

 1

NATIONAL SECURITY AGENCY

CYBERSECURITY REPORT

U/OO/217598-17 PP-18-0809 JULY 2017

UEFI DEFENSIVE PRACTICES GUIDANCE

A TECHNICAL REPORT FROM THE

VULNERABILITY SOLUTIONS OFFICE

U/OO/217598-17

27 July 2017

Revised 10 October 2018

2 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

UEFI DEFENSIVE PRACTICES GUIDANCE

DOCUMENT CHANGE HISTORY

Date Version Description

10 October 2018 1.2 New template and formatting applied. Diagrams updated to match template style.

4 October 2018 1.1 Original serial number U/OO/800968-17 replaced by new serial number
U/OO/217598-17. Added new NOTICE describing document as having been
developed in the course of NSA’s cybersecurity mission.

27 July 2017 1.0 Initial publication.

DISCLAIMER OF WARRANTIES AND ENDORSEMENT

The information and opinions contained in this document are provided “as is” and without any warranties
or guarantees. Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government, and shall not
be used for advertising or product endorsement purposes.

NOTICE

The information contained in this document was developed in the course of NSA's cybersecurity mission
including its responsibilities to identify and disseminate information on threats to national security
systems and Department of Defense information technologies, develop and issue security implementation
specifications for cybersecurity-enabled products, and to assist Executive departments and agencies with
operational security programs. The information may be shared broadly to reach all appropriate
stakeholders.

3 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

UEFI DEFENSIVE PRACTICES GUIDANCE

AUTHOR(S)

Vulnerability Solutions Office

Endpoint Security Solutions

CONTACT INFORMATION

Client Requirements and Inquiries or General Cybersecurity Inquiries

CYBERSECURITY REQUIREMENTS CENTER (CRC)

410-854-4200

Cybersecurity_Requests@nsa.gov

4 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

EXECUTIVE SUMMARY

Unified Extensible Firmware Interface (UEFI) is a replacement for the legacy Basic Input Output System
(BIOS). UEFI comes with a variety of new configuration options, improved performance, extended security
measures, and supported platform architectures. New capabilities introduce the opportunity for abuse or
infection of malware. Traditional virus scanners are ineffective at cleaning the boot firmware environment
necessitating new solutions.

Machines running legacy BIOS or UEFI in compatibility mode should be migrated to UEFI native mode to
take advantage of new features. UEFI should be secured using a set of administrator and user passwords
appropriate for a device’s capabilities and intended use. Firmware comprising UEFI should be updated
regularly and treated as importantly as Operating System (OS) updates. UEFI Secure Boot should be
enabled and configured to audit firmware modules, expansion devices, and bootable OS images. Trusted
Platform Module (TPM) should be leveraged to check the integrity of UEFI.

5 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

WHAT IS UEFI?

Unified Extensible Firmware Interface (UEFI) is an abstraction layer between the operating system and
the underlying platform that provides boot and run-time services for a Personal Computer (PC). This
abstraction provides a uniform set of functions, variables, and environment behaviors across a wide variety
of devices and in an architecturally independent manner. As implemented, UEFI exists as platform
firmware – purpose-built software that lives within physical chips on devices. Vendor-specific chip
characteristics and architectures are thus abstracted away by UEFI’s environment specification. UEFI
offers several advantages over the prior boot mechanism, the Basic Input/Output System (BIOS).

UEFI’s consistency allows for extensibility. UEFI code modules can be added or removed as needed by
vendors, developers, system administrators, and end users depending on the hardware and software
deployed to a machine. Extensible design promotes code reuse and may enable parallel execution at the
firmware level on multi-core processors thus accelerating the boot process.

Implementations of UEFI may enable a rich user interface that can include graphics, help text, tutorials,
dynamically updated stats, filesystem access, network connectivity, and more. A set of authenticated
interfaces are also available that allow configuration changes from the Operating System (OS) environment
post-boot.

Figure 1 provides an overview of the UEFI boot process from power button press to user login. Boot actions
performed and corresponding auditing hashes stored in the Trusted Platform Module (TPM) are identified.
Note that there is no device owner influence on the Security (SEC) and Pre-EFI (PEI) phases – both are
controlled by the firmware vendor.

UEFI Boot Process

Figure 1 -- UEFI boot process from power up to user OS environment.

In addition to boot services, UEFI has a few distinguishing security features over legacy BIOS
implementations. UEFI Secure Boot is a signature checking scheme that validates binaries, such as drivers
and boot loaders, prior to execution. Secure Boot features a database of keys and hashes that can be
updated by vendors or customized by device owners to provide boot time anti-malware. Expanded
support for Trusted Platform Module (TPM), longer measurement hashes, and audit log storage also exist
to create a boot integrity record that includes Secure Boot’s state. Finally, some vendors offer proprietary
boot security solutions that integrate with UEFI to harden the boot process – no legacy BIOS
implementation exists.

S
E

C Security Phase

TPM PCR 0
measurements

Init CPU, clear
caches, load BIOS
ROM

P
E

I

Pre-Extensible
Firmware Interface
Phase

TPM PCR 0 for
firmware, PCR 1 for
configuration

Initialize chipset,
RAM, devices,
Secure Boot

Record Secure Boot
in PCR 7

D
X

E Driver eXecution
Environment

Discover internal
and external
devices, buses, and
drivers

Secure Boot validate
OROMs and drivers
before execution

Hash OROMs into
TPM PCR 2, config
into PCR 3

B
D

S Boot Device Select

Read GPT disks and
devices

Secure Boot
validates EFI
binaries

Selected device
recorded in PCR 4 B

o
o

tl
o

a
d

e
r EFI Bootloader (or

skip to kernel)

Windows boot
manager, Shim,
GRUB, SysLinux,
rEFInd, etc.

