Laws allowing establishment of AEDC turn 70

By Bradley Hix
AEDC Public Affairs

It was 70 years ago this month that President Harry S. Truman signed legislation that paved the way for the establishment of Arnold Engineering Development Center (AEDC).

On Oct. 27 and 28, 1949, Truman signed the Unitary Wind Tunnel Plan Act and the Air Engineering Development Center Act of 1949. The first bill authorized a master plan for the construction of transonic and supersonic wind tunnel facilities in an effort to bolster national defense. The second bill, signed the following day, authorized the $50 million appropriation by Congress for the construction of the Air Engineering Development Center, the site that would soon become known as the Arnold Engineering Development Center and eventually the Arnold Engineering Development Complex (AEDC).

To bring AEDC to fruition began years before the passage of these laws. This work was precipitated by the foresight of eventual General of the Air Force Harry “Hap” Arnold.

It was during a visit to England in the spring of 1941 that Arnold, who was commanding general of the Army Air Forces during World War II, observed a British plane flying without a propeller. He wanted to bring this type of capability to the U.S. military.

Realizing that developing new equipment would require the establishment of research and development organizations and better testing facilities, Arnold met with renowned mathematician, engineer and physicist Theodore von Kármán in New York in 1944 to discuss the future defense needs of the nation.

By Jill Pickett
AEDC Public Affairs

“The cost of total replacement is roughly 10 times the cost of this repair project,” Quattlebaum said.

Congestion in the underground space with ducting, other utilities and equipment foundations complicate repairs by limiting access to encased, explained Quattlebaum. This often requires holes to be drilled inside the pipe and forces base-wide raw water outages of four to six days for each outage.

Outages are costly both financially and in terms of testing time.

“Each outage costs the base tens of thousands of dollars in effort, requires personnel to crawl into awfully long, tight spaces, and AEDC loses significant amounts of potential test time,” said Maj. Michael Knauf, Aeropropulsion operations officer.

When it’s possible to increase operational reliability while minimizing the cost and disruption caused by maintenance, it’s a win-win.

Arnold Engineering Development Complex team members are implementing a trial run of such a solution to the problem of leaks in raw water pipes at Arnold Air Force Base. Raw water is used in the cooling systems of the test cells on base.

According to AEDC Public Affairs, cooling system engineer at Arnold, the leaks are a result of corrosion causing holes in the steel pipe. The freezing coolant when a leak occurs causes more leaks, resulting in production losses.

“A major un-commanded ‘runaway’ condition outside the AEDC Aerodynamic and Propulsion Test Unit would require the establishment of new test facilities, or result in an unplanned early test termination,” Webb said. “If left unchecked, it could cause the APTU Facility Control System to trip the heated fuel system offline.

“A runaway is when the output current increases significantly above the set point value,” Webb explained. “An inability to detect an unsafe condition and restore the rectifier to normal operations, by enabling it to detect an unsafe condition and prevent damage to expensive equipment.

The software was successful during a recent APTU test, when one of the rectifiers went into an un-commanded ‘runaway.’

“A runaway is when the output current increases significantly above the set point value,” Webb said. “If left unchecked, it can cause the APTU Facility Control System to trip the heated fuel system offline. This results in an unplanned early test termination, possible damage to the Heated Fuel System and a required repeat of the test conditions. A repeat test at APTU can be expensive and could cause additional degradation to the test article.”

AEDC testing cost-, time-saving water line repair method

By Deidre Ortiz
AEDC Public Affairs

Improvising by team members of the AEDC Aerodynamics and Propulsion Test Unit (APTU) at Arnold Air Force Base have prevented unscheduled downtime and avoided equipment damage at the facility.

Adam Webb, an electrical engineer for the Test Operations and Sustainment (TOS) contractor, National Aerospace Solutions, improvised upon software for the rectifiers to continuously monitor their operation, preventing damage to expensive equipment. A rectifier is an electrical device that converts alternating current to direct current.

The software was successful during a recent APTU test, when one of the rectifiers went into an un-commanded ‘runaway.’

“A runaway is when the output current increases significantly above the set point value,” Webb said. “If left unchecked, it can cause the APTU Facility Control System to trip the heated fuel system offline. This results in an unplanned early test termination, possible damage to the Heated Fuel System and a required repeat of the test conditions. A repeat test at APTU can be expensive and could cause additional degradation to the test article.”

