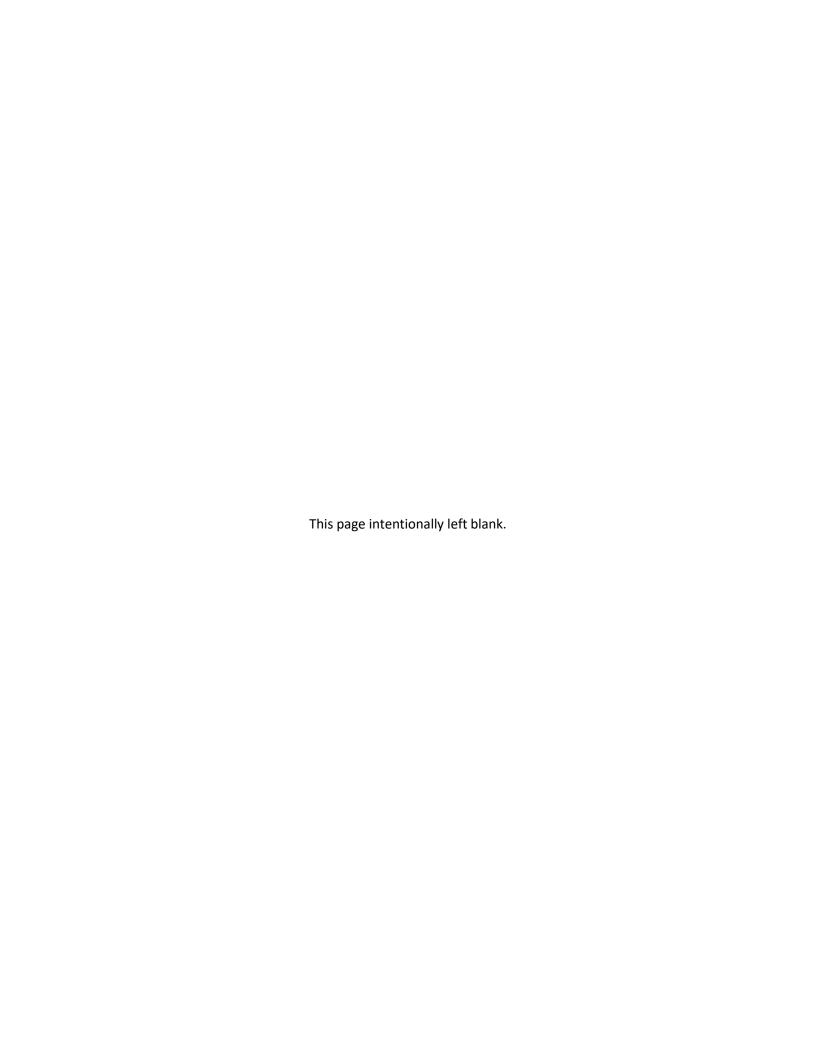
Environmental Impact Statement for EA-18G "Growler" Airfield Operations at Naval Air Station Whidbey Island Complex, WA

Volume 2: Appendices A and B

September 2018

Prepared for:


Environmental Impact Statement for EA-18G "Growler" Airfield Operations at Naval Air Station Whidbey Island Complex Volume 2 Appendices A and B

September 2018

Prepared by:

United States Department of the Navy

TABLE OF CONTENTS

ACRON	IYMS AND ABBREVIATIONS	. A-11
1	INTRODUCTION AND EXECUTIVE SUMMARY	. A-13
2	STUDY METHODOLOGY	. A-19
2.1 2.2 2.3	Data Collection and Validation	. A-21
3	NAS WHIDBEY ISLAND COMPLEX	. A-31
3.1 3.2 3.3	Regional and Local Settings	. A-33
4	AVERAGE YEAR BASELINE SCENARIO	
4.1 4.2 4.3 4.4	Flight Operations Other Modeling Parameters Run-up Operations Aircraft Noise Exposure	A-38 A-38
5	AVERAGE YEAR NO ACTION ALTERNATIVE	
5.1 5.2 5.3 5.4	Flight Operations Other Modeling Parameters Run-up Operations Aircraft Noise Exposure	A-57 A-57
6	AVERAGE YEAR ALTERNATIVE 1 SCENARIOS	. A-73
6.1 6.2 6.3 6.4	Flight Operations Other Modeling Parameters Run-up Operations Aircraft Noise Exposure	A-90 A-90
7	AVERAGE YEAR ALTERNATIVE 2 SCENARIOS	
7.1 7.2 7.3 7.4	Flight Operations Other Modeling Parameters Run-up Operations Aircraft Noise Exposure	A-140 A-140
8	AVERAGE YEAR ALTERNATIVE 3 SCENARIOS	A-175
8.1 8.2 8.3 8.4	Flight Operations Other Modeling Parameters Run-up Operations Aircraft Noise Exposure	A-190 A-190
9	EFFECT OF CONSIDERED HUSH HOUSE	A-225
10	LOW-FREQUENCY NOISE	A-233
11	REFERENCES	A-237

Appendix A1	Discussion of Noise and Its Effect on the Environment	A1-1
Appendix A2	Annual Flight Operations for School Cases (Average Year) and High Tempo FCLP	
	Year Cases	A2-1
Appendix A3	EA-18G Runway Utilization Percentage	A3-1
Appendix A4	Modeled Flight Tracks and Growler Track Utilization Percentages	A4-1
Appendix A5	Representative Flight Profiles for EA-18G, P-3C, P-8A, and Transient Large Jet	
	Aircraft	A5-1
Appendix A6	Point of Interest (POI) Event Data	A6-1
Appendix A7	Other Modeling Output for High Tempo FCLP Year Scenarios	A7-1
Appendix A8	Literature Review Process	A8-1

List of Figures

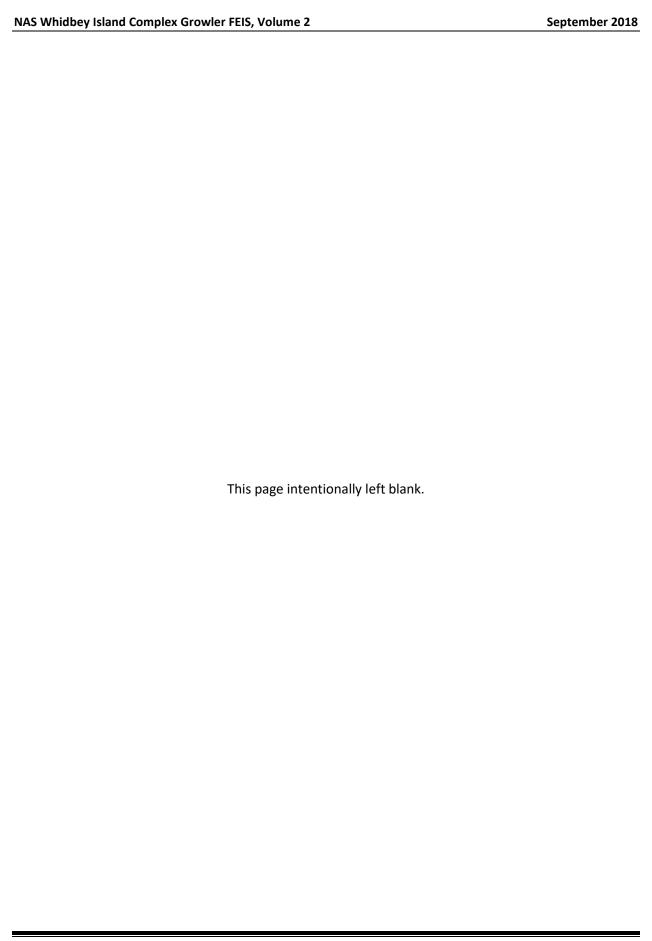
Figure 1-1	Regional Setting of the NAS Whidbey Island Complex and Points of Interest	A-14
Figure 2-1	On-Station Buildings for PHL Counts	A-24
Figure 3-1	Vicinity of the NAS Whidbey Island Complex	A-32
Figure 3-2	Average Daily Weather Data for NAS Whidbey Island and Modeled Conditions	A-34
Figure 4-1	Modeled Run-Up Pads For Baseline Scenario	A-40
Figure 4-2	Baseline Environment for NAS Whidbey Island Overview	A-42
Figure 5-1	Modeled Run-up Pads for Alternatives	A-59
Figure 5-2	DNL Contours for AAD Aircraft Events for the Average Year No Action Alternative	A-61
Figure 6-1	Comparison of Baseline and Proposed FCLP Pattern for Runway 14 at OLF Coupeville	A-88
Figure 6-2	Comparison of Baseline and Proposed FCLP Pattern for Runway 32 at OLF Coupeville	A-89
Figure 6-3	DNL Contours for AAD Aircraft Events for the Average Year Alternative 1A	A-93
Figure 6-4	DNL Contours for AAD Aircraft Events for the Average Year Alternative 1B	A-94
Figure 6-5	DNL Contours for AAD Aircraft Events for the Average Year Alternative 1C	A-95
Figure 6-6	DNL Contours for AAD Aircraft Events for the Average Year Alternative 1D	A-96
Figure 6-7	DNL Contours for AAD Aircraft Events for the Average Year Alternative 1E	A-97
Figure 6-8	Comparison of 65 dB DNL Contours for Average Year Alternatives and the No Action Alternative	A-98
Figure 6-9	Estimated Aircraft DNL at POIs for the Average Year Alternative 1	A-102
Figure 7-1	DNL Contours for AAD Aircraft Events for the Average Year Alternative 2A	A-142
Figure 7-2	DNL Contours for AAD Aircraft Events for the Average Year Alternative 2B	A-143
Figure 7-3	DNL Contours for AAD Aircraft Events for the Average Year Alternative 2C	A-144
Figure 7-4	DNL Contours for AAD Aircraft Events for the Average Year Alternative 2D	A-145
Figure 7-5	DNL Contours for AAD Aircraft Events for the Average Year Alternative 2E	A-146
Figure 7-6	Comparison of 65 dB DNL Contours for Average Year Alternative 2 and the No Action Alternative	A-147
Figure 7-7	Estimated Aircraft DNL at POIs for the Average Year Alternative 2	A-151
Figure 8-1	DNL Contours for AAD Aircraft Events for the Average Year Alternative 3A	A-192
Figure 8-2	DNL Contours for AAD Aircraft Events for the Average Year Alternative 3B	A-193
Figure 8-3	DNL Contours for AAD Aircraft Events for the Average Year Alternative 3C	A-194
Figure 8-4	DNL Contours for AAD Aircraft Events for the Average Year Alternative 3D	A-195
Figure 8-5	DNL Contours for AAD Aircraft Events for the Average Year Alternative 3E	A-196
Figure 8-6	Comparison of 65 dB DNL Contours for Average Year Alternative 3 and the No Action Alternative	A-197

Figure 8-7	Estimated Aircraft DNL at POIs for the Average Year Alternative 3	A-201
Figure 9-1	Modeled Run-up Locations and Considered Hush House	A-226
Figure 9-2	Comparison of Single-Event Maximum Sound Level Contours for the High Power and Considered Hush House Locations	A-229
Figure 9-3	Comparison of DNL Contours for the Average Year No Action Alternative for the High Power and Considered Hush House Locations	A-230
Figure 9-4	Comparison of DNL Contours for the High-Tempo FCLP Year Alternative 2B for the High Power and Considered Hush House Locations	A-231
Figure 10-1	Low Frequency One-Third Octave Band Spectral Comparison for the EA-18G and EA-6B for MIL Engine Power	A-234
Figure 10-2	Low Frequency One-Third Octave Band Spectral Comparison for the EA-18G and EA-6B for Approach Engine Power	A-234
Figure 10-3	Low Frequency One-Third Octave Band Spectral Comparison for the EA-18G and EA-6B for Traffic Pattern Engine Power	A-235

List of Tables

Table 1-1	Summary of Noise Exposure Results for the Average Year	A-16
Table 2-1	Numbers of Squadrons and Primary Assigned Aircraft for each Modeled	A 20
T. b.b. 2.2	Condition	
Table 2-2	Noise Modeling Parameters	
Table 2-3	Points of Interest and Applicable Analyses	
Table 2-4	Summary of POI Analysis Parameters	
Table 3-1	Runway Parameters	
Table 4-1	Summary of Annual Flight Operations for the Average Year Baseline Scenario	
Table 4-2	Detailed Annual Flight Operations for the Average Year Baseline Scenario	A-36
Table 4-3	Modeled Run-Up Operations and Profiles for the Average Year and High-Tempo FCLP Year Baseline Scenarios	A-39
Table 4-4	Estimated Acreage and Population within the DNL Contour Ranges for the Average Year at the NAS Whidbey Island Complex (CY 21) for Baseline Scenario	A-43
Table 4-5	Estimated Aircraft DNL at POIs for the Average Year Baseline Scenario	A-44
Table 4-6	Estimated Potential Hearing Loss for the Average Year Baseline Scenario	A-46
Table 4-7	Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Baseline Scenario	A-47
Table 4-8	Indoor Speech Interference for the Average Year Baseline Scenario	A-48
Table 4-9	Classroom Learning Interference for the Average Year Baseline Scenario	A-49
Table 4-10	Recreational Speech Interference for the Average Year Baseline Scenario	A-50
Table 5-1	Summary of Annual Flight Operations for the Average Year No Action Alternative	Λ_5.4
Table 5-2	Detailed Annual Flight Operations for the Average Year No Action Alternative	
Table 5-3	Modeled Run-Up Operations and Profiles for the No Action Alternatives	
Table 5-3	Estimated Acreage and Population within the DNL Contour Ranges for the	A-30
Table 3-4	Average Year at the NAS Whidbey Island Complex for No Action Scenario	A-62
Table 5-5	Estimated Aircraft DNL at POIs for the Average Year No Action Alternative	
Table 5-6	Estimated Potential Hearing Loss for the Average Year No Action Alternative	
Table 5-7	Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year No Action Alternative	A-66
Table 5-8	Indoor Speech Interference for the Average Year No Action Alternative	A-68
Table 5-9	Classroom Learning Interference for the Average Year No Action Alternative	
Table 5-10	Recreational Speech Interference for the Average Year No Action Alternative	
Table 6-1	Summary of Annual Flight Operations for the Average Year Alternative 1A	
Table 6-2	Detailed Annual Flight Operations for the Average Year Alternative 1A	
Table 6-3	Summary of Annual Flight Operations for the Average Year Alternative 1B	
	,	•

Table 6-4	Detailed Annual Flight Operations for the Average Year Alternative 1B	A-77
Table 6-5	Summary of Annual Flight Operations for the Average Year Alternative 1C	A-79
Table 6-6	Detailed Annual Flight Operations for the Average Year Alternative 1C	A-80
Table 6-7	Summary of Annual Flight Operations for the Average Year Alternative 1D	A-82
Table 6-8	Detailed Annual Flight Operations for the Average Year Alternative 1D	A-83
Table 6-9	Summary of Annual Flight Operations for the Average Year Alternative 1E	A-85
Table 6-10	Detailed Annual Flight Operations for the Average Year Alternative 1E	A-86
Table 6-11	Modeled Run-Up Operations and Profiles for Alternatives 1 through 3	A-91
Table 6-12	Estimated Acreage and Population within the DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 1 (Average Year)	A-99
Table 6-13	Percent Difference in the Estimated Acreage and Population within the Average and High-Tempo FCLP Year DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 1	. A-101
Table 6-14	Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level (L_{eq}) under Alternative 1 at NAS Whidbey Island Complex (Average Year)	. A-107
Table 6-15	Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 1	. A-110
Table 6-16	Indoor Speech Interference for the Average Year Alternative 1	. A-113
Table 6-17	Classroom Learning Interference for Average Year Alternative 1	. A-116
Table 6-18	Recreational Speech Interference for Average Year Alternative 1	. A-122
Table 7-1	Summary of Annual Flight Operations for the Average Year Alternative 2A	. A-125
Table 7-2	Detailed Annual Flight Operations for the Average Year Alternative 2A	. A-126
Table 7-3	Summary of Annual Flight Operations for the Average Year Alternative 2B	. A-128
Table 7-4	Detailed Annual Flight Operations for the Average Year Alternative 2B	. A-129
Table 7-5	Summary of Annual Flight Operations for the Average Year Alternative 2C	. A-131
Table 7-6	Detailed Annual Flight Operations for the Average Year Alternative 2C	. A-132
Table 7-7	Summary of Annual Flight Operations for the Average Year Alternative 2D	. A-134
Table 7-8	Detailed Annual Flight Operations for the Average Year Alternative 2D	. A-135
Table 7-9	Summary of Annual Flight Operations for the Average Year Alternative 2E	. A-137
Table 7-10	Detailed Annual Flight Operations for the Average Year Alternative 2E	. A-138
Table 7-11	Estimated Acreage and Population within the DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 2 (Average Year)	. A-148
Table 7-12	Percent Difference in the Estimated Acreage and Population within the Average and High-Tempo FCLP Year DNL Contour Ranges for the NAS Whidbey Island	
	Complex. Alternative 2	. A-150


Table 7-13	Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level under Alternative 2 at the NAS Whidbey Island Complex (Average Year)	A-156
Table 7-14	Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 2	A-159
Table 7-15	Indoor Speech Interference for the Average Year Alternative 2	A-162
Table 7-16	Classroom Learning Interference for Average Year Alternative 2	A-165
Table 7-17	Recreational Speech Interference for Average Year Alternative 2	A-171
Table 8-1	Summary of Annual Flight Operations for the Average Year Alternative 3A	A-175
Table 8-2	Detailed Annual Flight Operations for the Average Year Alternative 3A	A-176
Table 8-3	Summary of Annual Flight Operations for the Average Year Alternative 3B	A-178
Table 8-4	Detailed Annual Flight Operations for the Average Year Alternative 3B	A-179
Table 8-5	Summary of Annual Flight Operations for the Average Year Alternative 3C	A-181
Table 8-6	Detailed Annual Flight Operations for the Average Year Alternative 3C	A-182
Table 8-7	Summary of Annual Flight Operations for the Average Year Alternative 3D	A-184
Table 8-8	Detailed Annual Flight Operations for the Average Year Alternative 3D	A-185
Table 8-9	Summary of Annual Flight Operations for the Average Year Alternative 3E	A-187
Table 8-10	Detailed Annual Flight Operations for the Average Year Alternative 3E	A-188
Table 8-11	Estimated Acreage and Population within the DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 3 (Average Year)	A-198
Table 8-12	Percent Difference in the Estimated Acreage and Population within the Average and High-Tempo FCLP Year DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 3	
Table 8-13	Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level under Alternative 3 at NAS Whidbey Island Complex (Average Year)	A-206
Table 8-14	Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 3	A-209
Table 8-15	Indoor Speech Interference for the Average Year Alternative 3	A-212
Table 8-16	Classroom Learning Interference for Average Year Alternative 3	A-215
Table 8-17	Recreational Speech Interference for Average Year Alternative 3	A-221
Table 9-1	EA-18G High Power Run-Ups for Hush House Analysis	A-228

NAS Whidbey Island Complex Growler FEIS, Volume 2	September 2018
This page intentionally left blank.	
,	

Acronyms and Abbreviations

Acronym	Definition
AAD	Annual Average Daily
AGL	Above Ground Level
ANSI	American National Standards Institute
ASA	Acoustical Society of America
CVW	Carrier Air Wing
dB	Decibel
DNL	Day-Night Average Sound Level (U.S. cumulative noise metric)
DNWG	Department of Defense Noise Working Group
DOD	Department of Defense
E&E	Ecology & Environment, Inc.
EA	Environmental Assessment
EIS	Environmental Impact Statement
EXP	Expeditionary
FAA	Federal Aviation Administration (U.S.)
F	degrees Fahrenheit
FCLP	Field Carrier Landing Practice
FICON	Federal Interagency Committee on Noise
FRS	Fleet Replacement Squadron
ft	Feet
GCA	Ground-Controlled Approach
Hz	Hertz
in Hg	inches of mercury (barometric pressure)
kPa-s/m²	KiloPascals per second per square meter
L _{eq}	Equivalent Sound Level
L _{eq(24)}	Equivalent Sound Level over 24 hours

Acronym	Definition
L _{eq(8h)}	Equivalent Sound Level over 8 hours
L _{max}	Maximum Sound Level
MAGIC CARPET	Maritime Augmented Guidance with Integrated Controls for Carrier Approach and Recovery Precision Enabling Technologies (also known as Precision Landing Mode).
MSL	Mean Sea Level
NA	Number of Events At or Above a Selected Threshold
NAS	Naval Air Station
NASMOD	Naval Aviation Simulation Model
NIPTS	Noise-induced Permanent Threshold Shift
NLR	Noise Level Reduction
OLF	Outlying Landing Field
PA	Probability of Awakening
ОТОВ	One-third octave band
PHL	Potential Hearing Loss
PNL	Perceived Noise Level
POI	Point of Interest
RES	Reserve
RH	Relative Humidity
RLD	Red Label Delta
RLF	Red Label Foxtrot
SAR	Search and Rescue
T&G	Touch-and-Go
U.S. or US	United States
USEPA	U.S. Environmental Protection Agency
USAF	United States Air Force
VFR	Visual Flight Rules

1 Introduction and Executive Summary

The United States Department of the Navy (the Navy) is preparing an Environmental Impact Statement (EIS) for the addition of EA-18G "Growler" aircraft at Naval Air Station (NAS) Whidbey Island, Washington. Additional aircraft at the NAS would mean additional EA-18G Growler flight and run-up operations there as well as at the NAS's Outlying Landing Field (OLF) Coupeville (aka "the OLF"). The two airfields combined are referred to herein as the "NAS Whidbey Island complex." Figure 1-1 shows the location of the complex. Growler usage of Special Use Airspace is not within the scope of this study.

The purpose of this study is to present the noise exposure associated with the additional EA-18G aircraft operations in the vicinity of the complex. The primary noise metric for quantifying noise exposure is the Day-Night Average Sound Level (DNL), presented in A-weighted decibels (dB), and is based on Annual Average Daily (AAD) aircraft events. Annual flight operations and runway utilization were derived from a separate Naval Aviation Simulation Model (NASMOD) study. All other modeling parameters, such as (but not limited to) flight tracks and profiles, were provided by Navy personnel.

Noise exposure was computed with the Department of Defense (DoD) NOISEMAP suite of computer programs, the core of which is called "NMAP." The noise study was conducted using the most current official version, Version 7.3, of NMAP, leveraging its ability to account for the effect of ground elevation and impedance on the propagation of sound. Noise exposure is primarily presented in terms of estimated off-station population affected in 5 dB bands of DNL, starting at 65 dB. DNL is also computed for 48 off-station Points of Interest (POIs) in the complex's region, representing residential areas, schools, and parks/recreational areas. Consistent with DoD guidelines, the DNL analysis is supplemented by the following analyses:

- risk of hearing loss
- nighttime probability of awakening (PA)
- residential daytime indoor speech interference
- classroom learning interference, and
- recreational daytime and nighttime speech interference

The study examines 34 operational scenarios consisting of 17 scenarios for each of two Field Carrier Landing Practice (FCLP) tempos for the EA-18G, referred to as the "average year" and the "high-tempo FCLP year." The noise study focuses on the average year set, but it also provides results for the high-tempo FCLP year. Each set of scenarios consists of a baseline scenario, a No Action Alternative, and three (action) alternatives, numbered 1 through 3. Each numbered alternative has the same five FCLP distribution scenarios: A, B, C, D, and E. Scenario A places 20 percent of the FCLP operations at Ault Field and 80 percent at the OLF. Scenario B distributes the FCLP operations equally at both fields. Scenario C is the inverse of Scenario A, with 80 percent of the FCLP operations at Ault Field and 20 percent at the OLF. Scenario D places 30 percent of the FCLP operations at Ault Field and 70 percent at the OLF, while Scenario E places 70 percent of the FCLP operations at Ault Field and 30 percent at the OLF.

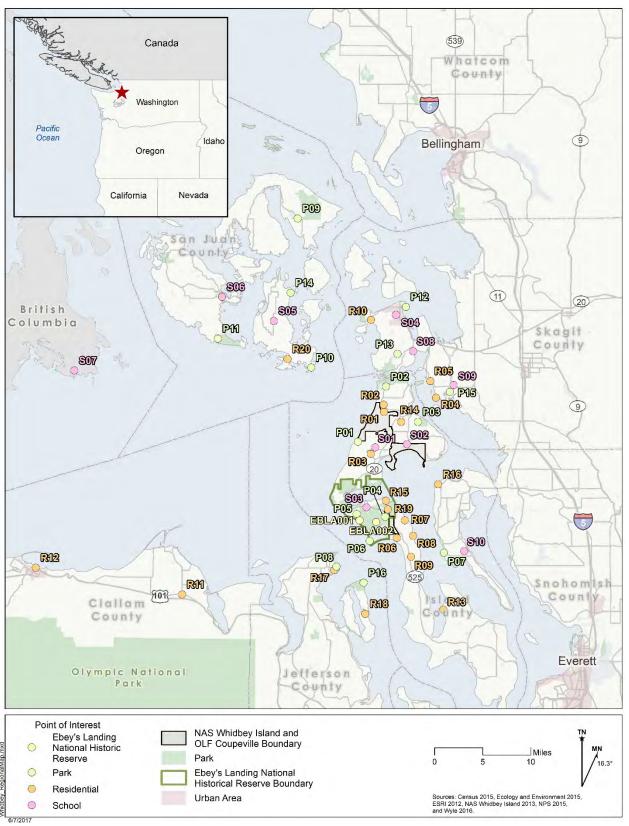


Figure 1-1 Regional Setting of the NAS Whidbey Island Complex and Points of Interest

Table 1-1 summarizes the results from each of the above-listed analyses for all of the average year action scenarios compared to the baseline scenario, describing:

- Change in overall population exposed to at least 65 dB DNL (in percent),
- 2. Change in DNL at the POI,
- 3. Number of POIs exposed to 65 dB DNL in an alternative but exposed to less than 65 dB in the baseline scenario,
- 4. Change in risk of hearing loss, in terms of the population associated with a Noise Induced Permanent Threshold Shift (NIPTS) of at least 5 dB (in percent).
- 5. Change in PA with windows open at applicable POIs,
- 6. Change in daytime indoor speech interference (in events per hour) with windows open at applicable POIs,
- 7. Change in classroom learning interference (in events per hour) with windows open at applicable POIs, and
- 8. Change in recreational speech interference (in events per hour) at applicable POIs for both daytime and nighttime.

In terms of any of these metrics, the No Action Alternative would have the least amount of increase but would not likely serve the Navy's needs. The following paragraphs address the numbered alternatives only.

In terms of increases in affected population (item Number 1 above), at 12 to 13 percent, the A series of scenarios would have the least percentage increase. The C and E series of scenarios would have 15 to 17 percent increases in affected population, whereas the B and D series would have 15 to 16 percent increases in affected population.

In terms of change in DNL at the POIs (item Number 2 above), most alternatives and their scenarios would cause 1 to 3 dB increases in DNL at most POIs, but the A, B, and D series of scenarios would cause the highest increases in DNL at a handful of POIs.

From a newly affected perspective (item Number 3 above) among all 48 POIs, all alternatives would have two newly affected POI locations.

In terms of an Average NIPTS of at least 5 dB (item Number 4 above), the affected population would increase the most under the A series of scenarios while only increasing 42 to 53 percent under the B, C, D, and E series of scenarios.

From a change in PA perspective (item Number 5 above) among 30 residential-type POIs, all scenarios would cause increases of up to 20 percent at approximately two-thirds of POIs. An A series of scenarios would cause the greatest increase at a single POI, although the majority of increases under Scenario A would not exceed 10 percent. The C series of scenarios would cause the smallest increase, and 10 to 12 POIs would not change compared to the No Action Alternative.

Table 1-1 Summary of Noise Exposure Results for the Average Year

			Alternative 1				Alternati	ve 2	Alternative 3								
			Α	В	С	D	E	Α	В	С	D	E	Α	В	С	D	E
Population	Population		12,576	12,989	13,021	12,935	13,050	12,487	12,876	12,814	12,817	12,889	12,483	12,880	12,824	12,817	12,884
Exposed to	Change from		+1405	+1818	+1850	+1764	+1879	+1316	+1705	+1643	+1646	+1718	+1312	+1709	+1653	+1646	+1713
≥65 dB DNL, Both Airfields	No Action (10	0,344)	13%	16%	17%	16%	17%	12%	15%	15%	15%	15%	12%	15%	15%	15%	15%
DNL at POI	Decrease of	5dB or more	-	-	2	-	-	-	-	2	-	-	-	-	2	-	-
(Change from No		3-4dB	-	-	1	-	2	-	-	1	-	2	-	-	1	-	2
Action)		1-2dB	-	2	4	-	1	-	2	4	-	2	-	2	4	-	1
	No Change		17	17	16	16	19	17	18	16	16	19	17	18	16	15	19
	Increase of	1dB	14	12	7	15	7	14	14	10	14	8	14	14	10	15	9
		2-3dB	8	12	15	9	15	8	10	12	9	14	8	10	12	9	13
		4-5dB	4	1	2	3	1	4	1	2	3	1	4	1	2	3	1
		6-10dB	3	3	1	3	2	3	3	1	3	3	3	3	1	3	3
		11-15dB	2	1	-	2	1	2	1	-	2	-	2	1	-	2	-
		>15dB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Newly ≥65 dl	3 DNL	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Population of	Population		70	26	29	30	28	55	26	29	30	28	54	26	29	30	28
Average NIPTS ≥5	Change from		+59	+15	+18	+19	+17	+44	+15	+18	+19	+17	+43	+15	+18	+19	+17
dB	No Action (38	3)	164%	42%	50%	53%	47%	122%	42%	50%	53%	47%	119%	42%	50%	53%	47%
Annual Avg	Decrease of	1-10%	-	-	1	-	-	-	-	1	-	-	-	-	1	-	-
Nightly PA at	No Change		7	8	10	9	9	8	7	12	8	10	8	8	10	8	9
Residential POI (Change from No Action	Increase of	1-10%	17	17	14	15	18	17	19	14	19	17	17	18	16	18	18
		11-20%	4	5	5	3	3	3	4	3	2	3	3	4	3	2	3
		21-30%	1		-	2	-	2	-	-	1	-	1	-	-	2	-
in %PA)		31-40%	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-
		41-50%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		51-60%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		61% or more	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 1-1 Summary of Noise Exposure Results for the Average Year

			Alternative 1				Alternative 2					Alternative 3					
			Α	В	С	D	E	Α	В	С	D	E	Α	В	С	D	E
Daytime Indoor	Decrease of	1-2 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Speech	No Change		19	16	21	16	19	19	16	21	16	19	18	16	21	16	19
Interference	Increase of	1-2 events/hr	11	14	9	14	11	11	14	9	14	11	12	14	9	14	11
at Residential POI		3-4 events/hr															
(Change from No																	
Action)																	
Classroom	Decrease of	1-2 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Learning	No Change		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Interference at	Increase of	1-2 events/hr	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
School POI		3-4 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(Change from No		5-6 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Action)																	
Recreational	Decrease of	1 events/hr	-	-	1	-	-	-	-	1	-	-	-	-	1	-	-
Speech	No Change		13	15	20	11	16	11	14	21	10	15	10	13	20	10	16
Interference at	Increase of	1-2 events/hr	35	33	27	37	32	37	34	26	38	33	38	35	27	38	32
Outdoor/Park POI		3-4 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(Change from No		5-6 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Action)		4 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

From a change in indoor speech interference perspective (item Number 6 above) among 30 residential-type POIs, the B and D series of scenarios would have the greatest number of POIs affected, with 14 experiencing increases of one or two events per hour on average. The C series of scenarios would have the least number of POIs affected, with only nine resulting in an increase of one or two events per hour on average; the remaining POIs would not experience a change in number of events per hour.

In terms of classroom learning interference (item Number 7 above) among nine school-type POIs, the results would be similar across all scenarios. No POI would experience increases greater than 1 or 2 events per hour on average, compared to the No Action Alternative.

Finally, in terms of recreational speech interference (item Number 8 above) among 48 park-type POIs, the A and D series of scenarios would contain the greatest number of POIs (35 to 38), with increases of 1 to 2 events per hour on average. The C series of scenarios would have the most POIs with no change in events per hour (20 to 21) on average and one location with a decrease of one event per hour.

Section 2 of this document describes the methodology for the noise study, including how the NASMOD study was utilized and all of the pertinent noise metrics. Section 3 introduces the locale and aviation users of the complex. Sections 4 and 5 address the baseline scenario and the No Action Alternative, respectively. Sections 6 through 8 address Alternatives 1 through 3. Section 9 discusses the effect of a considered "Hush House." The References section contains the bibliographical information for the citations and sources cited in the text. Appendix A1 provides a discussion of noise and its effects, while Appendices 2 through 5 provide detailed modeling input data. Appendix A6 lists the single-event data for each POI for each scenario, and Appendix A7 provides the modeling output of the high-tempo FCLP year scenarios.

2 Study Methodology

This section describes the data collection procedures and provides an overview of the noise analysis methodology, noise metrics, and computerized noise models.

2.1 Data Collection and Validation

The Navy conducted a NASMOD study to determine the airfield capacity for each alternative (ATAC Corporation, 2015). The NASMOD study examined airfield operations¹ at NAS Whidbey Island and OLF Coupeville for sets of 3-year periods. The first set was 2014 through 2016 for baseline scenarios, and the second set was 2021 through 2023 for alternative scenarios. For each set of 3-year periods, NASMOD further examined two operating tempos, one called "maximum year" and one called "average year." For the purposes of the EIS, the maximum year is herein after referred to as the "high-tempo FCLP year" and was defined by the NASMOD study as the calendar year (of the three years studied in each set) with the most FCLP operations. The average year was defined as the mean of total operations for the NAS Whidbey Island complex (Ault Field plus OLF Coupeville) in each 3-year set and is the primary focus of the EIS and this noise study. Chapters 4 through 8 address the noise results for the average year scenarios, while the noise results for the high-tempo FCLP year scenarios are contained in Appendix A2.

Table 2-1 lists the baseline and alternative scenarios, for either the high-tempo FCLP year or average year, in terms of number of squadrons and aircraft per squadron. Relative to baseline, the No Action Alternative removes the EP-3 and P-3 Orion aircraft. Relative to the No Action Alternative, the numbered alternatives would have the same number of Carrier Air Wing (CVW), Fleet Replacement Squadron (FRS), and Reserve (RES) squadrons at nine, one, and one, respectively, but the CVW would contain between five and eight aircraft per squadron, and the FRS would contain between 17 and 26 aircraft. The RES would always be comprised of five aircraft. Relative to the No Action Alternative, the numbered alternatives would contain between three and five Expeditionary (EXP) squadrons, each containing five aircraft per squadron except for Alternative 3, which would contain eight aircraft per squadron. P-8 Poseidon squadrons would remain at six aircraft for any of the alternatives. The H-60 Seahawk helicopter Search and Rescue (SAR) squadron would remain for any of the alternatives.

As shown in Table 2-1, each numbered alternative has five scenarios involving the distribution of total FCLP operations between Ault Field and OLF Coupeville²: A, B, C, D, and E. Scenario A would put 80 percent of the FCLP operations at Ault Field and 20 percent at the OLF. Scenario B would put half of the FCLP operations at Ault Field and half at the OLF. Scenario C is the opposite of A, as it would put 20 percent of the FCLP operations at Ault Field and 80 percent at the OLF. Scenario D places 30 percent of the FCLP operations at Ault Field and 70 percent at the OLF, while Scenario E is the opposite of D, with 70 percent of the FCLP operations at Ault Field and 30 percent at the OLF.

¹ A flight operation is defined as a takeoff or landing of one aircraft, with patterns counted as two operations per circuit. The counts in this report do not include transitions through the airspace above or near NAS Whidbey Island.

For Ault Field, only FCLP operations are involved in the distribution calculation. For the OLF, FCLP operations and interfacility arrivals/departures are involved in the distribution calculation; interfacility operations are associated with the first/last legs of each FCLP pattern.

Table 2-1 Numbers of Squadrons and Primary Assigned Aircraft for each Modeled Condition

			Alternative															
Aircraft	Type of			1					2					3				
Туре	Squadron	Baseline	No Action	A	В	С	D	E	A	В	C	D	E	A	В	C	D	E
Number o	f Squadrons Bas	sed at Ault F	ield															
EA-18G	CVW	9 (1)																
	FRS	1																
	RES	1																
	EXP	3	3	3					5					3				
EP-3	All	1	0															
P-3	All	4	0															
P-8	Fleet	0	6															
H-60	SAR	1	1															
Number o	f Primary Assigi	ned Aircraft	(Growler Onl	y) Pe	r Sq	Juac	iron											
EA-18G	CVW	5	5	8					7					7				
	FRS	17	17	25					25					26				
	RES	5					Ť											
	EXP	5			Ť	Ť	Ť				Ť			8		Ť		

Source: ATAC 2015.

Notes:

one less squadron would potentially utilize the OLF.

Key:

CVW = Carrier Air Wing

FRS = Fleet Replacement Squadron

RES = Reserve EXP = Expeditionary

The NASMOD study operations data output was used as input to this noise study. The output of the NASMOD study consisted of Microsoft Excel workbooks containing modeled operations for each alternative and scenario. However, the NASMOD study was created using different groupings and designations of flight paths and operation types than those used in the noise modeling. Because of this, the operations data from the NASMOD study could not be directly imported into the model. Translation of the NASMOD operations data over to noise-modeled flight track and profile types was accomplished with the "RTE ID ACT NAME" field from the NASMOD operations workbooks. This field contained the associated airfield, runway, operation type, and number of operations for a single traversal of each flight path from the NASMOD. Each unique route description from the NASMOD was identified and translated into equivalent modeled flight track and profile types through correspondence with the authors of the NASMOD study. Following the development of that translation key, a Microsoft Excel-based process was created to convert the NASMOD operations data to the format required for input into the noise model. These data were also used to derive runway utilization for each aircraft and operation type. The runway utilization was averaged across the scenarios to isolate the effects of the FCLP field assignments. Since the NASMOD study only included Scenarios A, B, and C, the FCLP operations splits had to be scaled for Scenarios D and E. Scenario D (30 percent FCLP at Ault Field) was calculated by scaling FCLP and interfacility operation counts from Scenario A (originally 20 percent FCLP at Ault Field). The same scaling

was done for Scenario E (70 percent FCLP at Ault Field) utilizing Scenario C (originally 80 percent FCLP at Ault Field).

Although NASMOD output can provide flight operations and runway utilization, it cannot provide other noise modeling information such as flight tracks, track utilization, and flight profiles. During the week of October 26, 2014, Wyle conducted a site visit at NAS Whidbey Island to gather and confirm this information. Following the site visit, data sources and operational assumptions were validated by the Navy (Gaber, 2014; Fahey, 2014; Gaber, 2015).

2.2 Noise Metrics and Modeling

2.2.1 Noise Metrics

The DoD and the Federal Interagency Committee on Noise (FICON)³ use three types of metrics to describe noise exposure:

- 1. A measure of the highest sound level occurring during an individual aircraft overflight (single event);
- 2. A combination of the maximum level of that single event with its duration; and
- 3. A description of the noise environment based on the cumulative flight and engine maintenance activity.

The DoD and the other FICON members primarily use Maximum Sound Level (L_{max}), Sound Exposure Level (SEL), and DNL, respectively, for the aforementioned three types of metrics.

In addition to the metrics listed above, supplemental metrics are also used to further describe noise exposure for representative POIs per the Defense Noise Working Group (DNWG) guidelines (DoD, 2009a): Number of Events at or above a Specified Threshold (NA) and Equivalent Sound Level (L_{eq}). The NA metric provides the total number of modeled noise events greater than or equal to the selected noise level threshold during a specified period of time. The period of time for NA or L_{eq} can be an average 24-hour day, daytime, nighttime, school day, or any other time period appropriate to the nature and application of the analysis. For this study, the metric of the NA threshold is expressed in L_{max} . Sections 2.3.3 through 2.3.8 explain how these metrics are used or applied for noise assessments.

The metrics in this study are presented in terms of A-weighted decibels, which approximate the response and sensitivity of the human ear. For brevity, decibels are abbreviated as "dB."

See Appendix A1 for details and definitions of these metrics.

2.2.2 Noise Model

Analyses of aircraft noise exposure and compatible land uses around DoD airfield-like facilities are normally accomplished using a suite of computer-based programs, collectively called NOISEMAP (Czech and Plotkin, 1998; Wasmer and Maunsell, 2006a; Page et al., 2008; Wasmer and Maunsell, 2006b). NOISEMAP is the model for airbases and is most appropriate when the flight tracks are well defined, such as those near an airfield. NOISEMAP typically requires the entry of runway coordinates, airfield information, flight tracks, flight profiles along each flight track for each aircraft, numbers of daily flight operations, run-up coordinates, run-up profiles, and run-up operations. Flight and run-up profiles

³ DoD is a member of FICON.

include the number of DNL daytime (7:00 a.m. to 10:00 p.m.) and nighttime (10:00 p.m. to 7:00 a.m.) events.

The NOISEMAP suite of programs described below is most accurate and useful for comparing "before-and-after" noise levels that would result from alternative scenarios when calculations are made in a consistent manner. The program allows noise exposure prediction of such proposed actions without actual implementation and/or noise monitoring of those actions.

Table 2-2 lists the parameters used in the NOISEMAP process for this study. The core program of the NOISEMAP suite is called "NMAP." This study utilized the most recent official version, Version 7.3, of NMAP for all noise computations.

The NOISEMAP process results in a "grid" file containing noise levels at different points of a user-specified rectangular area. As listed in Table 2-2, the spacing of the grid points for this study was 250 feet (ft). From the grid of points, lines of equal DNL (contours) of 60 dB through 95 dB (if applicable), in 5 dB increments, were plotted with the suite's NMPlot program. NOISEMAP can also compute DNL and other noise metrics for specific POIs. See Section 2.3.4 for further discussion of POIs.

Software	Analysis	Version
NMAP (Noisemap)	Fixed wing aircraft	7.3
Parameter	Description	
Receiver Grid Spacing	250 feet in x and y	
Metric	DNL (dBA)	
Basis	Maximum Year Daily Operations	
	and Average Year Daily Operatio	ns
Topography		
Elevation Data Source	1/3 arc-second NED	
Elevation and	250 feet in x and y	
Impedance Grid spacing		
Flow Resistivity of Water (hard)	100,000 kPa-s/m ²	
Flow Resistivity of Ground (soft)	200 kPa-s/m ²	
Modeled Weather (ave 1958-2007, Apri	ii)	
Temperature	55 °F	
Relative Humidity	74%	
Barometric Pressure	29.94 in Hg	

Table 2-2 Noise Modeling Parameters

2.3 Impact and Geospatial Analysis

2.3.1 Topographical Data

The NOISEMAP suite of programs includes the ability to account for atmospheric sound propagation effects over varying terrain, including hills and mountainous regions, as well as regions of varying acoustical impedance—for example, water around coastal regions. Even for flat terrain, the propagation algorithms are more robust than for excluding terrain. This feature is used in computing the noise levels presented in this analysis. By including terrain in the propagation calculations, the shielding effect of landforms can be included in the analysis. As noted in Table 2-2, elevation grid files with a grid-point spacing of 250 feet were created from the National Elevation Dataset one-third arc-second data (U.S. Geological Survey, 2017).

Acoustical impedance describes how sound is reflected or absorbed by the surface. Sound tends to travel farther over hard surfaces, such as pavement or water, than it does over soft surfaces, such as plowed earth or vegetation. This tendency was used for computing the noise levels presented in this analysis. As noted in Table 2-2, impedance grid files with a grid-point spacing of 250 feet were generated. "Soft" acoustical impedance (flow resistivity) of 200 kiloPascals-second per square meter (kPa-s/m²) was applied to all modeled ground, and "hard" acoustical impedance (flow resistivity) of 100,000 kPa-s/m² was applied to all water bodies.

2.3.2 Exposure Calculation

Population counts of people residing within 5 dB bands of DNL from 55 dB to 95 dB were computed using 2010 U.S. Bureau of the Census block-level data. The population calculation assumes the census block's population is evenly distributed across each census block.

A geometric proportion method was used to generate the exposure estimates. In other words, the total population affected by a minimum value of DNL, e.g., 65 dB and greater or 70 dB and greater, is assigned based on the percentage of area covered by that DNL or range of DNL. For example, if the 65 dB DNL contour slices through a census block such that 50 percent of the census block's area is affected by 65 dB DNL or greater, then 50 percent of the block's population is assigned to the 65 dB DNL's population.

DNL population counts exclude the property of the NAS, the Seaplane Base, and the OLF.

2.3.3 Potential Hearing Loss

Potential Hearing Loss (PHL) applies to people living long term (40 or more years) outdoors in high-noise environments. The threshold for screening PHL is exposure to DNL greater than or equal to 80 dB (OSD, 2009). Per DoD guidelines (DoD, 2013) for populations exposed to at least 80 dB DNL, the population in 1-dB bands of 24-hour L_{eq} [$L_{eq(24)}$] are assigned to two categories of NIPTS. The first category is people with average hearing sensitivity--i.e., their hearing is within the 10^{th} through 90th percentiles. Their NIPTS is called "Average NIPTS." The second category is people with the most sensitive of hearing--i.e., their hearing is within the 10th percentile. The NIPTS for this second category is called " 10^{th} percentile NIPTS." The U.S. Environmental Protection Agency's (USEPA's) Guidelines for Noise Impact Analysis quantifies hearing-loss risk in terms of NIPTS, a quantity that defines the permanent change in the ear's hearing threshold level below which a sound cannot be heard.

