
1

WORKING DOCUMENT//DRAFT

Software is Never Done:
Refactoring the Acquisition Code for Competitive Advantage

Defense Innovation Board (v2.2, 15 Feb 2019)

Extended Abstract

Software is ubiquitous and U.S. national security increasingly relies on software to execute
missions, integrate and collaborate with allies, and manage the defense enterprise. The ability to
develop, procure, assure, and deploy software is thus central to national defense. At the same
time, the threats that the U.S. faces are changing rapidly, and DoD’s ability to adapt and respond
is defined by its ability to develop and deploy software to the field rapidly. The current approach
to software development is broken and is a leading source of risk to DoD: it takes too long, is too
expensive, and exposes warfighters to unacceptable risk by delaying their access to the tools
they need to assure mission success. Instead, software should enable a more effective (joint)
force, strengthen our ability to work with allies, and improve the business processes of the DoD
enterprise.

Countless past studies1 have recognized the deficiencies in software acquisition and practices
within DoD, but little seems to be changing. Rather than simply reprint the 1987 Defense Science
Board (DSB) study on military software that pretty much said it all, this study has taken the
approach of engaging Congress, DoD, Federally Funded Research and Development Centers
(FFRDCs), contractors, and the public in an active and iterative conversation about how DoD can
take advantage of the strength of the U.S. commercial software ecosystem and move past the
myriad reports and recommendations that have so far resulted in little progress. Past
experience suggests we should not anticipate that this report itself will do anything, but we hope
that the two year conversation around it will provide the impetus for figuring out how to make the
changes for which everyone is clamoring.

In this iteration of our manifesto, we argue three fundamental points. First, speed and cycle time
are the most important metrics for software. To maintain advantage, DoD needs to deploy
and update software that works for its users at the speed of mission need, and execute inside the
OODA loop of our adversaries. While it is always possible to go slower when speed is not
essential, statutes, regulations and cultural norms that get in the way of deploying software to the
field quickly (weeks to months, not years to decades) weaken our national security and expose
our nation to risk. Second, software is made by people and for people, so digital talent
matters. DoD’s current personnel processes and culture will not allow its military and civilian
software capabilities to grow nearly fast or deep enough to meet its mission needs. New
mechanisms are needed for attracting, educating, retaining, and promoting digital talent, and for
supporting the workforce to follow modern practices, including developing software hand in hand
with users. And third, software is different than hardware (and not all software is the same).
Hardware can be developed, procured, and maintained in a linear fashion. Software is an
enduring and evolving capability that must be supported and continuously improved throughout
its lifecycle. DoD’s acquisition process and culture need to be streamlined for effective delivery

1 We actually tried to count them: see Chapter 3 (Been There, Done Said That).

HanesK
Cleared

2

WORKING DOCUMENT//DRAFT

and oversight of multiple types of software-enabled systems, at scale, and at the speed of
relevance. Optimizing for software is the path forward.

In order to take advantage of the opportunities enabled by software, we recommend four primary
lines of effort. First, the Congress and DoD must streamline the statutes, regulations, and
processes for software (funding, developing, procuring, testing, and fielding), thus providing
increased insight to reduce the risk of slow, costly, and overgrown programs, and enabling rapid
deployment and continuous improvement of software to the field. The management and oversight
of software development and acquisition must be “refactored,” focusing on different measures
and a quicker cadence. Second, it will also be necessary to create cross-program/cross-
service digital infrastructure that enables rapid deployment, scaling, testing, and optimization
of software as an enduring capability; manage them using modern development methods; and
eliminate the existing hardware-centric regulations and other barriers. Third, the Services will
need to create new paths for digital talent (especially internal talent) by establishing software
development as a high-visibility, high-priority career track with specialized recruiting, education,
promotion, organization, incentives, and salary. And finally, both DoD and industry must
change the culture of how software is procured and developed by adopting “DevSecOps”
practices and approaches, prioritizing speed as the criticalmetric.

This is all easily (and often) said but rarely done, so we try here to document a snapshot in the
conversation about the path to achieve this vision, through specific changes to the statutes,
regulations, processes, and cultures that define the acquisition process for software.

3

WORKING DOCUMENT//DRAFT

Table of Contents2

v2.1, 15 Feb 2019

Chapter 0. README 1
Interlude: Recommendations Cheat Sheet (preview of Chapters 4 and 5) 9
Frequently Asked Questions (FAQ) 13

Chapter 1. Who Cares: Why Does Software Matter for the DoD? 15
● Where are we coming from, where are we going?
● Weapons and software and systems, oh my! A taxonomy for DoD
● What kind of software are we going to have to build?
● What challenges do we face (and consequences of inaction)?

Chapter 2. I Don’t Get It: What Does It Look Like To Do Software Right? 20
● How it works in industry (and can/should work in the DoD):DevSecOps
● Empowering the workforce: building talent inside and out
● How doing software right enables superior national security & more insight forCongress
● Eye on the prize: What’s the R&D strategy for ourinvestment?

Chapter 3. Been There, Done Said That: Why This Hasn’t Already Happened? 25
● Brief summary and assessment of 37+ years of prior reports on DoDsoftware
● Breaking the spell: Why nothing happened before, but why this time could bedifferent
● Consequences of inaction: Increased attack surface, shipping risk to thewarfighter

Chapter 4. How Do We Get There From Here: Three Paths for Moving Forward 30
● Option 1: Make the best of what we’ve got
● Option 2: Tune and tweak the system to optimize forsoftware
● Option 3: A new appropriations category/acquisition pathway to force change in the

middle

Chapter 5. What Would the DIB Do: Our Recommendations for Congress and DoD 35
● Primary lines of effort: The most important things to do (starting now)
● The next ten things after that (by popular demand)
● Kicking the can down the road: Other things that we couldn’t figure out how to fix

Acknowledgements 40

List of Vignettes (tentative)
1. Kessel Run: Insourcing Software Development for Mission-Critical Applications
2. Implementing Continuous Delivery: The JIDO Approach
3. F22: DevOps on a Hardware Platform
4. JMS: Seven Signs That Your Software Is In Trouble
5. Kessel Run: How Not to Incentivize the DoDWorkforce
6. SWAP Study: Making It Hard to Volunteer to Help
7. Over-Oversight: How Those in Charge are Part of the Problem

Supporting Information (separate document, 150+ pages)

2 Draft outline for the report; page numbers reflect target length for each chapter

https://drive.google.com/a/innovate.mil/open?id=1l2bQqfMaaLzyC5DuKzttByjxSWxP7k6ahJQqKPwW--E
https://drive.google.com/a/innovate.mil/open?id=10N1wlUFNtdWL-Fv19jCNrvmDDHIOVqQQBULW-g7WFFo
https://drive.google.com/a/innovate.mil/open?id=10N1wlUFNtdWL-Fv19jCNrvmDDHIOVqQQBULW-g7WFFo
https://docs.google.com/document/d/1ZHeFpAp7G_6k4Br58XF7xP6rhh7ATZF8EP1KjSTvpmo

4

WORKING DOCUMENT//DRAFT

Appendix A. DIB Guides for Software S1
● Ten Commandments of Software
● Metrics for Software Development
● Do’s and Don’ts for Software
● Detecting Agile BS
● Is Your Development Environment Holding You Back?
● Is Your Compute Environment Holding You Back?
● Site Visit Observations and Recommendations
● How To Defend Your Agile Budget
● How to Know You’re Getting Your Money’s Worth (tentative)

Appendix B. SWAP Working Group Reports (DIB remix) S41

● Acquisition Strategy
● Appropriations
● Contracts
● Data and Metrics
● Infrastructure

● Sustainment/Modernization
● Requirements
● Security Certification/Accreditation
● Testing and Evaluation
● Workforce

Appendix C. Analysis the Old-Fashioned Way: A Look at Past DoD SW Projects S71
● Software development project analyses
● Software development data analyses

Appendix D. Replacing Augmenting CAPE with AI/ML S91

● Software life-cycle prediction model
● Software development forecasting model
● Investigation of opportunities for analytic intervention

Appendix E. Top 10 Lists: Recommendations, Obstacles, Tools

S111

Appendix F. Acronyms and Catch Phrases S135

Appendix G. Required Content That Nobody Ever Reads S120

Appendix L. Legislative and Regulatory Language Templates S130
● Section 805 Template Language for Chapter 4, Option 3

Appendix P. A modern alternative to P- and R-forms: How to Track Software Programs S150

Index [substantive index to entire report, to allow people to find what they are looking for] S152

End of Overall Report: 32 pages (main) + 160 pages (SI) = 192 pages

https://docs.google.com/document/d/1dBvYKhe1R0r8_nWb9TAJvskbBllVO3j57d0Vt8hP_TE

5

WORKING DOCUMENT//DRAFT

Chapter 0. README
v2.1, 15 Feb 2019

Software is ubiquitous and U.S. national security is critically dependent on the capabilities of its
software. To maintain our military advantage, the Department of Defense (DoD) must be able to
develop, procure, deploy, and continuously improve software faster than our adversaries.
Recognizing that not all “software” is the same – it can range from off-the-shelf, non-customized
applications to highly-specialized, embedded code running on custom hardware – it is critical
that the right tools and methods be applied for each type. Unfortunately, DoD practices lag
significantly behind the best practices used in the private sector. Commercial industry has
demonstrated that software can have a transformative impact on business and society.
Companies that thrive take advantage of software, computing, and networking – and the rapid
cycles of improvement they allow and enable – to the maximum extent possible. At the present
time, DoD’s software prioritization, planning, and acquisition processes are among the worst
bottlenecks for deploying capability to the field at the speed of relevance. This puts the U.S.
Armed Forces at risk, reduces the efficiency of DoD operations, and drives away the very
people who are most needed to develop software that is critical to national security.

What this report is about. This manifesto describes the output of the Defense Innovation
Board (DIB) Software Acquisition and Practices (SWAP) study. The DIB was charged by
Congress1 to recommend changes to statutes, regulations, processes, and culture to enable the
better use of software in the DoD. We took an iterative approach, mirroring the way modern
software is successfully done, releasing a sequence of concept papers describing our
preliminary observations and insights (the current versions of these are included in Appendix A).
We used those to encourage dialogue with a wide variety of individuals and groups to gain
insights into the current barriers to implementing modern software effectively and efficiently.
This report captures key insights from these discussions in an easy-to-read format that
highlights the elements that we think are critical for the Department’s success and serves as a
starting point for continued discussions required to implement the changes that we recommend
here.

This report is organized as follows:

● Extended abstract: a one-page summary of twelve months of work for those not likely
to read the full report; please take the time to read it.

● README (this document): a more detailed five-page summary of the report. If your boss
heard about the report or read the extended abstract, thought it was intriguing, and
asked you to read the entire report and provide a short summary, cut and paste this
chapter and you should be good-to-go. (A README file is used by the open source
software community to provide essential information about a softwarepackage.)

● Recommendations Cheat Sheet: A list of the primary lines of effort and key
recommendations, so you can pretty much stop at that point – or better yet, stop after
suggesting to your boss she adopt them all.

1 2018 NDAA, Sec. 872. Defense Innovation Board analysis of software acquisition regulations.

https://www.congress.gov/bill/115th-congress/house-bill/2810/text

6

WORKING DOCUMENT//DRAFT

● FAQ (frequently asked questions): a list of the most common questions that we get
about the study and our attempt to answer them. (Question #1: hasn’t all of this been
recommended before? A: yes…)

● Chapters 1-4: short descriptions of key areas about which we felt it important to
expound. If you attach the extended abstract to any one of these as a preface, it should
be comprehensible.

● Chapter 5: a more detailed description of the recommendations and ourrationale.
● Supplementary Information: To ensure that the main body of the report satisfies the

staple test2 and the takeoff test, 3 we put most of the additional information generated
during the study in a set of appendices. These provide a wealth of examples and
evidence, but we took care to put our essential arguments up front for less wonky types.

Note: if you are reading any portion of the report in paper form, a navigable version is available
at http://innovation.defense.gov/software (hyperlink version coming soon).

Key Themes. In order for the report to be useful, we felt we should come up with a few key
themes that could be used to drive home the message of the report. Here they are (again):

1. Software is ubiquitous and U.S. national security relies onsoftware.
2. Speed and cycle time are the most important metrics forsoftware.
3. Software is made by people and for people, so digital talentmatters.
4. Software is different than hardware (and not all software is thesame).

Software is ubiquitous and U.S. national security relies on software. The rise of electronics,
computing, and networking has forever transformed the way we live: software is a part of almost
everything with which we interact in our daily lives, either directly through embedded
computation in the objects around us or indirectly through the use of information technology
through all stages of design, development, deployment, and operations. Our military advantage,
coordination with allies and partners, operational security, and many other aspects of the DoD
are all contingent upon our software edge and any lack thereof presents serious consequences.
Software drives our military advantage: what makes weapons systems sophisticated is the
software, not (just) the hardware.

Commercial trends show what is possible with software, from the use of open source tools to
agile development techniques to global-scale cloud computing. Because of these changes,
software can be developed, deployed, and updated much more quickly, which means systems
need to be in place to support this speed. But modern software development requires a new set
of skills and methodologies (e.g., generalist software engineers, specialized product
management, DevOps and DevSecOps, agile development). Hence, the policies and systems
surrounding software must be transformed to support software, not cold-war era weapon
manufacturing.

2 Any report that is going to be read should be thin enough to be stapled with a regular office stapler.
3 Reports should be short enough to read during takeoff, before the movies start and drinks are served.

http://innovation.defense.gov/software

7

WORKING DOCUMENT//DRAFT

Our adversaries are active players in the world of software and so they are increasingly able to
develop weapons systems faster than we can, capitalizing on their advantage in software
development. Meanwhile, they exploit our vulnerabilities via cyber attacks to steal, undermine,
and inhibit our capabilities. The incoming generation of military and civilian personnel began life
digitally plugged-in, with an innate reliance on software-based systems. They will demand new
concepts of operations, tactics, and strategies to maintain the edge they need. If the
Department can refactor its acquisition processes and adjust its culture and personnel policies
before its too late, this software-savvy generation can still set the Department on the right
course.

Speed and cycle time are the most important metrics for software. Most software projects in
DoD are currently managed using “waterfall” develop processes, which involve spending years
on developing requirements, taking and selecting bids from contractors, and then executing
programs that must meet the listed requirements before they are “done.” This results in software
that takes years to reach the field and is often not well matched to the current needs of the user
or tactics of our adversaries, which have often changed significantly while the software was
being written, tested, and accepted. Being able to develop and deploy faster than our
adversaries means that we can provide more advanced capabilities, respond to our adversaries’
moves, and be more responsive to our end users. Faster reduces risk by because it demands
focus on the critical functionality rather than over-specification or bloated requirements. It also
means we can identify trouble earlier and take faster corrective action which reduces cost, time,
and risk. Faster leads to increased reliability: the more quickly software/code is in the hands of
users, the more quickly feedback can focus efforts to deploy greater capability, sooner. Faster
gives us a tactical advantage on the battlefield because we can operate and respond inside our
adversaries’ observe–orient–decide–act (OODA) loops. Faster is more secure. Faster is
possible.

Software is made by people and for people, so digital talent matters. Current DoD human
resource policies are not conducive to attracting, retaining, and promoting digital talent.
Talented software developers and acquisition personnel with software experience are often put
in jobs that do not allow them to make use of those talents, particularly in the military where
rotating job assignments may not recognize and reward the importance of software
development experience. As Steve Jobs observed, 4 one of the major differences between
hardware and software is that for hardware the “dynamic range” (ratio between the best in class
and average performance) is, at most, 2:1. But, the difference between the best software
developer and an average software developer can be 50:1, or even 100:1, and putting great
developers on a team with other great developers amplifies this effect. Today, in DoD and the
industrial base that supports it, the people with the necessary skills exist, but instead of taking
advantage of their skills we put them in environments where it is difficult for them to be effective.
In DoD proper, we do not take advantage of already existing military and civilian personnel
expertise by offering pay bonuses, career paths that provide the ability to stay in their
specialization, or access to early promotions. Skilled software engineers and the related

4 Steve Jobs - The Lost Interview, 2012.

8

WORKING DOCUMENT//DRAFT

specialities that are part of the overall software ecosystem need to be treated like Special
Forces; the United States must harness their talent for the great benefits that it can provide.

Software is different than hardware (and not all software is the same). Over the years, Congress
and DoD have developed a sophisticated set of statues, regulations, and instructions that
govern the development, procurement, and sustainment of defense systems. This process was
developed in the context of the Cold War, where major powers developed aircraft carriers,
nuclear weapons, fighter jets, and submarines that are extremely expensive, last a very long
time, and require tremendous access to capital and natural resources. Software, on the other
hand, is something that can be mastered by a ragtag bunch of teenagers with very little money
– and can be used to quickly destabilize world powers. Currently most parts of DoD develop,
procure, and manage software like hardware, assuming that it is developed based on a fixed set
of specifications, procured after it has been shown to comply with those specifications,
“maintained” by block upgrades, and upgraded by replaying this entire procurement process
linearly. But software development is fundamentally different than hardware development, and
software should be developed, deployed, and continuously improved using much different cycle
times, support infrastructure, and maintenance strategies. Testing and validation of software is
also much different than for hardware, both in terms of the ability to automate but also in the
potential vulnerabilities found in software that is not kept up to date. Software is never “done,”
and must be managed as an enduring capability that is treated differently thanhardware.

Primary Lines of Effort: The Most Important Things to Do. The Department’s current
approach to software is a, if not the, major driver, of cost and schedule overruns for Major
Defense Acquisition Programs (MDAPs). Congress and DoD need to come together to fix the
acquisition system for software because it is the primary sources of its acquisition headaches.