Electricians Lon Britt, left, and Robert Campbell, right, along with electrical engineer Adam Webb look at a rectifier, like one that was responsible for an un-commanded “runaway” condition, outside the AEDC Aerodynamics and Propulsion Test Unit at Arnold Air Force base. Webb improved the logic used in the Programmable Logic Controllers on the units to handle un-commanded “runaways,” which allowed him to identify the part at fault. (U.S. Air Force photo by Jill Pickett) (This image has been altered by obscuring items for security reasons.)

Team members’ innovative methods advance test operations for AEDC hypersonic propulsion facility

By Deidre Ortiz
AEDC Public Affairs

Improvising by team members of the AEDC Aerodynamics and Propulsion Test Unit (APTU) at Arnold Air Force Base have prevented unscheduled downtime and avoided equipment damage at the facility.

Adam Webb, an electrical engineer for the Test Operations and Sustainment (TOS) contractor, National Aerospace Solutions, improvised upon software for the rectifiers to continuously monitor their operation, preventing damage to expensive equipment. A rectifier is an electrical device that converts alternating current to direct current.

The software was successful during a recent APTU test, when one of the rectifiers went into an un-commanded ‘runaway.’

“A runaway is when the output current increases significantly above the set point value,” Webb said. “If left unchecked, it can cause the APTU Facility Control System to trip the heated fuel system offline. This results in an unplanned early test termination, possible damage to the Heated Fuel System and a required repeat of the test conditions. A repeat test at APTU can be expensive and could cause additional degradation to the test article.”

Electricians Lon Britt, left, and Robert Campbell, right, along with electrical engineer Adam Webb look at a rectifier, like one that was responsible for an un-commanded “runaway” condition, outside the AEDC Aerodynamics and Propulsion Test Unit at Arnold Air Force base. Webb improved the logic used in the Programmable Logic Controllers on the units to handle un-commanded “runaways,” which allowed him to identify the part at fault. (U.S. Air Force photo by Jill Pickett) (This image has been altered by obscuring items for security reasons.)

Team members’ innovative methods advance test operations for AEDC hypersonic propulsion facility
The Gas Dynamic Facility at Arnold Air Force Base was dedicated in honor of Dr. Theodore von Kármán on Oct. 30, 1959. (U.S. Air Force photo)

Von Kármán would make further contributions to the field of aerodynamics, including the development of supersonic test facilities and development of supersonic wind tunnels. He would also help design a new wind tunnel for the study of combustion and supersonic flight. In 1945, von Kármán helped the Air Force create a new wind tunnel facility that could help guide the development of supersonic and hypersonic aircraft. He was also instrumental in forming the Gas Dynamics Facility at Arnold Air Force Base in his honor. Von Kármán helped provide the blueprint that led to the construction of Arnold Engineering Development Complex at Arnold Air Force Base. Seated behind von Kármán is Gen. Bernard Schriver, then-commander of Air Force Systems. (U.S. Air Force photo)

Dr. Theodore von Kármán speaks during the Oct. 30, 1959, ceremony to dedicate the Gas Dynamic Facility at Arnold Air Force Base. The ceremony was held to mark the official opening of the facility (blueprint that led to the construction of Arnold Engineering Development Complex at Arnold Air Force Base. Seated behind von Kármán is Gen. Bernard Schriver, then-commander of Air Force Systems. (U.S. Air Force photo)

Sixty years ago, a test facility at Arnold Air Force Base was named in honor of the man who helped provide the blueprint that led to the construction of the new Arnold Engineering Development Complex headquartered at Arnold AFB.

On Oct. 30, 1959, ceremony to dedicate the Gas Dynamic Facility at Arnold Air Force Base. The ceremony was held to mark the official opening of the facility (blueprint that led to the construction of Arnold Engineering Development Complex at Arnold Air Force Base. Seated behind von Kármán is Gen. Bernard Schriver, then-commander of Air Force Systems. (U.S. Air Force photo)

Sixty years ago, a test facility at Arnold Air Force Base was named in honor of the man who helped provide the blueprint that led to the construction of the new Arnold Engineering Development Complex headquartered at Arnold AFB.

On Oct. 30, 1959, ceremony to dedicate the Gas Dynamic Facility at Arnold Air Force Base. The ceremony was held to mark the official opening of the facility (blueprint that led to the construction of Arnold Engineering Development Complex at Arnold Air Force Base. Seated behind von Kármán is Gen. Bernard Schriver, then-commander of Air Force Systems. (U.S. Air Force photo)
“We were experiencing frequent leaks across the entire facility, a runway, so we thought the solution might be something like that,” he said. “But the pipes were too much to just run a new spool of pipe, so we developed a new method for improving upon the system.”