The PHL is also computed per the 2013 bulletin (DoD, 2013) as the population average value of NIPTS. PHL and NIPTS are expressed in dB, apply to several frequencies, and apply only to daily outdoor exposure to noise over 40 years. The NIPTS reported herein ranges from less than 1 dB to 19.5 dB; however, as stated in the DoD guidelines, "changes in hearing level of less than 5 dB are generally not considered noticeable or significant. Furthermore, there is no known evidence that a NIPTS of 5 dB is perceptible or has any practical significance for the individual. Lastly, the variability in audiometric testing is generally assumed to be ±5 dB (USEPA, 1974)." (DoD 2013). Furthermore, the Growler EIS focuses only on change in NIPTS, or change in population exposed to various levels of NIPTS for the scenario of interest, compared to the No Action Alternative.

PHL was assessed for on- and off-station population. The off-station population was computed in a manner identical to the methodology explained in 2.3.2. The Navy provided the locations (buildings) of on-station housing and the numbers of personnel assigned to them. The on-station estimates were generated using the same geometric proportion method as the off-station counts. As with the census

blocks for the off-station counts, the on-station population is assumed to be uniformly distributed throughout each building depicted in Figure 2-1. The total population inside an $L_{eq(24h)}$ contour was assigned based on the portion of the building that partially or wholly falls within the $L_{eq(24h)}$ contour boundary. If a $L_{eq(24h)}$ contour contained a portion of a building, then only the geographically based proportion of that building's population within that contour was summed. If a building was contained completely by the $L_{eq(24h)}$ contour, then 100 percent of the building's population was included in the estimates.

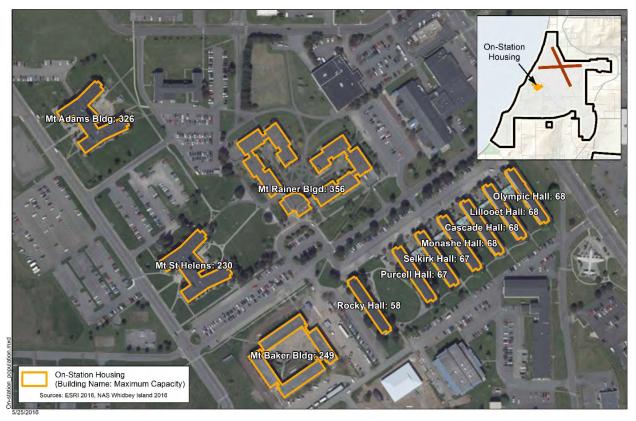


Figure 2-1 On-Station Buildings for PHL Counts

2.3.4 Points of Interest

Forty-eight POIs (including schools, residential areas, and public places) are included in the analysis; these POIs were provided by Ecology and Environment, Inc. (Ecology and Environment, 2017), are listed in Table 2-3, and are shown in Figure 1-1. Schools are representative of nearby residential areas because schools are typically located in residential areas.

Table 2-3 also presents the type of analyses performed for the POIs. For the purposes of the EIS's land use compatibility analysis, outdoor DNL was computed for every POI. Other types of analyses are described in the following sections but are summarized in Table 2-4. For outdoor DNL, it is noted for each alternative whether the POI is "newly impacted," meaning its DNL would be less than 65 dB in the No Action Alternative but greater than or equal to 65 dB for the numbered alternative.

Also computed was the SEL of the five modeled flight profiles whose SEL is greatest at each POI along with the corresponding L_{max} . These data are the subject of Appendix A6.

Table 2-3 Points of Interest and Applicable Analyses

					POI A	nalysis			
ID	Туре	Description	Short name (for tables)	Associated Airfield of Study	DNL	Daytime Indoor Speech Interference	Classroom Learning Interference	Residential Nighttime Sleep Disturbance	Rec'l Speech Interference (daytime and nighttime)
P01		Joseph Whidbey State Park –	Joseph Whidbey State	Ault Field					
		Parking near Swantown Road	Park						
P02		Deception Pass State Park - Quarry Pond Loop Campground	Deception Pass State Park	Ault Field					
DO2				Ault Field	-				
P03			Dugualla State Park	OLF					
P04		Ebey's Landing National Historical Reserve - Baseball Diamond at Rhododendron Park	Ebey's Landing National Historical Reserve	OLF					
P05		Ebey's Landing National Historical Reserve - Ebey's Prairie	Ebey's Prairie	OLF					
P06		Fort Casey State Park - Admiralty Head Lighthouse	Fort Casey State Park	OLF					
P07		Cama Beach State Park - Beach Information Office	Cama Beach State Park	OLF					
P08	Park	Port Townsend National Historic Landmark District	Port Townsend	OLF	Yes	No	No	No	Yes
P09		Moran State Park	Moran State Park	n/a					
P10		San Juan Islands National Monument - Point Colville	San Juan Islands National Monument	n/a					
P11		San Juan Island National Historical	San Juan Island	n/a					
		Park - American Camp Visitors Center	Visitors Center						
P12		Cap Sante Park	Cap Sante Park	Ault					
P13	1	Lake Campbell	Lake Campbell	Ault					
P14		Spencer Spit State Park	Spencer Spit State Park	None					
P15		Pioneer Park	Pioneer Park	Ault					
P16		Marrowstone Island (Fort Flagler)	Marrowstone Island	OLF					
P17		EBLA001 - Ferry House	Ferry House	OLF					
P18		EBLA002 - Reuble Farm	Reuble Farm	OLF					

Table 2-3 Points of Interest and Applicable Analyses

					POI A	nalysis			
ID	Туре	Description	Short name (for tables)	Associated Airfield of Study	DNL	Daytime Indoor Speech Interference	Classroom Learning Interference	Residential Nighttime Sleep Disturbance	Rec'l Speech Interference (daytime and nighttime)
R01		W Sullivan Rd	Sullivan Rd	Ault Field			No		
R02		Intersection of Salal St. and N.	Salal St. and N.	Ault Field			No		
		Northgate Dr	Northgate Dr				NO		
R03		Central Whidbey	Central Whidbey	Ault Field			Yes		
R04		Pull and Be Damned Point	Pull and Be Damned Pt	Ault Field			No		
R05		Snee-Oosh Point	Snee-Oosh Point	Ault Field			No		
R06		Intersection of Admirals Dr and	Admirals Dr and Byrd	OLF			No		
		Byrd Dr	Dr						
R07		Race Lagoon	Race Lagoon	OLF			No		
R08	_	Pratts Bluff	Pratts Bluff	OLF			No		
R09	esidential	Intersection of Cox Rd and Island	Cox Rd and Island	OLF			No		
	de	Ridge Way	Ridge Way		Yes	Yes	110	Yes	Yes
R10	(esi	Skyline	Skyline	n/a			No		
R11	<u> </u>	Sequim	Sequim	n/a			Yes		
R12		Port Angeles	Port Angeles	n/a			No		
R13		Beverly Beach, Freeland	Beverly Beach	OLF					
R14		E Sleeper Rd & Slumber Ln	E Sleeper Rd	Ault					
R15		Long Point Manor	Long Point Manor	OLF					
R16		Rocky Point Heights	Rocky Pt Heights	OLF			No		
R17		Port Townsend	Port Townsend	None			INU		
R18		Marrowstone Island (Nordland)	Marrowstone Is	None					
R19		Island Transit Offices, Coupeville	Island Transit	OLF					
R20		South Lopez Island (Agate Beach)	South Lopez Is	n/a					

Table 2-3 Points of Interest and Applicable Analyses

					POI Analysis								
ID	Туре	Description	Short name (for tables)	Associated Airfield of Study	DNL	Daytime Indoor Speech Interference	Classroom Learning Interference	Residential Nighttime Sleep Disturbance	Rec'l Speech Interference (daytime and nighttime)				
S01		Oak Harbor High School	Oak Harbor High School	Ault Field									
S02		Crescent Harbor Elementary School	Crescent Harbor Elementary	Ault Field									
S03		Coupeville Elementary School and Whidbey General Hospital (2)	Coupeville Elementary	OLF									
S04	_	Anacortes High School	Anacortes High School	Ault Field									
S05	chool	Lopez Island School	Lopez Island School	n/a	Yes ²	No	Yes	Yes ¹	Yes				
S06	Sc	Friday Harbor Elementary School	Friday Harbor Elementary	n/a									
S07		Sir James Douglas Elementary School	Sir James Douglas Elementary	n/a									
S08		Fidalgo Elementary School	Fidalgo Elementary	Ault									
S09		La Conner Elementary School	La Conner Elementary	Ault									
S10		Elger Bay Elementary School	Elger Bay Elementary	OLF									

¹ Schools typically represent residential areas

The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School. Therefore, the hospital was not modeled individually, but similar results for indoor speech interference would apply.

Events or Noise **Operations** Analysis **Analysis for POI** Metric Quantifier Threshold(s) Comment DNL AAD n/a n/a **Daytime Indoor Speech** NA AAD 50 dB DNL daytime only Interference ALM (indoors*) Classroom Learning Average 35-40 Leg(8h) assumes school hours are 8am-4pm L_{eq(8h)} Interference School-Day (indoors*) NA 50 dB L_{max} (indoors*) ALM Residential Nighttime PA AAD n/a indoors*; DNL nighttime only Sleep Disturbance NA AAD 50 dB L_{max} Recreational Daytime DNL daytime and nighttime and nighttime Outdoor ALM Speech Interference

Table 2-4 Summary of POI Analysis Parameters

Key:

AAD = Annual Average Daily ALM = Maximum Sound Level

dB = decibel

DNL = Day Night Average Sound Level L_{eq(8h)} = Equivalent sound level over 8 hours

NA = Number of Events at or above a Selected Threshold

n/a = not applicable

PA = Probability of Awakening

2.3.5 Residential Nighttime Sleep Disturbance

For sleep disturbance, the DoD guidelines recommend the methodology and standard developed by the American National Standards Institute (ANSI) and the Acoustical Society of America (ASA) in 2008 to compute the PA adults associated with outdoor noise events heard in homes; this PA is a function of indoor SEL (ANSI, 2008; DoD, 2009b, FICAN, 2018). However, it is noted that this standard has been withdrawn, but it will be used until further recommendations are made by FICAN. SEL only pertains to flight events, so PA is only applied to flight events and not run-up events. The ANSI methodology is valid from an indoor SEL of 50 dBA to a maximum SEL of 100 dBA, and the resulting PA range for a single aircraft flight event is approximately 1 percent to 7.5 percent, respectively. Estimated PA accounting for indoor SELs above 100 dBA is also presented in the study based on extrapolation of the ANSI methodology. Only DNL nighttime (10:00 p.m. to 7:00 a.m.) flight events and POIs representing residential areas were considered. All school POIs were included because of their typical proximity to residential areas. PA was computed with AAD events.

NMAP computes outdoor noise levels that must be converted to interior noise levels by accounting for the noise attenuation provided by the structure (e.g., house or school) and dependent upon whether windows are open or closed. The noise attenuation is known as Noise Level Reduction (NLR). Per FICON guidance, NLRs of 15 dB and 25 dB, respectively, were used to account for the effect of a typical home with windows open and windows closed (FICON, 1992).

^{*} assume outdoor-to-indoor Noise Level Reductions of 15 dB for open windows and 25 dB for closed windows.

2.3.6 Daytime Indoor Speech Interference

Speech interference analysis determines the number of times speech would be interrupted. For the analysis of the potential for indoor speech interference at residential POIs, the NA metric was computed for AAD flight and run-up events during the DNL daytime (7:00 a.m. to 10:00 p.m.) period. All school POIs were included because of their typical proximity to residential areas. The selected noise threshold for NA was indoor 50 dB L_{max} (DoD, 2009a; Sharp et al., 2009). L_{max} pertains to flight and run-up events.

Consistent with the sleep disturbance analysis, NLRs of 15 dB and 25 dB were used to account for the noise attenuation effect of a typical home with its windows open or closed, respectively (FICON, 1992). The outdoor thresholds, equivalent to the indoor threshold of 50 dB L_{max} , are 65 dB L_{max} and 75 dB L_{max} for windows open and closed, respectively.

2.3.7 Classroom Learning Interference

To analyze the potential for indoor classroom learning interference, two noise metrics were computed for the representative school: L_{eq} and NA 50 dB L_{max} . Per the DoD guidelines, an appropriate set of criteria for speech interference in schools is an indoor L_{eq} of 35 dB for continuous noise and 40 dB for intermittent noise, with a single-event indoor noise level of 50 dB L_{max} . The DNWG set a screening level of 60 dB for outdoor equivalent sound level over 8 hours ($L_{eq[8h]}$) (DoD, 2009a; 2012; Sharp et al., 2009).

The school day is assumed to last 8 hours, from 8:00 a.m. to 4:00 p.m. (Ecology and Environment, Inc., 2015) and thus would be entirely contained within the DNL daytime period. Only those flight events occurring during the 8-hour school day are included in the analysis, as extracted from the NASMOD data. Runway utilization was also extracted from the NASMOD data for the school day period. The number of school days was assumed to be 230 (Ecology and Environment, Inc., 2015). DNL daytime static run-up events were scaled by the ratio of school-day flight operations to total daily flight operations for each scenario, and these ratios varied from 0.562 to 0.786. The result is classroom learning interference computed on an average school-day basis. Refer to Appendices A2 and A3, which contain the school-day operations and runway utilizations, respectively.

Classroom learning interference was estimated for all of the school POIs and for two of the residential POIs (R03 and R11) that have nearby schools.

NLRs of 15 dB and 25 dB were used to account for the effect of a typical school building with windows open and windows closed, respectively. These NLRs likely result in potential overestimates of learning interference because schools typically provide greater NLR than homes. The outdoor thresholds, equivalent to the indoor threshold of 50 dB L_{max} , are 65 dB L_{max} and 75 dB L_{max} , respectively, for windows open and closed.

The number of AAD events whose L_{max} would be greater than or equal to 65 dB and 75 dB serve as the measure of potential classroom learning interference and are presented as NA65 L_{max} and NA75 L_{max} for windows open and closed, respectively, on a per-hour basis.

2.3.8 Recreational Daytime and Nighttime Speech Interference

In recreational areas, other indicators of noise effects are outdoor daytime speech interference and nighttime events. All POIs were analyzed for these types of indicators to account for activities that may occur outdoors at residences, schools, and parks. Consistent with the indoor speech interference methodology, outdoor speech interference is measured by the number of average daily daytime events per hour subject to L_{max} of at least 50 dB. Since people are assumed to be outdoors, there is no

adjustment for building attenuation. Thus, NMAP is used to compute the NA 50 dB L_{max} for AAD for the DNL daytime and nighttime hours.

3 NAS Whidbey Island Complex

The following three subsections discuss the region and vicinity of the NAS Whidbey Island complex, its aviation users, and its climatic conditions.

3.1 Regional and Local Settings

Figure 1-1 shows the regional context of NAS Whidbey Island and OLF Coupeville as they are located, approximately 50 miles north-northwest of Seattle, Washington. The boundaries of NAS Whidbey Island are depicted on the vicinity map in Figure 3-1. Ault Field borders the City of Oak Harbor to the south. OLF Coupeville, located nearly 10 miles south-southeast of Ault Field and 3 miles southeast of the Town of Coupeville, is used primarily for FCLP.

The layout and vicinity of Ault Field are depicted in Figure 3-1. The elevation is 47 feet above Mean Sea Level (MSL) (Navy, 2013). The magnetic declination, as of December 2015, is 16.3 degrees east (Federal Aviation Administration [FAA], 2016). Pertinent runway parameters are listed in Table 3-1. Ault Field has two intersecting runways, Runway 07/25 and Runway 14/32 (Navy, 2013).

Table 3-1 Runway Parameters

	Runway		
	Ault Field		OLF
Parameter	07/25	14/32	14/32
Length (ft)	8,000	8,000	5,400
Width (ft)	200	200	200
Elevation (ft)	47	47	199
Magnetic Heading (deg)	71/251	138/318	140/320
Overruns (ft)	1000/700	1000/1000	

Source: Airnav, 2016; FAA, 2016; Navy, 2013

The layout and vicinity of OLF Coupeville are also depicted in Figure 3-1. The field elevation is 199 feet above MSL. As listed in Table 3-1, the OLF has one concrete runway, Runway 14/32 (Navy, 2013).

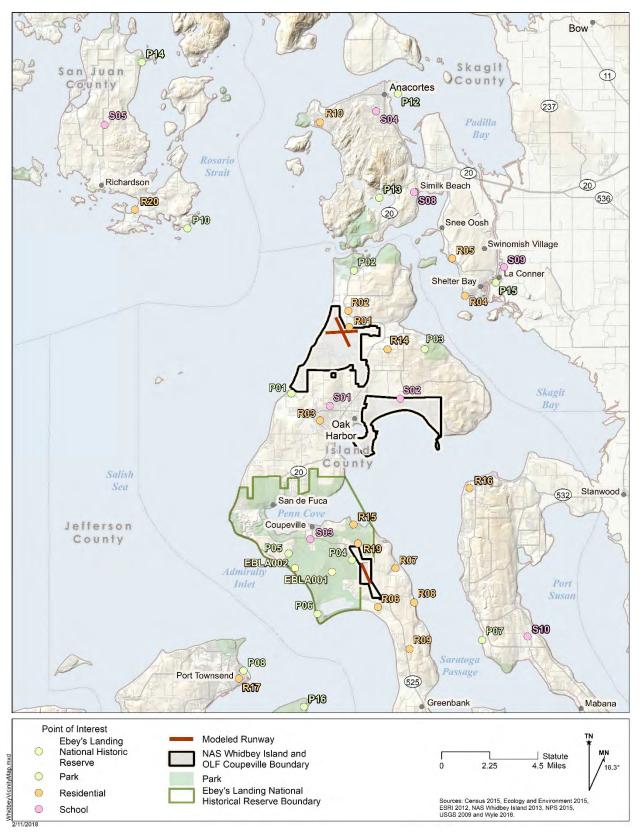


Figure 3-1 Vicinity of the NAS Whidbey Island Complex

3.2 Aviation Users

The U.S. Navy is, and would continue to be, the primary user of Ault Field, OLF Coupeville, and their facilities and runways. There are 19 active-duty squadrons, one reserve squadron, and several other tenants at the NAS Whidbey Island complex. The aircraft types currently operating at the complex are:

- the EA-18G Growler, an electronic warfare jet
- P-3C Orion, a four-engine turbo-prop aircraft for maritime surveillance, and the similar EP-3 Aries II, used for signal reconnaissance
- SH-60 Seahawk helicopter for SAR missions
- various transient aircraft types, identified in the NASMOD study as the
 C-40 Clipper and/or large jets for transport purposes, modeled as the B-737-700
- For the No Action Alternative and the numbered alternatives, the P-3C Orion aircraft would be replaced with the P-8 Poseidon aircraft, also modeled as the B-737-700.

3.3 Climatic Data

Weather is an important factor in the propagation of noise, and the computer model requires input of the average daily temperatures in degrees Fahrenheit (F), percent relative humidity (RH), and station barometric pressure in inches of mercury (in Hg) for each month of a year. See Figure 3-2 for daily weather data for each month for the 50-year period from 1958 through 2007 (Baird, 2014). NOISEMAP's BaseOps program selects the month with the median sound absorption coefficient based on each month's average daily temperature, percent RH, and pressure. The weather conditions for the month of April, which had average daily conditions of 55 degrees F, 74 percent RH, and atmospheric pressure of 29.94 in Hg, were used for modeling.

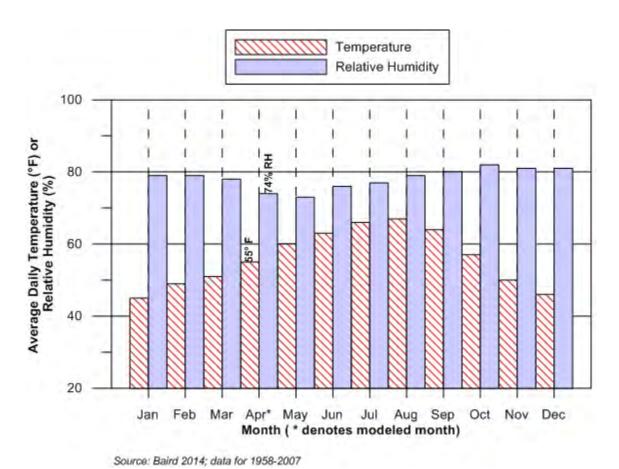


Figure 3-2 Average Daily Weather Data for NAS Whidbey Island and Modeled Conditions

4 Average Year Baseline Scenario

Section 4.1 details the flight operations. Section 4.2 presents the runway/flight track utilization, flight profiles, and derivation of AAD flight operations. Sections 4.3 and 4.4 contain the maintenance run-ups and resultant aircraft noise exposure.

4.1 Flight Operations

From the methodology described in Chapter 2, Tables 4-1 and 4-2 summarize and detail, respectively, the modeled flight operations for the average year baseline scenario. This scenario includes approximately 94,100 total annual flight operations for the complex. The EA-18G would dominate aircraft operations, with 79 percent of the complex's annual flight operations. Approximately two-thirds of the complex's annual FCLP operations would be conducted at Ault Field, while the remaining one-third would be conducted at the OLF. Consistent with the 2005 Environmental Assessment (EA), the OLF would have approximately 6,100 annual FCLP operations (Schmidt-Bremer, Jr. et al., 2004). As shown in Table 4-2, approximately 12 percent and 19 percent of the overall total flight operations and OLF FCLP operations, respectively, would be conducted during the DNL nighttime period. The numbers of annual nighttime FCLP operations at the OLF would be consistent with the 2005 EA (Schmidt-Bremer, Jr. et al., 2004).

The high-tempo FCLP year baseline scenario (Appendix A2) has 96,400 total annual flight operations for the complex, with the EA-18G having 79 percent of those annual flight operations. Approximately 70 percent of the complex's FCLP operations would be conducted at Ault Field. The OLF's FCLP operations would be consistent with the 2005 EA, as stated above.

Table 4-1	Summary of Annual Flight Operations for the Average
	Year Baseline Scenario

	6-	Type of Fli	ght Operation	_
Airfield	Aircraft Type or Category	FCLP ²	Other ³	Total
Ault Field	EA-18G	15,500	52,500	68,000
	Other Based	-	17,300	17,300
	Transient	-	2,300	2,300
	Subtotal	15,500	72,100	87,600
OLF Coupeville ⁴	EA-18G	6,100	-	6,100
	Other	-	400	400
	Subtotal	6,100	400	6,500
Total		21,600	72,500	94,100
(both airfields)				

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

- ² Each closed pattern is counted as two operations.
- ³ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.
- ⁴ Excludes 900 interfacility Growler operations (FCLP related).

Table 4-2 Detailed Annual Flight Operations for the Average Year Baseline Scenario

						Arrival										Inter	facility	y											
									Overh	ead														Helo			Helo		
			Departu	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture	to OLF		Brea	ık Arr	ival fror	n OLF	Depart	ure to C	DLF	Arrival	from OL	LF
		uo							Day		Night					Day		Night		Day		Night							
Airfield	#	q	Day	Night		Day	Night		(0700-		(2200-			Night		(0700		(2200-		(070	-	(2200-		Day	Night		Day	Night	
ıţie	rcr	Squa	(0700-	(2200-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)	١	0700)		2200)	0700)		(0700-	(2200-		(0700-	(2200-	
Ą	Ą	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	4,834	254	5,088	1,732	54	1,786	2,876	-	105	2,980	310	7	317	142	-	32	174	84	42	48	174	-	-		-	-	
		FRS	6,172	409	6,581	2,372	340	2,712	2,626	346	677	3,650	183	36	219	167	-	25	192	98	55	39	192	-	-		-	-	
		RES	1,142	83	1,225	413	21	434	699	-	26	725	59	5	64	12	-	4	16	8	3	6	17	-	-		-	-	
		EXP	1,537	85	1,622	559	18	577	907	-	36	943	98	1	99	-	-	-	0	-	-	-	0	-	-		-	-	
	EP3	All	644	125	769	382	15	397	-	-	-	0	366	-	366									-	-		-	-	
	P3	All	1,516	95	1,611	1,207	134	1,341	-	-	-	-	261	9	270									-	-		-	-	
	P8	All	-	-	-	-	-	-	-	-	-	-	-	-	-									-	-		-	-	
ield	H60	SAR	384	-	384	384	-	384	-	-	-	-	-	-	-									90	-	90	90	-	90
ίΕ	C-40	-	396	115	511	372	103	475	-	-	-	-	24	10	34									-	-		-	-	
Aul	JET_LRG	-	390	-	390	285	-	285	-	-	-	-	105	-	105									-	-		-	-	
Tot	al		17,015	1,166	18,181	7,706	685	8,391	7,108	346	843	8,297	1,406	68	1,474	321	-	61	382	190	100	93	383	90	-	90	90		90

									Inter	facilit	У											
																	Helo			Helo		
									Breal	k Arri	val from	Ault	Depo	artur	e to Aul	t	Arriva	from A	ult	Depart	ture to A	ult
		u							Day		Night		Day		Night							
p	#	Squadron							(700-		(2200-		(700		(2200-		Day	Night		Day	Night	
Airfield	rcri	na							2200		0700)		2200	<i>i</i>	0700)			(2200-		•	(2200-	
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							142	-	32	174	84	42	48	174						
		FRS							167	-	25	192	98	55	39	192						
щ		RES							12	-	4	16	8	3	6	17						
Ы	H60	SAR														-	90	-	-	90	-	90
То	tal								321	-	61	382	190	100	93	383	90	-	90	90	-	90

Table 4-2 Detailed Annual Flight Operations for the Average Year Baseline Scenario

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	3,742	2,138	1,691	7,571	2,165	326	390	2,881	1,637	64	1,701	2,647	1,161	3,808	20,169	2,506	3,806	26,481
		FRS	4,594	1,708	1,001	7,303	3,723	694	1,046	5,463	-	-	0	4,801	931	5,732	24,737	2,803	4,504	32,044
Ì		RES	132	59	24	215	485	8	17	510	419	9	428	472	51	523	3,841	70	245	4,157
75		EXP	-	-	-	0	563	-	29	593	511	18	529	557	27	584	4,732	-	214	4,946
Field	EP3	All					1,307	-	-	1,307	-	-		661	0	661	3,360	-	140	3,500
Ault F	Р3	All					6,395	-	381	6,776	-	-		2,779	121	2,900	12,158	-	740	12,898
ΑF	P8	All					-	-	-	-	-	-		-	-	-	-	-	-	-
	H60	SAR					-	-	-	-	-	-		-	-	-	948	-	-	948
	C-40	-					-	-	-	-	-	-		-	-	-	792	-	228	1,020
	JET_LRG	-					333	-		333	-	-		167	-	167	1,280	-		1,280
Tot	al		8,468	3,905	2,716	15,089	14,972	1,028	1,863	17,863	2,567	91	2,658	12,084	2,291	14,375	72,017	5,379	9,877	87,274
	EA18	CVW	1,131	721	589	2,441											1,357	763	669	2,789
ш		FRS	1,310	976	399	2,685											1,575	1,031	463	3,069
OLF		RES	111	46	72	229											131	49	82	262
	H60	SAR					180	-	-	180							360	-	-	360
Tot	al		2,552	1,743	1,060	5,355	180	-	-	180							3,423	1,843	1,214	6,480
<u> </u>			T	ı	1	I	ı	ı	1	1		1	ı	C	-4-1-		75 440	7 222	44 004	02.754
														Grand T (Ault+O			75,440	7,222	11,091	93,754

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

RES = Reserve

4.2 Other Modeling Parameters

The next step in the noise modeling process is assignment of flight operations to runways and flight tracks via utilization percentages for each aircraft type, operation type, and DNL time period. Appendix A3 contains tables of runway utilization percentages as extracted from the NASMOD study output. Flight tracks and their utilization were initially based on the 2012 noise study (Kester and Czech, 2012) in support of the 2012 EA (Navy, 2012) and adjusted with guidance from NAS Whidbey Island personnel, as mentioned in Section 2.1. Modeled flight tracks are depicted in Appendix A4.

Fixed-wing flight profiles consist of a combination of power settings, airspeeds, and altitudes along each modeled flight track. These data define the vertical profiles (altitude) and performance profile (power setting and airspeed) for each modeled aircraft. The representative profiles for each modeled aircraft type are contained in Appendix A5.

The next step in the noise modeling process is the computation of the AAD day and night events for each profile. This is accomplished by dividing the track operations by 365 and further dividing closed-pattern operations (e.g., touch-and-go, depart and re-entry FCLP, and Ground-Controlled Approach [GCA] Box) by two⁴. There would be approximately 171 and 10 AAD flight events for the average year baseline scenario for Ault Field and the OLF, respectively. For the high-tempo FCLP year baseline scenario, Ault Field and the OLF would have 174 and 10 AAD flight events, respectively.

4.3 Run-up Operations

Squadron and maintenance personnel conduct various types of tests on aircraft engines at one or more power settings for certain lengths of time. These tests are termed maintenance "run-ups." During these operations, engines remain in the airframe of the aircraft (i.e., an "in-frame" run-up) or are removed from the airframe (i.e., an "out-of-frame" run-up). Out-of-frame run-ups can only be conducted on apparatus designed to hold the engines, called "test stands."

Table 4-3 lists the modeled run-ups for the average year baseline scenario, and their locations are depicted in Figure 4-1. As mentioned in Section 2.1, the EA-18G run-up operation counts were updated in this report to reflect new information provided by NAS Whidbey Island personnel. Approximately 32 percent of the EA-18G run-ups would occur during the DNL nighttime period; however, 97 percent of run-ups conducted during this period would be low power.

Baseline EA-18G high-power run-ups would be conducted at two different high-power pads, which are shown as the green squares in Figure 4-1. EA-18G low-power run-ups would be conducted on the EA-18G ramp in the southwest portion of NAS Whidbey Island, with aircraft oriented approximately perpendicular to Runway 32.

_

The closed-pattern operations are divided by two for noise modeling purposes only. Air Traffic Control counts closed patterns as two distinct operations: one departure and one arrival. In NOISEMAP, the departure and arrival are represented by one event because both operations are connected (i.e., on a single flight track).

Table 4-3 Modeled Run-Up Operations and Profiles for the Average Year and High-Tempo FCLP Year Baseline Scenarios

					,	Percent During		Power Settin		_	
Aircraft Type	Engine Type	Run-up Type	Pad ID	Magnetic Heading (degrees)	Annual Events	Day (0700 - 2200)	Night (2200 - 0700)	Reported	Modeled	Duration of Each Event (Minutes)	No. of Engines Running (each event)
EA-18G	F414- GE-400	Water	Lo-Pwr1 Lo-Pwr2 Lo-Pwr3 ⁽¹⁾	135/315	82	45%	55%	Ground Idle	65% NC	10	1
		Low power	Lo-Pwr1 Lo-Pwr2 Lo-Pwr3 ⁽¹⁾	135/315	1230 2460	45%	55%	Ground Idle Ground Idle	65% NC 65% NC	30 30	2
		High Power		311 (Hi- Pwr1) / 127 (Hi-Pwr2)	656	90%	10%	Ground Idle 80%NC Mil	65% NC 80% NC 96% NC	25 10 3	2 2 2
P-3C	T56-A- 14	Lo-Pwr	Lo-Pwr4	126	1604	100%	0%	AB 1000 ESHP	A/B 1000 ESHP	3 15	1
		Out-Of- Phase	Lo-Pwr4	126	130			250 ESHP 450 ESHP 1000 ESHP	250 ESHP 450 ESHP 1000 ESHP	30 10 10	4 4
		Prop Dynamic Balance	Lo-Pwr4	126	123			1500 ESHP	1500 ESHP	15	1
		High- Power	Red Label Delta (RLD)	315	154			1500 ESHP 2750 ESHP 4300 ESHP	1500 ESHP 2750 ESHP 4300 ESHP	15 15 10	2 2 2
			Red Label Foxtrot (RLF)	-18	154			1500 ESHP 2750 ESHP 4300 ESHP	1500 ESHP 2750 ESHP 4300 ESHP	15 15 10	2 2 2
		Prop Dynamic Balancing	Hi-Pwr1	315	123			1500 ESHP	1500 ESHP	15	1

¹ Run-up events split 50% Lo-Pwr1, 30% Lo-Pwr2, 20% Lo-Pwr3

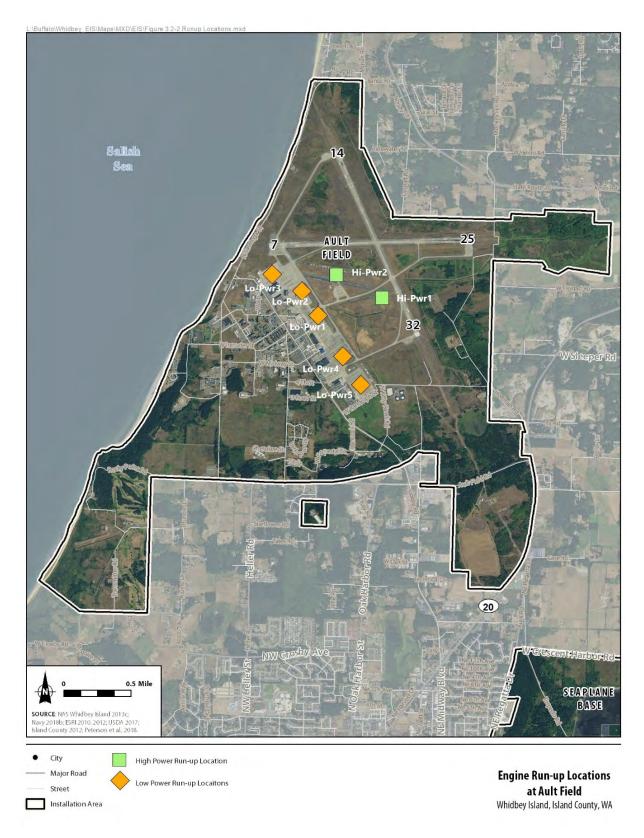


Figure 4-1 Modeled Run-Up Pads For Baseline Scenario

P-3C low-power run-ups would be conducted on the southwest ramp (south of the EA-18G ramp), while the high-power run-ups would be conducted on the active runway near the threshold at Red Label Foxtrot (RLF) and Red Label Delta (RLD), with the aircraft oriented along the runway heading.

For the high-tempo FCLP year baseline scenario, it was assumed the run-ups would not change compared to the average year scenario.

4.4 Aircraft Noise Exposure

Using the data described in Sections 4.1 through 4.3, NOISEMAP was used to calculate and plot the 60 dB through 90 dB DNL contours, in 5-dB increments, for AAD events for the average year baseline scenario. Figure 4-2 shows the resulting DNL contours.

The 65 dB contour surrounding Ault Field would extend approximately 7 to 11 miles from the runway endpoints. The locations of these lobes would be primarily attributable to the EA-18G on the approach portion of GCA patterns, where aircraft generally descend on a 3-degree glide slope through 3,000 feet AGL 10 miles from the runway. The 65 dB DNL contour would extend approximately 1 mile past the western shore of the mainland across Skagit Bay. The 80 dB DNL contour would extend approximately 2.5 miles to the east outside the station boundary, primarily due to EA-18G GCA and Visual Flight Rule (VFR) approaches descending from 1,800 feet AGL, and also due to the GCA patterns. The 90 dB contour would extend 1,300 feet to the east beyond the station boundary.

The DNL exposure at the OLF would be attributable to the FCLP operations. The 65 dB DNL contours would extend northward just short of the southern shore of Penn Cove and southward approximately 3 miles south of the OLF's runway. Appendix A7 shows the modeling output for the high-tempo FCLP year scenarios.

Table 4-4 presents the noise exposure in terms of estimated off-station population for each contour band. A total of 11,171 people are exposed to DNL of at least 65 dB among Ault Field and OLF Coupeville.

Under the high-tempo FCLP year baseline scenario (Appendix A7), the totals would increase by 6 percent at Ault Field, 4 percent at the OLF, and 6 percent overall compared to the average year baseline scenario.

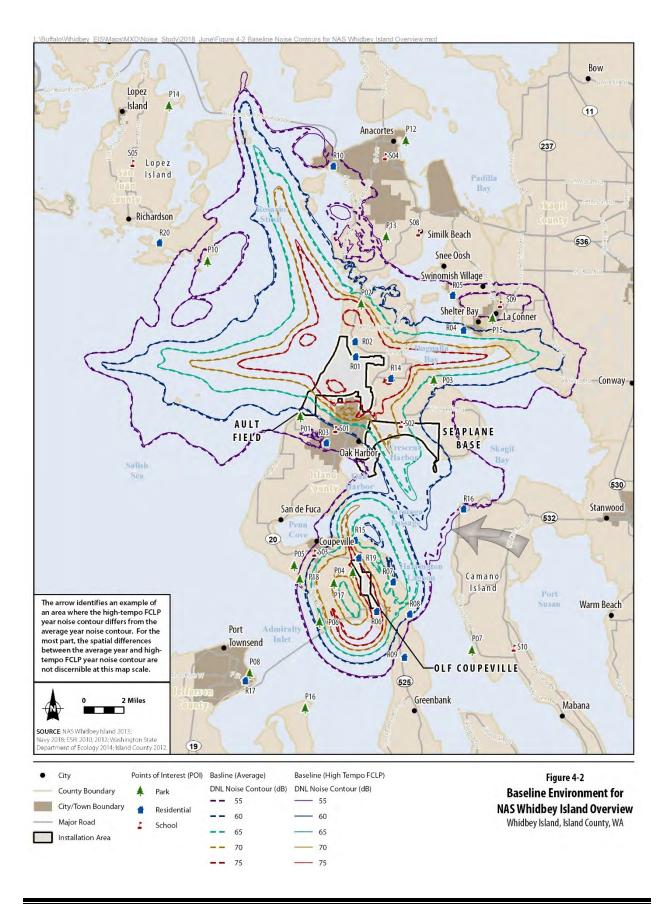


Table 4-4 Estimated Acreage and Population within the DNL Contour Ranges¹ for the Average Year at the NAS Whidbey Island Complex (CY 21) for Baseline Scenario

	DNL Contou	ır Ranges						
					Greater thai		-2	
	65 to <70 d	B DNL	70 to <75 d	B DNL	equal to 75	dB DNL	Total ³	
	Area		Area		Area		Area	
DNL Contours	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²
Ault Field	3,586	3,207	3,139	1,935	5,723	3,234	12,447	8,376
OLF Coupeville	3,735	817	3,222	782	811	577	7,768	2,176
Total ³	7,321	4,024	6,361	2,717	6,534	3,811	20,215	10,552

- Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contours (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall under the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ³ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level

4.4.1 Points of Interest

Table 4-5 shows the DNL for each POI. Under the average year baseline scenario, 11 POIs would experience DNL greater than or equal to 65 dB, five of these being residential. Four POIs would experience DNL greater than or equal to 75 dB, all of which are residential. Three of the residential POIs would be near Ault Field (R01, R02, and R14), and one (R06) would be near the OLF. No school POI would experience DNL greater than or equal to 65 dB, except Crescent Harbor Elementary, with a DNL of 68 dB. See Appendix A6 for lists of the five flight profiles with the greatest SEL at each POI.

Under the high-tempo FCLP year baseline scenario (Appendix A7), the statistics cited above would not change.

Table 4-5 Estimated Aircraft DNL at POIs for the Average Year Baseline Scenario

			Related	DNI
Туре	ID	Description	Field	(dB)
Park	P01	Joseph Whidbey State Park	Ault	57
	P02	Deception Pass State Park	Ault	73
	P03	Dugualla State Park	Ault	65
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	OLF	74
	P05	Ebey's Landing State Park	OLF	52
	P06	Fort Casey State Park	OLF	62
	P07	Cama Beach State Park	OLF	<45
	P08	Port Townsend	None	<45
	P09	Moran State Park	None	<45
	P10	San Juan Islands National Monument	None	54
	P11	San Juan Island Visitors Center	None	<45
	P12	Cap Sante Park	Ault	<45
	P13	Lake Campbell	Ault	54
	P14	Spencer Spit State Park	None	<45
	P15	Pioneer Park	Ault	55
	P16	Marrowstone Island (Fort Flagler)	OLF	<45
	EBLA001	Ferry House	OLF	69
	EBLA002	Reuble Farm	OLF	56
Residential	R01	Sullivan Rd	Ault	90
	R02	Salal St. and N. Northgate Dr	Ault	78
	R03	Central Whidbey	Ault	57
	R04	Pull and Be Damned Point	Ault	62
	R05	Snee-Oosh Point	Ault	56
	R06	Admirals Dr and Byrd Dr	OLF	79
	R07	Race Lagoon	OLF	61
	R08	Pratts Bluff	OLF	62
	R09	Cox Rd and Island Ridge Way	OLF	51
	R10	Skyline	None	56
	R11	Sequim	None	<45
	R12	Port Angeles	None	<45
	R13	Beverly Beach, Freeland	OLF	<45
	R14	E Sleeper Rd & Slumber Ln	Ault	75
	R15	Long Point Manor	OLF	65
	R16	Rocky Point Heights	OLF	54
	R17	Port Townsend	None	<45
	R18	Marrowstone Island (Nordland)	None	<45
	R19	Island Transit Offices, Coupeville	OLF	73
	R20	South Lopez Island (Agate Beach)	None	48

Table 4-5 Estimated Aircraft DNL at POIs for the Average Year Baseline Scenario

Point of Inte	rest			
Туре	ID	Description	Related Field	DNL (dB)
School	S01	Oak Harbor High School	Ault	59
	S02	Crescent Harbor Elementary School	Ault	68
	S03	Coupeville Elementary School	OLF	58
	S04	Anacortes High School	Ault	48
	S05	Lopez Island School	None	<45
	S06	Friday Harbor Elementary School	None	<45
	S07	Sir James Douglas Elementary School	None	<45
	S08	Fidalgo Elementary School	Ault	51
	S09	La Conner Elementary School	Ault	53
	S10	Elger Bay Elementary School	OLF	<45

4.4.2 Potential Hearing Loss

Table 4-6 shows estimates of the population within 1-dB bands of $L_{eq(24h)}$ and their associated NIPTS. The level at which there may be a noticeable NIPTS would be at the 84 to 85 dB $L_{eq(24)}$ range and above. At this level and above, an estimated 32 individuals may be vulnerable to NIPTS, all of whom are off station but in the vicinity of Ault Field (there are no individuals around OLF Coupeville at these noise levels or above). The range of potential hearing loss could be up to 8.5 dB for those living around Ault Field.

The potential NIPTS values presented in Table 4-6 are only applicable in the extreme case of outdoor exposure at one's residence to all aircraft events occurring over a period of 40 years. As it is highly unlikely any individuals would meet all of those criteria, the actual potential NIPTS for most individuals would be much less than the values presented here.

Table 4-6 Estimated Potential Hearing Loss for the Average Year Baseline Scenario

Band of Leg(24)	Average NIPTS	10th Percentile	Estimated P	opulation ^{2, 3,4}	
(dB)	(dB) ¹	NIPTS (dB) ¹	Ault Field	OLF Coupeville	Total
74-75	0.5	3.5	-	-	-
75-76	1.0	4.0	-	53	53
76-77	1.0	4.5	121	44	165
77-78	1.5	5.0	263	45	308
78-79	2.0	5.5	157	23	180
79-80	2.5	6.0	114	6	120
80-81	3.0	7.0	72	-	72
81-82	3.5	8.0	55	-	55
82-83	4.0	9.0	36	-	36
83-84	4.5	10.0	26	-	26
84-85	5.5	11.0	23	-	23
85-86	6.0	12.0	9	-	9
86-87	7.0	13.5	6	-	6
87-88	7.5	15.0	4	-	4
88-89	8.5	16.5	2	-	2
89-90	9.5	18.0	-	-	-
90-91	10.5	19.5	-	-	-
91-92	11.5	21.0	-	-	-

- NIPTS values rounded to nearest 0.5 dB.
- This analysis assumes the population is outdoors and exposed to all aircraft noise events for 40 years. Given the amount of time spent indoors and the intermittent occurrence of aircraft noise events, it is highly unlikely that individuals would meet all the criteria, and the actual potential for hearing loss would be less than the values reported here.
- Estimated population was determined by those living within the 80 dB DNL noise contour around each airfield, including those living on base at Ault Field (there is no on-base population at OLF Coupeville).
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block. All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). In addition, per guidance on potential hearing loss, on-base populations at Ault Field have been included in the analysis. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.

Key:

dB = decibel

 $L_{eq(24)}$ = 24-hour Equivalent Sound Level

NIPTS = Noise Induced Permanent Threshold Shift

OLF = outlying landing field

4.4.3 Residential Nighttime Sleep Disturbance

Table 4-7 lists the PA for applicable POIs for average daily nighttime (10:00 p.m. to 7:00 a.m.) events. Under the average year baseline scenario, the PA would average 11 percent and 6 percent across the listed POIs, respectively, for windows open and closed. The most impacted POIs (R01 and R02) would have between 30 percent and 59 percent PA, depending whether windows are open or closed.

Under the high-tempo FCLP year baseline scenario (Appendix A7), the PA would average 11 percent and 6 percent across the listed POIs, respectively, for windows open and closed. The most impacted POIs (R01 and R02) would range between 31 percent and 62 percent PA, depending whether windows are open or closed.

