

WORKING DOCUMENT // DRAFT

1

Wait, What?! DoD Access to Source Code
A Defense Innovation Board (DIB) Backgrounder

Richard Murray, Trae’ Stephens, Michael McQuade, Milo Medin, Gilman Louie
Version 1.2, 28 Oct. 2019

Executive Summary
In the Defense Innovation Board (DIB) Software Acquisition and Practices (SWAP) report1 we
made the recommendation that DoD “require access to source code, software frameworks, and
development toolchains – with appropriate IP rights – for DoD-specific code, enabling full security
testing and rebuilding of binaries from source”. This recommendation (D1) has generated
substantial discussion in industry and, in some cases, has been interpreted to mean that DoD
should only acquire software if it comes with source code rights. We continue to support this
recommendation but since the recommendations will need to be applied in different
circumstances (“not all software is the same”) some additional discussion is perhaps useful.

The SWAP report discusses the background and motivation behind this recommendation and
provides numerous examples of its potential use. In this (short) concept paper, we try to pull
together the various threads in the report related to this specific recommendation to provide more
clarity on how this might be applied in the context of DoD acquisition of software and software
intensive systems. Our primary points were and remain:

1. Whenever possible, DoD should use existing commercial software to solve problems that are
common between DoD and commercial uses, including modifying DoD processes to match
commercial processes to take advantage of the scale, maturity, and speed of commercial
software. Easy examples are software for word processing, travel planning, inventory, and
audit. In some cases, a combination of commercial software with custom modules may be
the answer (for example, for health care records, where 90+% of the uses cases are standard
but a custom module for combat/field operations may be needed).

2. Whenever feasible and useful, DoD should seek to obtain source code for non-custom
software ("Type A") for the purposes of vulnerability scanning and related analyses. The utility
of this will depend on the application (data analysis applications running on highly classified
databases might be need evaluated for consistency with a Zero Trust Architecture by
examination of source code, for example). Having said this, it is likely that commercial code
that is widely deployed is going to be less vulnerable than DoD-specific code that is used only
within DoD => default to option 1 (use COTS when possible, with process modifications as
needed) versus contracting out to rewrite code that serves the same purpose but is highly
“tuned” to DoD idiosyncrasies.

3. Every purpose-built DoD software system should include source code as a deliverable
(commandment #62).

1 Software is Never Done: Refactoring the Acquisition Code for Competitive Advantage, DIB, 3 May 2019.
2 Defense Innovation Board Ten Commandments of Software, 3 May 2019.

Delete DRAFT markings

https://media.defense.gov/2019/May/01/2002126693/-1/-1/0/SWAP%20MAIN%20REPORT.PDF
https://media.defense.gov/2019/May/01/2002126690/-1/-1/0/SWAP%20EXECUTIVE%20SUMMARY.PDF
WKing
Cleared As Amended

WORKING DOCUMENT // DRAFT

2

The Defense Innovation Board (DIB) Software Acquisition and Practices (SWAP) report and
supporting concept papers provide multiple comments on the importance of access to source
code and the need to use commercial software when possible. We extract these comments here
and add additional clarifying comments (in blue).

Chapter 1. Who Cares: Why Does Software Matter for DoD?

1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD

We define three broad operational categories:

● Enterprise systems: very large-scale software systems intended to manage a large collection
of users, interface with many other systems, and generally used at the DoD level or equivalent.
These systems should always run in the cloud and should use architectures that allow
interoperability, expandability, and reliability. In most cases the software should be
commercial software purchased (or licensed) without modification to the underlying code, but
with DoD-specific configuration. Examples include: e-mail systems, accounting systems,
travel systems, and HR databases.

● Business systems: essentially the same as enterprise systems, but operating at a slightly
smaller scale (e.g., for one of the Services). Like enterprise systems, they are interoperable,
expandable, reliable, and probably based on commercial offerings. Similar functions may be
customized differently by individual Services, though they should all interoperate with DoD-
wide enterprise systems. Depending on their use, these systems may run in the cloud, in local
data centers, or on desktop computers. Examples include: software development
environments, Service-specific HR, financial, and logistics systems.

● Combat systems: [omitted]

Having defined systems that deliver effects and the kinds of computing platforms on which
software is hosted, we now distinguish between four primary types of software, which we use
throughout the rest of the report so that we differentiate the acquisition and deployment
approaches that are needed:

● Type A (Commercial-Off-The-Shelf [COTS] apps): The first class of software consists of
applications that are available from commercial suppliers. Business processes, financial
management, human resources, software development, collaboration tools, accounting
software, and other “enterprise” applications in DoD are generally not more complicated nor
significantly larger in scale than those in the private sector. Unmodified commercial software
should be deployed in nearly all circumstances. Where DoD processes are not amenable to
this approach, those processes should be modified, not the software.