Bringing about the type of change that is required to give DoD the software capabilities it needs
is going to take a significant amount of work. While it is possible to use the current acquisition
system and DoD process to develop, procure, deploy, and continuously improve DoD software,
in this case the statutes, regulations, processes, and culture are debilitating. The current
approach to acquisition was defined in a different era, for different purposes, and only works for
software projects through enormous effort and creativity. Congress, the Office of the Secretary
of Defense, the Armed Services, defense contractors, and the myriad of government and
industry organizations involved in getting software out the door need to make major changes
(together). Here are the primary Lines of Effort that we recommend beundertaken:

1. Streamline statutes, regulations, and processes for software, providing increased
insight to reduce the risk of slow, costly, and overgrown programs, and enabling rapid
deployment and continuous improvement of software to the field. Reinvent management
and oversight, focusing on different measures and a quickercadence.

2. Create and maintain cross-program/cross-service digital infrastructure that
enables rapid deployment, scaling, and optimization of software as an enduring
capability, managed using modern development methods in place of existing (hardware-

9

WORKING DOCUMENT//DRAFT

centric) regulations, and providing more insight (and hence better oversight) for
software-intensive programs.

3. Create new paths for digital talent (especially internal talent) by establishing
software development as a high-visibility, high-priority career track with specialized
recruiting, promotion, organization, incentives, andsalary.

4. Change the culture of how software is procured and developed by adopting best
practices from the private sector and focusing on iterative and ongoing development of
software, security as a key performance parameter, and responsive engagement with
the user (DevSecOps).

None of these can be done by a single organization within the government. They are going to
require a bunch of hard-working, well-meaning people to work together to craft a set of statutes,
regulations, processes, and (most importantly) a culture that recognizes the importance of
software (theme 1), the need for speed and agility (theme 2), the critical role that smart people
have to play in the process (theme 3), and the impact of inefficiencies of the current approach
(theme 4). In many ways this mission is as challenging as any combat mission: while
participant’s lives may not be directly at risk in defining, implementing, and communicating the
needed changes to policy and culture, the lives of those who defend our nation ultimately
depend on the ability of the Department to redefine its approach to delivering combat-critical
software to the field.

New statutes, regulations, and processes, streamlined for software. Congress has created
many workarounds to allow the DoD to be agile in its development of new weapons systems,
and the Department has used many of these to good effect. But the default statutes,
regulations, and processes that are used for software too often rely on the traditional hardware
mentality (repeat: software is different than hardware) and those practices do not take
advantage of what is possible with modern software (or frankly necessary, given the threat
environment). We think that a combination of top-down and bottom-up pressure can break us
out of the current state of affairs, and creating a new acquisition pathway that is tuned for
software (of various types) will make a big difference. To this end, Congress and DoD should
prototype and, after proving success, create mechanisms for ideation, appropriation, and
deployment of software-driven solutions that take advantage of the unique features of software
(versus hardware) development (start small, iterate quickly, terminate early) and provide
purpose-fit methods of oversight. As an important aside, note that throughout this study our
recommendations adhere to this guiding axiom – start small, iterate quickly – the same one that
characterizes the best of modern software innovation cycles.

Primary recommendations:5

● Recommendation Ax:
● Recommendation Ay:
● Recommendation Az:

5 Not yet finalized; see the “Recommendations Cheat Sheet” for the current list of possibilities.

10

WORKING DOCUMENT//DRAFT

Cross-program/cross-service digital infrastructure: Current practice in DoD programs is for each
individual program to build its own infrastructure for computing, development, testing, and
deployment, and there is little ability to build richer development and testing capabilities that are
possible by making use of common infrastructure. Instead, we need to create, scale, and
optimize an enterprise-level architecture and supporting infrastructure that enables creation and
initial fielding of software within six months and continuous delivery of improvements on a three-
month cycle. This “digital infrastructure,” common in commercial IT, is critical to enable rapid
deployment at the speed (and scale) of relevance. In order to implement this recommendation,
Congress and Department leadership must figure out ways to incent the Services and defense
contractors to build on a common set of tools (instead of inventing their own) without just
requiring that everyone use one DoD-wide (or even service-wide) platform. Similarly, OSD is
going to have to define non-exceptions-based alternatives to (or at least pathways through)
JCIDS, PPB&E, and DFARS6 that are optimized for software. DOT&E will need new methods
for operational test and evaluation that match the software’s speed of relevance, and CAPE is
going to have to capture better data and leverage artificial intelligence/machine learning (AI/ML)
as a tool for cost assessment and performance evaluation. Finally, the Services are going to
need to identify, champion, and measure platform-based, software-intensive projects that
increase software effectiveness, simplify interconnectivity among allies, and reform business
practices. Subsequent chapters in our report provide specific recommendations on each of
these areas.

Primary recommendations:7

● Recommendation Bx:
● Recommendation By:
● Recommendation Bz:

New paths for digital talent. The biggest enabler for great software is providing great people with
the means to contribute to the national security mission. While the previous recommendations
speak to providing the tools and infrastructure DoD technologists need to succeed, it is equally
important that the Department’s human capital strategies allow them to even do this work
consistently in the first place. Driving the cultural transformation to support modern, cloud-based
technology requires new types of skills and competencies, changing ratios of program
managers to software engineers, moving from waterfall development to agile development, and
dealing with all of the change management that comes with it. This is not an easy task, but
arguably one of the most important. While compensation is a major driver in attracting
competitive talent, DoD must also make changes in the roles, methodologies, cultures, and
other aspects of the transformation that industry is undergoing and that the government must as
well.

Increasing developer talent is not the only workforce challenge. DoD must also change how
programs and contractors are managed, which goes beyond just moving to agile development.
The government must have experts well steeped in the software development process and

6 Common DoD acronyms are defined in Appendix F (Acronyms, Inside Jokes, and Catch Phrases).
7 Not yet finalized; see the “Recommendations Cheat Sheet” for the current list of possibilities.

11

WORKING DOCUMENT//DRAFT

architecture design to adequately manage both organic activities and contracted programs.
They must have the skills to detect when contractors are going down the wrong path, choosing
a bad implementation approach, or otherwise being wasteful. This is perhaps the argument for
having software development experience natively in the government, rather than relying
primarily on external vendors: unless there are software-knowledgeable members on the core
team, it is impossible to effectively monitor and manage outsourced projects. This is even more
true with the movement to DevSecOps.

In implementing this change in the workforce, it is particularly important to provide new career
paths for digital talent and enable the infrastructure and environment required to allow them to
succeed. The current GS system favors time-in-grade over talent. This simply will not work for
software. The military promotion system has the same problem. As with sports, medicine, and
law, great teams make a huge difference in software and we need to make sure those teams
have the tools they need to succeed and reward them appropriately -- through recognition,
opportunities for impact, career advancement, and pay. Advanced expertise in procurement,
project management, evaluation and testing, and risk mitigation strategies will also be needed to
create the types of elite teams that are necessary. To get started, Congress might create a two-
year national security waiver from the GS system in selected digital technology areas required
for software, and the Services should use this and other authorities to identify and nurture
civilian and military talent with software development expertise. A key element of success is
finding ways to keep talented people in their roles (rather than transferring them out because it
is the end of their assignment), and promote people based on their abilities, not based on their
years of service.

Primary recommendations:8

● Recommendation Cx:
● Recommendation Cy:
● Recommendation Cz:

Changing the culture around software acquisition. The items above are where we think
Congress and the Department should focus as the three primary Lines of Effort. Without
dramatic change, the rate at which we can make improvements is far outpaced by the rate at
which the problem itself gets worse. With demonstrated progress on these three there is then a
long list of other things that need to be done, ranging from changing the law to changing the
way people work. We created a list of 30 recommendations for change that we thought were
important, and then asked everyone with whom we interacted in building this report to vote on
the ones they thought would make the most difference. Here is the current snapshot of the top
10 recommendations that are not already part of our primary lines of effort, based on that voting
and our judgement:

Rank Recommendation 👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍 👎👎👎👎👎👎👎👎👎👎👎👎👎👎👎👎
 This table will be filled in for the final report

8 Not yet finalized; see the “Recommendations Cheat Sheet” for the current list of possibilities.

12

WORKING DOCUMENT//DRAFT

 The items here will come from a longer list of recommendations (see cheat sheet)

 The order will be determined using a leaderboard

 Participants in SWAP study activities will be allowed to cast a vote

 More details coming later; look at the full list of options (cheat sheet) for now.

More details on these (as well as top 10 lists for the biggest barriers and the most useful tools
that are not currently available for use) are included in Chapter 5 (What Would the DIB Do) and
the supporting information (Appendix E).

Getting started now. The types of changes that we are talking about will take years to bring to
complete fruition. But it would be a mistake to spend two years figuring out what the answer
should look like, spend another two years prototyping the solutions to make sure we are right,
then spend two to four more years implementing the changes in statutes, regulations,
processes, and culture that are actually required. Let’s call that approach the “hardware”
approach. Software is different than hardware and the approach to implementing change for
software should be different as well.

Indeed, most (if not all) of the changes we are recommending are not new and not impossible to
do. The 1987 Defense Science Board Task Force on Military Software,9 chaired by legendary
computer scientist Fred Brooks, wrote an outstanding report that already articulated most of
what we are saying here. And industry has already implemented and demonstrated the utility of
the types of changes we envision. The problem appears to be in getting the military enterprise
to adopt a software mindset and implement a DevSecOps approach in a system that was
intended to make sure that things would not move tooquickly.

Many of our DoD issues could be addressed by adopting existing best practices of the private
sector for agile development, software as a service, use of modern (cloud) infrastructure, tools,
computing and shared libraries, and software logistics and support delivery systems for software
maintenance, development, and updating (patching). We do not need to study these, we need
to get going and implement them. Here are some specific suggestions for what to do starting
now:

● FY19 (create): High-level endorsement of report vision and support for activities that are
consistent with the desired end state (i.e., DevSecOps and enterprise-level architecture and
infrastructure); identify and launch programs to move out on the priority recommendations
(repeat: start small, iterate quickly). If you are reading this and are in a position of leadership
in your organization, pass this on to others with your seal of approval and a request for your
team to develop 2-3 plans of action for how it can be applied in your domain. If someone
comes to you with a proposal that aligns with the objectives we have outlined here, find a
way to say yes. You are the front line in changing to a “culture ofyes.”

9 Defense Science Board Task Force, Military Software (Washington, DC: Office of the Under Secretary
of Defense for Acquisition, September 1987), https://apps.dtic.mil/dtic/tr/fulltext/u2/a188561.pdf.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a188561.pdf

13

WORKING DOCUMENT//DRAFT

● FY20 (deploy): Initial deployment of authorities, budgets, and processes for SWAP reform.
Execute representative programs according to the themes, flavors, and recommendations in
this report, implement now, measure results, and modify approaches. Let’s implement this
report the way we implement modern software.

● FY21 (scale): Streamlined authorities, budgets, and processes enabling SWAP reform at
scale. In this time frame, we need a new methodology to estimate as well as determine the
value of software capability delivered (something not based on lines ofcode).

● FY22 (optimize): All DoD software development projects transition (by choice) to software-
enabled processes, with talent and ecosystem in place for effective management and
oversight.

14

WORKING DOCUMENT//DRAFT

15

WORKING DOCUMENT//DRAFT

DIB SWAP Study
Recommendations “Cheat Sheet”

v1.2, 12 Feb 2019

This section contains a list of the (preliminary) potential recommendations for the Defense
Innovation Board (DIB) Software Acquisition and Practices (SWAP) study. The
recommendations below include input from the following sources:

● DIB SWAP concept papers (Ten Commandments, Do’s and Don’ts,Observations)
● DIB SWAP working group reports
● Previous software acquisition reform studies (starting with the 1987 DSB study)

The recommendations are organized according to four major lines of effort and each
recommendation contains background information, a proposed owner for implementing the
recommendation as well as a more detailed action plan, a list of other offices that are affected,
and additional details. The following diagram documents this structure:

For each recommendation below, a one page summary is provided that gives more detail on the
rationale, supporting information, similar recommendations, and specific action items, and notes
on implementation. Potential legislative and regulatory language to implement selected
recommendations is included in Appendix L1.

1 Appendix L is not yet finalized or all-inclusive

16

WORKING DOCUMENT//DRAFT

ID

Rec

Lead
Org

Time
req’d

Line of Effort A (Congress and OSD): Streamline statutes, regulations, and processes for
software, providing increased insight to reduce the risk of slow, costly, and overgrown programs, and
enabling rapid deployment and continuous improvement of software to the field. Reinvent management
and oversight, focusing on different measures and a quicker cadence.

A1 Create a new appropriations category that allows (relevant types of) software to
be funded as a single budget item, with no separation between RDT&E,
production, and sustainment

A&S
via

HAC-D
SAC-D

1 yr
pilot;
3 yr
full

A2a Make use of existing authorities such as OTAs and mid-tier acquisition (Sec 804)
to implement a DevSecOps approach to acquisition to the greatest extent
possible under existing statutes, regulations, and processes.

PM now

A2b Refactor and simplify Title 10, DFARS, and DoDI 5000.02/5000.75 to remove
statutory, regulatory, and procedural requirements that generate delays for
acquisition, development, and fielding of software while adding requirements for
continuous (automated) reporting of cost, performance (against updated metrics),
and schedule

HASC
SASC

1-3
yrs

A2c Establish a new acquisition pathway (Sec 805) for software that prioritizes the
ability to rapidly field and iterate new functionality in a secure manner, with
continuous oversight based on automated reporting and analytics, and utilizing
IA-accredited commercial development tools

A&S
via

HASC
SASC

3-5
yrs

A3 Create streamlined authorization and appropriation processes for defense
business systems (DBS) that use commercially-available products with minimal
(source code) modification

CMO 6-12
mos

A4 Plan, budget, fund, and manage software development as an enduring capability
that crosses program elements and funding categories, removing cost and
schedule triggers associated with hardware-focused regulations and processes.

Comp 1-3
yrs

A5 Replace JCIDS, PPB&E, and DFARS with a "PEO Digital" in each Service that
uses portfolio management and direct identification of warfighter needs to decide
on allocation priorities

JCS 1
yrs

A6 Require cost assessment and performance estimates for software programs (and
software components of larger programs) to be based on metrics that track speed
and cycle time, security, code quality, and functionality.

CAPE 3-12
mos

Line of Effort B (OSD and Services): Create and maintain cross-program/cross-service digital
infrastructure that enables rapid deployment, scaling, and optimization of software as an enduring
capability, managed using modern development methods in place of existing (hardware-centric)
regulations, and providing more insight (and hence better oversight) for software-intensive programs.

B1 Establish and maintain digital infrastructure within each Service or Agency that
enables rapid deployment of secure software to the field and make available to
contractors at subsidized cost

CSx

https://docs.google.com/document/d/1vk9m7MTnJj6PX67u04NHjj-4__Cc2bdTthiMaJxi05A/edit
https://docs.google.com/document/d/1uFVfXI2J94LYJKN0oIV8klw91Wh3Q1bWVKr684fqR4Y/edit

17

WORKING DOCUMENT//DRAFT

B2 Create, implement, support, and require a fully automatable approach to T&E,
including security, that allows high confidence distribution of software to the field
on a iterative basis (with frequency dependent on type of software, but targets
cycle times measured in weeks)

OT&E

B3 Prioritize secure, iterative, collaborative development for selection and execution
of all new software programs (and software components of hardware programs)
(see Agile BS detector as an initial view of how to evaluate capability)

A&S

B4 Create a mechanism for ATO reciprocity within and between services to enable
sharing of software platforms, components and infrastructure and rapid
integration of capabilities across (hardware) platforms, (weapons) systems, and
Services

CIO

B5 Remove obstacles to DoD usage of cloud computing on commercial platforms,
including DISA CAP limits, lack of ATO reciprocity, and access to modern
software development tools

CIO

B6 For any software developed for DoD, require that software development be
separated from hardware in a manner that allows non-prime vendors to bid for
software elements of the program on a performance-based basis

A&S

B7 Shift from certification of executables, to certification of code and certification of
the development, integration, and deployment toolchain, with the goal of enabling
rapid fielding of mission-critical code at high levels of information assurance

CIO

B8 Plan and fund computing hardware (of all types) as consumable resources, with
continuous refresh and upgrades to the most recent, most secure OS and
platform components

Comp

Line of Effort C (Services): Create new paths for digital talent (especially internal talent) by
establishing software development as a high-visibility, high-priority career track with specialized
recruiting, promotion, organization, incentives, and salary.

C1 Create software development groups in each Service consisting of military and/or
civilian personnel who write code that is used in the field and track individuals
who serve in these groups for future DoD leadershiproles

CSx

C2a Expand the use of (specialized) training programs for CIOs, SAEs, PEOs, and
PMs that provide (hands-on) insight into modern software development (e.g.,
agile, DevOps, DevSecOps) and the authorities available to enable rapid
acquisition of software

A&S

C2b Require CIOs, SAEs, PEOs, PMs and any other acquisition roles involving
software development as part of the program to have prior experience in software
development

A&S

C3 Increase the knowledge, expertise, and flexibility in program offices related to
modern software development practices to improve the ability of program offices
to take advantage of software-centric approaches to acquisition

A&S

C4 Restructure the approach to recruiting software developers to assume that the
average tenure of a talented engineering will be 2-4 years, and make better use
of HQEs, IPAs, reservists and enlisted personnel to provide organic software
development capability

CSx

18

WORKING DOCUMENT//DRAFT

Line of Effort D (Acquisition Offices and Contractors): Change the culture of how software is
procured and developed by adopting best practices from the private sector and focusing on iterative
and ongoing development of software, security as a key performance parameter, and responsive
engagement with the user (DevSecOps).

D1 Require access to source code, software frameworks, and development
toolchains, with appropriate IP rights, for all DoD-specific code, enabling full
security testing and rebuilding of binaries from source

A&S

D2 Create and use automatically generated, continuously available metrics that
emphasize speed, cycle time, security, and code quality to assess, manage, and
terminate software programs (and software components of hardware programs)

A&S

D3 Establish a Combat Digital Service (CDS) unit within each combatant command
consisting of software development talent that can be used to manage command-
specific IT assets, at the discretion of the combatant commander.

