Vignette 6 — JMS: Seven Signs That Your Software (Program) Is in Trouble
Richard Murray

The DIB SWAP study visited the JMS (JSpOC [Joint Space Operations Center] Mission System)
program in August 2018. The JMS team was open and cooperative, and the people working on
the project were highly capable and well-intentioned. At the same time, our assessment of the
program was that it was doomed to failure. Because the JMS program was restructured after our
visit, we felt it was OK to spell out the problems as examples of what can go wrong.

While there were many issues that led to the failure of the JMS program, the following seven are
ones that are not a function of that program per se, but rather of the process that created it. We
thus call these out as general things to look for as indications that your software (program) may
be in trouble.

1. The problem is being made harder than it needs to be. JMS increment 2 had a budget of
just under $1B. The basic function of the JMS system was to track objects in space. While there
are engineering challenges to doing this with the proper precision, the basic problem is not that
hard. Our sense was that the project could be converted to an “app” within AOC Pathfinder, or
something equivalent. Assign 20-30 [50? 1007?] programmers (+ 20% program management,
administration) to work on it for 3 years at $10-20M/year, with first capability due in 6 months and
increments every 2 weeks (based on user feedback). Interface to existing data sources (via
software interfaces), run in the cloud, and use a scalable architecture that can get to 1M objects
in the next year or two. Make sure that the app architecture can accept a commercial product if
one is available that meets the needs of the user (there were some indications this might have
already been happening). Target budget: $10-20M/year for first 5 years, $5-15M/year in
perpetuity after that.

2. The requirements are outdated. Many of the requirements for JMS increment 2 appeared to
trace back to its original inception circa 2000 and/or its restart in 2010. Any software program in
which a set of software requirements was established more than 5 years ago should be shut down
and restarted with a description of the desired end state (list of features with specifications) and
a prioritization of features that should be targeted for simplest usable functionality.

3. The program organizational structure is designed to slow things down. Any software
program with more than one layer of indirection between the prime contractor/integrator and the
companies doing the engineering work should be shut down and restarted with a set of level-of-
effort—style contracts that go directly from the system integrator to the companies delivering code.
The system integrator should own the architecture, including the design specifications for the
components that plug into that architecture.

4. The program contract structure is designed to slow things down even more. The program
had at least a dozen contracts with all sorts of small companies and National Labs. It was
apparently treated as a COTS integration problem with lots of pieces, but it was implemented in
a way that seemed designed to ensure that nobody could make any progress.
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5. The program is implementing “waterfall with sprints” (otherwise known as Agile BS).
The program was implementing “sprints” of ~6—9 months (Agile BS detector alert!). Sprints had
hundreds of tasks spread across six development teams. Just coordinating was taking weeks.
For a while the program had used 4-week sprints, but infrastructure was not available to support
that cadence. Test happened after delivery of software, with very little automation.

6. The program management office is too big and does not know enough about software.
We were told there were 200—260 FTEs in the program office. The overall program management
should be limited to 10-20% of the size of the program so that resources are focused on the
development team (including system architects, user interface designers, programmers, etc.),
where the main work gets done. The program office must have expertise in software programs
so that it is able to utilize contract and oversight structures that are designed for software (not
hardware).

7. OT&E is done as atailgate process. As an ACAT1 program, JMS was mandated to conduct
operational test, a process that nominally required the program to freeze its baseline, do the tests,
and then wait 120 days for report. The Operational User Evaluation conducted in early 2018 was
terminated early by the Air Force due to poor performance of the system. The OT&E process
being used by the program added information to support the termination decision, but it is
important to note that had the program not been terminated the tailgate nature of the evaluation
was one that would have added further delays.

The JMS program has since undergone major changes to address the issues above, so the
criticisms here should be taken as an example of some of the signs that a program is in trouble.
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