Testing from Page 3

Underground congestion also limited the location of new water lines. The lines being repaired were 72-inches in diameter and 36-inches in diameter. Above-ground installations posed other problems.

“Replacing the underground pipes would block access to the other systems and equipment in the area,” Quilter said. “Water piping as large as 72-inch diameter requires 72-inch diameter access to the other systems and equipment in the area.”

The solution – have a new spool of pipe and J-2 testing would be improved upon the rectifier software. It is anticipated the lining process will be improved and the potential for failure modes and problems reduced.

Penfold explained that the software method of tracking data has the potential to change the way Arnold AFB conducts maintenance. Now they can know when it is time to replace any equipment, which reduces the risk of losing critical data.

About APTU

APTU is a blowdown wind tunnel designed for aerodynamic testing of hypersonic and hypersonic systems and hardware at true flight conditions. Given its versatile design, APTU can support a myriad of test setups and instrumentation. The data generated by APTU can be used to improve the performance of hypersonic engines in Air Force history.
AEDC from page 1

Arnold asked von Kármán to form an advisory group tasked with providing recommendations on the direction of future avionics research. At Arnold’s request, members of this group visited Germany in May to survey test and research facilities captured during the Second World War. They found facilities, aircraft, engines and rockets more advanced than the A-1 Reunited nations had imagined.

Among those who made the trip to Germany was America scientist Dr. Frank Wattendorf. After the survey of the superior German ground testing facilities had been completed, Wattendorf penned a report known as the Trans-Atlantic Memo. This June 1945 report would become the baseline for establishing “a new Air Force development center.”

The Trans-Atlantic Memo was provided to Brig. Gen. Franklin O. Carroll, who was then commander of the engineering division at Wright Field, which was later renamed to the nearby Patterson Field to form Wright-Patterson Air Force Base in Ohio. Upon receiving the report, Carroll delivered a presentation to a Air Staff conference. Carroll discussed the advancements the Germans had made and the deficiencies in American wind tunnels. Carroll, who would later go on to become the first AEDC commander, requested the Air Technical Service Command conduct a preliminary study of the establishment of a new Air Force Applied Research and Development Center for wind tunnel testing facilities.

A committee was formed to complete this study. The committee’s report was released on Dec. 18, 1945. The report recommended the establishment of a new Air Force Applied Research and Development Center for wind tunnel testing facilities. The committee’s report included recommendations for the construction of a new facility, including the use of the site for the Air Engineering Development Center. However, the committee also noted that the Air Force was considering a proposal to construct a new wind tunnel at Alabama University. After reviewing these proposals, the committee recommended the establishment of a new Air Force Applied Research and Development Center for wind tunnel testing facilities.

U.S. Sen. Kenneth McKellar of Tennessee authored a letter in support of the proposal. He said the state could donate Camp Forrest to the Air Force for the construction of the center. McKellar’s letter was a report from von Karman’s group that visited Germany in which they proposed a facility for testing and development of jet propulsion, supersonic aircraft and ballistic missiles. The envisioned facility was to be located near the eventual construction of the Air Engineering Development Center. Both reports recommended the use of captured German test facilities in new facilities in order to save time of facility design and construction. It was also recommended that the installation be located near large sources of water and electric power.

A contract was awarded to Sverdrup & Parcel Inc., an engineering firm based out of St. Louis, Missouri, to conduct further planning for the proposed center. Sverdrup & Parcel Inc. recommended several possible sites for the new center, including Moses Lake in Washington, Grand Chute in Arizona and the Tennessee Valley area. The Moses Lake site was considered too vulnerable to attack, and a water dispute between Arizona and Huntsville, Alabama disqualified the Grand Chute site from consideration.

The Army was preparing to deactivate the Redstone Arsenal, and the use of the site could save time in the construction of housing and offices for the Air Engineering Development Center. However, the Army had changed course and the site had been closed after the Air Force began to use it instead. Sverdrup & Parcel Inc. presented to the Air Staff a report titled “Proposed Air Engineering Development Center” and recommended the use of the site for the Air Engineering Development Center. However, the use of the site was not considered feasible by the Air Force.

On April 28, 1948, the year after the Air Force officially separated from the Army to become its own branch of the military, Camp Forrest was named as the site for the Air Engineering Development Center. In early May 1950, the year after Congress authorized $100 million for the construction of the Air Engineering Development Center and less than 5 months after the first flight of the Boeing Dyna-Soar, the Secretary of the Defense approved the establishment of the new center.