JCS

D4 Shift the approach for acquisition and development of software (and software-
intensive components of larger programs) to an iterative approach: start small, be
iterative, and build on success - or be terminated quickly

A&S

D5 Make security a first-order consideration for all software-intensive systems, under
the assumption that security-at-the-border will not be enough

CIO

D6 Shift from a list of requirements for software to a list of desired features and
required interfaces/characteristics, to avoid requirements creep, overly ambitious
requirements, etc

A&S
SAE

Additional recommendations that do not fit the primary lines of effort listed above
E1 Maintain an active research portfolio into next-generation software methodologies

and tools, including the integration of machine learning and AI into software
development, cost estimation, security vulnerabilities and related areas

R&E Cult

E2 Invest in transition of emerging approaches from academia and industry to
creating, analysis, verification, and testing of software into DoD practice (via
pilots, field tests, and other mechanisms)

R&E

E3 Automatically collect all data from DoD weapons systems and make available for
machine learning (via federated, secured enclaves, not a centralized repository)

A&S

Previous recommendations that we support and can't improve on (incomplete)

● DSB (1987): Rec 19: DoD should develop metrics and measuring techniques for software quality
and completeness, and incorporate these routinely in contracts

Previous recommendations we don't agree with (incomplete)
• DSB (1987): Rec 5: Commit DoD management to a serious and determined push to Ada

19

WORKING DOCUMENT//DRAFT

SWAP FAQ (Frequently Asked Questions)
v0.2, 17 Feb 2019

1. Haven’t all of these ideas already been recommended in previous studies? Why is

this study/report any different?

Yes, the vision for how to do software right has existed for decades and most of the best
practices that we and others have recommended are common practice in industry today.
Chapter 3 (Been There, Done Said That) summarizes previous work and provides our
assessment of why things haven’t changed. Here are the parts we think are new and
different:

● The recommendations in this report serve primarily as documentation of a sequence of
iterative conversations and the real work of the report is the engagements before and
after the report is released.

● Our engagements in the process, and the iterative ways we have worked on this study
(just like good software!) have created a willing group of advocates (inside the
Department) ready to move forward. If we permit them, we believe change willoccur.

● We focus on speed and cycle time as the key drivers for what needs to change and
recommend optimizing statutes, regulations, and processes to allow management and
oversight of speed at scale. This won’t fix everything, but if you optimize for speed then
many other things will improve as well (includingoversight).

● This report is shorter and pithier than previous reports, so we hope people will read it.

2. Shouldn’t Congress just get out of the way and let DoD run things the way theywant?

This is not the way that the Constitution works. The Legislative branch is an equal branch of
government and has a responsibility to see that the Executive branch performs its duties
well and properly uses taxpayer resources. This makes implementation of many of the ideas
in this report a challenge, but we believe that oversight of software is actually easier than
oversight of hardware, and Congress can and should take advantage of the insights
provided by optimizing speed and cycle time to perform oversight of defensesoftware.

3. Military software is different than commercial software since lives and national
security are at stake, so we can’t just do things like they do inindustry.

Not all (defense) software is the same. Some software requires different consideration in
DoD compared with industry, but some software is very much equivalent. Foreign
governments perform espionage against U.S. companies and those companies should be
protecting themselves in the same way as the U.S. government should (and in many cases,
companies are doing better at protecting their code than the government, in our experience).

And even for those types of software that are very different from what we would find in the
commercial world, the broad themes of modern software development are the same:
software is never done, speed and cycle time are critical measures, software is by people
and for people, and software is different from hardware. In all cases we believe that the

20

WORKING DOCUMENT//DRAFT

acquisition of software must recognize these broad themes to take advantage of the
opportunities provided by modern software development practices.

While certainly agreeing that the role of military is different, there are many areas of the
private sector in which health, economic well-being, and life safety are critically dependent
on software - aircraft, hospitals, traffic management, etc.

4. Embedded software (in weapons systems) is different than commercial software
since it is closely tied to the hardware, so we can’t just do things like they do in
industry.

Not all software is the same, and embedded systems have different requirements for testing
and verification that may not be present in other types of systems. The broad themes of
modern software development also hold for embedded systems: software is never done,
speed and cycle time are critical measures, software is by people and for people, and
software is different from hardware. The issue of cycle time is the one that usually raises
the most concern, but we note that embedded software can also have bugs and
vulnerabilities and figuring out how to deploy patches and updates quickly is a valuable
feature (think about hardware-coupled features in a smartphone or a Tesla as examples of
where this is already being done in industry).

5. For military systems, training is an essential element and we can’t change the
software quickly because we can’t retrain people to use the new version.

Not all software is the same and many types of software have functions that are not directly
evident to the user. Indeed, there are some types of software where you might want to
update things more slowly to avoid creating confusion for a human operating under stress
and having to rely on their training to avoid doing something wrong. For those systems, it will
be important to figure out how to couple software updates with training so that warfighters
have access to the latest version of the software that provides the functionality and security
required to carry out their mission. It is also important to continuously evolve our training
regimes to take advantage of what may be increased flexibility and adaptability of “digital
natives.”

6. Providing source code to the government is a non-starter for industry. How will they
make money if they have to give the government their code?

It is critical that DoD have access to source code for purpose-build software: it is required in
order to do security scans to identify and fix vulnerabilities, and only with access to the
source code and build environment can the government maintain code over time. However,
providing source code is different than handing over the rights to do anything they want with
that code. Modern IP language should be used to ensure that the government can use,
scan, rebuild, and extend purpose-built code, but contractors should be able to use licensing
agreements that protect any IP that they have developed with their ownresources.

21

WORKING DOCUMENT//DRAFT

8. Won’t Congress simply reject modern continuous, incremental software programs
believing that “software is never done” is just an open invitation to make programs
last forever?

“Software is never done” specifically highlights that certain capabilities will be enduring, e.g.,
the DoD will always need the capability to ingest data from overhead assets, process that
data, and disseminate it and the information it contains. In this situation sensors will change,
new analyses will be developed and new products will be required by decision makers. In
the traditional DoD software world, a highly defined requirement would be defined, a
program would be launched and years later a (likely) out-of-date capability would be
delivered, followed immediately by a new, large scale, highly definable requirement, blah,
blah, blah. In a world where this need will endure, a continuously funded, incrementally
managed software program works better. We must be comfortable that we will spend a
certain amount of money each year, we let the program use modern tools for delivering
value to real end users incrementally, and we measure success by real-time metrics
delivered by the development infrastructure and through direct feedback from the user
community. This is the best way to provide Congress with the oversight it deserves.

9. Have you read a P-form and an R-form?

We have! To us, these do not seem to be able to provide the type of insight into a software
(or software-intensive) program that would be required to make a sound judgement about
whether a program is in trouble. We are working on a mockup of an alternative……

22

WORKING DOCUMENT//DRAFT

23

WORKING DOCUMENT//DRAFT

Chapter 1. Who Cares: Why Does Software Matter for the DoD?
v0.3, 18 Feb 2019

This chapter provides a high-level vision of why software is critical for national security and the
types of software we are going to have to build in the future. We also provide a description of
different types of software, where they are used, and why a one-size-fits-all approach will not
work.

1.1 Where are we coming from, where are we going?

While software development has always been a challenge for the Department, today these
challenges are greatly affecting our ability to deploy and maintain mission critical systems to
meet current and future threats. In the past, software simply served as an enabler of hardware
systems and weapons platforms.

Today, software defines our mission critical capabilities and our ability to sense, share,
integrate, coordinate, and act. Software is everywhere and is in almost everything that the
Department operates and uses. Software drives our weapons systems; command, control and
communications systems; intelligence systems; logistics; and infrastructure. If the new domain
that we are fighting in is cyber, then our ability to maintain situational awareness and our ability
to fight, defend, and counter threats will be based on the capabilities of our software. In this new
domain software is both the enabler as well as the target of thefight.

As our military systems become increasingly networked and automated, as autonomy becomes
more prevalent, as we become more dependent on machine learning and artificial intelligence,
then our ability to maintain superiority will be directly linked to our ability to field and maintain
software that is better, smarter, and more capable than our adversaries. In this new world,
digital threats are more prevalent and, in many cases, more effective than physical and kinetic
threats alone. Digital capabilities bring new dimensions to asymmetric and hybrid warfare and
nation states are investing in new capabilities to gain parity if not superiority over the United
States. Even our ability to defend against new physical and kinetic threats like hypersonics,
energetics, and biological weapons will be based on software capabilities. We need to identify
and respond to these new threats as they happen in near real time. Our ability to do so will be
based on our ability to develop and push new software defined capabilities to meet those
threats on time scales that greatly out pace our adversaries’ ability to doso.

The ability to meet future threats requires us to rethink how we procure, design, develop,
deploy, and maintain software. We can no longer take years to develop software for our major
systems. Software cannot be an afterthought to hardware and it cannot be acquired, developed,
and managed like hardware. Our current procurement processes treat software programs like
hardware programs. Our acquisition and development approaches are antiquated and do not
meet the demands of the Department. Fixing our software approach in the Department is more
than just making sure that we get control over cost and budget, it’s about our ability to maintain
our fighting readiness and our ability to win the fight and counter any threat regardless of
domain and regardless of adversary.

24

WORKING DOCUMENT//DRAFT

1.2 Weapons and Software and Systems, oh my! A taxonomy for DoD

Not all software systems are the same and it is important to optimize development processes
and oversight mechanisms to the different types of software that are used by DoD. We
distinguish here between two different aspects of software: their operational function (use) and
their implementation platform. To a large extent, a given operational function can be
implemented on many different computational platforms depending on whether it is a mission
support function (where high bandwidth connectivity to the cloud is highly likely) or a field-
forward software application (where connectivity many be compromised and/or undesirable).

The following glossary of terms provides some characterization of these systems and their
important properties:

● Enterprise systems: very large-scale software systems intended to manage a large
collection of users, interface with many other systems, and generally used at the
Department level or equivalent. These systems should always run in the cloud and
should use architectures that allow interoperability, expandability, and reliability. In most
cases the software should be commercial software purchased without modification to the
underlying code, but with DoD-specific configuration. Examples include: e-mail systems,
accounting systems, travel systems, and HR databases.

● Business systems: essentially the same as enterprise systems, but operating at a
slightly smaller scale (e.g., for one of the Services). Like enterprise systems, they are
interoperable, expandable, reliable, and probably based on commercial offerings.
Similar functions may be customized differently by individual Services, though they
should all interoperate with DoD-wide enterprise systems. Examples include: software
development environments, Service-specific HR, financial, and logistics systems.

● Combat systems: software applications that are unique to the national security space
and used as part of combat operations. Combat systems may require some level of
customization that may be unique to the DoD, not the least of which will be specialized
cybersecurity considerations to enable them to continue to function during an adversarial
attack. We further break down combat systems intosubcategories:

○ Logistics systems: any system that is used to keep track of materials, supplies,
and transport as part of operational use (versus Service-scale logistics systems,
with which they should interoperate). While used actively during operations,
logistics systems are likely to run on commercial hardware and operating
systems, allowing them to build on COTS technologies. Platform-based
architectures enable integration of new capabilities functions over time (probably
on a months-long or annual time scale). Operation in the cloud or based on
servers is likely.

○ Mission systems: any system used to plan and monitor ongoing operations.
Similar to logistics systems, this software will typically use commercial hardware

25

WORKING DOCUMENT//DRAFT

and operating systems, but may be run in a more localized form (such as an air
operations center) that precludes the use of some types of cloud computing
infrastructure, but may still heavily leverage cloud technologies, at least in terms
of critical functions. These systems should be able to incorporate new
functionality at a rate that is set by the speed at which the operational
environment changes (days to months).

○ Weapons system: any system that is directly involved in the delivery of lethal
force, as well as any direct support systems used as part of the operation of the
weapon. Note that our definition differs from the standard DoD definition of a
weapons system, which also includes any related equipment, materials, services,
personnel, and means of delivery and deployment (if applicable) required for self-
sufficiency. The DoD definition would most likely include the mission and logistics
functions, which we find useful to break out separately. Software on weapons
systems is likely closely tied to hardware.

We also define several different types of computing platforms on which the functions above
might be implemented:

● Cloud computing: computing that is typically provided in a manner such that the specific
location of the compute hardware is not relevant (and may change over time). These
systems will always be running on commercial hardware and using commercial
operating systems, and the applications running on them will run even as the underlying
hardware changes. The important point here is that the hardware and operating systems
are generally transparent to the application and its user.

● Client/server computing: computing provided by a combination of hardware resources
available in a computing center (servers) as well as local computing (client). These
systems will usually be running on commercial hardware and using commercial
operating systems.

● Desktop/laptop/tablet computing: computing that is carried out on a single system, often
by interacting with data sources across a network. These systems will usually be running
on commercial hardware and using commercial operatingsystems.

● Embedded computing: computing that is tied to a physical, often-customized hardware
platform and that has special features that requires careful integration between software
and hardware.

Note that a single software system may have multiple components or functions that cross these
definitions and there may be components of an integrated system that have elements that cross
these definitions. The key point is that each type of software system will have different
requirements in terms of how quickly it can/should be updated, the level of information
assurance that is required, and the organizations that will participate in development, testing,
customization, and use of the software. Different statutes, regulations, and processes may be

http://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/dictionary.pdf

26

WORKING DOCUMENT//DRAFT

required for different types of software (and these will differ greatly from what is used for
hardware).

For the purpose of this report, we distinguish between four primary types of software, which we
use throughout the rest of the report to differentiate the approaches that are needed:

● Type A (Commercial Off The Shelf (COTS) apps): The first class of software consists
of applications that are available from commercial suppliers. Business processes,
financial management, human resources, software development and collaboration tools;
accounting and other “enterprise” applications in DoD are generally not more
complicated nor significantly larger in scale than those in the private sector. Unmodified
commercial software should be deployed in nearly all circumstances. Where DoD
processes are not amenable to this approach, those processes should be modified, not
the software.

● Type B (Customized SW): The second class of software constitutes those applications
that consist of commercially available software that is customized for DoD-specific
usage. Customizations can include the use of configuration files, parameter values, or
scripted functions that are tailored for DoD missions. These applications will generally
require (ongoing) configuration by DoD personnel, contractors, orvendors.

● Type C (COTS HW/OS): The third class of software applications is those that are highly
specialized for DoD operations but can run on commercial hardware and standard
operating systems (e.g., Linux or Windows). These applications will generally be able to
take advantage of commercial processes for software development and deployment,
including the use of open source code and tools. This class of software includes
applications that are written by DoD personnel as well as those that are developed by
contractors.

● Type D (Custom SW/HW): This class of software focuses on applications involving real-
time, mission-critical, embedded software whose design is highly coupled to its
customized hardware. Examples include primary avionics or engine control, or target
tracking in shipboard radar systems. Requirements such as safety, target discrimination,
and fundamental timing considerations demand that extensive formal analysis, test,
validation, and verification activities be carried out in virtual and “iron bird” environments
before deployment to active systems. These considerations also warrant care in the way
application programming interfaces (APIs) are potentially presented to third parties.

We note that these classes of software are closely related to those described in the 1987 DSB
study on military software, where they categorized software as “standard” (roughly capturing
types A and B), “extended” (type C), “embedded” (type D), and “advanced” (which they
categorized as “advanced and exploratory systems”, which are not so relevant here).

1.3 What kind of software are we going to have to build?

Speed is the discriminator for all things software. We must shorten our development cycles
from years to months. We need to react and respond within the speed of the threats. We need

https://apps.dtic.mil/docs/citations/ADA188561
https://apps.dtic.mil/docs/citations/ADA188561

27

WORKING DOCUMENT//DRAFT

to embrace agile development methodologies. We need to rethink how we test and validate
software and move toward a more integrated approach to testing. Quality assurance needs to
be a continuous and fully integrated process throughout every phase of the software cycle. We
need to build software logistic trains that are able to develop, deploy software and provide
updates as quickly as modern day commercial companies so that we can respond to new
threats (especially when the target will be our software). We need to treat software as a
continuous service rather than as block deliverables. We also need agility in our procurement
approach that allows program managers to change priorities based on the needs and timing of
the end users.

The Department needs to manage software by measuring value delivered to the customer
rather than by monitoring requirements. Accountability should be for delivering value to the
customer and solving the customer’s needs, not by complying with obsolete contracts and
requirements documents.

Program managers need to identify potential problems earlier (ideally, within the first year) and
take corrective action quickly. Troubled programs need to fail quickly, and we need to learn
from them. Many software programs are too big, too complex, too long, and with too many
requirements. Development needs to be staged and follow the best practice of smaller, quicker
deliverables with higher frequency of updates and new features. Initially, program development
should focus on developing the minimum viable product delivered more quickly to the customer
than traditionally run programs.

Software developers within our defense community need the modern tools, systems,
environments, and collaboration resources that commercial industry has adopted as standard.
Without this, we are undermining the effectiveness of our software developer base, and our
ability to attract and retain our software human capital, both within the Department and among
our suppliers. With the introduction of new technologies like machine learning and artificial
intelligence and the ever-increasing interdependency between networked heterogeneous
systems, software complexity will continue to increase logarithmically. We need to continuously
invest in new development tools and environments including simulation environments,
modeling, automated testing and validation tools. We must invest in research and development
into new technologies and methodologies for software development to help the Department
keep up with ever growing complexity of defensesystems.

1.4 What are the challenges that we face (and consequences of inaction)?

The world is changing. Software used to be the exclusive province of the United States. That is
no longer the case. Due to the global digital revolution driven by the consumer and commercial
markets, countries are building their own indigenous software capabilities and their own
technology clusters. Countries like China are making huge investments in AI and cyber. They
want to become a cyber superpower and are investing in their capital markets, universities,
research centers, defense industry, and commercial software companies.

