36

C.8.2 SE_StateEvent IDL ..37

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 5

APPENDIX C CORE FRAMEWORK IDL

C.1 SCOPE

The Core Framework (CF) interfaces are expressed in Interface Definition Language (IDL). Any

IDL compiler for the target language of choice may compile the generated IDL.

The CF interfaces are contained in the CF module. The StandardEvent Module contains the

standard event types to be passed via the event service.

C.2 CONFORMANCE

N/A

C.3 CONVENTIONS

N/A

C.4 NORMATIVE REFERENCES

N/A

C.5 INFORMATIVE REFERENCES

N/A

C.6 CONDENSED IDL

C.6.1 CF IDL

//Source file: CF.idl

#ifndef __CF_DEFINED
#define __CF_DEFINED

/* This file is provided to maintain backward compatibility with
 legacy systems that use CF.idl files. */

/* Base Elements */
#include "CFPrimitiveTypes.idl"
#include "CFPrimitiveSeqTypes.idl"
#include "CFCommonTypes.idl"

/* Specialized Information */
#include "CFSpecializedInfo.idl"

/* Base Application */
#include "CFComponentIdentifier.idl"
#include "CFControllableInterface.idl"
#include "CFLifeCycle.idl"
#include "CFPortAccessor.idl"

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 6

#include "CFPropertySet.idl"
#include "CFTestableInterface.idl"

/* Base Device */
#include "CFAggregateDevice.idl"
#include "CFCapacityManagement.idl"
#include "CFDeviceAttributes.idl"
#include "CFExecutableInterface.idl"
#include "CFLoadableInterface.idl"
#include "CFAdministratableInterface.idl"

/* Framework Control */
#include "CFApplicationManager.idl"
#include "CFDeploymentAttributes.idl"
#include "CFApplicationFactory.idl"
#include "CFComponentRegistry.idl"
#include "CFDomainInstallation.idl"
#include "CFDomainManager.idl"
#include "CFEventChannelRegistry.idl"
#include "CFReleasableManager.idl"

/* Framework Services */
#include "CFComponentFactory.idl"
#include "CFFile.idl"
#include "CFFileManager.idl"
#include "CFFileSystem.idl"

#endif

C.6.2 StandardEvent IDL

//Source file: StandardEvent.idl

#ifndef __STANDARDEVENT_DEFINED
#define __STANDARDEVENT_DEFINED

/* This file is provided to maintain backward compatibility with
 legacy systems that use StandardEvent.idl files. */

#include "SE_DomainEvent.idl"
#include "SE_StateEvent.idl"

#endif

C.7 CORE FRAMEWORK IDL

C.7.1 Base Elements

C.7.1.1 CFPrimitiveTypes IDL

See Appendix E

C.7.1.2 CFPrimitiveSeqTypes IDL

See Appendix E

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 7

C.7.1.2.1 CF BooleanSeq

See Appendix E

C.7.1.2.2 CF CharSeq

See Appendix E

C.7.1.2.3 CF DoubleSeq

See Appendix E

C.7.1.2.4 CF FloatSeq

See Appendix E

C.7.1.2.5 CF LongSeq

See Appendix E

C.7.1.2.6 CF LongLongSeq

See Appendix E

C.7.1.2.7 CF OctetSeq

See Appendix E

C.7.1.2.8 CF ShortSeq

See Appendix E

C.7.1.2.9 CF StringSeq

See Appendix E

C.7.1.2.10 CF ULongSeq

See Appendix E

C.7.1.2.11 CF ULongLongSeq

See Appendix E

C.7.1.2.12 CF UShortSeq

See Appendix E

C.7.1.3 CFCommonTypes IDL

//Source file: CFCommonTypes.idl

#ifndef __CFCOMMONTYPES_DEFINED
#define __CFCOMMONTYPES_DEFINED

#include "CFPrimitiveTypes.idl"
#include "CFPrimitiveSeqTypes.idl"
#include "CFProperties.idl"

module CF {

 /* This type is an unbounded sequence of octets. */
 typedef CF::OctetSeq OctetSequence;

 /* This type defines a sequence of strings. */
 typedef sequence <string> StringSequence;

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 8

 /* This enum is used to pass error number information in various
 exceptions. Those exceptions starting with "CF_E" map to the POSIX
 definitions.
 The "CF_" has been added to the POSIX exceptions to avoid namespace
 conflicts. CF_NOTSET is not defined in the POSIX specification.
 CF_NOTSET is an SCA specific value that is applicable for any
 exception when the method specific or standard POSIX error values
 are not appropriate. */
 enum ErrorNumberType {
 CF_NOTSET,
 CF_E2BIG,
 CF_EACCES,
 CF_EAGAIN,
 CF_EBADF,
 CF_EBADMSG,
 CF_EBUSY,
 CF_ECANCELED,
 CF_ECHILD,
 CF_EDEADLK,
 CF_EDOM,
 CF_EEXIST,
 CF_EFAULT,
 CF_EFBIG,
 CF_EINPROGRESS,
 CF_EINTR,
 CF_EINVAL,
 CF_EIO,
 CF_EISDIR,
 CF_EMFILE,
 CF_EMLINK,
 CF_EMSGSIZE,
 CF_ENAMETOOLONG,
 CF_ENFILE,
 CF_ENODEV,
 CF_ENOENT,
 CF_ENOEXEC,
 CF_ENOLCK,
 CF_ENOMEM,
 CF_ENOSPC,
 CF_ENOSYS,
 CF_ENOTDIR,
 CF_ENOTEMPTY,
 CF_ENOTSUP,
 CF_ENOTTY,
 CF_ENXIO,
 CF_EPERM,
 CF_EPIPE,
 CF_ERANGE,
 CF_EROFS,
 CF_ESPIPE,
 CF_ESRCH,
 CF_ETIMEDOUT,
 CF_EXDEV
 };

 /* This exception indicates an invalid file name was passed

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 9

 to a file service operation. The message provides information
 describing why the filename was invalid. */
 exception InvalidFileName {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This exception indicates an invalid object reference error. */
 exception InvalidObjectReference {
 string msg;
 };

 /* This structure defines a port. */
 struct PortAccessType {
 string portName;
 Object portReference;
 };

 /* This type defines an name/value sequence of PortAccessType
 structures. */
 typedef sequence <PortAccessType> Ports;

 /* This enumeration defines the basic component types. */
 enum ComponentEnumType {
 APPLICATION_COMPONENT,
 MANAGEABLE_APPLICATION_COMPONENT,
 DEVICE_COMPONENT,
 LOADABLE_DEVICE_COMPONENT,
 EXECUTABLE_DEVICE_COMPONENT,
 MANAGEABLE_SERVICE_COMPONENT,
 SERVICE_COMPONENT,
 DEVICE_MANAGER_COMPONENT,
 DOMAIN_MANAGER_COMPONENT,
 APPLICATION_MANAGER_COMPONENT,
 APPLICATION_FACTORY_COMPONENT,
 APPLICATION_COMPONENT_FACTORY_COMPONENT,
 PLATFORM_COMPONENT_FACTORY_COMPONENT
 };

 /* This structure defines the basic elements of a component. */
 struct ComponentType {
 string identifier;
 string profile;
 CF::ComponentEnumType type;
 Object componentObject;
 CF::Ports providesPorts;
 CF::Properties specializedInfo;
 };

 /* This type defines an unbounded sequence of objects. */
 typedef sequence <Object> ObjectSequence;

};

#endif

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 10

C.7.1.4 CFPlatformTypes IDL

//Source file: CFPlatformTypes.idl
#ifndef __CFPLATFORMTYPES_DEFINED
#define __CFPLATFORMTYPES_DEFINED

#include "CFCommonTypes.idl"

module CF {
 /* This structure associates a component with the device
 upon which the component is executing. */
 struct DeviceAssignmentType {
 string componentId;
 string assignedDeviceId;
 };

 /* The sequence provides an unbounded sequence of 0..n of
 DeviceAssignmentType. */
 typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

 /* This exception indicates an invalid component profile error. */
 exception InvalidProfile {
 };

 /* This sequence defines a sequence of ComponentType structures */
 typedef sequence <CF::ComponentType> Components;

 /* This exception indicates that the device is not capable of
 the behavior being attempted due to the state the device is in.
 An example of such behavior is allocateCapacity. */
 exception InvalidState {
 string msg;
 };

};

#endif

C.7.1.5 CFSpecializedInfoIDL

//Source file: CFSpecializedInfo.idl

#ifndef __CFSPECIALIZEDINFO_DEFINED
#define __CFSPECIALIZEDINFO_DEFINED

#include "CFCommonTypes.idl"
#include "CFFileSystem.idl"
#include "CFPlatformTypes.idl"

module CF {

 /* This enumeration defines the basic actions that may be taken against an
 allocation property. */
 enum PropertyActionType {
 CF_EQ,
 CF_NE,
 CF_GT,
 CF_GE,

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 11

 CF_LT,
 CF_LE,
 CF_EXTERNAL
 };

 /* This enumeration defines the basic data types of an allocation property. */
 enum PropertyType {
 CF_BOOLEAN,
 CF_CHAR,
 CF_DOUBLE,
 CF_FLOAT,
 CF_SHORT,
 CF_LONG,
 CF_OBJREF,
 CF_OCTET,
 CF_STRING,
 CF_USHORT,
 CF_ULONG
 };

 /* This string constant is the identifier for the allocation property
 specialized info entry. */
 const string ALLOCATION_PROPS_ID = "ALLOCATION_PROPS";

 /* This structure defines the specialized type for
 the allocation properties associated with a component. The id attribute
 indicates the kind of value and type. The id can
 be an integer string or a unique alphanumeric identifier.
 The value attribute can be any static IDL type or basic type. */
 struct AllocationPropertyType {
 string id;
 CF::StringSequence values;
 CF::PropertyActionType action;
 CF::PropertyType type;
 };

 /* This sequence defines a list of AllocationPropertyType structures. */
 typedef sequence <AllocationPropertyType> AllocationProperties;

 /* This string constant is the identifier for a DeviceManagerComponent string
 identifier type value within a BasePlatformComponent ComponentType's
 specializedInfo. */
 const string DEVICE_MANAGER_ID = "DEVICE_MANAGER_ID";

 /* This string constant is the identifier for a ManagerInfo type within a
 ComponentType's specializedInfo. */
 const string MANAGER_INFO_ID = "MANAGER_INFO";

 /* This string constant is the identifier for ExecutableInterface::ExecutionID_Type
 Value within a ComponentType's specializedInfo. */
 const string EXECUTION_ID = "EXECUTION_ID";

 /* This string constant is the identifier for SPD implementation id string
 value within a ComponentType's specializedInfo, which is the implementation used
 for the creation of the component. */
 const string IMPLEMENTATION_ID = "IMPLEMENTATION_ID";

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 12

 /* This string constant is the identifier for the device identifier string value
 within a ComponentType' specializedInfo field, which is the device that deployed
 the component. */
 const string TARGET_DEVICE_ID = "TARGET_DEVICE";

 /* This string constant is the identifier for the CF::UsesDeviceAssignmentSequence
 value within a ComponentType' specializedInfo, which denotes the devices used
 by component. */
 const string USES_DEVICE_ID = "USES_DEVICE";

 /* This string constant is the identifier for the CF::Components type value within a
 ComponentType' specializedInfo field. */
 const string COMPONENTS_ID = "COMPONENTS";

 /* This structure associates a component's profile uses device identifier with the
 assigned device identifier. */
 struct UsesDeviceAssignmentType
 {
 string usesDeviceId;
 string assignedDeviceId;
 };

 /* The sequence provides an unbounded sequence of UseDeviceAssignmentType
 elements. */
 typedef sequence <UsesDeviceAssignmentType> UsesDeviceAssignmentSeq;

 /* This structure defines the specialized type for
 the a manager component. */
 struct ManagerInfo {
 CF::FileSystem fileSys;
 CF::Components deployedComponents;
 };
};