The new center would be operated by a corporation under contract to the Air Force to cover the first 15 months of operation. Gen. Arnold died in January 1950. On June 25 of the following year, President Harry S Truman visited the center in Tennessee that Arnold had helped bring to life and dedicated the site in Arnold’s honor, naming it the Arnold Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

Corps of Engineers began construction on a perimeter fence and access road. Later that month, work began on a dam at the Elk River to create what would become known as a Winds Reservoir to provide cooling water for testing facilities. It was directed that the new center would be operated by a corporation under contract to the Air Force to cover the first 15 months of operation. Gen. Arnold died in January 1950. On June 25 of the following year, President Harry S. Truman visited the center in Tennessee that Arnold had helped bring to life and dedicated the site in Arnold’s honor, naming it the Arnold Engineering Development Center. However, the following year, construction on the Engine Test Facility was completed, and a supersonic test of the Air Force Falcon air-to-air missile was performed in what would come to be known as the von Karman Gas Dynamics Facility. The Arnold Engineering Development Center was re-designated as the Arnold Engineering Development Complex in July 2012.

AEDC Policy Notice

Military, DoD Civilians, Contractors, Visitors

Smoking is permitted solely in Designated Tobacco Areas (DTAs). If no sign exists, smoking is NOT permitted in that area. It is the responsibility of all smokers to keep DTAs clean of cigarette butts.

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.

During a June 25, 1951, ceremony at Arnold Air Force Base, President Harry S. Truman draws aside the curtain to reveal a dedicatory plaque mounted to a granite rock. The ceremony was held to dedicate the Air Engineering Development Center as the Arnold Engineering Development Center in honor of Gen. Henry H. “Hap” Arnold, who had passed away before the ceremony and whose vision was instrumental in bringing the center to fruition. Pictured in this picture is Arnold’s widow, Bee. U.S. Air Force photo

A model of the Boeing Dyna-Soar is tested in a transonic wind tunnel at Arnold Engineering Development Center in 1958. It was 70 years ago this month that President Harry S. Truman signed into law the bills that allowed for the establishment of what would become Arnold Engineering Development Complex.
The 2019-20 flu season is upon us. Flu viruses, also known as influenza, can occur yearly.

Seasonal flu activity often begins in October and continues into late May, with the peak months occurring between December and February. Flu is one of the most common infectious diseases that can affect anyone regardless of age. The group of people most vulnerable to complications from the flu are young children, elderly adults, pregnant women, and those with chronic conditions. Per the World Health Organization the flu results in 3 to 5 million cases of severe illness and about 290,000 to 650,000 respiratory related deaths each year. Getting a flu vaccination is one of the most effective ways to protect a person and family. Studies have shown that the flu vaccine can decrease the chance of coming down with the flu as much as 70 to 90 percent. Unfortunately the flu vaccine cannot completely prevent a person from getting the flu; however, it can lessen the severity and duration of symptoms. Getting vaccinated not only helps protect the vaccinated person, but also helps protect those around them as well by lessening the amount of flu that is circulating in the work area, home and communities. The CDC recommends flu vaccinations for everyone 6 months of age and older. You should get the vaccination early in the flu season; it takes at least two weeks for your body to develop protective antibodies to protect you.

According to the CDC, the following are the best ways to prevent seasonal flu:

1. Avoid close contact
2. Cover your mouth and nose when you cough or sneeze. When you are sick, keep your distance from others.
3. Stay home when you are sick. If possible, stay home from work, school, and errands when you are sick. This will help prevent others from getting sick too.
4. Cover your mouth and nose with a tissue when you cough or sneeze. If you do not have a tissue, use your elbow.
5. Avoid touching your eyes, nose, or mouth. Germs are often spread when a person touches something that is contaminated with germs and then touches his or her eyes, nose, or mouth.
6. Practice other good health habits. Clean and disinfect frequently touched surfaces at home, work or school, especially when someone is ill. Get plenty of sleep, be physically active, manage your stress, drink plenty of fluids, and eat nutritious food.

For other helpful tips, visit the following link: https://www.cdc.gov/flu/prevent/actions-prevent-flu.html.

Ascension Island’s hydroponics lab is revitalizing life on the volcanic island

By Airman 1st Class Zoe Tharbeck
65th Space Wing Public Affairs

ASCENSION ISLAND AIDED AIRFIELD (APFS) — Space has been the center of con-

A

tributions in the news and entertainment. There was even a movie about fu-

ter future inhabitants on Mars! But how would that happen? How would we be able to sustain grow-

ing food? Mars, a dry and dusty planet, would not be able to support human life or-

ganically. And just like the case would be on Mars, the food choices on Ascension Island are very limited and de-

pend completely on what supplies are flown to the island.