The long-term consequence of inaction is that our adversaries’ software capabilities can catch
and surpass ours. If that becomes true, then our adversaries will be able to develop new

28

WORKING DOCUMENT//DRAFT

capabilities and iterate faster than we can. They can respond to our defense systems faster
than we can respond to theirs. If their algorithms and AI becomes superior to ours, it means
that they can hold a decisive advantage where any of our systems goes up against any of
theirs. If their cyber capability becomes superior to ours, then they can shut us down, cause
chaos, and continue to steal our secrets at their choosing and without repercussion – especially
if we cannot attribute those attacks. Our adversaries’ software capabilities are growing as ours
are stagnating. If we don’t change now, we could lose our defense technology advantage within
a decade or much sooner.

29

WORKING DOCUMENT//DRAFT

Chapter 2. I Don’t Get It: What Does It Look Like to Do Software Right?
v0.3, 18 Feb 2019

In many cases, the software acquisition approaches and practices in place within DoD today
look strange and perplexing to those familiar with commercial software practices. While the
mission-, security-, and safety-critical nature of DoD’s software in the context of embedded
weapons will have an impact on practices, the extreme degree of divergence from
contemporary commercial practice has been an area of focus. The case studies, site visits, and
other study activities allowed a closer look into the reasons for divergence and whether the
absence of many commercial best practices is justified.

2.1 How it works in industry (and can/should work in the DoD): DevSecOps

Modern software companies must develop and deliver software quickly and efficiently in order to
survive in a hyper-competitive environment. While it is difficult to characterize the entire
software industry, the following set of practices – based on documented approaches at Google–
are representative of commercial environments where the delivery of software capability
determines the commercial success or failure of the company. These practices generally hold
true in other industries where companies have unexpectedly found themselves in the software
business due to an increasing reliance on software to provide their key offerings – e.g.
automotive, banking, health care, and many others. In any environment, software engineering
practices must be matched with the recruitment and retention of talented software expertise.
These practices must be honed over time and adapted to lessonslearned.

Generally, successful software companies have developed best practices in three categories:

Software development. These are software engineering practices that include source code
management, software build, code review, testing, bug tracking, release, launch and post-
mortems. Some of the key best practices that are applicable to DoD software programs include:

● All source code is maintained in a single repository that is available to all software
engineers. There are control mechanisms to manage additions to the repository but in
some cases all engineers are culturally encouraged to fix problems, independent of
program boundaries.

● Developers are strongly encouraged to avoid “forking” source code and focus work on
the main branch of the software development.

● Code review tools are reliable and easy to use. Changes to main source code typically
require review by at least one other engineer and code review discussions are open and
collaborative.

● Unit test is ubiquitous, fully automated, and integrated into the software review process.
Integration, regression, and load testing are also widely used and these activities should
be an integrated automated part of daily workflow.

● Releases are frequent - often weekly. There is an incremental staging process over
several days, particularly for high-traffic, high reliabilityservices.

https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf

30

WORKING DOCUMENT//DRAFT

● Post-mortems are conducted after system outages. The focus of the post-mortem is on
how to avoid problems in the future and not about affixingblame.

Project management. software projects must contribute to the overall aim of the business and
efforts must be aligned to that end goal.

● Individuals and teams set goals, quarterly and annually. Progress against those goals
are tracked, reported and shared across the organization. Goals are mechanisms to
encourage high performance but can be decoupled from performance appraisal or
compensation.

● Organic project approval process. Significant latitude to initiate projects is given at all
levels, with oversight responsibility given to managers and executives to allocate
resources or cancel projects.

People management. Given the scarce number of skilled software engineers, successful
software companies know how to encourage and reward good talent. Some examples include:

● Clear separation between engineering and management roles, with advancement paths
for both. Similar distinctions are made between technical management and people
management. The ratio of software engineers to product managers and program
managers ranges from 4:1 to 30:1.

● Mobility throughout the organization is encouraged. This allows for the spread of
technology, knowledge, and culture throughout the company.

In addition to these specific software development practices, another common approach to
managing programs in industry is to move away from the typical DoD specifications and
requirements approach towards a portfolio management approach.

The portfolio management approach allows program managers to make agile decisions based
on evolving needs and capabilities. Using a portfolio management approach, a program
manager has a list of features and capabilities ranked by need, risk, cost, resource, and time.
This list of capabilities is two to three times larger than what generally can be accomplished
within a given time frame, a given budget, and a set of resources. Program managers make
decisions about feature mix, matching investments to needs and balancing risk against
performance. Needs are driven tactically by end users and strategically by the services.
Capabilities are tested and delivered on a continuous basis, and maximum automation is
leveraged for testing.

In industry, software programs initially start as a minimum viable product (MVP). A minimum
viable product has just enough features to meet basic minimum functionality. It provides the
foundational capabilities upon which improvements can be made. MVPs have significantly
shorter development cycles than traditional waterfall approaches. The goal of MVPs is to get
basic capabilities into users hands for evaluation and feedback. Program managers use the
evaluation and feedback results to rebalance and re-prioritize the software capability portfolio.

Portfolio success is measured based on performance of the delivery of capabilities as measured
against users need and strategic objectives within an investment cycle. Value is determined by

31

WORKING DOCUMENT//DRAFT

output measurements rather than process measurements. Portfolio value is the aggregation of
total value of all of the capabilities delivered divided by total cost invested within a period of
time.

Blending higher risk/higher reward capabilities with lower risk, lower reward capabilities is the
art of good portfolio management. Within a given period of time, program managers will use
diversification to spread risk and rewards. Good program managers identify troubled projects
early and are encouraged either to quickly correct the problems or to quickly abandon failing
efforts so that remaining resources can be husbanded and then reallocated to other priorities.

Software budgets are driven by time, talent, compute resources, development environment, and
testing capabilities required to deliver capabilities. The capability and cost of talent varies greatly
between software engineers, designers, programmers, and manager. The quality of engineering
talent is the single largest variable that determines cost, risk, and time of a software project.
Good portfolio managers must take inventory of the range of software talent within a program
and carefully allocate that talent across the portfolio of capabilities development.

2.2 Empowering the workforce: building talent inside and out

One of the biggest barriers to the software capabilities the Department so desperately needs is
how the Department manages the people necessary to build that capability. You cannot
compete and dominate in software without a technical and design workforce within the
Department that can both build software natively and effectively manage vendors to do the
same, using the proven principles and practices described above. Some of the Department’s
human capital practices actively work against this criticalgoal.

If the Department wants to be good at software (which is of critical importance), it must become
competent at recruiting, retaining, leveraging, and developing the people who make it and
managing those who do. When we look at organizations and institutions that effectively use
software to fulfill their mission, each of them:

● Understands the software professionals that it has, understands at a high level what it
needs, and the gap between the two; we say “at a high level” because we believe the
gap is large enough that it is much more important to begin closing the gap than it is to
measure the gap to too much precision;

● Has a strategy to recruit the people and skills it needs to fulfill its mission, understanding
what it uniquely has to offer in a competitive market;

● Has clear understanding of the competencies required by software professionals in the
organization and the expectations of these professionals at each level in the
organization;

● Has defined career ladders for both uniformed (via the MOS system) and civilians (via
the GS system) that map software competencies and expectations from entry level to
senior technical leadership and management;

● Offers opportunities for learning and mentorship from more senior engineering and
design leaders;

32

WORKING DOCUMENT//DRAFT

● Counts engineering and design leaders among its most senior leadership, with the ability
to advocate across silos for the needs of the software and software acquisition workforce
and support other senior leaders in understanding how to work withboth;

● Supports a cadre of leadership able and empowered to create a culture of software
management and promote common approaches, practices, platforms and tools, while
retaining the ability to use judgement about when to deviate from those common
approaches and tools;

● Is able to reward software professionals based on merit and demonstrated contribution
rather than time in grade.

These are not descriptors for the software workforce in today’s DoD.

The Department has, however, long recognized that medicine and law require specialized skills,
continuing education, and support and made it not only possible but desirable and rewarding to
have a career as a doctor or lawyer in the armed forces. In contrast, software developers,
designers, and managers in the services must practice their skills intermittently and often
without support as they endure frequent rotations into other functions. We would not expect a
trained physician to constantly rotate into deployments focused on aviation maintenance or
construction, nor would we interrupt the training of a physician to teach her artillery or carpentry.
Who would be comfortable being treated by a physician who worked in an institution that lacked
common standards of care and provided no continuing education? And though software is often
a matter of life and death, the Department’s current human capital practices do all ofthese.

The process to retool human capital practices to meet the challenge of software competency in
the Department must start with the people the Department already has who have software skills
or are interested in acquiring them. Unlike medicine, software skills can be acquired through
self-directed and even informal training resources, and the Department has individuals, military
and civilian, who have taken it upon themselves to gain technical skills outside of or in addition
to formal Department training. This kind of initiative and aptitude, especially when it results in
real contribution to the mission, should be rewarded with appropriate career opportunities for
advancement in this highly sought-after specialty. There are also many individuals with more
formally recognized software skills who are working with determination and even courage to try
to deliver great software in service of the mission, but whose efforts to practice modern software
techniques are poorly supported, and often actively blocked. Changes to policy that make clear
the Department’s support for these practices will help, but they must be married with support for
the individuals to stay and grow within their chosen field. Possible human capital pathways,
might include:

● a core Occupational Series (Civilian) for software development that includes
subcategories to address the various duties found in modern software development
(e.g., developers/engineers, product owners, designers, etc.)

● a secondary specialty series/designator for military members for software development.
Experts come from various backgrounds and a special secondary designator or
occupational series for service members would be invaluable to tapping into their
expertise even if they are not part of the core “Information Technology”profession.

33

WORKING DOCUMENT//DRAFT

● a Special Experience Identifier or other Endorsement for acquisition professionals
(military and civilian) that indicates they have the necessary experience and training to
serve on a software acquisition team. This Identifier or Endorsement needs to be a
mandatory requirement to lead the acquisition team for any software procurement.
Furthermore, this Identifier or Endorsement needs to be expanded to the broader team
working the software procurement to include legal counsel, contract specialists, and
financial analysts.

In addition to supporting the people the Department has today, both those already working in
software and those who could, the Department will need to attract and retain many more, and
more qualified, software developers and, particularly, more software leaders. Again, the creation
of defined career ladders that recognize and reward the appropriate competencies for each of
the major specialties on a software team is table stakes for effective recruitment. Also effective
will be the demonstrated ability to leverage, recognize, and reward software developers more
flexibly than the Department currently allows for so that the strongest contributors can be put on
the most critical projects and can be retained within the Department even when their skills
become highly valued in the private sector. In addition, our recommendations cheat sheet
contains over a dozen ways that the Department can improve its technical recruiting, including
the idea of giving all new recruits a software aptitude test to identify potential trainees.

2.3 Getting it right: superior national security AND betteroversight

In August of 2011, Venture Capitalist Marc Andreessen famously penned an op-ed for the Wall
Street Journal entitled, “Why Software is Eating the World.” In it, he noted that “Six decades
into the computer revolution, four decades since the invention of the microprocessor, and two
decades into the rise of the modern Internet, all of the technology required to transform
industries through software finally works and can be widely delivered at global scale.” He
argued that every industry (not just those considered to be “information technology” in the
traditional sense) would be transformed by software – bytes rather thanatoms.

This transformation will happen in defense, whether or not we are prepared for it. Software is
the focal point of many important advances in national security technology, including data
analytics, artificial intelligence, machine learning, and autonomy. If these fields are important to
US security, then software development and acquisition done correctly will be critical to
maintaining the US’ national security superiority into the nextdecade.

Software levels the national security playing field with our rivals. The US’ traditional advantages
in human resources, infrastructure, national resources, etc., are less important in the age of
software.

First, unlike hardware-focused defense R&D, software development is not capital/resource
intensive and many advances are largely available via open source licensing. This means that
non-traditional powers like Iran and North Korea, not to mention China/Russia and non-state
actors, can quickly ‘catch up’ to the US in areas such as AI, autonomy, and data analytics, by
deploying small talented teams to quickly develop capabilities to match or surpass our own in

https://www.wsj.com/articles/SB10001424053111903480904576512250915629460

34

WORKING DOCUMENT//DRAFT

these fields. Due to open source availability, they can also easily incorporate others’ recent
advances.

Second, and relatedly, software lessens the impact of the US’ existing advantages in hardware
and infrastructure. For example, powerful software will enable non-traditional powers to use
thousands of inexpensive autonomous drones to chip away at the US’ aerial superiority, without
ever owning or developing a single advanced fighter plane. Similarly, the US’ fleet of advanced
sensors, satellites, and other ISR tools have limited utility without computer vision, machine
learning, or data analytics software to make sense of the data collected.

Finally, software is disproportionately talent-driven – ensuring that the winner of the talent race
will win the software race (as addressed in the previous chapter). Access to superlative
engineering talent is by far the most important single factor determinative of success or failure in
a software project. All that our rivals have to do to surpass us in national security applications of
software such as AI, autonomy, or data analytics, is to leverage their most talented software
engineers work on those applications. China has made great strides in this regard by leveraging
its private industry to develop national security software (particularly in AI), recruiting top
students under 18 to work on “intelligent weapons design”, and by poaching US software talent
directly from the US. Similarly, speaking to students over video simulcast on the first day of the
Russian school year in September 2017, Vladimir Putin said, “Artificial intelligence is the future,
not only for Russia, but for all humankind. It comes with colossal opportunities, but also threats
that are difficult to predict. Whoever becomes the leader in this sphere will become the ruler of
the world.”

But getting software right in the Department isn’t as simple as just recognizing that it is a
national security priority; oversight (and budgeting and finance) must alsochange.

Agile projects that use modern software approaches can be expected to deliver value to the
user faster than alternative approaches. Oversight of monolithic, waterfall projects has
generally focused around whether the team hit pre-determined milestones that may or may not
represent actual value or even working code, and trying to figure out what to do when they
don’t. When evaluating and appropriating funds to agile projects, it’s more appropriate to judge
the project on the speed by which it delivers working code and actual value to users. In a
waterfall project, changes to the plan generally reflect the team falling behind and are cause for
concern. In a project that is agile and takes advantages of the other approaches the DIB
recommends (including software reuse), the plan is intended to be flexible because the team
should be learning what works as they code and test. Successful projects will develop metrics
that measure value to the user, which involves close, ongoing communication with users.
Notably, Source Lines of Code does not equal value. (SLOC ≠value).

Have a leader and hold them accountable. Great program outcomes generally emerge from
exceptional leaders who are fully on the hook for delivering on their vision. The mythology
around the impact of top founders is widely and commonly accepted with regards to private
companies (Figure 1), but is actually just as applicable in the public markets (Figures 2 and 3).

https://www.scmp.com/news/china/science/article/2172141/chinas-brightest-children-are-being-recruited-develop-ai-killer
https://www.scmp.com/news/china/science/article/2172141/chinas-brightest-children-are-being-recruited-develop-ai-killer

35

WORKING DOCUMENT//DRAFT

Figure 1. Valuations of top 20 venture-backed private companies, comparing founder-led (red) to

non-founder-led (black).

Figure 2. 2004 to 2015 market cap ratio, comparing founder-led (red) to non-founder-led (black).

36

WORKING DOCUMENT//DRAFT

Figure 3. 2004 to 2015 index performance, comparing founder-led (red) to non-founder-led (black).

This is just as applicable to the public sector as it is to the private sector and has become
somewhat of a lost art form. Many of the most noteworthy defense programs over the past
decade have been shepherded by exceptional “founders”. Kelly Johnson with the U-2, F-104,
SR-71. Paul Kaminski with stealth technology. Admiral Hyman Rickover with the nuclear navy.
Harry Hillaker with the F-16. Bennie Schriever with the intercontinental ballistic missile. The list
goes on. The United States Digital Service recognized this with Play 6 of the Digital Services
Playbook1 - Assign One Leader and Hold That Person Accountable. We would do well to
remember this part of our history and work this into our oversight plan.

Speed Increases Security. As we have learned from the cyber world, when we are facing active
threats, our ability to have faster detection, response, and mitigation reduces the consequences
of an attack or breach. In the digital domain, where attacks can be launched at machine
speeds, where Artificial Intelligence and Machine Learning can probe and exploit vulnerabilities
in near real-time, our current ability to detect, respond and mitigate against digital threat leaves
our systems completely vulnerable to our adversaries.

“The Department of Defense (DOD) faces mounting challenges in protecting its
weapon systems from increasingly sophisticated cyber threats. This state is due
to the computerized nature of weapon systems; DOD's late start in prioritizing
weapon systems cybersecurity; and DOD's nascent understanding of how to
develop more secure weapon systems. DOD weapon systems are more software
dependent and more networked than ever before…. Potential adversaries have
developed advanced cyber-espionage and cyber-attack capabilities that target
DOD systems.”

1 https://playbook.cio.gov/#plays_index_anchor

37

WORKING DOCUMENT//DRAFT

GAO-19-128: Published: Oct 9, 2018. Publicly Released: Oct 9, 2018.

The Department must operate within our adversaries’ digital OODA loop. Much like today’s
consumer electronic companies, the Department of Defense needs the ability to identify and
mitigate evolving software and digital threats and to push continuous updates to fielded systems
in near real-time.

We must be able to do so without sacrificing our abilities to test and validate software. To
accomplish this, we need to re-imagine the software development cycle as a continuous flow
rather than discrete software block upgrades. We need to not only modernize to the agile
methodology of software development, but we must also modernize our entire suite of
development and testing tools and environments. We need to be able to instrument our fielded
systems so that we can build accurate synthetic models that can be used in development and
test. The Department needs to be able to patch, update, enhance and add new capabilities
faster than our adversaries’ abilities to exploit vulnerabilities.

