Vignette 6 — JMS: Seven Signs That Your Software (Program) Is in Trouble
Richard Murray

The DIB SWAP study visited the JMS (JSpOC [Joint Space Operations Center] Mission System)
program in August 2018. The JMS team was open and cooperative, and the people working on
the project were highly capable and well-intentioned. At the same time, our assessment of the
program was that it was doomed to failure. Because the JMS program was restructured after our
visit, we felt it was OK to spell out the problems as examples of what can go wrong.

While there were many issues that led to the failure of the JMS program, the following seven are
ones that are not a function of that program per se, but rather of the process that created it. We
thus call these out as general things to look for as indications that your software (program) may
be in trouble.

1. The problem is being made harder than it needs to be. JMS increment 2 had a budget of
just under $1B. The basic function of the JMS system was to track objects in space. While there
are engineering challenges to doing this with the proper precision, the basic problem is not that
hard. Our sense was that the project could be converted to an “app” within AOC Pathfinder, or
something equivalent. Assign 20-30 [50? 1007?] programmers (+ 20% program management,
administration) to work on it for 3 years at $10-20M/year, with first capability due in 6 months and
increments every 2 weeks (based on user feedback). Interface to existing data sources (via
software interfaces), run in the cloud, and use a scalable architecture that can get to 1M objects
in the next year or two. Make sure that the app architecture can accept a commercial product if
one is available that meets the needs of the user (there were some indications this might have
already been happening). Target budget: $10-20M/year for first 5 years, $5-15M/year in
perpetuity after that.

2. The requirements are outdated. Many of the requirements for JMS increment 2 appeared to
trace back to its original inception circa 2000 and/or its restart in 2010. Any software program in
which a set of software requirements was established more than 5 years ago should be shut down
and restarted with a description of the desired end state (list of features with specifications) and
a prioritization of features that should be targeted for simplest usable functionality.

3. The program organizational structure is designed to slow things down. Any software
program with more than one layer of indirection between the prime contractor/integrator and the
companies doing the engineering work should be shut down and restarted with a set of level-of-
effort—style contracts that go directly from the system integrator to the companies delivering code.
The system integrator should own the architecture, including the design specifications for the
components that plug into that architecture.

4. The program contract structure is designed to slow things down even more. The program
had at least a dozen contracts with all sorts of small companies and National Labs. It was
apparently treated as a COTS integration problem with lots of pieces, but it was implemented in
a way that seemed designed to ensure that nobody could make any progress.

SWAP Study Final Release, 3 May 2019 62

JMS Contract Structure cicazo10-201

LinQuest SN

AREOSPACE

MITRE MIT/LL No contract per se;
(FFRDC) negotiated funding
Negotiated (FFRDC/Nat Lab)

Staffing

SPAWAR* AGI
i {Resnoiekis (Developer)
(integrator) Acquisition Sole
Agency) source
No contract or authoritative a.i. Solutions contracts

e relationship with (Developer)
administering the |~ d€velopers
CGI, Omitron, LM

| and ISS contracls AFLCMC

(Acquisition center)

AGI = Analytics Graphics Inc —_—
ai. Solutions = Aerospace developer |- ceac iy oty Mission No contract language
SPAWAR = Space & Naval Warfare & Databage Apps to support,

Systems Center encourage or require

SMC = Space & Missile System Center LM & Om'itron communication

ISS = Intelligent SW Solutions ISS TDKC {Peyexneis tnderine . among developers
(Developer) (Developer) CCIC2S Contract)

TDKC = The Design Knowledge Co

LM = Lockheed Martin Small Business Traditional single integrator

commercialization & sustainment type contract,

Omitron = Astro SW developer type contracts awarded Sept ‘00

CCIC2S = Combatant Commander’s
Integrated C2 Sys

JMS contract structure. [Photo courtesy of former JMS program office]

5. The program is implementing “waterfall with sprints” (otherwise known as Agile BS).
The program was implementing “sprints” of ~6—9 months (Agile BS detector alert!). Sprints had
hundreds of tasks spread across six development teams. Just coordinating was taking weeks.
For a while the program had used 4-week sprints, but infrastructure was not available to support
that cadence. Test happened after delivery of software, with very little automation.

6. The program management office is too big and does not know enough about software.
We were told there were 200—260 FTEs in the program office. The overall program management
should be limited to 10-20% of the size of the program so that resources are focused on the
development team (including system architects, user interface designers, programmers, etc.),
where the main work gets done. The program office must have expertise in software programs
so that it is able to utilize contract and oversight structures that are designed for software (not
hardware).

7. OT&E is done as atailgate process. As an ACAT1 program, JMS was mandated to conduct
operational test, a process that nominally required the program to freeze its baseline, do the tests,
and then wait 120 days for report. The Operational User Evaluation conducted in early 2018 was
terminated early by the Air Force due to poor performance of the system. The OT&E process
being used by the program added information to support the termination decision, but it is
important to note that had the program not been terminated the tailgate nature of the evaluation
was one that would have added further delays.

The JMS program has since undergone major changes to address the issues above, so the
criticisms here should be taken as an example of some of the signs that a program is in trouble.

SWAP Study Final Release, 3 May 2019 63

	Chapter 1. Who Cares: Why Does Software Matter for DoD?
	1.1 Where Are We Coming From, Where Are We Going?
	1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD
	1.3 What Kind of Software Practices Will We Have to Enable?
	1.4 What Challenges Do We Face (and Consequences of Inaction)?

	Chapter 2. What Does It Look Like to Do Software Right?
	2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps
	2.2 Empowering the Workforce: Building Talent Inside and Out
	2.3 Getting It Right: Better Oversight AND Superior National Security
	2.4 Eye on the Prize: What Is the R&D Strategy for Our Investment?

	Figure 2.1 A former U.S. Marine Corps sergeant, now a Microsoft field engineer, works with an IT support specialist with the Navy as part of his job to travel to commercial companies and military bases across the country and train IT staff about a sys...
	Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?
	3.1 37 Years of Prior Reports on DoD Software
	3.2 Breaking the Spell: Why Nothing Happened Before, but Why This Time Could Be Different
	3.3 Consequences of Inaction: Increasing Our Attack Surface and Shifting Risk to the Warfighter

	Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward
	4.1 Path 1: Make the Best of What We’ve Got
	4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software
	4.3 Path 3: A New Acquisition Pathway and Appropriations Category for Software to Force Change in the Middle

	Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD
	5.1 The Ten Most Important Things to Do (Starting Now!)
	Line of Effort A. Congress and OSD should refactor statutes, regulations, and processes for software, providing increased insight to reduce the risk of slow, costly, and overgrown programs and enabling rapid deployment and continuous improvement of so...
	Line of Effort B. OSD and the Services should create and maintain cross-program/ cross-Service digital infrastructure that enables rapid deployment, scaling, and optimization of software as an enduring capability, managed using modern development met...
	Line of Effort C. The Services and OSD should create new paths for digital talent (especially internal talent) by establishing software development as a high-visibility, high-priority career track and increasing the level of understanding of modern so...
	Line of Effort D. DoD and industry must change the practice of how software is procured and developed by adopting modern software development approaches, prioritizing speed as the critical metric, ensuring cybersecurity is an integrated element of the...

	5.2 The Next Most Important Things to Tackle
	5.3 Monitoring and Oversight of the Implementation Plan
	5.4 Kicking the Can Down the Road: Things That We Could Not Figure Out How to Fix

	Acknowledgments
	SWAP Vignettes