The SWAP report emphasizes the fact that not all software is the same and different types of
software require different acquisition and development processes. In particular, for “commercial
software” (as outlined in the examples above), it is generally preferable for DoD to use existing
applications and adopt its processes to allow industry standard practices as much as possible.

WORKING DOCUMENT // DRAFT

3

This has the advantage that widely deployed commercial software is likely to be optimized for
efficiency and has a higher likelihood of being secure to common cyberattacks since commercial
code is under constant attack and vulnerabilities are fixed quickly.

Chapter 2. What Does It Look Like to Do Software Right?

2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps

Software development. These are software engineering practices that include source code
management, software build, code review, testing, bug tracking, release, launch and post-
mortems. Some of the key best practices that are applicable to DoD software programs include:

● All source code is maintained in a single repository that is available to all software engineers.
There are control mechanisms to manage additions to the repository but in some cases all
engineers are culturally encouraged to fix problems, independent of program boundaries.

● Developers are strongly encouraged to avoid “forking” source code (creating independent
development branches) and focus work on the main branch of the software development.

● Code review tools are reliable and easy to use. Changes to the main source code typically
require review by at least one other engineer, and code review discussions are open and
collaborative.

● Unit test is ubiquitous, fully automated, and integrated into the software review process.
Integration, regression, and load testing are also widely used and these activities should be
an integrated automated part of daily workflow.

● Releases are frequent—often weekly. There is an incremental staging process over several
days, particularly for high-traffic, high-reliability services.

● Post-mortems are conducted after system outages. The focus of the post-mortem is on how
to avoid problems in the future and not about affixing blame.

For those instances where DoD is developing code (either organically, with contractors, or via
contracts), source code should be part of the deliverable for the project and should be managed
according to commercial practices, as outlined above. These activities make clear that source
code access is required.

Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward

4.1 Path 1: Make the Best Out of What We’ve Got

The following list provides a summary of high-level steps that require changes to DoD culture and
process, but could be taken with no change in current law and relatively minor changes to existing
regulations:

● Require access to source code, software frameworks, and development toolchains, with
appropriate intellectual property (IP) rights, for all DoD-specific code, enabling full security
testing and rebuilding of binaries from source.

WORKING DOCUMENT // DRAFT

4

4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software

The following list provides a set of high-level steps that require some additional changes to DoD
culture and process, but also modest changes in current law and existing regulations. These steps
build on the steps listed in path 1 above, although in some cases they can solve the problems
that the previous actions were trying to work around.

● Create streamlined authorization and appropriation processes for defense business systems
(DBS) that use commercially-available products with minimal (source code) modification.

● For any software developed for DoD, require that software development be separated from
hardware in a manner that allows non-prime vendors to bid for software elements of the
program on a performance-based basis.

Chapter 4 reviews some of the options for moving forward, with additional details on those actions
we recommend described in more detail in Chapter 5.

Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD

Line of Effort D. DoD and industry must change the practice of how software is procured
and developed by adopting modern software development approaches, prioritizing speed as the
critical metric, ensuring cybersecurity is an integrated element of the entire software lifecycle, and
purchasing existing commercial software whenever possible.

Recommendation D1. Require access to source code, software frameworks, and
development toolchains, with appropriate IP rights, for all DoD-specific code, enabling full
security testing and rebuilding of binaries from source

For many DoD systems, source code is not available to DoD for inspection and testing, and DoD
relies on suppliers to write code for new compute environments. As code ages, suppliers are not
required to maintain codebases without an active development contract and “legacy” code is not
continuously migrated to the latest hardware and operating systems. The desired state is that
DoD has access to source code for DoD-specific software systems that it operates and uses to
perform detailed (and automated) evaluation of software correctness, security, and performance,
enabling more rapid deployment of both initial software releases and (most importantly) upgrades
(patches and enhancements). DoD is able to rebuild executables from scratch for all of its
systems, and has the rights and ability to modify (DoD-specific) code when new conditions and
features arise. Code is routinely migrated to the latest computing hardware and operating
systems, and routinely scanned against currently-known vulnerabilities. Modern IP language is
used to ensure that the government can use, scan, rebuild, and extend purpose-built code, but
contractors are able to use licensing agreements that protect any IP that they have developed
with their own resources. Industry trusts DoD with its code and has appropriate IP rights for
internally developed code.