Table 4-7 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Baseline Scenario

Point of Intere	st			Annual Aver (2200-0700) Awakening (Probability of
			Related	Windows	Windows
Туре	ID	Description	Field	Open	Closed
Residential ²	R01	Sullivan Rd	Ault	59%	44%
	R02	Salal St. and N. Northgate Dr	Ault	42%	30%
	R03	Central Whidbey	Ault	16%	8%
	R04	Pull and Be Damned Point	Ault	19%	9%
	R05	Snee-Oosh Point	Ault	15%	5%
	R06	Admirals Dr and Byrd Dr	OLF	10%	7%
	R07	Race Lagoon	OLF	5%	2%
	R08	Pratts Bluff	OLF	5%	3%
	R09	Cox Rd and Island Ridge Way	OLF	3%	2%
	R10	Skyline	None	6%	2%
	R11	Sequim	None	0%	0%
	R12	Port Angeles	None	0%	0%
	R13	Beverly Beach, Freeland	OLF	2%	0%
	R14	E Sleeper Rd & Slumber Ln	Ault	38%	26%
	R15	Long Point Manor	OLF	11%	4%
	R16	Rocky Point Heights	OLF	9%	3%
	R17	Port Townsend	None	1%	0%
	R18	Marrowstone Island (Nordland)	None	0%	0%
	R19	Island Transit Offices, Coupeville	OLF	10%	5%
	R20	South Lopez Island (Agate Beach)	None	2%	1%
School (near	S01	Oak Harbor High School	Ault	21%	12%
residential)	S02	Crescent Harbor Elementary School	Ault	22%	13%
	S03	Coupeville Elementary School	OLF	6%	3%
	S04	Anacortes High School	Ault	2%	1%
	S05	Lopez Island School	None	0%	0%
	S06	Friday Harbor Elementary School	None	0%	0%
	S07	Sir James Douglas Elementary School	None	0%	0%
	S08	Fidalgo Elementary School	Ault	6%	2%
	S09	La Conner Elementary School	Ault	7%	3%
	S10	Elger Bay Elementary School	OLF	0%	0%

¹ Assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

² R01 and R06 include interior SELs greater than 100 dB with windows open

4.4.4 Residential Daytime Indoor Speech Interference

Table 4-8 presents the average daily indoor daytime (7:00 a.m. to 10:00 p.m.) events per hour for the applicable POIs that would experience indoor maximum sound levels of at least 50 dB with windows closed and open, for the average year baseline scenario. Events per hour would be less than one at 14 of the 30 POIs and would range between one and 10 for the remaining POIs, regardless of the window status.

Table 4-8 Indoor Speech Interference for the Average Year Baseline Scenario

Point of Intere	st			Annual Avero Indoor Daytii 2200) Events	me (0700-
			Related	Windows	Windows
Туре	ID	Description	Field	Open	Closed
Residential	R01	Sullivan Rd	Ault	10	10
	R02	Salal St. and N. Northgate Dr	Ault	9	8
	R03	Central Whidbey	Ault	5	-
	R04	Pull and Be Damned Point	Ault	2	1
	R05	Snee-Oosh Point	Ault	2	1
	R06	Admirals Dr and Byrd Dr	OLF	-	-
	R07	Race Lagoon	OLF	-	-
	R08	Pratts Bluff	OLF	-	-
	R09	Cox Rd and Island Ridge Way	OLF	-	-
	R10	Skyline	None	-	-
	R11	Sequim	None	-	-
	R12	Port Angeles	None	-	-
	R13	Beverly Beach, Freeland	OLF	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	8	7
	R15	Long Point Manor	OLF	1	1
	R16	Rocky Point Heights	OLF	2	1
	R17	Port Townsend	None	-	-
	R18	Marrowstone Island (Nordland)	None	-	-
	R19	Island Transit Offices, Coupeville	OLF	1	1
	R20	South Lopez Island (Agate Beach)	None	-	-
School (near	S01	Oak Harbor High School	Ault	6	2
residential)	S02	Crescent Harbor Elementary School	Ault	5	2
	S03	Coupeville Elementary School	OLF	1	-
	S04	Anacortes High School	Ault	-	-
	S05	Lopez Island School	None	-	-
	S06	Friday Harbor Elementary School	None	-	-
	S07	Sir James Douglas Elementary School	None	-	-
	S08	Fidalgo Elementary School	Ault	-	-
	S09	La Conner Elementary School	Ault	1	-
	S10	Elger Bay Elementary School	OLF	-	-

With an indoor maximum sound level of at least 50 dB; assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

² The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School; therefore, this location was not modeled individually, but similar result for indoor speech interference for POI S03 would apply.

For the high-tempo FCLP year baseline scenario (Appendix A7), the above-cited statistics would not change compared to the average year baseline.

4.4.5 Classroom Learning Interference

Table 4-9 presents the potential learning interference for classrooms under the average year baseline scenario. One of the schools, S02 (Crescent Harbor Elementary), would have an outdoor $L_{eq(8h)}$ of 68 dB, which is greater than the screening threshold of 60 dB. Three of the POIs would have more than one event per hour with windows open (S01, S02, and R03), and two would have more than one event per hour with windows closed (S01 and S02). POI S01, Oak Harbor High School, would have the most events per hour, at six events with windows open and two with windows closed.

Under the high-tempo FCLP year baseline scenario (Appendix A7), the above-cited statistics would not change compared to the average year baseline.

Table 4-9 Classroom Learning Interference for the Average Year Baseline Scenario

					Indoor 1			
Point of Int	erest				Windows O	pen	Windows	Closed
				Outdoor		Events		Events
			Related	Leq(8h)		per	Leq(8h)	per
Туре	ID	Description	Field	(dB)	Leq(8h) (dB)	Hour ²	(dB)	Hour ²
School	R03	Central Whidbey	Ault	57	<45	5	<45	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2
	S02	Crescent Harbor	Ault	68	53	5	<45	2
		Elementary School						
	S03	Coupeville Elementary	OLF	52	<45	1	<45	-
		School						
	S04	Anacortes High School	Ault	46	<45	-	<45	-
	S05	Lopez Island School	None	<45	<45	-	<45	-
	S06	Friday Harbor Elementary	None	<45	<45	-	<45	-
		School						
	S07	Sir James Douglas	None	<45	<45	-	<45	-
		Elementary School						
	S08	Fidalgo Elementary School	Ault	49	<45	-	<45	-
	S09	La Conner Elementary	Ault	51	<45	1	<45	-
		School						
	S10	Elger Bay Elementary	OLF	<45	<45	-	<45	-
		School						
Number of		_				3		2
1 Intrusive								
-		r of Intrusive Events				5		2
per Hour if								
-		er of Intrusive Events				6		2
per Hour if	Exceed	ding 1						

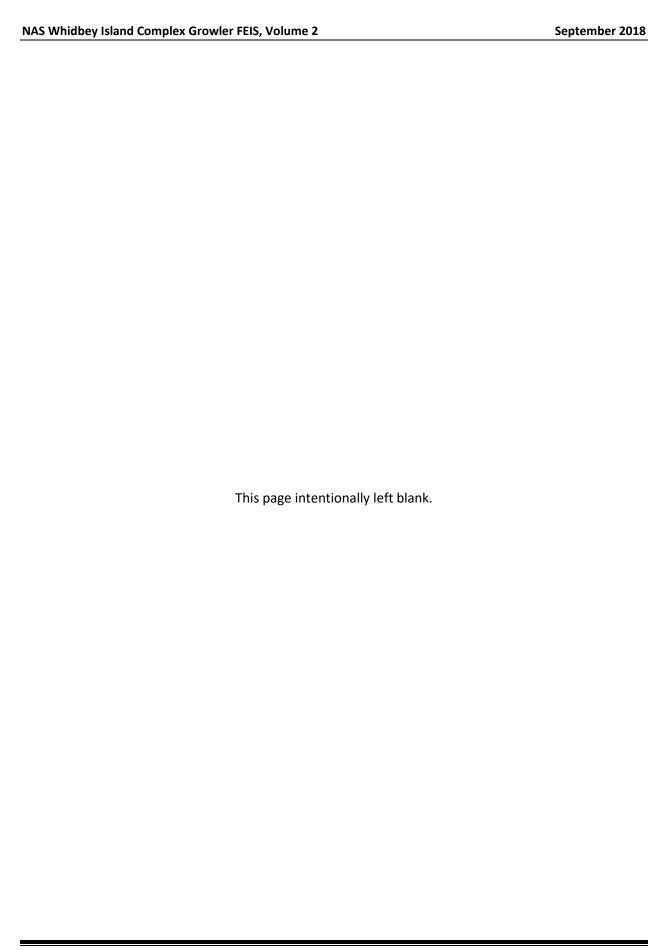
Assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

Number of Average School-Day Events per hour during 8-hour school day (0800-1600) at or above an indoor maximum (single-event) sound level (L_{max}) of 50 dB;

4.4.6 Recreational Speech Interference

Table 4-10 lists the AAD daytime NA 50 L_{max} per hour for the recreational POIs. The average NA across the 48 POIs would be three events per daytime hour and less than one event per nighttime hour. POIs R01, R02, and R14 would have the most events per hour, at 10 during daytime hours. Thirteen POIs would have two events per nighttime hour.

Under the high-tempo FCLP year baseline scenario (Appendix A7), the above-cited statistics would not change compared to the average year baseline.


Table 4-10 Recreational Speech Interference for the Average Year Baseline Scenario

Represent	ative Park Rece _l	otor			rage Outdoor ne Events per
Туре	ID	Description	Related Field	Daytime	Nighttime
Park	P01	Joseph Whidbey State Park	Ault	9	2
	P02	Deception Pass State Park	Ault	9	2
	P03	Dugualla State Park	Ault	9	2
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	OLF	3	1
	P05	Ebey's Landing State Park	OLF	2	-
	P06	Fort Casey State Park	OLF	1	-
	P07	Cama Beach State Park	OLF	3	-
	P08	Port Townsend	None	1	-
	P09	Moran State Park	None	-	-
	P10	San Juan Islands National Monument	None	7	2
	P11	San Juan Island Visitors Center	None	-	-
	P12	Cap Sante Park	Ault	-	-
	P13	Lake Campbell	Ault	4	1
	P14	Spencer Spit State Park	None	-	-
	P15	Pioneer Park	Ault	4	1
	P16	Marrowstone Island (Fort Flagler)	OLF	-	-
	EBLA001	Ferry House	OLF	2	-
	EBLA002	Reuble Farm	OLF	2	-

Table 4-10 Recreational Speech Interference for the Average Year Baseline Scenario

				Daily Daytir Hour	rage Outdoor ne Events per
Representati				NA50 Lmax	
Туре	ID	Description	Related Field	Daytime	Nighttime
Residential	R01	Sullivan Rd	Ault	10	2
	R02	Salal St. and N. Northgate Dr	Ault	10	2
	R03	Central Whidbey	Ault	8	2
	R04	Pull and Be Damned Point	Ault	8	2
	R05	Snee-Oosh Point	Ault	7	2
	R06	Admirals Dr and Byrd Dr	OLF	1	-
	R07	Race Lagoon	OLF	3	1
	R08	Pratts Bluff	OLF	1	-
	R09	Cox Rd and Island Ridge Way	OLF	1	-
	R10	Skyline	None	4	1
	R11	Sequim	None	1	-
	R12	Port Angeles	None	1	-
	R13	Beverly Beach, Freeland	OLF	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	10	2
	R15	Long Point Manor	OLF	7	2
	R16	Rocky Point Heights	OLF	5	1
	R17	Port Townsend	None	-	-
	R18	Marrowstone Island (Nordland)	None	-	-
	R19	Island Transit Offices, Coupeville	OLF	3	1
	R20	South Lopez Island (Agate Beach)	None	3	1
School	S01	Oak Harbor High School	Ault	9	2
	S02	Crescent Harbor Elementary School	Ault	8	2
	S03	Coupeville Elementary School	OLF	3	1
	S04	Anacortes High School	Ault	1	-
	S05	Lopez Island School	None	-	-
	S06	Friday Harbor Elementary School	None	-	-
	S07	Sir James Douglas Elementary	None	-	-
		School			
	S08	Fidalgo Elementary School	Ault	4	1
	509	La Conner Elementary School	Ault	3	1
	S10	Elger Bay Elementary School	OLF	1	-

Number of events at or above 50 dB L_{max}; reflects potential for outdoor speech interference

5 Average Year No Action Alternative

As shown in Table 2-1, under the No Action Alternative, all of the EP-3 and P-3C aircraft would be gone from the complex, and six fleet squadrons of P-8 aircraft would be on station. The Navy's Precision Landing Mode (PLM) system, also known as Maritime Augmented Guidance with Integrated Controls for Carrier Approach and Recovery Precision Enabling Technologies (MAGIC CARPET), is expected to reduce the FCLP training requirement by 20 percent, which would also reduce the interfacility operations by the same ratio.

Section 5.1 details the flight operations. Section 5.2 presents the runway/flight track utilization, flight profiles, and derivation of AAD flight operations. Sections 5.3 and 5.4 contain the maintenance run-ups and resultant aircraft noise exposure.

5.1 Flight Operations

From the methodology described in Chapter 2, Tables 5-1 and 5-2 summarize and detail, respectively, the modeled flight operations for the average year No Action Alternative. This alternative has approximately 84,700 total annual flight operations for the complex. The EA-18G would dominate aircraft operations, with 83 percent of the complex's annual flight operations. Approximately 75 percent of the complex's annual FCLP operations would be conducted at Ault Field, while the remaining 35 percent would be conducted at the OLF. Consistent with the 2005 EA, the OLF would have approximately 6,100 annual FCLP pattern operations (Schmidt-Bremer, Jr. et al., 2004). As shown in Table 5-2, approximately 13 percent and 17 percent, respectively, of the overall total flight operations and OLF FCLP operations would be conducted during the DNL nighttime period. The numbers of annual nighttime FCLP operations at the OLF would be consistent with the 2005 EA (Schmidt-Bremer, Jr. et al., 2004).

Relative to the average year baseline scenario, Table 5-1 shows that overall FCLP operations would decrease by 4,200 annually for the average year No Action Alternative, and the total of the complex's annual flight operations would decrease by 9,400 due to changes associated with the P-3C replacement and reduction in EA-18G FCLP.

The high-tempo FCLP year No Action Alternative (Appendix A2) has approximately 90,000 total annual flight operations for the complex, with the EA-18G having 85 percent of the complex's annual flight operations. Nearly 73 percent of the complex's FCLP operations would be conducted at Ault Field. The OLF's FCLP operations would be consistent with the 2005 EA as stated above.

Table 5-1 Summary of Annual Flight Operations for the Average Year No Action Alternative

		(Average \	Alternative (ear) ght Operation			om Baseline ight Operatior	,
Airfield	Aircraft Type or Category	FCLP ²	Other ³	_ Total	FCLP ²	Other	 Total
Ault Field	EA-18G	11,300	53,000	64,300	-4,200	+500	-3,700
	Other Based	-	11,600	11,600	-	-5,700	-5,700
	Transient	-	2,300	2,300	-	-	-
	Subtotal	11,300	66,900	78,200	-4,200	-5,200	-9,400
OLF Coupeville 4	EA-18G	6,100	-	6,100	-	-	-
	Other	-	400	400	-	-	-
	Subtotal	6,100	400	6,500	-	-	-
TOTAL (both airfie	lds)	17,400	67,300	84,700	-4,200	-5,200	-9,400

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

Each closed pattern is counted as two operations.

For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

⁴ Excludes 900 interfacility Growler operations (Baseline and No Action).

Table 5-2 Detailed Annual Flight Operations for the Average Year No Action Alternative

						Arrival										Inter	facilit	у											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture	to OLF		Brea	k Arr	ival fror	n OLF	Depart	ure to C	DLF	Arrival	from OL	.F
p	¥	Squadron	Day	Night		Day	Night		Day (0700-		Night (2200-		Day	Night		Day (0700)_	Night (2200-		Day (070		Night (2200-		Day	Night		Day	Night	
Airfield	cra	nad	-	(2200-		(0700-	(2200-		2200)		0700)		_	(2200-		2200))	0700)		2200)	0700)		(0700-	_			(2200-	I
Air	Air	Sqı	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	4,803	289	5,092	1,744	46	1,790	2,914	-	95	3,009	283	4	287	162	-	35	197	98	49	49	197	-	-		-	-	
		FRS	6,187	400	6,587	2,355	343	2,698	2,652	339	668	3,659	199	30	229	180	-	26	206	107	59	42	208	-	-		-	-	
		RES	1,140	86	1,226	401	17	418	700	-	27	727	76	5	81	17	-	2	19	10	6	4	19	-	-		-	-	
		EXP	1,537	86	1,623	590	21	611	885	-	33	918	86	3	89	-	-	-	0	-	-	-	0	-	-		-	-	
	EP3	All	-		0		-	0	-	-	-	0	-	-	0	-	-	-		-	-	-		-	-				
	Р3	All	-		0		-	0	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-				
_	P8	All	1,928	96	2,024	1,389	271	1,660	-	-	-	-	313	51	364	-	-	-		-	-	-		-	-				
Field	H60	SAR	384		384	384	0	384	-	-	-	-	-	-	-	-	-	-		-	-	-		90	-	90	90		90
	C-40	-	401	109	510	384	96	480	-	-	-	-	21	10	31	-	-	-		-	-	-		-	-				
Ault	JET_LRG	-	391		391	282	-	282	-	-	-	-	109	0	109	-	-	-		-	-	-		-	-				
To	tal		16,771	1,066	17,837	7,529	794	8,323	7,151	339	823	8,313	1,087	103	1,190	359	-	64	422	215	114	95	424	90	-	90	90	-	90

									Inter	facility	/											
																	Helo			Helo		
									Break	k Arriv	al from	Ault	Depo	arture	to Ault	t	Arrival	from A	ult	Depart	ure to A	ult
		uo.							Day		Night		Day		Night							
p	Aircraft	dro							(700-		(2200-		(700		(2200-		_	Night		-	Night	
ıţie	, iz	Squadr							2200)		0700)		2200		0700)		•	(2200-		•	(2200-	
Ą	ξ	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							162	-	35	197	98	49	49	197	-	-		-	-	
		FRS							180	-	26	206	107	59	42	208	-	-		-	-	
ш		RES							17	-	2	19	10	6	4	19	-	-		-	-	
c	H60	SAR															90	-	90	90	-	90
To	otal								359	-	64	422	215	114	95	424	90	-	90	90	-	90

Table 5-2 Detailed Annual Flight Operations for the Average Year No Action Alternative

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	4		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Aii	Aiı	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	2,519	1,656	1,435	5,609	2,237	349	425	3,011	1,681	57	1,738	2,792	1,227	4,019	19,233	2,054	3,662	24,949
		FRS	3,637	1,248	704	5,589	3,746	738	1,000	5,484	-	-	0	4,879	895	5,774	23,942	2,384	4,108	30,434
		RES	53	-	10	63	513	4	15	532	446	13	459	503	37	540	3,858	10	216	4,084
٦		EXP	-	-	-	0	506	-	21	527	517	20	537	499	21	520	4,620	-	205	4,825
Field	EP3	All	-	-	-		-	-	-	0	-	-		-	-	0	-	-	-	-
Ault	P3	All	-	-	-		-	-	-	0	-	-		-	-	0	-	-	-	-
Ā	P8	All	-	-	-		4,056	0	595	4,651	-	-		1,752	161	1,913	9,438	-	1,174	10,612
	H60	SAR	-	-	-		-	-	-	0	-	-		-	-	0	948	-	-	948
	C-40	-	-	-	-		-	-	-	0	-	-		-	-	0	806	-	215	1,021
	JET_LRG	-	-	-	-		332	0	0	332	-	-		167	-	167	1,281	-	-	1,281
Tota	al		6,208	2,904	2,149	11,261	11,390	1,091	2,056	14,537	2,644	90	2,734	10,592	2,341	12,933	64,126	4,448	9,580	78,154
	EA18	CVW	1,101	870	481	2,452	-	-	-								1,361	919	565	2,846
щ		FRS	1,198	1,029	356	2,583	-	-	-								1,485	1,088	424	2,997
OLF		RES	113	88	38	239	-	-	-								139	94	44	277
	H60	SAR	-	-	-		181	-	-	181							361	-	-	361
Tota	al		2,412	1,987	875	5,274	181	-	-	181							3,347	2,101	1,033	6,481
														Grand Totals (Ault+OLF)			67,473	6,549	10,613	84,635

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier

DK = Darkness

DL = Daylight

EXP = Expeditionary

FRS = Fleet Replacement

RES = Reserve

5.2 Other Modeling Parameters

Appendix A3 contains tables of runway utilization percentages as extracted from the NASMOD study output. Flight tracks and their utilization would be identical to the baseline scenario. Modeled flight tracks are depicted in Appendix A4.

Flight profiles would be identical to the baseline scenario except for the introduction of P-8 profiles. The representative profiles for each modeled aircraft type are contained in Appendix A5.

In terms of AAD events, the No Action Alternative would have approximately 157 and 10 AAD flight events for Ault Field and OLF Coupeville, respectively. For the high-tempo FCLP year No Action Alternative, Ault Field and the OLF would have 161 and 10 AAD flight events, respectively.

5.3 Run-up Operations

Table 5-3 lists the modeled run-ups, with their locations depicted in Figure 5-1. There would be no change to the modeled run-ups for the EA-18G aircraft for the average year No Action Alternative compared to the average year baseline scenario. P-8 run-ups (at their appropriate tempo) replace ones for the P-3. The P-8 has run-ups at Lo-Pwr4, Lo-Pwr5, and the runway hold positions.

For the high-tempo FCLP year No Action Alternative, it was assumed the run-ups would not change compared to the average year scenario.

Table 5-3 Modeled Run-Up Operations and Profiles for the No Action Alternatives

						Percent During	age	Power Settin	g		
Aircraft Type	Engine Type	Run-up Type	Pad ID	Magnetic Heading (degrees)	Annual Events	Day (0700 - 2200)	Night (2200 - 0700)	Reported	Modeled (if different)	Duration of Each Event (Minutes)	No. of Engines Running (each event)
EA-18G	F414-GE-400	Water Wash	Lo-Pwr1 Lo-Pwr2 Lo-Pwr3 ⁽¹⁾	135/315	82	45%	55%	Ground Idle	65% NC	10	1
		Low power	Lo-Pwr1 Lo-Pwr2 Lo-Pwr3 ¹	135/315	1230 2460	45%	55%	Ground Idle Ground Idle	65% NC 65% NC	30 30	2
		High Power	50% Hi-Pwr1 / 50% Hi-Pwr2	311 (Hi-Pwr1) / 127 (Hi-Pwr2)	656	90%	10%	Ground Idle 80%NC	65% NC 80% NC	25 10	2
			30/01111 W12	127 (III I WIZ)				Mil AB	96% NC A/B	3	2
P-8A	CFM56-7B-24	Leak Check	50% Lo-Pwr4 /	126	24	75%	25%	5400 Lbs	АУБ	5	2
		Pressure Check	50% Lo-Pwr5	126	12			5400 Lbs		12	2
		Leak Check	Runway Hold ²	100 (Rwy14);	24			5400 Lbs		5	2
		Pressure Check		270 (Rwy25); 330 (Rwy32); 140 (Rwy07)	12			5400 Lbs		12	2

¹ Run-up events split 50% Lo-Pwr1, 30% Lo-Pwr2, and 20% Lo-Pwr3

² Runway Hold Run-ups split 50% Runway 32, 40% Runway 25, 5% Runway 07, and 5% Runway 14

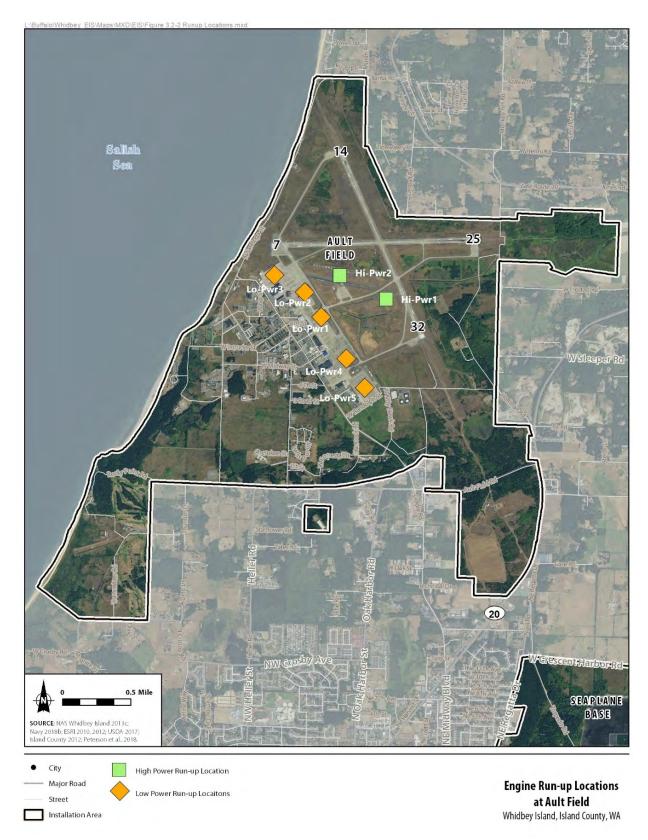


Figure 5-1 Modeled Run-up Pads for Alternatives

5.4 Aircraft Noise Exposure

Using the data described in Sections 5.1 through 5.3, NOISEMAP was used to calculate and plot the 60 dB through 90 dB DNL contours, in 5-dB increments, for AAD events for the average year No Action Alternative. Figure 5-2 shows the resulting DNL contours.

The 65 dB contour surrounding Ault Field would extend approximately 7 to 11 miles from the runway endpoints. The location of these lobes would be primarily attributable to the EA-18G on the approach portion of GCA patterns, where aircraft generally descend on a 3-degree glide slope through 3,000 feet AGL 10 miles from the runway. The 65 dB DNL contour would extend approximately 1.5 miles past the eastern shore of the mainland across Skagit Bay. The 80 dB DNL contour would extend approximately 2.7 miles to the east, outside the station boundary, primarily due to EA-18G GCA and VFR approaches descending from 1,800 feet AGL, as well as the GCA patterns. The 90 dB contour would extend 1,300 feet to the east beyond the station boundary.

The DNL exposure at the OLF would be attributable to the OLF's FCLP operations. The 65 dB DNL contour would extend northward to a point just south of the north shore of Penn Cove and southward approximately 3 miles south of the OLF's runway.

Table 5-4 presents the noise exposure in terms of estimated off-station population for each contour band. A total of 10,731 people would be exposed to DNL of at least 65 dB at Ault Field and OLF Coupeville. The total population exposed would be 384 greater than the average year baseline scenario's total population.

Under the high-tempo FCLP year No Action Alternative (Appendix A7), a total of 11,239 people would be exposed to DNL of at least 65 dB at Ault Field and OLF Coupeville. The total population exposed would be 245 greater than for the high-tempo FCLP year baseline scenario.

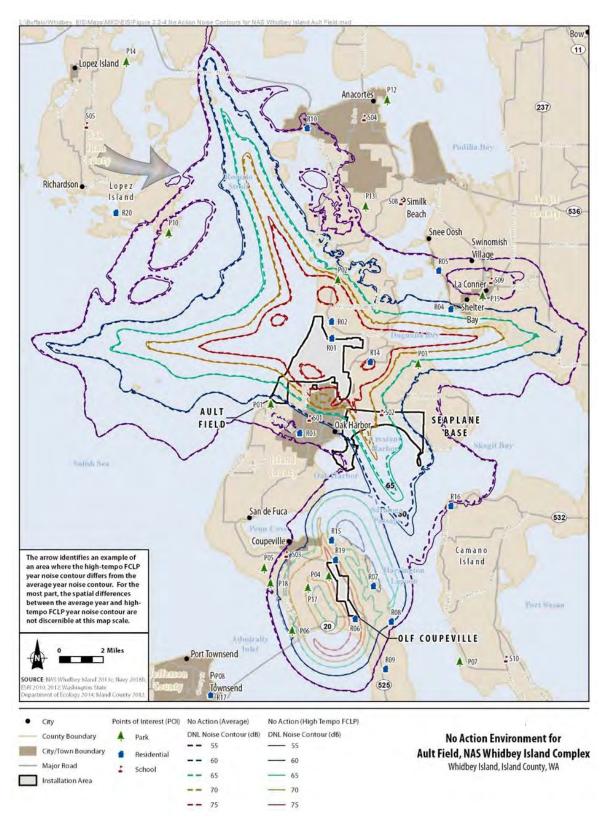


Figure 5-2 DNL Contours for AAD Aircraft Events for the Average Year No Action Alternative

Table 5-4 Estimated Acreage and Population within the DNL Contour Ranges¹ for the Average Year at the NAS Whidbey Island Complex for No Action Scenario

	DNL Conto	ur Ranges						
					Greater tha			
	65 to <70 c	IB DNL	70 to <75	dB DNL	equal to 75	dB DNL	Total³	
	Area		Area		Area		Area	
DNL Contours	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²
Ault Field	3,596	3,279	3,269	2,283	5,549	3,379	12,414	8,941
OLF Coupeville	3,681	861	3,088	786	638	583	7,407	2,230
Total ³	7,277	4,140	6,357	3,069	6,187	3,962	19,821	11,171

- Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contours (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall under the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ³ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level

5.4.1 Points of Interest

Table 5-5 shows the DNL for each POI. Under the average year No Action Alternative, 10 POIs would experience DNL greater than or equal to 65 dB, and three residential POIs would experience DNL greater than or equal to 75 dB. Two of the latter category would be near Ault Field (R01 and R02), and one would be near the OLF (R06). Crescent Harbor Elementary School would experience DNL of 67 dB. No other school POI would experience DNL greater than or equal to 65 dB.

Table 5-5 Estimated Aircraft DNL at POIs for the Average Year No Action Alternative

Point of Inte	rest			DNL (dB)
			Related	No	Increase re
Туре	ID	Description	Field	Action	Baseline
Park	P01	Joseph Whidbey State Park	Ault	57	-
	P02	Deception Pass State Park	Ault	73	-
	P03	Dugualla State Park	Ault	65	-
	P04	Baseball Field (Ebey's Landing National	OLF	74	-
		Historical Reserve)			
	P05	Ebey's Landing State Park	OLF	52	-
	P06	Fort Casey State Park	OLF	62	-
	P07	Cama Beach State Park	OLF	<45	-
	P08	Port Townsend	None	<45	-
	P09	Moran State Park	None	<45	-
	P10	San Juan Islands National Monument	None	54	-
	P11	San Juan Island Visitors Center	None	<45	-
	P12	Cap Sante Park	Ault	<45	-
	P13	Lake Campbell	Ault	54	-
	P14	Spencer Spit State Park	None	<45	_
	P15	Pioneer Park	Ault	55	-
	P16	Marrowstone Island (Fort Flagler)	OLF	<45	-
	EBLA001	Ferry House	OLF	69	-
	EBLA002	Reuble Farm	OLF	56	_
Residential	R01	Sullivan Rd	Ault	90	-
	R02	Salal St. and N. Northgate Dr	Ault	78	-
	R03	Central Whidbey	Ault	57	-
	R04	Pull and Be Damned Point	Ault	62	-
	R05	Snee-Oosh Point	Ault	57	+1
	R06	Admirals Dr and Byrd Dr	OLF	79	-
	R07	Race Lagoon	OLF	61	-
	R08	Pratts Bluff	OLF	62	-
	R09	Cox Rd and Island Ridge Way	OLF	50	-1
	R10	Skyline	None	56	-
	R11	Sequim	None	<45	-
	R12	Port Angeles	None	<45	_
	R13	Beverly Beach, Freeland	OLF	<45	_
	R14	E Sleeper Rd & Slumber Ln	Ault	74	-1
	R15	Long Point Manor	OLF	64	-1
	R16	Rocky Point Heights	OLF	55	+1
	R17	Port Townsend	None	<45	-
	R18	Marrowstone Island (Nordland)	None	<45	-
	R19	Island Transit Offices, Coupeville	OLF	73	-
	R20	South Lopez Island (Agate Beach)	None	48	_

Table 5-5 Estimated Aircraft DNL at POIs for the Average Year No Action Alternative

Point of Int	erest			DNL (dB)
Туре	ID	Description	Related Field	No Action	Increase re Baseline
School	S01	Oak Harbor High School	Ault	59	-
	S02	Crescent Harbor Elementary School	Ault	67	-1
	S03	Coupeville Elementary School	OLF	57	-1
	S04	Anacortes High School	Ault	48	-
	S05	Lopez Island School	None	<45	-
	S06	Friday Harbor Elementary School	None	<45	-
	S07	Sir James Douglas Elementary School	None	<45	-
	S08	Fidalgo Elementary School	Ault	51	-
	S09	La Conner Elementary School	Ault	53	-
	S10	Elger Bay Elementary School	OLF	<45	-

All but seven of the POIs would experience less than a 0.5 dB change in DNL compared to the average year baseline scenario, and none would be newly impacted. POIs R09, R14, R15, S01, and S02 would experience a 1 dB decrease in DNL, while R05 and R16 would experience a 1 dB increase in DNL.

See Appendix A6 for lists of the five flight profiles with the greatest SEL at each POI.

Under the high-tempo FCLP year No Action Alternative (Appendix A7), all but five of the POIs would experience less than 0.5 dB change in DNL compared to the high-tempo FCLP year baseline scenario. POIs P06, R08, R10, R14, and R15 would experience a 1 dB decrease in DNL.

5.4.2 Potential Hearing Loss

Table 5-6 shows estimates of the population within 1-dB bands of $L_{eq(24)}$ and their associated NIPTS. For average and 10^{th} percentile NIPTS categories, 41 and 849 people, respectively, would have the potential for NIPTS greater than or equal to 5 dB. All of the average NIPTS population would be associated with Ault Field (none with the OLF), whereas approximately 12 percent of the 10^{th} percentile NIPTS population would be associated with the OLF.

Under the high-tempo FCLP year scenario (Appendix A7) average and 10th percentile NIPTS categories, 38 and 468 people, respectively, would have the potential for NIPTS greater than or equal to 5 dB. All of the average NIPTS population would be associated with Ault Field (none with the OLF), whereas approximately 6 percent of the 10th percentile NIPTS population would be associated with the OLF.

The potential NIPTS values presented in Table 5-6 are only applicable in the extreme case of outdoor exposure at one's residence to all aircraft events occurring over a period of 40 years. As it is highly unlikely any individuals would meet all of those criteria, the actual potential NIPTS for most individuals would be much less than the values presented here.

Table 5-6 Estimated Potential Hearing Loss for the Average Year No Action Alternative

			Estimated Pop	oulation			Change in pop	oulation re Basel	line	
Band of L _{eq(24)} (dB)	Average NIPTS (dB) ¹	10 th Percentile NIPTS (dB) ¹	Ault Field (on-Station)	Ault Field (off-Station)	OLF Coupeville (off-Station)	TOTAL	Ault Field (on-Station)	Ault Field (off-Station)	OLF Coupeville (off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	(12)	(12)
75-76	1.0	4.0	-	-	30	30	-	-	(36)	(36)
76-77	1.0	4.5	-	119	42	161	-	56	(2)	54
77-78	1.5	5.0	-	208	43	251	-	(60)	1	(59)
78-79	2.0	5.5	-	139	23	162	-	(52)	3	(49)
79-80	2.5	6.0	-	84	7	91	-	(34)	1	(33)
80-81	3.0	7.0	-	68	1	69	-	(5)	-	(5)
81-82	3.5	8.0	-	47	-	47	-	(12)	-	(12)
82-83	4.0	9.0	-	36	-	36	-	(1)	-	(1)
83-84	4.5	10.0	-	25	-	25	-	(2)	-	(2)
84-85	5.5	11.0	-	15	-	15	-	(3)	-	(3)
85-86	6.0	12.0	-	11	-	11	-	(1)	-	(1)
86-87	7.0	13.5	-	6	-	6	-	(3)	-	(3)
87-88	7.5	15.0	-	4	-	4	-	(1)	-	(1)
88-89	8.5	16.5	-	2	-	2	-	-	-	-
89-90	9.5	18.0	-	-	-	-	-	-	-	-
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-
						468				

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB, are estimated based on extrapolating available data from USEPA guidance (USEPA, 1982).

¹ Rounded to nearest 0.5 dB

5.4.3 Residential Nighttime Sleep Disturbance

Table 5-7 lists the PA for applicable POIs for average daily nighttime (10:00 p.m. to 7:00 a.m.) events. Under the average year No Action Alternative, the PA would average 10 percent and 6 percent, respectively, across the listed POIs for windows open and closed. The two most impacted POIs (R01 and R02) would have between 29 percent and 58 percent PA, depending upon whether windows are open or closed. This PA would be identical to the PA for the average year baseline scenario except there would be 10 POIs with a 1 dB decrease in PA and two POIs with a 1 dB increase in PA.

Table 5-7 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year No Action Alternative

			Annual Average Nightly (2200-0700) Probability of Awakening (%) ¹						
Point of Inter	est			No Action		Increase re	Increase re Baseline		
	•		Related	Windows	Windows	Windows	Windows		
Туре	ID	Description	Field	Open	Closed	Open	Closed		
Residential	R01	Sullivan Rd	Ault	58%	43%	-1%	-1%		
	R02	Salal St. and N. Northgate Dr	Ault	41%	29%	-1%	-1%		
	R03	Central Whidbey	Ault	16%	8%	-	-		
	R04	Pull and Be Damned Point	Ault	19%	9%	-	-		
	R05	Snee-Oosh Point	Ault	15%	5%	-	-		
	R06	Admirals Dr and Byrd Dr	OLF	9%	6%	-1%	-1%		
	R07	Race Lagoon	OLF	5%	2%	-	-		
	R08	Pratts Bluff	OLF	4%	2%	-1%	-1%		
	R09	Cox Rd and Island Ridge Way	OLF	3%	2%	-	-		
	R10	Skyline	None	5%	2%	-1%	-		
	R11	Sequim	None	0%	0%	-	-		
	R12	Port Angeles	None	0%	0%	-	-		
	R13	Beverly Beach, Freeland	OLF	2%	0%	-	-		
	R14	E Sleeper Rd & Slumber Ln	Ault	37%	25%	-1%	-1%		
	R15	Long Point Manor	OLF	11%	4%	-	-		
	R16	Rocky Point Heights	OLF	9%	3%	-	-		
	R17	Port Townsend	None	1%	0%	-	-		
	R18	Marrowstone Island (Nordland)	None	0%	0%	-	-		
	R19	Island Transit Offices, Coupeville	OLF	9%	5%	-1%	-		
	R20	South Lopez Island (Agate Beach)	None	3%	1%	1%	-		
School (near	S01	Oak Harbor High School	Ault	20%	12%	-1%	-		
residential)	S02	Crescent Harbor Elementary School	Ault	21%	12%	-1%	-1%		
	S03	Coupeville Elementary School	OLF	5%	3%	-1%	-		
	S04	Anacortes High School	Ault	2%	1%	-	-		
	S05	Lopez Island School	None	0%	0%	-	-		
	S06	Friday Harbor Elementary School	None	0%	0%	-	-		
	S07	Sir James Douglas Elementary	None	0%	0%	-	-		
		School							
	S08	Fidalgo Elementary School	Ault	6%	2%	-	-		
	S09	La Conner Elementary School	Ault	8%	3%	1%	-		
	S10	Elger Bay Elementary School	OLF	0%	0%	-	-		

Assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

R01 and R06 include interior SELs greater than 100 dB with windows open

Under the high-tempo FCLP year baseline scenario (Appendix A7), the PA would average 11 percent and 6 percent, respectively, across the listed POIs for windows open and closed. The two most impacted POIs (R01 and R02) would have between 31 percent and 62 percent PA, depending upon whether their windows are open or closed.

5.4.4 Residential Daytime Indoor Speech Interference

Table 5-8 presents the average daily indoor daytime (7:00 a.m. to 10:00 p.m.) events per hour for the applicable POIs that would experience indoor maximum sound levels of at least 50 dB with windows closed and open, for the average year No Action Alternative. Events per hour would be less than one at 17 of the 30 POIs and would range between one and eight for the remaining POIs, regardless of the window status. Relative to the average year baseline scenario, decreases of up to two events per hour would be experienced at one of the POIs (R01). No POI would experience increases in events per hour for either window status.

For the high-tempo FCLP year No Action Alternative (Appendix A7), the above-cited statistics would not change compared to the average year No Action Alterative.

Table 5-8 Indoor Speech Interference for the Average Year No Action Alternative

				Annual Average Daily Indoor Daytime (0700-2200) Events per Hour ¹					
Point of Inte	rost		No Action	ij Events per i	Increase re Baseline				
	•		Related	Windows	Windows	Windows	Windows		
Туре	ID	Description	Field	Open	Closed	Open	Closed		
Residential	R01	Sullivan Rd	Ault	8	8	-2	-2		
	R02	Salal St. and N. Northgate Dr	Ault	8	8	-1	0		
	R03	Central Whidbey	Ault	5	-	0	0		
	R04	Pull and Be Damned Point	Ault	2	1	0	0		
	R05	Snee-Oosh Point	Ault	2	1	0	0		
	R06	Admirals Dr and Byrd Dr	OLF	-	-	0	0		
	R07	Race Lagoon	OLF	-	-	0	0		
	R08	Pratts Bluff	OLF	-	-	0	0		
	R09	Cox Rd and Island Ridge Way	OLF	-	-	0	0		
	R10	Skyline	None	-	-	0	0		
	R11	Sequim	None	-	-	0	0		
	R12	Port Angeles	None	-	-	0	0		
	R13	Beverly Beach, Freeland	OLF	-	-	0	0		
	R14	E Sleeper Rd & Slumber Ln	Ault	8	7	0	0		
	R15	Long Point Manor	OLF	1	1	0	0		
	R16	Rocky Point Heights	OLF	2	1	0	0		
School	R17	Port Townsend	None	-	-	0	0		
	R18	Marrowstone Island	None	-	-	0	0		
		(Nordland)							
	R19	Island Transit Offices,	OLF	1	1	0	0		
		Coupeville							
	R20	South Lopez Island (Agate	None	-	-	0	0		
		Beach)							
	S01	Oak Harbor High School	Ault	6	2	0	0		
	S02	Crescent Harbor Elementary	Ault	5	2	0	0		
		School							
	S03	Coupeville Elementary	OLF	1	-	0	0		
		School							
	S04	Anacortes High School	Ault	0		0	0		
	S05	Lopez Island School	None	-	-	0	0		
	S06	Friday Harbor Elementary	None	-	-	0	0		
		School							
	S07	Sir James Douglas	None	-	-	0	0		
		Elementary School							
	S08	Fidalgo Elementary School	Ault	-	-	0	0		
	S09	La Conner Elementary School	Ault	1	-	0	0		
	S10	Elger Bay Elementary School	OLF	-	_	0	0		

With an indoor maximum sound level of at least 50 dB; assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School; therefore, this location was not modeled individually, but similar result for indoor speech interference for POI S03 would apply.

5.4.5 Classroom Learning Interference

Table 5-9 presents the potential learning interference for students in classrooms under the average year No Action Alternative. One of the schools, POI S02 (Crescent Harbor Elementary), would have an outdoor $L_{eq(8h)}$ of 67 dB, which is greater than or equal to the screening threshold of 60 dB. Three of the POIs would have more than one event per hour with windows open (S01, S02, and R03), and two POIs (S01 and S02) would have more than one event per hour with windows closed. POIs S01 (Oak Harbor High School) and S02 (Crescent Harbor Elementary School) would have the most events per hour: four to five with windows open and two with windows closed. Relative to the average year baseline scenario, four POIs (S01, S02, S03, and R03) would experience decreases in interference by one event per hour. $L_{eq(8h)}$ would decrease by 1 dB at S02 and S03 and would increase by 1 dB at S07.

Under the high-tempo FCLP year No Action Alternative (Appendix A7), the above statistics would be identical except that $L_{eq(8h)}$ would decrease by 1 dB at three additional POIs.