#endif

C.7.1.6 CFProperties IDL

//Source file: CFProperties.idl

#ifndef __CFPROPERTIES_DEFINED
#define __CFPROPERTIES_DEFINED

module CF {

 /* This type is an IDL struct type which can be used to hold any
 basic type or static IDL type. */
 struct DataType {
 /* This attribute indicates the kind of value and type. The id can
 be an integer string or a unique alphanumeric identifier. */
 string id;
 /* This attribute can be any static IDL type or basic
 type. */
 any value;
 };

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 13

 /* This type is an IDL unbounded sequence of CF DataType(s),
 which can be used in defining a sequence of name and value pairs. */
 typedef sequence <DataType> Properties;

 /* This exception indicates a set of properties unknown by the component. */
 exception UnknownProperties {
 CF::Properties invalidProperties;
 };

};

#endif

C.7.2 Base Application

C.7.2.1 CFComponentIdentifer IDL

//Source file: CFComponentIdentifier.idl

#ifndef __CFCOMPONENTIDENTIFIER_DEFINED
#define __CFCOMPONENTIDENTIFIER_DEFINED

module CF {

 /* This interface provides an identifier attribute for
 a component. */
 interface ComponentIdentifier {
 /* This readonly identifier attribute contains the instance-unique
 identifier for a component. */
 readonly attribute string identifier;
 };
};

#endif

C.7.2.2 CFControllableInterface IDL

//Source file: CFControllableInterface.idl

#ifndef __CFCONTROLLABLEINTERFACE_DEFINED
#define __CFCONTROLLABLEINTERFACE_DEFINED

#include "CFCommonTypes.idl"

module CF {

 /* This interface provides a common API for the
 control of a software component. */
 interface ControllableInterface {

 /* This exception indicates that an error occurred during an attempt
 to start the component. The message provides additional information
 describing the reason for the error. */
 exception StartError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 14

 /* This exception indicates that an error occurred during
 an attempt to stop the component. The message provides additional
 information describing the reason for the error. */
 exception StopError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This attribute specifies whether the component is started. */
 readonly attribute boolean started;

 /* This operation is provided to command a component implementing
 this interface to start internal processing. */
 void start ()
 raises (CF::ControllableInterface::StartError);

 /* This operation is provided to command a component implementing
 this interface to stop all internal processing. */
 void stop ()
 raises (CF::ControllableInterface::StopError);
 };
};

#endif

C.7.2.3 CFLifeCycle IDL

//Source file: CFLifeCycle.idl

#ifndef __CFLIFECYCLE_DEFINED
#define __CFLIFECYCLE_DEFINED

#include "CFCommonTypes.idl"

module CF {

 /* This interface defines the generic operations for initializing
 or releasing instantiated component-specific data and/or processing
 elements. */
 interface LifeCycle {

 /* This exception indicates an error occurred during component
 initialization. The messages provide additional information
 describing the reason why the error occurred. */
 exception InitializeError {
 CF::StringSequence errorMessages;
 };

 /* This exception indicates an error occurred during component
 releaseObject. The messages provide additional information
 describing the reason why the error occurred. */
 exception ReleaseError {
 CF::StringSequence errorMessages;
 };

 /* The purpose of this operation is to provide a mechanism
 to set an object to an known initial state. */

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 15

 void initialize ()
 raises (CF::LifeCycle::InitializeError);

 /* The purpose of this operation is to provide a means
 by which an instantiated component may be torn down. */
 void releaseObject ()
 raises (CF::LifeCycle::ReleaseError);
 };
};

#endif

C.7.2.4 CFPortAccessor IDL

//Source file: CFPortAccessor.idl

#ifndef __CFPORTACCESSOR_DEFINED
#define __CFPORTACCESSOR_DEFINED

module CF {

 interface PortAccessor {

 /* This structure defines a type for information needed to disconnect a
 connection. */
 struct ConnectionIdType {
 string connectionId;
 string portName;
 };

 /* The sequence of ConnectionIdType structures. */
 typedef sequence <ConnectionIdType> Disconnections;

 /* This structure defines a type for information needed to make a
 connection. */
 struct ConnectionType {
 ConnectionIdType portConnectionId;
 Object portReference;
 };

 /* This type defines a sequence of ConnectionType structures. */
 typedef sequence <ConnectionType> Connections;

 /* This structure identifies a port and associated error code
 to be provided in the InvalidPort exception. */
 struct ConnectionErrorType {
 ConnectionIdType portConnectionId;
 unsigned short errorCode;
 };

 /* This exception indicates one of the following errors has occurred in
 the specification of a PortAccessor association. */
 exception InvalidPort {
 ConnectionErrorType invalidConnections;
 };

 /* This operation supplies a component with a sequence of

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 16

 connection information. */
 void connectUsesPorts(
 in CF::PortAccessor::Connections portConnections)
 raises(CF::PortAccessor::InvalidPort);

 /* This operation releases a sequence of uses or
 provides ports from a given connection(s). */
 void disconnectPorts(
 in CF::PortAccessor::Disconnections portDisconnections)
 raises(CF::PortAccessor::InvalidPort);

 /* This operation provides a mechanism to
 obtain a specific provides port(s). */
 void getProvidesPorts(
 inout CF::PortAccessor::Connections portConnections)
 raises(CF::PortAccessor::InvalidPort);
 };

};

#endif

C.7.2.5 CFPropertySet IDL

//Source file: CFPropertySet.idl

#ifndef __CFPROPERTYSET_DEFINED
#define __CFPROPERTYSET_DEFINED

#include "CFProperties.idl"

module CF {

 /* This interface defines configure and query operations
 to access component properties/attributes. */
 interface PropertySet {

 /* This exception indicates the configuration of a component
 has failed (no configuration at all was done). The message
 provides additional information describing the reason why
 the error occurred. The invalid properties returned indicates
 the properties that were invalid. */
 exception InvalidConfiguration {
 string msg;
 CF::Properties invalidProperties;
 };

 /* This exception indicates the configuration
 of a Component was partially successful. The invalid properties
 returned indicates the properties that were invalid. */
 exception PartialConfiguration {
 CF::Properties invalidProperties;
 };

 /* The purpose of this operation is to allow id/value pair
 configuration properties to be assigned to components
 implementing this interface. */

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 17

 void configure (
 in CF::Properties configProperties
)
 raises (CF::PropertySet::InvalidConfiguration,
 CF::PropertySet::PartialConfiguration);

 /* The purpose of this operation is to allow a component
 to be queried to retrieve its properties. */
 void query (
 inout CF::Properties configProperties
)
 raises (CF::UnknownProperties);
 };
};

#endif

C.7.2.6 CFTestableInterface IDL

//Source file: CFTestableInterface.idl

#ifndef __CFTESTABLEINTERFACE_DEFINED
#define __CFTESTABLEINTERFACE_DEFINED

#include "CFProperties.idl"

module CF {

 /* This interface defines a set of operations that
 can be used to test component implementations. */
 interface TestableInterface {

 /* This exception indicates the requested testid for a test
 to be performed is not known by the component. */
 exception UnknownTest {
 };

 /* This operation allows components to be blackbox tested.
 This allows Built-In Tests to be implemented which provides
 a means to isolate faults (both software and hardware) within
 the system. */
 void runTest (
 in unsigned long testid,
 inout CF::Properties testValues
)
 raises (CF::TestableInterface::UnknownTest, CF::UnknownProperties);
 };
};

#endif

C.7.3 Base Device

C.7.3.1 CFAggregateDevice IDL

//Source file: CFAggregateDevice.idl

#ifndef __CFAGGREGATEDEVICE_DEFINED

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 18

#define __CFAGGREGATEDEVICE_DEFINED

#include "CFCommonTypes.idl"

module CF {

 /* This interface provides aggregate behavior that can
 be used to add and remove devices from a parent device. This interface
 can be provided via inheritance or as a "provides port".
 Child devices use this interface to add or remove themselves from
 parent device when being created or torn-down. */
 interface AggregateDevice {

 /* This readonly attribute contains a list of devices that
 have been added to this device or a sequence length of zero
 if the device has no aggregation relationships with other devices. */
 readonly attribute CF::ObjectSequence devices;

 /* This operation provides the mechanism to associate
 a device with another device. */
 void addDevice (
 in Object associatedDevice,
 in string identifier
)
 raises (CF::InvalidObjectReference);

 /* This operation provides the mechanism to disassociate
 a device from another device. */
 void removeDevice (
 in string identifier
)
 raises (CF::InvalidObjectReference);
 };
};

#endif

C.7.3.2 CFCapacityManagement IDL

//Source file: CFCapacityManagement.idl

#ifndef __CFCAPACITYMANAGEMENT_DEFINED
#define __CFCAPACITYMANAGEMENT_DEFINED

#include "CFProperties.idl"
#include "CFPlatformTypes.idl"

module CF {

 /* This interface defines additional capabilities and an
 attribute for any logical device in the domain. */
 interface CapacityManagement {

 /* This enumeration type defines the device's usage states. */
 enum UsageType {
 IDLE,
 ACTIVE,

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 19

 BUSY
 };

 /* This readonly attribute contains the device's usage
 state. The usageState indicates whether or not a device is
 actively in use at a specific instant, and if so, whether
 or not it has spare capacity for allocation at that instant. */
 readonly attribute CF::CapacityManagement::UsageType usageState;

 /* This exception returns the capacities that are
 not valid for this device. */
 exception InvalidCapacity {

 /* The message indicates the reason for the invalid capacity. */
 string msg;

 /* The invalid capacities sent to the allocateCapacity operation. */
 CF::Properties capacities;
 };

 /* This operation provides the mechanism to request
 and allocate capacity from the device. */
 boolean allocateCapacity (
 in CF::Properties capacities
)
 raises (CF::CapacityManagement::InvalidCapacity,
 CF::InvalidState);

 /* This operation provides the mechanism to return
 capacities back to the device, making them available to other
 users. */
 void deallocateCapacity (
 in CF::Properties capacities
)
 raises (CF::CapacityManagement::InvalidCapacity,
 CF::InvalidState);
 };
};

#endif

C.7.3.3 CFDeviceAttributes IDL

//Source file: CFDeviceAttributes.idl

#ifndef __CFDEVICEATTRIBUTES_DEFINED
#define __CFDEVICEATTRIBUTES_DEFINED

#include "CFComponentIdentifier.idl"

module CF {

 interface DeviceAttributes : ComponentIdentifier {

 /* This enumeration defines a device's operational states.
 The operational state indicates whether or not the object is
 functioning. */

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 20

 enum OperationalType {
 ENABLED,
 DISABLED
 };

 /* This attribute contains the device's operational
 state. The operational state indicates whether or not the device
 is functioning. */
 readonly attribute CF::DeviceAttributes::OperationalType operationalState;

 };
};
#endif

C.7.3.4 CFExecutableInterface IDL

//Source file: CFExecutableInterface.idl

#ifndef __CFEXECUTABLEINTERFACE_DEFINED
#define __CFEXECUTABLEINTERFACE_DEFINED

#include "CFPlatformTypes.idl"

module CF {

 /* This interface defines execute and terminate behavior to a device. */
 interface ExecutableInterface

 {

 /* This exception indicates that a process,
 as identified by the processId parameter, does not exist on this
 device. The message provides additional information describing
 the reason for the error. */
 exception InvalidProcess {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This exception indicates that a function, as identified by
 the input name parameter, hasn't been loaded on this device. */
 exception InvalidFunction {
 };

 /* This type defines a structure to hold the process number or thread id
 within the system. The number is unique to the Processor operating system
 that created the process/thread. */
 struct ExecutionID_Type {
 unsigned long long threadId;
 unsigned long long processId;
 string processCollocation;
 CF::ULongSeq cores;
 };

 /* This exception indicates that input parameters

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 21

 are invalid for the execute operation. Each parameter's ID and
 value must be a valid string type. The invalidParms is a list
 of invalid parameters specified in the execute operation. */
 exception InvalidParameters {
 CF::Properties invalidParms;
 };

 /* This exception indicates the input options are
 invalid on the execute operation. The invalidOptions is a list
 of invalid options specified in the execute operation. */
 exception InvalidOptions {
 CF::Properties invalidOpts;
 };