“The facilities are in 8,721 square foot green-

house that has two year-round crop bays and one leaf-

crop bay,” in a 2008 article Rick Simmons, hydro-

‘Island’ isn’t a laboratory in the traditional sense,” Little said. “Our facilities are in an 8,721 square foot green-

house that has two year-round crop bays and one leaf-
crop bay. In the greenhouse, the team on Ascension uses two different systems of growing fresh produce on the volcanic island. For leafy crops, like tomatoes and peppers, they use a nutrient injection system, bucket system and Peritine, which is a naturally organic curing volcanic glass that has a relatively high water content. For leafy crops, like lettuce and herbs, they use a nutrient film tech-
nique, where a very shal-

low stream of nutrient-

rich fluid, filled with a nutrient film tech-
nique, where a very shallow stream of nutrient-rich fluid is recirculated through the roots of the plants.

Although the lab has grown over the years, hy-

droponics is not new to As-

cension Island. “During World War II, the shipping of fresh veg-

tables overseas was not practical and remote islands where troops were stationed were not a place where they could grow their vegetables,” in a 1945 article. “In 1945, the U.S. Air Force built one of the first large hydroponic farms on Ascension Island, using crushed volcanic rock as a growing medium.”

“Growing conditions haven’t changed since World War II; therefore, the need for hydroponics still exists,” Little said. “Just opened it. In 1945, shipping fresh vegetables to a remote island is not as effective and with the lack of arable soil on the island. We face the same dilemma as on earth—how to reduce costs and meet the nutritional needs of the troops and contractor personnel.”

With the revitalization of the hydroponics lab, Lit-
tle thinks a shift could be on the horizon for Ascension Island.

“In addition to having virtually limitless sup-

ply of fresh produce and reducing the cost of trans-

portation, morale is greatly improved knowing that produce picked the very day, is awaiting everyone in the base dining hall,” Little said. “Hydroponics allows us to meet demands, reduce costs and provide nutrition-

al value for our personnel.”

As the team continues to experiment with different crops, they hope to expand the size of the lab and the list of what they’re able to grow.

“If we were to operate at full greenhouse capacity, we could produce enough fresh produce to feed the entire population of Ascen-

son Island,” Little said. “That’s about 700 people.”

For the 45th Space Wing’s Ascension Island Auxiliary Airfield, nei-

der the sky, nor Mars, is

the horizon for Ascension Island.”

As the team continues to experiment with different crops, they hope to expand the size of the lab and the list of what they’re able to grow.

“If we were to operate at full greenhouse capacity, we could produce enough fresh produce to feed the entire population of Ascension Island,” Little said. “That’s about 700 people.”

For the 45th Space Wing’s Ascension Island Auxiliary Airfield, neither the sky, nor Mars, is
AFRL team enhances safety for survivalists through wearable health monitoring technology

By Whitney Wetsig

Air Force Research Laboratory

Communications Division

WRIGHT-PATTERSON AIR FORCE BASE, Ohio – Air Force Research Laboratory team recently delivered version 2.0 of the Survival Health Awareness Responders Kit, or SHARK, to U.S. Air Force instructors at Joint Base San Antonio-Lackland Camp Bullis, a 28,000-acre site in Texas, used to train Survival, Evasion, Resistance and Escape, or SERE, specialists.

With SHARK, sensors bundled in a belt transmits key metrics including heart rate and estimated core temperature from a smartphone to a server. As students undergo physical endurance tests during extended periods of isolation, the SHARK lowers instructors to monitor this data in real-time, and issues alarms for heart rate spikes and significant temperature increases.

Since the device identifies increases in temperature, a recognition the system “truly eases my mind as a commander,” he said since it “allows me to provide preventative care (in course) to avoid serious medical situations.”

Prior to SHARK, instructors checked on trainees at regular intervals to ensure their well-being. In certain cases, they administered aid to students with elevated body temperatures, said Tech. Sgt. John Garcia, a SERE instructor. However, since the introduction of this monitoring technology, ice baths have become less frequent because the system alerts instructors before students reach what they call “the danger zone.”

To develop version 2.0, the SHARK team enlisted the help of student instructors majoring in computer science. Loren Baum, who is now a student at the University of Dayton, helped with the mobile app arena to the system that the team configured to be able to send the data to the instructor’s smartphone or computer to monitor it continuously.

The commander of Detachment 3, 46th Training Squadron, Maj. Toby Andrews, said that the system “helps our instructors deal with the demands of the course in a more human-centered way.”