Table 5-9 Classroom Learning Interference for the Average Year No Action Alternative

School Surrogate R03 Central Whidbey Ault S7 <45 4 <45 - - - - - - - - -									Increase i	Baseline					
Type ID Description Field Cutdoor Leq(8h) (dB) Description Field Leq(8h) (dB) Description Leq(8h) Leq(8h) Leq(8h) Description Leq(8h) Leq(8h) Leq(8h) Description Leq(8h) Leq	Point of Interest				Indoor ¹					Indoor	!				
Type 1D Description Related Coutdoor Field Legish) (dB) (dB) Events Legish) (dB) (dB) per Hour (dB) (dB) per Hour (dB) per H						Windows Open		Windows Closed		Ĭ	Windows Open		Windows Closed		
School Surrogate R03 Central Whidbey Ault S7 C45 4 C45 - - - - - - - - -	Туре	ID	Description							Leq(8h)				Events per Hour ²	
School School Sol Oak Harbor High School Ault 57 <45 5 <45 2 - - -1 - - -		R03	Central Whidbey	Ault		<45	4	<45	-	-	-	-1	-	-	
S02 Crescent Harbor Elementary School S03 Coupeville Elementary S04 S05 S05 S06 S06 S06 S07 S0	Surrogate	R11	Sequim	None	<45	<45	-	<45	-	-	-	-	-	-	
Elementary School S03 Coupeville Elementary School S04 Anacortes High School Ault 46 <45 - <45 - -1 -1 -1 -1 -1 -1 -1	School	S01	Oak Harbor High School	Ault	57	<45	5	<45	2	-	-	-1	-	-	
School Sud Anacortes High School Ault 46 <45 - <45 - - - - - - - - -		S02		Ault	67	52	4	<45	2	-1	-1	-1	-1	-	
S05 Lopez Island School None <45 <45 - <45 - - - - - - - - -		S03	·	OLF	51	<45	-	<45	-	-1	-1	-1	-1	-	
S06 Friday Harbor Elementary None <45 <45 - <45 - - - - - - - - -		S04	Anacortes High School	Ault	46	<45	-	<45	-	-	-	-	-	-	
School Sof Sir James Douglas None <45 <45 - <45 - <45 - +1 +1 - +1 - -		S05	Lopez Island School	None	<45	<45	-	<45	-	-	-	-	-	-	
Elementary School		S06	1	None	<45	<45	-	<45	-	-	-	-	-	-	
S09 La Conner Elementary Ault 51 <45 1 <45 - - - - - - -		S07	_	None	<45	<45	-	<45	-	+1	+1	-	+1	-	
S09 La Conner Elementary Ault 51 <45 1 <45 - - - - - - -		S08	Fidalgo Elementary School	Ault	49	<45	-	<45	-	-	-	-	-	-	
School S		S09	La Conner Elementary	Ault	51	<45	1	<45	-	-	-	-	-	-	
1 Intrusive Event per Hour Minimum Number of Intrusive Events per Hour if Exceeding 1 Maximum Number of Intrusive Events 5 2		S10		OLF	<45	<45	-	<45	-	-	-	-	-	-	
Minimum Number of Intrusive Events per Hour if Exceeding 1 Maximum Number of Intrusive Events 5 2	Number of	Number of Sites Exceeding					3		2			-		-	
per Hour if Exceeding 1 Maximum Number of Intrusive Events 5 2	1 Intrusive Event per Hour														
Maximum Number of Intrusive Events 5 2	Minimum Number of Intrusive Events					4		2			-		-		
	per Hour if Exceeding 1														
ner Hour if Exceeding 1	Maximum Number of Intrusive Events						5		2			-		-	
per riour ii Execeuii § 2	per Hour if Exceeding 1														

¹ Assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

Number of average school-day events per hour during 8-hour school day (0800-1600) at or above an indoor maximum (single-event) sound level (L_{max}) of 50 dB.

5.4.6 Recreational Speech Interference

Table 5-10 lists the AAD daytime NA 50 L_{max} per hour for the recreational POIs. The average NA across the 48 POIs would be 3.2 events per daytime hour and less than one event per nighttime hour. Six POIs would have the most daytime events per hour, at eight. Nighttime events would vary from less than one up to two per hour. Relative to the average year baseline scenario, 13 POIs would experience a decrease of up to two events per daytime hour. Only one POI (R17) would experience an increase in events compared to the average year baseline scenario of one per hour. During nighttime hours, five POIs would experience a decrease of one event per hour.

Under the high-tempo FCLP year No Action Alternative (Appendix A7), the above-cited statistics would not change compared to the average year No Action Alternative except that one additional POI would experience eight events per hour, and 16 POIs would experience a decrease of up to two events per daytime hour. There would be no nighttime decreases of events compared to the high-tempo FCLP year baseline scenario.

Table 5-10 Recreational Speech Interference for the Average Year No Action Alternative

				Annual Ave	erage Outdoo A50 L _{max}	r Daily Dayti	me Events
Represent	tative Park Re	ceptor		No Action		Increase re	No Action
			Related				·
Туре	ID	Description	Field	Daytime	Nighttime	Daytime	Nighttime
Park	P01	Joseph Whidbey State Park	8	2	-1	-	
	P02	Deception Pass State Park	8	2	-1	-	
	P03	Dugualla State Park	7	2	-2	-	
	P04	Baseball Field (Ebey's	3	0	-	-1	
		Landing National Historical					
		Reserve)					
	P05	Ebey's Landing State Park	2	0	-	-	
	P06	Fort Casey State Park	1	0	-	-	
	P07	Cama Beach State Park	3	0	-	-	
	P08	Port Townsend	1	0	-	-	
	P09	Moran State Park	0	0	-	-	
	P10	San Juan Islands National	7	1	-	-1	
		Monument					
	P11	San Juan Island Visitors	0	0	-	-	
		Center					
	P12	Cap Sante Park	0	0	-	-	
	P13	Lake Campbell	4	1	-	-	
	P14	Spencer Spit State Park	0	0	-	-	
	P15	Pioneer Park	4	1	-	-	
	P16	Marrowstone Island (Fort	0	0	-	-	
		Flagler)					
	EBLA001	Ferry House	2	0	-	-	
	EBLA002	Reuble Farm	2	0	-	-	

Table 5-10 Recreational Speech Interference for the Average Year No Action Alternative

				Annual Av	erage Outdoo IA50 L _{max}	r Daily Dayti	ime Events
Representat	ive Park I	Receptor		No Action	III ax	Increase re	No Action
Туре	ID	Description	Related Field	Daytime	Nighttime	Daytime	Nighttime
Residential	R01	Sullivan Rd	8	2	-2	-	
	R02	Salal St. and N. Northgate Dr	8	2	-2	-	
	R03	Central Whidbey	7	2	-1	-	
	R04	Pull and Be Damned Point	7	2	-1	-	
	R05	Snee-Oosh Point	7	1	-	-1	
	R06	Admirals Dr and Byrd Dr	1	0	-	-	
	R07	Race Lagoon	3	0	-	-1	
	R08	Pratts Bluff	1	0	-	-	
	R09	Cox Rd and Island Ridge Way	1	0	-	-	
	R10	Skyline	4	1	-	-	
	R11	Sequim	0	0	-1	-	
	R12	Port Angeles	1	0	-	-	
	R13	Beverly Beach, Freeland	0	0	-	-	
	R14	E Sleeper Rd & Slumber Ln	8	2	-2	-	
	R15	Long Point Manor	7	1	-	-1	
	R16	Rocky Point Heights	4	1	-1	-	
	R17	Port Townsend	1	0	+1	-	
	R18	Marrowstone Island (Nordland)	0	0	-	-	
	R19	Island Transit Offices, Coupeville	3	1	-	-	
	R20	South Lopez Island (Agate Beach)	3	1	-	-	
School	S01	Oak Harbor High School	8	2	-1	-	
	S02	Crescent Harbor Elementary School	7	2	-1	-	
	S03	Coupeville Elementary School	3	0	-	-1	
	S04	Anacortes High School	1	0	-	-	
	S05	Lopez Island School	0	0	-	-	
	S06	Friday Harbor Elementary School	0	0	-	-	
	S07	Sir James Douglas Elementary School	0	0	-	-	
	S08	Fidalgo Elementary School	4	1	-	-	
	S09	La Conner Elementary School	3	1	-	-	
	S10	Elger Bay Elementary School	0	0	-1	-	

6 Average Year Alternative 1 Scenarios

Relative to the No Action Alternative, Alternative 1 would add three EA-18G aircraft to each Carrier Air Wing squadron and eight EA-18G aircraft to the FRS, as shown in Table 2-1. Section 6.1 details the flight operations. Section 6.2 presents the runway/flight track utilization, flight profiles, and derivation of AAD flight operations. Sections 6.3 and 6.4 contain the maintenance run-ups and resultant aircraft noise exposure.

6.1 Flight Operations

From the methodology described in Chapter 2, Tables 6-1 through 6-9 show the modeled flight operations for the average year for Alternative 1 under all scenarios. All of these five scenarios under Alternative 1 would have approximately 112,000 total annual flight operations for the complex. The EA-18G would dominate operations, with 87 percent of the complex's annual flight operations. Annual FCLP-related operations at the OLF would vary between 6,200 in Alternative 1, Scenario C, and 24,900 in Alternative 1, Scenario A. As shown in Tables 6-2, 6-4, and 6-10, approximately 15 percent and 21 percent, respectively, of the overall total flight operations and OLF FCLP operations would be conducted during the DNL nighttime period.

Relative to the average year No Action Alternative, Tables 6-1, 6-3, 6-5, 6-7, and 6-9 show that the complex's total annual flight operations would increase by approximately 26,000, with more than half due to increased FCLP operations.

The high-tempo FCLP year alternatives (Appendix A2) would have approximately 114,000 total annual flight operations for the complex, with the EA-18G generating 87 percent of the complex's annual flight operations.

		Alternative (Average Y Type of Flig				m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	6,100	67,000	73,100	-5,200	+14,000	+8,800
	Other Based	-	11,900	11,900	-	+300	+300
	Transient	-	2,300	2,300	-	-	-
	Subtotal	6,100	81,200	87,300	-5,200	+14,300	+9,100
OLF Coupeville 4	EA-18G	24,900	-	24,900	+18,800	-	+18,800
	Other	-	400	400	-	-	-
	Subtotal	24,900	400	25,300	+18,800	-	+18,800
TOTAL (both airfie	elds)	31,000	81,600	112,600	+13,600	+14,300	+27,900

Table 6-1 Summary of Annual Flight Operations for the Average Year Alternative 1A

- Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.
- ² Each closed pattern is counted as two operations.
- ³ For Growlers at the OLF, values include 3,102 interfacility (FCLP-related) operations; not shown separately.
- For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.
- No Action excludes 900 interfacility Growler operations (FCLP related).

Table 6-2 Detailed Annual Flight Operations for the Average Year Alternative 1A

						Arrival										Interf	acility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	o OLF		Break	Arri	val from	OLF	Depart	ure to C)LF	Arrival	from Ol	F
		u							Day		Night					Day		Night		Day		Night							
p	≰	Squadron	Day	Night		Day	Night		(0700-		(2200-		Day	Night		(0700	L	(2200-		(0700	-	(2200-		Day	Night		Day	Night	
Airfield	Aircraft	nac	(0700-	(2200-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	ı
Aiı	Ąį	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
Ĭ	EA18	CVW	7,592	419	8,011	2,751	86	2,837	4,463	0	184	4,647	517	11	528	483	212	279	974	787	0	187	974						
		FRS	5,627	384	6,011	2,158	315	2,473	2,376	320	594	3,290	218	31	249	291	154	119	564	489	0	77	566						
		RES	1,161	75	1,236	386	21	407	721	0	27	748	76	5	81	6	5	2	13	13	0	2	15						
		EXP	1,562	79	1,641	573	20	593	885	0	43	928	118	3	121	-	-	-	0	-	-	-	0						
	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
	P8	All	1,937	100	2,037	1,393	272	1,665	-	-	-	-	311	61	372														
Field	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									91	-	91	91	-	91
ult Fi	C-40	-	394	-	394	282	-	282	-	-	-	-	112	-	112														
Au	JET_LRG	-	413	102	515	382	99	481	-	-	-	-	25	9	34														
Tot	al	•	19,074	1,159	20,233	8,313	813	9,126	8,445	320	848	9,613	1,377	120	1,497	780	371	400	1,551	1,289	-	266	1,555	91	-	91	91	-	91

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arriva	from A	ult	Depart	ure to A	ult
		u							Day		Night		Day		Night							
þ	tf.	Squadron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	.cre	nac							2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	
Air	Aircraft	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							787	-	187	974	483	212	279	974						
		FRS							489	-	77	566	291	154	119	564						
ш		RES							13	-	2	15	6	5	2	13						
0	H60	SAR															91	-	91	91	-	91
To	tal								1,289	-	266	1,555	780	371	400	1,551	91	-	91	91	-	91

Table 6-2 Detailed Annual Flight Operations for the Average Year Alternative 1A

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	1,753	1,099	1,014	3,866	3,633	654	1,086	5,373	2,574	95	2,669	4,695	3,029	7,724	29,248	1,965	6,390	37,603
		FRS	1,358	462	320	2,140	3,641	731	1,016	5,388	-	-	0	4,716	1,028	5,744	20,874	1,667	3,884	26,425
		RES	94	25	20	139	532	10	19	561	435	13	448	522	43	565	3,946	40	227	4,213
73		EXP	-	-	-	0	535	-	24	559	500	36	536	533	20	553	4,706	-	225	4,931
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault F	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αſ	P8	All					4,160	0	675	4,835	-	-	-	1,794	190	1,984	9,595	-	1,298	10,893
	H60	SAR					-	-	-	-	-	-	-	-	-	-	958	-	-	958
	C-40	-					328	-	-	328	-	-	-	164	-	164	1,280	-	-	1,280
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	820	-	210	1,030
Tota	al		3,205	1,586	1,354	6,145	12,829	1,395	2,820	17,044	3,509	144	3,653	12,424	4,310	16,734	71,427	3,672	12,234	87,333
	EA18	CVW	6,464	3,847	3,322	13,633											7,734	4,059	3,788	15,581
ш		FRS	3,879	2,701	1,329	7,909											4,659	2,855	1,525	9,039
OLF		RES	91	88	28	207											110	93	32	235
	H60	SAR					184	-	-	184							366	-	-	366
Tota	al		10,434	6,636	4,679	21,749	184	-	-	184							12,869	7,007	5,345	25,221
														Grand To			84,296	10,679	17,579	112,554

Total Annual Ault = 6,145 (19.8%)
EA-18G FCLP OLF = 24,855 (80.2%)
Related Ops Total = 31,000

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 6-3 Summary of Annual Flight Operations for the Average Year Alternative 1B

		Alternative (Average Y Type of Flig				m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP 2, 5	Other	Total
Ault Field	EA-18G	15,500	65,600	81,100	+4,200	+12,600	+16,800
	Other Based	-	11,900	11,900	-	+300	+300
	Transient	-	2,300	2,300	-	-	-
	Subtotal	15,500	79,800	95,300	+4,200	+12,900	+17,100
OLF Coupeville 4	EA-18G	15,500	-	15,500	+9,400	-	+9,400
	Other	-	400	400	-	-	-
	Subtotal	15,500	400	15,900	+9,400	-	+9,400
TOTAL (both airfie	lds)	31,000	80,200	111,200	+13,600	+12,900	+26,500

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 1,944 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 6-4 Detailed Annual Flight Operations for the Average Year Alternative 1B

						Arrival										Inter	facility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	to OLF		Break	(Arri	val from	OLF	Depart	ure to C	DLF	Arrival	from OL	L F
		u							Day		Night					Day		Night		Day		Night							
p	Aircraft	uadron	Day	Night		Day	Night		(0700-		(2200-		-	Night		(0700		(2200-		(0700		(2200-		Day	Night		_	Night	
Jie	rcr	na	(0700-	(2200-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	
Ą	Ą	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,502	438	7,940	2,695	82	2,777	4,459	-	176	4,635	516	12	528	306	146	160	612	500	-	112	612						
		FRS	5,590	374	5,964	2,134	307	2,441	2,369	322	596	3,287	205	31	236	178	94	75	347	298	-	48	346						
		RES	1,144	83	1,227	391	18	409	714	-	26	740	75	3	78	6	4	3	13	12	-	2	14						
		EXP	1,541	82	1,623	567	29	596	884	-	43	927	96	3	99	-	-	-	0	-	-	-	0						
	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
	P8	All	1,909	104	2,013	1,382	260	1,642	-	-	-	-	309	62	371														
eld	H60	SAR	385	-	385	385	-	385	-	-	-	-	-	-	-									90	-	90	90	-	90
τFi	C-40	-	390	-	390	280	-	280	-	-	-	-	110	-	110														
Aul	C-40 JET_LRG	-	412	99	511	372	99	471	-	-	-	-	25	14	39														
То	tal	•	18,873	1,180	20,053	8,206	795	9,001	8,426	322	841	9,589	1,336	125	1,461	490	244	238	972	810	-	162	972	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arriva	from A	ult	Depart	ure to A	ult
		u							Day		Night		Day		Night							
р	ı#ı	Squadron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	.cre	nac							2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	
Air	Aircraft	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							500	-	112	612	306	146	160	612						
		FRS							298	-	48	346	178	94	75	347						
L		RES							12	-	2	14	6	4	3	13						
OL	H60	SAR															90	-	90	90	-	90
To	tal								1,289	-	810	-	162	972	490	244	238	972	90	-	90	90

Table 6-4 Detailed Annual Flight Operations for the Average Year Alternative 1B

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Ąį	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	4,427	2,776	2,559	9,762	3,633	654	1,086	5,373	2,574	95	2,669	4,695	3,029	7,724	31,307	3,576	7,749	42,632
		FRS	3,614	1,232	756	5,602	3,641	731	1,016	5,388	-	-	0	4,716	1,028	5,744	22,745	2,379	4,231	29,355
		RES	107	42	26	175	532	10	19	561	435	13	448	522	43	565	3,938	56	236	4,230
		EXP	-	-	-	0	535	-	24	559	500	36	536	533	20	553	4,656	-	237	4,893
	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	P8	All					4,271	-	634	4,905	-	-	-	1,849	173	2,022	9,720	-	1,233	10,953
Field	H60	SAR					-	-	-	-	-	-	-	-	-	-	950	-	-	950
프	C-40	-					335	-	-	335	-	-	-	167	-	167	1,282	-	-	1,282
Ault	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	809	-	212	1,021
Tot	al		8,148	4,050	3,341	15,539	12,947	1,395	2,779	17,121	3,509	144	3,653	12,482	4,293	16,775	75,407	6,011	13,898	95,316
	EA18	CVW	4,082	2,551	1,926	8,559											4,888	2,697	2,198	9,783
		FRS	2,369	1,617	863	4,849											2,845	1,711	986	5,542
щ		RES	83	74	32	189											101	78	37	216
OLF	H60	SAR					180	-	-	180							360	-	-	360
Tot	al		6,534	4,242	2,821	13,597	180	-	-	180							8,194	4,486	3,221	15,901
				4,242																
														Grand T	otals		83,601	10,497	17,119	111,217
				/-										(Ault+O	LF)					

Total Annual Ault = 15,539 (50%) EA-18G FCLP OLF = 15,541 (50%) Related Ops Total = 31,080

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 6-5 Summary of Annual Flight Operations for the Average Year Alternative 1C

		Alternative (Average Y Type of Flig				m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	24,900	64,400	89,300	+13,600	+11,400	+25,000
	Other Based	-	11,600	11,600	-	-	-
	Transient	-	2,300	2,300	-	-	-
	Subtotal	24,900	78,300	103,200	+13,600	+11,400	+25,000
OLF Coupeville 4	EA-18G	6,200	-	6,200	+100	-	+100
	Other	-	400	400	-	-	-
	Subtotal	6,200	400	6,600	+100	-	+100
TOTAL (both airfie	lds)	31,100	78,700	109,800	+13,700	+11,400	+25,100

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 780 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

⁵ No Action excludes 900 interfacility Growler operations (FCLP related).

Table 6-6 Detailed Annual Flight Operations for the Average Year Alternative 1C

						Arrival										Interf	acility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	to OLF		Break	(Arri	val from	OLF	Depart	ure to C	DLF	Arrival	from O	L F
		u							Day		Night					Day		Night		Day		Night							
p	Aircraft	Squadron	Day	Night		Day	Night		(0700-		(2200-		Day	Night		(0700	-	(2200-		(0700	L	(2200-		Day	Night		Day	Night	
Airfield	rcr	na	(0700-	(2200-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)		0700)		2200)	1	0700)		(0700-	(2200-		(0700-	(2200-	
Aį	Ai	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,508	445	7,953	2,724	92	2,816	4,474	-	157	4,631	501	4	505	120	59	64	243	199	-	45	244						
		FRS	5,606	356	5,962	2,117	315	2,432	2,398	300	617	3,315	197	19	216	69	40	27	136	120	-	17	137						
		RES	1,139	89	1,228	392	21	413	707	-	30	737	77	1	78	6	3	2	11	9	-	2	11						
		EXP	1,543	81	1,624	565	25	590	888	-	47	935	97	3	100	-	-	-	0	-	-	-	0						
	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
	P8	All	1,929	95	2,024	1,397	267	1,664	-	-	-	-	306	54	360														
ield	H60	SAR	385	-	385	385	-	385	-	-	-	-	-	-	-									90	-	90	90	-	90
ш.	C-40	-	391	-	391	279	-	279	-	-	-	-	112	-	112														
Ault	JET_LRG	-	407	104	511	372	100	472	-	-	-	-	23	14	37														
To	tal		18,908	1,170	20,078	8,231	820	9,051	8,467	300	851	9,618	1,313	95	1,408	195	102	93	390	328	-	64	392	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depai	rture	to Ault		Arriva	from A	ult	Depart	ure to A	ult
		u							Day		Night		Day		Night							
þ	ıfı	Squadron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	.crc	nac							2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	
Ą	Aircraft	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							199	-	45	244	120	59	64	243						
		FRS							120	-	17	137	69	40	27	136						
ш		RES							9	-	2	11	6	3	2	11						
0	H60	SAR															90	-	90	90	-	90
To	tal								328	-	64	392	195	102	93	390	90	-	90	90	_	90

Table 6-6 Detailed Annual Flight Operations for the Average Year Alternative 1C

			Closed I	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Ąį	Aiı	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	7,067	3,828	4,714	15,609	3,633	654	1,086	5,373	2,574	95	2,669	4,695	3,029	7,724	33,495	4,541	9,731	47,767
		FRS	5,827	2,043	1,197	9,067	3,641	731	1,016	5,388	-	-	0	4,716	1,028	5,744	24,691	3,114	4,592	32,397
		RES	102	52	21	175	532	10	19	561	435	13	448	522	43	565	3,921	65	241	4,227
		EXP	-	-	-	0	535	-	24	559	500	36	536	533	20	553	4,661	-	236	4,897
	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	P8	All					4,069	-	600	4,669	-	-	-	1,761	160	1,921	9,462	-	1,176	10,638
Field	H60	SAR					-	-	-	-	-	-	-	-	-	-	950	-	-	950
Ault F	C-40	-					327	-	-	327	-	-	-	164	-	164	1,273	-	-	1,273
Αn	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	802	-	218	1,020
Tot	al		12,996	5,923	5,932	24,851	12,737	1,395	2,745	16,877	3,509	144	3,653	12,391	4,280	16,671	79,255	7,720	16,194	103,169
	EA18	CVW	1,609	1,026	769	3,404											1,928	1,085	878	3,891
		FRS	920	680	303	1,903											1,109	720	347	2,176
щ		RES	65	43	30	138											80	46	34	160
OLF	H60	SAR					181	-	-	181							361	-	-	361
Tot	al		2,594	1,749	1,102	5,445	181	-	-	181							3,478	1,851	1,259	6,588
														Grand T			82,733	9,571	17,453	109,757
														(Ault+O	LF)					

Total Annual Ault = 24,851 (80%) EA-18G FCLP OLF = 6,227 (20%) Related Ops Total = 31,078

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 6-7 Summary of Annual Flight Operations for the Average Year Alternative 1D

	Aircraft Type or	Alternative : (Average Ye Type of Fligh	ar)	-	Change from	n No Action ht Operation	-
Airfield	Category	FCLP 2, 3	Other ⁴	Total	FCLP 2, 5	Other	Total
Ault Field	EA-18G	9,200	66,600	75,800	-2,100	+13,600	+11,500
	Other Based	-	11,900	11,900	-	+300	+300
	Transient	-	2,300	2,300	-	-	-
	Subtotal	9,200	80,800	90,000	-2,100	+13,900	+11,800
OLF Coupeville 4	EA-18G	21,800	-	21,800	+15,700	-	+15,700
	Other	-	400	400	-	-	-
	Subtotal	21,800	400	22,200	+15,700	-	+15,700
TOTAL (both airfie	lds)	31,000	81,200	112,200	+13,600	+13,900	+27,500

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 2,716 interfacility (FCLP-related) operations; not shown separately.

For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 6-8 Detailed Annual Flight Operations for the Average Year Alternative 1D

						Arrival										Interf	acility	/											
									Overhe	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture i	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
field	Aircraft	Squadron	Day (0700-	Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)			Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		-	Night (2200-	
Air	Air	Sqı	2200)	0700)	Total	•	0700)	Total	DL	DK	DK	Total	•	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,592	419	8,011	2,751	86	2,837	4,463	-	184	4,647	517	11	528	423	186	244	853	689	-	164	853						
		FRS	5,627	384	6,011	2,158	315	2,473	2,376	320	594	3,290	218	31	249	255	135	104	494	428	-	67	495						
		RES	1,161	75	1,236	386	21	407	721	-	27	748	76	5	81	5	4	2	11	11	-	2	13						
Б		EXP	1,562	79	1,641	573	20	593	885	-	43	928	118	3	121	-	-	-	0	-	-	-	0						
Fie	EP3	All	-	-	0	-	-	0	-	-		0	-	-	0														
井	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
⋖	P8	All	1,937	100	2,037	1,393	272	1,665	-	-	-	-	311	61	372														
	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									91	1	91	91	-	91
	C-40	-	394	-	394	282	-	282	-	-	-	-	112	-	112														
	JET_LRG	-	413	102	515	382	99	481	-	-	-	-	25	9	34														
To	tal		19,074	1,159	20,233	8,313	813	9,126	8,445	320	848	9,613	1,377	120	1,497	683	325	350	1,358	1,128	-	233	1,361	91	-	91	91	-	91

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depai	rture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		u							Day		Night		Day		Night							
þ	aft	dron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	Aircraft	Squadr							2200)		0700)		2200)		0700)			(2200-		(0700-		
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							689	-	164	853	423	186	244	853						
щ		FRS							428	-	67	495	255	135	104	494						
OLF		RES							11	-	2	13	5	4	2	11						
	H60	SAR															91	-	91	91	-	91
To	tal								1,128	-	233	1,361	683	325	350	1,358	91	-	91	91	-	91

Table 6-8 Detailed Annual Flight Operations for the Average Year Alternative 1D

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	4		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	2,630	1,649	1,521	5,800	3,633	654	1,086	5,373	2,574	95	2,669	4,695	3,029	7,724	29,967	2,489	6,839	39,295
		FRS	2,037	693	480	3,210	3,641	731	1,016	5,388	-	-	0	4,716	1,028	5,744	21,456	1,879	4,019	27,354
		RES	141	38	30	209	532	10	19	561	435	13	448	522	43	565	3,990	52	237	4,279
<u> </u>		EXP	-	-	-	0	535	-	24	559	500	36	536	533	20	553	4,706	-	225	4,931
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	_	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,160	-	675	4,835	-	-	-	1,794	190	1,984	9,595	-	1,298	10,893
	H60	SAR					-	-	-	_	-	-	-	-	-	-	958	-	-	958
	C-40	-					328	-	-	328	-	-	-	164	-	164	1,280	-	-	1,280
	JET_LRG	-					-	-	-	_	-	-	-	-	-	-	820	-	210	1,030
Tota	al		4,808	2,380	2,031	9,219	12,829	1,395	2,820	17,044	3,509	144	3,653	12,424	4,310	16,734	72,772	4,420	12,828	90,020
	EA18	CVW	5,656	3,366	2,907	11,929											6,768	3,552	3,315	13,635
OLF		FRS	3,394	2,363	1,163	6,920											4,077	2,498	1,334	7,909
0		RES	80	77	25	182											96	81	29	206
	H60	SAR					184	-	-	184							366	-	-	366
Tota	al		9,130	5,806	4,095	19,031	184	-	-	184							11,307	6,131	4,678	22,116
														Grand To	otals		84,079	10,551	17,506	112,136
														(Ault+Ol	LF)					

Total Annual Ault = 9,219 (29.8%)
EA-18G FCLP OLF = 21,750 (70.2%)
Related Ops Total = 30,969

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 6-9 Summary of Annual Flight Operations for the Average Year Alternative 1E

		Alternative (Average Y Type of Flig			_ ,	m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	21,700	64,800	86,500	+10,400	+11,800	+22,200
	Other Based	-	11,600	11,600	-	-	-
	Transient	-	2,300	2,300	-	-	-
	Subtotal	21,700	78,700	100,400	+10,400	+11,800	+22,200
OLF Coupeville 4	EA-18G	9,300	-	9,300	+3,200	-	+3,200
	Other	-	400	400	-	-	-
	Subtotal	9,300	400	9,700	+3,200	-	+3,200
TOTAL (both airfie	lds)	31,000	79,100	110,100	+13,600	+11,800	+25,400

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 1,174 interfacility (FCLP-related) operations; not shown separately.

For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 6-10 Detailed Annual Flight Operations for the Average Year Alternative 1E

						Arrival										Interf	acility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture 1	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
P	Aircraft		Day	Night (2200		Day	Night		Day (0700-		Night (2200-		Day	Night		Day (0700		Night (2200-		Day (0700-		Night (2200-		-	Night		Day	Night	
į	icc	dna	(0700-	-		(0700-	(2200-		2200)		0700)	_		(2200-		2200)		0700)		2200)		0700)		(0700-			•	(2200-	
<		S		0700)		2200)				DK	DK	Total	2200)			DL	DK	DK	Total			DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,508	445	7,953	2,724	92	2,816	4,474	-	157	4,631	501	4	505	180	89	96	365	299	-	68	367						
		FRS	5,606	356	5,962	2,117	315	2,432	2,398	300	617	3,315	197	19	216	104	60	41	205	180	-	26	206						
		RES	1,139	89	1,228	392	21	413	707	-	30	737	77	1	78	9	5	3	17	14	-	3	17						
7	,	EXP	1,543	81	1,624	565	25	590	888	-	47	935	97	3	100	-	-	-	0	-	-	-	0						
9	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
±	P3 P8	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
<	P8	All	1,929	95	2,024	1,397	267	1,664	-	-	-	-	306	54	360														
	H60	SAR	385	-	385	385	-	385	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	391	-	391	279	-	279	-	-	-	-	112	-	112														
	JET_LRG	-	407	104	511	372	100	472	-	-	-	-	23	14	37														
Т	otal		18,908	1,170	20,078	8,231	820	9,051	8,467	300	851	9,618	1,313	95	1,408	293	154	140	587	493	-	97	590	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depai	rture	to Ault		Arrival	from Au	ılt	Depart	ure to A	ult
		u							Day		Night		Day		Night							
p	##	dron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
£;	Aircraft	Squadr							2200)		0700)		2200)		0700)			(2200-		(0700-		
Ą	Ąi	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							299	-	68	367	180	89	96	365					<u> </u>	
щ		FRS							180	-	26	206	104	60	41	205					<u> </u>	
OLF		RES							14	-	3	17	9	5	3	17						
	H60	SAR															90	-	90	90	-	90
To	tal								493	-	97	590	293	154	140	587	90	-	90	90	-	90

Table 6-10 Detailed Annual Flight Operations for the Average Year Alternative 1E

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Aii	Aiı	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	6,184	3,350	4,125	13,659	3,633	654	1,086	5,373	2,574	95	2,669	4,695	3,029	7,724	32,772	4,093	9,197	46,062
		FRS	5,099	1,788	1,047	7,934	3,641	731	1,016	5,388	-	-	0	4,716	1,028	5,744	24,058	2,879	4,465	31,402
		RES	89	46	18	153	532	10	19	561	435	13	448	522	43	565	3,916	61	240	4,217
Б		EXP	-	-	-	0	535	-	24	559	500	36	536	533	20	553	4,661	-	236	4,897
Fie	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault Field	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,069	-	600	4,669	-	-	-	1,761	160	1,921	9,462	-	1,176	10,638
	H60	SAR					-	-	-	-	-	-	-	-	-	-	950	-	-	950
	C-40	-					327	-	-	327	-	-	-	164	-	164	1,273	-	-	1,273
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	802	-	218	1,020
Tota	al		11,372	5,184	5,190	21,746	12,737	1,395	2,745	16,877	3,509	144	3,653	12,391	4,280	16,671	77,894	7,033	15,532	100,459
	EA18	CVW	2,414	1,539	1,154	5,107											2,893	1,628	1,318	5,839
OLF		FRS	1,380	1,020	455	2,855											1,664	1,080	522	3,266
0		RES	98	65	45	208											121	70	51	242
	H60	SAR					181	-	-	181							361	-	-	361
Tota	al		3,892	2,624	1,654	8,170	181	-	-	181							5,039	2,778	1,891	9,708
					·															
														Grand T	otals		82,933	9,811	17,424	110,167
														(Ault+O	LF)					

Total Annual Ault = 21,746 (69.9%) EA-18G FCLP OLF = 9,347 (30.1%) Related Ops Total = 31,093

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

6.1.1 Standard Pattern

The Proposed Action involves modifications to the FCLP patterns at OLF Coupeville primarily due to the non-standard pattern on Runway 14. The narrower pattern on Runway 14 requires an unacceptably steep bank angle for the Growler due to its performance differences from the Prowler's flight capabilities, resulting in limited use of Runway 14. The modifications of the FCLP patterns will also maintain the same pattern for both day and night operations as opposed to the current operations, which change the pattern between day and night. A comparison of the current and proposed (for all alternatives) FCLP patterns is provided in Figure 6-1 for Runway 14 and Figure 6-2 for Runway 32. The proposed flight profile will be similar to the current one, with the downwind leg having a 600-foot altitude relative to the runway. These new patterns will be used to improve the standardization of training and enable greater use of Runway 14. The standard FCLP patterns will result in runway use percentages based on the prevailing winds rather than aircraft performance and quality of training.

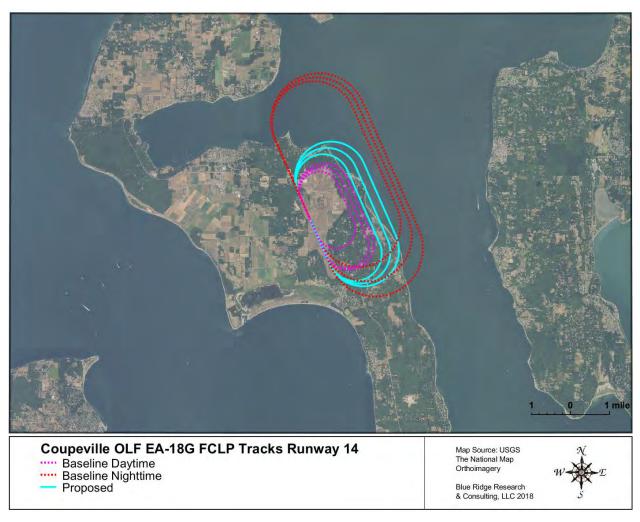


Figure 6-1 Comparison of Baseline and Proposed FCLP Pattern for Runway 14 at OLF Coupeville

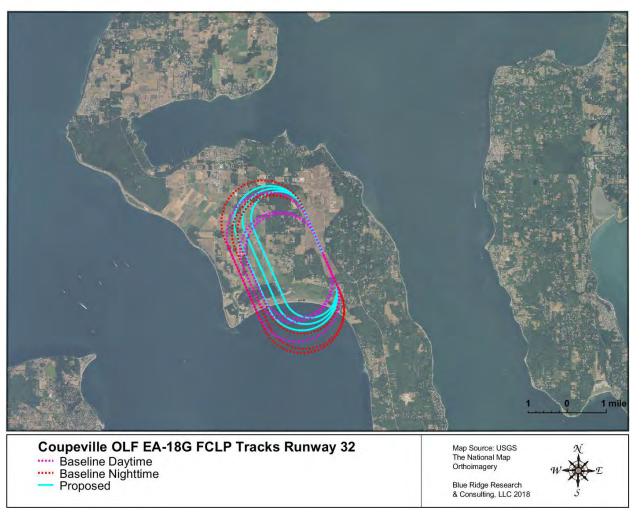


Figure 6-2 Comparison of Baseline and Proposed FCLP Pattern for Runway 32 at OLF Coupeville

6.2 Other Modeling Parameters

Appendix A3 contains tables of runway utilization percentages as extracted from the NASMOD study output. Flight tracks and their utilization would be identical to the No Action Alternative except for the overhead break/pattern portion of the interfacility arrival tracks to the OLF and the FCLPs at the OLF. The primary changes in these tracks are the abeam distances (shortened compared to the No Action Alternative). Modeled flight tracks are depicted in Appendix A4.

Flight profiles would be identical to those of the No Action Alternative except for the adjustments made to the aforementioned revised overhead break/pattern and FCLP flight tracks. The representative profiles for each modeled aircraft type are contained in Appendix A5.

Depending on whether scenario A, B, C, D, or E is selected, Alternative 1 would have between approximately 180 and 198 AAD flight events at Ault Field and between approximately 11 and 39 AAD flight events at the OLF. For the high-tempo FCLP year, Alternative 1 would have between approximately 181 and 201 AAD flight events at Ault Field and between approximately 12 and 43 AAD flight events at the OLF.

6.3 Run-up Operations

Table 6-11 lists the modeled run-ups with their locations depicted on Figure 5-1. For average year Alternative 1, numbers of annual run-up events for the EA-18G were scaled proportionally to the change in number of based aircraft compared to the average year No Action Alternative.

For the high-tempo FCLP year Alternative 1, it was assumed the run-ups would not change compared to those of average year Alternative 1.

Table 6-11 Modeled Run-Up Operations and Profiles for Alternatives 1 through 3

Modeled Maintenance Run-up Operations at NAS Whidbey Island for No Action Max Year and Average Year Scenario

				VAS Willubey is	Alterna				age During		ting		
Aircraft Type	Engine Type	Run-up Type	Pad ID	Magnetic Heading (degrees)	1	2	3	Day (0700 - 2200)	Night (2200 - 0700)	Reported	Modeled (if different)	Duration of Each Event (Minutes)	No. of Engines Running (each event)
EA-18G	F414-GE- 400	Water Wash	Lo-Pwr1 Lo-Pwr2 Lo-Pwr3 (2)	135/315	117	118	118	45%	55%	Ground Idle	65% NC	10	1
		Low	Lo-Pwr1 Lo-Pwr2	135/315	1755	1770	1770	45%	55%	Ground Idle	65% NC	30	1
			Lo-Pwr3 (2)		3510	3540	3540			Ground Idle	65% NC	30	2
		High Power	50% Hi- Pwr1 / 50%	311 (Hi- Pwr1) / 127	936	944	944	90%	10%	Ground Idle	65% NC	25	2
			Hi-Pwr2	(Hi-Pwr2)						80%NC	80% NC	10	2
										Mil	96% NC	3	2
										AB	A/B	3	2
P-8A	CFM56- 7B-24	Leak Check	50% Lo- Pwr4 /	126	24			75%	25%	5400 Lbs		5	2
		Pressure Check	50% Lo- Pwr5	126	12					5400 Lbs		12	2
		Leak Check	Runway Hold ⁽³⁾	100 (Rwy14); 270 (Rwy25);	24					5400 Lbs		5	2
		Pressure Check		330 (Rwy32); 140 (Rwy07)	12					5400 Lbs		12	2

Notes:

¹ EA-18G events increase proportionally with number of aircraft for Alternatives

² Run-up events split 50% Lo-Pwr1, 30% Lo-Pwr2, and 20% Lo-Pwr3

³ Runway Hold Run-ups split 50% Runway 32, 40% Runway 25, 5% Runway 07, and 5% Runway 14

6.4 Aircraft Noise Exposure

Using the data described in Sections 6.1 through 6.3, NOISEMAP was used to calculate and plot the 55 dB through 95 dB DNL contours, in 5-dB increments, for the AAD events for the average year for Alternative 1 under all scenarios. Figures 6-3 through 6-7 show the resulting DNL contours.

At Ault Field, the DNL contours for the average year for Alternatives 1 under all scenarios would vary by roughly 1,000 feet of each other. The 65 dB contour surrounding Ault Field would extend approximately 7 to 13 miles from the runway endpoints. The location of these lobes would be primarily attributable to the EA-18G on the approach portion of GCA patterns. The 65 dB DNL contour would extend approximately 2 miles past the eastern shore of the mainland across Skagit Bay, primarily due to EA-18G GCA and VFR approaches. The 80 dB DNL contour would extend approximately 4 miles to the east outside the station boundary, primarily due to EA-18G GCA and VFR approaches descending from 1,800 feet AGL, as well as the GCA patterns. The 90 dB contour would extend approximately a half mile to the east beyond the station boundary.

The DNL exposure at the OLF would be attributable to the OLF's FCLP operations. The 65 dB contours would extend 2.2 to 2.8 miles north of the OLF's runway. The 65 dB contours would extend 2.5 to 3.1 miles south of the OLF's runway.

As an overview comparison map, Figure 6-8 compares the 65 dB DNL contours of the average year Alternative 1 under all scenarios to the 65 dB DNL contours of the No Action Alternative. Because FCLPs comprise the majority of operations at the OLF, changes in location of FCLPs between Ault Field and OLF cause a larger difference in DNL contours at the OLF from one scenario to the next.