 /* The STACK_SIZE_ID is the identifier for the ExecutableInterface's
 execute options parameter. */
 const string STACK_SIZE_ID = "STACK_SIZE";

 /* The PRIORITY_ID is the identifier for the ExecutableInterface's
 execute options parameters. */
 const string PRIORITY_ID = "PRIORITY";

 /* The EXEC_DEVICE_PROCESS_SPACE is the identifier for the ExecutableInterface's
 execute options PROCESS_COLLOCATION_ID parameter. */
 const string EXEC_DEVICE_PROCESS_SPACE = "DEVICE";

 /* The PROCESS_COLLOCATION_ID is the identifier for the ExecutableInterface's
 execute options PROCESS_COLLOCATION_ID parameter. */
 const string PROCESS_COLLOCATION_ID = "PROCESS_COLLOCATION";

 /* The ENTRY_POINT_ID is the identifier for the ExecutableInterface's
 execute options parameters. */
 const string ENTRY_POINT_ID = "ENTRY_POINT";

 /* The CORE_AFFINITY_ID is the identifier for the ExecutableInterface's
 execute options parameters. */
 const string CORE_AFFINITY_ID = "CORE_AFFINITY";

 /* This exception indicates that an attempt to invoke
 the execute operation on a device failed. The message provides
 additional information describing the reason for the error. */
 exception ExecuteFail {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This operation provides the mechanism for terminating
 the execution of a process/thread on a specific device that was
 started up with the execute operation. */
 void terminate (
 in CF::ExecutableInterface::ExecutionID_Type executionId
)
 raises (CF::ExecutableInterface::InvalidProcess,
 CF::InvalidState);

 /* This operation provides the mechanism for starting up and

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 22

 executing a software process/thread on a device. */
 CF::ExecutableInterface::ExecutionID_Type execute (
 in string filename,
 in CF::Properties options,
 in CF::Properties parameters
)
 raises (CF::InvalidState,
 CF::ExecutableInterface::InvalidFunction,
 CF::ExecutableInterface::InvalidParameters,
 CF::ExecutableInterface::InvalidOptions,
 CF::InvalidFileName,
 CF::ExecutableInterface::ExecuteFail);
 };
};

#endif

C.7.3.5 CFLoadableInterface IDL

//Source file: CFLoadableInterface.idl

#ifndef __CFLOADABLEINTERFACE_DEFINED
#define __CFLOADABLEINTERFACE_DEFINED

#include "CFFileSystem.idl"
#include "CFPlatformTypes.idl"

module CF {

 /* This interface provides a device with software
 loading and unloading behavior. */
 interface LoadableInterface {

 /* This enumeration defines the type of load to be performed.
 The load types are in accordance with the code element
 within the softpkg element's implementation element. */
 enum LoadType {
 KERNEL_MODULE,
 DRIVER,
 SHARED_LIBRARY,
 EXECUTABLE
 };

 /* This exception indicates that the device
 is unable to load the type of file designated by the
 loadKind parameter. */
 exception InvalidLoadKind {
 };

 /* This exception indicates that an error occurred during
 an attempt to load the device. The message provides additional
 information describing the reason for the error. */
 exception LoadFail {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 23

 /* This operation provides the mechanism for loading software
 on a specific device. The loaded software may be subsequently
 executed on the device, if the device is an executable device. */
 void load (
 in CF::FileSystem fs,
 in string fileName,
 in CF::LoadableInterface::LoadType loadKind
)
 raises (CF::InvalidState,
 CF::LoadableInterface::InvalidLoadKind,
 CF::InvalidFileName,
 CF::LoadableInterface::LoadFail);

 /* This operation provides the mechanism to unload software
 that is currently loaded. */
 void unload (
 in string fileName
)
 raises (CF::InvalidState,
 CF::InvalidFileName);
 };
};

#endif

C.7.3.6 CFAdministratableInterface IDL

//Source file: CFAdministratableInterface.idl

#ifndef __CFADMINISTRATABLEINTERFACE_DEFINED
#define __CFADMINISTRATABLEINTERFACE_DEFINED

module CF {

 interface AdministratableInterface {

 /* This enumeration type defines a device's administrative states.
 The administrative state indicates the permission to use
 or prohibition against using the device. */
 enum AdminType {
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
 };

 /* This attribute indicates the permission to use
 or prohibition against using the device. The adminState attribute
 contains the device's admin state value. */
 attribute CF::AdministratableInterface::AdminType adminState;

 };
};

#endif

C.7.3.7 CFAggregateDeviceAttributes IDL

//Source file: CFAggregateDeviceAttributes.idl

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 24

#ifndef __CFAGGREGATEDEVICEATTRIBUTES_DEFINED
#define __CFAGGREGATEDEVICEATTRIBUTES_DEFINED

#include "CFAggregateDevice.idl"

module CF {

 interface AggregateDeviceAttributes {

 /* This readonly attribute contains the object reference of
 the AggregateDevice with which this device is associated or a nil
 object reference if no association exists. */
 readonly attribute CF::AggregateDevice compositeDevice;

 };
};

#endif

C.7.4 Framework Control

C.7.4.1 CFApplicationManager IDL

//Source file: CFApplicationManager.idl

#ifndef __CFAPPLICATIONMANAGER_DEFINED
#define __CFAPPLICATIONMANAGER_DEFINED

#include "CFLifeCycle.idl"
#include "CFPortAccessor.idl"
#include "CFPropertySet.idl"
#include "CFTestableInterface.idl"
#include "CFControllableInterface.idl"
module CF {

 /* This interface provides for the control, configuration,
 and status of an instantiated application in the domain. */
 interface ApplicationManager : LifeCycle, PortAccessor, PropertySet,
TestableInterface, ControllableInterface {
 /* This attribute contains the name of the created application.
 The ApplicationFactory interface's create operation name parameter
 provides the name content. */
 readonly attribute string name;
 };
};

#endif

C.7.4.2 CFDeploymentAttributes IDL

//Source file: CFDeploymentAttributes.idl

#ifndef __CFDEPLOYMENTATTRIBUTES_DEFINED
#define __CFDEPLOYMENTATTRIBUTES_DEFINED

#include "CFPlatformTypes.idl"

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 25

module CF {

 /* This interface provides deployment attributes
 for an application. */
 interface DeploymentAttributes {

 /* This attribute contains the list of application
 Components that have been successfully deployed with this application
 or ApplicationFactory during instantiation or a sequence length of zero
 if no application Components have been deployed. */
 readonly attribute CF::Components deployedComponents;
 };
};

#endif

C.7.4.3 CFApplicationFactory IDL

//Source file: CFApplicationFactory.idl

#ifndef __CFAPPLICATIONFACTORY_DEFINED
#define __CFAPPLICATIONFACTORY_DEFINED

#include "CFPlatformTypes.idl"
#include "CFSpecializedInfo.idl"

module CF {

 /* This interface class provides an interface to request
 the creation of a specific type of application in the domain.
 The Software Profile determines the type of application that is created
 by the ApplicationFactory. */
 interface ApplicationFactory {

 /* This exception is raised when the parameter
 DeviceAssignmentSequence contains one or more invalid
 application component-to-device assignment(s). */
 exception CreateApplicationRequestError {
 CF::DeviceAssignmentSequence invalidAssignments;
 };

 /* This exception is raised when a create request is valid but
 the application is unsuccessfully instantiated due to internal
 processing errors. The message provides additional information
 describing the reason for the error. */
 exception CreateApplicationError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This exception is raised when the input initConfiguration

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 26

 parameter is invalid. */
 exception InvalidInitConfiguration {
 CF::Properties invalidProperties;
 };

 /* This attribute contains the name of the type of application
 that can be instantiated by the ApplicationFactory. */
 readonly attribute string name;

 /* This structure associates a component with a process collocation
 and or processor core. */
 struct ExecutionAffinityType
 {
 string componentId;
 string processCollocation;
 CF::ULongSeq coreAffinities;
 };

 /* The sequence provides an unbounded sequence of ExecutionAffinityType
 elements. */
 typedef sequence <ExecutionAffinityType> ExecutionAffinitySequence;

 /* This operation is used to create an application within
 the system domain. */
 CF::ComponentType create (
 in string name,
 in CF::Properties initConfiguration,
 in CF::DeviceAssignmentSequence deviceAssignments,
 in CF::Properties deploymentDependencies,
 in CF::ApplicationFactory::ExecutionAffinitySequence
 executionAffinityAssignments
)
 raises (CF::ApplicationFactory::CreateApplicationError,
 CF::ApplicationFactory::CreateApplicationRequestError,
 CF::ApplicationFactory::InvalidInitConfiguration);

 };

};

#endif

C.7.4.4 CFComponentRegistry IDL

//Source file: CFComponentRegistry.idl

#ifndef __CFCOMPONENTREGISTRY_DEFINED
#define __CFCOMPONENTREGISTRY_DEFINED

#include "CFCommonTypes.idl"

module CF {

 /* This interface is used to manage the registration of
 logical devices and services. */
 interface ComponentRegistry {

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 27

 /* This exception indicates that an internal error has
 occurred to prevent DomainManager registration operations from
 successful completion. */
 exception RegisterError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This operation registers the Component and its static provides
 ports. */
 void registerComponent(
 in CF::ComponentType registeringComponent
)
 raises(CF::InvalidObjectReference, RegisterError);
 };

};

#endif

C.7.4.5 CFDomainInstallation IDL

//Source file: CFDomainInstallation.idl

#ifndef __CFDOMAININSTALLATION_DEFINED
#define __CFDOMAININSTALLATION_DEFINED

#include "CFPlatformTypes.idl"

module CF {

 interface DomainInstallation {

 /* This exception is raised when an application installation has
 not completed correctly. The message provides additional
 information describing the reason for the error. */
 exception ApplicationInstallationError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 exception ApplicationAlreadyInstalled {
 };

 /* This exception indicates the application ID is invalid. */
 exception InvalidIdentifier {
 };

 /* This exception is raised when an application uninstallation has
 not completed correctly. The message provides additional
 information describing the reason for the error. */
 exception ApplicationUninstallationError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This operation is used to register new

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 28

 application software in the DomainManager's Domain profile. */
 CF::ComponentType installApplication (
 in string profileFileName
)
 raises (CF::InvalidProfile,
 CF::InvalidFileName,
 CF::DomainInstallation::ApplicationInstallationError,
 CF::DomainInstallation::ApplicationAlreadyInstalled);

 /* This operation is used to uninstall an
 application and its associated ApplicationFactory from the
 DomainManager. */
 void uninstallApplication (
 in string identifier
)
 raises (CF::DomainInstallation::InvalidIdentifier,
 CF::DomainInstallation::ApplicationUninstallationError);

 };

};

#endif

C.7.4.6 CFDomainManager IDL

//Source file: CFDomainManager.idl

#ifndef __CFDOMAINMANAGER_DEFINED
#define __CFDOMAINMANAGER_DEFINED

#include "CFComponentIdentifier.idl"
#include "CFFileManager.idl"
#include "CFPlatformTypes.idl"

module CF {

 /* This interface is for the control and
 configuration of the radio domain. */
 interface DomainManager : ComponentIdentifier
 {

 /* This readonly attribute contains a profile
 element with a file reference to the DomainManager Configuration
 Descriptor (DMD) profile IDL. */
 readonly attribute string domainManagerProfile;

 /* This readonly attribute is containing a sequence
 of registered managers in the domain. */
 readonly attribute CF::Components managers;

 /* This readonly attribute contains a list of ApplicationComponents that
 have been instantiated in the domain. */
 readonly attribute CF::Components
 applications;

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 29

 /* This readonly attribute contains a list with one
 ApplicationFactoryComponent per application (SAD file and associated
 files) successfully installed. */
 readonly attribute CF::Components
 applicationFactories;

 /* This readonly attribute contains the DomainManager's
 FileManager. */
 readonly attribute CF::FileManager fileMgr;
 };
};

#endif

C.7.4.7 CFEventChannelRegistry IDL

//Source file: CFEventChannelRegistry.idl

#ifndef __CFEVENTCHANNELREGISTRY_DEFINED
#define __CFEVENTCHANNELREGISTRY_DEFINED

#include "CFCommonTypes.idl"

module CF {

 interface EventChannelRegistry {

 /* This exception indicates that a registering consumer is already
 connected to the specified event channel. */
 exception AlreadyConnected {
 };