Recommendation D1 is the primary recommendation regarding source code. As we make clear,
the intent is that DoD-specific code be available for security testing and rebuilding of binaries from

https://docs.google.com/document/d/1cdo7INCsfIo-gg4CStwLJWtkdk8Jnb-sLFzcA90hlTU/edit#bookmark=id.68vven6o2t0f

WORKING DOCUMENT // DRAFT

5

source. This access is usually not needed for commercial source code and our recommendation
does not address access to source code for commercial software.

In the draft implementation plan (Appendix A of the report), we provide some possible actions to
implement this recommendation:

Draft Implementation Plan Lead Stakeholders Target
Date

D1.1 Work with industry to modernize policies for software
code ownership, licensing, and purchase. See 2018
Army IP directive as an example.

USD(A&S) Q3 FY19

D1.2 Modify FAR/DFARS guidance to require software source
code deliverables for GOTS and for government-funded
software development. Obtain rights for access to source
code for COTS wherever possible (and useful)..

USD(A&S) Q3 FY20

D1.3 Modify DoDI 5000.02 and DoDI 5000.75 to make access
to code and development environments the default.

USD(A&S) Q3 FY20

D1.4 Develop a comprehensive source code management plan
for DoD including the safe and secure storage, access
control, testing and field of use rights.

USD(A&S), with CIO Q4 FY20

These actions all point to the need for the government to work with industry to provide a workable
approach to providing access to source code. The 2018 Army IP directive provides a good
starting point for this effort. We note in particular the following language from that report regarding
different types of software and how it should be treated:

“[Software] developed by a contractor exclusively at private expense: The contractor may
restrict the right of the Government to release or disclose technical data to persons outside
the Government or permit such persons to use the technical data.” (c1(b))

We do believe that there are instances when commercially available code may be used in a setting
in which the threat model or security requirements are sufficiently different from commercial usage
that DoD may want to perform additional testing of the code. This could be done by licensing
access to source code or by making use of a trusted third party to carry out vulnerability testing.

Thus, whenever feasible and useful, we believe that DoD should seek to obtain source code
for non-custom software ("Type A") for the purposes of vulnerability scanning and related
analyses. The utility of this will depend on the application (data analysis applications running
on highly classified databases might be need evaluated for consistency with a Zero Trust
Architecture by examination of source code, for example). Having said this, it is likely that
commercial code that is widely deployed is going to be less vulnerable than DoD-specific code
that is used only within DoD. Hence the default should be to use COTS when possible (with
process modifications as needed) versus contracting out to rewrite code that serves the same
purpose but is highly “tuned” to DoD idiosyncrasies.

5.4 Kicking the Can Down The Road: Things That We Could Not Figure Out How to Fix

Using commercial software whenever possible. DoD should not build something that it can buy.
If there is an 80 percent commercial solution, it is better to buy it and adjust—either the

https://drive.google.com/open?id=1Di3PXplZJXWqJsmYxvcJ6vKRvLVObCWm
https://drive.google.com/open?id=1Di3PXplZJXWqJsmYxvcJ6vKRvLVObCWm

WORKING DOCUMENT // DRAFT

6

requirements or the product—rather than build it from scratch. It is generally not a good idea to
over-optimize for what we view as “exceptional performance,” because counter-intuitively this may
be the wrong thing to optimize for as the threat environment evolves over time. Similarly, actions
should be taken to ensure that the letter and spirit of commercial preference laws (e.g., 10 USC
2377, which requires defense agencies to give strong preference to commercial and non-
developmental products) are being followed.

This section of the report speaks directly to the preference for using commercial software
solutions when available. There is no intent in the report’s recommendations to make access to
source code a determining factor in the acquisition of a COTS software solution. If a COTS
software solution is available and most suited for the needed capability but using it may come
without source code access, the COTS solution will likely still be preferred. When source code
access is available and/or needed, the proper processes for storage, handling, and scanning of
source code for vulnerability assessment must be established. It may make sense to manage
this via a third party rather than by each individual program office.

Appendix D. Frequently Asked Questions (FAQs)

6. Providing source code to the government is a non-starter for industry. How will
they make money if they have to give the government their code?

It is critical that DoD have access to source code for purpose-build software: it is required in
order to do security scans to identify and fix vulnerabilities, and only with access to the source
code and build environment can the government maintain code over time. However, providing
source code is different than handing over the rights to do anything they want with that code.
Modern intellectual property (IP) language should be used to ensure that the government can
use, scan, rebuild, and extend purpose-built code, but contractors should be able to use
licensing agreements that protect any IP that they have developed with their own resources.