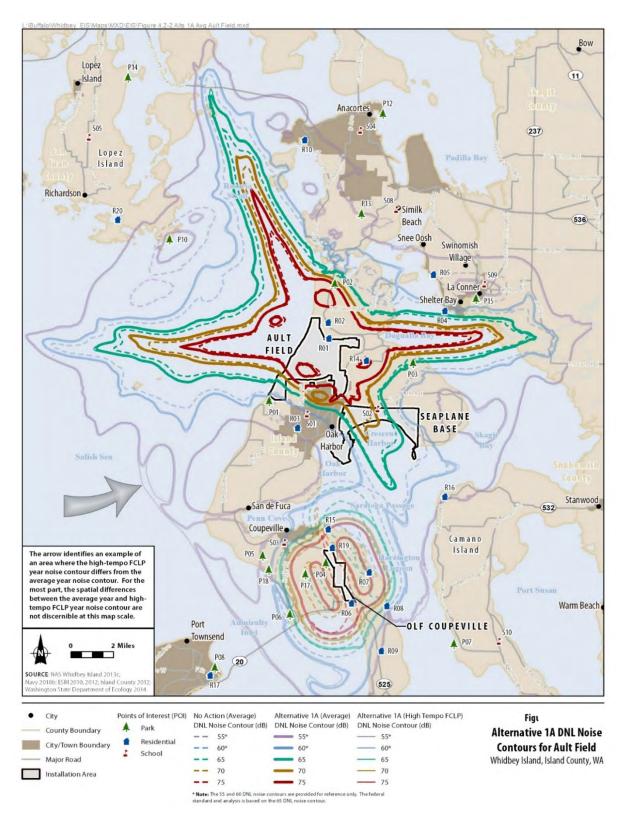


Figure 6-3 DNL Contours for AAD Aircraft Events for the Average Year Alternative 1A

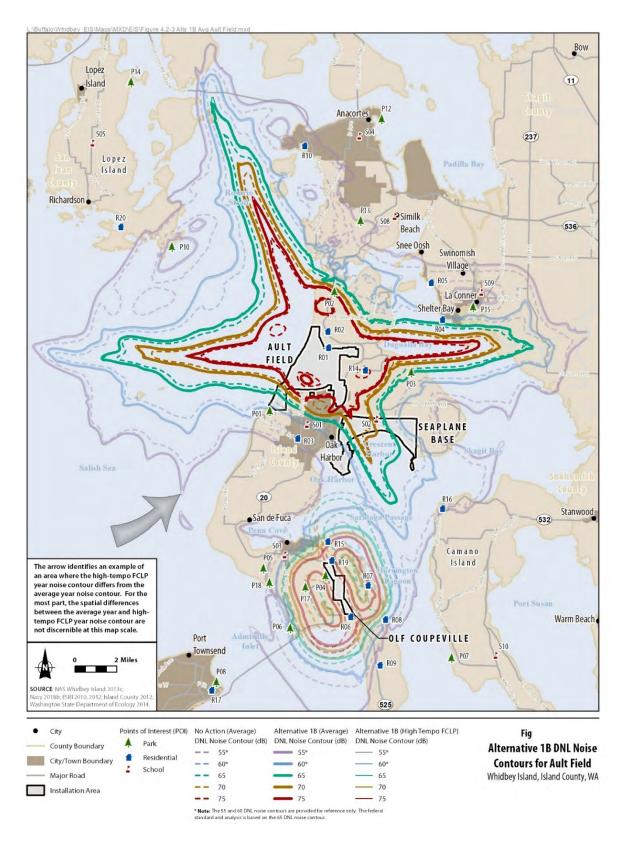


Figure 6-4 DNL Contours for AAD Aircraft Events for the Average Year Alternative 1B

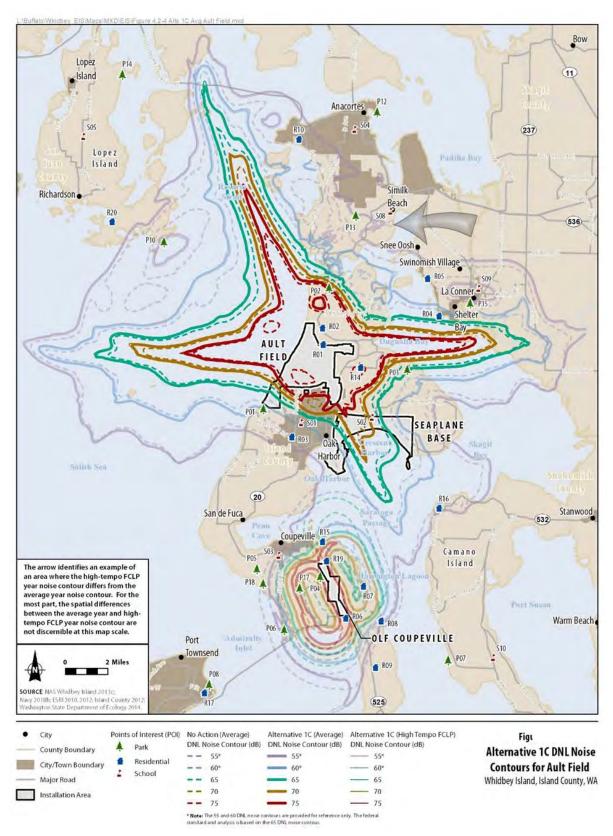


Figure 6-5 DNL Contours for AAD Aircraft Events for the Average Year Alternative 1C

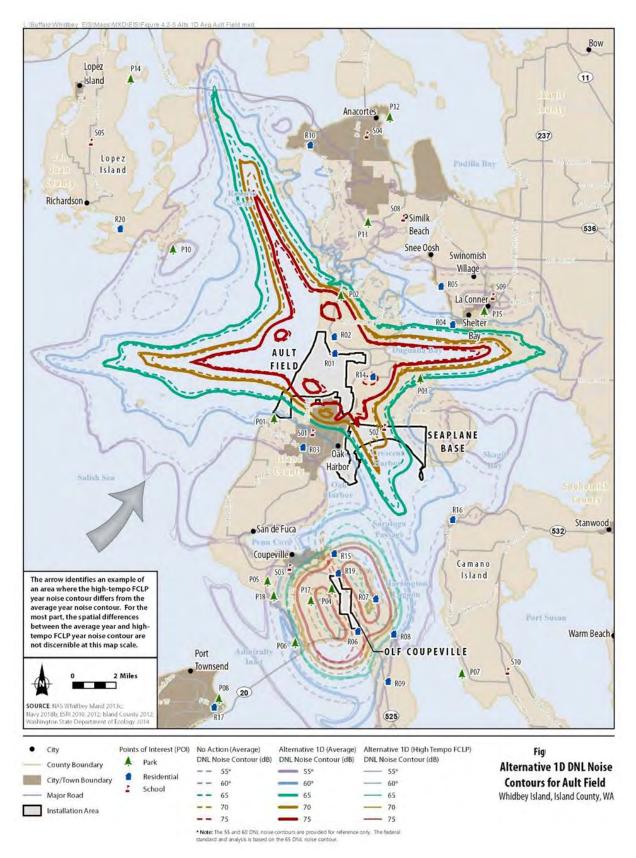


Figure 6-6 DNL Contours for AAD Aircraft Events for the Average Year Alternative 1D

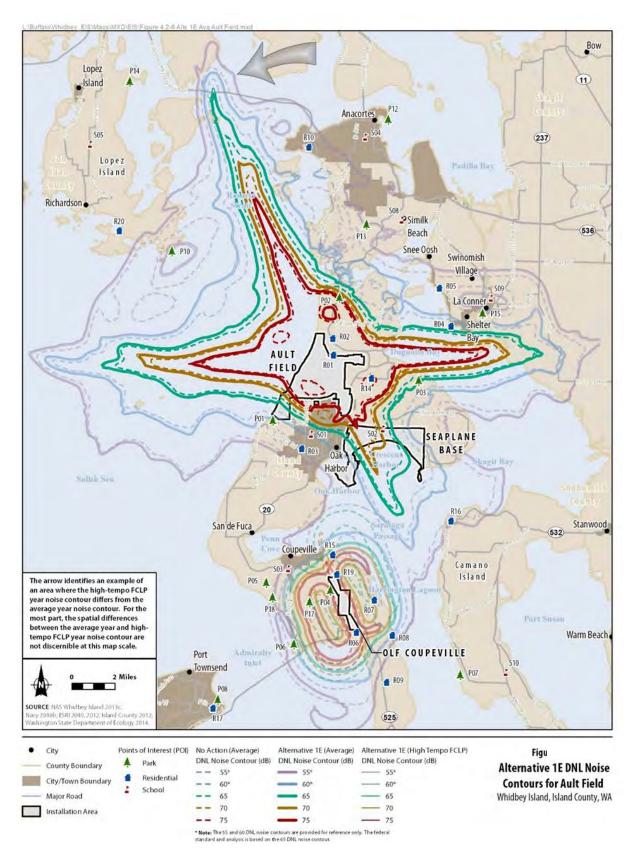


Figure 6-7 DNL Contours for AAD Aircraft Events for the Average Year Alternative 1E

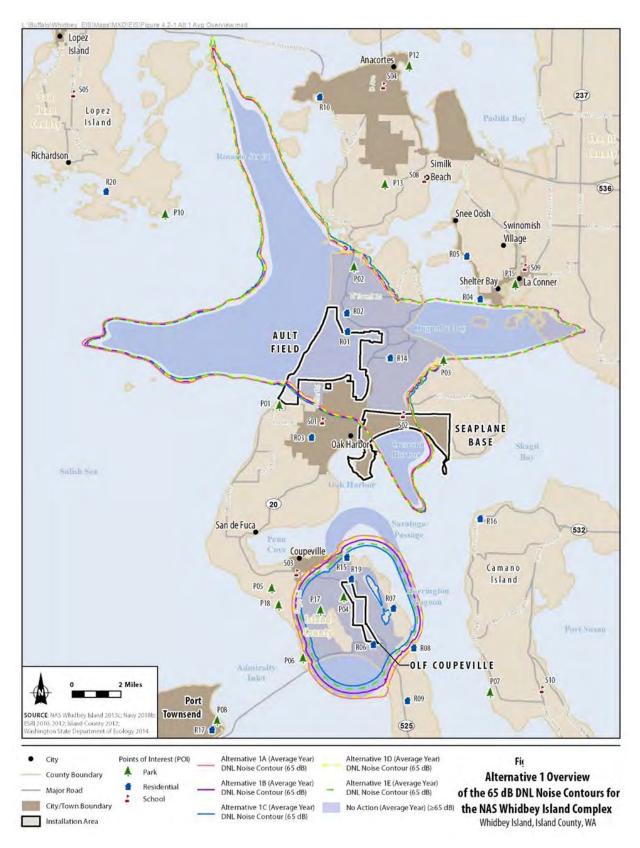


Figure 6-8 Comparison of 65 dB DNL Contours for Average Year Alternatives and the No Action Alternative

Table 6-12 depicts the estimated off-station population exposed to DNL greater than or equal to 65 dB and its change compared to the No Action Alternative. Overall, the affected population would increase by 13 percent to 17 percent, with the smallest increase occurring under Alternative 1, Scenario A, and the largest under Alternative 1, Scenarios B and E.

Under the high-tempo FCLP year Alternative 1 (Appendix A7), the population exposed to DNL greater than or equal to 65 dB would increase by 15 percent to 19 percent, with the smallest increase occurring under high-tempo FCLP year Alternative 1, Scenario A, and the largest attributable to high-tempo FCLP year Alternative 1, Scenarios C and E. As shown in Table 6-13, the population exposed to DNL greater than or equal to 65 dB would, on average, be 2 percent higher than the average year Alternative 1.

Table 6-12 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 1 (Average Year)^{2,3}

				DNL Cont	our Ranges			
					Greater th	nan or		
	65 to <70	dB DNL	70 to <75	dB DNL	equal to 7	5 dB DNL	Total	
	Area		Area		Area		Area	
	(acres)	Pop ⁴	(acres)	Pop⁴	(acres)	Pop ⁴	(acres)	Pop ⁴
Ault Field								
No Action Alternative								
Average Year	3,596	3,279	3,269	2,283	5,549	3,379	12,414	8,941
Alternative 1								
Scenario A (20/80 FCLP split)	4,033	3,684	3,259	1,908	5,934	3,518	13,226	9,110
	(+437)	(+405)	(-10)	(-375)	(+385)	(+139)	(+812)	(+169)
Scenario B (50/50 FCLP split)	3,922	3,619	3,271	2,450	6,423	3,786	13,616	9,855
	(+326)	(+340)	(+2)	(+167)	(+874)	(+407)	(+1,202)	(+914)
Scenario C (80/20 FCLP split)	3,947	3,761	3,115	2,515	6,860	3,977	13,922	10,253
	(+351)	(+482)	(-154)	(+232)	(+1,311)	(+598)	(+1,508)	(+1,312)
Scenario D (30/70 FCLP split)	3,976	3,712	3,184	2,171	6,235	3,679	13,395	9,562
	(+380)	(+433)	(-85)	(-112)	(+686)	(+300)	(+981)	(+621)
Scenario E (70/30 FCLP split)	3,924	3,713	3,139	2,487	6,755	3,919	13,818	10,119
	(+328)	(+434)	(-130)	(+204)	(+1,206)	(+540)	(+1,404)	(+1,178)
OLF Coupeville								
No Action Alternative								
Average Year	3,681	861	3,088	786	638	583	7,407	2,230
Alternative 1								
Scenario A (20/80 FCLP split)	1,562	573	3,248	936	5,387	1,957	10,197	3,466
	(-2,119)	(-288)	(+160)	(+150)	(+4,749)	(+1,374)	(+2,790)	(+1,236)
Scenario B (50/50 FCLP split)	2,015	542	3,451	1,061	4,025	1,531	9,491	3,134
	(-1,666)	(-319)	(+363)	(+275)	(+3,387)	(+948)	(+2,084)	(+904)
Scenario C (80/20 FCLP split)	3,447	1,041	3,180	1,036	1,465	691	8,092	2,768
	(-234)	(+180)	(+92)	(+250)	(+827)	(+108)	(+685)	(+538)
Scenario D (30/70 FCLP split)	1,588	531	3,387	992	5,032	1,850	10,007	3,373
	(-2,093)	(-330)	(+299)	(+206)	(+4,394)	(+1,267)	(+2,600)	(+1,143)
Scenario E (70/30 FCLP split)	3,014	855	3,198	1,058	2,580	1,018	8,792	2,931
	(-667)	(-6)	(+110)	(+272)	(+1,942)	(+435)	(+1,385)	(+701)

Table 6-12 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 1 (Average Year)²,³

	DNL Contour Ranges									
	65 to <70 dB DNL		70 to <75 dB DNL		Greater than or equal to 75 dB DNL		Total			
	Area (acres)	Pop⁴	Area (acres)	Pop⁴	Area (acres)	Pop⁴	Area (acres)	Pop⁴		
NAS Whidbey Island Complex	(
No Action Alternative										
Average Year	7,277	4,140	6,357	3,069	6,187	3,962	19,821	11,171		
Alternative 1										
Scenario A (20/80 FCLP split)	5,595	4,257	6,507	2,844	11,321	5,475	23,423	12,576		
	(-1,682)	(+117)	(+150)	(-225)	(+5,134)	(+1,513)	(+3,602)	(+1,405)		
Scenario B (50/50 FCLP split)	5,937	4,161	6,722	3,511	10,448	5,317	23,107	12,989		
	(-1,340)	(+21)	(+365)	(+442)	(+4,261)	(+1,355)	(+3,286)	(+1,818)		
Scenario C (80/20 FCLP split)	7,394	4,802	6,295	3,551	8,325	4,668	22,014	13,021		
	(+117)	(+662)	(-62)	(+482)	(+2,138)	(+706)	(+2,193)	(+1,850)		
Scenario D (30/70 FCLP split)	5,564	4,243	6,571	3,163	11,267	5,529	23,402	12,935		
	(-1,713)	(+103)	(+214)	(+94)	(+5,080)	(+1,567)	(+3,581)	(+1,764)		
Scenario E (70/30 FCLP split)	6,938	4,568	6,337	3,545	9,335	4,937	22,610	13,050		
	(-339)	(+428)	(-20)	(+476)	(+3,148)	(+975)	(+2,789)	(+1,879)		

Notes:

- ¹ All five scenarios are outlined in Section 2.3.3, where the split represents the percent of FCLPs conducted at Ault Field and OLF Coupeville, respectively (i.e., 20/80 FCLP split = 20 percent of FCLPs at Ault Field and 80 percent of FCLPs at OLF Coupeville).
- ² Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- ³ The difference between the No Action Alternative and Alternative 1 is noted in parentheses.
- Population counts of people within the DNL contour ranges were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour range, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contour ranges (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas within the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall within the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁵ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level FCLP = Field Carrier Landing Practice

Table 6-13 Percent Difference in the Estimated Acreage and Population within the Average and High-Tempo FCLP Year DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 1

	DNL Contour Ranges ¹										
	65 to <70 dB DNL		70 to <75 dB DNL		Greater than or equal to 75 dB DNL		Total				
	Area		Area		Area		Area				
DNL Contours	(acres)	Рор	(acres)	Pop	(acres)	Pop	(acres)	Рор			
Ault Field											
Scenario A	0.8%	0.2%	0.6%	3.4%	1.2%	0.9%	0.9%	1.1%			
Scenario B	1.3%	1.3%	0.1%	2.2%	1.6%	1.1%	1.2%	1.4%			
Scenario C	1.3%	2.5%	<0.0%	2.0%	2.2%	2.2%	1.4%	2.2%			
Scenario D	0.5%	0.6%	0.6%	2.6%	1.2%	1.0%	0.9%	1.2%			
Scenario E	1.6%	2.1%	-0.1%	2.4%	2.1%	1.8%	1.4%	2.1%			
OLF Coupeville											
Scenario A	1.3%	6.9%	-5.7%	-7.0%	6.0%	4.9%	1.5%	2.0%			
Scenario B	-5.8%	-9.1%	0.5%	2.3%	4.7%	4.0%	0.9%	1.1%			
Scenario C	0.2%	-0.2%	0.1%	0.2%	2.2%	1.3%	0.5%	0.4%			
Scenario D	-2.0%	4.7%	-3.6%	-5.0%	6.1%	5.2%	1.6%	2.1%			
Scenario E	-0.6%	-0.8%	-0.1%	-1.0%	1.4%	2.0%	0.2%	0.1%			
NAS Whidbey Island Complex											
Scenario A	0.9%	1.1%	-2.5%	-<0.1%	3.5%	2.3%	1.2%	1.4%			
Scenario B	-1.1%	-<0.1%	0.3%	2.2%	2.8%	1.9%	1.1%	1.4%			
Scenario C	0.8%	1.9%	0.1%	1.5%	2.2%	2.1%	1.1%	1.8%			
Scenario D	-0.2%	1.1%	-1.6%	0.3%	3.4%	2.4%	1.2%	1.5%			
Scenario E	0.6%	1.6%	-0.1%	1.4%	1.9%	1.9%	1.0%	1.6%			

Key:

dB = decibel

DNL = day-night average sound level

NAS = Naval Air Station
OLF = outlying landing field

6.4.1 Points of Interest

Figure 6-9 shows the DNL for each POI and compares the DNLs for this alternative's scenarios and the No Action Alternative. Under the average year for Alternative 1 under all scenarios, 12 POIs would experience DNL greater than or equal to 65 dB, and five to six residential POIs would experience DNL greater than or equal to 75 dB. Three of the latter category would be near Ault Field (R01, R02, and R14), and three would be near the OLF (R06, R07, and R19). One of the seven schools, POI S02, would experience DNL greater than or equal to 65 dB—i.e., 69 dB.

For all scenarios under Alternative 1, an increase in DNL would be greatest for Alternative 1, Scenario A, and smallest for Alternative 1, Scenario C. Increases in DNL would range from 1 to 16 dB compared to the No Action Alternative. POIs R06 and R07 would experience the greatest increases in DNL of up to 10 and 16 dB, respectively. POI R07 would be newly impacted, with DNL of 70 to 75 dB. POI R15 would also be newly impacted, with DNL of 67 to 73 dB.

See Appendix A6 for lists of the five flight profiles with the greatest SEL at each POI.

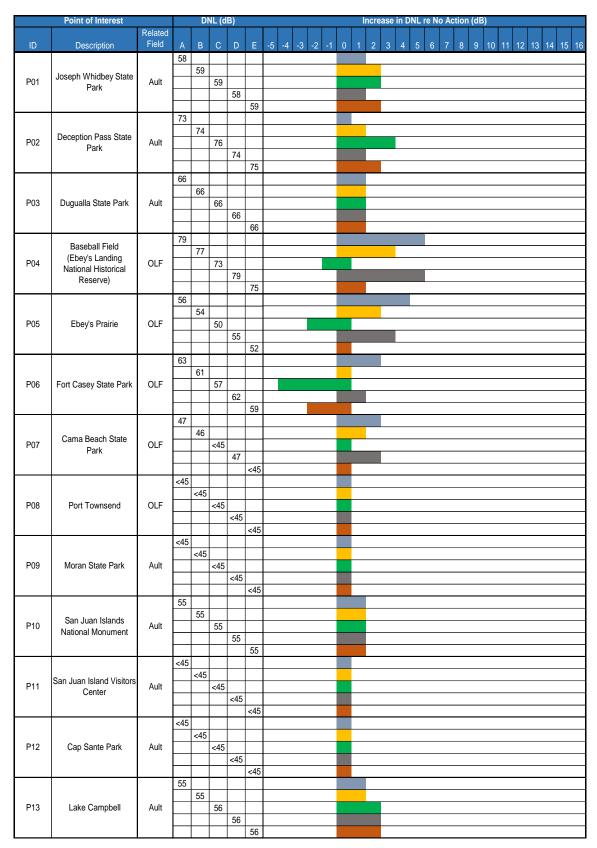


Figure 6-9 Estimated Aircraft DNL at POIs for the Average Year Alternative 1

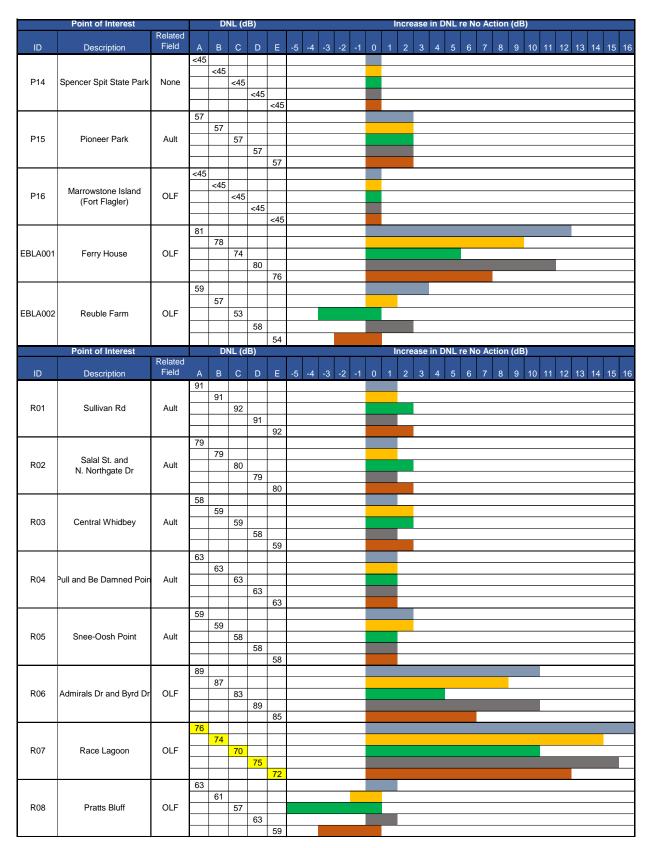


Figure 6-9 Estimated Aircraft DNL at POIs for the Average Year Alternative 1 (continued)

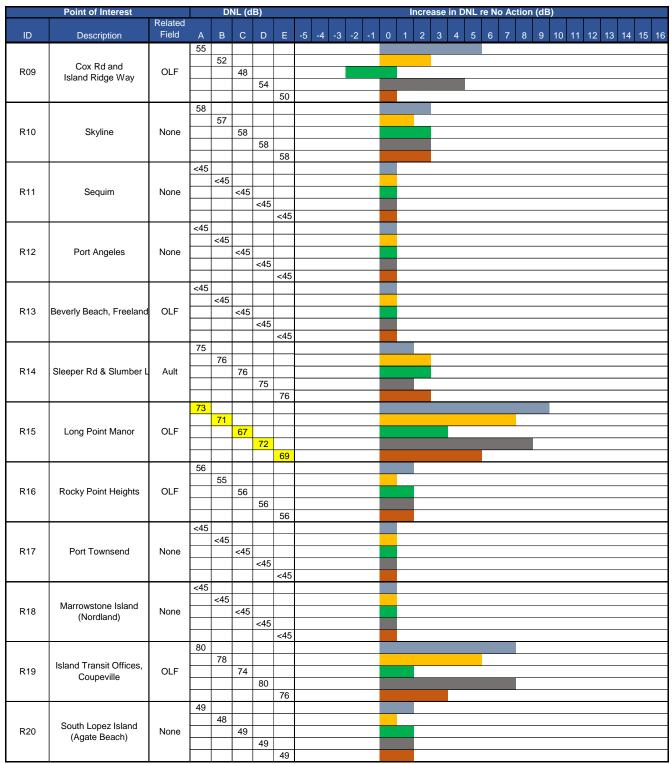


Figure 6-9 Estimated Aircraft DNL at POIs for the Average Year Alternative 1 (continued)

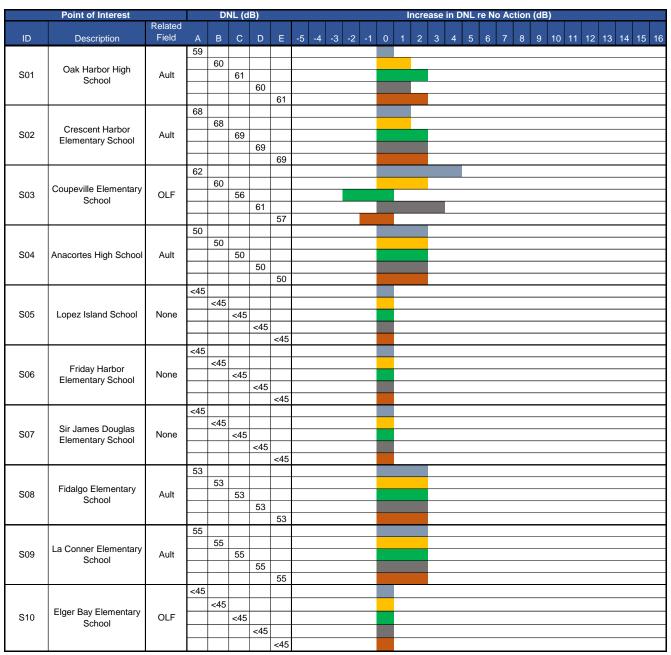


Figure 6-9 Estimated Aircraft DNL at POIs for the Average Year Alternative 1 (concluded)

Under the high-tempo FCLP year Alternative 1 for all scenarios (Appendix A7), 12 POIs would experience DNL greater than or equal to 65 dB, and five or six residential POIs would experience DNL greater than or equal to 75 dB. Three of the latter category would be near Ault Field (POIs R01, R02, and R14), and three would be near the OLF (POIs R06, R07, and R19). One of the seven schools, POI S02, would experience DNL greater than or equal to 65 dB--i.e., 69 dB.

Under the high-tempo FCLP year Alternative for all scenarios, the increase in DNL would be greatest for Alternative 1, Scenario A, and least for Alternative 1, Scenario C. Increases in DNL would range from 1 to 15 dB compared to the high-tempo FCLP year No Action Alternative. POIs R06 and R07 would experience the greatest increases in DNL, up to 11 and 15 dB, respectively. POI R07 would be newly impacted, with DNL of 70 to 76 dB.

6.4.2 Potential Hearing Loss

Table 6-14 shows estimates of the populations within 1-dB bands of $L_{eq(24h)}$ and their associated NIPTS for the average year Alternative 1. The level at which there may be a noticeable NIPTS would be at the 84 to 85 dB $L_{eq(24)}$ range and above. There is an increase in the population within the 80 dB DNL noise contour (i.e., potential at-risk population) under Alternative 1 at both Ault Field and OLF Coupeville. The largest increase in the potential at-risk population in the vicinity of Ault Field would be under Scenario C (47 additional people) and in the vicinity of OLF Coupeville would be under Scenario A (45 additional people). The range of potential NIPTS could be up to 9.5 dB at Ault Field and 6.0 dB at OLF Coupeville. The potential NIPTS values presented in Table 6-14 are only applicable in the extreme case of continuous outdoor exposure at one's residence to all aircraft events occurring over a period of 40 years. Because it is highly unlikely for any individuals to meet all those criteria, the actual potential NIPTS for individuals would be far less than the values reported here.

The USEPA guidelines provided information on the estimated NIPTS exceeded by the 10 percent of the population most sensitive to noise. Using the same 1 dB incremental data in Tables 4-2 through 4-9 and the column identified as the 10th Percentile NIPTS, those individuals are vulnerable to noticeable NIPTS at the 77 to 78 dB $L_{eq(24)}$ range and above. Using this even more conservative estimate, the range of potential NIPTS could be up to 18.0 dB for the most noise-sensitive population around Ault Field and up to 12.0 dB for the most noise-sensitive population around OLF Coupeville.

Table 6-14 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level (Leq) under Alternative 1 at NAS Whidbey Island Complex (Average Year)

			Estimated P	opulation	4,5,6									
			Ault Field						OLF Coupev	ille				
Band of L _{eq(24)} (dB) ¹	Avg NIPTS (dB) ^{2,3}	10 th Pct NIPTS (dB) ^{2,}	No Action	Alt 1A	Alt 1B	Alt 1C	Alt 1D	Alt 1E	No Action	Alt 1A	Alt 1B	Alt 1C	Alt 1D	Alt 1E
75-76	1.0	4.0	0	0	3	38	0	30	31	141	73	32	125	39
				(0)	(+3)	(+38)	(0)	(+30)		(+110)	(+42)	(+1)	(+94)	(+8)
76-77	1.0	4.5	123	176 (+53)	393 ⁷ (+270)	561 ⁸ (+438)	214 (+91)	507 ⁹ (+384)	45	168 (+123)	94 (+49)	57 (+12)	167 (+122)	65 (+20)
77-78	1.5	5.0	233	262 (+29)	337 (+104)	434 (+201)	310 (+77)	357 (+124)	47	144 (+97)	77 (+30)	66 (+19)	102 (+55)	58 (+11)
78-79	2.0	5.5	145	147 (+2)	246 (+101)	296 (+151)	174 (+29)	294 (+149)	24	96 (+72)	67 (+43)	39 (+15)	85 (+61)	59 (+35)
79-80	2.5	6.0	92	132 (+40)	165 (+73)	250 (+158)	142 (+50)	221 (+129)	7	76 (+69)	60 (+53)	1 (-6)	72 (+65)	86 (+79)
80-81	3.0	7.0	73	78 (+5)	94 (+21)	130 (+57)	81 (+8)	117 (+44)	0	68 (+60)	58 (+58)	0 (0)	64 (+64)	4 (+4)
81-82	3.5	8.0	51	62 (+11)	72 (+21)	80 (+29)	67 (+16)	76 (+25)	0	60 (+60)	67 (+67)	0 (0)	54 (+54)	0 (0)
82-83	4.0	9.0	37	48 (+11)	58 (+21)	64 (+27)	48 (+11)	61 (+24)	0	56 (+56)	32 (+32)	0 (0)	62 (+62)	0 (0)
83-84	4.5	10.0	34	33 (-1)	35 (+1)	38 (+4)	35 (+1)	36 (+2)	0	65 (+65)	1 (+1)	0 (0)	69 (+69)	0 (0)
84-85	5.5	11.0	11	26 (+15)	26 (+15)	29 (+18)	28 (+17)	28 (+17)	0	44 (+44)	0 (0)	0 (0)	2 (+2)	0 (0)
85-86	6.0	12.0	9	9 (0)	22 (+13)	26 (+17)	10 (+1)	24 (+15)	0	1 (+1)	0 (0)	0 (0)	0 (0)	0 (0)
86-87	7.0	13.5	6	8 (+2)	9 (+3)	10 (+4)	9 (+3)	10 (+4)	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
87-88	7.5	15.0	4	6 (+2)	6 (+2)	7 (+3)	6 (+2)	7 (+3)	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
88-89	8.5	16.5	2	4 (+2)	4 (+2)	5 (+3)	4 (+2)	4 (+2)	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
89-90	9.5	18.0	0	1 (+1)	2 (+2)	2 (+2)	1 (+1)	2 (+2)	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Table 6-14 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level (Leq) under Alternative 1 at NAS Whidbey Island Complex (Average Year)

			Estimated Po	pulation4	,5,6									
			Ault Field						OLF Coupevi	lle				
Band of	Avg NIPTS	10th Pct												
$L_{eq(24)}$ (dB) ¹	$(dB)^{2,3}$	NIPTS (dB) 2,	No Action	Alt 1A	Alt 1B	Alt 1C	Alt 1D	Alt 1E	No Action	Alt 1A	Alt 1B	Alt 1C	Alt 1D	Alt 1E
90-91	10.5	19.5	0	0	0	0	0	0	0	0	0	0	0	0
				(0)	(0)	(0)	(0)	(0)		(0)	(0)	(0)	(0)	(0)

Notes:

- ¹ L_{eq} bands with no population were omitted from table.
- ² NIPTS values rounded to nearest 0.5 dB.
- ³ NIPTS below 5 dB are generally not considered noticeable.
- ⁴ This analysis assumes the population is outdoors at one's residence and exposed to all aircraft noise events for 40 years. Given the amount of time spent indoors and the intermittent occurrence of aircraft noise events, it is highly unlikely that individuals would meet all those criteria, and the actual potential for hearing loss would be far less than the values reported here.
- ⁵ Estimated Population was determined by those living within the 80 dB DNL noise contour around each airfield, including those living on base at Ault Field (there is no on-base population at OLF Coupeville).
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). In addition, per guidance on potential hearing loss, on-base populations at Ault Field have been included in the analysis. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁷ Of this estimated population, 58 are military personnel living on base at Ault Field.
- ⁸ Of this estimated population, 195 are military personnel living on base at Ault Field.
- ⁹ Of this estimated population, 96 are military personnel living on base at Ault Field.

Key:

dB = decibel

 $L_{eq(24)}$ = 24-hour Equivalent Sound Level

NIPTS = Noise Induced Permanent Threshold Shift

6.4.3 Residential Nighttime Sleep Disturbance

Table 6-15 lists the PA for applicable POIs for average daily nighttime (10:00 p.m. to 7:00 a.m.) events for the average year Alternatives 1 under all scenarios. Average PA would range from 5 percent to 16 percent across the listed POIs for either window condition. POIs R01 and R02 would have the greatest PA, 36 percent to 77 percent, depending upon whether windows are open or closed. At five of the POIs, there would be no change in PA compared to the No Action Alternative, but at the remaining 25 POIs, increases in PA would range from 1 percent at several POIs to 32 percent (R06 under Alternative 1, Scenario A).

Under the high-tempo FCLP year Alternative 1 (Appendix A7), the statistics cited above would be 1 percent to 3 percent greater than those listed for the average year Alternative 1, except for the change statistics. At six of the POIs, there would be no change in PA compared to the high-tempo FCLP year No Action Alternative, but at the remaining 24 POIs, increases in PA would range from 1 percent at several POIs to 36 percent (R06 under Alternative 1, Scenario A).

Table 6-15 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 1

				Annual A	verage Ni	ghtly (220	0-0700) Pr	obability o	of Awaken	ing (%) ¹													
						Change fi				Change f	rom			Change fi	rom			Change ;	from			Change f	rom
Poir	t of Ir	nterest		Alt 1A		No Action	1	Alt 1B		No Actio	n	Alt 1C		No Action	1	Alt 1D		No Actio	n	Alt 1E		No Actio	n
			Related	Windows	Windows	Windows	Windows	Windows	Windows	Window	Windows	Windows	Windows	s Windows	Windows	Windows	Windows	Window	s Windows	Windows	Windows	Windows	Windows
Туре		Description		Open	Closed	Open		Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
	R01	Sullivan Rd		68%	52%	10%	1	72%	56%	14%	13%	77%	61%	19%	18%	69%	53%	11%	10%	75%	60%	17%	17%
		Salal St. and	Ault	50%	36%	9%	7%	53%	39%	12%	10%	58%	43%	17%	14%	51%	37%	10%	8%	57%	42%	16%	13%
		N. Northgate																					
		Dr																					
	R03	Central Whidbey	Ault	20%	11%	4%	3%	22%	12%	6%	4%	25%	13%	9%	5%	21%	11%	5%	3%	24%	13%	8%	5%
	R04	Pull and Be Damned Point		25%	12%	6%	3%	27%	13%	8%	4%	29%	13%	10%	4%	26%	12%	7%	3%	28%	13%	9%	4%
	R05	Snee-Oosh	1	21%	8%	6%	3%	22%	8%	7%	3%	24%	8%	9%	3%	21%	8%	6%	3%	23%	8%	8%	3%
		Point			0,0	0,0	J , ,		0,0	, , ,	J , s	,,	0,0	7,0	3,0		J, 4	0,0	5,0		0,0	0,1	5,0
			OLF	41%	29%	32%	23%	27%	19%	18%	13%	12%	8%	3%	2%	37%	26%	28%	20%	17%	11%	8%	5%
		and Byrd Dr																					
	R07	Race Lagoon	OLF	19%	9%	14%	7%	14%	6%	9%	4%	7%	2%	2%	-	18%	8%	13%	6%	9%	3%	4%	1%
	R08	Pratts Bluff		15%	9%	11%			6%	6%	4%		2%	-	-	13%	8%	9%		6%	4%	2%	2%
	R09	Cox Rd and	OLF	12%	8%	9%	6%	7%	5%	4%	3%	3%	2%	-	-	11%	7%	8%	5%	5%	3%	2%	1%
		Island Ridge																					
a 5		Way																					
Residential ²	_	Skyline		8%	3%	3%	1%	8%	3%	3%	1%	10%	3%	5%	1%	9%	3%	4%	1%	10%	3%	5%	1%
side	_	Sequim	None	10/	-	-	-	-	-	-	-	10/	0%	10/	-	-	-	-	-	1%	-	10/	-
Res		Port Angeles		1% 6%	0%	1% 4%	1	1% 4%	0%	1% 2%	<u> </u>	1% 2%	0%	1%	-	0% 5%	0%	3%	-	1% 2%	0%	1%	-
		Beverly Beach,	OLF	6%	-	4%		4%	-	2%		2%				5%		3%		2%	-	-	
		Freeland																					
			Ault	45%	32%	8%	7%	49%	35%	12%	10%	53%	39%	16%	14%	46%	33%	9%	8%	52%	37%	15%	12%
		& Slumber Ln					1																
	R15	Long Point	OLF	24%	13%	13%	9%	19%	8%	8%	4%	14%	4%	3%	-	22%	11%	11%	7%	16%	5%	5%	1%
		Manor																					
	R16		OLF	11%	4%	2%	1%	12%	4%	3%	1%	14%	4%	5%	1%	12%	4%	3%	1%	13%	4%	4%	1%
		Heights																					
	R17	Port .	None	1%	-	-	-	1%	-	-	-	0%	-	-1%	-	1%	-	-	-	1%	-	-	-
	240	Townsend										00/								00/			
	R18	Marrowstone	None	-	-		-	-	-	<u> </u>	<u> </u>	0%	-	-	-	-	<u> </u>	<u> </u>	-	0%	-	-	-
		Island																					
	D10	(Nordland) Island Transit	OLE	34%	22%	25%	17%	23%	14%	14%	9%	12%	6%	3%	1%	31%	19%	22%	14%	16%	9%	7%	4%
	V13	Offices,	OLF	5470	2270	2370	1 / 70	2370	1470	1470	5/0	1270	070	570	1 70	3170	1370	ZZ70	1470	10%	<i>37</i> 0	/ /0	14/0
	1	Coupeville																					
		couperine	1		1	1	1	I	<u> </u>	1	1		1	1	1		1	1		1	1		

Table 6-15 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 1

				Annual A	verage Nig	htly (2200	0-0700) Pr	obability o	of Awaken	ing (%) ¹													
Poir	t of I	nterest		Alt 1A		Change fr No Action		Alt 1B		Change ; No Actio		Alt 1C		Change fi No Action		Alt 1D		Change f No Actio		Alt 1E		Change fr No Action	
	,		Related		Windows				Windows				Windows				Windows				Windows		
Tvpe	ID	Description	Field	Open					Closed	Open	Closed	Open			Closed	Open				Open			Closed
,,	_	South Lopez Island (Agate Beach)		4%	1%	1%	-	3%	1%	-	-	3%	1%	-		3%	1%	-	-	3%	1%	-	-
	S01	Oak Harbor High School		26%				28%	17%	8%	5%	31%	19%	11%		27%		7%		30%			7%
	S02	Crescent Harbor Elementary School	Ault	27%	16%	6%	4%	29%	18%	8%	6%	32%	20%	11%	8%	28%	17%	7%	5%	31%	19%	10%	7%
		Coupeville Elementary School		17%	11%			11%	7%	6%	4%	6%	3%	1%	-	16%		11%		8%			1%
=	S04	Anacortes High School	Ault	3%	1%	1%	-	3%	1%	1%		3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-
dentia	S05	Lopez Island School	None	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	_	-	-	-
School (near residential)	S06	Friday Harbor Elementary School	None	-	-	_	-	_	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-
School (S07	Sir James Douglas Elementary School	None	_	-	-	_	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	9%	3%	3%	1%	9%	3%	3%	1%	10%	3%	4%	1%	10%	3%	4%	1%	10%	3%	4%	1%
		La Conner Elementary School		11%		3%	2%	11%	5%	3%	2%	10%	5%	2%	2%	11%	5%	3%	2%	10%	5%	2%	2%
		Elger Bay Elementary School		0%	0%	_			0%	-	-	0%	0%		-	0%	0%		-	0%	0%	-	-

¹ Assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

² R01 and R06 include interior SELs greater than 100 dB with windows open.

6.4.4 Residential Daytime Indoor Speech Interference

Table 6-16 presents the average daily indoor daytime (7:00 a.m. to 10:00 p.m.) events per hour for the applicable POIs that would experience indoor maximum sound levels of at least 50 dB with windows closed and open, for the average year Alternative 1. Events per hour would be less than one at 12 of the 30 POIs and would range between one and 10 for the remaining 18 POIs, regardless of the window status. Relative to the average year No Action Alternative, increases of one or two events per hour would be experienced by 16 of the POIs.

For the high-tempo FCLP year Alternative 1 (Appendix A7), the above-cited statistics would not change compared to the high-tempo FCLP year No Action Alternative, except that the change statistics would vary but remain within the range of one or two additional events per hour.

Table 6-16 Indoor Speech Interference for the Average Year Alternative 1

				Annual A	verage Da	ily Indoor	Daytime ((0700-220	00) Events	per Hour ¹	1												
					<u> </u>	Change f				Change				Change fr	om			Change f	rom			Change fi	rom
Poi	nt of I	nterest		Alt 1A		No Actio		Alt 1B		No Actio		Alt 1C		No Action		Alt 1D		No Actio		Alt 1E		No Action	
									s Windows			s Windows											
Тур				Open	Closed	+ '	Closed	Open	Closed	Open	Closed	Open					Closed				Closed	- 1	Closed
		Sullivan Rd		9	9	+1	+1	10	10	+2	+2	10	10	+2	+2	9	9	+1	+1	10	10	+2	+2
		Salal St. and	Ault	9	9	+1	+1	9	9	+1	+1	10	10	+2	+2	9	9	+1	+1	10	10	+2	+2
		N. Northgate Dr																					
		Central Whidbey	Ault	5	-	-	-	6	-	+1	-	6	-	+1	-	5	-	-	-	6	-	+1	-
	R04	Pull and Be Damned Point		3	1	+1	-	3	1	+1	-	3	1	+1	-	3	1	+1	-	3	1	+1	-
	R05	Snee-Oosh Point	Ault	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
			OLF	2	2	+2	+2	1	1	+1	+1	+	+			2	2	+2	+2	1	1	+1	+1
		and Byrd Dr	OLF	2	2	TZ	72		1	T1	1	Ī	-	-	-	2	2	+2	TZ	1	1	T1	+1
	_		OLF	2	1	+2	+1	1		+1	_	1	-	+1	_	2	1	+2	+1	1	_	+1	_
		Pratts Bluff	OLF	2	1	+2	+1	1	_	+1	-	-	_	-	_	2	1	+2	+1	1	_	+1	_
		Cox Rd and	OLF	1	-	+1	-	1	_	+1	-	_	_	_	_	1	-	+1	-	-	_	-	_
2		Island Ridge Way	O Li																				
Residential ²	R10	Skyline	None	-	-	-	-	-	-	-	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
den	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
esi	R12	Port Angeles		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		Beverly Beach, Freeland	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		E Sleeper Rd & Slumber Ln		9	8	+1	+1	9	8	+1	+1	10	9	+2	+2	9	8	+1	+1	10	9	+2	+2
		Long Point Manor	OLF	3	2	+2	+1	2	1	+1	-	1	1	-	-	2	2	+1	+1	1	1	-	-
	R16		OLF	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
		Port Townsend	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Marrowstone Island (Nordland)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	2	2	+1	+1	1	1	-	-	1	1	-	-	2	2	+1	+1	1	1	-	-

Table 6-16 Indoor Speech Interference for the Average Year Alternative 1

				Annual A	verage Dai	ly Indoor	Daytime (0700-2200	0) Events p	er Hour ¹													
Poi	nt of I	Interest		Alt 1A		Change f No Actio	n	Alt 1B		Change : No Actio	on	Alt 1C		Change fr No Action	1	Alt 1D		Change f No Actio	n	Alt 1E		Change fr No Action	1
		•	Related		s Windows	Windows	Windows	Windows	Windows	Window	s Windows	Windows	Windows	Windows	Windows		Windows	Windows	Windows	Windows	Windows	Windows	Windows
Тур	e ID			Open						Open						Open							Closed
		South Lopez Island (Agate Beach)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S01	High School		6	2	-	-	7	3	+1	+1	7	3	+1	+1	6	3	-	+1	7	3	+1	+1
		Crescent Harbor Elementary School	Ault	5	2	-	-	6	2	+1	-	6	3	+1	+1	6	2	+1	-	6	3	+1	+1
		Elementary School		2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
=	S04	Anacortes High School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
dentia		Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (near residential)		Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Fidalgo Elementary School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Elementary School	Ault	1	-	-	-	1	1	-	+1	1	-	-	-	1	-	-	-	1	-	-	-
		Elger Bay Elementary School	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

With an indoor maximum sound level of at least 50 dB; assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School; therefore, this location was not modeled individually, but similar results for indoor speech interference for POI S03 would apply.

6.4.5 Classroom Learning Interference

Table 6-17 presents the potential learning interference data for classrooms under the average year Alternative 1. With an $L_{eq(8h)}$ of 69 dB, S02 (Crescent Harbor Elementary) would experience the greatest outdoor $L_{eq(8h)}$. No other locations would experience $L_{eq(8h)}$ greater than or equal to the screening threshold of 60 dB under any of the three alternatives. With windows open, three or four of the POIs would have more than one event per hour. With windows closed, two of the POIs would have more than one event per hour. POI S01, Oak Harbor High School, would have the most events per hour, with up to seven with windows open. POIs S01 and S02 would have the most events per hour (three) with windows closed.

All POIs would experience between 1 and 6 dB increases in $L_{eq(8h)}$ and increases in one or two events per hour.

Under the high-tempo FCLP year Alternative 1 (Appendix A7), S02 (Crescent Harbor Elementary) would have an outdoor $L_{eq(8h)}$ of 68 dB. Four of the POIs would have more than one event per hour with windows open (S01, S02, S03, and R03), and two would have more than one event per hour with windows closed (S01 and S02). POI S01, Oak Harbor High School, would have the most events per hour, with seven with windows open and three with windows closed. Relative to the high-tempo FCLP year No Action Alternative, four POIs would experience increases up to two events per hour. Three POIs would experience a change in outdoor $L_{eq(8h)}$ of 2 dB or greater.