 /* This exception indicates that a DomainManager was not able to
 locate the event channel. */
 exception InvalidEventChannelName {
 };

 /* This exception indicates that the unregistering consumer
 was not connected to the specified event channel. */
 exception NotConnected {
 };

 /* This operation is used to connect
 a consumer to a domain's event channel. */
 void registerWithEventChannel (
 in Object registeringObject,
 in string registeringId,
 in string eventChannelName
)
 raises (CF::InvalidObjectReference,
 CF::EventChannelRegistry::InvalidEventChannelName,
 CF::EventChannelRegistry::AlreadyConnected);

 /* This operation is used to disconnect
 a consumer from a domain's event channel. */
 void unregisterFromEventChannel (
 in string unregisteringId,

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 30

 in string eventChannelName
)
 raises (CF::EventChannelRegistry::InvalidEventChannelName,
 CF::EventChannelRegistry::NotConnected);
 };
};

#endif

C.7.4.8 CFFullComponentRegistry IDL

//Source file: CFFullComponentRegistry.idl

#ifndef __CFFULLCOMPONENTREGISTRY_DEFINED
#define __CFFULLCOMPONENTREGISTRY_DEFINED

#include "CFComponentRegistry.idl"

module CF {

 /* This interface is used to manage the shutdown of
 logical devices and services. */
 interface FullComponentRegistry : ComponentRegistry {

 /* This exception indicates that an internal error has occurred
 to prevent unregister operations from successful
 completion. The message provides additional information describing the
 reason for the error. */
 exception UnregisterError {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This operation unregisters the component. */
 void unregisterComponent(in string identifier)
 raises(UnregisterError);
 };

};

#endif

C.7.4.9 CFReleasableManager IDL

//Source file: CFReleasableManager.idl

#ifndef __CFRELEASABLEMANAGER_DEFINED
#define __CFRELEASABLEMANAGER_DEFINED

module CF {

 /* This interface is used for terminating an instantiated
 device manager. */
 interface ReleasableManager {

 /* This operation provides the mechanism to terminate
 a device manager, unregistering it from the domain manager. */
 void shutdown ();

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 31

 };
};

#endif

C.7.5 Framework Services

C.7.5.1 CFComponentFactory IDL

//Source file: CFComponentFactory.idl

#ifndef __CFCOMPONENTFACTORY_DEFINED
#define __CFCOMPONENTFACTORY_DEFINED

#include "CFProperties.idl"
#include "CFLifeCycle.idl"

module CF {

 /* A ComponentFactory can be used to create or destroy a Component. */
 interface ComponentFactory : LifeCycle
 {

 /* This exception indicates that the
 createComponent operation failed to create the Component. The
 message is component-dependent, providing additional information
 describing the reason for the error. */
 exception CreateComponentFailure {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This operation provides the capability to create
 Components. */
 CF::ComponentType createComponent (
 in string componentId,
 in CF::Properties qualifiers
)
 raises (CF::ComponentFactory::CreateComponentFailure);
 };
};

#endif

C.7.5.2 CFFile IDL

//Source file: CFFile.idl

#ifndef __CFFILE_DEFINED
#define __CFFILE_DEFINED

#include "CFCommonTypes.idl"

module CF {

 /* This exception indicates a file-related error occurred.
 The message provides information describing the error. */
 exception FileException {

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 32

 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This interface provides the ability to read and write files
 residing within a distributed FileSystem. A file can be thought of
 conceptually as a sequence of octets with a current filePointer
 describing where the next read or write will occur. */
 interface File {

 /* This exception indicates an error occurred during a read
 or write operation to a File. The message is component-dependent,
 providing additional information describing the reason for
 the error. */
 exception IOException {
 CF::ErrorNumberType errorNumber;
 string msg;
 };

 /* This exception indicates the file pointer is out of range based upon
 the current file size. */
 exception InvalidFilePointer {
 };

 /* The readonly attribute contains the file name given
 to the FileSystem open/create operation. */
 readonly attribute string fileName;

 /* The readonly attribute contains the file position
 where the next read or write will occur. */
 readonly attribute unsigned long filePointer;

 /* Applications require the read operation in order to retrieve
 data from remote files. */
 void read (
 out CF::OctetSequence data,
 in unsigned long length
)
 raises (CF::File::IOException);

 /* This operation writes data to the file referenced. */
 void write (
 in CF::OctetSequence data
)
 raises (CF::File::IOException);

 /* This operation returns the current size of the file. */
 unsigned long sizeOf ()
 raises (CF::FileException);

 /* This operation releases any OE file resources associated
 with the component. */
 void close ()
 raises (CF::FileException);

 /* This operation positions the file pointer where

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 33

 next read or write will occur. */
 void setFilePointer (
 in unsigned long filePointer
)
 raises (CF::File::InvalidFilePointer, CF::FileException);
 };
};

#endif

C.7.5.3 CFFileManager IDL

//Source file: CFFileManager.idl

#ifndef __CFFILEMANAGER_DEFINED
#define __CFFILEMANAGER_DEFINED

#include "CFFileSystem.idl"

module CF {

 /* Multiple, distributed FileSystems may be accessed through
 a FileManager. The FileManager interface appears to be a single
 FileSystem although the actual file storage may span multiple
 physical file systems. */
 interface FileManager : FileSystem {

 /* This structure identifies the FileSystems mounted within
 the FileManager. */
 struct MountType {
 string mountPoint;
 CF::FileSystem fs;
 };

 /* This type defines an unbounded sequence of mounted FileSystems. */
 typedef sequence <MountType> MountSequence;

 /* This exception indicates a mount point does not exist within
 the FileManager. */
 exception NonExistentMount {
 };

 /* This exception indicates the FileSystem is a null (nil) object
 reference. */
 exception InvalidFileSystem {
 };

 /* This exception indicates the mount point is already in
 use in the FileManager. */
 exception MountPointAlreadyExists {
 };

 /* This operation associates a FileSystem with a mount point
 (a directory name). */
 void mount (
 in string mountPoint,
 in CF::FileSystem file_System

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 34

)
 raises (CF::InvalidFileName,
 CF::FileManager::InvalidFileSystem,
 CF::FileManager::MountPointAlreadyExists);

 /* This operation removes a mounted FileSystem from
 the FileManager whose mounted name matches the input mountPoint
 name. */
 void unmount (
 in string mountPoint
)
 raises (CF::FileManager::NonExistentMount);

 /* This operation returns the FileManager's mounted
 FileSystems. */
 CF::FileManager::MountSequence getMounts ();

 };
};

#endif

C.7.5.4 CFFileSystem IDL

//Source file: CFFileSystem.idl

#ifndef __CFFILESYSTEM_DEFINED
#define __CFFILESYSTEM_DEFINED

#include "CFProperties.idl"
#include "CFFile.idl"

module CF {

 /* This interface defines the operations to enable
 remote access to a physical file system. */
 interface FileSystem {

 /* This exception indicates a set of properties unknown by
 the FileSystem object. */
 exception UnknownFileSystemProperties {
 CF::Properties invalidProperties;
 };

 /* This constant indicates file system size. */
 const string SIZE = "SIZE";

 /* This constant indicates the available space on the file system. */
 const string AVAILABLE_SPACE = "AVAILABLE_SPACE";

 /* This enumerations indicates the type of file entry. A file system can
 have PLAIN or DIRECTORY files and mounted file systems contained
 in a FileSystem. */
 enum FileType {
 PLAIN,
 DIRECTORY,

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 35

 FILE_SYSTEM
 };

 /* This structure indicates the information returned
 for a file. */
 struct FileInformationType {
 string name;
 CF::FileSystem::FileType kind;
 unsigned long long size;
 CF::Properties fileProperties;
 };

 typedef sequence <FileInformationType> FileInformationSequence;

 /* The CREATED_TIME_ID is the identifier for the created time file
 property. */
 const string CREATED_TIME_ID = "CREATED_TIME";

 /* The MODIFIED_TIME_ID is the identifier for the modified time file
 property. */
 const string MODIFIED_TIME_ID = "MODIFIED_TIME";

 /* The LAST_ACCESS_TIME_ID is the identifier for the last access time
 file property. */
 const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

 /* This operation removes the file with the given filename. */
 void remove (
 in string fileName
)
 raises (CF::FileException, CF::InvalidFileName);

 /* This operation copies the source file with the specified
 sourceFileName to the destination file with the specified
 destinationFileName. */
 void copy (
 in string sourceFileName,
 in string destinationFileName
)
 raises (CF::InvalidFileName, CF::FileException);

 /* This operation checks to see if a file exists based
 on the filename parameter. */
 boolean exists (
 in string fileName
)
 raises (CF::InvalidFileName);

 /* This operation provides the ability to obtain a list
 of files along with their information in the file system according
 to a given search pattern. */
 CF::FileSystem::FileInformationSequence list (
 in string pattern
)
 raises (CF::FileException, CF::InvalidFileName);

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 36

 /* This operation creates a new File based upon the provided
 file name and returns a File to the opened file. */
 CF::File create (
 in string fileName
)
 raises (CF::InvalidFileName, CF::FileException);

 /* This operation opens a file for reading or writing based
 upon the input fileName. */
 CF::File open (
 in string fileName,
 in boolean read_Only
)
 raises (CF::InvalidFileName, CF::FileException);

 /* This operation creates a file system directory based on
 the directoryName given. */
 void mkdir (
 in string directoryName
)
 raises (CF::InvalidFileName, CF::FileException);

 /* This operation removes a file system directory based
 on the directoryName given. */
 void rmdir (
 in string directoryName
)
 raises (CF::InvalidFileName, CF::FileException);

 /* This operation returns file system information to the
 calling client based upon the given fileSystemProperties' ID. */
 void query (
 inout CF::Properties fileSystemProperties
)
 raises (CF::FileSystem::UnknownFileSystemProperties);
 };
};

#endif

C.8 STANDARDEVENT MODULE

The StandardEvent module contains the types necessary for a standard event producer to

generate standard SCA events.

C.8.1 SE_DomainEvent IDL

//Source file: SE_DomainEvent.idl

#ifndef __SE_DOMAINEVENT_DEFINED
#define __SE_DOMAINEVENT_DEFINED

#include "CFCommonTypes.idl"

module StandardEvent {

 /* This enumeration is utilized in the ComponentChangeEventType to indicate

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 37

 whether an object that has been added to or removed from the domain. */
 enum ComponentChangeType {
 ADDED,
 REMOVED
 };

 /* This structure is used to indicate that an event source has been
 added to or removed from the domain. */
 struct ComponentChangeEventType {
 string producerId;
 ComponentChangeType componentChange;
 CF::ComponentType domainComponent;
 };

};

#endif

C.8.2 SE_StateEvent IDL

//Source file: SE_StateEvent.idl

#ifndef __SE_STATEEVENT_DEFINED
#define __SE_STATEEVENT_DEFINED

module StandardEvent {

 /* This enumeration is utilized
 in the StateChangeEventType. It is used to identify the category
 of state change that has occurred. */
 enum StateChangeCategoryType {
 ADMINISTRATIVE_STATE_EVENT,
 OPERATIONAL_STATE_EVENT,
 USAGE_STATE_EVENT
 };

 /* This enumeration is utilized
 in the StateChangeEventType. It is used to identify the specific
 states of the event source before and after the state change
 occurred. */
 enum StateChangeType {
 LOCKED,
 UNLOCKED,
 SHUTTING_DOWN,
 ENABLED,
 DISABLED,
 IDLE,
 ACTIVE,
 BUSY
 };

 /* This structure is used to indicate that
 the state of the event source has changed. The event producer
 will send this structure into an event channel on behalf of
 the event source. */
 struct StateChangeEventType {

UNCLASSIFIED

SCA Specification Version: 4.1

20 August 2015

Distribution Statement on the Cover Page apply to all pages of this document. 38

 string producerId;
 string sourceId;
 StandardEvent::StateChangeCategoryType stateChangeCategory;
 StandardEvent::StateChangeType stateChangeFrom;
 StandardEvent::StateChangeType stateChangeTo;
 };