Hash into TPM PCR
5

Secure Boot
validates boot loader
before execution

O
S

 K
e
rn

e
l

Operating System
environment

Kernel, modules,
filesystem, policies,
libraries, network
connections, drivers,
etc.

Record values into
TPM PCRs 8-15

Secure Boot
validates kernel
before execution

6 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

MIGRATING FROM BIOS TO UEFI

ADVANTAGES

UEFI has several advantages over legacy BIOS. The most important reasons for transitioning are:

 Secure Boot is an optional setting that enforces signature checking of the boot process. Secure Boot ensures
only signed binaries are executed. Most implementations allow organizations to exert finely-grained control
over what keys and binaries can validate. This also represents malware protection in the pre-boot environment
prior to any traditional virus scanning (Wei, 2013).

 GUID Partition Table (GPT) replaces the Master Boot Record (MBR) storage drive partitioning scheme. GPT
allows the use of storage media boot partitions greater than 2 TB in size. Additional improvements include
support for 128 partitions or more and expanded partition labels of up to 36 characters. Disk layout structures
are duplicated for redundancy with checksums in case of sector corruption.

 Platform and architecture independence allows UEFI to run on x86, x86_64, ARM, ARM64, PowerPC,
Itanium, and other architectures. UEFI also supports emulation through hypervisors such as Hyper-V, VMware,
Xen, and others.

 The UEFI environment is not tied to a specific piece of hardware or vendor implementation. UEFI’s uniform
environment provides the same services, variables, and other resources regardless of a particular machine
make and model. Uniformity enables UEFI to tackle a wide variety of devices and use cases without impacting
software built upon the environment.

 UEFI is modular and extensible. Firmware vendors, software vendors, end users, and Information
Technology (IT) administrators can all add or remove components from system firmware. UEFI is also built to
allow parallel execution at different stages of the boot process which speeds the rate of booting.

 UEFI services are available to the OS which creates a stronger link between the pre-boot environment and
the administrative components of the OS. The results are improved power saving, sleep and resume
mechanism consistency, and the ability for the OS to alter or update UEFI information when appropriate.

 UEFI is an industry standard. Older technologies such as BIOS, MBR, and other legacy mechanisms are being
phased out. Support for older technologies will end.

REQUIREMENTS

Use of UEFI has the following requirements:

 Hardware and firmware capable of booting in UEFI mode. Note that pure UEFI is different from
BIOS, Legacy, UEFI compatibility, or UEFI Compatibility Support Module (CSM). This requirement
specifically refers to the motherboard of a computer.

o All machines with Windows 8®1 logos and newer are UEFI-compliant. UEFI was a requirement for
the Windows 8 logo compliance. The requirement affected both business and consumer machines.
Most machines with Intel Core i®2 processors, AMD Bulldozer®3 processors, and newer solutions
support UEFI. Machines as old as 2008 may have UEFI support.

 GPT OS storage drive partitioning or Preboot eXecution Environment (PXE) infrastructure.
Most UEFI implementations do not support booting from an MBR drive outside of legacy mode. The

1 Microsoft Windows, Windows 7, Windows 8, Windows 8.1, and Windows 10 are registered trademarks of Microsoft Corporation.

2 Intel, Intel Inside, Core, Core Duo, Core Quad, Core 2, Core i, i3, i5, i7, i9, Xeon, Atom, and Pentium are registered trademarks of Intel Corporation.

3 AMD, Athlon, Bulldozer, Ryzen, Zen, Epyc, Opteron, and Threadripper are registered trademarks of Advanced Micro Devices, Inc.

7 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

MBR portioning format is obsolete, although the scheme is typically supported for non-booting drives.
Some infrastructures may substitute storage drives for network-delivered OS images delivered via
PXE boot. Although rarely used in the enterprise, booting from removable media is possible if
formatted with GPT – like a storage drive.

 OS compatibility. Popular options include but are not limited to:

o Windows 7 and newer

o Red Hat Enterprise Linux®4 5 and newer

o OS X®5 10.5 Leopard and newer

o Ubuntu®6 11.10 and newer

o Fedora®7 15 and newer

MIGRATION

System and infrastructure owners, and organizations who have currently deployed PCs with MBR
formatted hard drives and who are still using BIOS based systems, should consider migrating to UEFI. An
initial assessment of those systems will be required to understand whether the PC is UEFI capable (i.e.,
running in a BIOS legacy mode) and a strategy to convert from MBR to GPT formatted drives will be needed.
There are multiple options for overcoming this obstacle:

Option 1 – Introduce GPT and UEFI through normal hardware refreshes.

Machines using newer technology can be introduced by infrastructure owners as part of normal hardware
purchasing cycles. UEFI and GPT have no impact on the ability of a client to connect to domain servers, file
shares, and other OS functions. Many vendors can preconfigure machines in this mode prior to delivery to
customers.

Option 2 – Convert an existing installation from MBR to GPT, then enable UEFI.

Conversion is a two-step process. The process is not likely to be destructive, but modifying partitioning
schemes does come with risks. User data should be backed up or stored remotely before beginning the
conversion process.