The SHARK technology was born when the U.S. Air Force Survival School at Fairchild Air Force Base opted to include a more precise safety monitoring in its training programs. Since AFRL had experience with wearable monitoring technology, leadership from 57th Wing worked with the SHARK team to develop a solution for the SERE instructors to begin a new project.

“In the meantime, the SHARK team is also working with other groups who are interested in acquiring this technology including firefighters, NASA scientists and U.S. Army Special Forces. Members are currently exploring a version of the system that the Department of Defense Fire Academy can use under fire protection gear to prevent heat injury.
October is not all skeletons and jack-o-lanterns, there are also some scary things that live in cyberspace. October is National Cybersecurity Awareness Month with this year’s theme, “Be CyberSmart.”

The awareness month is a collaborative effort between the Department of Defense, the Department of Homeland Security and its public and private partners. It is up to the total force to stay vigilant, keep learning and be ready for any potential cyber threat.

The Air Force Office of Information Domination and chief information officer worked to develop themes that align with the DOD weekly themes. These weekly themes are meant to assist with changing the culture of cyberresilience throughout the Air Force:

• Week 1: Cybersecurity is everyone’s responsibility
• Week 2: Defending the family – Cybersecurity practices at home
• Week 3: Privacy, PII and FOIA – Reducing mission cyber risks by protecting info
• Week 4: Phishing – Continuous training makes a difference

An already scary cyber world can be scarier when one common threat, identity theft, comes knocking, seeking a reward. However, like other threats, being cyber smart can help the Air Force family be prepared and resilient. There are eight common types of identity theft:

• Financial identity theft
• Driver’s license identity theft
• Criminal identity theft
• Social security identity theft
• Medical identity theft
• Insurance identity theft
• Child identity theft
• Synthetic identity theft

The most well-known is financial identity theft, classified in one of two ways: When a thief makes out a check, steals the victim’s money or when thieves open new credit cards and loans in the victim’s name.

Two more types of identity theft are driver’s license and criminal identity theft. Driver’s license theft is a threat posed as a person, possibly damaging the victim’s driving record. Criminal identity theft is the identity the victim’s identity is used with police, resulting in a criminal record being created in the victim’s name. When this occurs, the victim’s identity theft case can have problems with law enforcement or be unable to gain employment. Another form of identity theft involves social security numbers and benefits. Most government benefits require a social security number to obtain. Social security number thieves can falsely obtain documents when they have access to a victim’s social security number.

Medical identity theft can be used to commit health insurance and medical coverage. Related to medical identity theft is insurance identity theft. Thieves leave the victim with the problems after they use the victim’s identity, including difficulties in securing potentially higher insurance premiums and quite possibly troubles in acquiring medical coverage later on.

Even children fall victim to cyber threats and identity theft. A child’s information can be used to defraud the government, create documents, commit crimes and apply for loans. Additionally, when thieves can’t get a victim’s identity, they can still use parts of an identification to create a synthetic identity.

These can create scary problems for potential victims. Know your current personal information, it is one of the most unique things that isn’t available on the market today so be sure to introduce this to the public.

Air Force recognizes Energy Action Month 2019

The Air Force Office of Scientific Research has funded liquid metal systems which autonomously change structure so that they become better strain materials have many applications, such as next-generation wearable electronics. For instance, the material could be integrated into a long-sleeve garment and used for transferring power through the shirt and across the body in a way that bending an elbow or rotating a shoulder won’t change the power or transferred.

ARL researchers also evaluated the thermal-heating properties in a form factor resembling a heated glove. They measured thermal response with sustained fingercart movement and retained a nearly constant temperature with a constant applied voltage, unlike current state-of-the-art stretchable heaters that lose substantial thermal power generation when strained due to the resistance changes. These properties and the material’s fabrication details are directly compared in the current issue of the Journal of Applied Physics.

“This response to stretching is the exact opposite of what you would expect,” said Dr. Christopher Tabor, AFRL research scientist on the project. “Typically a material will increase in resistance as it is stretched simply because the current has to pass through more material. Experimenting with these liquid metal systems and seeing the opposite response was completely unexpected.”

“Thieves leave the victim with the problems after they use the victim’s identity, including difficulties in securing potentially higher insurance premiums and quite possibly troubles in acquiring medical coverage later on.”