};

#endif

	Appendix C Core Framework IDL
	C.1 Scope
	C.2 Conformance
	C.3 Conventions
	C.4 Normative References
	C.5 Informative References
	C.6 Condensed IDL
	C.6.1 CF IDL
	C.6.2 StandardEvent IDL

	C.7 Core Framework IDL
	C.7.1 Base Elements
	C.7.1.1 CFPrimitiveTypes IDL
	C.7.1.2 CFPrimitiveSeqTypes IDL
	C.7.1.2.1 CF BooleanSeq
	C.7.1.2.2 CF CharSeq
	C.7.1.2.3 CF DoubleSeq
	C.7.1.2.4 CF FloatSeq
	C.7.1.2.5 CF LongSeq
	C.7.1.2.6 CF LongLongSeq
	C.7.1.2.7 CF OctetSeq
	C.7.1.2.8 CF ShortSeq
	C.7.1.2.9 CF StringSeq
	C.7.1.2.10 CF ULongSeq
	C.7.1.2.11 CF ULongLongSeq
	C.7.1.2.12 CF UShortSeq

	C.7.1.3 CFCommonTypes IDL
	C.7.1.4 CFPlatformTypes IDL
	C.7.1.5 CFSpecializedInfoIDL
	C.7.1.6 CFProperties IDL

	C.7.2 Base Application
	C.7.2.1 CFComponentIdentifer IDL
	C.7.2.2 CFControllableInterface IDL
	C.7.2.3 CFLifeCycle IDL
	C.7.2.4 CFPortAccessor IDL
	C.7.2.5 CFPropertySet IDL
	C.7.2.6 CFTestableInterface IDL

	C.7.3 Base Device
	C.7.3.1 CFAggregateDevice IDL
	C.7.3.2 CFCapacityManagement IDL
	C.7.3.3 CFDeviceAttributes IDL
	C.7.3.4 CFExecutableInterface IDL
	C.7.3.5 CFLoadableInterface IDL
	C.7.3.6 CFAdministratableInterface IDL
	C.7.3.7 CFAggregateDeviceAttributes IDL

	C.7.4 Framework Control
	C.7.4.1 CFApplicationManager IDL
	C.7.4.2 CFDeploymentAttributes IDL
	C.7.4.3 CFApplicationFactory IDL
	C.7.4.4 CFComponentRegistry IDL
	C.7.4.5 CFDomainInstallation IDL
	C.7.4.6 CFDomainManager IDL
	C.7.4.7 CFEventChannelRegistry IDL
	C.7.4.8 CFFullComponentRegistry IDL
	C.7.4.9 CFReleasableManager IDL

	C.7.5 Framework Services
	C.7.5.1 CFComponentFactory IDL
	C.7.5.2 CFFile IDL
	C.7.5.3 CFFileManager IDL
	C.7.5.4 CFFileSystem IDL

	C.8 StandardEvent Module
	C.8.1 SE_DomainEvent IDL
	C.8.2 SE_StateEvent IDL

CF.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CF.idl

#ifndef __CF_DEFINED
#define __CF_DEFINED

/* This file is provided to maintain backward compatibility with
legacy systems that use CF.idl files. */

/* Base Elements */
#include "CFPrimitiveTypes.idl"
#include "CFPrimitiveSeqTypes.idl"
#include "CFCommonTypes.idl"

/* Specialized Information */
#include "CFSpecializedInfo.idl"

/* Base Application */
#include "CFComponentIdentifier.idl"
#include "CFControllableInterface.idl"
#include "CFLifeCycle.idl"
#include "CFPortAccessor.idl"
#include "CFPropertySet.idl"
#include "CFTestableInterface.idl"

/* Base Device */
#include "CFAggregateDevice.idl"
#include "CFCapacityManagement.idl"
#include "CFDeviceAttributes.idl"
#include "CFExecutableInterface.idl"
#include "CFLoadableInterface.idl"
#include "CFAdministratableInterface.idl"

/* Framework Control */
#include "CFApplicationManager.idl"
#include "CFDeploymentAttributes.idl"
#include "CFApplicationFactory.idl"
#include "CFComponentRegistry.idl"
#include "CFDomainInstallation.idl"
#include "CFDomainManager.idl"
#include "CFEventChannelRegistry.idl"
#include "CFReleasableManager.idl"

/* Framework Services */
#include "CFComponentFactory.idl"
#include "CFFile.idl"
#include "CFFileManager.idl"

CF.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

#include "CFFileSystem.idl"

#endif

CFAdministratableInterface.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFAdministratableInterface.idl

#ifndef __CFADMINISTRATABLEINTERFACE_DEFINED
#define __CFADMINISTRATABLEINTERFACE_DEFINED

module CF {

interface AdministratableInterface {

/* This enumeration type defines a device's administrative states.
The administrative state indicates the permission to use
or prohibition against using the device. */

enum AdminType {
LOCKED,
SHUTTING_DOWN,
UNLOCKED

};

/* This attribute indicates the permission to use
or prohibition against using the device. The adminState attribute
contains the device's admin state value. */

attribute CF::AdministratableInterface::AdminType adminState;

};
};
#endif

CFAggregateDevice.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFAggregateDevice.idl

#ifndef __CFAGGREGATEDEVICE_DEFINED
#define __CFAGGREGATEDEVICE_DEFINED

#include "CFCommonTypes.idl"

module CF {

/* This interface provides aggregate behavior that can
be used to add and remove devices from a parent device. This interface
can be provided via inheritance or as a "provides port".
Child devices use this interface to add or remove themselves from
parent device when being created or torn-down. */

interface AggregateDevice {

/* This readonly attribute contains a list of devices that
have been added to this device or a sequence length of zero
if the device has no aggregation relationships with other devices. */

readonly attribute CF::ObjectSequence devices;

/* This operation provides the mechanism to associate
a device with another device. */

void addDevice (
in Object associatedDevice,
in string identifier
)

raises (CF::InvalidObjectReference);

/* This operation provides the mechanism to disassociate
a device from another device. */

void removeDevice (
in string identifier
)

raises (CF::InvalidObjectReference);
};

};
#endif

CFAggregateDeviceAttributes.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFAggregateDeviceAttributes.idl

#ifndef __CFAGGREGATEDEVICEATTRIBUTES_DEFINED
#define __CFAGGREGATEDEVICEATTRIBUTES_DEFINED

#include "CFAggregateDevice.idl"

module CF {

interface AggregateDeviceAttributes {

/* This readonly attribute contains the object reference of
the AggregateDevice with which this device is associated or a nil
object reference if no association exists. */

readonly attribute CF::AggregateDevice compositeDevice;

};
};
#endif

CFApplicationFactory.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFApplicationFactory.idl

#ifndef __CFAPPLICATIONFACTORY_DEFINED
#define __CFAPPLICATIONFACTORY_DEFINED

#include "CFPlatformTypes.idl"
#include "CFSpecializedInfo.idl"

module CF {

/* This interface class provides an interface to request
the creation of a specific type of application in the domain.
The Software Profile determines the type of application that is created
by the ApplicationFactory. */

interface ApplicationFactory {

/* This exception is raised when the parameter
DeviceAssignmentSequence contains one or more invalid
application component-to-device assignment(s). */

exception CreateApplicationRequestError {
CF::DeviceAssignmentSequence invalidAssignments;

};

/* This exception is raised when a create request is valid but
the application is unsuccessfully instantiated due to internal
processing errors. The message provides additional information
describing the reason for the error. */

exception CreateApplicationError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception is raised when the input initConfiguration
parameter is invalid. */

exception InvalidInitConfiguration {
CF::Properties invalidProperties;

};

/* This attribute contains the name of the type of application
that can be instantiated by the ApplicationFactory. */

readonly attribute string name;

/* This structure associates a component with a process collocation
and or processor core. */

struct ExecutionAffinityType
{

string componentId;

CFApplicationFactory.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

string processCollocation;
CF::ULongSeq coreAffinities;

};

/* The sequence provides an unbounded sequence of ExecutionAffinityType
elements. */

typedef sequence <ExecutionAffinityType> ExecutionAffinitySequence;

/* This operation is used to create an application within
the system domain. */

CF::ComponentType create (
in string name,
in CF::Properties initConfiguration,
in CF::DeviceAssignmentSequence deviceAssignments,
in CF::Properties deploymentDependencies,
in CF::ApplicationFactory::ExecutionAffinitySequence

executionAffinityAssignments
)

raises (CF::ApplicationFactory::CreateApplicationError,
CF::ApplicationFactory::CreateApplicationRequestError,
CF::ApplicationFactory::InvalidInitConfiguration);

};

};
#endif

CFApplicationManager.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFApplicationManager.idl

#ifndef __CFAPPLICATIONMANAGER_DEFINED
#define __CFAPPLICATIONMANAGER_DEFINED

#include "CFLifeCycle.idl"
#include "CFPortAccessor.idl"
#include "CFPropertySet.idl"
#include "CFTestableInterface.idl"
#include "CFControllableInterface.idl"
module CF {

/* This interface provides for the control, configuration,
and status of an instantiated application in the domain. */

interface ApplicationManager : LifeCycle, PortAccessor, PropertySet, TestableInterface,
ControllableInterface {
/* This attribute contains the name of the created application.

The ApplicationFactory interface's create operation name parameter
provides the name content. */

readonly attribute string name;
};

};
#endif

CFCapacityManagement.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFCapacityManagement.idl

#ifndef __CFCAPACITYMANAGEMENT_DEFINED
#define __CFCAPACITYMANAGEMENT_DEFINED

#include "CFProperties.idl"
#include "CFPlatformTypes.idl"

module CF {

/* This interface defines additional capabilities and an
attribute for any logical device in the domain. */

interface CapacityManagement {

/* This enumeration type defines the device's usage states. */
enum UsageType {

IDLE,
ACTIVE,
BUSY

};

/* This readonly attribute contains the device's usage
state. The usageState indicates whether or not a device is
actively in use at a specific instant, and if so, whether
or not it has spare capacity for allocation at that instant. */

readonly attribute CF::CapacityManagement::UsageType usageState;

/* This exception returns the capacities that are
not valid for this device. */

exception InvalidCapacity {

/* The message indicates the reason for the invalid capacity. */
string msg;

/* The invalid capacities sent to the allocateCapacity operation. */
CF::Properties capacities;

};

/* This operation provides the mechanism to request
and allocate capacity from the device. */

boolean allocateCapacity (
in CF::Properties capacities
)

raises (CF::CapacityManagement::InvalidCapacity,
CF::InvalidState);

/* This operation provides the mechanism to return

CFCapacityManagement.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

capacities back to the device, making them available to other
users. */

void deallocateCapacity (
in CF::Properties capacities
)

raises (CF::CapacityManagement::InvalidCapacity,
CF::InvalidState);

};
};
#endif

CFCommonTypes.idl UNCLASSIFIED 1 / 3

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFCommonTypes.idl

#ifndef __CFCOMMONTYPES_DEFINED
#define __CFCOMMONTYPES_DEFINED

#include "CFPrimitiveTypes.idl"
#include "CFPrimitiveSeqTypes.idl"
#include "CFProperties.idl"

module CF {

/* This type is an unbounded sequence of octets. */
typedef CF::OctetSeq OctetSequence;

/* This type defines a sequence of strings. */
typedef sequence <string> StringSequence;

/* This enum is used to pass error number information in various
exceptions. Those exceptions starting with "CF_E" map to the POSIX
definitions.
The "CF_" has been added to the POSIX exceptions to avoid namespace
conflicts. CF_NOTSET is not defined in the POSIX specification.
CF_NOTSET is an SCA specific value that is applicable for any
exception when the method specific or standard POSIX error values
are not appropriate. */

enum ErrorNumberType {
CF_NOTSET,
CF_E2BIG,
CF_EACCES,
CF_EAGAIN,
CF_EBADF,
CF_EBADMSG,
CF_EBUSY,
CF_ECANCELED,
CF_ECHILD,
CF_EDEADLK,
CF_EDOM,
CF_EEXIST,
CF_EFAULT,
CF_EFBIG,
CF_EINPROGRESS,
CF_EINTR,
CF_EINVAL,
CF_EIO,
CF_EISDIR,
CF_EMFILE,
CF_EMLINK,