The first step is to convert the OS storage drive from MBR to GPT partitioning. Many software packages are
available to accomplish this -- some open source, some paid, and some built-into the OS distribution. The
following list contains some but not all available options:

 MBR2GPT Windows built-in utility

 Windows Disk Management built-in utility (diskmgmt.msc)

 GPT fdisk Linux built-in utility (https://sourceforge.net/projects/gptfdisk/)

 Gptgen (http://sourceforge.net/projects/gptgen)

 GNOME™8 Partition Editor (gparted) (http://gparted.org/index.php)

4 Red Hat Enterprise Linux (RHEL) and Red Hat are registered trademarks of Red Hat, Inc.

5 OS X, OS X Leopard, OS X Snow Leopard, and Mac OS are registered trademarks of Apple, Inc.

6 Ubuntu is a registered trademark of Canonical Ltd.

7 Fedora and Fedora Project are registered trademarks of Red Hat, Inc.

8 GNOME is a trademark of the GNOME Foundation.

8 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

 Vendor-specific automated tools

 Custom command line and scripting tools

 OS boot-time repair and recovery tools

Instructions for the previously listed tools are likely to evolve over time. Therefore, specific instructions
are not provided in this paper. See the help documentation on each resource’s website or within each
program for more details. Some of these programs can perform the conversion from within the MBR OS
while others require the use of live media or system recovery mode.

The second step is to use a vendor-provided utility to change system configuration. The software would
need to swap firmware configuration from BIOS, compatibility, or legacy mode to UEFI mode. Most large
PC vendors have firmware configuration utilities that can make changes to machines without requiring
visiting individual endpoints. Configuration changes can be distributed like update patches. The tools are
normally vendor-specific and sometimes may be model-specific. The instructions for the use of these tools
are likewise beyond the scope of this paper.

Option 3 – Create a new OS installation.

New installations may require installing over top of an existing OS partition. Backing up data is necessary
since overwriting partition tables will be destructive. The computer will need to be switched into UEFI
mode before performing the installation in GPT mode (GPT and MBR are incompatible). Once the OS
storage drive is converted to GPT via the installation process, system administrators may convert other
drives to the GPT format using built-in OS tools – this process may be entirely unnecessary if the drive isn’t
used for booting.

Some older machines may require the disabling of vendor logo overlays, fast booting, legacy option ROMs,
and legacy I/O ports to enter UEFI mode.

LOCKING DOWN UEFI

UEFI CONFIGURATION PASSWORD

In general, UEFI implementations have multiple layers (types) of passwords available to limit access to
system configuration parameters and devices. These may include Administrative, User, System, and
Storage Drive passwords. Administrative and User passwords limit access to system configuration or
customization of the boot process – they do not interfere with a normal, non-customized boot. System and
storage drive passwords halt access to the entire device or a specific drive, respectively, until the password
is given – a situation that could hamper updates. Always check the device to be locked down to determine
which password options are available – only administrator passwords are required by specification, and
password names/descriptions are not consistent across different device vendors.

Administrative Passwords

Administrative UEFI passwords lock out the UEFI configuration. The UEFI Forum recommends
administrative passwords to stop normal users from altering low-level system parameters during boot
time. If given an option to lock out user changes when an administrator password is present, always
enable that option. A unique administrative password per machine is the strongest implementation of

9 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

UEFI administrative password security and the recommended solution. Some older vendor
implementations use the administrative password (instead of digital signatures) as a gatekeeper to
firmware update – a situation that could hinder firmware updates and system maintenance. When
passwords hinder UEFI updates and maintenance, consider using a common administrator password
rather than no password at all. Password complexity and the distribution of passwords may be determined
by IT organizational policy.

Note that some vendor implementations allow remote tools to manipulate UEFI configuration. Tools
authenticate using the UEFI administrator password or by using command packages signed by Secure Boot
keys. Some implementations require administrators to prove physical presence with keyboard presses – a
requirement that may complicate UEFI management. Confirm behavior per make and model.

User Password

User UEFI passwords, if available, typically constrain the ability of device users to change the boot order,
boot to external media, or change some non-administrative settings. Not all UEFI implementations contain
user-configurable options. Different vendors separate different options between administrative and user
control.

For devices that don’t leave the building, consider setting user UEFI passwords only when 1) access to the
advanced boot selection menu should be disabled, and 2) the administrative configuration password does
not lock out the alteration of boot device or order. This scenario allows user passwords to be treated like
local administrator privileges. Use a unique user password per device unless the user password interferes
with the UEFI update process, remote management, or places an excessive burden on IT support services
(a common UEFI user password may be more appropriate in this case).

Assign unique user UEFI passwords to mobile devices and their owners. Securing devices such as laptops
and tablets is the focus here. A lost or stolen device could be booted to external media where commands to
steal data or wipe the machine can be issued. The user UEFI password may be able to mitigate these types
of compromises.

System or Storage Password

Some UEFI systems have system or storage drive passwords that act like physical presence checks. The
system refuses to complete booting until a system password prompt has been satisfied. In the case of a
storage password, the system will not access a storage device until the associated password is entered –
each storage device has its own password.

System and storage passwords are not recommended. Each can interfere with remote management, UEFI
updates, and OS updates by halting the boot process. Windows BitLocker®9 and Linux Unified Key Setup
(LUKS) are recommended alternatives because they allow the UEFI boot process and OS kernel
initialization to complete thus permitting update mechanisms to function.

** Note that most machines feature a reset button, reset jumper, and/or coin-sized battery
somewhere on the device. Each may be capable of wiping out system or storage drive passwords.
Bitlocker and LUKS are unaffected due to the storage of decryption information on the storage drive

9 Microsoft BitLocker is a registered trademark of Microsoft Corporation

10 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

(sometimes with TPM-supported protection). **

TOGGLE DRIVES, PORTS, AND DEVICES

Disable all devices and boot options not required for a normal boot. These are normally devices listed
in the Boot Sequence or Boot Devices displays. Recovery, support, and reset options may also appear
here. Any device that does not contain the OS can be disabled. These devices will still be available after
booting completes, but they will not be taken into consideration during the boot process. A thick client may
need all devices disabled except for the OS storage drive. A thin client may need all devices disabled except
for the Network / PXE Boot interface and/or an embedded OS boot device.