Colors of money doom software projects. The foundational reasons for specific Congressional
guidance into how money is to be spent make a lot of sense. But, because software is in
continuous development (it is never “done” - see Windows, for example), colors of money tend
to doom programs. We need to create pathways for “bleaching” funds to smooth this process
for long term programs.

38

WORKING DOCUMENT//DRAFT

39

WORKING DOCUMENT//DRAFT

Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?
v0.3, 18 Feb 2019

DoD and Congress have a rich history of asking experts to assess the state of DoD software
capabilities and recommend how to improve them. A DoD joint task force chaired by Duffel in
1982 started their report by saying:

Computer software has become an important component of modern weapon systems. It
integrates and controls many of the hardware components and provides much of the
functional capability of a weapon system. Software has been elevated to this prominent
role because of its flexibility to change and relatively low replication cost when compared
to hardware. It is the preferred means of adding capability to weapon systems and of
reacting quickly to new enemy threats

Report of the DoD Joint Service Task Force on Software Problems, 1982.

Indeed, this largely echoes our own views, though the scope of software has now moved well
beyond weapons systems, the importance of software has increased even further, and the rate
of change for software is many orders of magnitude faster, at least in the commercial world.

Five years later, a task force chaired by Fred Brooks began its executive summary as follows:

Many previous studies have provided an abundance of valid conclusions and detailed
recommendations. Most remain unimplemented. … the Task Force is convinced that
today’s major problems with military software development are not technical problems,
but management problems.

Report of the Task Force on Military Software, Defense Science Board, 1987.

This particular assessment, from over 30 years ago, already referenced over 30 previous
studies and is largely aligned with the assessments of more recent studies as well as this study.

And finally, in its 2000 study on DoD software, DSB Chair Craig Fields commented that

Numerous prior studies contain valid recommendations that could significantly and
positively impact DOD software development programs. However the majority of these
recommendations have not been implemented. Every effort should be made to
understand the inhibitors that prevented previous recommendations.
Defense Science Board Task Force on Defense Software, 2000.

The problem is not that we don’t know what to do, but that we simply aren’t doing it. In this
chapter we briefly summarize some of the many reports that have come before ours and
attempt to provide some understanding of why the current state of affairs in defense software is
still so problematic. Using these insights, we attempt to provide some level of confidence that
our recommendations might be handled differently (remembering that “hope is not a strategy”).

3.1 Brief summary and assessment of 37 years of reports on DoDsoftware

40

WORKING DOCUMENT//DRAFT

The following table lists previous reports focused on improving software acquisition and
practices within DoD, along with a “grade” indicating how well the recommendations are aligned
with our own report, using the following scale:

● A = Better than we could have said it ourselves; highly recommendedreading
● B = Very aligned with our proposed approach
● C = Satisfactory report, though some aspects may not be wellaligned/articulated
● D = Pushing in the wrong direction

Date Org Short title / Summary of contents Grade

Jul’82 DoD Joint Service Task Force on Software Problems
● 37 pp + 192 pp SI; 4 major recs
● Software represents important opportunity
● DoD should take a lead in embeddedsoftware

B

Sep’87 DSB Task Force on Military Software
41 pp + 36 pp SI; 38 recommendations
Vision for rapid development and deployment of software, moving away from
waterfall model

A

Dec’00 DSB Task Force on Defense Software
TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

B

2004 RAND Attracting the Best: How the Military Competes for Information
Technology Personnel

TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

Feb’08 Generational Inertia - An Impediment to Innovation?
TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

2010a NRC Achieving Effective Acquisition of Information Technology in the
Department of Defense

TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

2010b NRC Critical Code: Software Producibility for Defense
TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

Jul’16 CRS The Department of Defense Acquisition Workforce: Background,
Analysis, and Questions for Congress

TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

Dec’16 CNA Independent Study of Implementation of Defense Acquisition Workforce
Improvement Efforts

TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

Feb’17 SEI DoD’s Software Sustainment Study Phase I: DoD’s Software
Sustainment Ecosystem

TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid%3D1301305694
https://www.rand.org/pubs/monographs/MG108.html
https://www.rand.org/pubs/monographs/MG108.html
http://www.ncmahq.org/docs/default-source/default-document-library/articles/cm_feb08_p44
http://www.nap.edu/catalog.php?record_id=12823
http://www.nap.edu/catalog.php?record_id=12823
https://www.nap.edu/catalog/12979
https://fas.org/sgp/crs/natsec/R44578.pdf
https://fas.org/sgp/crs/natsec/R44578.pdf
http://www.hci.mil/docs/Policy/Reports%20to%20Congress/CNA_Study_Def_AWF_Improvements(Public_Release)Feb2017.pdf
http://www.hci.mil/docs/Policy/Reports%20to%20Congress/CNA_Study_Def_AWF_Improvements(Public_Release)Feb2017.pdf

41

WORKING DOCUMENT//DRAFT

Mar’17 BPC Building a F.A.S.T. Force: A Flexible Personnel System for a Modern
Military

TBD: XX pp + YY major recs
TBD: 2-3 line summary of what the report covers and key insights/takeaways.

TBD

Feb’18 DSB Design and Acquisition of Software for Defense Systems
28 pp + 22 pp SI; 7 (high-level) recs + ~32 subrecommendations
Transition to the use of software factories and continuous iterative development
for DoD software; expand acquisition workforce knowledge of software

A

2018 2016
NDAA

Section 809 Panel - Streamlining and Codifying Acquisition
[comparison]
1,275 pages, 93 recommendations
Comprehensive review of Title 10, FAR, DFARS and recommendations on
what needs to change

B1

Apr’19 DIB Software is Never Done; Refactoring the Acquisition Code for
Competitive Advantage (this document)

32 pp + 150 pp SI; 4 lines of effort, ~10 recommendations (+ the next 10?)
Speed/cycle time as key metrics, build digital talent and infrastructure,
avoid one-size-fits-all

B

Studies dating back to at least 1982 have identified software as a particular area of growing
importance to the DoD, and software acquisition as requiring improvement, and the frequency
and urgency of such studies identifying software acquisition as a major issue requiring reform
has increased markedly since 2010. Notable recent examples include the 2010 studies by the
National Research Council on Achieving Effective Acquisition of Information Technology in the
Department of Defense and Critical Code: Software Producibility for Defense, the 2017 SEI
study on DoD’s Software Sustainment Ecosystem and the 2018 DSB study on Design and
Acquisition of Software for Defense Systems.

The properties of software that contribute to its unique and growing importance to the DoD are
summarized in this quote from the 2010 Critical Code study:

This growth is a natural outcome of the special engineering characteristics of software:
Software is uniquely unbounded and flexible, having relatively few intrinsic limits on the
degree to which it can be scaled in complexity and capability. Software is an abstract
and purely synthetic medium that, for the most part, lacks fundamental physical limits
and natural constraints. For example, unlike physical hardware, software can be
delivered and up-graded electronically and remotely, greatly facilitating rapid adaptation
to changes in adversary threats, mission priorities, technology, and other aspects of the
operating environment. The principal constraint is the human intellectual capacity to
understand systems, to build tools to manage them, and to provide assurance—all at
ever-greater levels of complexity.

Critical Code: Software Producibility for Defense, NRC, 2010

1 This is a very comprehensive report on acquisition reform. We only read the parts related to software.

https://bipartisanpolicy.org/wp-content/uploads/2017/03/BPC-Defense-Building-A-FAST-Force.pdf
https://bipartisanpolicy.org/wp-content/uploads/2017/03/BPC-Defense-Building-A-FAST-Force.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid%3D1962200611
https://section809panel.org/
https://docs.google.com/document/d/1PsEI1P_wXY8vmNejJS3jqGf43TDaWb2cPddBK8WrgXE
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid%3D1724290712
https://www.nap.edu/read/12823/chapter/1
https://www.nap.edu/read/12823/chapter/1
https://apps.dtic.mil/dtic/tr/fulltext/u2/a534043.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a534043.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf

42

WORKING DOCUMENT//DRAFT

Prior studies (e.g., [SEI2017]) have commented on the fact that much of DoD software
acquisition policy is systems- and hardware-oriented and largely does not take these unique
properties into account.

The lack of action on most of the software recommendations from these studies has also been a
subject of perennial comment. The DSB’s 2000 study was already noting this phenomenon:

[Prior] studies contained 134 recommendations, of which only a very few have been
implemented. Most all of the recommendations remain valid today and many could
significantly and positively impact DoD software development capability. The DoD's
failure to implement these recommendations is most disturbing and is perhaps the most
relevant finding of the Task Force. Clearly, there are inhibitors within the DoD to
adopting the recommended changes.

Task Force on Defense Software, Defense Science Board, 2000.

The situation has not changed significantly since then despite additional studies and significant
numbers of new recommendations. There is little to suggest that the inhibitors to good software
practice have changed since 2000, and it is likely that the pace of technological change and
capabilities provided by software have only increased since then.

Major Categories of Prior Recommendations. The SWAP team conducted a literature study of
prior work on DoD software acquisition and extracted the specific recommendations that had
been made, binning them according to major topics. The focus of the effort was on recent
studies, with the bulk of the work since 2010, resulting in 139 recommendations that were
extracted and categorized.

A few prevailing themes stood out from this body of work, representing issues that were
commented upon in multiple studies:

● Contracts: contracts should be modular and flexible
● Test and evaluation: test and evaluation should be incorporated throughout the software

process with close user engagement
● Workforce: software acquisition requires specific skills and knowledge along with user

interaction and senior leadership support
● Requirements: requirements should be reasonable and prioritized; some advocacy for

alternative requirement documentation (product vision)
● Acquisition strategy/oversight: DoD should encourage agencies to pursue business

process innovations

The three areas which were dealt with most often in the prior studies were acquisition oversight,
contracting, and workforce. These three topics alone accounted for 60 percent of all of the
recommendations we compiled. We summarize the major recurring prior recommendations in
each of those areas as follows:

Recommendations from recent work in acquisition oversight:

● Ensure non-interruption of funding of programs that are successfully executing to
objective (rather than budget), while insulating programs from unfundedmandates

43

WORKING DOCUMENT//DRAFT

● Durations should be reasonably short and meaningful and should allow for discrete
progress measurement

● Design the overall technology maturity assessment strategy for the program orproject
● Encourage program managers to share bad news, and encourage collaboration and

communication
● Require program managers to stay with a project to its end
● Empower program managers to make decisions on the direction of the program and to

resolve problems and implement solutions
● Follow an evolutionary path toward meeting mission needs rather than attempting to

satisfy all needs in a single step

Recommendations from recent work in contracting:

● Requests for proposals (RFPs) for acquisition programs entering risk reduction and full
development should specify the basic elements of the software framework supporting
the software factory, including code and document repositories, test infrastructure,
software tools, check-in notes, code provenance, and reference and working documents
informing development, test, and deployment

● Establish a common list of source selection criteria for evaluating software factories for
use throughout the Department

● Contracting Officers (KOs) must function as strategic partners tightly integrated into the
program office, rather than operate as a separate organization that simply processes the
contract paperwork

● Develop and maintain core competencies in diverse acquisition approaches and
increase the use of venture capital type acquisitions such as Small Business Innovative
Research (SBIR), Advanced Concept Technology Development (ACTD), and Other
Transaction Authority (OTA) as mechanisms to draw in non-traditionalcompanies

Recommendations from recent work on workforce issues:

● The service acquisition commands need to develop workforce competency and a deep
familiarity of current software development techniques

● The different acquisition phases require different types of leaders. The early phases call
for visionary innovators who can explore the full opportunity space and engage in
intuitive decision-making. The development and production phases demand a more
pragmatic orchestrator to execute the designs and strategies via collaboration and
consensus decisions

● U.S. Special Operations Command (USSOCOM) must develop a unique organizational
culture that possesses the attributes of responsiveness, innovation, and problem solving
necessary to convert strategic disadvantage into strategicadvantage

● Encourage employees to study statutes and regulations and explore innovative and
alternative approaches that meet the statutory and regulatoryintent

● Rapid acquisition succeeds when senior leaders are involved in ensuring that programs
are able to overcome the inevitable hurdles that arise during acquisition, and empower
those responsible with achieving the right outcome with the authority to get the job done
while minimizing the layers in between

To help illustrate the continuity of the history of these issues and the lack of progress despite
consistent, repeated similar findings, we consider the case of recommendations related to

44

WORKING DOCUMENT//DRAFT

software capabilities of the acquisition workforce (areas where we are also recommending
change).

Calls to improve DoD’s ability to include software expertise in its workforce have a long history.
DoD studies dating back to 1982 have raised concerns about the technical competencies and
size of DoD’s software workforce [DSB’82, DSB’87]. In 1993, the DoD Acquisition Management
Board identified a need to review the DoD’s software acquisition management education and
training curricula. This study concluded that no existing DoD workforce functional management
group was responsible for the software competencies needed in the workforce and that software
acquisition competencies were needed in many different acquisition career fields. However, the
board asserted that no new career field was needed for Software Acquisition Managers. In
2001, the same concerns regarding the software competencies of the DoD acquisition
workforce once again surfaced. The DoD Software Intensive Systems Group conducted a
software education and training survey of the acquisition workforce. This survey demonstrated
that less than 20 percent of the ACAT program staff had taken the basic Software Acquisition
Management course (SAM 101) and that less than 20 percent of the ACAT program staff had
degrees in computer science, software engineering, or information technology. The specific
recommendations from this analysis included: (1) institute mandatory software intensive
systems training for the workforce; (2) develop a graduate level program for software systems
development and acquisition; and (3) require ACAT 1 programs to identify a chief software/
systems architect.

A year later, Congress mandated that the Secretary of each military department establish a
program to improve the software acquisition processes of that military department.
Subsequently each Service established a strategic software improvement program (Army 2002,
Air Force 2004, and Navy 2006). These Service initiatives have continued at some level.
However, with the sun-setting of the Software Intensive Systems Group at the OSD level, the
enterprise focus on software waned. During this same period, the Navy started the Software
Process Improvement Initiative (SPII), which identified issues preventing software-intensive
projects from meeting schedule, cost, and performance goals. This initiative highlighted the lack
of adequately educated and trained software acquisition professionals and systems engineers.

In 2007, OSD issued guidance to create the Software Acquisition Training and Education
Working Group (SATEWG) with a charter to affirm required software competencies, identify
gaps in DAWIA career fields, and to develop a plan to address those gaps. This group was
composed of representatives from the Services, OSD, and other organizations, including the
Software Engineering Institute (SEI). The group developed a software competency framework
that identified four key knowledge areas and 29 competencies that could inform the different
acquisition workforce managers as to the software competencies to be integrated into their
existing career field competency models. There has been no follow-on effort to evaluate the
progress of the SATEWG or its outcomes.

Today, in the absence of a DoD-wide approach to describing, managing, and setting goals
against a common understanding of needed software skills, each Service (as well as software
sustainment organizations) has evolved its own approach or model for identifying software
competencies for its workforce.

This historical context highlights two key points. First, DoD has long recognized the challenges
of addressing the technical competencies and size of the software workforce across the life

45

WORKING DOCUMENT//DRAFT

cycle. However, there is limited evidence of the outcomes from these different efforts. Second,
this history clearly indicates that acquiring software human capital and equipping that workforce
with the necessary competencies is a persistent and dynamic challenge that demands a
continuous enterprise strategy.

3.2 Our interpretation of why nothing happened but why we think our report willmatter

Given the long and profound history of inaction on past studies, we have attempted to create
our own “Theory of (Non)Change.” Why do we not step up to rational, generally agreed-upon
change? We offer the following three drivers:

The (Patriotic and Dutifully) Frozen Middle. Our process in executing this study has been to talk
to anyone and everyone we could within various departments of the DoD and the Services, to
gather as many different perspectives as possible on what is needed, and to find out what is
working and what needs to be stomped upon. As with many change management opportunities
we find significant top-down support for what we are trying to do, especially from those who see
the immediate need for more, better, faster mission capability and are directly frustrated at the
command level by the current processes that are just not working. At the other end, we see
digital natives demanding change but with limited power to make it happen; people who are fully
enmeshed in how the tech world works, people who have all the expectations that have been
created by their private sector lifestyle and economy. And then we have the middle, who are
dutifully following the rules, and have been trained and had success defined for a different
world. We question neither the integrity nor the patriotism of this group. They are simply not
incentivized to the way we believe modern software should be acquired and implemented, and
the enormous inertia they represent is a profound barrier to change.

Unrequited Congress. In our meetings with Congressional staffers we heard two messages over
and over. First, while it is clear that Congress takes its oversight role seriously, it does so
knowing that to have oversight requires something to oversee, and it understands its
fundamental responsibility to enable the Department to execute its mission. But oversight
matters, and recommendations for change that do not also provide insight into how new ways of
doing things will allow Congress to perform its role are a very tough sell. Second, there is a
sense of unrequited return from past changes and legislation. In many cases, Congress
believes it has already provided the tools and flexibilities for which the Department has asked. It
is perhaps unreasonable to expect a positive response to ask for more when current
opportunities have not been fully exploited.

Optimized Acquisition (for something else!).

Knowing was a barrier which prevented learning.

Frank Herbert

While some may (justifiably) argue that the current acquisition system is not optimized for
anything, it is the product of decades of rules upon rules, designed to speak to each and every
edge case that might crop up in the delivery of decades-long hardware systems, holds risk

46

WORKING DOCUMENT//DRAFT

elimination at a premium, and has a vast cadre of dedicated practitioners exquisitely trained to
prosper within that system. This is a massive barrier to change and informs our
recommendations that to argue for major new ways of acquiring software and not just attempt to
reoptimize to a different local maximum.

What we are trying to do that we think is different. Given the long history of DoD and
Congressional reports that make recommendations that are not implemented, why do we think
that this report is going to be any different? Our approach has been to focus not on the report
and its recommendations per se, but rather in the series of discussions around the ideas in this
report and the people we have interacted with. The recommendations in this report thus serve
primarily as documentation of a sequence of iterative conversations and the real work of the
report is the engagements before and after the report is released.