CFCommonTypes.idl UNCLASSIFIED 2 / 3

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

CF_EMSGSIZE,
CF_ENAMETOOLONG,
CF_ENFILE,
CF_ENODEV,
CF_ENOENT,
CF_ENOEXEC,
CF_ENOLCK,
CF_ENOMEM,
CF_ENOSPC,
CF_ENOSYS,
CF_ENOTDIR,
CF_ENOTEMPTY,
CF_ENOTSUP,
CF_ENOTTY,
CF_ENXIO,
CF_EPERM,
CF_EPIPE,
CF_ERANGE,
CF_EROFS,
CF_ESPIPE,
CF_ESRCH,
CF_ETIMEDOUT,
CF_EXDEV

};

/* This exception indicates an invalid file name was passed
to a file service operation. The message provides information
describing why the filename was invalid. */

exception InvalidFileName {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates an invalid object reference error. */
exception InvalidObjectReference {

string msg;
};

/* This structure defines a port. */
struct PortAccessType {

string portName;
Object portReference;

};

/* This type defines an name/value sequence of PortAccessType
structures. */

typedef sequence <PortAccessType> Ports;

/* This enumeration defines the basic component types. */
enum ComponentEnumType {

APPLICATION_COMPONENT,
MANAGEABLE_APPLICATION_COMPONENT,
DEVICE_COMPONENT,
LOADABLE_DEVICE_COMPONENT,
EXECUTABLE_DEVICE_COMPONENT,
MANAGEABLE_SERVICE_COMPONENT,
SERVICE_COMPONENT,
DEVICE_MANAGER_COMPONENT,
DOMAIN_MANAGER_COMPONENT,
APPLICATION_MANAGER_COMPONENT,
APPLICATION_FACTORY_COMPONENT,
APPLICATION_COMPONENT_FACTORY_COMPONENT,
PLATFORM_COMPONENT_FACTORY_COMPONENT

};

/* This structure defines the basic elements of a component. */

CFCommonTypes.idl UNCLASSIFIED 3 / 3

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

struct ComponentType {
string identifier;
string profile;
CF::ComponentEnumType type;
Object componentObject;
CF::Ports providesPorts;
CF::Properties specializedInfo;

};

/* This type defines an unbounded sequence of objects. */
typedef sequence <Object> ObjectSequence;

};
#endif

CFComponentFactory.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFComponentFactory.idl

#ifndef __CFCOMPONENTFACTORY_DEFINED
#define __CFCOMPONENTFACTORY_DEFINED

#include "CFProperties.idl"
#include "CFLifeCycle.idl"

module CF {

/* A ComponentFactory can be used to create or destroy a Component. */
interface ComponentFactory : LifeCycle
{

/* This exception indicates that the
createComponent operation failed to create the Component. The
message is component-dependent, providing additional information
describing the reason for the error. */

exception CreateComponentFailure {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This operation provides the capability to create
Components. */

CF::ComponentType createComponent (
in string componentId,
in CF::Properties qualifiers
)

raises (CF::ComponentFactory::CreateComponentFailure);
};

};
#endif

CFComponentIdentifier.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFComponentIdentifier.idl

#ifndef __CFCOMPONENTIDENTIFIER_DEFINED
#define __CFCOMPONENTIDENTIFIER_DEFINED

module CF {

/* This interface provides an identifier attribute for
a component. */

interface ComponentIdentifier {
/* This readonly identifier attribute contains the instance-unique

identifier for a component. */
readonly attribute string identifier;

};
};
#endif

CFComponentRegistry.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFComponentRegistry.idl

#ifndef __CFCOMPONENTREGISTRY_DEFINED
#define __CFCOMPONENTREGISTRY_DEFINED

#include "CFCommonTypes.idl"

module CF {

/* This interface is used to manage the registration of
logical devices and services. */

interface ComponentRegistry {

/* This exception indicates that an internal error has
occurred to prevent DomainManager registration operations from
successful completion. */

exception RegisterError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This operation registers the Component and its static provides
ports. */

void registerComponent(
in CF::ComponentType registeringComponent
)

raises(CF::InvalidObjectReference, RegisterError);
};

};
#endif

CFControllableInterface.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFControllableInterface.idl

#ifndef __CFCONTROLLABLEINTERFACE_DEFINED
#define __CFCONTROLLABLEINTERFACE_DEFINED

#include "CFCommonTypes.idl"

module CF {

/* This interface provides a common API for the
control of a software component. */

interface ControllableInterface {

/* This exception indicates that an error occurred during an attempt
to start the component. The message provides additional information
describing the reason for the error. */

exception StartError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates that an error occurred during
an attempt to stop the component. The message provides additional
information describing the reason for the error. */

exception StopError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This attribute specifies whether the component is started. */
readonly attribute boolean started;

/* This operation is provided to command a component implementing
this interface to start internal processing. */

void start ()
raises (CF::ControllableInterface::StartError);

/* This operation is provided to command a component implementing
this interface to stop all internal processing. */

void stop ()
raises (CF::ControllableInterface::StopError);

};
};
#endif

CFDeploymentAttributes.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFDeploymentAttributes.idl

#ifndef __CFDEPLOYMENTATTRIBUTES_DEFINED
#define __CFDEPLOYMENTATTRIBUTES_DEFINED

#include "CFPlatformTypes.idl"

module CF {

/* This interface provides deployment attributes
for an application. */

interface DeploymentAttributes {

/* This attribute contains the list of application
Components that have been successfully deployed with this application
or ApplicationFactory during instantiation or a sequence length of zero
if no application Components have been deployed. */

readonly attribute CF::Components deployedComponents;
};

};
#endif

CFDeviceAttributes.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFDeviceAttributes.idl

#ifndef __CFDEVICEATTRIBUTES_DEFINED
#define __CFDEVICEATTRIBUTES_DEFINED

#include "CFComponentIdentifier.idl"

module CF {

interface DeviceAttributes : ComponentIdentifier {

/* This enumeration defines a device's operational states.
The operational state indicates whether or not the object is
functioning. */

enum OperationalType {
ENABLED,
DISABLED

};

/* This attribute contains the device's operational
state. The operational state indicates whether or not the device
is functioning. */

readonly attribute CF::DeviceAttributes::OperationalType operationalState;

};
};
#endif

CFDomainInstallation.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFDomainInstallation.idl

#ifndef __CFDOMAININSTALLATION_DEFINED
#define __CFDOMAININSTALLATION_DEFINED

#include "CFPlatformTypes.idl"

module CF {

interface DomainInstallation {

/* This exception is raised when an application installation has
not completed correctly. The message provides additional
information describing the reason for the error. */

exception ApplicationInstallationError {
CF::ErrorNumberType errorNumber;
string msg;

};

exception ApplicationAlreadyInstalled {
};

/* This exception indicates the application ID is invalid. */
exception InvalidIdentifier {
};

/* This exception is raised when an application uninstallation has
not completed correctly. The message provides additional
information describing the reason for the error. */

exception ApplicationUninstallationError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This operation is used to register new
application software in the DomainManager's Domain profile. */

CF::ComponentType installApplication (
in string profileFileName
)

raises (CF::InvalidProfile,
CF::InvalidFileName,
CF::DomainInstallation::ApplicationInstallationError,
CF::DomainInstallation::ApplicationAlreadyInstalled);

/* This operation is used to uninstall an
application and its associated ApplicationFactory from the
DomainManager. */

CFDomainInstallation.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

void uninstallApplication (
in string identifier
)

raises (CF::DomainInstallation::InvalidIdentifier,
CF::DomainInstallation::ApplicationUninstallationError);

};

};
#endif

CFDomainManager.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFDomainManager.idl

#ifndef __CFDOMAINMANAGER_DEFINED
#define __CFDOMAINMANAGER_DEFINED

#include "CFComponentIdentifier.idl"
#include "CFFileManager.idl"
#include "CFPlatformTypes.idl"

module CF {

/* This interface is for the control and
configuration of the radio domain. */

interface DomainManager : ComponentIdentifier
{

/* This readonly attribute contains a profile
element with a file reference to the DomainManager Configuration
Descriptor (DMD) profile IDL. */

readonly attribute string domainManagerProfile;

/* This readonly attribute is containing a sequence
of registered managers in the domain. */

readonly attribute CF::Components managers;

/* This readonly attribute contains a list of ApplicationComponents that
have been instantiated in the domain. */

readonly attribute CF::Components
applications;

/* This readonly attribute contains a list with one
ApplicationFactoryComponent per application (SAD file and associated
files) successfully installed. */

readonly attribute CF::Components
applicationFactories;

/* This readonly attribute contains the DomainManager's
FileManager. */

readonly attribute CF::FileManager fileMgr;
};

};
#endif

CFEventChannelRegistry.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFEventChannelRegistry.idl

#ifndef __CFEVENTCHANNELREGISTRY_DEFINED
#define __CFEVENTCHANNELREGISTRY_DEFINED

#include "CFCommonTypes.idl"

module CF {

interface EventChannelRegistry {

/* This exception indicates that a registering consumer is already
connected to the specified event channel. */

exception AlreadyConnected {
};

/* This exception indicates that a DomainManager was not able to
locate the event channel. */

exception InvalidEventChannelName {
};

/* This exception indicates that the unregistering consumer
was not connected to the specified event channel. */

exception NotConnected {
};

/* This operation is used to connect
a consumer to a domain's event channel. */

void registerWithEventChannel (
in Object registeringObject,
in string registeringId,
in string eventChannelName
)

raises (CF::InvalidObjectReference,
CF::EventChannelRegistry::InvalidEventChannelName,
CF::EventChannelRegistry::AlreadyConnected);

/* This operation is used to disconnect
a consumer from a domain's event channel. */

void unregisterFromEventChannel (
in string unregisteringId,
in string eventChannelName
)

raises (CF::EventChannelRegistry::InvalidEventChannelName,
CF::EventChannelRegistry::NotConnected);

};
};

CFEventChannelRegistry.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

#endif

CFExecutableInterface.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFExecutableInterface.idl

#ifndef __CFEXECUTABLEINTERFACE_DEFINED
#define __CFEXECUTABLEINTERFACE_DEFINED

#include "CFPlatformTypes.idl"

module CF {

/* This interface defines execute and terminate behavior to a device. */
interface ExecutableInterface

{

/* This exception indicates that a process,
as identified by the processId parameter, does not exist on this
device. The message provides additional information describing
the reason for the error. */

exception InvalidProcess {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates that a function, as identified by
the input name parameter, hasn't been loaded on this device. */

exception InvalidFunction {
};

/* This type defines a structure to hold the process number or thread id
within the system. The number is unique to the Processor operating system
that created the process/thread. */

struct ExecutionID_Type {
unsigned long long threadId;
unsigned long long processId;
string processCollocation;
CF::ULongSeq cores;

};

/* This exception indicates that input parameters
are invalid for the execute operation. Each parameter's ID and
value must be a valid string type. The invalidParms is a list
of invalid parameters specified in the execute operation. */

exception InvalidParameters {
CF::Properties invalidParms;

};

CFExecutableInterface.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/* This exception indicates the input options are
invalid on the execute operation. The invalidOptions is a list
of invalid options specified in the execute operation. */

exception InvalidOptions {
CF::Properties invalidOpts;

};

/* The STACK_SIZE_ID is the identifier for the ExecutableInterface's
execute options parameter. */

const string STACK_SIZE_ID = "STACK_SIZE";

/* The PRIORITY_ID is the identifier for the ExecutableInterface's
execute options parameters. */

const string PRIORITY_ID = "PRIORITY";

/* The EXEC_DEVICE_PROCESS_SPACE is the identifier for the ExecutableInterface's
execute options PROCESS_COLLOCATION_ID parameter. */

const string EXEC_DEVICE_PROCESS_SPACE = "DEVICE";