By Donna Lindner
Air Force Research Laboratory

WRIGHT-PATTERSON AIR FORCE BASE, Ohio, The Air Force Research Laboratory has developed liquid metal systems which autonomously change structure so that they become better strain materials have many applications, such as next-generation wearable electronics. The material currently researched by ARL scientists, called Polymorphic Liquid Metal Networks, does just the opposite. These liquid metal network works can change strain from 0 to 700 percent, autonomously respond to that strain to keep the resistance between those two states virtually the same, and still return to their original state. It is all due to the self-organized nanostructure that performs this role automatically.

“This response to stretching is the exact opposite of what you would expect,” said Dr. Christopher Tabor, AFRL research scientist on the project. “Typically a material will increase in resistance as it is stretched simply because the current has to pass through more material. Experimenting with these liquid metal systems and seeing the opposite response was completely unexpected.”

“Thieves leave the victim with the problems after they use the victim’s identity, including difficulties in securing potentially higher insurance premiums and quite possibly troubles in acquiring medical coverage later on.”

By Donna Lindner
Air Force Research Laboratory

The material currently researched by ARL scientists, called Polymorphic Liquid Metal Networks, does just the opposite. These liquid metal network works can change strain from 0 to 700 percent, autonomously respond to that strain to keep the resistance between those two states virtually the same, and still return to their original state. It is all due to the self-organized nanostructure that performs this role automatically.

“This response to stretching is the exact opposite of what you would expect,” said Dr. Christopher Tabor, AFRL research scientist on the project. “Typically a material will increase in resistance as it is stretched simply because the current has to pass through more material. Experimenting with these liquid metal systems and seeing the opposite response was completely unexpected.”

“Thieves leave the victim with the problems after they use the victim’s identity, including difficulties in securing potentially higher insurance premiums and quite possibly troubles in acquiring medical coverage later on.”

By Donna Lindner
Air Force Research Laboratory

The material currently researched by ARL scientists, called Polymorphic Liquid Metal Networks, does just the opposite. These liquid metal network works can change strain from 0 to 700 percent, autonomously respond to that strain to keep the resistance between those two states virtually the same, and still return to their original state. It is all due to the self-organized nanostructure that performs this role automatically.
Mission warning radars see modern equipment installed

WASHINGTON, D.C. — Octo-
ber 21, 2019

Every year, the U.S. Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft.

This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and wa-
ter management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)

By Corrie Poland

Air Force recognizes Energy Action Month to highlight the critical role energy plays in Air Force operations, and to encourage smart energy use and management for our installations, ground vehicles, and aircraft. This year, our theme of “Energy Able, Mission Capable” will showcase how effective energy optimization and resilience are critical to our global mission. Whether we’re championing projects to power up, encouraging Airmen to make smart energy decisions at individual installations, our goal is to foster a culture that prioritizes energy optimization and water management. (Courtesy graphics)
Veterans of Foreign Wars Post 1893 is under new management.

The mission of the post, located on Woods Reservoir at 6190 AEDC Road, Estill Springs, TN 37330, is to serve veterans and local communities. The facility is also open to the public. Available activities include a bowling machine, pool, and food and beverages. The club is open from noon to midnight Thursday through Sunday. Karaoke is held every Thursday, Friday, and Saturday from 8 p.m. to midnight.

The VFW is a congressionally chartered 501c3 nonprofit Veterans Service Organization. Disclaimer: This is a private organization which is not part of the Department of Defense or any of its components and has no governmental status.

Zoologist to speak at AEDC Woman’s Club November meeting

By Barbara McGuire

AEDC Woman’s Club

The AEDC Woman’s Club will hold its next meeting Nov. 7 at the Arnold Lakeside Center with David Withers, a zoologist with the National Heritage Inventory Program of the Tennessee Department of Environment and Conservation, as the featured guest. Withers has been with the program since 1993. A large part of his research is at the Sherwood Forest of the South Cumberland State Park. Table donations will be going to the Blue Monarch.

Withers has been with the program since 1993. A large part of his research is at the Sherwood Forest of the South Cumberland State Park. Table donations will be going to the Blue Monarch.

During the Oct. 3 meeting, the club welcomed Leigh Gardner, a park ranger at Old Stone Fort State Archaeological Park, who spoke of her time as a student at Middle Tennessee State University and then training to become a ranger. Table donations were given to The Shepherd’s House of Tulahoma.

The social hour of the Nov. 7 meeting starts at 9:30 a.m., with the business meeting and program beginning at 10 a.m. Reservations must be made no later than noon Oct. 31. Make reservations by calling 931-393-2552 or 931-434-5415.

The AEDCWC meetings are open to the public and provide the opportunity to meet the members and become a member. You don’t need to have military connections or be involved with Arnold Air Force Base to visit and become a member.

For information about the AEDCWC, call the membership chairman at 248-872-7923.