Leaving devices enabled can allow the user to change the boot order by activating the advanced boot menu
at the firmware test or logo screen. This flexibility could allow them to bypass an HDD and boot to a live
media disc, for example. The user could also boot to a USB external device. When these options are disabled
through the UEFI configuration system, the options will not be given after entering the advanced boot
menu. However, once in the OS environment, the user can still interact with a disc or USB device per OS
policy.

SYSTEM OPTIONS CONFIGURATION

Disable legacy Option ROMS (OROMs). Legacy OROMs are older and weakly validated (if at all) firmware
packages. They interact with older storage, graphics, and network devices. Use newer OROMs that include
cryptographically verifiable digital signatures compatible with UEFI Secure Boot. Signatures provide an
element of supply chain integrity and firmware validation. Secure Boot can also whitelist or blacklist newer
OROMs for granular boot device control.

Graphics cards are the most common stumbling point which rely upon legacy OROMs. NVidia®10 cards in
the 7-series (e.g.: GeForce™ 760) and newer as well as AMD®11 cards in the 2-series (e.g.: Radeon™ 280)
and newer have Secure Boot-compatible OROMs.

Disable OROM Keyboard Access if given the option. This mechanism allows a user to press key
combinations like CTRL + I to alter the behavior of low-level storage controllers. Users may also be able to
alter graphics processor properties, display properties, on-board audio, and other features. These features
are normally handled by the IT administrative organization. Administrators would be able to re-enable
OROM keyboard access only when an organizationally-requested change is necessary. Failure to set the
“disable OROM keyboard access” option opens machines up to unauthorized drive mirroring carried out at
the firmware level.

Enable and Activate Trusted Platform Module (TPM). A functioning TPM can be leveraged by several
mechanisms on Windows and Linux®12. Windows 8, 8.1, and 10 will attempt to automatically provision
and use a TPM if detected in the functional state. Leaving the TPM disabled weakens the system integrity
and device identification properties of Microsoft’s Bitlocker, degrades Virtual Secure Mode (VSM) integrity
isolation, prevents remote attestation systems from leveraging TPM keys, and limits the system’s ability to
store boot-time measurements.

10 NVidia and GeForce are registered trademarks of NVidia Corporation

11 AMD and Radeon are trademarks of Advanced Micro Devices, Inc.

12 Linux is a registered trademark of Linus Torvalds

11 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

Disable SATA adapters, eSATA, USB ports, USB headers, audio headers, SATA headers, serial ports,
printer ports, and other communications buses if not in use. If these devices are left on, then an insider
threat could gain physical access to a machine and swap physical hardware, add unauthorized hardware,
or boot to unauthorized devices.

BOOT ORDER

Place the OS drive or adapter at the top of the boot list. Do not place removable media, USB, disc drives,
floppies, or other devices at a higher priority than the OS drive or adapter. In a dual-boot situation, place
both OS drives next to each other with the more-frequently accessed one being at a higher priority. In a
thin client or PXE situation, place the network adapter or embedded OS drive at the highest boot priority.
Devices not used for booting should be disabled.

RECOMMENDED SETTINGS

Table 1: Recommended Settings

Option Recommended Setting Comment

Boot mode

UEFI

Use UEFI boot mode instead of Legacy, CSM, or BIOS

Boot sequence * OS drive first. Disable devices not used for boot

Storage OROM access Disable Only enable for administrators

Legacy OROMs

Disable

Disable unless required by expansion devices (video
card, storage controller, etc.)

Integrated NIC

Enable

Enable PXE if required by organization; Disable if not
used

UEFI Network Stack

Enable

Enable if PXE or image servers are used by organization;
Disable if not used

Parallel Port Disable Enable if required for legacy device

Serial Port Disable Enable if required for legacy device

SATA Operation

AHCI

Enable RAID or IRST (Intel Rapid Storage Technology) if
appropriate

SATA ports

Connected only

Disable SATA ports not in use

SMART Reporting Enable Storage drive error reporting mechanism

USB Boot Support Disable Allows USB devices to boot; May be needed by some
developers

External USB ports * Disable unused ports

USB power share Disable Charges devices through USB power

Keyboard backlight May have levels of brightness

Unobtrusive mode Disables or dims system indicator lights

12 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

Option Recommended Setting Comment

Internal modem Disable Enable if required for legacy network

Microphone

eSATA port Disable Enable if external SATA ports are used

Free-fall protection Relevant to spinning platter hard drives

Webcam

ExpressCard Disable Enable if required by expansion device

SmartCard Storage drive error reporting function

Module bay Enable Laptops with hot-swap bays; Controls disc media device

Optimus / Dynamic graphics Enable/Auto Energy-saving graphics switching

Video adapter Auto Switches between integrated and discrete graphics if
present

Admin password Set UEFI administrative control options access

User password Set UEFI user boot configuration options access

System password Not set Stops system boot process. Interrupts updates

SATA password Not set Stops boot drive access. Interrupts updates

Strong passwords Enable Applies password complexity requirements to UEFI
configuration accounts