/* The PROCESS_COLLOCATION_ID is the identifier for the ExecutableInterface's
execute options PROCESS_COLLOCATION_ID parameter. */

const string PROCESS_COLLOCATION_ID = "PROCESS_COLLOCATION";

/* The ENTRY_POINT_ID is the identifier for the ExecutableInterface's
execute options parameters. */

const string ENTRY_POINT_ID = "ENTRY_POINT";

/* The CORE_AFFINITY_ID is the identifier for the ExecutableInterface's
execute options parameters. */

const string CORE_AFFINITY_ID = "CORE_AFFINITY";

/* This exception indicates that an attempt to invoke
the execute operation on a device failed. The message provides
additional information describing the reason for the error. */

exception ExecuteFail {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This operation provides the mechanism for terminating
the execution of a process/thread on a specific device that was
started up with the execute operation. */

void terminate (
in CF::ExecutableInterface::ExecutionID_Type executionId
)

raises (CF::ExecutableInterface::InvalidProcess,
CF::InvalidState);

/* This operation provides the mechanism for starting up and
executing a software process/thread on a device. */

CF::ExecutableInterface::ExecutionID_Type execute (
in string filename,
in CF::Properties options,
in CF::Properties parameters
)

raises (CF::InvalidState,
CF::ExecutableInterface::InvalidFunction,
CF::ExecutableInterface::InvalidParameters,
CF::ExecutableInterface::InvalidOptions,
CF::InvalidFileName,
CF::ExecutableInterface::ExecuteFail);

};
};
#endif

CFFile.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFFile.idl

#ifndef __CFFILE_DEFINED
#define __CFFILE_DEFINED

#include "CFCommonTypes.idl"

module CF {

/* This exception indicates a file-related error occurred.
The message provides information describing the error. */

exception FileException {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This interface provides the ability to read and write files
residing within a distributed FileSystem. A file can be thought of
conceptually as a sequence of octets with a current filePointer
describing where the next read or write will occur. */

interface File {

/* This exception indicates an error occurred during a read
or write operation to a File. The message is component-dependent,
providing additional information describing the reason for
the error. */

exception IOException {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This exception indicates the file pointer is out of range based upon
the current file size. */

exception InvalidFilePointer {
};

/* The readonly attribute contains the file name given
to the FileSystem open/create operation. */

readonly attribute string fileName;

/* The readonly attribute contains the file position
where the next read or write will occur. */

readonly attribute unsigned long filePointer;

/* Applications require the read operation in order to retrieve
data from remote files. */

void read (

CFFile.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

out CF::OctetSequence data,
in unsigned long length
)

raises (CF::File::IOException);

/* This operation writes data to the file referenced. */
void write (

in CF::OctetSequence data
)

raises (CF::File::IOException);

/* This operation returns the current size of the file. */
unsigned long sizeOf ()

raises (CF::FileException);

/* This operation releases any OE file resources associated
with the component. */

void close ()
raises (CF::FileException);

/* This operation positions the file pointer where
next read or write will occur. */

void setFilePointer (
in unsigned long filePointer
)

raises (CF::File::InvalidFilePointer, CF::FileException);
};

};
#endif

CFFileManager.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFFileManager.idl

#ifndef __CFFILEMANAGER_DEFINED
#define __CFFILEMANAGER_DEFINED

#include "CFFileSystem.idl"

module CF {

/* Multiple, distributed FileSystems may be accessed through
a FileManager. The FileManager interface appears to be a single
FileSystem although the actual file storage may span multiple
physical file systems. */

interface FileManager : FileSystem {

/* This structure identifies the FileSystems mounted within
the FileManager. */

struct MountType {
string mountPoint;
CF::FileSystem fs;

};

/* This type defines an unbounded sequence of mounted FileSystems. */
typedef sequence <MountType> MountSequence;

/* This exception indicates a mount point does not exist within
the FileManager. */

exception NonExistentMount {
};

/* This exception indicates the FileSystem is a null (nil) object
reference. */

exception InvalidFileSystem {
};

/* This exception indicates the mount point is already in
use in the FileManager. */

exception MountPointAlreadyExists {
};

/* This operation associates a FileSystem with a mount point
(a directory name). */

void mount (
in string mountPoint,
in CF::FileSystem file_System
)

raises (CF::InvalidFileName,

CFFileManager.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

CF::FileManager::InvalidFileSystem,
CF::FileManager::MountPointAlreadyExists);

/* This operation removes a mounted FileSystem from
the FileManager whose mounted name matches the input mountPoint
name. */

void unmount (
in string mountPoint
)

raises (CF::FileManager::NonExistentMount);

/* This operation returns the FileManager's mounted
FileSystems. */

CF::FileManager::MountSequence getMounts ();

};
};
#endif

CFFileSystem.idl UNCLASSIFIED 1 / 3

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFFileSystem.idl

#ifndef __CFFILESYSTEM_DEFINED
#define __CFFILESYSTEM_DEFINED

#include "CFProperties.idl"
#include "CFFile.idl"

module CF {

/* This interface defines the operations to enable
remote access to a physical file system. */

interface FileSystem {

/* This exception indicates a set of properties unknown by
the FileSystem object. */

exception UnknownFileSystemProperties {
CF::Properties invalidProperties;

};

/* This constant indicates file system size. */
const string SIZE = "SIZE";

/* This constant indicates the available space on the file system. */
const string AVAILABLE_SPACE = "AVAILABLE_SPACE";

/* This enumerations indicates the type of file entry. A file system can
have PLAIN or DIRECTORY files and mounted file systems contained
in a FileSystem. */

enum FileType {
PLAIN,
DIRECTORY,
FILE_SYSTEM

};

/* This structure indicates the information returned
for a file. */

struct FileInformationType {
string name;
CF::FileSystem::FileType kind;
unsigned long long size;
CF::Properties fileProperties;

};

typedef sequence <FileInformationType> FileInformationSequence;

/* The CREATED_TIME_ID is the identifier for the created time file

CFFileSystem.idl UNCLASSIFIED 2 / 3

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

property. */
const string CREATED_TIME_ID = "CREATED_TIME";

/* The MODIFIED_TIME_ID is the identifier for the modified time file
property. */

const string MODIFIED_TIME_ID = "MODIFIED_TIME";

/* The LAST_ACCESS_TIME_ID is the identifier for the last access time
file property. */

const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

/* This operation removes the file with the given filename. */
void remove (

in string fileName
)

raises (CF::FileException, CF::InvalidFileName);

/* This operation copies the source file with the specified
sourceFileName to the destination file with the specified
destinationFileName. */

void copy (
in string sourceFileName,
in string destinationFileName
)

raises (CF::InvalidFileName, CF::FileException);

/* This operation checks to see if a file exists based
on the filename parameter. */

boolean exists (
in string fileName
)

raises (CF::InvalidFileName);

/* This operation provides the ability to obtain a list
of files along with their information in the file system according
to a given search pattern. */

CF::FileSystem::FileInformationSequence list (
in string pattern
)

raises (CF::FileException, CF::InvalidFileName);

/* This operation creates a new File based upon the provided
file name and returns a File to the opened file. */

CF::File create (
in string fileName
)

raises (CF::InvalidFileName, CF::FileException);

/* This operation opens a file for reading or writing based
upon the input fileName. */

CF::File open (
in string fileName,
in boolean read_Only
)

raises (CF::InvalidFileName, CF::FileException);

/* This operation creates a file system directory based on
the directoryName given. */

void mkdir (
in string directoryName
)

raises (CF::InvalidFileName, CF::FileException);

/* This operation removes a file system directory based
on the directoryName given. */

void rmdir (

CFFileSystem.idl UNCLASSIFIED 3 / 3

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

in string directoryName
)

raises (CF::InvalidFileName, CF::FileException);

/* This operation returns file system information to the
calling client based upon the given fileSystemProperties' ID. */

void query (
inout CF::Properties fileSystemProperties
)

raises (CF::FileSystem::UnknownFileSystemProperties);
};

};
#endif

CFFullComponentRegistry.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFFullComponentRegistry.idl

#ifndef __CFFULLCOMPONENTREGISTRY_DEFINED
#define __CFFULLCOMPONENTREGISTRY_DEFINED

#include "CFComponentRegistry.idl"

module CF {

/* This interface is used to manage the shutdown of
logical devices and services. */

interface FullComponentRegistry : ComponentRegistry {

/* This exception indicates that an internal error has occurred
to prevent unregister operations from successful
completion. The message provides additional information describing the
reason for the error. */

exception UnregisterError {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This operation unregisters the component. */
void unregisterComponent(in string identifier)

raises(UnregisterError);
};

};
#endif

CFLifeCycle.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFLifeCycle.idl

#ifndef __CFLIFECYCLE_DEFINED
#define __CFLIFECYCLE_DEFINED

#include "CFCommonTypes.idl"

module CF {

/* This interface defines the generic operations for initializing
or releasing instantiated component-specific data and/or processing
elements. */

interface LifeCycle {

/* This exception indicates an error occurred during component
initialization. The messages provide additional information
describing the reason why the error occurred. */

exception InitializeError {
CF::StringSequence errorMessages;

};

/* This exception indicates an error occurred during component
releaseObject. The messages provide additional information
describing the reason why the error occurred. */

exception ReleaseError {
CF::StringSequence errorMessages;

};

/* The purpose of this operation is to provide a mechanism
to set an object to an known initial state. */

void initialize ()
raises (CF::LifeCycle::InitializeError);

/* The purpose of this operation is to provide a means
by which an instantiated component may be torn down. */

void releaseObject ()
raises (CF::LifeCycle::ReleaseError);

};
};
#endif

CFLoadableInterface.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFLoadableInterface.idl

#ifndef __CFLOADABLEINTERFACE_DEFINED
#define __CFLOADABLEINTERFACE_DEFINED

#include "CFFileSystem.idl"
#include "CFPlatformTypes.idl"

module CF {

/* This interface provides a device with software
loading and unloading behavior. */

interface LoadableInterface {

/* This enumeration defines the type of load to be performed.
The load types are in accordance with the code element
within the softpkg element's implementation element. */

enum LoadType {
KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE

};

/* This exception indicates that the device
is unable to load the type of file designated by the
loadKind parameter. */

exception InvalidLoadKind {
};

/* This exception indicates that an error occurred during
an attempt to load the device. The message provides additional
information describing the reason for the error. */

exception LoadFail {
CF::ErrorNumberType errorNumber;
string msg;

};

/* This operation provides the mechanism for loading software
on a specific device. The loaded software may be subsequently
executed on the device, if the device is an executable device. */

void load (
in CF::FileSystem fs,
in string fileName,
in CF::LoadableInterface::LoadType loadKind
)

raises (CF::InvalidState,

CFLoadableInterface.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

CF::LoadableInterface::InvalidLoadKind,
CF::InvalidFileName,
CF::LoadableInterface::LoadFail);

/* This operation provides the mechanism to unload software
that is currently loaded. */

void unload (
in string fileName
)

raises (CF::InvalidState,
CF::InvalidFileName);

};
};
#endif

CFPlatformTypes.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFPlatformTypes.idl
#ifndef __CFPLATFORMTYPES_DEFINED
#define __CFPLATFORMTYPES_DEFINED

#include "CFCommonTypes.idl"

module CF {
/* This structure associates a component with the device

upon which the component is executing. */
struct DeviceAssignmentType {

string componentId;
string assignedDeviceId;

};

/* The sequence provides an unbounded sequence of 0..n of
DeviceAssignmentType. */

typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

/* This exception indicates an invalid component profile error. */
exception InvalidProfile {
};

/* This sequence defines a sequence of ComponentType structures */
typedef sequence <CF::ComponentType> Components;

/* This exception indicates that the device is not capable of
the behavior being attempted due to the state the device is in.
An example of such behavior is allocateCapacity. */

exception InvalidState {
string msg;

};

};
#endif

CFPortAccessor.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFPortAccessor.idl

#ifndef __CFPORTACCESSOR_DEFINED
#define __CFPORTACCESSOR_DEFINED

module CF {

interface PortAccessor {

/* This structure defines a type for information needed to disconnect a
connection. */

struct ConnectionIdType {
string connectionId;
string portName;