Table 6-17 Classroom Learning Interference for Average Year Alternative 1

				Alt 1A					Change fr	om No Ad	tion		
					Indoor ¹					Indoor1			
Point of I	nterest	:		Outdoor	Windows C	pen	Windov	ws Closed	Outdoor	Window	rs Open	Windo	ws Closed
Туре	ID	Description	Related Field	L _{eq (8h)} (dB)	Leq(8h) (dB)	Events per Hour ²	L _{eq(8h)}	Events per Hour ²	L _{eq (8h)} (dB)	L _{eq(8h)} (dB)	Events per Hour ²	L _{eq(8h)} (dB)	Events per Hour ²
School	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	57	<45	2	<45	1	+6	+6	+2	+6	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	-	-	-	-	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	of Sites	Exceeding				4		2			1		
1 Intrusiv	e Even	t per Hour											
Minimum per Hour		per of Intrusive Events	i			2		2			+2		
•		ber of Intrusive Events	<u> </u>			6		2			+2		
per Hour			-					-					

Table 6-17 Classroom Learning Interference for Average Year Alternative 1

Point of I	nterest	•		Alt 1B					Change	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	5	<45	-	+2	+2	+1	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	2	+1	+1	+2	+1	-
	S02	Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	-
	S03	Coupeville Elementary School	OLF	55	<45	1	<45	1	+4	+4	+1	+4	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				3		2			2		
1 Intrusiv	e Event	t per Hour											
_		er of Intrusive Events	;			5		2			+2		
per Hour													
		per of Intrusive Events	S			7		2			+2		
per Hour	if Excee	eding 1											

Table 6-17 Classroom Learning Interference for Average Year Alternative 1

Point of I	nterest			Alt 1C					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	58	<45	6	<45	-	+1	+1	+2	+1	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	S02	Crescent Harbor Elementary School	Ault	69	54	6	<45	3	+2	+2	+2	+2	+1
	S03	Coupeville Elementary School	OLF	51	<45	1	<45	-	-	-	+1	-	-
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	-	-	-	-	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Exceeding t per Hour				3		2			3		
Minimum per Hour		per of Intrusive Events	5			6		3			+2		
_	Numb	per of Intrusive Event	s			7		3			+2		

Table 6-17 Classroom Learning Interference for Average Year Alternative 1

Point of I	nterest			Alt 1D					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	56	<45	2	<45	1	+5	+5	+2	+5	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	-	-	-	-	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				4		2			1		
1 Intrusive	e Event	t per Hour											
Minimum	Numb	er of Intrusive Events	;			2		2			2		
per Hour	if Exce	eding 1											
		per of Intrusive Events	S			6		2			2		
per Hour	if Exce	eding 1											

Table 6-17 Classroom Learning Interference for Average Year Alternative 1

Point of I	nterest	:		Alt 1E					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	58	<45	6	<45	-	+1	+1	+2	+1	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	S02	Crescent Harbor Elementary School	Ault	69	54	6	<45	2	+2	+2	+2	+2	-
	S03	Coupeville Elementary School	OLF	53	<45	1	<45	-	+2	+2	+1	+2	-
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	-	-	-	-	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				3		2			3		
1 Intrusive	e Event	t per Hour											
Minimum	Numb	er of Intrusive Events	3			6		2			+2		
per Hour i													
		per of Intrusive Event	S			7		3			+2		
per Hour i	if Exce	eding 1											

Notes:

¹ Assumes 15 dB and 25 dB of noise level reductions for windows open and closed, respectively.

Number of average school-day events per hour during 8-hour school day (0800-1600) at or above an indoor maximum (single-event) sound level (Lmax) of 50 dB.

6.4.6 Recreational Speech Interference

Table 6-18 lists the AAD daytime NA 50 L_{max} per hour for the recreational POIs. The average NA across the 48 POIs would be four events per daytime hour and one event per nighttime hour. Six POIs would be exposed to less than one event per hour. POIs R01, R02, and R14 would have the most events per hour, at 10, under Alternative 1, Scenario C. Relative to the average year No Action Alternative, increases of up to two events per hour would be experienced at all but 10 of the POIs. The latter 10 POIs would experience no change.

Under the high-tempo FCLP year Alternative 1 (Appendix A7), the average year statistics above would apply.

Table 6-18 Recreational Speech Interference for Average Year Alternative 1

			Annua NA 50		ge Out	door Da	ily Da	ytime E	vents	oer Houi	,											
Repre	sentative P	ark Receptor	Alt1A		Increa No Ac		Alt1B	1	Increa No Ac		Alt1C		Incred No Ad	ase re ction	Alt1D	ı	Incre No A	ase re ction	Alt1E		Increa No Act	
Туре	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	P01	Joseph Whidbey State Park	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	9	3	+1	+1
	P02	Deception Pass State Park	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	10	3	+2	+1
	P03	Dugualla State Park	8	2	+1	-	9	2	+2	-	9	3	+2	+1	9	2	+2	-	9	3	+2	+1
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	P05	Ebey's Landing State Park	4	1	+2	+1	3	1	+1	+1	3	1	+1	+1	4	1	+2	+1	3	1	+1	+1
	P06	Fort Casey State Park	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	0	+1	-
	P07	Cama Beach State Park	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	5	1	+2	+1	4	1	+1	+1
	P08	Port Townsend	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	0	-	-
~	P09	Moran State Park	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
Park	P10	San Juan Islands National Monument	8	2	+1	+1	8	2	+1	+1	9	3	+2	+2	8	2	+1	+1	9	2	+2	+1
	P11	San Juan Island Visitors Center	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
	P12	Cap Sante Park	0	-	-	-	0	-	-	-	1	-	+1	-	1	0	+1	-	1	0	+1	-
	P13	Lake Campbell	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	P14	Spencer Spit State Park	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
	P15	Pioneer Park	4	1	-	-	4	1	-	-	4	1	-	-	4	1	-	-	4	1	-	-
	P16	Marrowstone Island (Fort Flagler)	1	1	+1	+1	1	0	+1	-	0	-	-	-	1	1	+1	+1	1	0	+1	-
	EBLA001	Ferry House	4	1	+2	+1	3	1	+1	+1	2	0	-	-	4	1	+2	+1	3	1	+1	+1
	EBLA002	Reuble Farm	4	1	+2	+1	3	1	+1	+1	2	0	-	-	4	1	+2	+1	3	1	+1	+1

Table 6-18 Recreational Speech Interference for Average Year Alternative 1

			Annud NA 50		ge Out	tdoor Do	aily Da	ytime E	vents	oer Houi	;											
					Incred	ise re			Incred	ise re			Incre	ase re			Incre	ase re			Increa	se re
Repre	sentative	Park Receptor	Alt1A		No Ac	tion	Alt1B	;	No Ac	tion	Alt1C		No A	ction	Alt1D		No A	ction	Alt1E		No Act	tion
Туре	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	R01	Sullivan Rd	9	2	+1	-	10	2	+2	-	10	3	+2	+1	9	2	+1	-	10	3	+2	+1
	R02	Salal St. and N. Northgate Dr	9	2	+1	-	10	2	+2	-	10	3	+2	+1	9	2	+1	-	10	3	+2	+1
	R03	Central Whidbey	8	2	+1	-	9	2	+2	-	9	3	+2	+1	8	2	+1	-	9	2	+2	-
	R04	Pull and Be Damned Point	8	2	+1	-	9	2	+2	-	9	3	+2	+1	9	2	+2	-	9	2	+2	-
	R05	Snee-Oosh Point	8	2	+1	+1	8	2	+1	+1	9	3	+2	+2	8	2	+1	+1	9	2	+2	+1
	R06	Admirals Dr and Byrd Dr	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	0	+1	-
	R07	Race Lagoon	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	R08	Pratts Bluff	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	0	+1	1-
_	R09	Cox Rd and Island Ridge Way	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1	0	-	-
ıtia	R10	Skyline	4	1	-	-	4	1	-	-	5	1	+1	-	4	1	-	-	4	1	-	-
Residential	R11	Sequim	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	0	+1	-	1	0	+1	1-
\esi	R12	Port Angeles	1	-	-	-	1	-	-	-	1	-	-	-	1	0	-	-	1	0	-	-
L	R13	Beverly Beach, Freeland	1	-	+1	-	0	-	-	-	-	-	-	-	1	0	+1	-	0	0	-	-
	R14	E Sleeper Rd & Slumber Ln	9	2	+1	-	10	2	+2	-	10	3	+2	+1	9	2	+1	-	10	3	+2	+1
	R15	Long Point Manor	8	3	+1	+2	8	2	+1	+1	8	3	+1	+2	8	2	+1	+1	8	3	+1	+2
	R16	Rocky Point Heights	5	1	+1	-	5	2	+1	+1	5	2	+1	+1	5	1	+1	-	5	2	+1	+1
	R17	Port Townsend	2	1	+1	+1	1	0	-	-	0	-	-1	-	1	1	-	+1	1	0	-	-
	R18	Marrowstone Island (Nordland)	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
	R19	Island Transit Offices, Coupeville	5	1	+2	-	4	1	+1	-	3	1	-	-	4	1	+1	-	3	1	-	-
	R20	South Lopez Island (Agate Beach)	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-

Table 6-18 Recreational Speech Interference for Average Year Alternative 1

			Annua NA 50		ge Out	door Do	ily Da	ytime E	vents	per Houi	,											
					Incred				Incred					ase re				ase re			Increa	
Repre	sentative I	Park Receptor	Alt1A		No Ac	tion	Alt1B		No Ac	tion	Alt1C		No A		Alt1D		No A	ction	Alt1E		No Act	tion
Туре	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	S01	Oak Harbor High School	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	9	3	+1	+1
	S02	Crescent Harbor Elementary School	8	2	+1	-	9	2	+2	-	9	3	+2	+1	8	2	+1	-	9	2	+2	-
	Elementary School S03 Coupeville Elementary School			1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	S04	Anacortes High School	1	-	-	-	1	-	-	-	1	-	-	-	1	0	-	-	1	0	-	-
l_	S05	Lopez Island School	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
School	S06	Friday Harbor Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
	S07	Sir James Douglas Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-	0	0	-	-
	S08	Fidalgo Elementary School	4	1	-	-	4	1	-	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	S09	La Conner Elementary School	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-
	S10	Elger Bay Elementary School	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	0	+1	-	1	0	+1	-

7 Average Year Alternative 2 Scenarios

Relative to the No Action Alternative, Alternative 2 would add two EA-18G aircraft to each CVW squadron, add eight EA-18G aircraft to the FRS, and increase the number of Expeditionary Squadrons from three to five, with five aircraft in each, as shown in Table 2-1. Section 7.1 details the flight operations. Section 7.2 presents the runway/flight track utilization, flight profiles, and derivation of AAD flight operations. Sections 7.3 and 7.4 contain the maintenance run-ups and resultant aircraft noise exposure.

7.1 Flight Operations

From the methodology described in Chapter 2, Tables 7-1 through 7-9 show the modeled flight operations for the average year Alternative 2 under all scenarios. Any of these five scenarios would have approximately 110,000 total annual flight operations for the complex. The EA-18G would dominate operations, with 87 percent of the complex's annual flight operations. Annual FCLP-related operations at the OLF would vary between 6,200 under Alternative 2, Scenario C, to 24,900 under Alternative 2, Scenario A. As shown in Tables 7-2, 7-4, and 7-10, approximately 15 percent and 20 percent of the overall total flight operations and the OLF FCLP operations, respectively, would occur during the DNL nighttime period.

Relative to the average year No Action Alternative, Tables 7-1, 7-3, 7-5, 7-7, and 7-9 show that the complex's total annual flight operations would increase by approximately 26,000, with most of the increase attributable to increased FCLP operations.

The high-tempo FCLP year Alternative 2, Scenario A (Appendix A2), has approximately 114,000 total annual flight operations for the complex, with the EA-18G having 89 percent of the complex's annual flight operations.

		Alternative (Average Ye			Change from	n No Action	
		Type of Flig	ht Operation	_	Type of Flig	ht Operation	_
Airfield	Aircraft Type or Category	FCLP 2, 3	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	5,900	67,900	73,800	-5,400	+14,900	+9,500
	Other Based	-	11,900	11,900	-	+300	+300
	Transient	-	2,300	2,300	-	-	-
	Subtotal	5,900	67,900	73,800	-5,400	+14,900	+9,500
OLF Coupeville	EA-18G	23,700	-	23,700	+17,600	-	+17,600
	Other	-	400	400	-	-	-
	Subtotal	23,700	400	24,100	+17,600	-	+17,600
TOTAL (both airfie	lds)	29,600	82,500	112,100	+12,200	+15,200	+27,400

Table 7-1 Summary of Annual Flight Operations for the Average Year Alternative 2A

- Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.
- ² Each closed pattern is counted as two operations.
- For Growlers at the OLF, values include 2,962 interfacility (FCLP-related) operations; not shown separately.
- ⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.
- No Action excludes 900 interfacility Growler operations (FCLP related).

Table 7-2 Detailed Annual Flight Operations for the Average Year Alternative 2A

						Arrival										Interf	acility	/											
									Overh	ead														Helo			Helo		
			Departi	ure		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
field	Aircraft	Squadron	Day (0700-	Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)			Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		-	Night (2200-	
Air	Air	Sqı	2200)	0700)	Total	•	0700)	Total	DL	DK	DK	Total	•	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,020	404	7,424	2,577	85	2,662	4,134	-	164	4,298	453	10	463	453	212	236	901	741	-	162	903						
		FRS	5,655	389	6,044	2,153	316	2,469	2,423	317	620	3,360	188	28	216	290	151	125	566	486	-	80	566						
		RES	1,146	90	1,236	416	17	433	697	-	24	721	75	7	82	6	4	4	14	12	-	2	14						
Б		EXP	2,569	142	2,711	931	35	966	1,514	-	70	1,584	157	4	161	-	-	-	0	-	-	-	0						
Fiel	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
⋖	P8	All	1,941	97	2,038	1,415	264	1,679	-	-	-	-	300	59	359														
	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	394	-	394	283	-	283	-	-	-	-	111	-	111														
	JET_LRG	-	415	100	515	377	99	476	-	-	-	-	26	13	39														
То	tal	Ť	19,528	1,222	20,750	8,540	816	9,356	8,768	317	878	9,963	1,310	121	1,431	749	367	365	1,481	1,239	-	244	1,483	90	-	90	90	-	90

									Interf	acility												
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		uo.							Day		Night		Day		Night						ı	
P	#	dro							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	Squadr							2200)		0700)		2200)		0700)			(2200-		(0700-	•	
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							741	-	162	903	453	212	236	901						
Щ		FRS							486	-	80	566	290	151	125	566						
OLF		RES							12	-	2	14	6	4	4	14						
	H60	SAR															90	-	90	90	-	90
To	tal								1,239	-	244	1,483	749	367	365	1,481	90	-	90	90	-	90

Table 7-2 Detailed Annual Flight Operations for the Average Year Alternative 2A

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	1,639	1,084	908	3,631	3,437	655	960	5,052	2,379	77	2,456	4,436	2,778	7,214	27,269	1,951	5,784	35,004
		FRS	1,377	500	281	2,158	3,683	768	981	5,432	-	-	0	4,781	1,014	5,795	21,036	1,736	3,834	26,606
		RES	94	33	20	147	458	10	21	489	444	9	453	458	49	507	3,806	47	243	4,096
p		EXP	-	-	-	0	838	-	44	882	913	37	950	840	35	875	7,762	-	367	8,129
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,165	-	661	4,826	-	-	-	1,800	192	1,992	9,621	-	1,273	10,894
	H60	SAR					-	-	-	-	-	-	-	-	-	-	956	-	-	956
	C-40	-					334	-	-	334	-	-	-	168	-	168	1,290	-	-	1,290
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	818	-	212	1,030
Tota	al		3,110	1,617	1,209	5,936	12,915	1,433	2,667	17,015	3,736	123	3,859	12,483	4,068	16,551	72,558	3,734	11,713	88,005
	EA18	CVW	6,076	3,763	2,802	12,641											7,270	3,975	3,200	14,445
OLF		FRS	3,868	2,701	1,350	7,919											4,644	2,852	1,555	9,051
0		RES	91	73	41	205											109	77	47	233
	H60	SAR					181	-	-	181							361	-	-	361
Tota	al		10,035	6,537	4,193	20,765	181	-	-	181							12,384	6,904	4,802	24,090
														Grand T	otals		84,942	10,638	16,515	112,095
														(Ault+O	LF)					

Total Annual Ault = 5,936 (20%)
EA-18G FCLP OLF = 23,729 (80%)
Related Ops Total = 29,665

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 7-3 Summary of Annual Flight Operations for the Average Year Alternative 2B

		Alternative (Average Y Type of Flig				m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	66,500	81,300	+3,500	+13,500	+17,000	66,500
	Other Based	11,900	11,900	-	+300	+300	11,900
	Transient	2,300	2,300	-	-	-	2,300
	Subtotal	80,700	95,500	+3,500	+13,800	+17,300	80,700
OLF Coupeville	EA-18G	-	14,800	+8,700	-	+8,700	-
	Other	400	400	-	-	-	400
	Subtotal	400	15,200	+8,700	-	+8,700	400
TOTAL (both airfi	elds)	29,600	81,100	110,700	+12,200	+13,800	+26,000

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 1,854 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 7-4 Detailed Annual Flight Operations for the Average Year Alternative 2B

						Arrival										Inter	facility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	to OLF		Break	Arri	val from	OLF	Depart	ure to O	LF	Arrival	from OL	F
		u		Night					Day		Night					Day		Night		Day		Night							
Airfield	υft	•		(2200		Day	Night		(0700-		(2200-			Night		(0700		(2200-		(0700		(2200-		Day	Night		Day	Night	İ
fie	rcr	na	(0700-	-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	ı
Ą	Ą	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	6,975	385	7,360	2,552	75	2,627	4,173	-	149	4,322	406	4	410	285	136	143	564	468	-	96	564						
		FRS	5,605	387	5,992	2,165	300	2,465	2,389	305	634	3,328	174	24	198	181	96	73	350	304	-	46	350						
		RES	1,141	83	1,224	405	20	425	706	-	23	729	66	5	71	6	5	2	13	13	-	1	14						
σ		EXP	2,540	147	2,687	912	30	942	1,509	-	79	1,588	154	4	158	-	-	-	0	-	-	-	0						
Field	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
Ault		All	-	-	-	-	-	-	-	-	-	-	-	-	-														
₹	P8	All	1,912	93	2,005	1,397	270	1,667	-	-	-	-	282	57	339														
	H60	SAR	384	-	384	384	-	384	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	391	-	391	286	-	286	-	-	-	-	105	-	105														
	JET_LRG	-	404	107	511	376	97	473	-	-	-	-	24	13	37														
То	tal	•	19,352	1,202	20,554	8,477	792	9,269	8,777	305	885	9,967	1,211	107	1,318	472	237	218	927	785	-	143	928	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Depart	ure to A	ult
		u							Day		Night		Day		Night							
þ	π	Squadron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	Aircraft	naı							2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	
Ą	Aii	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							468	-	96	564	285	136	143	564						
Щ		FRS							304	-	46	350	181	96	73	350						
OLF		RES							13	-	1	14	6	5	2	13						
	H60	SAR															90	-	90	90	-	90
To	tal								785	-	143	928	472	237	218	927	90	-	90	90	-	90

Table 7-4 Detailed Annual Flight Operations for the Average Year Alternative 2B

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Ąi	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	4,068	2,622	2,357	9,047	3,437	655	960	5,052	2,379	77	2,456	4,436	2,778	7,214	29,179	3,413	7,024	39,616
		FRS	3,599	1,236	777	5,612	3,683	768	981	5,432	-	-	0	4,781	1,014	5,795	22,881	2,405	4,236	29,522
		RES	108	42	26	176	458	10	21	489	444	9	453	458	49	507	3,805	57	239	4,101
Б		EXP	-	-	-	0	838	-	44	882	913	37	950	840	35	875	7,706	-	376	8,082
Ault Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
븕	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,233	-	668	4,901	-	-	-	1,832	193	2,025	9,656	-	1,281	10,937
	H60	SAR					-	-	-	-	-	-	-	-	-	-	948	-	-	948
	C-40	-					333	-	-	333	-	-	-	167	-	167	1,282	-	-	1,282
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	804	-	217	1,021
Tot	al		7,775	3,900	3,160	14,835	12,982	1,433	2,674	17,089	3,736	123	3,859	12,514	4,069	16,583	76,261	5,875	13,373	95,509
	EA18	CVW	3,815	2,387	1,687	7,889											4,568	2,523	1,926	9,017
OLF		FRS	2,417	1,661	829	4,907											2,902	1,757	948	5,607
0		RES	82	75	30	187											101	80	33	214
	H60	SAR					180	-	-	180							360	-	-	360
Tota	al		6,314	4,123	2,546	12,983	180	-	-	180							7,931	4,360	2,907	15,198
														Grand T	otals		84,192	10,235	16,280	110,707
														(Ault+O	LF)					

Total Annual Ault = 14,835 (50%) EA-18G FCLP OLF = 14,838 (50%) Related Ops Total = 29,673

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 7-5 Summary of Annual Flight Operations for the Average Year Alternative 2C

	Aircraft Type	Alternative (Average Y Type of Flig		_		m No Action ght Operation	
Airfield	or Category	FCLP 2, 3	Other ⁴	Total	FCLP 2,5	Other	Total
Ault Field	EA-18G	23,700	65,400	89,100	+12,400	+12,400	+24,800
	Other Based	-	11,800	11,800	-	+200	+200
	Transient	-	2,300	2,300	-	-	-
	Subtotal	23,700	79,500	103,200	+12,400	+12,600	+25,000
OLF Coupeville	EA-18G	5,900	-	5,900	-200	-	-200
	Other	-	400	400	-	-	-
	Subtotal	5,900	400	6,300	-200	-	-200
TOTAL (both airfic	elds)	29,600	79,900	109,500	+12,200	+12,600	+24,800

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 742 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 7-6 Detailed Annual Flight Operations for the Average Year Alternative 2C

						Arrival										Interf	acility	/											
									Overhe	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
ple	Aircraft		Day	Night (2200		Day	Night		Day (0700-		Night (2200-		Day	Night		Day (0700		Night (2200-		Day (0700-		Night (2200-		-	Night		Day	Night	
į.	ircr	dna	(0700-	-		(0700-	(2200-		2200)		0700)		•	(2200-		2200)		0700)		2200)		0700)		(0700-			•	(2200-	
<		S		0700)		2200)	0700)			DK	DK	Total	2200)	-		DL	DK	DK	Total			DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	6,984	376	7,360	2,558	81		4,165	-	142	4,307	406	9	415	113	49	63	225	184	-	42	226						
		FRS	5,638	355	5,993	2,153	312	2,465	2,411	311	616	3,338	161	28	189	69	40	27	136	119	-	17	136						
		RES	1,141	82	1,223	392	25	417	702	-	27	729	73	4	77	6	2	2	10	9	-	2	11						
7	<u>.</u>	EXP	2,560	133	2,693	934	38	972	1,509	-	61	1,570	148	3	151	-	-	-	0	-	-	-	0						
		All	-	-	0	-	-	0	-	-	-	0	-	-	0														
ŧ	P3 P8	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
◁	P8	All	1,917	98	2,015	1,388	261	1,649	-	-	-	-	305	61	366														
	H60	SAR	384	-	384	384	-	384	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	390	-	390	288	-	288	-	-	-	-	102	-	102														
	JET_LRG	-	411	100	511	381	95	476	-	-	-	-	23	12	35														
T	otal		19,425	1,144	20,569	8,478	812	9,290	8,787	311	846	9,944	1,218	117	1,335	188	91	92	371	312	-	61	373	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Depart	ure to A	ult
		u							Day		Night		Day		Night							
P	华	Squadron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	חמו							2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	
Ą	Ą	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	<i>(</i> 2200)	0700)	Total
	EA18	CVW							184	-	42	226	113	49	63	225						
щ		FRS							119	-	17	136	69	40	27	136						
OLF		RES							9	-	2	11	6	2	2	10						
	H60	SAR															90	-	90	90	-	90
To	otal								312	-	61	373	188	91	92	371	90	-	90	90	-	90

Table 7-6 Detailed Annual Flight Operations for the Average Year Alternative 2C

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	4		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	6,469	3,890	4,025	14,384	3,437	655	960	5,052	2,379	77	2,456	4,436	2,778	7,214	31,131	4,594	8,553	44,278
		FRS	5,855	2,056	1,237	9,148	3,683	768	981	5,432	-	-	0	4,781	1,014	5,795	24,870	3,175	4,587	32,632
		RES	117	63	21	201	458	10	21	489	444	9	453	458	49	507	3,800	75	242	4,117
р		EXP	-	-	-	0	838	-	44	882	913	37	950	840	35	875	7,742	-	351	8,093
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
∢	P8	All					4,221	-	610	4,831	-	-	-	1,820	177	1,997	9,651	-	1,207	10,858
	H60	SAR					-	-	-	-	-	-	-	-	-	-	948	-	-	948
	C-40	-					331	-	-	331	-	-	-	167	-	167	1,278	-	-	1,278
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	815	-	207	1,022
Tota	al		12,441	6,009	5,283	23,733	12,968	1,433	2,616	17,017	3,736	123	3,859	12,502	4,053	16,555	80,235	7,844	15,147	103,226
	EA18	CVW	1,516	929	715	3,160											1,813	978	820	3,611
OLF		FRS	913	716	266	1,895											1,101	756	310	2,167
0		RES	74	52	20	146											89	54	24	167
	H60	SAR					181	-	-	181							361	-	-	361
Tota	al		2,503	1,697	1,001	5,201	181	-	-	181							3,364	1,788	1,154	6,306
														Grand T	otals		83,599	9,632	16,301	109,532
														(Ault+O	LF)					

Total Annual Ault = 23,733 (80%) EA-18G FCLP OLF = 5,945 (20%) Related Ops Total = 29,678

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 7-7 Summary of Annual Flight Operations for the Average Year Alternative 2D

		Alternative (Average Y Type of Flig		_		m No Action ht Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP 2,5	Other	Total
Ault Field	EA-18G	8,900	67,500	76,400	-2,400	+14,500	+12,100
	Other Based	-	11,900	11,900	-	+300	+300
	Transient	-	2,300	2,300	-	-	-
	Subtotal	8,900	81,700	90,600	-2,400	+14,800	+12,400
OLF Coupeville	EA-18G	20,800	-	20,800	+14,700	-	+14,700
	Other	-	400	400	-	-	-
	Subtotal	20,800	400	21,200	+14,700	-	+14,700
TOTAL (both airfi	elds)	29,700	82,100	111,800	+12,300	+14,800	+27,100

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 2,594 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

⁵ No Action excludes 900 interfacility Growler operations (FCLP related).

Table 7-8 Detailed Annual Flight Operations for the Average Year Alternative 2D

						Arrival										Inter	facility	,											
									Overhe	ead														Helo			Helo		
			Departi	ure		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival _.	from OL	F
Airfield	craft	Squadron		Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-			Night (2200-	
Air	Air	Sqı	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		CVW	7,020	404	7,424	2,577	85	2,662	4,134	-	164	4,298	453	10	463	396	186	207	789	648	-	142	790						
		FRS	5,655	389	6,044	2,153	316	2,469	2,423	317	620	3,360	188	28	216	254	132	109	495	425	-	70	495						
		RES	1,146	90	1,236	416	17	433	697	-	24	721	75	7	82	5	4	4	13	11	-	2	13						
p		EXP	2,569	142	2,711	931	35	966	1,514	-	70	1,584	157	4	161	-	-	-	0	-	-	-	0						
Field	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
Ault	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
⋖	P8	All	1,941	97	2,038	1,415	264	1,679	-	-	-	-	300	59	359														
	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	394	-	394	283	-	283	-	-	-	-	111	-	111														
	JET_LRG	-	415	100	515	377	99	476	-	-	-	-	26	13	39														
To	tal		19,528	1,222	20,750	8,540	816	9,356	8,768	317	878	9,963	1,310	121	1,431	655	322	320	1,297	1,084	-	214	1,298	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		uo.							Day		Night		Day		Night						ı	
p	#	dro							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	Squadr							2200)		0700)		2200)		0700)			(2200-		(0700-	•	
Ą	Ąi	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							648	-	142	790	396	186	207	789						
щ		FRS							425	-	70	495	254	132	109	495						
OLF		RES							11	-	2	13	5	4	4	13						
	H60	SAR															90	-	90	90	-	90
To	tal								1,084	-	214	1,298	655	322	320	1,297	90	-	90	90	-	90

Table 7-8 Detailed Annual Flight Operations for the Average Year Alternative 2D

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	2,459	1,626	1,362	5,447	3,437	655	960	5,052	2,379	77	2,456	4,436	2,778	7,214	27,939	2,467	6,189	36,595
		FRS	2,066	750	422	3,238	3,683	768	981	5,432	-	-	0	4,781	1,014	5,795	21,628	1,967	3,949	27,544
		RES	141	50	30	221	458	10	21	489	444	9	453	458	49	507	3,851	64	253	4,168
p		EXP	-	-	-	0	838	-	44	882	913	37	950	840	35	875	7,762	-	367	8,129
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,165	-	661	4,826	-	-	-	1,800	192	1,992	9,621	-	1,273	10,894
	H60	SAR					-	-	-	-	-	-	-	-	-	-	956	-	-	956
	C-40	-					334	-	-	334	-	-	-	168	-	168	1,290	-	-	1,290
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	818	-	212	1,030
Tota	al		4,666	2,426	1,814	8,906	12,915	1,433	2,667	17,015	3,736	123	3,859	12,483	4,068	16,551	73,865	4,498	12,243	90,606
	EA18	CVW	5,317	3,293	2,452	11,062											6,361	3,479	2,801	12,641
OLF		FRS	3,385	2,363	1,181	6,929											4,064	2,495	1,360	7,919
0		RES	80	64	36	180											96	68	42	206
	H60	SAR					181	-	-	181							361	-	-	361
Tota	al		8,782	5,720	3,669	18,171	181	-	-	181							10,882	6,042	4,203	21,127
														Grand T			84,747	10,540	16,446	111,733
														(Ault+O	LF)					

Total Annual Ault = 8,906 (30%)
EA-18G FCLP OLF = 20,766 (70%)
Related Ops Total = 29,672

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 7-9 Summary of Annual Flight Operations for the Average Year Alternative 2E

		Alternative (Average Y Type of Flig				m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP 2, 5	Other	Total
Ault Field	EA-18G	20,800	65,800	86,600	+9,500	+12,800	+22,300
	Other Based	-	11,800	11,800	-	+200	+200
	Transient	-	2,300	2,300	-	-	-
	Subtotal	20,800	79,900	100,700	+9,500	+13,000	+22,500
OLF Coupeville	EA-18G	8,900	-	8,900	+2,800	-	+2,800
	Other	-	400	400	-	-	-
	Subtotal	8,900	400	9,300	+2,800	-	+2,800
TOTAL (both airfi	elds)	29,700	80,300	110,000	+12,300	+13,000	+25,300

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 1,118 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 7-10 Detailed Annual Flight Operations for the Average Year Alternative 2E

						Arrival										Inter	facility	/											
									Overh	ead														Helo			Helo		
			Departi	ure		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
field	Aircraft	Squadron	Day (0700-	Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)			Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		-	Night (2200-	
Air	Air	Sqı	2200)	0700)	Total		0700)	Total	DL	DK	DK	Total	•	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	6,984	376	7,360	2,558	81	2,639	4,165	-	142	4,307	406	9	415	170	74	95	339	276	-	63	339						
		FRS	5,638	355	5,993	2,153	312	2,465	2,411	311	616	3,338	161	28	189	104	60	41	205	179	-	26	205						
		RES	1,141	82	1,223	392	25	417	702	-	27	729	73	4	77	9	3	3	15	14	-	3	17						
p		EXP	2,560	133	2,693	934	38	972	1,509	-	61	1,570	148	3	151	-	-	-	0	-	-	-	0						
Fie	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
붐	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
⋖	P8	All	1,917	98	2,015	1,388	261	1,649	-	-	-	-	305	61	366														
	H60	SAR	384	-	384	384	-	384	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	390	-	390	288	-	288	-	-	-	-	102	-	102														
	JET_LRG	-	411	100	511	381	95	476	-	-	-	-	23	12	35														
To	tal		19,425	1,144	20,569	8,478	812	9,290	8,787	311	846	9,944	1,218	117	1,335	283	137	139	559	469	-	92	561	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depai	ture	to Ault		Arrival	from A	ılt	Depart	ure to A	ult
		uo.							Day		Night		Day		Night							
þ	#	dro							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	Squadr							2200)		0700)		2200)		0700)	-	•	(2200-		(0700-		
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							276	-	63	339	170	74	95	339						
Щ		FRS							179	-	26	205	104	60	41	205						
OLF		RES							14	-	3	17	9	3	3	15						
	H60	SAR															90	-	90	90	-	90
To	tal								469	-	92	561	283	137	139	559	90	-	90	90	-	90

Table 7-10 Detailed Annual Flight Operations for the Average Year Alternative 2E

	Closed Pattern¹ FCLP																			
			FCLP				T&G				ReEnte	r		GCA/CC	4		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Aiı	Aii	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	5,660	3,404	3,522	12,586	3,437	655	960	5,052	2,379	77	2,456	4,436	2,778	7,214	30,471	4,133	8,103	42,707
		FRS	5,123	1,799	1,082	8,004	3,683	768	981	5,432	-	-	0	4,781	1,014	5,795	24,233	2,938	4,455	31,626
		RES	102	55	18	175	458	10	21	489	444	9	453	458	49	507	3,793	68	241	4,102
p		EXP	-		-	0	838	-	44	882	913	37	950	840	35	875	7,742	-	351	8,093
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
٩	P8	All					4,221	-	610	4,831	-	-	-	1,820	177	1,997	9,651	-	1,207	10,858
	H60	SAR					-	-	-	-	-	-	-	-	-	-	948	-	-	948
	C-40	-					331	-	-	331	-	-	-	167	-	167	1,278	-	-	1,278
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	815	-	207	1,022
Tot			10,885	5,258	4,622	20,765	12,968	1,433	2,616	17,017	3,736	123	3,859	12,502	4,053	16,555	78,931	7,139	14,564	100,634
	EA18	CVW	2,274	1,394	1,073	4,741											2,720	1,468	1,231	5,419
OLF		FRS	1,370	1,074	399	2,843											1,653	1,134	466	3,253
0		RES	111	78	30	219											134	81	36	251
	H60	SAR					181	-	-	181							361	-	-	361
Tot	al		2,274	1,394	1,073	4,741											2,720	1,468	1,231	5,419
						1	1	1			1	1					1	1		
														Grand To			83,799	9,822	16,297	109,918
														(Ault+O	_F)					

Total Annual Ault = 20,765 (69.9%) EA-18G FCLP OLF = 8,923 (30.1%) Related Ops Total = 29,688

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

7.2 Other Modeling Parameters

Appendix A3 contains tables of runway utilization percentages as extracted from the NASMOD study output. Flight tracks and their utilization would be identical to those of the No Action Alternative except for the overhead break/pattern portion of the interfacility arrival tracks to the OLF and the FCLPs at the OLF. The primary changes in these tracks are the abeam distances (shortened compared to the No Action Alternative). Modeled flight tracks are depicted in Appendix A4.

Flight profiles would be identical to the No Action Alternative except for the adjustments made to the aforementioned revised overhead break/pattern and FCLP flight tracks. The representative profiles for each modeled aircraft type are contained in Appendix A5.

Depending on whether Scenario A, B, C, D, or E is selected, Alternative 2 would have between approximately 181 and 200 AAD flight events at Ault Field and between approximately 12 and 40 AAD flight events at the OLF. For the high-tempo FCLP year, Alternative 2 would have between approximately 182 and 204 AAD flight events at Ault Field and between approximately 12 and 43 AAD flight events at the OLF.

7.3 Run-up Operations

Table 6-11 lists the modeled run-ups, with their locations depicted in Figure 5-1. For average year Alternative 2, numbers of annual run-up events for the EA-18G were scaled proportionally to that alternative's change in number of based aircraft compared to the average year No Action Alternative.

For the high-tempo FCLP year Alternative 2, it was assumed the run-ups would not change compared to those of the average year Alternative 2.

7.4 Aircraft Noise Exposure

Using the data described in Sections 7.1 through 7.3, NOISEMAP was used to calculate and plot the 60 dB through 95 dB DNL contours, in 5-dB increments, for the AAD events for average year Alternative 2 under all scenarios. Figures 7-1 through 7-5 show the resulting DNL contours.

At Ault Field, the DNL contours for average year Alternative 2 under all scenarios would be up to roughly 1,000 feet of each other on average. The 65 dB contour surrounding Ault Field would extend approximately 7 to 13 miles from the runway endpoints. These lobes would be primarily attributable to EA-18G aircraft flying on the approach portion of GCA patterns. The 65 dB DNL contour would extend approximately 2 miles past the eastern shore of the mainland across Skagit Bay, primarily due to EA-18G GCA and VFR approaches. The 80 dB DNL contour would extend approximately 4 miles to the east outside the station boundary, primarily due to EA-18G GCA and VFR approaches descending from 1,800 feet AGL, as well as the GCA patterns. The 90 dB contour would extend approximately 0.5 mile to the east beyond the station boundary.

The DNL exposure at the OLF would be attributable to the OLF's FCLP operations. The 65 dB contours would extend 2.2 to 2.8 miles north of the OLF's runway. The 65 dB contours would extend 2.5 to 3.1 miles south of the OLF's runway.

As an overview comparison map, Figure 7-6 compares the 65 dB DNL contours of average year Alternative 2 under all scenarios to the 65 dB DNL contours of the No Action Alternative. Because FCLPs comprise the majority of operations at the OLF, changes in location of FCLPs between Ault Field and the OLF cause a larger difference in DNL contours at the OLF from one scenario to the next.

Table 7-11 depicts the estimated off-station population exposed to DNL greater than or equal to 65 dB and its change compared to the No Action Alternative. Overall, the affected population would increase by 12 percent to 16 percent, with the smallest increase occurring under Alternative 2, Scenario A, and the largest under Alternative 2, Scenarios B and E.

Under the high-tempo FCLP year Alternative 2 (Appendix A7), the population exposed to DNL greater than or equal to 65 dB would increase by 14 percent to 17 percent, with the smallest increase occurring under high-tempo FCLP year Alternative 2, Scenario A, and the largest increase attributable to high-tempo FCLP year Alternative 2, Scenarios B and E. As shown in Table 7-12, the population exposed to DNL greater than or equal to 65 dB would, on average, be 2 percent greater than that exposed under the average year Alternative 2.

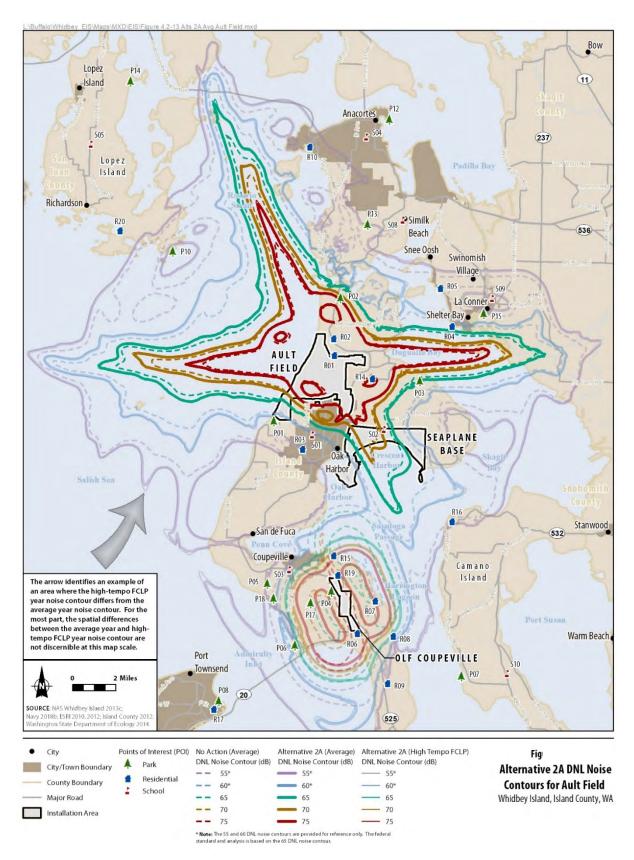


Figure 7-1 DNL Contours for AAD Aircraft Events for the Average Year Alternative 2A

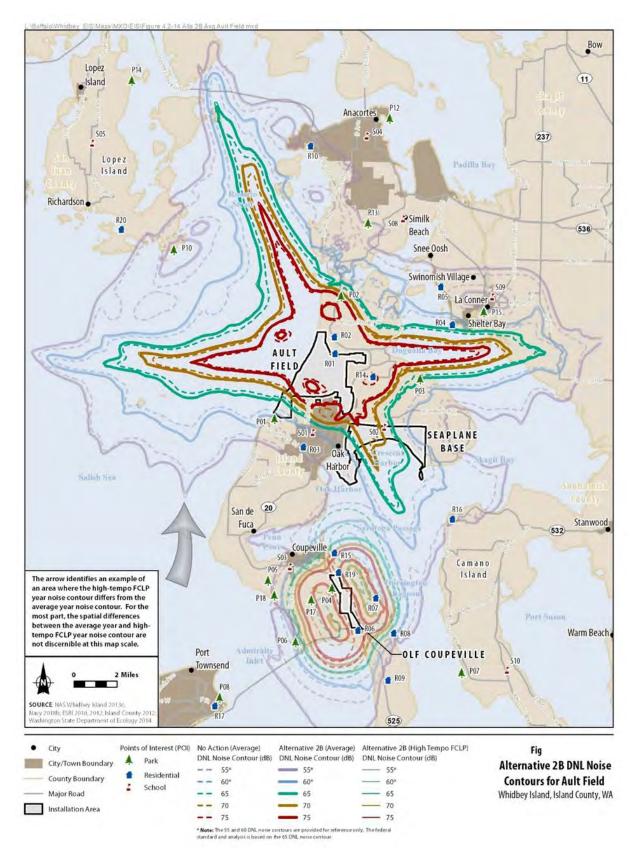


Figure 7-2 DNL Contours for AAD Aircraft Events for the Average Year Alternative 2B

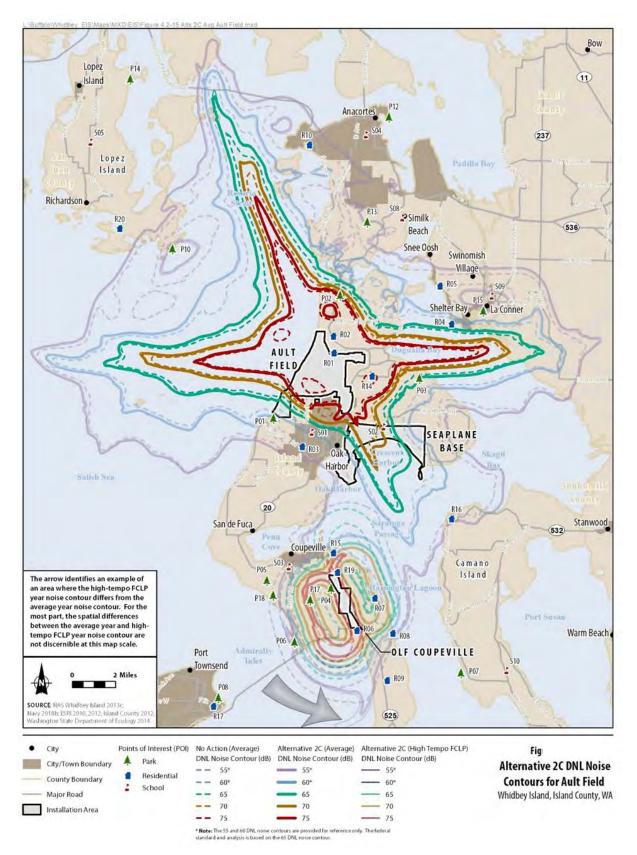


Figure 7-3 DNL Contours for AAD Aircraft Events for the Average Year Alternative 2C

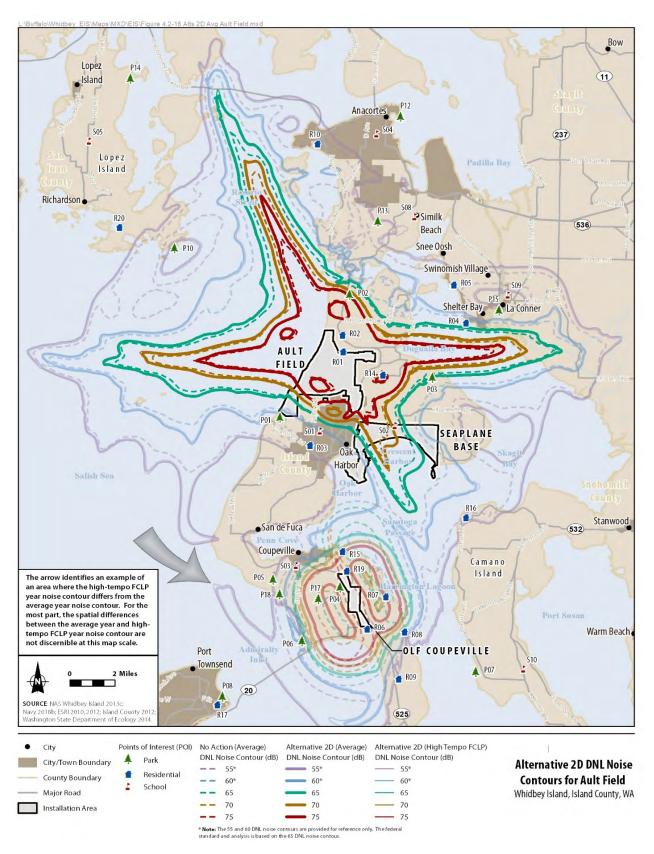


Figure 7-4 DNL Contours for AAD Aircraft Events for the Average Year Alternative 2D

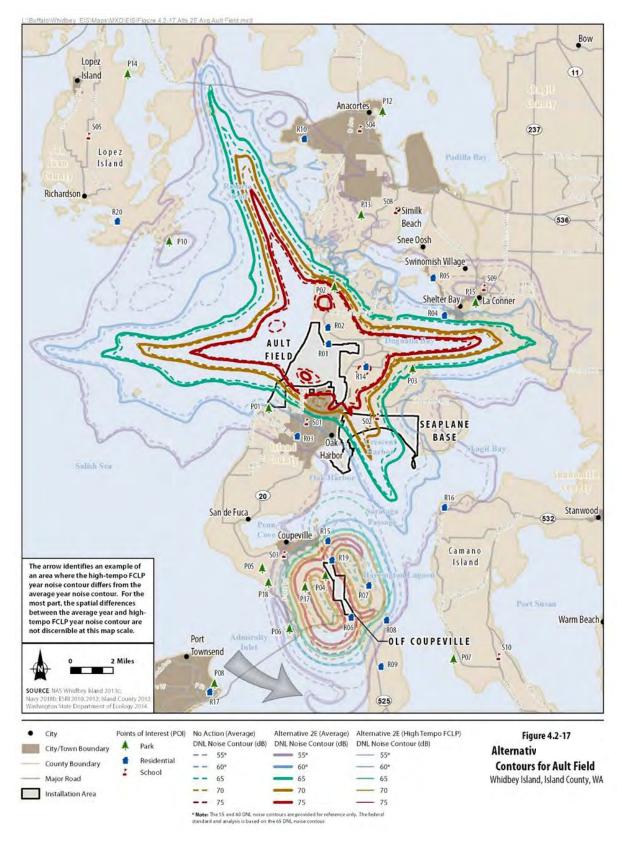


Figure 7-5 DNL Contours for AAD Aircraft Events for the Average Year Alternative 2E

