SWAP Program Visits: Questions and Observations

Programs Reviewed

Reviewed 6 programs to date:

Next Generation fighter jet

Next Generation ground system
Kessel Run—AOC Pathfinder
Space tracking system

Naval radar system
Cross-service business system

What we hope to understand:

Why is the software the way it is?

How have you gone about developing and deploying it?

What constraints/obligations have you been under and what would be your
recommendations to change those?

Standard Questions

What is the coding environment and what languages/SW tools do you use?

What do the software and system architectures look like?

What is the computational environment (processing, comms, storage)?

How is software deployed and how often are updates delivered to the field?

What determines the cycle time for updates?

How does software development incorporate user feedback? What is the developer-user
interface? How quickly are user issues addressed and fixed?

How long does it take to compile the code from scratch?

How much access does the DoD have to the source code?

How is testing done? What tool suites are used? How much is automated? How long
does it take to do a full regression test?

How is cybersecurity testing done? How are programs/updates certified?

What does the workforce look like (headcounts, skill sets)? How many programmers?
How much software expertise is there in the program office?

What is the structure of the contract with the government? How are changes, new
features, and new ideas integrated into the development process?

Preliminary Observations

Software is being delivered to the field 2-10X slower than it could be due to outdated
requirements, test requirements, and lack of trust in SW

Many systems are using legacy hardware and outdated architectures that make it much
harder to exploit advances in computing and communications

SWAP Study Final Release, 3 May 2019 S117



e Program requirements were often formulated 5+ years ago (when the threat environment
+ available technologies were very different => wasted effort)

e New capabilities and features are added in multi-year (multi-decade?) development
“pblocks” instead of continuously and iteratively
Most program offices don’t have enough expertise in modern SW methods
Most SW teams are attempting to implement DevOps and “agile” approaches, but in
most cases the capabilities are still nascent (and hence fragile)

e Transition to DevOps is often hindered by a gov’t support structure focused on technical
performance in a waterfall setting (“waterfall with sprints”)
Information assurance (IA) is complex, difficult, and not yet well architected
Test, certification and 1A are almost always linear “tailgate” processes instead of being
integrated into a continuous delivery cycle.

What should be done differently in future programs?

Spend time upfront getting the architecture right: modular, automated, secure

Make use of platforms (hardware and software) that continuously evolve at the

timescales of the commercial sector (3-5 years between HW/OS updates)

Start small, be iterative, and build on success — or terminate quickly

Construct budget to support the full, iterative life cycle of the software

Adopt a DevOps culture: design, implement, test, deploy, evaluate, repeat

Automate testing of software to enable critical updates to be deployed in days to weeks,

not months or years (also requires changes in testing organization)

e Have a local team of DoD software experts who are capable of modifying or extending
the software through source code or APl access

e Separate development of mission level software from development of IA-accredited
platforms

SWAP Study Final Release, 3 May 2019 S118