Disclaimer: This is a private organization which is not part of the Department of Defense or any of its components and has no governmental status.

Local VFW post under new management

By Dave Uselton

VFW Post 1893 is under new management.

The mission of the post, located on Woods Reservoir at 6190 AEDC Road, Estill Springs, TN 37330, is to serve veterans and local communities. The facility is also open to the public. Available activities include a bowling machine, pool, and food and beverages. The club is open from noon to midnight Thursday through Sunday. Karaoke is held every Thursday, Friday, and Saturday from 8 p.m. to midnight.

The VFW is a congressionally chartered 501c3 nonprofit Veterans Service Organization.

Disclaimer: This is a private organization which is not part of the Department of Defense or any of its components and has no governmental status.
Remote on the move: An Iraqi and an American airman combine efforts to aid the needy

By Senior Airman Alyssa D. Van Hook

JOINT BASE ANDREWS, Md. (AFNS) – In 2005, Airman 1st Class Saeed Shnawa was not Airman 1st Class Saeed Shnawa. He was a 21-year-old Iraqi student of technology at a university in Baghdad.

That’s when America and coalition forces arrived to overthrow the Iraqi government, turning Baghdad into a war zone. Like many young men and women, Shnawa was eager to defend his city, bound for western Iraq, where his parents lived at the time.

His life was permanently altered.

Shnawa said Saddam Hussein’s propaganda convinced much of the country that the west was evil. But those notions were dashed when he saw that same face to face with American service members.

“I felt like I was going to west – where my parents lived – through a wall,” Shnawa said. “Many villages, including that one, had been deprived of necessities by the regime. That’s where I first met them.”

The meeting happened when he noticed a crowd of people at an American convoy.

Curious, Shnawa approached the crowd and discovered the troops were having great difficulty communicating with the villagers.

“Where are the women and children in need?” he asked, in an effort to protect American service members.

Shnawa, a young Iraqi student at the time, helped the soldiers translate, and it quickly became apparent that there were more than two years apart.

“After all the danger we made the decision to stay,” Inaam said. “It’s something different than his service in Iraq. I realized it was different.”

In January of 2013, after more than two years apart, Inaam was finally reunited with her husband in the U.S. The discrepancies, the fear, the worry – it was over.

In 2017, Saeed came home with his citizenship, Shnawa said she started to warm up to the idea.

“I was always afraid for my family to remain alive, then did not have the safety of your home,” Shnawa said.

She complied. Finally, her husband broke the silence. One call turned into a few text messages, followed by daily email.

“I hold a tremendous amount of honor toward those troops in Iraq,” Shnawa said. “It’s something I will never be able to repay. The future being there is an impossible dream.”

In 2017, Saeed came home with his citizenship. But even in all his pride, he said he found himself wishing the troops who did their work could witness her home, her children.

In January of 2013, after more than two years apart, Inaam was finally reunited with her husband in the U.S. The discrepancies, the fear, the worry – it was over.

“I hold a tremendous amount of honor toward those troops in Iraq,” Shnawa said. “It’s something I will never be able to repay. The future being there is an impossible dream.”

In 2017, Saeed came home with his citizenship. But even in all his pride, he said he found himself wishing the troops who did their work could witness her home, her children.

“In January of 2013, after more than two years apart, Inaam was finally reunited with her husband in the U.S. The discrepancies, the fear, the worry – it was over.

Shnawa locked his phone and disappeared for longer than seven years.

“后勤 was the worst part of my life,” Inaam said. “In order to keep their hope strong, they decided to cut off all contact with their wife while doing work with coalition forces.

“Whenever they could schedule it, they spoke on the phone. It was hard, but a little better than before. Inaam said, “I finally had assurance that he was alive.”

Shnawa’s dedication was instrumental in helping him overcome the fear that his family would not survive. His bravery is what made possible the American and Iraqi airman to conquer the long winding path that ended with Saeed Shnawa becoming an American Airman.

Shnawa said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said. Airman 1st Class Saeed Shnawa, 811th Operations Support Squadron, aircrew flight equipment technician, poses for a photo at Joint Base Andrews, Md. June 6. Shnawa received coins and letters of commendation for his work with the U.S. and coalition forces during Operation Iraqi Freedom. (U.S. Air Force photo by Senior Airman Alyssa D. Van Hook)

Inaam said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said.

Inaam said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said.

Inaam said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said.

Inaam said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said.

Inaam said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said.

Inaam said.

It was 2011 when Inaam finally got the whole story. “He called me from America and finally told me everything,” she said.