We also believe that there are some ideas in the report that, while articulated in many places in
different ways, are emphasized differently here. In particular, a key point of focus in this report
is the use of speed and cycle time as the key drivers for what needs to change and optimizing
statutes, regulations, and processes to allow management and oversight of software. We
believe that optimizing for the speed at which software can be utilized for competitive advantage
will create an acquisition system that is much better able to provide security, insight, and scale.

Finally, we have tried to make this report shorter and pithier than previous reports, so we hope
people will read it. It also is staged so that each reader, with their specific levels of authority and
responsibility, can navigate an efficient path to reaching their conclusions on how best to
support what is contained here.

3.3 Consequences of inaction: Increasing our attack surface and shifting risk tothe
warfighter

So, what happens if history does, in fact, repeat itself and we again fail to step up to the
changes that have been so clearly articulated for so long? Certainly by continuing to follow
acquisition processes designed to limit risk for the hardware age, we will not reduce risk but
instead will simply transfer that risk to the worst possible place - the warfighter who most needs
the tools in her arsenal to deliver the missions we ask her to perform. But in addition, as we
have continually stressed throughout this study, there are several real differences in today’s
world compared to the environment in which past efforts were made.

First, and most important, weapons systems, and the bulk of the operational structure on which
the Department executes its mission, are now fundamentally software systems, and as such,
delays in implementing change amplify the capability gaps that slow, poor, or unsupportable
software creates. Second, the astonishing growth of the tech sector has created a very different
competitive environment for the talent most needed to meet DoD’s needs. Decades ago, DoD
was the leading edge of the world’s coolest technology and passionate, skilled software
specialists jumped at the chance to be at that edge. That is simply not the case today and while
a commitment to national security is a strong motivator, if the changes recommended in this
study are not implemented, the competitive war for talent, within our country, will be lost.

47

WORKING DOCUMENT//DRAFT

Finally, we reiterate that the modern software methodologies enumerated in this report – and
the recommendations concerning culture, regulation and statute, and career trajectories that
enable those methodologies – are the best path to providing secure, effective, and efficient
software to users. Cyber assurance, resilience, and relevance are all delivered much more
effectively when done quickly and incrementally, using the tools and methods recommended in
this study. (See also Section 2.3 [Speed Increases Security].)

48

WORKING DOCUMENT//DRAFT

49

WORKING DOCUMENT//DRAFT

Chapter 4. How Do We Get There From Here: Three Paths for Moving Forward
v0.3, 18 Feb 2019

The previous three chapters provided the rationale for why we need to do (not just say)
something different about how DoD develops, procures, assures, and deploys software in
support of defense systems. Commercial industry has figured out ways to use software to
accelerate their businesses and DoD should accelerate its incorporation of those techniques to
its own benefit, especially in ensuring that its warfighters have the tools they need in a timely
fashion to execute their missions in today’s software-denominated environment. In this chapter,
we lay out three different paths for moving forward, each under a different set of assumptions
and objectives. A list of some representative, high-level actions are provided for each path along
with a short analysis of the strengths, weaknesses, opportunities, and threats.

4.1 Path 1: Make the best out of what we’ve got

Congress has provided DoD with substantial authority and flexibility to implement the mission of
the Department. Although difficult and often inefficient, it is possible to implement the major
goals of this report making use of the existing authorities and, indeed, there are already
examples of the types of activities that we envision taking place across OSD and the Services.
In this section, we attempt to articulate a path that builds on these successes and does not
require any change in the law nor major changes in regulatory structure. The primary
recommendations are those focused on changing the culture and approach by which software is
developed, procured, assured, and deployed as well as some of the regulations and processes
that should be updated to facilitate these cultural and operationalchanges.

To embark on this first path, DoD should streamline its processes for software, allowing more
rapid procurement, deployment, and updating of software. OSD and the Services should also
work together to allow better cross-service and pre-certified ATOs, easier access to large-scale
cloud computing, and use of modern tool chains that will benefit the entire software ecosystem.
The acquisition workforce, both within OSD and the Services, should be provided with better
training and insight on modern software development so that they can take advantage of the
approaches that software allows that are different than hardware. Most importantly, government
and industry must come together to implement a DevSecOps culture and approach to software,
building on practices that are already known and used in industry.

The following list provides a summary of high-level actions that require changes to DoD culture
and process, but could be taken with no change in current law and relatively minor changes to
existing regulations:

● Make use of existing authorities such as OTAs and mid-tier acquisition (Sec 804) to
implement a DevSecOps approach to acquisition to the greatest extent possible under
existing statutes, regulations, and processes.

● Require cost assessment and performance estimates for software programs (and
software components of larger programs) to be based on metrics that track speed and
cycle time, security, code quality, and useful capability deliver to endusers.

50

WORKING DOCUMENT//DRAFT

● Create a mechanism for ATO reciprocity between services and industrial base
companies to enable sharing of software platforms, components and infrastructure and
rapid integration of capabilities across (hardware) platforms, (weapons) systems, and
Services.

● Remove obstacles to DoD usage of cloud computing on commercial platforms, including
DISA CAP limits, lack of ATO reciprocity, and access to modern software development
tools.

● Expand the use of (specialized) training programs for CIOs, SAEs, PEOs, and PMs that
provide (hands-on) insight into modern software development (e.g., agile, DevOps,
DevSecOps) and the authorities available to enable rapid acquisition of software.

● Increase the knowledge, expertise, and flexibility in program offices related to modern
software development practices to improve the ability of program offices to take
advantage of software-centric approaches to acquisition.

● Require access to source code, software frameworks, and development toolchains, with
appropriate IP rights, for all DoD-specific code, enabling full security testing and
rebuilding of binaries from source.

● Create and use automatically generated, continuously available metrics that emphasize
speed, cycle time, security, and code quality to assess, manage, and terminate software
programs (and software components of hardware programs).

● Shift the approach for acquisition [and development] of software (and software- intensive
components of larger programs) to an iterative approach: start small, be iterative, and
build on success – or be terminated quickly.

● Make security a first-order consideration for all software-intensive systems, under the
assumption that security-at-the-border will not be enough.

● Shift from a list of requirements for software to a list of desired features and required
interfaces/characteristics to avoid requirements creep or overly ambitious requirements.

● Maintain an active research portfolio into next-generation software methodologies and
tools, including the integration of machine learning and AI into software development,
cost estimation, security vulnerabilities, and relatedareas.

● Invest in transition of emerging approaches from academia and industry to creating,
analysis, verification, and testing of software into DoD practice (via pilots, field tests, and
other mechanisms).

● Automatically collect all data from DoD weapons systems and make available for
machine learning (via federated, secured enclaves, not a centralizedrepository).

This path has the advantage that the authorities required to undertake it are already in place
and the expertise exists within the Department to begin moving forward. We believe that the
there is strong support for these activities at the top and bottom of the system, and existing
groups (e.g., F22, JIDO, Kessel Run) have demonstrated that the flexibilities exist within the
existing system to develop/procure, deliver, and update software more quickly. The difficulty in
this path is that it requires individuals to figure out how to go beyond the default approaches that
are built into the current acquisition system. Current statutes, regulations, and processes are
very complicated, there is a “culture of no” that must be overcome, and hence using the
authorities that are available requires substantial time, effort, and risk (to one’s career, if not

51

WORKING DOCUMENT//DRAFT

successful). The risk in pursuing this path is that change occurs too slowly or not at scale, and
we are left with old software that is vulnerable and cannot serve our needs. Our adversaries
have the same opportunities that we do for taking advantage of software and may be able to
move more quickly if the current system is left in place.

4.2 Path 2: Tune the defense acquisition system to optimize for software

While the first steps to refactoring the defense acquisition system can be taken without
necessarily having to change regulations, the reality of the current situation is that Congress
and the Department have created massive amounts of laws and regulations that are just
slowing things down. This might be OK for hardware, but it is definitely not OK for (most types
of) software, as we have articulated in the previous three chapters. In this second, more difficult
path to software acquisition and practice reform, we focus on relatively small changes that can
and should be made to rewrite selected pieces of old code (= legislation and regulations) that
are doing more harm than good. These changes would apply to both software that is acquired
as well as software that is built.

First, the DoD should not build something that it can buy. If there is an 80 percent commercial
solution, it is better to buy it and adjust – either the requirements or the product – rather than
build it from scratch. It is generally not a good idea to over-optimize for what we view as
“exceptional performance,”1 because counter-intuitively, this may be the wrong thing to optimize
for at times. Similarly, actions should be taken to ensure that the letter and spirit of commercial
preference laws (e.g., 10 USC 2377, which requires defense agencies to give strong preference
to commercial and non-developmental products) are being followed.

There is a myth that the U.S. commercial sector – where most of the world’s software talent is
concentrated – is unwilling to work on national security software. The reality is that DoD has
failed to give meaningful government contracts to commercial software companies, which has
generally led to companies making a business decision to avoid it. DoD’s existing efforts to
target the commercial software sector are governed by a “spray and pray” strategy, rather than
by making concentrated investments.2 The DoD seems to love the idea of innovation, but
doesn’t love taking sizeable bets on new entrants or capabilities. It is interesting to note that
Palantir and SpaceX are the only two examples since the end of the Cold War of venture-
backed, DoD-focused businesses reaching multi-billion dollar valuations. By contrast, China

1 From the 2018 Summary of the National Defense Strategy: Deliver performance at the speed of
relevance. Success no longer goes to the country that develops a new technology first, but rather to the
one that better integrates it and adapts its way of fighting. Current processes are not responsive to need;
the Department is over-optimized for exceptional performance at the expense of providing timely
decisions, policies, and capabilities to the warfighter. Our response will be to prioritize speed of delivery,
continuous adaptation, and frequent modular upgrades. We must not accept cumbersome approval
chains, wasteful applications of resources in uncompetitive space, or overly risk-averse thinking that
impedes change. Delivering performance means we will shed outdated management practices and
structures while integrating insights from business innovation.
2 While the overall funding commitments are large—$2 billion dollars from DARPA for AI, for example—
those commitments have resulted in few, if any, contracts for private companies other than traditional
defense contractors. They have therefore failed to create significant incentives for the commercial tech
sector to invest in government applications of AI.

52

WORKING DOCUMENT//DRAFT

has minted around a dozen new multi-billion dollar defense technologies companies over the
same time period. Some of these problems are purely cultural in nature and require no
statutory/regulatory changes to address. Others likely will require changes we list in the
recommendations below.

That said, in many cases, there will not be an obvious “buy” option on the table. DoD and the
Services should also work together to prioritize interoperable approaches to software and
systems that enable rapid deployment, scaling, testing, and optimization of software as an
enduring capability; manage them using modern development methods; and eliminate selected
hardware-centric regulations and other particularly problematic barriers. The Services should
find ways to better recognize software as a key area of expertise and provide specialized
education and organizational structures that are better tuned for rapid insertion and continuous
updates of software in the field and in the (back) office.

The following list provides a set of high-level actions that require some additional changes to
DoD culture and process, but also modest changes in current law and existing regulations.
These actions build on the recommendations listed in path 1 above, although in some cases
they can solve the problems that the previous actions were trying to work around.

● Refactor and simplify Title 10 and the defense acquisition system to remove all statutory,
regulatory, and procedural requirements that generate delays for acquisition,
development and fielding of software while adding requirements for continuous
(automated) reporting of cost, performance (against updated metrics), andschedule.

● Create streamlined authorization and appropriation processes for defense business
systems (DBS) that use commercially-available products with minimal (source code)
modification.

● Plan, budget, fund, and manage software development as an enduring capability that
crosses program elements and funding categories, removing cost and schedule triggers
that force categorization into hardware-oriented regulations andprocesses.

● Replace JCIDS, PPB&E, and DFARS with a "PEO Digital" in each Service that uses
portfolio management and direct identification of warfighter needs to decide on allocation
priorities.

● Create, implement, support, and require a fully automatable approach to T&E, including
security that allows high-confidence distribution of software to the field on an iterative
basis (with frequency dependent on type of software, but targets cycle times measured
in weeks).

● Prioritize secure, iterative, collaborative development for selection and execution of all
new software programs (and software components of hardware programs) [see DIB’s
Detecting Agile BS as an initial view of how to evaluate capability) [DevSecOps].

● For any software developed for DoD, require that software development be separated
from hardware in a manner that allows non-prime vendors to bid for software elements
of the program on a performance-based basis.

● Shift from certification of executables, to certification of code, to certification of the
development, integration, and deployment toolchain, with the goal of enabling rapid
fielding of mission-critical code at high levels of informationassurance.

https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF

53

WORKING DOCUMENT//DRAFT

● Require CIOs, SAEs, PEOs, PMs and any other acquisition roles involving software
development as part of the program to have prior experience in softwaredevelopment.

● Restructure the approach to recruiting software developers to assume that the average
tenure of a talented engineering will be 2-4 years, and make better use of HQEs, IPAs,
reservists, and enlisted personnel to provide organic software development capability.

● Establish a Combat Digital Service (CDS) unit within each combatant command
consisting of software development talent that can be used to manage command-
specific IT assets, at the discretion of the combatantcommander.

This path takes a more active approach to modifying the acquisition system for software but
identifying those statutes, regulations, and processes that are creating the worst bottlenecks
and modifying them to allow for faster delivery of software to the field. We see this path as one
of removing old pieces of code (statutory, regulatory, or process) that are no longer needed or
that shouldn’t be applied to software, as well as increasing the expertise in how modern
software development works so that software programs (and software-centric elements of larger
programs) can be optimized for speed and cycle time. Pursuing this path will allow faster
updates to software and will improve security and oversight (via increased insight). In many
cases, the Department is already executing some of the actions required to enable this path.
The weakness in this path is that software would generally use the same basic approach to
acquisition as hardware, with various carve-outs and exceptions. This runs the risk that software
programs still move too slowly due to the large number of people who have to say yes and the
need to train a very large acquisition force to understand how software is different than
hardware (and not all software is the same).

4.3 Path 3: A new appropriations category/acquisition pathway for software to force
change in the middle

The final path is the most difficult and will require dozens of independent groups to agree on a
common direction, approach, and set of actions. At the end of this path lies a new defense
acquisition system that is optimized for software-centric systems instead of hardware-centric
systems, and that prioritizes security, speed, and cycle time over cost, schedule, and (rigid)
requirements.

To undertake this path, Congress and OSD must streamline statutes and regulations for
software, providing increased (and automated) insight to reduce the risk of slow, costly, and
overgrown programs, and enabling rapid deployment and continuous improvement of software
to the field. Laws will have to be changed, and management and oversight will have to be
reinvented, focusing on different measures and a quicker cadence. OSD and the services will
need to create and maintain interoperable (cross-program/cross-service) digital infrastructure
that enables rapid deployment, scaling, testing, and optimization of software as an enduring
capability; manage them using modern development methods; and eliminate the existing
hardware-centric regulations and other barriers. Finally, the Services will need to establish
software development as a high visibility, high priority career track with specialized recruiting,
education, promotion, organization, incentives, and salary.

54

WORKING DOCUMENT//DRAFT

The following list of high-level actions required to pursue this path, building on the actions listed
in the previous paths:

● Create a new appropriations category that allows (relevant types of) software to be
funded as a single budget item, with no separation between RDT&E, production, and
sustainment; remove cost and schedule triggers associated with hardware-focused
regulations and processes.

● Establish a new acquisition pathway (Sec 805) for software that prioritizes the ability to
rapidly field and iterate new functionality in a secure manner, with continuous oversight
based on automated reporting and analytics, and utilizing IA-accredited commercial
development tools.

● Establish and maintain digital infrastructure within each Service or Agency that enables
rapid deployment of secure software to the field and make available to contractors at
subsidized cost.

● Plan and fund computing hardware (of all types) as consumable resources, with
continuous refresh and upgrades to the most recent, most secure operating system and
platform components.

● Create software development groups in each Service consisting of military and/or civilian
personnel who write code that is used in the field and track individuals who serve in
these groups for future DoD leadership roles.

This path attempts to solve the longstanding issues with software by creating an appropriations
title and acquisition pathway that is fine-tuned for software. It will require a very large effort to
get the regulations, processes, and people in place that are required to execute it effectively,
and there will be missteps along the way that generate controversy and unwanted publicity. In
addition, it will likely be opposed by those currently in control of selling or making software for
the DoD, since it will require that they retool their business to a very new approach that is not
well-defined at the outset.

55

WORKING DOCUMENT//DRAFT

Recommendation Summaries
v0.1, 19 Feb 2019

The following pages contain one page summaries for each recommendation that give
more detail on the rationale, supporting information, similar recommendations, specific
action items, and notes on implementation. The front of each recommendation summary
includes the recommendation statement, proposed owner, and a short “action plan”
describing how the recommendation might be implemented. The reverse side of the
sheet contains a list of recommendations from DIB concept papers, a list of
recommendations from subgroup reports (contained in Appendix B of the supporting
information), and some related recommendations from previous reports.

56

WORKING DOCUMENT//DRAFT

57

WORKING DOCUMENT//DRAFT

Line of Effort Streamlining
Recommendation A1 Create a new appropriations category that allows (relevant types of)

software to be funded as a single budget item, with no separation between
RDT&E, production, and sustainment.

Primary Owner USD(A&S) Stakeholders USD(C), CAPE, SAE, Service FM & PA&E, FASAB

Background Current law, regulation, and policy treat software acquisition as a series of
discrete sequential steps; accounting guidance treats software as a depreciating
asset. These processes are at odds with software being continuously updated to
add new functionality and create significant delays in fielding user-needed
capability.

