Decision Support Tools for Mobility Analysis over Snow, Ice, Frozen/Thawing Ground

Cold Regions Research & Engineering Laboratory (CRREL)
Sally A. Shoop, PE, PhD
Force Projection & Sustainment Branch

7 May 2019
Issue

• The US Military has been fighting in the desert for the last 20 years.
• We have adversaries with well known capabilities in northern climates.
• New technologies need to be adapted to terrains unique to the far north for mobility superiority
Snow, Ice, Frozen/Thawing Ground, Peat, Vegetation

Snow
- Traction decreases
- Additional resistance and plowing forces
- Need to decrease weight and pressure
- Deep snow can obscure obstacles
 - Cannot “see” them
 - Could float over them

Ice
- Decreased traction
 - Climbing, braking, cornering
 - Very slippery when wet
 - Very slippery with light snow cover

Lake & river ice
- Strength varies with thickness and temperature
- Moving loads cause waves under ice
- Predicting safe ice crossings
- Removing river ice to place a bridge

Freezing & Thawing Soil
- Very strong when frozen
- Very slippery and weak when thawed (water doesn’t drain)
Seasonal Mobility Assessments in Northern Regions

Characterize terrain/vehicle interactions

Develop vehicle models

Validate mobility models

Analyze physical terrain conditions

Construct terrain database

Predict speed maps

Vehicle Models

Terrain Models

UNCLASSIFIED
Dynamic Cold Regions Terrain Variables

- Snow cover characteristics (covered area, depth, density)
- Temperature
- Precipitation
- Frost Depth
- Freeze/thaw cycles
- Wind speed
- Wind direction
- Humidity
- Soil moisture
- Soil temperature
Snow cover likelihood in MARCH
Based on GlobSnow 1 km Snow Extent product
From optical remote sensing (AVHRR, MODIS, VIIRS)

Example: Global Snow Cover Area (SCA)

Statistical estimates of Snow Water Equivalent (SWE) used to estimate snow depth and density
Example: Sea ice extent January to April 2018

Source: http://nsidc.org/data/seaice_index/archives
UNCLASSIFIED
Generate Summer Terrain Parameters:

- Elevation
- Land Usage
- Soil Type
- Soil Moisture

Satellite Imagery

UNCLASSIFIED
Generate Winter Terrain Parameters:

- Frost Depth
- Snow Density

Satellite Imagery

- Wetland
- Forest
- Mountain
- Water
- Urban

Snow Depth
Example Results: Seasonal Impacts for Tracked Vehicle

Speed Maps

Speed Range (kph)
- 50 – Max Speed
- 30 – 50
- 15 – 30
- 5 – 15
- 0 – 5
- Water

- In winter frozen ground improves vehicle mobility
- Not able to traverse peat soils unless frozen
- Greatest speed limiter is snow-covered slopes
Example Results: Seasonal Impacts for Light Wheeled Vehicle

Speed Range (kph)

- 50 – Max Speed
- 30 – 50
- 15 – 30
- 5 – 15
- 0 – 5
- Water

- Sufficient mobility during summer and winter, but not spring thaw
- Vehicles cannot traverse peat unless frozen
- Greatest speed limiter is wet soil and snow-covered slopes
Example Results: Different Vehicles in Winter

- High slopes have greater impact on speed in winter
- Peat soils are now frozen so vehicles can traverse safely

Speed Range (kph)

- 50 – Max Speed
- 30 – 50
- 15 – 30
- 5 – 15
- 0 – 5
- Water

UNCLASSIFIED
Summary: Seasonal Mobility Assessments Process

Climatology Analysis → Terrain Data Acquisition → Snow & Ice Cover → Frost/Thaw Predictions → Terrain and Vehicle Characteristics

Speed Maps → NATO Mobility Modeling

<table>
<thead>
<tr>
<th>Unit</th>
<th>NTU</th>
<th>Land_Class</th>
<th>Soil_Class</th>
<th>Slope_Percent</th>
<th>Soil_Moisture(Vol)</th>
<th>Snow_Depth</th>
<th>Snow_Density</th>
<th>Frost_Depth</th>
<th>Thaw_Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1310</td>
<td>1</td>
<td>41</td>
<td>30</td>
<td>19</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2444</td>
<td>1</td>
<td>41</td>
<td>50</td>
<td>18</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2724</td>
<td>1</td>
<td>41</td>
<td>30</td>
<td>17</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>463</td>
<td>1</td>
<td>41</td>
<td>15</td>
<td>17</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1932</td>
<td>1</td>
<td>41</td>
<td>30</td>
<td>18</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>306</td>
<td>1</td>
<td>41</td>
<td>15</td>
<td>19</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1432</td>
<td>1</td>
<td>41</td>
<td>50</td>
<td>19</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1016</td>
<td>1</td>
<td>41</td>
<td>60</td>
<td>18</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>94</td>
<td>1</td>
<td>41</td>
<td>7</td>
<td>17</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1455</td>
<td>1</td>
<td>41</td>
<td>60</td>
<td>17</td>
<td>0.32</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED
Similarities in The Search for an Arctic Landing Zone (LZ)

19 April 2009 MODIS imagery

Resolute Bay

Gascoyne Inlet

UNCLASSIFIED
Phoenix Compacted Snow Airfield Engineering Design

First Landing, Nov 2016

Compacted Snow Airfield:
• First wheeled snow runway since Russians in 1950s
• Heaviest wheeled aircraft on snow, ever!
• >500,000lbs, 160 psi tires
Matching Similar Ecotypes: Atmospheric, Terrain & Biological Conditions
Next Steps:
Entry and Sustainment in Complex, Contested Environments

1. Develop new ways to generate terrain data using remote assessment
2. Quantify/Incorporate uncertainty in results
3. Automated tools for terrain file generation
4. Evaluate/validate results for current vehicle fleet
5. Incorporate deep snow, over-snow and other winter surfaces
6. Add capabilities for peat and highly organic soils
7. Add vegetation effects on terrain strength and mobility

Multinational terrain data sharing agreements!
NG-NRMM and High-fidelity Modeling:

1. Cold regions terrain mechanics (snow, ice, frozen/thawing ground, peat and organic soils, heavily vegetated ground)
2. Implement results into high-resolution mobility models
3. Sensor performance models for cold terrains
4. VANE, ANVEL, plus OpenSource software

NATO: AVT 248: Next-Generation NRMM (Standards)

NATO: AVT-ET-194: Assessment and Tools for Mobility of Autonomous Military Ground Systems

From: J. Durst, Dissertation Defense, March 4, 2019
Next Generation Combat Vehicle: Autonomy in Cold and Challenging Terrain

If the autonomous vehicle can’t sense it, it can not effectively maneuver.

1. Artificial Intelligence/Machine Learning (AI/ML) using stand-off sensing data for terrain assessment
2. AI/ML for vehicle performance prediction in cold terrain
3. Autonomy and control in extreme environments
Seasonal Impacts on Mobility: Conclusions

- Seasonality has significant impacts on mobility, especially in austere, off-road environments.
- Accurate representation of terrain conditions is essential for robust mobility predictions.

Next Steps
- Future vehicle technology needs to be adapted for terrain unique to northern regions:
 - Revive deep and over-snow vehicle capability
 - Address S&T gaps
 - Apply new M&S techniques
 - Develop autonomous capabilities