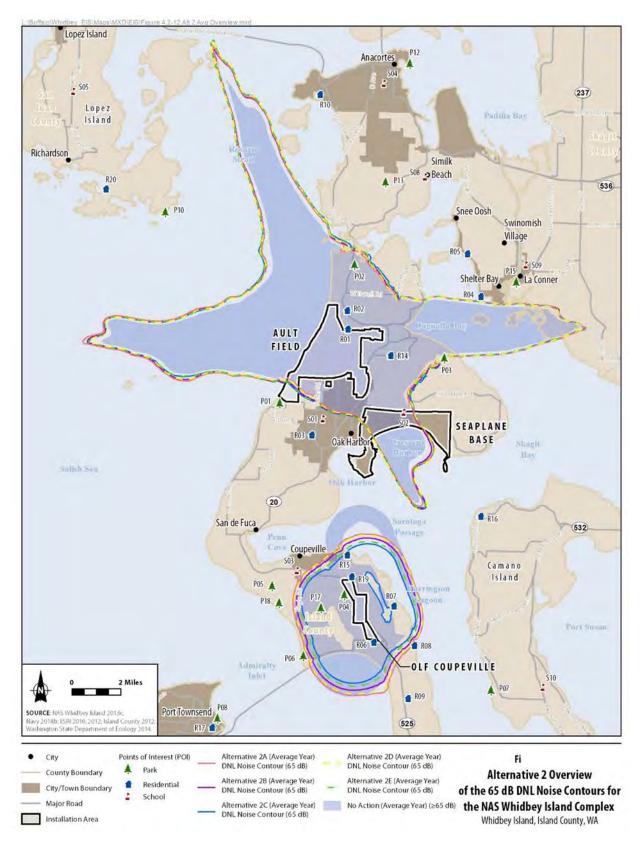


Figure 7-6 Comparison of 65 dB DNL Contours for Average Year Alternative 2 and the No Action Alternative

Table 7-11 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 2 (Average Year)²,³

	DNL Cont	our Ranae	25					
	Cont	- nange			Greater th	nan or		
	65 to <70	dB DNL	70 to <75	dB DNL	equal to 7		Total	
	Area	<u></u>	Area		Area		Area	
	(acres)	Pop ⁴	(acres)	Pop ⁴	(acres)	Pop ⁴	(acres)	Pop ⁴
Ault Field								
No Action Alternative								
Average Year	3,596	3,279	3,269	2,283	5,549	3,379	12,414	8,941
Alternative 2								
Scenario A (20/80 FCLP	4,015	3,699	3,263	1,886	5,886	3,493	13,164	9,078
split)	(+419)	(+420)	(-6)	(-397)	(+337)	(+114)	(+750)	(+137)
Scenario B (50/50 FCLP	3,899	3,595	3,266	2,423	6,370	3,763	13,535	9,781
split)	(+303)	(+316)	(-3)	(+140)	(+821)	(+384)	(+1,121)	(+840)
Scenario C (80/20 FCLP	3,903	3,701	3,130	2,472	6,755	3,922	13,788	10,095
split)	(+307)	(+422)	(-139)	(+189)	(+1,206)	(+543)	(+1,374)	(+1,154)
Scenario D (30/70 FCLP	3,966	3,703	3,234	2,189	6,129	3,606	13,329	9,498
split)	(+370)	(+424)	(-35)	(-94)	(+580)	(+227)	(+915)	(+557)
Scenario E (70/30 FCLP	3,898	3,667	3,152	2,435	6,657	3,876	13,707	9,978
split)	(+302)	(+388)	(-117)	(+152)	(+1,108)	(+497)	(+1,293)	(+1,037)
OLF Coupeville								
No Action Alternative								
Average Year	3,681	861	3,088	786	638	583	7,407	2,230
Alternative 2								
Scenario A (20/80 FCLP	1,553	539	3,380	987	5,149	1,883	10,082	3,409
split)	(-2,128)	(-322)	(+292)	(+201)	(+4,511)	(+1,300)	(+2,675)	(+1,179)
Scenario B (50/50 FCLP	2,124	583	3,470	1,065	3,784	1,447	9,378	3,095
split)	(-1,557)	(-278)	(+382)	(+279)	(+3,146)	(+864)	(+1,971)	(+865)
Scenario C (80/20 FCLP	3,442	1,059	3,148	1,018	1,287	642	7,877	2,719
split)	(-239)	(+198)	(+60)	(+232)	(+649)	(+59)	(+470)	(+489)
Scenario D (30/70 FCLP	1,651	518	3,443	1,027	4,793	1,774	9,887	3,319
split)	(-2,030)	(-343)	(+355)	(+241)	(+4,155)	(+1,191)	(+2,480)	(+1,089)
Scenario E (70/30 FCLP	3,136	896	3,157	1,047	2,413	968	8,706	2,911
split)	(-545)	(+35)	(+69)	(+261)	(+1,775)	(+385)	(+1,299)	(+681)
NAS Whidbey Island Com	plex							
No Action Alternative	_	_						
Average Year	7,277	4,140	6,357	3,069	6,187	3,962	19,821	11,171
Alternative 2			_					
Scenario A (20/80 FCLP		4,238		2,873		5,376		12,487
split)	5,568	(+98)	6,643	(-196)	11,035	(+1,414)	23,246	(+1,316
	(-1,709)		(+286)		(+4,848)		(+3,425))
Scenario B (50/50 FCLP		4,178		3,488		5,210		12,876
split)	6,023	(+38)	6,736	(+419)	10,154	(+1,248)	22,913	(+1,705
	(-1,254)		(+379)		(+3,967)	1	(+3,092))
Scenario C (80/20 FCLP		4,760		3,490		4,564		12,814
split)	7,345	(+620)	6,278	(+421)	8,042	(+602)	21,665	(+1,643
	(+68)		(-79)		(+1,855)		(+1,844))

Table 7-11 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 2 (Average Year)²,³

	DNL Conto	ur Range.	s					
				/n n	Greater th			
	65 to <70	dB DNL	70 to <75	aB DNL	equal to 7.	5 aB DNL	Total	
	Area		Area		Area		Area	
	(acres)	Pop⁴	(acres)	Pop ⁴	(acres)	Pop⁴	(acres)	Pop ⁴
Scenario D (30/70 FCLP		4,221		3,216		5,380		12,817
split)	5,617	(+81)	6,677	(+147)	10,922	(+1,418)	23,216	(+1,646
	(-1,660)		(+320)		(+4,735)		(+3,395))
Scenario E (70/30 FCLP		4,563		3,482		4,844		12,889
split)	7,034	(+423)	6,309	(+413)	9,070	(+882)	22,413	(+1,718
	(-243)		(-48)		(+2,883)		(+2,592))

Notes:

- ¹ All five scenarios are outlined in Section 2.3.3, where the split represents the percent of FCLPs conducted at Ault Field and OLF Coupeville, respectively (i.e., 20/80 FCLP split = 20 percent of FCLPs at Ault Field and 80 percent of FCLPs at OLF Coupeville).
- ² Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- ³ The difference between the No Action Alternative and Alternative 1 is noted in parentheses.
- ⁴ Population counts of people within the DNL contour ranges were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour range, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contour ranges (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁵ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level FCLP = Field Carrier Landing Practice

Table 7-12 Percent Difference in the Estimated Acreage and Population within the Average and High-Tempo FCLP Year DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 2

	DNL Contour	Ranges ¹						
	65 to <70 dB	DNL	70 to <75 d	B DNL	Greater t 75 dB DN	han or equal to IL	Total	
DNL Contours	Area (acres)	Рор	Area (acres)	Рор	Area (acres)	Рор	Area (acres)	Рор
Ault Field								
Scenario A	1.7%	1.1%	0.3%	2.3%	1.1%	0.6%	1.1%	1.2%
Scenario B	1.4%	1.8%	0.0%	2.8%	1.9%	1.4%	1.3%	1.9%
Scenario C	2.3%	1.8%	0.3%	1.8%	1.3%	1.0%	1.4%	1.5%
Scenario D	1.5%	1.4%	0.3%	1.6%	1.0%	0.7%	1.0%	1.2%
Scenario E	1.8%	1.5%	0.3%	2.1%	1.3%	0.8%	1.2%	1.4%
OLF Coupeville								
Scenario A	0.6%	4.3%	-2.9%	-3.9%	3.4%	2.9%	0.9%	1.2%
Scenario B	-2.9%	-3.7%	-0.3%	-0.5%	3.6%	3.4%	0.7%	0.7%
Scenario C	0.1%	-3.1%	0.9%	2.4%	26.6%	14.6%	4.8%	3.1%
Scenario D	-3.9%	1.8%	-0.5%	-2.0%	3.6%	3.2%	0.9%	1.3%
Scenario E	-6.8%	-7.9%	2.1%	0.4%	12.6%	10.9%	1.8%	1.3%
NAS Whidbey I	sland Complex							
Scenario A	1.4%	1.5%	-1.3%	0.2%	2.2%	1.4%	1.0%	1.2%
Scenario B	-0.1%	1.1%	-0.1%	1.8%	2.5%	1.9%	1.1%	1.6%
Scenario C	1.3%	0.7%	0.6%	2.0%	5.4%	2.9%	2.6%	1.8%
Scenario D	-0.1%	1.4%	-0.1%	0.5%	2.2%	1.5%	1.0%	1.2%
Scenario E	-2.0%	-0.4%	1.2%	1.6%	4.3%	2.8%	1.4%	1.4%

Key:

dB = decibel

DNL = day-night average sound level

NAS = Naval Air Station
OLF = outlying landing field

7.4.1 Points of Interest

Figure 7-7 shows the DNL for each POI and comparisons of the DNLs for this alternative's scenarios to those for the No Action Alternative. The average year Alternative 2 under all scenarios would have 12 POIs experience DNL greater than or equal to 65 dB, and five residential POIs would experience DNL greater than or equal to 75 dB. Three of the latter category would be near Ault Field (POIs R01, R02, and R14), and three would be near the OLF (POIs R06, R07, and R19). One of the seven schools, POI S02, would experience DNL greater than or equal to 65 dB--i.e., 69 dB.

Among alternatives under all scenarios, the increase in DNL would be greatest for Alternative 2, Scenario A, and smallest for Alternative 2, Scenario C. Increases in DNL would range from 1 to 15 dB compared to the No Action Alternative. POIs R06, R07, and EBLA001 would experience the greatest increases in DNL, 11 to 15 dB. POI R07 would be newly impacted, with DNL of 71 to 76 dB.

See Appendix A6 for lists of the five flight profiles that generate the greatest SEL at each POI.

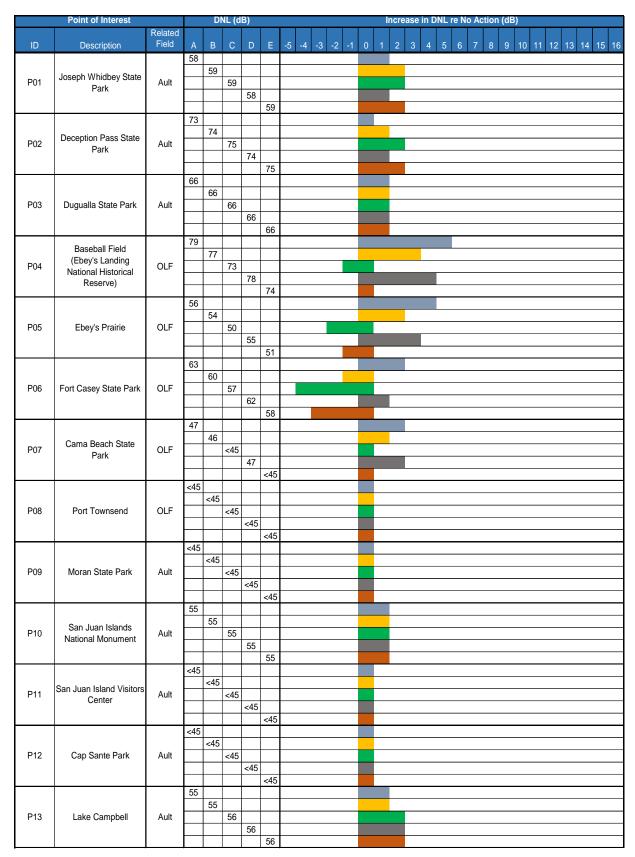


Figure 7-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 2

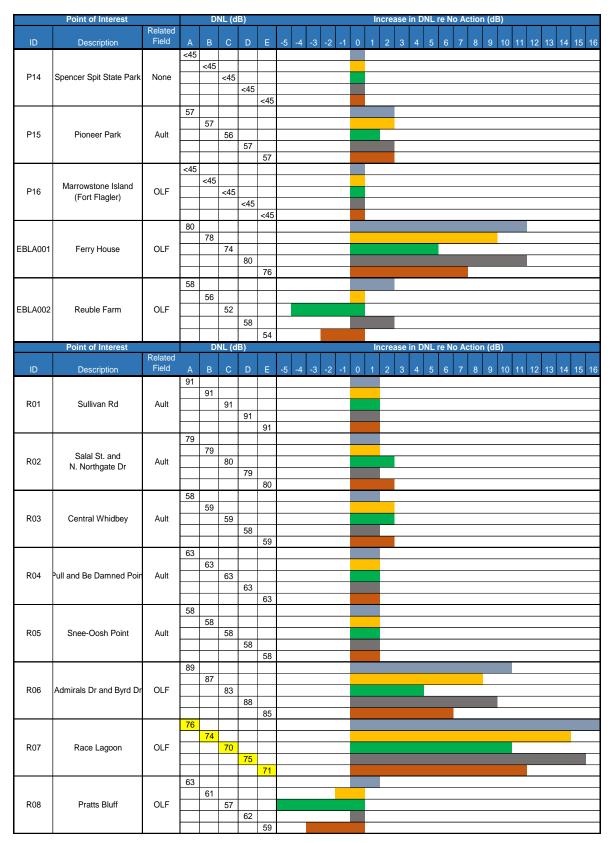


Figure 7-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 2 (continued)

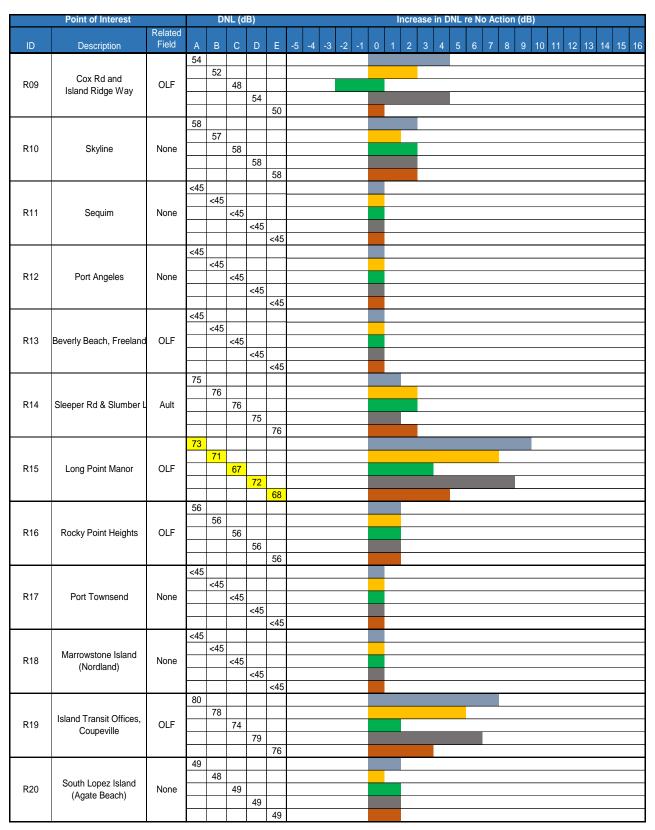


Figure 7-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 2 (continued)

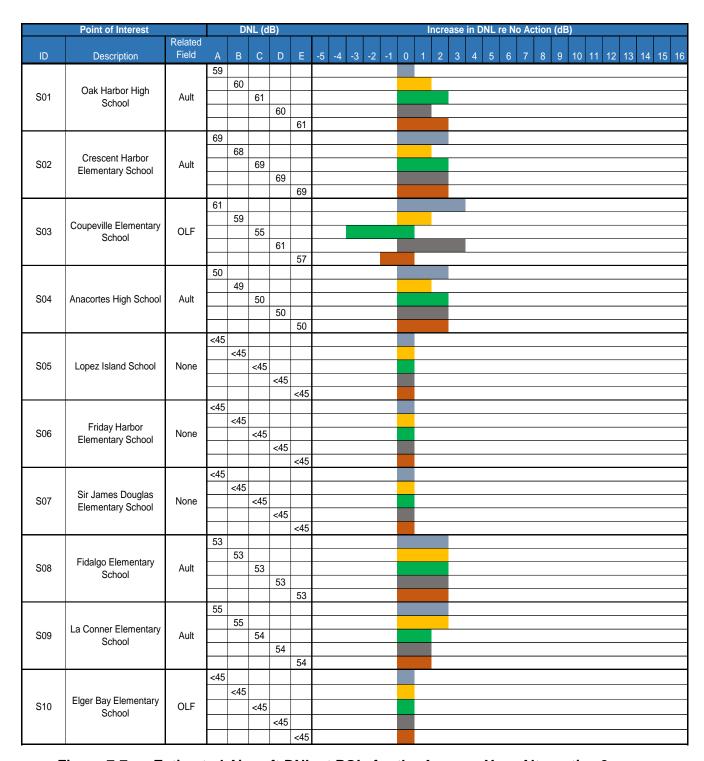


Figure 7-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 2 (concluded)

The high-tempo FCLP year Alternative 2 under all scenarios (Appendix A7) would have 12 POIs experience DNL greater than or equal to 65 dB, and five or six residential POIs would experience DNL greater than or equal to 75 dB. Three of the latter category would be near Ault Field (POIs R01, R02, and R14), and three would be near the OLF (POIs R06, R07, and R19). One of the seven schools, POI S02, would experience DNL greater than or equal to 65 dB--i.e., 69 dB.

Among high-tempo FCLP year Alternative 2 under all scenarios, the increase in DNL would be greatest for Alternative 2, Scenario A, and smallest for Alternative 2, Scenario C. Increases in DNL would range from 1 to 15 dB, compared to the high-tempo FCLP year No Action Alternative. POIs R07 and R06 would experience increases in DNL, respectively, of up to 15 and 10 dB. POI R07 would be newly impacted, with DNL of 70 to 76 dB.

7.4.2 Potential Hearing Loss

Table 7-13 shows estimates of the population within 1-dB bands of $L_{eq(24h)}$ and their associated NIPTS for the average year Alternative 2. The level at which there may be a noticeable NIPTS would be at the 84 to 85 dB $L_{eq(24)}$ range and above. There is an increase in the population within the 80 dB DNL noise contour (i.e., potential at-risk population) under Alternative 2 at both Ault Field and OLF Coupeville. The largest increase in the potential at-risk population in the vicinity of Ault Field would be under Scenario C (48 additional people) and in the vicinity of OLF Coupeville would be under Scenario A (29 additional people). The range of potential NIPTS could be up to 9.5 dB at Ault Field and 6.0 dB at OLF Coupeville. The potential NIPTS values presented in Table 7-13 are only applicable in the extreme case of continuous outdoor exposure at one's residence to all aircraft events occurring over a period of 40 years. Because it is highly unlikely for any individuals to meet all those criteria, the actual potential NIPTS for individuals would be far less than the values reported here.

The USEPA guidelines provided information on the estimated NIPTS exceeded by the 10 percent of the population most sensitive to noise. Using the same 1 dB incremental data in Table 7-13 and the column identified as the 10th Percentile NIPTS, those individuals are vulnerable to noticeable NIPTS at the 77 to 78 dB $L_{eq(24)}$ range and above. Using this even more conservative estimate, the range of potential NIPTS could be up to 18.0 dB for the population most sensitive to noise around Ault Field and up to 12.0 dB for the population most sensitive to noise around OLF Coupeville.

Table 7-13 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level under Alternative 2 at the NAS Whidbey Island Complex (Average Year)

			Estimated P	opulation	4,5,6									
	Ì		Ault Field						OLF Coupev	ille				
Band of $L_{eq(24)}$ (dB) ¹	Avg NIPTS (dB) ^{2,3}	10 th Pct NIPTS (dB) ^{2,}	No Action	Alt 2A	Alt 2B	Alt 2C	Alt 2D	Alt 2E	No Action	Alt 2A	Alt 2B	Alt 2C	Alt 2D	Alt 2E
75-76	1.0	4.0	0	0	1	9	0	5	31	102	47	24	83	31
				(0)	(+1)	(+9)	(0)	(+5)		(+71)	(+16)	(-7)	(+52)	(0)
76-77	1.0	4.5	123	127	319 ⁷	411 ⁸	165 ⁹	355	45	164	90	58	160	63
				(+4)	(+196)	(+288)	(+42)	(+232)		(+119)	(+45)	(+13)	(+115)	(+18)
77-78	1.5	5.0	233	263	336	402	310	354	47	127	75	88	100	57
				(+30)	(+103)	(+169)	(+77)	(+121)		(+80)	(+28)	(+41)	(+53)	(+10)
78-79	2.0	5.5	145	148	243	296	175	295	24	92	65	5	78	61
				(+3)	(+98)	(+151)	(+30)	(+150)		(+68)	(+41)	(-19)	(+54)	(+37)
79-80	2.5	6.0	92	135	163	241	141	211	7	75	59	0	70	76
				(+43)	(+71)	(+149)	(+49)	(+119)		(+68)	(+52)	(-7)	(+63)	(+69)
80-81	3.0	7.0	73	78	97	130	85	119	0	66	59	0	62	3
				(+5)	(+24)	(+57)	(+12)	(+46)		(+66)	(+59)	(0)	(+62)	(+3)
81-82	3.5	8.0	51	63	72	80	68	77	0	58	84	0	55	0
				(+12)	(+21)	(+29)	(+17)	(+26)		(+58)	(+84)	(0)	(+55)	(0)
82-83	4.0	9.0	37	48	58	63	48	61	0	58	4	0	64	0
				(+11)	(+21)	(+26)	(+11)	(+24)		(+58)	(+4)	(0)	(+64)	(0)
83-84	4.5	10.0	34	35	36	38	35	37	0	69	0	0	56	0
				(+1)	(+2)	(+4)	(+1)	(+3)		(+69)	(0)	(0)	(+56)	(0)
84-85	5.5	11.0	11	27	26	29	29	28	0	28	0	0	1	0
				(+16)	(+15)	(+18)	(+18)	(+17)		(+28)	(0)	(0)	(+1)	(0)
85-86	6.0	12.0	9	10	22	26	10	24	0	1	0	0	0	0
				(+1)	(+13)	(+17)	(+1)	(+15)		(+1)	(0)	(0)	(0)	(0)
86-87	7.0	13.5	6	9	9	10	9	10	0	0	0	0	0	0
				(+3)	(+3)	(+4)	(+3)	(+4)		(0)	(0)	(0)	(0)	(0)
87-88	7.5	15.0	4	6	6	8	6	7	0	0	0	0	0	0
				(+2)	(+2)	(+4)	(+2)	(+3)		(0)	(0)	(0)	(0)	(0)
88-89	8.5	16.5	2	4	4	5	4	5	0	0	0	0	0	0
				(+2)	(+2)	(+3)	(+2)	(+3)		(0)	(0)	(0)	(0)	(0)
89-90	9.5	18.0	0	1	2	2	1	2	0	0	0	0	0	0
				(+1)	(+2)	(+2)	(+1)	(+2)		(0)	(0)	(0)	(0)	(0)

Table 7-13 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level under Alternative 2 at the NAS Whidbey Island Complex (Average Year)

			Estimated Po	pulation4	,5,6									
			Ault Field						OLF Coupevi	lle				
Band of	Avg NIPTS	10 th Pct												
Leq(24) (dB)1	$(dB)^{2,3}$	NIPTS (dB) 2,	No Action	Alt 2A	Alt 2B	Alt 2C	Alt 2D	Alt 2E	No Action	Alt 2A	Alt 2B	Alt 2C	Alt 2D	Alt 2E
90-91	10.5	19.5	0	0	0	0	0	0	0	0	0	0	0	0
				(0)	(0)	(0)	(0)	(0)		(0)	(0)	(0)	(0)	(0)

Notes:

- ¹ L_{eq} bands with no population were omitted from table.
- ² NIPTS values rounded to nearest 0.5 dB.
- ³ NIPTS below 5 dB are generally not considered noticeable.
- ⁴ This analysis assumes the population is outdoors at one's residence and exposed to all aircraft noise events for 40 years. Given the amount of time spent indoors and the intermittent occurrence of aircraft noise events, it is highly unlikely that individuals would meet all those criteria, and the actual potential for hearing loss would be far less than the values reported here.
- ⁵ Estimated Population was determined by those living within the 80 dB DNL noise contour around each airfield, including those living on-base at Ault Field (there is no on-base population at OLF Coupeville).
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). In addition, per guidance on potential hearing loss, on-base populations at Ault Field have been included in the analysis. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁷ Of this estimated population, 25 are military personnel living on base at Ault Field.
- ⁸ Of this estimated population, 70 are military personnel living on base at Ault Field.
- ⁹ Of this estimated population, 24 are military personnel living on base at Ault Field.

Kev:

dB = decibel

 $L_{eq(24)} = 24$ -hour Equivalent Sound Level

NIPTS = Noise Induced Permanent Threshold Shift

7.4.3 Residential Nighttime Sleep Disturbance

Table 7-14 lists the PA for applicable POIs for average daily nighttime (10:00 p.m. to 7:00 a.m.) events for average year Alternative 2 under all scenarios. Average PA would range from 8 percent to 16 percent across the listed POIs for either window condition. POIs R01 and R02 would have the greatest PA, 35 percent to 74 percent, depending upon whether windows are open or closed. At eight of the POIs, there would be no change in PA compared to the No Action Alternative, but at the remaining 22 POIs, increases in PA would range from 1 percent at several POIs to 29 percent (at POI R06 under Alternative 2, Scenario A).

Under the high-tempo FCLP year Alternative 2 (Appendix A7), the statistics cited above would be 1 percent to 2 percent greater than those listed for the average year Alternative 2, except for the change statistics. At six of the POIs, there would be no change in PA compared to the No Action Alternative, but at the remaining 24 POIs, increases in PA would range from 1 percent at several POIs to 39 percent (at POI R06 under Alternative 2, Scenario A).

Table 7-14 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 2

				Annual A	verage Nig	ghtly (2200	0-0700) Pr	obability o	of Awaken	ing (%) ¹													
						Change fi	rom			Change f	rom			Change fr	om			Change f	rom			Change f	rom
Poir	it of li	nterest		Alt2A		No Actior		Alt2B		No Actio		Alt2C		No Action		Alt2D		No Actio		Alt2E		No Action	
				Windows	Windows	Windows	Windows	Windows	Windows	Windows	s Window:	Windows	Windows	Windows	Windows	Windows	Windows	Window	s Windows	Windows	Windows	Windows	Windows
Туре	_	Description	Field	Open	Closed	Open		Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open		Open	Closed	Open	Closed
		Sullivan Rd			51%	9%	8%		55%	13%	12%		58%	16%	15%		52%	10%		73%	57%	15%	14%
	R02	Salal St. and	Ault	49%	35%	8%	6%	52%	38%	11%	9%	56%	41%	15%	12%	50%	36%	9%	7%	55%	40%	14%	11%
		N. Northgate																					
	202	Dr	A 11	19%	4.00/	20/	2%	240/	140/	F0/	3%	220/	4.20/	7%	4%	200/	4.40/	40/	3%	220/	4.20/	7%	4%
	RU3	Central Whidbey	Ault	19%	10%	3%	2%	21%	11%	5%	3%	23%	12%	/%	4%	20%	11%	4%	3%	23%	12%	7%	4%
	R04	Pull and Be Damned Poin		25%	12%	6%	3%	26%	12%	7%	3%	27%	12%	8%	3%	25%	12%	6%	3%	27%	12%	8%	3%
	RO5	Snee-Oosh		20%	7%	5%	2%	21%	7%	6%	2%	22%	7%	7%	2%	20%	7%	5%	2%	22%	7%	7%	2%
		Point			7 70									, ,									
	R06	Admirals Dr	OLF	38%	27%	29%	21%	25%	17%	16%	11%	11%	7%	2%	1%	34%	24%	25%	18%	16%	11%	7%	5%
		and Byrd Dr																					
	_	Race Lagoon			8%	13%	6%		5%	8%	3%		2%	2%	-	17%	7%	12%		9%	1	4%	1%
		Pratts Bluff			8%	9%			5%	5%	3%	4%	2%	-	-	12%		8%		6%		2%	1%
- -	R09	Cox Rd and Island Ridge Way	OLF	11%	7%	8%	5%	7%	4%	4%	2%	3%	2%	-	-	10%	6%	7%	4%	4%	3%	1%	1%
Residential ²	R10	Skyline	None	8%	3%	3%	1%	8%	3%	3%	1%	9%	3%	4%	1%	8%	3%	3%	1%	9%	3%	4%	1%
der	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Resi		Port Angeles			0%	1%	-	1%	0%	1%	-	0%	0%	-	-	1%	0%	1%	-	0%	0%	-	-
		Beverly Beach, Freeland		5%	-	3%		3%	-	1%	-	2%	-	-		5%		3%	-	2%	-	_	-
	R14	E Sleeper Rd & Slumber Ln		44%	31%	7%	6%	47%	34%	10%	9%	51%	37%	14%	12%	45%	32%	8%	7%	50%	36%	13%	11%
	R15	Long Point Manor	OLF	22%	12%	11%	8%	18%	8%	7%	4%	14%	4%	3%	-	21%	10%	10%	6%	15%	5%	4%	1%
	R16	Rocky Point	OLF	11%	4%	2%	1%	12%	4%	3%	1%	13%	3%	4%	_	12%	4%	3%	1%	13%	3%	4%	-
		Heights			.,-					-									[.,.	
	R17	Port	None	1%	-	-	-	1%	-	-	-	0%	-	-1%	-	1%	-	-	-	1%	-	-	-
		Townsend																					
	R18	Marrowstone Island (Nordland)	None	_	_	-	-	_	-	-	-	0%	_	-	-	-	_	-	-	0%	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	31%	20%	22%	15%	22%	13%	13%	8%	11%	5%	2%	-	28%	18%	19%	13%	15%	8%	6%	3%

Table 7-14 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 2

				Annual A	verage Nig	htly (2200	0-0700) Pr	obability o	of Awaken	ing (%) ¹													
Poir	st of l	nterest		Alt2A		Change fr No Action		Alt2B		Change j No Actio		Alt2C		Change fr No Action		Alt2D		Change f No Actio		Alt2E		Change fr No Action	
FUII	וו טן וו	iterest	Palatad	-	Windows			_	Windows				Windows			-				-	Windows		
Tyne	חו	Description	Field	Open							Closed				Closed	Open				Open			Closed
Турс	_	South Lopez Island (Agate Beach)	None	3%	1%	-	-	3%	1%	_	-	3%	1%	-	-	3%	1%	-	-	3%	1%	-	-
	S01	Oak Harbor High School		25%			Ì	27%		7%	4%	29%		9%		26%		6%		29%	·		5%
		Crescent Harbor Elementary School	Ault	26%	15%	5%	3%	28%	17%	7%	5%	30%	19%	9%	7%	27%	16%	6%	4%	30%	18%	9%	6%
		Coupeville Elementary School		16%						6%	3%		3%	-	-	14%		9%		7%			1%
=	S04	Anacortes High School	Ault	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-
dentia	S05	Lopez Island School	None	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-
School (near residential)	S06	Friday Harbor Elementary School	None	-	-	_	-	-	-	-	_	-	-	-	-	_	-	_	-	-	-	-	-
School (Sir James Douglas Elementary School	None	-	-	-	_	-	_	_	-	-	-	-	-	-	_	-	-	-	-	-	-
		Fidalgo Elementary School	Ault	9%	3%	3%	1%	9%	3%	3%	1%	10%	3%	4%	1%	9%	3%	3%	1%	10%	3%	4%	1%
		La Conner Elementary School		11%	5%	3%	2%	10%	5%	2%	2%	10%	5%	2%	2%	10%	5%	2%	2%	10%	5%	2%	2%
		Elger Bay Elementary School	OLF		-	-		-	-		-	-		-	-	-	_	-	-	-	-		-

¹ Assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

² R01 and R06 include interior SELs greater than 100 dB with windows open

7.4.4 Residential Daytime Indoor Speech Interference

Table 7-15 presents the average daily indoor daytime (7:00 a.m. to 10:00 p.m.) events per hour for the applicable POIs that would experience indoor maximum sound levels of at least 50 dB with windows closed and open, for average year Alternative 2. Events per hour would be less than one at 12 of the 30 POIs and would range between one and 10 for the remaining 18 POIs, regardless of the window status. Relative to the average year No Action Alternative, increases of one or two events per hour would be experienced by 15 of the POIs.

For the high-tempo FCLP year Alternative 2 (Appendix A7), the above statistics would be the same.

Table 7-15 Indoor Speech Interference for the Average Year Alternative 2

				Annual A	lveraae Da	ilv Indoor	Davtime	(0700-220	0) Events p	er Hour ¹													
						Change f			,	Change				Change f	rom			Change j	from			Change f	rom
Poi	nt of I	nterest		Alt2A		No Actio	n	Alt2B		No Actio	n	Alt2C		No Action	า	Alt2D		No Actio	n	Alt2E		No Actio	n
																							Windows
Туре			Field	Open	Closed	Open		Open	Closed	Open	Closed	Open	Closed	Open			Closed	Open			Closed	Open	Closed
			Ault	9	9	+1	+1	10	10	+2	+2	10	10	+2	+2		9	+1	+1	10	10	+2	+2
			Ault	9	9	+1	+1	10	9	+2	+1	10	10	+2	+2	9	9	+1	+1	10	10	+2	+2
		N. Northgate Dr																					
	R03		Ault	5	-	-	-	6	-	+1	-	6	-	+1	-	5	-	-	-	6	-	+1	-
	204	Whidbey	A 11	2	1	. 4		2		. 4		2	1	. 4		2	4	. 4		2	4	. 4	
		Pull and Be Damned Point		3	1	+1	-	3	1	+1	-	3	1	+1	-	3	1	+1	-	3	1	+1	-
	R05	Snee-Oosh Point	Ault	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
	R06		OLF	2	2	+2	+2	1	1	+1	+1	-	-	-	-	2	2	+2	+2	1	1	+1	+1
		and Byrd Dr																					
	R07	Race Lagoon	OLF	2	1	+2	+1	1	-	+1	-	1	-	+1	-	2	1	+2	+1	1	-	+1	-
	R08	Pratts Bluff	OLF	2	1	+2	+1	1	-	+1	-	-	-	-	-	2	1	+2	+1	1	-	+1	-
	R09		OLF	1	-	+1	-	1	-	+1	-	-	-	-	-	1	-	+1	-	-	-	-	-
		Island Ridge Way																					
Residential ²		Skyline	None	-	-	-	-	-	-	-	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
Jen		Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
esic	R12	Port Angeles	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
~	R13	Beverly	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Beach, Freeland																					
		E Sleeper Rd	Ault	9	8	+1	+1	9	9	+1	+2	10	9	+2	+2	9	8	+1	+1	10	9	+2	+2
		& Slumber Ln																					
	R15	Long Point Manor	OLF	3	2	+2	+1	2	1	+1	-	1	1	-	-	2	2	+1	+1	1	1	-	-
	R16		OLF	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
		Heights																					
		Port Townsend	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	_	Marrowstone	None	<u>_</u>	_	_	_	_		_	_	_	-	_	_	_	_	_	-	_	_	_	
	1120	Island	TOTIC																				
	246	(Nordland)	015	2	12			4	1			1	1	1		2	2		1.4	4	1		
	R19	Island Transit Offices, Coupeville	OLF	2	2	+1	+1	1	1	-	-	1	1	-	-	2	2	+1	+1	1	1	-	-

Table 7-15 Indoor Speech Interference for the Average Year Alternative 2

				Annual A	verage Dai	ly Indoor	Daytime (0700-2200	0) Events p	er Hour ¹													
Poi	nt of I	Interest		Alt2A		Change f No Actio		Alt2B		Change : No Actio		Alt2C		Change fr No Action		Alt2D		Change j No Actio		Alt2E		Change fi No Action	
			Related	Window	s Windows	Windows	Windows	Windows	Windows	Window	s Windows	Windows	Windows	Windows	Windows	Windows	s Windows	Window	Windows	Windows	Windows	Windows	Windows
Тур	: ID	Description	Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
		South Lopez Island (Agate Beach)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S01	High School		6	2	-	-	7	3	+1	+1	7	3	+1	+1	7	3	+1	+1	7	3	+1	+1
		Crescent Harbor Elementary School	Ault	5	2	-	-	6	2	+1	-	6	3	+1	+1	6	2	+1	-	6	3	+1	+1
		Elementary School		2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
=	S04	Anacortes High School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
dentia		Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (near residential)		Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Fidalgo Elementary School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Elementary School		1		-	-	1	1	-	+1	1		-	-	1		-	-	1		-	-
		Elger Bay Elementary School	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

With an indoor maximum sound level of at least 50 dB; assumes 15 dB and 25 dB of noise level reductions for windows open and closed, respectively.

The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School; therefore, this location was not modeled individually, but similar result for indoor speech interference for POI S03 would apply

7.4.5 Classroom Learning Interference

Table 7-16 presents the potential learning interference for classrooms under the average year Alternative 2. With an $L_{eq(8h)}$ of 69 dB, POI S02 (Crescent Harbor Elementary School) would experience the greatest outdoor $L_{eq(8h)}$. No other locations would experience $L_{eq(8h)}$ greater than or equal to the screening threshold of 60 dB under any of the three alternatives. With windows open, three or four of the POIs would have more than one event per hour. With windows closed, two of the POIs would have more than one event per hour. POI S01, Oak Harbor High School, would have the most events per hour, with up to seven with windows open. POIs S01 and S02 would have the most events per hour (two or three) with windows closed.

All POIs would experience between 1 and 6 dB increases in $L_{eq(8h)}$ and increases of one or two events per hour.

Under the high-tempo FCLP year Alternative 2 (Appendix A7), POI S02 (Crescent Harbor Elementary School) would have an outdoor $L_{eq(8h)}$ of 69 dB. Up to four of the POIs would have more than one event per hour with windows open (S01, S02, S03, and R03), and up to two POIs would have more than one event per hour with windows closed (S01 and S02). POI S01, Oak Harbor High School, would have the most events per hour, with up to seven with windows open and three with windows closed. Relative to the high-tempo FCLP year No Action Alternative, POIs would experience increases of up to two events per hour. Only one POI would experience a change in indoor $L_{eq(8h)}$ of greater than 2 dB (POI S03.)

Table 7-16 Classroom Learning Interference for Average Year Alternative 2

				Alt 2A					Change fr	om No Ad	tion		
					Indoor ¹					Indoor¹			
Point of I	nterest	:		Outdoor	Windows C	pen	Windov	ws Closed	Outdoor	Window	rs Open	Windo	ws Closed
Туре	ID	Description	Related Field	L _{eq (8h)} (dB)	Leq(8h) (dB)	Events per Hour ²	L _{eq(8h)}	Events per Hour ²	L _{eq (8h)} (dB)	L _{eq(8h)} (dB)	Events per Hour ²	L _{eq(8h)} (dB)	Events per Hour ²
School	R03	Central Whidbey	Ault	59	<45	5	<45	-	+2	+2	+1	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	69	54	5	<45	2	+2	+2	+1	+2	-
	S03	Coupeville Elementary School	OLF	57	<45	2	<45	1	+6	+6	+2	+6	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	of Sites	Exceeding				4		2			1		-
One Intru	ısive Ev	ent per Hour											
_	-	per of Intrusive Events	3			5		2			+2		-
•		eaing One ber of Intrusive Events	•			6		2			+2		
		eding One	•			0		2			72		-

Table 7-16 Classroom Learning Interference for Average Year Alternative 2

Point of I	nterest			Alt 2B					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	5	<45	-	+2	+2	+1	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	2	+1	+1	+2	+1	-
	S02	Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	-
	S03	Coupeville Elementary School	OLF	55	<45	1	<45	1	+4	+4	+1	+4	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	-	-	-	-	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				3		2			2		-
One Intru	sive Ev	ent per Hour											
		er of Intrusive Events	;			5		2			+2		-
per Hour													
		per of Intrusive Event	S			7		2			+2		-
per Hour	if Exce	eding One											

Table 7-16 Classroom Learning Interference for Average Year Alternative 2

Point of I	nterest			Alt 2C					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
		School											
	S02	Crescent Harbor	Ault	69	54	6	<45	3	+2	+2	+2	+2	+1
		Elementary School											
	S03	Coupeville	OLF	51	<45	1	<45	-	-	-	+1	-	-
		Elementary School											
	S04	Anacortes High	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
		School											
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor	None	<45	<45	-	<45	-	+1	-	-	-	-
		Elementary School											
	S07	Sir James Douglas	None	<45	<45	-	<45	-	-	-	-	-	-
		Elementary School											
	S08	Fidalgo Elementary	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
		School											
	S09	La Conner	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
		Elementary School											
	S10	Elger Bay	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Elementary School											
		Exceeding				3		2			3		-
		ent per Hour											
		er of Intrusive Events	;			6		3			+2		-
per Hour													
		er of Intrusive Events	S			7		3			+2		-
per Hour	if Excee	eding One											

Table 7-16 Classroom Learning Interference for Average Year Alternative 2

Point of I	nterest			Alt 2D					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	5	<45	-	+2	+2	+1	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	69	54	5	<45	2	+2	+2	+1	+2	-
	S03	Coupeville Elementary School	OLF	56	<45	1	<45	1	+5	+5	+1	+5	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Exceeding ent per Hour				3		2			-		-
Minimum per Hour		er of Intrusive Events	3			5		2			-		-
	Numb	per of Intrusive Event	s			6		2			-		-

Table 7-16 Classroom Learning Interference for Average Year Alternative 2

Point of I	nterest	<u> </u>		Alt 2E					Chang	e from No i	Action		
School	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	S02	Crescent Harbor Elementary School	Ault	69	54	6	<45	2	+2	+2	+2	+2	-
	S03	Coupeville Elementary School	OLF	53	<45	1	<45	-	+2	+2	+1	+2	-
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				3		2			3		-
One Intru	sive Ev	ent per Hour											
Minimum	Numb	er of Intrusive Events	3			6		2			+2		-
		eding One											
		per of Intrusive Events	S			7		3			+2		-
per Hour i	if Exce	eding One											

Notes:

¹ Assumes 15 dB and 25 dB of noise level reductions for windows open and closed, respectively.

Number of average school-day events per hour during 8-hour school day (0800-1600) at or above an indoor maximum (single-event) sound level (Lmax) of 50 dB.

7.4.6 Recreational Speech Interference

Table 7-17 lists the AAD daytime NA 50 L_{max} per hour for the recreational POIs. The average NA across the 11 POIs would be four events per daytime hour and one event per nighttime hour. Seven POIs would be exposed to less than one event per hour. Seven POIs would have the most events per hour, at 10 under Alternative 2, Scenario C. Relative to the average year No Action Alternative, increases of up to two events per hour would be experienced at all but nine of the POIs. These latter nine POIs would experience no change.

For the high-tempo FCLP year Alternative 2 (Appendix A7), the above statistics would be the same.