Desired State Programs are better able to prioritize how effort is spent on new capabilities
versus fixing bugs / vulnerabilities, improving existing capabilities, etc. Such
prioritization can be made based on warfighter / user needs, changing mission
profiles, and other external drivers, not constrained by available sources of
funding.
Action Owner Expected

Completion
A1.1 Submit legislative proposal to create a

new appropriations category for software
and software-intensive programs

USD(A&S), in coordination
with USD(C) and CAPE

May 15th, 2019 for
FY20 NDAA

A1.2 Make necessary modifications in
supporting PPBE systems to allow use
and tracking of new software
appropriation

USD(C) and CAPE FY21 Budget
FY 22 POM

A1.3 Select pilot programs using DevSecOps
to convert to or use new SW
Appropriation in FY20

USD(A&S), in coordination
with Service Acquisition
Executives

August 2, 2019

A1.4 Define budget exhibits for new SW
appropriation (replacement for P- and R-
forms)

USD(A&S), in coordination
with USD(C), CAPE, and
Appropriations Committee

August 16, 2019

A1.5 Ensure programs using new software
appropriation submit budget exhibits in
the approved format.

SAE FY 22 POM

A1.6 Change audit treatment of software with
these goals: (1) separate category for
software instead of being characterized
as property, plant, and equipment; (2)
default setting that software is an
expense, not an investment; and (3) there
is no “sustainment” phase for software.

FASAB in coordination with
USD(A&S) and USD(C)

End FY20

58

WORKING DOCUMENT//DRAFT

DIB concept paper recommendations:
10C Budgets should be constructed to support the full, iterative life-cycle of the software being

procured with amount proportional to the criticality and utility of the software.
Visits Construct budget to support the full, iterative life-cycle of the software

SWAP working group ideas:

Acq Revise 10 USC 2214 to allow funding approved by Congress for acquisition of a specific
software solution to be used for research and development, production, or sustainment of that
software solution, under appropriate conditions.

App A new multi-year appropriation for Digital Technology needs to be established for each Military
Department and the Fourth Estate.

App Components will program, budget, and execute for information and technology capabilities from
one appropriation throughout lifecycle rather than using RDT&E, procurement, or O&M appropri-
ations -- often applied inconsistently and inaccurately -- allowing for continuous engineering

Con Congress establishes new authority for contracting for SW development and IT modernization
M&S Revise 10 USC 2460 to replace the “software maintenance” with t “software sustainment” and

definition that is consistent with a continuous engineering approach across the lifecycle
M&S A DoD Working Group should be established to leverage on-going individual Service efforts and

create a DoD contracting and acquisition guide for software and software sustainment patterned
after the approach that led to creation of the DoD Open Systems Architecture Contracting Guide

M&S Acquisition Strategy, RFP/Evaluation Criteria, and Systems Engineering Plan should address
software sustainability and transition to sustainment as an acquisition priority.

Con Manage programs at budget levels, allow programs to allocate funds at project investment level
Con Work with appropriators to establish working capital funds so that there is not pressure to spend

funds quicker then you're ready (iterative contracts may produce more value with less money

Related previous recommendations:

DSB87 Rec 13: The Undersecretary of Defense (Acquisition) should adopt a four-category classification
as the basis of acquisition policy [standard (COTS), extended (extensions of current systems,
both DoD and commercial), embedded, and advanced (advanced and exploratory systems)]

DSB87 Rec 14: USD(A) should develop acquisition policy, procedures, and guidance for each category.
809 Rec. 41: Establish a sustainment program baseline, implement key enablers of sustainment,

elevate sustainment to equal standing with development and procurement, and improve the
defense materiel enterprise focus on weapon system readiness.

809 Rec. 42: Reduce budgetary uncertainty, increase funding flexibility, and enhance the ability to
effectively execute sustainment plans and address emergent sustainment requirements.

CSIS18 Performance Based Logistics (PBL) contracts should have a duration that allow for tuning and
re-baselining with triggered options and rolling extensions.

GAO17 Hold suppliers accountable for delivering high-quality parts for their products through activities
including regular supplier audits and performance evaluations of quality and delivery.

GAO15 3. Assigning resources to all activities. The schedule should reflect the resources (labor,
materials, travel, facilities, equipment, and the like) needed to do the work, whether they will be
available when needed, and any constraints on funding or time.

59

WORKING DOCUMENT//DRAFT

WORKING DOCUMENT // DRAFT

Line of Effort Streamlining
Recommendation A2c: Establish a new acquisition pathway (Sec 805) for software that

prioritizes continuous integration and delivery of working software in a secure
manner, with continuous oversight from automated analytics.

Primary Owner USD(A&S) Stakeholders USD(C), CAPE, SAE, Service FM & PA&E,
Joint Staff

Background Current law, regulation, and policy, and internal DoD processes make Agile SW
development extremely difficult, requiring substantial and consistent senior
leadership involvement. Consequently, DoD is challenged in its ability to scale
Agile SW development practices to meet mission needs.

Desired State Programs have the ability to rapidly field and iterate new functionality in a
secure manner, with continuous oversight based on automated reporting and
analytics, and utilizing IA-accredited commercial development tools.
Action Owner Target Date

A2c.1 Submit legislative proposal to create new
acquisition pathways for two or more
classes of software (e.g, application,
embedded), optimized for DevSecOps,
including rapid delivery of initial
capability to the field; interaction with
users to identify features to be
implemented; and automated data
collection, testing, monitoring, and
reporting (see Appendix L.3).

USD(A&S), in coordination
with USD(C) and CAPE

May 15, 2019

A2c.3 Create new acquisition pathway Authorization Committees FY20 NDAA
A2c.3 Develop and issue a Directive Type

Memorandum (DTM) for the new SW
acquisition pathway

USD(A&S) October 1, 2019

A2c.4 Issue Service level guidance for new
acquisition pathway

SAE November 15,
2019

A2c.5 Select pilot programs using DevSecOps to
convert to or utilize new SW acquisition
pathway

USD(A&S), in coordination
with Service Acquisition
Executives

November 15,
2019

A2c.6 Convert DTM to DoD Instruction,
incorporating lessons learned during pilot
program implementation.

USD(A&S) October 1, 2020

A2c.7 Develop and implement training at
Defense Acquisition University on new
SW Acquisition Pathway for all
acquisition communities (FM, Costing,
PM, IT, SE, etc.)

USD(A&S) by December 13,
2019

A2c.8 Develop, deploy, and require the use of
IA-accredited (commercial) development
tools

PEOs Digital TBD

60

WORKING DOCUMENT//DRAFT

SWAP working group ideas:

Acq Define software as a critical national security capability under Section 805 of FY16 NDAA
“Use of Alternative Acquisition Paths to Acquire Critical National Security Capabilities”.

Acq Create an acquisition policy framework that recognizes that software is ubiquitous and will
be part of all acquisition policy models.

Acq Create a clear, efficient acquisition path for acquiring non-embedded software capability.
Deconflict supplemental policies.

Acq Develop an Enterprise-level Strategic Technology Plan that reinforces the concept of
software as a national security capability and recognizes how disruptive technologies will
be introduced into the environment on an ongoing basis

Acq Additionally, take all actions associated with Rec A2a to refactor and simplify those parts
of Title 10, DoD 5000 and other regulations and processes that are still in force for
software-intensive programs.

Related previous recommendations:

GAO'17 Prioritize investments so that projects can be fully funded and it is clear where projects
stand in relation to the overall portfolio.

61

WORKING DOCUMENT//DRAFT

Line of Effort Streamlining
Recommendation A3 Create streamlined authorization and appropriation processes for defense

business systems (DBS) that use commercially-available products with
minimal (source code) modification.

Primary Owner CMO Stakeholders USD(A&S), Service CMO & SAE
Background Current DoD business processes are minimally standardized due to a high

number of legacy systems that inhibit business process reengineering. In
addition, solicitation for new business systems often insist on customization
because DoD is “different”, resulting in hard-to-maintain systems that become
obsolete (and possibly insecure) quickly.

Desired state DoD uses standard commercial packages for enterprise and business services,
changing its processes to match those of large industries, allowing its systems to
be updated and modified on a much faster cadence. The only specialized
defense business systems should be those for which there is no commercial
equivalent and there is a funded internal capability to maintain and update the
software at a near-commercial cadence.
Action Owner Target Date

A.3.1 Revise DBS certification process guidance CMO, in coordination with
USD(A&S) and Service
counterparts

6 months
(implement FY20)

A.3.2 Select 4 projects for COTS
implementation

CMO, in coordination with
Service CMOs and business
process owners

6 months

A.3.3 Implement COTS opportunities, with
contracts in place

Services, with CMO
oversight

18 months

A.3.4 Submit legislative change proposal (if
Title 10 §2222 is a hindrance)

CMO in coordination with
USD(A&S) and Service
counterparts

FY21 Budget

62

WORKING DOCUMENT//DRAFT

DIB concept paper recommendations
10C Use commercial process and software to adopt and implement standard business

practices within the services

D&D For common functions, purchase existing software and change DoD processes to use
existing apps

Related previous recommendations:

DSB87 Rec 15: The USD(A) and the ASD(Comptroller) should direct Program Managers to
assume that system software requirements can be met with off-the-shelf subsystem and
components until it is proved that they are unique.

809 Rec 16: Combine authority for requirements, resources, and acquisition in a single,
empowered entity to govern DBS portfolios separate from the existing acquisition chain
of command

809 Rec 18: Fund DBSs [defense business systems] in a way that allows for commonly
accepted software development approaches

63

WORKING DOCUMENT//DRAFT

Line of Effort Streamlining
Recommendation A5 Replace JCIDS, PPB&E, and DFARS with a "PEO Digital" in each Service that

uses portfolio management, continuous tracking of software development
metrics, and direct identification of warfighter needs to decide on allocation
priorities, with no distinction between RDT&E, procurement, and O&M funds.

Primary Owner USD(A&S) Stakeholders CAPE, USD(C), SAE, Service FM & PAE
Background The current requirements process often drives the development of exquisite

requirements that tend to be overly rigid and specific, and attempt to describe the
properties of systems in dynamic environments years in advance. The speed of
requirements development and analysis is out of sync with the pace of
technology and mission changes. Most importantly, requirement documents that
are developed are often disconnected with the end user requirements.

Desired State
Action Owner Target Date

A5.1 Issue guidance for PEO Digital USD(A&S) SAE End FY19
A5.2 Select pilot capability areas in each

service to place under portfolio
management by PEO Digital

SAEs End CY19

A.5.3 Stand up PEO Digital with necessary
resources allocated and aligned

SAE 1QFY21

A.5.4 Implement new portfolio management
methods for pilot program capability
areas

PEO Digital 3QFY21

A.5.5 Determine intermediate successes of. or
required modifications to. portfolio
management approach

PEO Digital
2QFY22

A5.6 Establish portfolio management
approach as standard work for software

PEO Digital, SAE FY23

64

WORKING DOCUMENT//DRAFT

SWAP working group ideas:

App Within each Component-unique Budget Activity (BA), Budget Line Items (BLINs) align by
functional or operational portfolios. The BLINs may be further broken into specific projects
to provide an even greater level of fidelity. These projects would represent key systems
and supporting activities, such as mission engineering.

App By taking a portfolio approach for obtaining software intensive capabilities, the
Components can better manage the range of requirements, balance priorities, and
develop portfolio approaches to enable the transition of data to information in their own
portfolios and data integration across portfolios to achieve mission effects, optimize the
value of cloud technology, and leverage and transition to the concept of acquisition of
whole data services vice individual systems.

App This fund will be apportioned to each of the Military Departments and OSD for Fourth
Estate execution.

App Governance: management execution, performance assessment, and reporting would be
aligned to the portfolio framework—BA, BLI, project.

Req OSD and the Joint Staff should consider creating “umbrella” software programs around
“roles” (e.g. USAF Kessel Run)

Related previous recommendations:

OSD'06 Transform the Planning, Programming, and Budgeting and Execution process and
stabilize funding for major weapons systems development programs.

809 Rec 36: Transition from a program-centric execution model to a portfolio execution model

809 Rec 37: Implement a defense wide capability portfolio framework that provides an
enterprise view of existing and planned capability, to ensure delivery of integrated and
innovative

809 Rec. 38: Implement best practices for portfolio management.

809 Rec. 39: Leverage a portfolio structure for requirements.

65

WORKING DOCUMENT//DRAFT

Line of Effort Streamlining
Recommendation A6 Require cost assessment and performance estimates for software

programs (and software components of larger programs) to be based on
metrics that track speed and cycle time, security, code quality, and
functionality.

Primary Owner CMO Stakeholders USD(A&S), Service CMO & SAE
Background Current cost estimation and reporting processes and procedures in DoD have

proven to be highly inaccurate and time consuming. New metrics are required
that match DevSecOps approach and provide continuous insight into program
progress.

Desired State Program oversight will re-focus on the value provided by the software as it is
deployed to the warfighter / user, and will really more heavily on metrics that
can be collect in a (semi-)automated fashion from instrumentation on the
DevSecOps pipeline and other parts of the infrastructure.

Action Owner Target date

A6.1 Identify and hire a small team (3-4) programmers to
implement required software and provide them with a modern
development environment

CAPE, DDS 3 months after
start

A6.2 Identify low-level metrics that are already part of standard
commercial development environments (see Appendix A.2
(DIB Metrics) and Appendix D for initial lists)

CAPE. SAO MVP in 3 mos;
then continuous
update

A6.2a Speed and cycle time: launch → initial use, cycle time Dev team, users

A6.2b Code quality: unit test coverage, bug burn-rate, bugs-in-
test:bugs-in-field

Dev team, users

A6.2c Security: patch → field, OS upgrade → field, HW/OS age Dev team, users

A6.2d Functionality: user satisfaction, number/type of features/cycle Dev team, users

A6.2e Cost: head count, software license cost, compute costs Dev team, users

A6.3 Identify 3-5 ongoing programs that are collecting relevant
metrics and are willing to partner with CAPE

CAPE, A&S,
SAEs

In parallel with
A6.2

A6.4 Create a mechanism to transfer and process low-level
metrics to PMO on a continuous basis with selectable levels
of resolution across the program

CAPE, SAO,
PMO

MVP in 3 mo,
then continuous
update

A6.5 Begin reporting metrics to Congress as part of annual
reporting; iterate on content, level, format

CAPE, Comp FY2020

A6.6 Use initial results to establish expectations for new proposed
software or software-intensive projects and integrate use of
new cost and performance estimates into contract selection

A&S, SAO,
CAPE

FY2020

A6.7 Establish ongoing capability within CAPE to update metrics
on continuous basis, with input from users (of the data)

CAPE FY2021

A6.8 Identify and eliminate remaining uses of ESLOC as metric for CAPE, SAEs FY2022

66

WORKING DOCUMENT//DRAFT

 software/software-intensive programs

SWAP working group ideas:

Con Revise estimation models - source lines of code are irrelevant to future development
efforts, estimations should be based on the team size and investment focused (Cultural)

Related previous recommendations:

DSB87 Rec 12: Use evolutionary acquisition, including simulation and prototyping, as discussed
elsewhere in this report, to reduce risk.

SEI'01 Effort Estimation:
• Utilize most likely effort estimates in proposals and statusreports.
• Find ways to promote the use of accurate effort estimation and productivityevaluation
• Lowest cost is not equivalent to best value. Questionoutliers.

OSD'06 Adjust program estimates to reflect “high confidence” -- defined as a program with an 80
percent chance of completing development at or below estimated cost --when programs
are baselined in the Stable Program Funding Account.

SEI'10 Don’t require PMO to adopt contractors’ estimate for the program—or else use
the difference as PM “reserve”

SEI'10 Change from traditional 50% estimation confidence level to 80% level

SEI'10 DoD should consider use of Vickrey “second price” auction mechanism for
acquisition proposal bidding

SEI'15 6. Cost Estimation. Use the government’s cost estimates (using say an 80% confidence
level) rather than contractors’ estimates as the basis for program budgets and place the
difference (if the government’s estimate is larger) in a reserve fund available to program
managers with sufficient justification. Contractors’ estimates should be acquired using
mechanisms that promote accurate estimates, e.g., using Vickrey auctions, the Truth-
Revealing Incentive Mechanism (TRIM), or more standard methods of review and
acceptance by independent third parties.

DSB18 Rec 3b: The MDA with the Cost Assessment and Program Evaluation office (CAPE), the
USD(R&E), the Service Cost Estimators, and others should modernize cost and schedule
estimates and measurements.

DSB18 Rec 3b.1: [DoD] should evolve from a pure SLOC approach to historical comparables as a
measurement, and should adopt the National Reconnaissance Office (NRO) approach
(Demonstrated in Box 5) of contracting with the defense industrial base for work
breakdown schedule data to include, among others, staff, cost, and productivity.

DSB18 Rec 3c: The MDA should immediately require the PM to build a program-appropriate
framework for status estimation.

67

WORKING DOCUMENT//DRAFT

Line of Effort Digital Infrastructure
Recommendation B1 Establish and maintain digital infrastructure within each Service or Agency

that enables rapid deployment of secure software to the field and make
available to contractors at subsidized cost.

Primary Owner USD(A&S) Stakeholders SAE
Background Currently, DoD programs each develop their own development and test

environments, which requires redundant definition and provisioning, replicated
assurance, including cyber, and extended lead times to deploy capability.

Desired State
Programs will have access to a modern digital infrastructure, which can benefit
from centralized support and provisioning to lower overall costs and the burden
for each program. This approach will diminish barriers to capability delivery;
however, if DoD programs or organizations want or need to go outside of that
existing infrastructure, they can still do so (but the process will be harder).