Password configuration Defer to organizational policies

Password bypass

 Defer to organizational policies

Non-admin password
changes

Disable Do not allow non-admins to alter system config

Wireless switch changes Defer to organizational wireless access policy

TPM security Enable and Activate Send power and I/O to the TPM

TPM ACPI support Enable Controls loading of measurements during boot

TPM PPI deprovision
override

Enable Allows OS to clear and re-enable TPM

TPM PPI provision override Enable Allows OS to activate TPM

Computrace Anti-theft solution on some machines

CPU XD support Enable Execute-disable bit feature

OROM keyboard access Disable Only enable for administrators

Non-admin user setup
lockout

Enable Only allow admins into UEFI config

UEFI Secure Boot Enable Use in conjunction with supporting OS and/or hypervisor

Secure Boot custom mode Disable Enable custom if using custom key chain

Multi-core support All Controls energy use, heat, and performance of CPU

SpeedStep / CPU power
states

Enable CPU energy-saving features

C states / S3 sleep Enable CPU energy-saving features

TurboBoost / TurboCore Enable CPU performance boost feature

HyperThread / SMT Enable CPU scheduling optimizer

Rapid start Accelerated boot from slow storage drives

Wake on AC Influences boot behavior after power loss

13 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

Option Recommended Setting Comment

Wake on LAN Allows monitoring of network traffic for wake commands

USB wake support Allow USB devices to wake computer on action

WLAN Wireless network toggle

WWAN Cellular network toggle

Fastboot Auto Shortens some device self-check routines

Virtualization / VT-x / VPro Enable Virtualization extensions for hypervisors

VT-d / Virt directed I/O Enable Hypervisor performance optimization

Tagged TLB Enable

Rapid virtualization indexing
/ RVI

Enable AMD-only. Equivalent to EPT

Extended Page Tables / EPT Enable Intel-only. Equivalent to RVI

Trusted execution / TXT Windows: used when Trusted eXecution Engine (TXE) is
installed. Linux and hypervisors: install TBoot and follow
directions. Provision with TXT disabled. Enabling TXT
locks NVRAM

Chassis intrusion Log case-opening events

Overclocking Increase CPU performance above factory limits

XMP memory profiles High-performance RAM profiles

Fan control Auto Customizable cooling fan thresholds/levels

UEFI SECURE BOOT

UEFI Secure Boot is a signature checking mechanism that is added to the machine boot process. Only
drivers, devices, OROMs, and other binaries with valid signatures will be executed at boot time. The validity
of signatures is determined by the Secure Boot key chain. Most platform vendors provide several keys that
are derived from a Microsoft Root CA. This key chain means that most device vendors who have a
relationship with Microsoft and most Microsoft software will be able to use UEFI Secure Boot immediately
without any additional configuration (Jumelet & Lich, 2017).

Each step of the UEFI boot process covered by Secure Boot requires a signature to be calculated before a
binary can be executed. Firmware performs the signature check during DXE, BDS, and Bootloader phases.
However, the exact operating system kernel and modules selected by the bootloader are not measured by
the firmware UEFI Secure Boot implementation (see figure 2). The bootloader software implementation
must be Secure Boot-aware or otherwise continue the Secure Boot signature check chain. Microsoft
bootloaders leverage UEFI Secure Boot keys and databases. In contrast, Linux bootloaders rely upon
Machine Owner Key (MOK) and Shim to switch to a key chain provided by Red Hat or Canonical rather
than continuing to use UEFI variables.

Linux distributions use MOK and Shim to avoid the logistics involved with having Microsoft sign every single kernel
update.

14 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

UEFI Secure Boot Signature Checking Zones

Figure 2 -- UEFI boot process with Secure Boot implementation phases.

CUSTOMIZED KEYS

Some IT organizations may want to further constrain Secure Boot or employ the use of their own bootable,
signed binaries. Most systems employing UEFI Secure Boot have a custom or advanced mode that allows
replacement or augmentation of the preloaded, factory keys. The key hierarchy is as follows:

 Platform Key (PK)

 Key Exchange Key (KEK)

 Whitelist Database (DB) and Whitelist Database Keys (DBK)

 Blacklist Database (DBX)

The PK, an RSA 2048 public/private key pair, is the root key. Each PK is stored on the machine in the
form of an X.509 certificate. The PK controls access to platform UEFI environment variables, UEFI
configuration changes requested by the OS, and restricts changes to the KEK(s) and DB keys. The PK does
not need to sign the KEK(s) meaning that there is no requirement for the PK and KEK(s) to be linked in a
public key cryptography certificate chain. Most machines ship with PKs established by the OEM. A Dell
machine will have a Dell PK, for example. A PK can be unique per machine, identical across a product line,
identical based on location, or some other configuration to meet the security needs of an organization. The
PK can be changed by using the UEFI configuration interface through an administrative session or via
automated, vendor-specific tools.

A unique PK per machine is the most secure solution for replacing the PK. However, PKs may interfere with
the UEFI firmware update mechanism. In that case, the PK should be common across the IT infrastructure
to simplify the process of updating firmware. Consider having the PK match the distribution of UEFI
configuration passwords. If machines have common UEFI configuration passwords, then also use custom
PKs. If they employ unique passwords, then also use unique PKs.

The KEK, another RSA 2048 public/private key pair, is responsible for signing keys in the whitelist
DB, blacklist DBX, and any EFI binaries that should be trusted during boot. There can be multiple KEKs.
Most vendors supply a default KEK generated by Microsoft. The KEK is meant to link the OS environment
to the firmware by defining which drivers, devices, boot loaders, and kernels can be used as part of the
boot process. Replacing the KEK means putting an organizational KEK in place. Leaving the default vendor
or Microsoft KEK allows any device or binary they’ve signed to be used during boot – nearly any version of

SEC PEI DXE BDS Bootloader OS Kernel

UEFI Secure Boot bootloader-
controlled measurement or MOK

UEFI Secure Boot firmware measurement Initialize
Secure Boot

15 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

Windows, RHEL, Fedora, or Ubuntu can boot. Altering the KEK store requires UEFI config administrative
access or vendor-specific utilities that have been signed with the PK. Adding a custom KEK enables
anything it has signed to be executed when checked by UEFI Secure Boot. The custom KEK can also
authorize DBKs. This extensibility can allow Secure Boot to trust custom peripherals, OS images, or
firmware modules.

Replacing default KEK(s) allows IT organizations to specify which DB records, DBX records, and binaries
are permissible during boot without the upstream influence of vendors. In this situation, the organization’s
CA should certify the KEK. All machines within an infrastructure should have the same custom KEK.
Avoid using the KEK for signing binaries. Removing default KEK(s) and only using a custom one exerts
maximum control over a machine’s UEFI Secure Boot process.