Appendix E. DIB Guides for Software

Ten Commandments of Software

Commandment #6. Every purpose-built DoD software system should include source code
as a deliverable. DoD should have the rights to and be able to modify (DoD-specific) code when
new conditions and features arise. Providing source code will also allow the DoD to perform
detailed (and automated) evaluation of software correctness, security, and performance, enabling
more rapid deployment of both initial software releases and (most importantly) upgrades (patches
and enhancements). [Types C, D]

Supporting recommendation: Use commercial process and software to adopt and
implement standard business practices within the services. Modern enterprise-scale
software has been optimized to allow business to operate efficiently. The DoD should take
advantage of these systems by adopting its internal (non-warfighter specific) business processes
to match industry standards, which are implemented in cost-efficient, user-friendly software and

WORKING DOCUMENT // DRAFT

7

software as a service [SaaS] tools. Rather than adopt a single approach across the entire DoD,
the individual services should be allowed to implement complementary approaches (with
appropriate interoperability).

The “Ten Commandments” emphasized the fact that not all software is the same, and categorized
software into four main types:

● A: commercial (“off-the-shelf”) software with no DoD-specific customization required;
● B: commercial software with DoD-specific customization needed;
● C: custom software running on commodity hardware (in data centers or in the field);
● D: custom software running on custom hardware (e.g., embedded software).

Commandment #6 focused on Types C & D (custom software).

DIB Metrics for Software

Metric

Target value (by software type) Typical
DoD

values
for SW COTS

apps
Custom
-ized SW

COTS
HW/OS

Real-time
HW/SW

9 % code avail to DoD for inspection/rebuild N/A 100% 100% 100% ?

As in the 10 commandments, this table called out the need to provide source code access for
custom software. We note that there is a slight discrepancy here from the “Ten Commandments”
document, in that this table identifies software of Type B (“customized”) software as requiring
source code access. This would likely be restricted to the customized portions of an application
(which are again DoD specific).

Do’s and Don’ts for Software

Observed practice (Don’ts) Desired state (Do’s) Potential Barriers

Require customized software
solutions to match DoD practices

For common functions, purchase existing
software and change DoD processes to
use existing apps

Culture

Depend almost entirely on outside
vendors for all product development
and sustainment

Require source code as a deliverable on
all purpose-built DoD software contracts.
Continuous development and integration,
rather than sustainment, should be a part
of all contracts. DoD personnel should be
trained to extend the software through
source code or API access

Culture

(no apparent
statutory obstacle)

FAR/DFARS
technical data

rights

WORKING DOCUMENT // DRAFT

8

Business processes, financial, human resources, accounting and other “enterprise” applications
in the DoD are generally not more complicated nor significantly larger in scale than those in the
private sector. Commercial software, unmodified, should be deployed in nearly all
circumstances. Where DoD processes are not amenable to this approach, those processes
should be modified, not the software. Doing so allows the DoD to take advantage of the much
larger commercial base for common functions (e.g., Concur has 25M active users for its travel
software).

	Executive Summary
	The Defense Innovation Board (DIB) Software Acquisition and Practices (SWAP) report and supporting concept papers provide multiple comments on the importance of access to source code and the need to use commercial software when possible. We extract t...
	Chapter 1. Who Cares: Why Does Software Matter for DoD?
	1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD
	● Enterprise systems: very large-scale software systems intended to manage a large collection of users, interface with many other systems, and generally used at the DoD level or equivalent. These systems should always run in the cloud and should use a...

	Chapter 2. What Does It Look Like to Do Software Right?
	2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps
	For those instances where DoD is developing code (either organically, with contractors, or via contracts), source code should be part of the deliverable for the project and should be managed according to commercial practices, as outlined above. These...

	Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward
	4.1 Path 1: Make the Best Out of What We’ve Got
	4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software

	Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD
	Line of Effort D. DoD and industry must change the practice of how software is procured and developed by adopting modern software development approaches, prioritizing speed as the critical metric, ensuring cybersecurity is an integrated element of the...
	These actions all point to the need for the government to work with industry to provide a workable approach to providing access to source code. The 2018 Army IP directive provides a good starting point for this effort. We note in particular the foll...
	5.4 Kicking the Can Down The Road: Things That We Could Not Figure Out How to Fix

	Appendix D. Frequently Asked Questions (FAQs)
	Appendix E. DIB Guides for Software
	Ten Commandments of Software
	DIB Metrics for Software
	Do’s and Don’ts for Software