Action Owner Target Date
B1.1 Designate organization responsible for

creating and maintaining the digital
infrastructure for each Service’s digital
infrastructure

SAE June 27, 2019

B1.2 Designate organization responsible for
creating and maintain digital
infrastructure for DOD’s agencies and
organizations

USD(A&S) May 6, 2019

B1.3 Define baseline digital infrastructure
systems and implement procurement and
deployment processes and capability

Responsible organizations
from B1.1 and B1.2

Q2FY20

B1.4 Provide resources for digital
infrastructure

USD(A&S), SAE FY20 Budget
FY21 POM

B1.5 Implement digital infrastructure
(operational)

Responsible organization
from B1.1 and B1.2

May 6, 2020

B1.6 Identify acquisition programs to
transition to digital infrastructure

SAE February 12, 2020

B1.7 Transition programs to digital
infrastructure

SAE, PEO, PM End 4QFY20

68

WORKING DOCUMENT//DRAFT

DIB concept paper recommendations
10C Make computing, storage, and bandwidth and programmers abundant to DoD developers

and users.

D&D Use validated software development platforms that permit continuous integration &
delivery evaluation (DevSecOps platform)

Visits Separate development of mission level software from development of IA-accredited
platforms

SWAP working group ideas:

T&E Build the enterprise-level digital infrastructure needed to streamline software development
and testing across the full DoD software portfolio.

Related previous recommendations:

DSB87 Rec 16: All methodological efforts, especially STARS, should look to see how
commercially available software tools can be selected and standardized for DoD needs.

SEI'01 Infrastructure: In distributed development activities, get high quality, secure, broadband
communications between sites. It is an enabler, not a cost.

69

WORKING DOCUMENT//DRAFT

Line of Effort Digital Infrastructure
Recommendation B5 Remove obstacles to DoD usage of cloud computing on commercial

platforms, including DISA CAP limits, lack of ATO reciprocity, and access to
modern software development tools.

Primary Owner DoD CIO Stakeholders Service CIOs, USD(A&S)
Background Lack of ATO reciprocity and current DoD procedures for cloud are obstacles to

leveraging modern infrastructure and tools.
Desired State DoD developers and contractors are able to use modern cloud computing

environments and commercial development tools quickly, with a single
certification that is transferable to other groups using the same environment,
tools
Action Owner Target Date

B5.1 Rescind Cloud Access Point (CAP) policy
and replace with policy that ensures
security at scale (including end-to-end
encryption)

DoD CIO 3 months

B5.2 In conjunction with Rec B4, allow transfer
of ATOs for commercial platforms
between programs and services

DoD CIO 3 months

B5.3 Create specifications and certification
process for approval of standard
development tools (w/ ATO reciprocity)

DoD CIO 6 months

B5.4 In conjunction with Rec B1, establish a
common, enterprise ability to develop
software solutions in the “easy-to-
acquire-and-provision” cloud that is fully
accredited by design of the process,
tools, and pipeline

USD(A&S) 12 months

70

WORKING DOCUMENT//DRAFT

SWAP working group ideas:

Acquisition Include an approach for enterprise-level DevSecOps and other centralized
infrastructure development and management, approach for shared services, and
applications management.

Infrastructure Establish a DoD enterprise ability to procure, provision, pay for, and use cloud that is
no different from the commercial entry points for cloud computing.

Infrastructure DoD should establish a common, enterprise ability to develop software solutions in the
“easy-to-acquire-and-provision” cloud that is fully accredited by design of the process,
tools, and pipeline.

Related previous recommendations:

Section 809 Rec. 43: Revise acquisition regulations to enable more flexible and effective
procurement of consumption-based solutions.

71

WORKING DOCUMENT//DRAFT

Line of Effort People
Recommendation C1 Create software development groups in each Service consisting of military

and/or civilian personnel who write code that is used in the field and track
individuals who serve in these groups for future DoD leadership roles.

Primary Owner USD(A&S) Stakeholders USD(P&R), SAE, Service HR
Background The DoD workforce’s capacity to apply modern technology and software

practices to meet the mission is the way we remain relevant in increasingly
technical fighting domains, especially against sophisticated peer adversaries.
While DoD has both military and civilian SW people, the career fields suffers
from a lack of proponency. The Department has not prioritized a
comprehensive recruiting strategy or campaign for technical positions. And,
there is no comprehensive training or development program that prepares the
software acquisition and technical workforce to adequately deploy modern
development tools and methodologies.

Desired State The Department’s workforce embraces commercial best practices for the rapid
recruitment of talented professionals. Once on boarded quickly, they will use
modern tools and continuously learn in state-of-the-art training environments,
bringing in the best from industry and academia, while pursuing private-public
exchange programs to broaden their skill sets.
Action Owner Target Date

C1.1 Exercise existing acquisition and
cybersecurity hiring authorities to
increase the number of SW people in
DoD programs with vacant positions.

SEA, PEO Immediately

C1.2 Obtain additional manpower
authorizations for military and civilian SW
developers.

USD(A&S), USD(P&R), SAE FY21 POM

C1.3 Stand up software factories for each
service

SEA, PEO Digital Pilot in FY20
Full rollout in FY21

C1.4 Create new military occupational
specialty (MOS) and core occupational
series plus corresponding career tracks
for each service

J1 and comparable X1 for
each Service with
USD(P&R)

12/13/19

C1.5 Create new regulations to allow standard
identification, recruitment and on-
boarding of experienced civilian software
talent, especially on rotation from private
sector roles, to occur in 60 days

USD(P&R) 12/31/19

72

WORKING DOCUMENT//DRAFT

DIB concept paper recommendations
10C Establish Computer Science as a DoD core competency

D&D Hire competent people with appropriate expertise in software to implement the desired state
and give them the freedom to do so (“competence trumps process”) [dup]

SWAP working group ideas:

M&S The definition of “core capabilities” in 10 USC 2464 should be revisited in light of warfighter
dependence on software intensive systems to determine the scope of DoD’s core organic
software engineering capability, and we should engage with Congress on the proposed revision
to clarify the intent and extent of key terminology used in the current statute.

M&S The DoD should revise industrial base policy to include software and DoD’s organic software
engineering capabilities and infrastructure. Start enterprise planning and investment to
establish and modernize organic System Integration Labs (SILs), software engineering
environments, and technical infrastructure; invest in R&D to advance organic software
engineering infrastructure capabilities.

Wkf Develop a core occupational series based on current core competencies and skills for software
acquisition and engineering. [dup]

Wkf Overhaul the recruiting and hiring process to use simple position descriptions, fully leverage
hiring authorities, engage subject matter experts as reviewers, and streamline the onboarding
process to take weeks instead of months

Wkf Embrace private-sector hiring methods to attract and onboard top talent from non-traditional
backgrounds that may require special authorities to join the Department

Wkf Develop a strategic recruitment program that targets civilians, similar to the recruitment strategy
for military members, [including] prioritizing experience and skills over cookie-cutter commercial
certifications or educational obtainment

Wkf Establish an alliance across the services that incentivizes and provides our software
practitioners a modern engagement platform (e.g. a chatOps platform) to connect across
services, share their skills, communicate through knowledge channels, gather pain points, and
develop solutions leveraging the full enterprise.

Wkf Allow for greater private-public sector fluidity across the workforce while empowering the
existing workforce to create a place where they want to work

Wkf Empower Implementation Cadre. New Legislation - This will be critical to avoid a repeat of the
past 35+ years of continuous admiration of the problem.

Wkf Computer Language Proficiency Pay. New Language - Title 10, §1596a - Use this language to
create a new Computer-language proficiency pay statute.

Wkf Develop a Strategic Recruitment Strategy for Civilians. New Legislation

Wkf Pilot a Cyber Hiring Team. New Legislation - Team will have all the necessary authorities to
execute recommendations called out in this report. The team will serve as a Department-wide
alternative to organization’s traditional HR offices and will provide expedited hiring and a better
candidate experience for top tier cyber positions.

73

WORKING DOCUMENT//DRAFT

Related previous recommendations:

DSB87 Rec 26: Each Service should provide its software Product Development Division with the ability
to do rapid prototyping in conjunction with users.

DSB87 Rec 36: Establish mechanisms for tracking personnel skills and projecting personnel needs.

DSB87 Rec 37: Structure some office careers to build a cadre of technical managers with deep
technical mastery and broad operational overview.

SEI'10 Improve compensation and advancement opportunities to increase tenure.

74

WORKING DOCUMENT//DRAFT

75

WORKING DOCUMENT//DRAFT

Line of Effort People
Recommendation C4 Restructure the approach to recruiting software developers to assume that

the average tenure of a talented engineering will be 2-4 years, and make
better use of HQEs, IPAs, reservists, and enlisted personnel to provide organic
software development capability.

Primary Owner USD(A&S) Stakeholders SAE
Background Current DoD personnel systems assuming that military and government

employees will “grow through the ranks” and that individuals will stay in
government service for long periods of time. The attractions of the private
sector creates challenges in retaining personnel that are not likely to be
overcome, so a different approach is needed.

Desired State DoD takes advantage of all individuals who are willing to serve, whether for a
long period or a short period and amplifies the ability of individuals to make a
contribution during their time in government. Internal talent is recognized and
retained through merit-based systems of promotion and job assignment.
Action Owner Target Date

C4.1 Exercise existing hiring authorities to
increase the number of highly skilled SW
people in DoD programs

SEA, PEO Begin now

C4.2 In conjunction with Recs C1 and D3,
create a database of individuals in
enlisted, officer, reserve, and civilian
positions with software development
skills and experience for internal
recruiting use to SW squadrons & PAOs

CMO?, Service HR groups? 3 months

C4.3 Within organic software programs, create
processes for maintaining release
cadence under the assumption of up to
25% turnover per year

PMOs 6 months

C4.4 Require software-intensive project
proposals to include a plan for
maintaining cadence-related metrics in
face of up to 25% turnover of staff

SAEs 6 months

C4.5 Revise GS and military promotion
guidelines for software developers to
allow rapid promotion of highly qualified
individuals with appropriate skills,
independent of “time in grade”

USD(P&R) FY21 NDAA?

C4.6 Obtain additional funding for military,
civilian SW developers, including existing
personnel, HQEs, IPAs, reservists, and
direct commissioning

USD(A&S), USD(P&R), SAE FY21 POM

76

WORKING DOCUMENT//DRAFT

DIB concept paper recommendations
10C Establish Computer Science as a DoD core competency

SWAP working group ideas:

Wkf Develop a core occupational series based on current core competencies and skills for
software acquisition and engineering.

Wkf Overhaul the recruiting and hiring process to use simple position descriptions, fully
leverage hiring authorities, engage subject matter experts as reviewers, and streamline
the onboarding process to take weeks instead of months

Wkf Embrace private-sector hiring methods to attract and onboard top talent from non-
traditional backgrounds that may require special authorities to join the Department

Wkf Develop a strategic recruitment program that targets civilians, similar to the recruitment
strategy for military members, [including] prioritizing experience and skills over cookie-
cutter commercial certifications or educational attainment

Related previous recommendations:

DSB87 Rec 34: Do not believe that DoD can solve its skilled personnel shortage; plan how best
to live with it, and how to ameliorate it.

809 Rec. 45: Create a pilot program for contracting directly with information technology
consultants through an online talent marketplace.

SEI'10 Divide large acquisition development efforts into multiple smaller, shorter
duration programs.

77

WORKING DOCUMENT//DRAFT

Line of Effort Culture
Recommendation D.2 Create and use automatically generated, continuously available metrics

that emphasize speed, cycle time, security, user value and code quality to
assess, manage, and terminate software programs (and software components
of hardware programs).

Primary Owner USD(A&S) Stakeholders CAPE, SAE, Service Cost Orgs
L/R/P Change ☐Law ☐ Regulation ☒Policy

DoDI 5000.02, DoDI 5000.75, DoDI 5105.84
Background Current program reporting requirements are largely manual, time consuming,

and provide limited insight into the SW health of a program.
Desired State

Action Owner Target Date
D.2.1 Modify acquisition policy guidance to

specify use of automatically generated,
continuously available metrics that
emphasize speed, cycle time, security,
and code.

USD(A&S) May 6, 2019

D.2.2 Modify cost estimation policy guidance to
specify use of automatically generated,
continuously available metrics that
emphasize speed, cycle time, security,
and code.

CAPE June 26, 2019

D.2.3 Develop specific measure of software
quality, value and velocity and the tools
to implement the automatic generation
and reporting

TBD TBD

78

WORKING DOCUMENT//DRAFT

SWAP working group ideas:

Acq Revise DFARS Subpart 234.201, DoDI 5000.02 Table 8, and OMB Circular A-11 to
remove EVM requirement

Con Allow for documentation and reporting substitutions to improve agility (agile reporting vs
EVM) (Cultural and EVM Policy)

Con Establish a clear definition of done targets for software metrics for defense systems of
different types (code coverage, defect rate, user acceptance) (Cultural)

D&M Congress could establish, via an NDAA provision, new data-driven methods for
governance of software development, maintenance, and performance. The new approach
should require on demand access to standard [and real-time?] data with reviews
occurring on a standard calendar, rather than the current approach of manually
developed, periodic reports. [dup]

D&M DoD must establish the data sources, methods, and metrics required for better analysis,
insight, and subsequent management of software development activities. This action does
not require Congressional action but will likely stall without external intervention and may
require explicit and specific Congressional requirements to strategically collect, access,
and share data for analysis and decision making.

T&E Establish requirements for government-owned software to be instrumented such that
critical monitoring functions (e.g., performance, security, etc.) can be automated as much
as possible, persistently available, and such that authoritative data can be captured,
stored, and reused in subsequent testing or other analytic efforts.

Related previous recommendations:

DSB87 Rec 19: DoD should develop metrics and measuring techniques for software quality and
completeness, and incorporate these routinely in contracts.

DSB87 Rec 20: DoD should develop metrics to measure implementation progress.

809 Rec 19: Eliminate the Earned Value Management (EVM) mandate for software programs
using Agile methods

MITRE'18 Elevate Security as a Primary Metric in DoD Acquisition and Sustainment

79

WORKING DOCUMENT//DRAFT

Line of Effort Culture
Recommendation D6 Shift from a list of requirements for software to a list of desired features

and required interfaces/characteristics, to avoid requirements creep, overly
ambitious requirements, etc.

Primary Owner USD(A&S) Stakeholders Joint Staff, SAE
Background Current DoD requirements processes significantly impedes its ability to

implement modern SW development practices by spending years establishing
program requirements and insisting on satisfaction of requirements before a
project is considered “done”. This impedes rapid implementation of features
that of the most use to the user for those types of software for which this is
relevant.

Desired state Rather than a list of requirements for every feature, programs should establish
a minimum set of requirements required for initial operation, security, and
interoperability, and place all other desired features on a list that will be
implemented in priority order, with the ability for DoD to redefine priorities on
a regular basis.
Action Owner Target Date

D6.1 Modify requirements guidance by memo
to shift from a list of requirements for
software to a list of desired features and
required interfaces/characteristics.

USD(A&S) 3 months

D.6.2 Update CJCSI 3170.01H (JCIDS
requirements process) to reflect contents
of guidance memos

Joint Staff 6 months

D.6.3 Modify DoDI 5000.02 and DoDI 5000.75
(or integrate into new DoDI 5000.SW)

USD(A&S) 12 months

80

WORKING DOCUMENT//DRAFT

DIB concept paper recommendations

10C Adopt a DevOps culture for software systems.

10C All software procurement programs should start small, be iterative, and build on success
– or be terminated quickly.

D&D Accept 70% solutions in a short time (months) and add functionality in rapid iterations
(weeks)

Related previous recommendations:

SEI'12 Ensure requirements prioritization of backlog considers business value and risk.

GAO'17 Match requirements to resources—that is time, money, technology, and people—before
undertaking new development efforts.

GAO'17 Research and define requirements before starting programs and limit changes after
they are started.

SEI'15 2. Requirements Growth. Programs should manage the volatility and ambitiousness of
system requirements

SEI'01 Ensure that all critical functional and interoperability requirements are well
specified in the contract (statement of work, Statement of Objectives).

SEI'01 Handle requirements that have architectural consequences as systems engineering
issues—up front.

	Software is Never Done:
	Extended Abstract
	Table of Contents2
	Chapter 0. README

	SWAP FAQ (Frequently Asked Questions)
	1. Haven’t all of these ideas already been recommended in previous studies? Why is this study/report any different?
	2. Shouldn’t Congress just get out of the way and let DoD run things the way theywant?
	3. Military software is different than commercial software since lives and national security are at stake, so we can’t just do things like they do inindustry.
	4. Embedded software (in weapons systems) is different than commercial software since it is closely tied to the hardware, so we can’t just do things like they do in industry.
	5. For military systems, training is an essential element and we can’t change the software quickly because we can’t retrain people to use the new version.
	6. Providing source code to the government is a non-starter for industry. How will they make money if they have to give the government their code?
	8. Won’t Congress simply reject modern continuous, incremental software programs believing that “software is never done” is just an open invitation to make programs last forever?
	9. Have you read a P-form and an R-form?

	Chapter 1. Who Cares: Why Does Software Matter for the DoD?
	1.1 Where are we coming from, where are we going?
	1.2 Weapons and Software and Systems, oh my! A taxonomy for DoD
	1.3 What kind of software are we going to have to build?
	1.4 What are the challenges that we face (and consequences of inaction)?

	Chapter 2. I Don’t Get It: What Does It Look Like to Do Software Right?
	2.1 How it works in industry (and can/should work in the DoD): DevSecOps
	2.2 Empowering the workforce: building talent inside and out
	2.3 Getting it right: superior national security AND betteroversight

	Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?
	3.1 Brief summary and assessment of 37 years of reports on DoDsoftware
	3.2 Our interpretation of why nothing happened but why we think our report willmatter
	3.3 Consequences of inaction: Increasing our attack surface and shifting risk tothe warfighter

	Chapter 4. How Do We Get There From Here: Three Paths for Moving Forward
	4.1 Path 1: Make the best out of what we’ve got
	4.2 Path 2: Tune the defense acquisition system to optimize for software
	4.3 Path 3: A new appropriations category/acquisition pathway for software to force change in the middle

	Recommendation Summaries
	v0.1, 19 Feb 2019