The DB and DBX are to whitelist and blacklist boot content, respectively. Using one or more DB Keys
(DBK) is recommended even in the presence of custom KEK(s). DBKs can be easily removed or
swapped between the whitelist DB and blacklist DBX without necessitating a KEK change. Create a DB key
and then load the certificate into the DB whitelist. Then use that same key to sign boot drivers, binaries,
and OS loads. Hashes of approved drivers, binaries, and OS loads can also be placed in the DB without using
the DBK.

The whitelist DB allows a machine to boot to known-good content authorized by an organization. Not just
any version of Windows or Linux would be allowed – specifically Windows 10 build 1607 or Ubuntu 16.04
could be allowed. Additional specific restrictions could include: RAID controller firmware 2.06.0005, TPM
in FIPS 140-2 mode rather than a FIPS non-compliant mode, or a known-good boot loader rather than a
debug one that ignores UEFI Secure Boot. Organizations can use this power to prevent misconfigured
machines from booting into unapproved states or to stop the introduction of unauthorized firmware or
software during the boot process.

TRUSTED PLATFORM MODULE (TPM)

Trusted Platform Module (TPM) is a hardware security module available on most business-class machines.
Some organizations, such as the DOD, mandate the purchasing of machines equipped with TPMs. Some
vendors, such as Microsoft, require the TPM for logo certification compliance.

TPM is a passive measurement holder. Built-in Platform Configuration Registers (PCRs) summarize
the integrity of a given machine. There are typically 24 PCR banks. 0 through 7 are filled out by the UEFI
firmware. 8 through 15 are in the realm of the OS. 16 through 23 are flexible. Each PCR holds a SHA-1 (TPM
1.2) or SHA-256 (TPM 2.0) hash. The hashes start at an all zero value. To create a PCR hash: a measurement
of a boot binary is taken, the current PCR value is appended, the combination is hashed using the
appropriate hash algorithm per TPM generation, and then the new value becomes the updated “extended”
PCR as seen in the formula below. This scheme creates a measurement log and history of 1-way hashes
describing the integrity of boot and runtime (if available) system integrity. See figure 3 for an overview of
what each PCR covers.

Extended PCR value = SHA(SHA(measured file) + initial PCR value)

A TPM has no active system integrity enforcement mechanism. TPM is a passive observer of boot and
runtime activities. A TPM alone cannot stop the booting of a compromised or incorrectly configured system

16 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

like UEFI Secure Boot can. However, tools have been developed for Windows, Linux, and hypervisors that
leverage the integrity information contained in the TPM.

TPM Hashes of UEFI Boot Phases

Figure 3 -- TPM PCR scope with relation to the UEFI boot process.

Windows can use Bitlocker to encrypt the contents of storage drives. Bitlocker can leverage the TPM
Primary Key (2.0) or Storage Root Key (1.2) along with PCRs to protect the Bitlocker Volume Master
Key (VMK). If the system boots up in the known-good configuration, then the PCRs will be in the expected
state and the Bitlocker decryption key will be released (Lich, 2017). Changes to UEFI configuration,
firmware updates, and equipment changes may cause the TPM PCRs to change – events that would change
the nature of PCRs and requite the Bitlocker key recovery system built in to some update mechanisms and
Active Directory®13 (AD). Failure to enable both Bitlocker and TPM introduces the situation where the
system’s storage drive is unlocked without the use of firmware measurements, VMK key blob is subject to
unauthorized migration, or booting with unapproved Secure Boot keys is allowed.

Linux has a solution like Bitlocker called LUKS. LUKS can have TPM support added by integrating the tpm-
luks open source patch. LUKS key recovery can be integrated into LDAP much like Bitlocker’s AD
integration (Red Hat, 2017).

Linux and some hypervisors can use Trusted Boot (TBoot). TBoot uses TPM PCRs and TPM onboard
memory to store a known-good configuration and boot policy. TBoot executes after the bootloader but
before the OS kernel – a policy enforcement point where the system integrity is checked, hardware security
features are activated, and an auditing layer is placed between kernel permissions and user-space
permissions. Failure to use TBoot could leave the sleep and resume scripts vulnerable to replacement, and
allow a machine to boot with unapproved Secure Boot keys (Canonical, 2017).

FIRMWARE UPDATE

Firmware updates include security fixes in addition to expanded hardware support and bug fixes. A
seemingly insignificant update, such as setting the SPI flash lock bit as part of boot, can determine if a
machine is vulnerable to an S3 resume vector hijack. This attack writes malicious firmware prior to OS

13 Active Directory is a registered trademark of Microsoft Corporation

SEC PEI DXE BDS Bootloader OS Kernel

PCR 0 Firmware
PCR 1 Configuration

PCR2 Firmware
PCR 3 Config

PCR 8-15

Linux Integrity
Measurement
Architecture

(IMA) or
Windows 8+

required

PCR 4 PCR 5

PCR 7

Secure Boot

Values

PCR 17-19

Trusted

Boot / TXT

17 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

restricting the use of direct memory access. 1 bit can be the difference between a safe boot and
acquiring an advanced persistent threat.

Apply firmware updates when security fixes are provided by the machine vendor. Test an individual
machine for deployment authorization problems, Secure Boot key chain conflicts, and any impact on
software security mechanisms like Bitlocker or LUKS.

Some components within a machine may have individual firmware updates not covered by the machine
vendor. Example devices include TPMs, wireless controllers, and discrete video cards. Check these devices
for firmware updates periodically.