};

/* The sequence of ConnectionIdType structures. */
typedef sequence <ConnectionIdType> Disconnections;

/* This structure defines a type for information needed to make a
connection. */

struct ConnectionType {
ConnectionIdType portConnectionId;
Object portReference;

};

/* This type defines a sequence of ConnectionType structures. */
typedef sequence <ConnectionType> Connections;

/* This structure identifies a port and associated error code
to be provided in the InvalidPort exception. */

struct ConnectionErrorType {
ConnectionIdType portConnectionId;
unsigned short errorCode;

};

/* This exception indicates one of the following errors has occurred in
the specification of a PortAccessor association. */

exception InvalidPort {
ConnectionErrorType invalidConnections;

};

/* This operation supplies a component with a sequence of
connection information. */

void connectUsesPorts(
in CF::PortAccessor::Connections portConnections)

raises(CF::PortAccessor::InvalidPort);

CFPortAccessor.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/* This operation releases a sequence of uses or
provides ports from a given connection(s). */

void disconnectPorts(
in CF::PortAccessor::Disconnections portDisconnections)

raises(CF::PortAccessor::InvalidPort);

/* This operation provides a mechanism to
obtain a specific provides port(s). */

void getProvidesPorts(
inout CF::PortAccessor::Connections portConnections)

raises(CF::PortAccessor::InvalidPort);
};

};
#endif

CFProperties.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFProperties.idl

#ifndef __CFPROPERTIES_DEFINED
#define __CFPROPERTIES_DEFINED

module CF {

/* This type is an IDL struct type which can be used to hold any
basic type or static IDL type. */

struct DataType {
/* This attribute indicates the kind of value and type. The id can

be an integer string or a unique alphanumeric identifier. */
string id;
/* This attribute can be any static IDL type or basic

type. */
any value;

};

/* This type is an IDL unbounded sequence of CF DataType(s),
which can be used in defining a sequence of name and value pairs. */

typedef sequence <DataType> Properties;

/* This exception indicates a set of properties unknown by the component. */
exception UnknownProperties {

CF::Properties invalidProperties;
};

};
#endif

CFPropertySet.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFPropertySet.idl

#ifndef __CFPROPERTYSET_DEFINED
#define __CFPROPERTYSET_DEFINED

#include "CFProperties.idl"

module CF {

/* This interface defines configure and query operations
to access component properties/attributes. */

interface PropertySet {

/* This exception indicates the configuration of a component
has failed (no configuration at all was done). The message
provides additional information describing the reason why
the error occurred. The invalid properties returned indicates
the properties that were invalid. */

exception InvalidConfiguration {
string msg;
CF::Properties invalidProperties;

};

/* This exception indicates the configuration
of a Component was partially successful. The invalid properties
returned indicates the properties that were invalid. */

exception PartialConfiguration {
CF::Properties invalidProperties;

};

/* The purpose of this operation is to allow id/value pair
configuration properties to be assigned to components
implementing this interface. */

void configure (
in CF::Properties configProperties
)

raises (CF::PropertySet::InvalidConfiguration,
CF::PropertySet::PartialConfiguration);

/* The purpose of this operation is to allow a component
to be queried to retrieve its properties. */

void query (
inout CF::Properties configProperties
)

raises (CF::UnknownProperties);
};

};

CFPropertySet.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

#endif

CFReleasableManager.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFReleasableManager.idl

#ifndef __CFRELEASABLEMANAGER_DEFINED
#define __CFRELEASABLEMANAGER_DEFINED

module CF {

/* This interface is used for terminating an instantiated
device manager. */

interface ReleasableManager {

/* This operation provides the mechanism to terminate
a device manager, unregistering it from the domain manager. */

void shutdown ();
};

};
#endif

CFSequenceTemplates.h UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix E: Model Driven Support Technologies
** Version: 4.1, 20 August 2015
*/

/* File: CFSequenceTemplates.h */
#ifndef __CFSEQUENCETEMPLATES_DEFINED
#define __CFSEQUENCETEMPLATES_DEFINED
#include "CFPrimitiveTypes.h"

namespace CF
{

template <class T>
class Sequence
{
public:
Sequence();
Sequence(CF::ULongType max);
Sequence(

CF::ULongType max,
CF::ULongType length,
T *value,
CF::BooleanType release = 0
);

~Sequence();

Sequence(const Sequence&);
Sequence &operator=(const Sequence&);

T &operator[](CF::ULongType index);
const T &operator[](CF::ULongType index) const;

CF::ULongType length() const;
void length(CF::ULongType);
CF::ULongType maximum() const;

CF::BooleanType release() const;

void replace(
CF::ULongType max,
CF::ULongType length,
T *data,
CF::BooleanType release = 0
);

const T* get_buffer() const;
T* get_buffer(CF::BooleanType orphan = 0);

static T *allocbuf(CF::ULongType nelems);
static void freebuf(T *);

};

CFSequenceTemplates.h UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

template <class T>
class Sequence_String : public Sequence<T>
{
public:
const T operator[](CF::ULongType index) const;

};
}

#endif //__CFSEQUENCETEMPLATES_DEFINED

CFSpecializedInfo.idl UNCLASSIFIED 1 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFSpecializedInfo.idl

#ifndef __CFSPECIALIZEDINFO_DEFINED
#define __CFSPECIALIZEDINFO_DEFINED

#include "CFCommonTypes.idl"
#include "CFFileSystem.idl"
#include "CFPlatformTypes.idl"

module CF {

/* This enumeration defines the basic actions that may be taken against an
allocation property. */

enum PropertyActionType {
CF_EQ,
CF_NE,
CF_GT,
CF_GE,
CF_LT,
CF_LE,
CF_EXTERNAL

};

/* This enumeration defines the basic data types of an allocation property. */
enum PropertyType {

CF_BOOLEAN,
CF_CHAR,
CF_DOUBLE,
CF_FLOAT,
CF_SHORT,
CF_LONG,
CF_OBJREF,
CF_OCTET,
CF_STRING,
CF_USHORT,
CF_ULONG

};

/* This string constant is the identifier for the allocation property
specialized info entry. */

const string ALLOCATION_PROPS_ID = "ALLOCATION_PROPS";

/* This structure defines the specialized type for
the allocation properties associated with a component. The id attribute
indicates the kind of value and type. The id can
be an integer string or a unique alphanumeric identifier.
The value attribute can be any static IDL type or basic type. */

CFSpecializedInfo.idl UNCLASSIFIED 2 / 2

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

struct AllocationPropertyType {
string id;
CF::StringSequence values;
CF::PropertyActionType action;
CF::PropertyType type;

};

/* This sequence defines a list of AllocationPropertyType structures. */
typedef sequence <AllocationPropertyType> AllocationProperties;

/* This string constant is the identifier for a DeviceManagerComponent string
identifier type value within a BasePlatformComponent ComponentType's
specializedInfo. */

const string DEVICE_MANAGER_ID = "DEVICE_MANAGER_ID";

/* This string constant is the identifier for a ManagerInfo type within a
ComponentType's specializedInfo. */

const string MANAGER_INFO_ID = "MANAGER_INFO";

/* This string constant is the identifier for ExecutableInterface::ExecutionID_Type
Value within a ComponentType's specializedInfo. */

const string EXECUTION_ID = "EXECUTION_ID";

/* This string constant is the identifier for SPD implementation id string
value within a ComponentType's specializedInfo, which is the implementation used
for the creation of the component. */

const string IMPLEMENTATION_ID = "IMPLEMENTATION_ID";

/* This string constant is the identifier for the device identifier string value
within a ComponentType' specializedInfo field, which is the device that deployed
the component. */

const string TARGET_DEVICE_ID = "TARGET_DEVICE";

/* This string constant is the identifier for the CF::UsesDeviceAssignmentSequence
value within a ComponentType' specializedInfo, which denotes the devices used
by component. */

const string USES_DEVICE_ID = "USES_DEVICE";

/* This string constant is the identifier for the CF::Components type value within a
ComponentType' specializedInfo field. */

const string COMPONENTS_ID = "COMPONENTS";

/* This structure associates a component's profile uses device identifier with the
assigned device identifier. */

struct UsesDeviceAssignmentType
{

string usesDeviceId;
string assignedDeviceId;

};

/* The sequence provides an unbounded sequence of UseDeviceAssignmentType
elements. */

typedef sequence <UsesDeviceAssignmentType> UsesDeviceAssignmentSeq;

/* This structure defines the specialized type for
the a manager component. */

struct ManagerInfo {
CF::FileSystem fileSys;
CF::Components deployedComponents;

};
};
#endif

CFTestableInterface.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: CFTestableInterface.idl

#ifndef __CFTESTABLEINTERFACE_DEFINED
#define __CFTESTABLEINTERFACE_DEFINED

#include "CFProperties.idl"

module CF {

/* This interface defines a set of operations that
can be used to test component implementations. */

interface TestableInterface {

/* This exception indicates the requested testid for a test
to be performed is not known by the component. */

exception UnknownTest {
};

/* This operation allows components to be blackbox tested.
This allows Built-In Tests to be implemented which provides
a means to isolate faults (both software and hardware) within
the system. */

void runTest (
in unsigned long testid,
inout CF::Properties testValues
)

raises (CF::TestableInterface::UnknownTest, CF::UnknownProperties);
};

};
#endif

SE_DomainEvent.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: SE_DomainEvent.idl

#ifndef __SE_DOMAINEVENT_DEFINED
#define __SE_DOMAINEVENT_DEFINED

#include "CFCommonTypes.idl"

module StandardEvent {

/* This enumeration is utilized in the ComponentChangeEventType to indicate
whether an object that has been added to or removed from the domain. */

enum ComponentChangeType {
ADDED,
REMOVED

};

/* This structure is used to indicate that an event source has been
added to or removed from the domain. */

struct ComponentChangeEventType {
string producerId;
ComponentChangeType componentChange;
CF::ComponentType domainComponent;

};

};

#endif

SE_StateEvent.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: SE_StateEvent.idl

#ifndef __SE_STATEEVENT_DEFINED
#define __SE_STATEEVENT_DEFINED

module StandardEvent {

/* This enumeration is utilized
in the StateChangeEventType. It is used to identify the category
of state change that has occurred. */

enum StateChangeCategoryType {
ADMINISTRATIVE_STATE_EVENT,
OPERATIONAL_STATE_EVENT,
USAGE_STATE_EVENT

};

/* This enumeration is utilized
in the StateChangeEventType. It is used to identify the specific
states of the event source before and after the state change
occurred. */

enum StateChangeType {
LOCKED,
UNLOCKED,
SHUTTING_DOWN,
ENABLED,
DISABLED,
IDLE,
ACTIVE,
BUSY

};

/* This structure is used to indicate that
the state of the event source has changed. The event producer
will send this structure into an event channel on behalf of
the event source. */

struct StateChangeEventType {
string producerId;
string sourceId;
StandardEvent::StateChangeCategoryType stateChangeCategory;
StandardEvent::StateChangeType stateChangeFrom;
StandardEvent::StateChangeType stateChangeTo;

};

};

#endif

StandardEvent.idl UNCLASSIFIED 1 / 1

Distribution Statement A - Approved for public release; distribution is unlimited (27 August 2015)

/*
** RELEASE STATEMENT(s):
** UNLIMITED RIGHTS
** The Government has the right to use, modify, reproduce, release, perform,
** display, or disclose this application programmable interface in whole or in
** part, in any manner and for any purpose whatsoever, and to have or
** authorize others to do so.
**
** Distribution Statement A - Approved for public release; distribution is
** unlimited (27 August 2015).
*/

/*
** JTNC Standard:
** Software Communications Architecture
** Appendix C: Core Framework Interface Description Language (IDL)
** Version: 4.1, 20 August 2015
*/

//Source file: StandardEvent.idl

#ifndef __STANDARDEVENT_DEFINED
#define __STANDARDEVENT_DEFINED

/* This file is provided to maintain backward compatibility with
legacy systems that use StandardEvent.idl files. */

#include "SE_DomainEvent.idl"
#include "SE_StateEvent.idl"

#endif