POTENTIAL STUMBLING BLOCKS

UEFI firmware configuration passwords can cause update problems on some systems. The firmware
update utility may request or require provisioning with a password to apply an update to the system. Check
with the update and firmware vendor to verify if this condition is the case. Machines that fall into this
category are best managed with a common UEFI password to minimize complexity.

UEFI Secure Boot may refuse to execute a firmware update when custom keys are applied. This situation
could be caused by the vendor update package not being provisioned for the custom PK or KEK. Check with
the update vendor to determine which key or database is responsible for permitting updates. If the PK is
used, then use a consistent PK across all machines in the infrastructure to minimize update complexity.

Bitlocker, TBoot, tpm_luks, and other utilities that look at TPM PCRs will detect a change in PCR
values following a firmware update and could cause a system to fail to boot. Windows AD and Linux LDAP
have mechanisms to recover a cleared or inaccessible (due to PCR sealing) disk encryption. TBoot will need
Trusted eXecution Technology (TXT) disabled, an updated Launch Control Policy (LCP) loaded into the
TPM’s memory, and then TXT re-enabled.

RECOMMENDATIONS FOR OEMS

Secure by default recommended settings – Systems should ship with UEFI configuration options set like
those outlined in section 3.E. Some systems continue to ship with disabled or inactive TPMs, non-
administrative user setup lockout booleans not set, and legacy communication standards (parallel port,
serial, eSATA, etc.) enabled.

Unify update mechanism – There is considerable variation in firmware update mechanisms (Dell, 2017).
The firmware industry needs to reach consensus regarding common, secure, and reliable tools that can be
pushed out like Windows and Linux update packages. Decades of improving security behaviors and update
practices on the OS environment part of computing need to migrate to the firmware realm.

Some systems update via an executable run inside Windows, some require entering UEFI config with a USB
drive plugged in that contains a binary firmware image, and others require a separate DOS-like boot disc.
Worse, some UEFI implementations allow unauthenticated updates delivered via unencrypted internet
connections (Indrora, 2017). Vendors should standardize around digitally signed UEFI update capsules
that can be distributed by automated, OS-integrated, update mechanisms.

18 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

Zero-touch update – Administrators should not have to visit machines to manually apply firmware
updates. Firmware updates should be protected by cryptographic signatures that can be verified by
endpoints before automatic installation. A message identifying a firmware update in progress should be
displayed with a note not to power off the machine.

Clear support lifetimes – Platform firmware update support lifetimes are often unclear or not specified.
Companies like Microsoft and Canonical give clear timelines for the support duration of their software
products. Vendors should do the same with regards to firmware update support. An indication of warranty
is not sufficient. Clearly publicize firmware update support lifetimes.

Provide known-good hashes that match TPM measurements – Enterprise customers need to know that
the firmware they’re running is genuine and intended. Providing SHA-1 and SHA-256 hashes that match
those collected by the TPM is critical for auditing the integrity of a machine. IT departments should not
observe a machine to be correct – they should have a hash that validates correctness.

RECOMMENDATIONS FOR NETWORK OPERATORS

Firmware updates – Firmware updates should be applied to machines in a timely fashion just like any
other patch. Organizations have gotten strong at patching vulnerabilities in different software products.
However, firmware is commonly ignored. Machines may never get a firmware newer than the one they
shipped with. The software embedded within a motherboard, hard drive, graphics processor, or other
device should get the same update-awareness as a virus scanner or document reader.

Configuration lock down – Many organizations fail to take even the minimum step of setting a UEFI
configuration password on their machines. This omission allows users to subvert restrictions on boot
devices and potentially compromise infrastructure resources. Malicious configurations could also result in
damage to a machine via manipulating energy use and cooling systems. Policies don’t allow for running
Windows without the separation of users and administrators. The same mentality needs to be adapted to
the UEFI realm.

Establish a UEFI configuration administrator password. Make the password unique per machine. If
firmware updates require a password to apply, then make the password the same on all machines. Do not
leave administrative UEFI passwords blank or unset. Apply UEFI user passwords to secure mobile devices
and provide a local administrative privilege to fixed workstations and servers.

Enable UEFI Secure Boot – If organizational hardware and software support the requirements for Secure
Boot, then enable it and use it. Traditional virus scanners and anti-malware solutions don’t start until after
the OS kernel is executed – sometimes delayed further by other boot processes and services. Secure Boot
is the pre-OS anti-malware solution designed to keep firmware and initial OS software in a known good
state.

Consider establishing a custom Secure Boot key chain. Investigate what impact custom keys would have
on the ability to deliver firmware and software updates.

UEFI training – Do users know not to cut power to a machine that is performing a firmware update? Do
network administrators know how to push out a firmware update and then test for successful installation?
Are auditors and analysts looking at UEFI configuration variables and firmware integrity? The likely

19 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

answer to most of these question is no – a call for education about the firmware environment that sits
below the well-known software OS environment.

20 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

REFERENCES

Canonical (2017, March 2). Trusted Platform Module. Retrieved May 23, 2017, from
https://wiki.ubuntu.com/Security/Features#Trusted_Platform_Module

Dell (2016, June 1). Dell Driver and Firmware Update Strategies for Server Storage and Networking Systems.
Retrieved May 23, 2017, from http://www.dell.com/support/article/us/en/04/SLN293301/dell-driver-and-
firmware-update-strategies-for-server-storage-and-networking-systems?lang=EN

Indrora (2016, June 6). DeadUpdate; Or, How I learned to stop worrying and execute arbitrary executables
from

HTTP. Retrieved May 23, 2017, from http://teletext.zaibatsutel.net/post/145370716258/deadupdate-or-
how-i-learned-to-stop-worrying-and

Jumelet, A., & Lich, B. (2017, April 24). Control the health of Windows 10-based devices. Retrieved May 23,
2017,

from https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-
the-health-of-windows-10-based-devices

Lich, B. (2017, April 24). BitLocker Countermeasures. Retrieved May 23, 2017, from

https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-countermeasures#uefi-and-
secure-boot

Red Hat (2017, January 20). Using LUKS Disk Encryption. Retrieved May 23, 2017, from

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-
Encryption.html

Wei, D. & Long, Q. & Shen, J. (2013, January 17). Build Safety from Bare Metal. Retrieved May 23, 2017,

from https://firmware.intel.com/sites/default/files/BJ13_PTAS002_101_ENGf.pdf

https://wiki.ubuntu.com/Security/Features#Trusted_Platform_Module
file://corp.nsa.ic.gov/coi$/IARPD_PUBLIC/CS_Publications/CTR/UEFI%20Defensive%20Practices%20Guidance/:/www.dell.com/support/article/us/en/04/SLN293301/dell-driver-and-firmware-upda
file://corp.nsa.ic.gov/coi$/IARPD_PUBLIC/CS_Publications/CTR/UEFI%20Defensive%20Practices%20Guidance/:/www.dell.com/support/article/us/en/04/SLN293301/dell-driver-and-firmware-upda
http://teletext.zaibatsutel.net/post/145370716258/deadupdate-or-how-i-
http://teletext.zaibatsutel.net/post/145370716258/deadupdate-or-how-i-
ps://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-
ps://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-
https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-countermeasures#uefi-and-secure-
https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-countermeasures#uefi-and-secure-
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-
https://firmware.intel.com/sites/default/files/BJ13_PTAS002_101_ENGf.pdf

21 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

ACRONYMS

Acronym Meaning

ACPI Advanced Configuration and Power Interface

AD Microsoft corporation product Active Directory

AHCI Advanced Host Controller Interface

AMD Microprocessor company named Advanced Micro Devices

ARM Microprocessor company formerly known as Advanced RISC Machine

BDS Boot Device Select UEFI boot phase

BIOS Basic Input/Output System

CA Certificate Authority

CPU Central Processing Unit

CRTM Core Root of Trust for Measurement starts system integrity hashing chain

CSM Compatibility Support Module providing some BIOS functions omitted from UEFI

DB Secure Boot Whitelist Database

DBK Database Key used with Secure Boot databases

DBX Secure Boot Blacklist Database

DoD US government Department of Defense

DOS Disk Operating System

DXE Driver Execution Environment UEFI boot phase

GPT GUID Partitioning Table

EFI Extensible Firmware Interface – the foundation which UEFI is built upon. Originally created by
Intel corporation as a proprietary solution. Binaries designed to run in the UEFI environment
may also be called EFI binaries as opposed to UEFI binaries

EPT Extended Page Tables Intel corporation equivalent to RVI

eSATA External Serial Advanced Technology Attachment

FIPS Federal Information Processing Standard

GNOME Linux desktop user environment

GRUB Linux boot loader

HDD Hard Disk Drive

IMA Integrity Measurement Architecture provides runtime TPM hashing

I/O Input/Output

IRST Intel corporation Rapid Storage Technology for attached storage disks

IT Information Technology (department or device)

KEK Secure Boot Key Exchange Key

LAN Local Area Network connection

LCP Launch Control Policy used by TBoot

LDAP Lightweight Directory Access Protocol is Linux equivalent to Microsoft AD

LUKS Linux Unified Key Setup used for drive encryption

MBR Master Boot Record partition scheme

MBR2GPT Utility to convert from MBR disks to GPT disks

MOK Machine Owner Key used for Linux extension of Secure Boot

22 U/OO/217598-17 PP-18-0809 JULY 2017

NSA CYBERSECURITY REPORT

 UNCLASSIFIED

Acronym Meaning

NIC Network Interface Controller

NVRAM Non-Volatile Random-Access Memory storage space on TPMs

OROMs Option Read-Only Memory firmware configuration branching mechanism

OS Operating System such as Microsoft Windows or Red Hat Linux

PC Personal Computer

PCR Platform Configuration Register used by TPM to store hashes of integrity hashes

PEI Pre-EFI Initialization phase for UEFI boot

PK Secure Boot Platform Key

PPI Physical Presence Interface

RAID Redundant Array of Independent Disks

rEFInd UEFI Boot Loader

RAM Random-Access Memory

RHEL Red Hat Enterprise Linux operating system

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RSA Ron Rivest, Adi Shamir, and Leonard Adleman cryptosystem algorithms

RVI Rapid Virtualization Indexing AMD corporation equivalent to EPT

TPM Trusted Platform Module security chip

TXE Trusted Execution Environment restricted kernel memory space

TXT Intel corporation Trusted Execution Technology

S3 Sleep state 3 shuts down power to most PC components except RAM

SHA Secure Hashing Algorithm

SMT Symmetric Multithreading for multiple CPU cores, threads, paths

SATA Serial Advanced Technology Attachment

SEC Security phase of UEFI boot

UEFI Unified Extensible Firmware Interface that is a derivative from the proprietary EFI solution
created by Intel corporation. Governed by an industry consortium called the UEFI Forum

TBoot Trusted Boot open source Intel mechanism

TLB Translation Look-aside Buffer memory management accelerator

VMK Volume Management Key for Microsoft Bitlocker

VSM Virtual Secure Mode suite of device-hardening features in Microsoft Windows

VT-d Virtualization Technology for Directed I/O

VPRO Intel corporation branding for devices supporting multiple virtualization enhancements and
TBoot

WLAN Wireless Local Area Network

WLAN Wireless Local Area Network

WWAN Wireless Wide Area Network normally indicates presence of cellular adapter

XD Execute Disable bit allows CPU to disable execution in memory spaces

XMP Extreme Memory Profile used for controlling RAM timing

USB Universal Serial Bus connects peripheral devices