Table 7-17 Recreational Speech Interference for Average Year Alternative 2

			Annua NA 65		ge Out	door Da	ily Da	ytime E	vents p	per Houi	<i>;</i> ,											
		and Beresten	4424		Increa		44.25		Increa		4426			ase re	Altas			ase re	4425		Increa	
		ark Receptor	Alt2A	1	No Ac		Alt2B		No Ac	-	Alt2C		No A		Alt2D		No A		Alt2E		No Act	
Туре	1	Description	Day	Night		Night		Night		Night		Night		Night		Night		Night		Night	Day	Night
	P01	Joseph Whidbey State Park		2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	P02	Deception Pass State Park	9	2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	P03	Dugualla State Park	9	2	+2	-	9	2	+2	-	10	2	+3	-	9	2	+2	-	9	2	+2	-
	P04	Baseball Field (Ebey's	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
		Landing National Historical																				
		Reserve)																				
	P05	Ebey's Landing State Park	4	1	+2	+1	3	1	+1	+1	3	1	+1	+1	4	1	+2	+1	3	1	+1	+1
	P06	Fort Casey State Park	3	1	+2	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	2		+1	-
	P07	Cama Beach State Park	5	1	+2	+1	4	1	+1	+1	3		-	-	5	1	+2	+1	4	1	+1	+1
	P08	Port Townsend	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1		-	-
	P09	Moran State Park	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
Park	P10	San Juan Islands National	8	2	+1	+1	9	2	+2	+1	9	2	+2	+1	8	2	+1	+1	9	2	+2	+1
		Monument																				
	P11	San Juan Island Visitors	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
		Center																				
	P12	Cap Sante Park		-	-	-		-	-	-	1	-	+1	-	1		+1	-	1		+1	-
	P13	Lake Campbell	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	P14	Spencer Spit State Park	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
	P15	Pioneer Park	5	1	+1	-	4	1	-	-	4	1	-	-	5	1	+1	-	4	1	-	-
	P16	Marrowstone Island (Fort	1	1	+1	+1	1		+1	-		-	-	-	1	1	+1	+1	1		+1	-
		Flagler)																				
	EBLA001	Ferry House	4	1	+2	+1	3	1	+1	+1	2		-	-	4	1	+2	+1	3	1	+1	+1
	EBLA002	Reuble Farm	4	1	+2	+1	3	1	+1	+1	2	-	-	-	4	1	+2	+1	3		+1	-

Table 7-17 Recreational Speech Interference for Average Year Alternative 2

			Annua NA 65		ge Out	door Do	aily Da	ytime E	vents	oer Houi	; 											
					Incred	ise re			Incred	ise re			Incre	ase re			Incre	ase re			Increa	se re
Repre	sentative	Park Receptor	Alt2A		No Ac	tion	Alt2B	:	No Ac	tion	Alt2C		No A	ction	Alt2D	,	No A	ction	Alt2E		No Ac	tion
Туре	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	R01	Sullivan Rd	9	2	+1		10	2	+2		10	3	+2	+1	10	2	+2	-	10	2	+2	-
	R02	Salal St. and N. Northgate Dr	9	2	+1	-	10	2	+2	-	10	3	+2	+1	10	2	+2	-	10	2	+2	-
	R03	Central Whidbey	8	2	+1	-	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-
	R04	Pull and Be Damned Point	8	2	+1	-	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-
	R05	Snee-Oosh Point	8	2	+1	+1	8	2	+1	+1	9	2	+2	+1	8	2	+1	+1	9	2	+2	+1
	R06	Admirals Dr and Byrd Dr	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2		+1	-
	R07	Race Lagoon	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	R08	Pratts Bluff	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2		+1	-
_	R09	Cox Rd and Island Ridge Way	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1		-	-
) tia	R10	Skyline	4	1	-	-	4	1	-	-	5	1	+1	-	4	1	-	-	4	1	-	-
Residential	R11	Sequim	1	-	+1	-	1	-	+1	-	1	-	+1	-	1		+1	-	1		+1	-
\esi	R12	Port Angeles	1	-	-	-	1	-	-	-	1	-	-	-	1		-	-	1		-	-
"	R13	Beverly Beach, Freeland	1	-	+1	-		-	-	-	-	-	-	-	1		+1	-			-	-
	R14	E Sleeper Rd & Slumber Ln	9	2	+1	-	10	2	+2	-	10	3	+2	+1	10	2	+2	-	10	2	+2	-
	R15	Long Point Manor	9	2	+2	+1	9	2	+2	+1	8	2	+1	+1	9	2	+2	+1	8	2	+1	+1
	R16	Rocky Point Heights	5	1	+1	-	5	1	+1	-	5	2	+1	+1	5	1	+1	-	5	2	+1	+1
	R17	Port Townsend	2	1	+1	+1	1		-	-		-	-1	-	1	1	-	+1	1		-	-
	R18	Marrowstone Island (Nordland)	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
	R19	Island Transit Offices, Coupeville	5	1	+2	-	4	1	+1	-	3	1	-	-	4	1	+1	-	4	1	+1	-
	R20	South Lopez Island (Agate Beach)	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-

Table 7-17 Recreational Speech Interference for Average Year Alternative 2

			Annua NA 65		ge Out	door Da	aily Da	ytime E	vents	per Houi	r,											
					Incred				Incred					ase re				ase re			Increa	
Repre	sentative	Park Receptor	Alt2A		No Ac		Alt2B		No Ac		Alt2C		No A		Alt2D		No A		Alt2E		No Ac	_
Type	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	S01	Oak Harbor High School	9	2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	S02	Crescent Harbor Elementary School	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-
	S03	Coupeville Elementary School	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	S04	Anacortes High School	1	-	-	-	1	-	-	-	1	-	-	-	1		-	-	1		-	-
_	S05	Lopez Island School	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
School	S06	Friday Harbor Elementary School	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
	S07	Sir James Douglas Elementary School	-	-	-	-	-	-	-	-	-	-	-	-			-	-			-	-
	S08	Fidalgo Elementary School	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	S09	La Conner Elementary School	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-
	S10	Elger Bay Elementary School	1	-	+1	-	1	-	+1	-	1	-	+1	-	1		+1	-	1		+1	-

NAS Whidbey Island Complex Growler FEIS, Volume 2	September 2018
This page intentionally left blank.	
, G	
Δ-174	

8 Average Year Alternative 3 Scenarios

Relative to the No Action Alternative, Alternative 3 would add two EA-18G aircraft to each CVW squadron, add nine EA-18G aircraft to the FRS, and increase the number of aircraft in each Expeditionary squadron from five to eight, as summarized in Table 2-1. Section 8.1 details the flight operations. Section 8.2 presents the runway/flight track utilization, flight profiles, and derivation of AAD flight operations. Sections 8.3 and 8.4 contain the maintenance run-ups and resultant aircraft noise exposure.

8.1 Flight Operations

From the methodology described in Chapter 2, Tables 8-1 through 8-10 show the modeled flight operations for the average year Alternatives 3 under all scenarios. Any of these five scenarios would have approximately 112,000 total annual flight operations for the complex. The EA-18G would dominate operations, with 88 percent of the complex's annual flight operations. Annual FCLP-related operations at the OLF would vary between 6,300 in Alternative 3, Scenario C, to 25,000 in Alternative 3, Scenario A. As shown in Tables 8-2, 8-4, and 8-6, approximately 15 percent and 21 percent of the overall total flight operations and OLF FCLP operations, respectively, would be conducted during the DNL nighttime period.

Relative to the average year No Action Alternative, Tables 8-1, 8-3, 8-5, 8-7, and 8-9 show that the complex's total annual flight operations would increase by approximately 36,000, with most of the increase attributable to increased FCLP operations.

The high-tempo FCLP year Alternative 3, Scenario A (Appendix A2), has approximately 115,000 total annual flight operations for the complex, with the EA-18G having 88 percent of the complex's annual flight operations.

		Alternative (Average Y				m No Action ht Operation	
Airfield	Aircraft Type or Category	FCLP 2, 3	Other ⁴	- Total	FCLP 2,5	Other	- Total
Ault Field	EA-18G	5,900	67,700	73,600	-5,400	+14,700	+9,300
	Other Based	-	11,800	11,800	-	+200	+200
	Transient	-	2,300	2,300	-	-	-
	Subtotal	5,900	81,800	87,700	-5,400	+14,900	+9,500
OLF Coupeville	EA-18G	23,700	-	23,700	+17,600	-	+17,600
	Other	-	400	400	-	-	-
	Subtotal	23,700	400	24,100	+17,600	-	+17,600
TOTAL (both airfic	elds)	29,600	82,200	111,800	+12,200	+14,900	+27,100

Table 8-1 Summary of Annual Flight Operations for the Average Year Alternative 3A

- Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.
- ² Each closed pattern is counted as two operations.
- For Growlers at the OLF, values include 2,958 interfacility (FCLP-related) operations; not shown separately.
- ⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.
- No Action excludes 900 interfacility Growler operations (FCLP related).

Table 8-2 Detailed Annual Flight Operations for the Average Year Alternative 3A

						Arrival										Inter	facility	,											
									Overhe	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	.F
Airfield	craft	•		Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-	
Ą	Aiı	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,059	383	7,442	2,582	68	2,650	4,178	-	140	4,318	465	10	475	445	193	261	899	721	-	177	898						
		FRS	5,668	379	6,047	2,148	323	2,471	2,436	322	601	3,359	190	28	218	292	156	120	568	492	-	76	568						
		RES	1,148	91	1,239	419	18	437	702	-	29	731	66	4	70	6	4	2	12	11	-	2	13						
Б		EXP	2,482	146	2,628	913	35	948	1,445	-	66	1,511	168	1	169	-	-	-	0	-	-	-	0						
Field	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
Ault	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
⋖	P8	All	1,951	95	2,046	1,390	285	1,675	-	-	-	-	307	63	370														
	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									91	-	91	91	-	91
	C-40	-	394	-	394	283	-	283	-	-	-	-	111	-	111														
	JET_LRG	-	405	111	516	370	103	473	-	-	-	-	29	13	42														
To	tal	·	19,495	1,205	20,700	8,493	832	9,325	8,761	322	836	9,919	1,336	119	1,455	743	353	383	1,479	1,224	-	255	1,479	91	-	91	91	-	91

									Interf	acility												
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Depart	ure to A	ult
		u							Day		Night		Day		Night							
p	n#	Squadron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	na							2200)		0700)		2200)		0700)		•	(2200-		(0700-	•	
Ą	Ą	Sa							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							721	-	177	898	445	193	261	899						
Щ		FRS							492	-	76	568	292	156	120	568						
OLF		RES							11	-	2	13	6	4	2	12					<u> </u>	
	H60	SAR															91	-	91	91	-	91
To	otal								1,224	-	255	1,479	743	353	383	1,479	91	-	91	91	-	91

Table 8-2 Detailed Annual Flight Operations for the Average Year Alternative 3A

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	4		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	1,646	1,105	896	3,647	3,318	690	927	4,935	2,401	90	2,491	4,383	2,706	7,089	27,198	1,988	5,658	34,844
		FRS	1,373	485	274	2,132	3,659	723	1,024	5,406	-	-	0	4,855	1,046	5,901	21,113	1,686	3,871	26,670
		RES	94	30	22	146	510	10	15	535	419	15	434	507	45	552	3,882	44	243	4,169
₽		EXP	-	-	-	0	896	-	55	951	773	31	804	890	48	938	7,567	-	382	7,949
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	Р3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,105	-	655	4,760	-	-	-	1,750	198	1,948	9,503	-	1,296	10,799
	H60	SAR					-	-	-	-	-	-	-	-	-	-	958	-	-	958
	C-40	-					334	-	-	334	-	-	-	167	-	167	1,289	-	-	1,289
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	804	-	227	1,031
Tota	al		3,113	1,620	1,192	5,925	12,822	1,423	2,676	16,921	3,593	136	3,729	12,552	4,043	16,595	72,314	3,718	11,677	87,709
	EA18	CVW	5,984	3,489	3,110	12,583											7,150	3,682	3,548	14,380
OLF		FRS	3,902	2,750	1,297	7,949											4,686	2,906	1,493	9,085
0		RES	79	74	29	182											96	78	33	207
	H60	SAR					181	-	-	181							363	-	-	363
Tota	al		9,965	6,313	4,436	20,714	181	-	-	181							12,295	6,666	5,074	24,035
														Grand To	otals		84,609	10,384	16,751	111,744
				(-										(Ault+Ol	_F)					

Total Annual Ault = 5,925 (20%)
EA-18G FCLP OLF = 23,672 (80%)
Related Ops Total = 29,597

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

RES = Reserve

Table 8-3 Summary of Annual Flight Operations for the Average Year Alternative 3B

	Aircraft Type	Alternative (Average Y Type of Flig		_		m No Action ght Operation	
Airfield	or Category	FCLP 2, 3	Other ⁴	Total	FCLP 2,5	Other	Total
Ault Field	EA-18G	14,800	66,600	81,400	+3,500	+13,600	+17,100
	Other Based	-	11,600	11,600	-	-	-
	Transient	-	2,300	2,300	-	-	-
	Subtotal	14,800	80,500	95,300	+3,500	+13,600	+17,100
OLF Coupeville	EA-18G	14,800	-	14,800	+8,700	-	+8,700
	Other	-	400	400	-	-	-
	Subtotal	14,800	400	15,200	+8,700	-	+8,700
TOTAL (both airfi	elds)	29,600	80,900	110,500	+12,200	+13,600	+25,800

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 1,850 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 8-4 Detailed Annual Flight Operations for the Average Year Alternative 3B

						Arrival										Interf	acility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture 1	o OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
2	: #	dron	Day	Night (2200		Day	Night		Day (0700-		Night (2200-		Day	Night		Day (0700	-	Night (2200-		Day (0700-		Night (2200-		Day	Night		Day	Night	
ě	Aircraft	dna	(0700-	-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	I
;	Ą	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,057	393	7,450	2,574	69	2,643	4,178	-	149	4,327	471	9	480	281	124	156	561	453	-	108	561						
		FRS	5,674	379	6,053	2,162	312	2,474	2,406	308	605	3,319	220	40	260	180	96	75	351	305	-	46	351					1	
		RES	1,154	86	1,240	405	19	424	717	-	26	743	70	3	73	6	5	2	13	11	-	2	13						
13	2	EXP	2,493	138	2,631	899	30	929	1,456	-	62	1,518	182	2	184	-	-	-	0	-	-	-	0						
i	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
4	P3 P8	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
^	F8	All	1,953	93	2,046	1,411	272	1,683	-	-	-	-	307	57	364														
	H60	SAR	389	-	389	389	-	389	-	-	-	-	-	-	-									91	-	91	91	-	91
	C-40	-	395	-	395	285	-	285	-	-	-	-	110	-	110														
	JET_LRG	-	412	104	516	381	98	479	-	-	-	-	25	12	37														
T	otal	, and the second	19,527	1,193	20,720	8,506	800	9,306	8,757	308	842	9,907	1,385	123	1,508	467	225	233	925	769	-	156	925	91	-	91	91	-	91

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depai	rture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		uo.							Day		Night		Day		Night						ı	
p	#	dro							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	Squadr							2200)		0700)		2200)		0700)			(2200-		(0700-	•	
Ą	Ąi	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							453	-	108	561	281	124	156	561						
щ		FRS							305	-	46	351	180	96	75	351						
OLF		RES							11	-	2	13	6	5	2	13						
	H60	SAR															91	-	91	91	-	91
To	tal								769	-	156	925	467	225	233	925	91	-	91	91	-	91

Table 8-4 Detailed Annual Flight Operations for the Average Year Alternative 3B

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	4		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	4,100	2,584	2,350	9,034	3,318	690	927	4,935	2,401	90	2,491	4,383	2,706	7,089	29,216	3,398	6,957	39,571
		FRS	3,593	1,306	688	5,587	3,659	723	1,024	5,406	-	-	0	4,855	1,046	5,901	23,054	2,433	4,215	29,702
		RES	107	42	26	175	510	10	15	535	419	15	434	507	45	552	3,906	57	239	4,202
p		EXP	-	-	-	0	896	-	55	951	773	31	804	890	48	938	7,589	-	366	7,955
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,021	-	620	4,641	-	-	-	1,736	177	1,913	9,428	-	1,219	10,647
	H60	SAR					-	-	-	-	-	-	-	-	-	-	960	-	-	960
	C-40	-					329	-	-	329	-	-	-	165	-	165	1,284	-	-	1,284
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	818	-	214	1,032
Tota	al		7,800	3,932	3,064	14,796	12,733	1,423	2,641	16,797	3,593	136	3,729	12,536	4,022	16,558	76,255	5,888	13,210	95,353
	EA18	CVW	3,777	2,176	1,905	7,858											4,511	2,300	2,169	8,980
OLF		FRS	2,388	1,694	832	4,914											2,873	1,790	953	5,616
0		RES	73	85	22	180											90	90	26	206
	H60	SAR					182	-	-	182							364	-	-	364
Tota	al		6,238	3,955	2,759	12,952	182	-	-	182							7,838	4,180	3,148	15,166
														Grand To			84,093	10,068	16,358	110,519
				1.705.4										(Ault+Ol	_F)					

Total Annual Ault = 14,796 (50%) EA-18G FCLP OLF = 14,802 (50%) Related Ops Total = 29,598

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 8-5 Summary of Annual Flight Operations for the Average Year Alternative 3C

		Alternative (Average Y Type of Flig			<i>- ,</i>	m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	23,700	65,200	88,900	+12,400	+12,200	+24,600
	Other Based	-	11,700	11,700	-	+100	+100
	Transient	-	2,300	2,300	-	-	-
	Subtotal	23,700	79,200	102,900	+12,400	+12,300	+24,700
OLF Coupeville	EA-18G	5,900	-	5,900	-200	-	-200
	Other	-	400	400	-	-	-
	Subtotal	5,900	400	6,300	-200	-	-200
TOTAL (both airfi	elds)	29,600	79,600	109,200	+12,200	+12,300	+24,500

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 740 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 8-6 Detailed Annual Flight Operations for the Average Year Alternative 3C

						Arrival										Interf	acility	/											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
3	; #	dron	Day	Night (2200		Day	Night		Day (0700-		Night (2200-		Day	Night		Day (0700		Night (2200-		Day (0700-		Night (2200-		Day	Night		Day	Night	
ě	Aircraft	dnac	(0700-	-		(0700-	(2200-		2200)		0700)		(0700-	(2200-		2200)		0700)		2200)		0700)		(0700-	(2200-		(0700-	(2200-	ı
;	Air	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
Ì	EA18	CVW	7,012	378	7,390	2,584	68	2,652	4,153	-	144	4,297	434	6	440	114	46	65	225	182	-	44	226						
		FRS	5,603	400	6,003	2,171	316	2,487	2,382	298	626	3,306	183	27	210	68	41	26	135	119	-	16	135						
		RES	1,143	88	1,231	392	20	412	698	-	30	728	85	6	91	4	4	2	10	9	-	1	10						
3	5	EXP	2,483	125	2,608	908	32	940	1,441	-	57	1,498	167	3	170	-	-	-	0	-	-	-	0						
i	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
4	P3 P8	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
^	P8	All	1,918	101	2,019	1,401	267	1,668	-	-	-	-	291	60	351														
	H60	SAR	385	-	385	385	-	385	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	391	-	391	286	-	286	-	-	-	-	106	-	106														
	JET_LRG	-	401	111	512	364	104	468	-	-	-	-	30	13	43														
T	otal		19,336	1,203	20,539	8,491	807	9,298	8,674	298	857	9,829	1,296	115	1,411	186	91	93	370	310	-	61	371	90	-	90	90	-	90

									Interf	acility	,											
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		u							Day		Night		Day		Night							
P	ηfε	dron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
rfie	Aircraft	Squadr							2200)		0700)		2200)		0700)	-		(2200-		(0700-		
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							182	-	44	226	114	46	65	225						
щ		FRS							119	-	16	135	68	41	26	135						
OLF		RES							9	-	1	10	4	4	2	10						
	H60	SAR															90	-	90	90	-	90
To	tal								310	-	61	371	186	91	93	370	90	-	90	90	-	90

Table 8-6 Detailed Annual Flight Operations for the Average Year Alternative 3C

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	6,521	4,028	3,792	14,341	3,318	690	927	4,935	2,401	90	2,491	4,383	2,706	7,089	31,102	4,764	8,220	44,086
		FRS	5,844	2,025	1,263	9,132	3,659	723	1,024	5,406	-	-	0	4,855	1,046	5,901	24,884	3,087	4,744	32,715
		RES	116	53	30	199	510	10	15	535	419	15	434	507	45	552	3,883	67	252	4,202
p		EXP	-	-	-	0	896	-	55	951	773	31	804	890	48	938	7,558	-	351	7,909
Ault Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ħ	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
∢	P8	All					4,067	-	710	4,777	-	-	-	1,781	193	1,974	9,458	-	1,331	10,789
	H60	SAR					-	-	-	-	-	-	-	-	-	-	950	-	-	950
	C-40	-					324	-	-	324	-	-	-	163	-	163	1,270	-	-	1,270
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	795	-	228	1,023
Tot	al		12,481	6,106	5,085	23,672	12,774	1,423	2,731	16,928	3,593	136	3,729	12,579	4,038	16,617	79,900	7,918	15,126	102,944
	EA18	CVW	1,533	844	780	3,157											1,829	890	889	3,608
OLF		FRS	912	693	287	1,892											1,099	734	329	2,162
0		RES	55	63	18	136											68	67	21	156
	H60	SAR					181	-	-	181							361	-	-	361
Tot	al		2,500	1,600	1,085	5,185	181	-	-	181							3,357	1,691	1,239	6,287
														Grand T	otals		83,257	9,609	16,365	109,231
														(Ault+O	LF)					

Total Annual Ault = 23,672 (80%) EA-18G FCLP OLF = 5,926 (20%) Related Ops Total = 29,598

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 8-7 Summary of Annual Flight Operations for the Average Year Alternative 3D

		Alternative (Average Y Type of Flig		_		m No Action ht Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP ^{2, 5}	Other	Total
Ault Field	EA-18G	8,900	67,300	76,200	-2,400	+14,300	+11,900
	Other Based	-	11,800	11,800	-	+200	+200
	Transient	-	2,300	2,300	-	-	-
	Subtotal	8,900	81,400	90,300	-2,400	+14,500	+12,100
OLF Coupeville	EA-18G	20,700	-	20,700	+14,600	-	+14,600
	Other	-	400	400	-	-	-
	Subtotal	20,700	400	21,100	+14,600	-	+14,600
TOTAL (both airfi	elds)	29,600	81,800	111,400	+12,200	+14,500	+26,700

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 2,590 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

⁵ No Action excludes 900 interfacility Growler operations (FCLP related).

Table 8-8 Detailed Annual Flight Operations for the Average Year Alternative 3D

						Arrival										Interf	acility	,											
									Overh	ead														Helo			Helo		
			Departi	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	to OLF		Break	Arri	al from	OLF	Depart	ure to O	LF	Arrival	from OL	F
field	Aircraft		Day (0700-	Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		-	Night (2200-	
Ą	Aiı	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW	7,059	383	7,442	2,582	68	2,650	4,178	-	140	4,318	465	10	475	389	169	228	786	631	-	155	786						
		FRS	5,668	379	6,047	2,148	323	2,471	2,436	322	601	3,359	190	28	218	256	137	105	498	431	-	67	498						
		RES	1,148	91	1,239	419	18	437	702	-	29	731	66	4	70	5	4	2	11	10	-	2	12						
0		EXP	2,482	146	2,628	913	35	948	1,445	-	66	1,511	168	1	169	-	-	-	0	-	-	-	0						
Field	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
措	P3 P8	All	-	-	1	-	-	-	-	-	-	-	-	-	-														
⋖	P8	All	1,951	95	2,046	1,390	285	1,675	-	-	-	-	307	63	370														
	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									91	-	91	91	-	91
	C-40	-	394	-	394	283	-	283	-	-	-	-	111	-	111														_
	JET_LRG	-	405	111	516	370	103	473	-	-	-	-	29	13	42														
To	otal		19,495	1,205	20,700	8,493	832	9,325	8,761	322	836	9,919	1,336	119	1,455	650	310	335	1,295	1,072	-	224	1,296	91	-	91	91	-	91

									Interf	acility												
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		u							Day		Night		Day		Night							
p	aft.	dron							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	Aircraft	Squadr							2200)		0700)		2200)		0700)			(2200-		(0700-		
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							631	-	155	786	389	169	228	786						
щ		FRS							431	-	67	498	256	137	105	498						
OLF		RES							10	-	2	12	5	4	2	11						
	H60	SAR															91	-	91	91	-	91
To	tal								1,072	-	224	1,296	650	310	335	1,295	91	-	91	91	-	91

Table 8-8 Detailed Annual Flight Operations for the Average Year Alternative 3D

			Closed	Pattern¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	2,469	1,658	1,344	5,471	3,318	690	927	4,935	2,401	90	2,491	4,383	2,706	7,089	27,875	2,517	6,051	36,443
		FRS	2,060	728	411	3,199	3,659	723	1,024	5,406	-	-	0	4,855	1,046	5,901	21,703	1,910	3,984	27,597
		RES	141	45	33	219	510	10	15	535	419	15	434	507	45	552	3,927	59	254	4,240
р		EXP	-	-	-	0	896	-	55	951	773	31	804	890	48	938	7,567	-	382	7,949
Ault Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
üĻ	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,105	-	655	4,760	-	-	-	1,750	198	1,948	9,503	-	1,296	10,799
	H60	SAR					-	-	-	-	-	-	-	-	-	-	958	-	-	958
	C-40	-					334	-	-	334	-	-	-	167	-	167	1,289	-	-	1,289
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	804	-	227	1,031
Tota	al		4,670	2,431	1,788	8,889	12,822	1,423	2,676	16,921	3,593	136	3,729	12,552	4,043	16,595	73,626	4,486	12,194	90,306
	EA18	CVW	5,236	3,053	2,721	11,010											6,256	3,222	3,104	12,582
OLF		FRS	3,414	2,406	1,135	6,955											4,101	2,543	1,307	7,951
0		RES	69	65	25	159											84	69	29	182
	H60	SAR					181	-	-	181							363	-	-	363
Tota	al		8,719	5,524	3,881	18,124	181	-	-	181							10,804	5,834	4,440	21,078
			1		1	1	I	I	1		1	ı	1	0 17			04.400	40.000	46.604	444.004
														Grand T (Ault+O			84,430	10,320	16,634	111,384

Total Annual Ault = 8,889 (30%)
EA-18G FCLP OLF = 20,715 (70%)
Related Ops Total = 29,604

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

Table 8-9 Summary of Annual Flight Operations for the Average Year Alternative 3E

		Alternative (Average Y Type of Flig			_ ,	m No Action ght Operation	
Airfield	Aircraft Type or Category	FCLP ^{2, 3}	Other ⁴	Total	FCLP 2, 5	Other	Total
Ault Field	EA-18G	20,700	65,600	86,300	+9,400	+12,600	+22,000
	Other Based	-	11,700	11,700	-	+100	+100
	Transient	-	2,300	2,300	-	-	-
	Subtotal	20,700	79,600	100,300	+9,400	+12,700	+22,100
OLF Coupeville	EA-18G	8,900	-	8,900	+2,800	-	+2,800
	Other	-	400	400	-	-	-
	Subtotal	8,900	400	9,300	+2,800	-	+2,800
TOTAL (both airfi	elds)	29,600	80,000	109,600	+12,200	+12,700	+24,900

Rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

² Each closed pattern is counted as two operations.

For Growlers at the OLF, values include 1,112 interfacility (FCLP-related) operations; not shown separately.

⁴ For Ault Field, includes departures, arrivals, pattern operations, and interfacility operations; for the OLF, includes HH-60 interfacility departures, arrivals, and pattern work.

No Action excludes 900 interfacility Growler operations (FCLP related).

Table 8-10 Detailed Annual Flight Operations for the Average Year Alternative 3E

						Arrival										Interf	acility	,											
									Overh	ead														Helo			Helo		
			Departu	ıre		VFR SI/	Non-Br	eak	Break				IFR			Depa	rture t	o OLF		Break	Arri	al from	OLF	Departi	ure to O	LF	Arrival .	from OL	.F
field	; 5		Day (0700-	Night (2200 -		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-			Night (2200-	
Ą	Air	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
ĺ	EA18	CVW	7,012	378	7,390	2,584	68	2,652	4,153	-	144	4,297	434	6	440	171	69	98	338	273	-	66	339						
		FRS	5,603	400	6,003	2,171	316	2,487	2,382	298	626	3,306	183	27	210	102	62	39	203	179	1	24	203						
		RES	1,143	88	1,231	392	20	412	698	-	30	728	85	6	91	6	6	3	15	14	-	2	16						
0	3	EXP	2,483	125	2,608	908	32	940	1,441	-	57	1,498	167	3	170	-	-	-	0	-	-	-	0						
Field		All	-	-	0	-	-	0	-	-	-	0	-	-	0														
井	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
۸	P8	All	1,918	101	2,019	1,401	267	1,668	-	-	-	-	291	60	351														
	H60	SAR	385	-	385	385	-	385	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	391	-	391	286	-	286	-	-	-	-	106	-	106														
L	JET_LRG	-	401	111	512	364	104	468	-	-	-	-	30	13	43														
To	otal		19,336	1,203	20,539	8,491	807	9,298	8,674	298	857	9,829	1,296	115	1,411	279	137	140	556	466	-	92	558	90	-	90	90	-	90

									Interf	acility												
																	Helo			Helo		
									Break	Arriv	al from	Ault	Depar	ture	to Ault		Arrival	from Au	ılt	Departi	ure to A	ult
		uo.							Day		Night		Day		Night						ı	
þ	aft.	dro							(700-		(2200-		(700-		(2200-		Day	Night		Day	Night	
fie	Aircraft	Squadr							2200)		0700)		2200)		0700)	-	•	(2200-		(0700-	•	
Ą	Ai	Sq							DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
	EA18	CVW							273	-	66	339	171	69	98	338						
щ		FRS							179	-	24	203	102	62	39	203						
OLF		RES							14	-	2	16	6	6	3	15						
	H60	SAR															90	-	90	90	-	90
To	tal								466	-	92	558	279	137	140	556	90	-	90	90	-	90

Table 8-10 Detailed Annual Flight Operations for the Average Year Alternative 3E

			Closed	Pattern ¹																
			FCLP				T&G				ReEnte	r		GCA/CC	A		Grand T	otals		
Airfield	Aircraft	Squadron	Day (0700- 2200)		Night (2200- 0700)		Day (0700- 2200)		Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700- 2200)		Night (2200- 0700)	
Air	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
	EA18	CVW	5,706	3,525	3,318	12,549	3,318	690	927	4,935	2,401	90	2,491	4,383	2,706	7,089	30,435	4,284	7,801	42,520
		FRS	5,114	1,772	1,105	7,991	3,659	723	1,024	5,406	-	-	0	4,855	1,046	5,901	24,248	2,855	4,607	31,710
		RES	102	46	26	174	510	10	15	535	419	15	434	507	45	552	3,876	62	250	4,188
p		EXP	-	-	-	0	896	-	55	951	773	31	804	890	48	938	7,558	-	351	7,909
Field	EP3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,067	-	710	4,777	-	-	-	1,781	193	1,974	9,458	-	1,331	10,789
	H60	SAR					-	-	-	-	-	-	-	-	-	-	950	-	-	950
	C-40	-					324	-	-	324	-	-	-	163	-	163	1,270	-	-	1,270
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	795	-	228	1,023
Tota	al		10,922	5,343	4,449	20,714	12,774	1,423	2,731	16,928	3,593	136	3,729	12,579	4,038	16,617	78,590	7,201	14,568	100,359
	EA18	CVW	2,300	1,266	1,170	4,736											2,744	1,335	1,334	5,413
OLF		FRS	1,368	1,040	431	2,839											1,649	1,102	494	3,245
0		RES	83	95	27	205											103	101	32	236
	H60	SAR					181	-	-	181							361	-	-	361
Tota	al		3,751	2,401	1,628	7,780	181	-	-	181							4,857	2,538	1,860	9,255
		·												Grand T	otals		83,447	9,739	16,428	109,614
														(Ault+O	LF)					

Total Annual Ault = 20,714 (70%) EA-18G FCLP OLF = 8,894 (30%) Related Ops Total = 29,608

Notes:

1 Closed-pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed-pattern departure and arrival operation counts.

Key:

CVW = Carrier
DK = Darkness
DL = Daylight
EXP = Expeditionary
FRS = Fleet Replacement

8.2 Other Modeling Parameters

Appendix A3 contains tables of runway utilization percentages as extracted from the NASMOD study output. Flight tracks and their utilization would be identical to the baseline scenario except for the overhead break/pattern portion of the interfacility arrival tracks to the OLF and the FCLPs at the OLF. The primary changes in these tracks are the abeam distances (shortened compared to the No Action Alternative). Modeled flight tracks are depicted in Appendix A4.

Flight profiles would be identical to the No Action Alternative except for the adjustments made to the aforementioned revised overhead break/pattern and FCLP flight track. The representative profiles for each modeled aircraft type are contained in Appendix A5.

Depending on whether Scenario A, B, C, D, or E is selected, Alternative 3 would have between approximately 184 and 205 AAD flight events at Ault Field and between approximately 11 and 39 AAD flight events at the OLF. For the high-tempo FCLP year, Alternative 3 would have between approximately 183 and 203 AAD flight events at Ault Field and between approximately 12 and 43 AAD flight events at the OLF.

8.3 Run-up Operations

Table 6-7 lists the modeled run-ups, with the locations depicted in Figure 5-1. For average year Alternative 3, numbers of annual run-up events for the EA-18G were scaled proportionally to the alternative's change in number of based aircraft compared to the average year No Action Alternative. P-8 run-ups (at their appropriate tempo) replace those for the P-3 at the same locations and headings except the P-8 would not utilize the Red Label Delta or Foxtrot locations. For the high-tempo FCLP year Alternative 3, it was assumed the run-ups would not change compared to average year Alternative 3.

8.4 Aircraft Noise Exposure

Using the data described in Sections 8.1 through 8.3, NOISEMAP was used to calculate and plot the 60 dB through 95 dB DNL contours, in 5-dB increments, for the AAD events for average year Alternative 3 under all scenarios. Figures 8-1 through 8-5 show the resulting DNL contours.

At Ault Field, the DNL contours for average year Alternative 3 under all scenarios would be within up to roughly 1,000 feet of each other on average. The 65 dB contour surrounding Ault Field would extend approximately 7 to 13 miles from the runway endpoints. These lobes would be primarily attributable to EA-18G aircraft flying on the approach portion of GCA patterns. The 65 dB DNL contour would extend approximately 2 miles past the eastern shore of the mainland across Skagit Bay, primarily due to EA-18G GCA and VFR approaches. The 80 dB DNL contour would extend approximately 4 miles to the east outside the station boundary, primarily due to EA-18G GCA and VFR approaches descending from 1,800 feet AGL, as well as the GCA patterns. The 90 dB contour would extend approximately 0.5 mile to the east beyond the station boundary.

The DNL exposure at the OLF would be attributable to the OLF's FCLP operations. The 65 dB contours would extend 2.2 to 2.8 miles north of the OLF's runway. The 65 dB contours would extend 2.5 to 3.1 miles south of the OLF's runway.

As an overview comparison map, Figure 8-6 compares the 65 dB DNL contours of average year Alternative 3 under all scenarios to the 65 dB DNL contours of the No Action Alternative. Because FCLPs comprise the majority of operations at the OLF, changes in location of FCLPs between Ault Field and OLF cause a larger difference in DNL contours at the OLF from one scenario to the next.

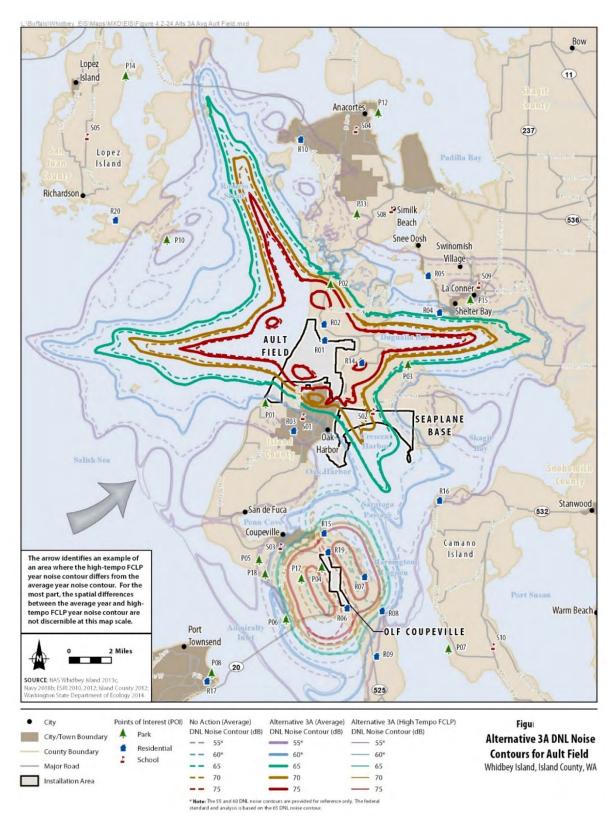


Figure 8-1 DNL Contours for AAD Aircraft Events for the Average Year Alternative 3A

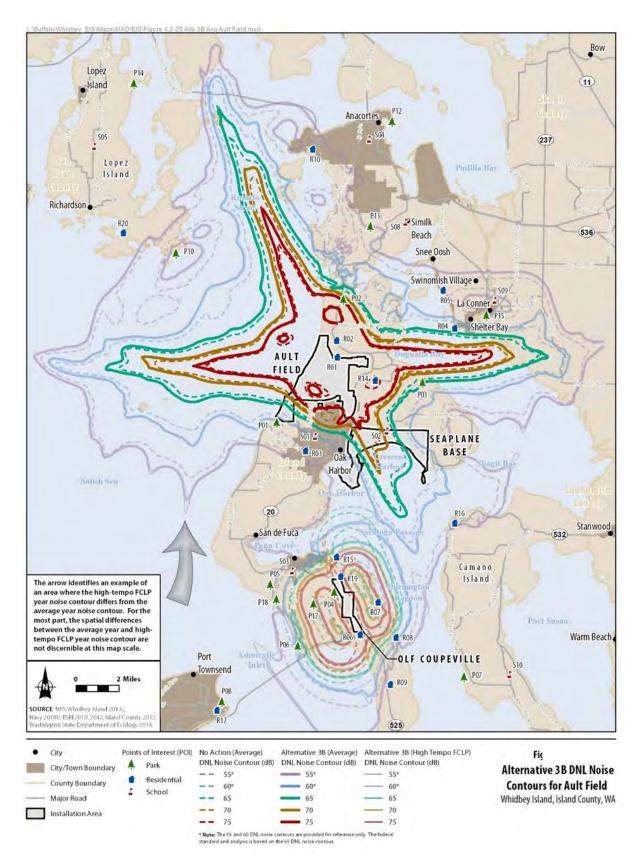


Figure 8-2 DNL Contours for AAD Aircraft Events for the Average Year Alternative 3B

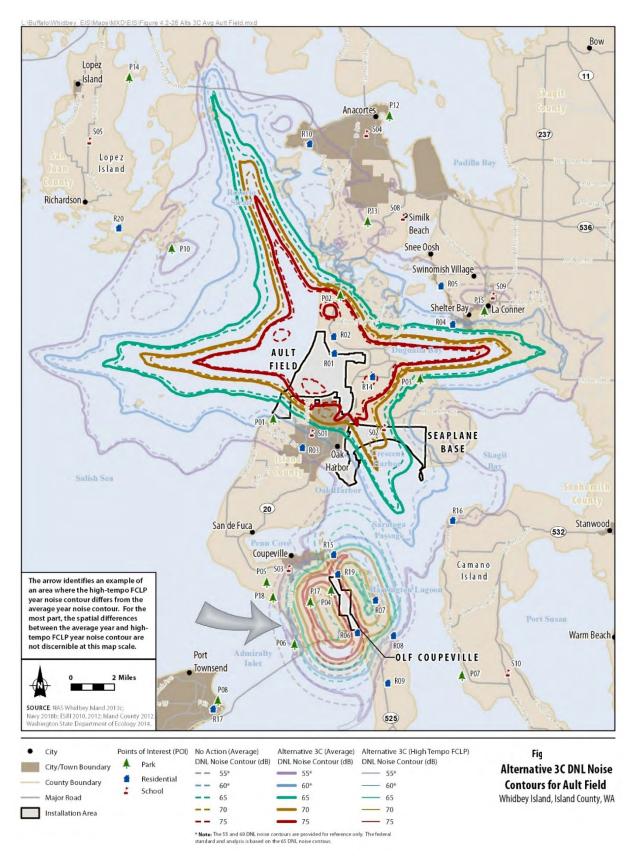


Figure 8-3 DNL Contours for AAD Aircraft Events for the Average Year Alternative 3C

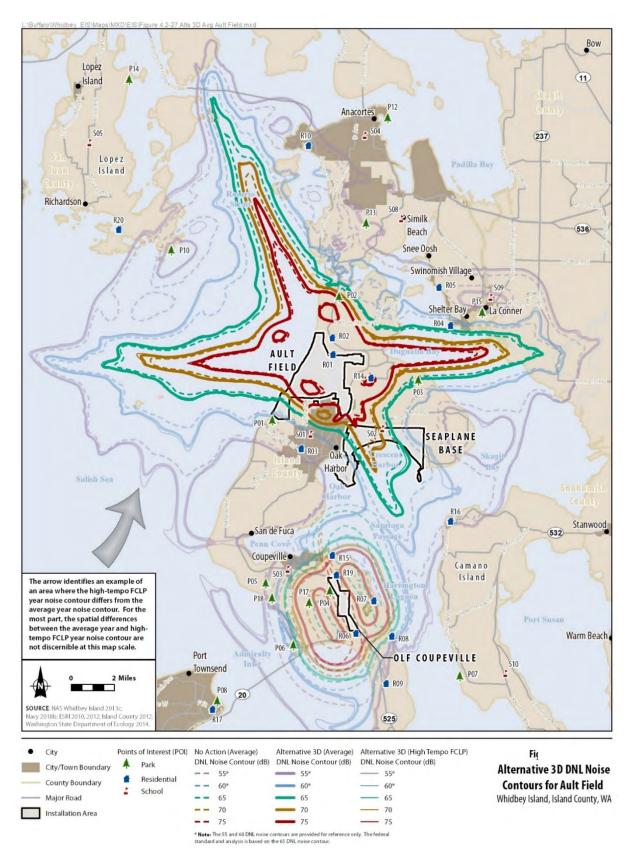


Figure 8-4 DNL Contours for AAD Aircraft Events for the Average Year Alternative 3D

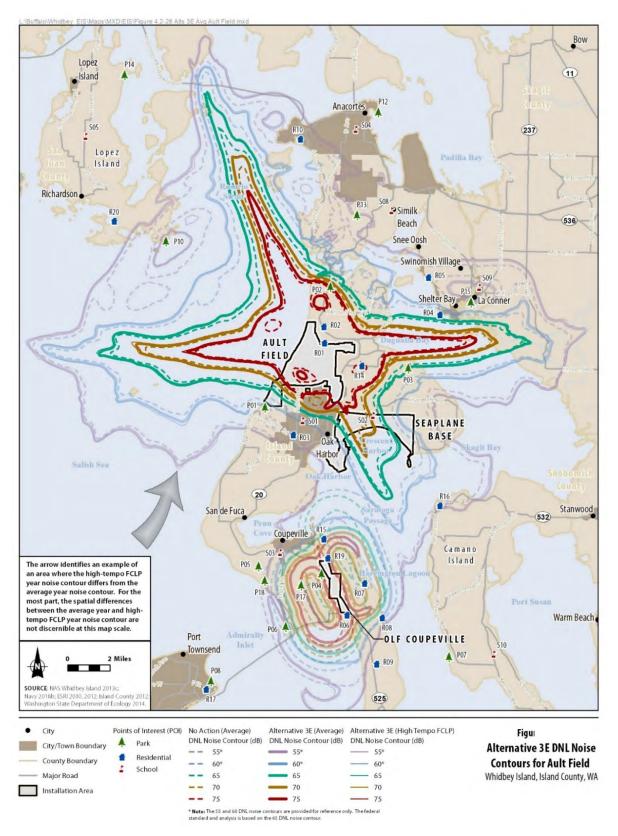


Figure 8-5 DNL Contours for AAD Aircraft Events for the Average Year Alternative 3E

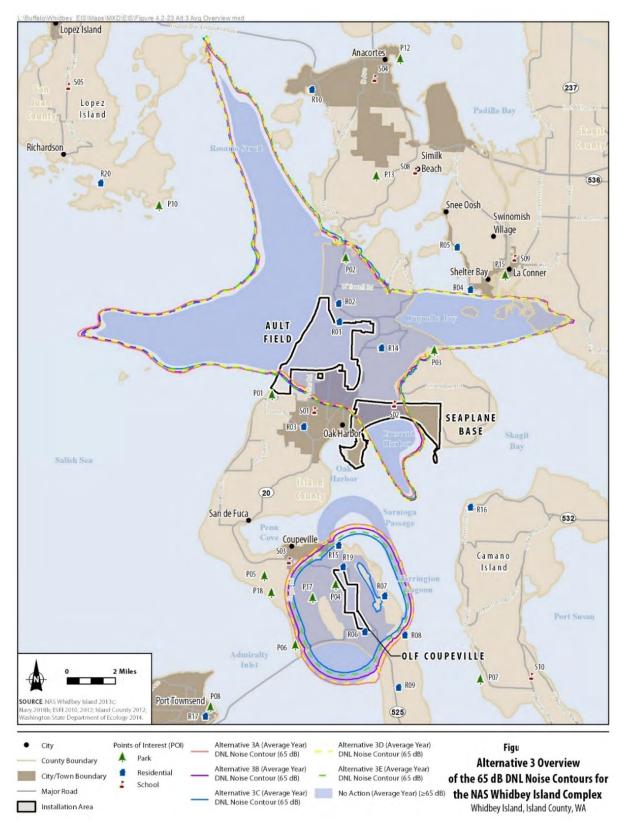


Figure 8-6 Comparison of 65 dB DNL Contours for Average Year Alternative 3 and the No Action Alternative

Table 8-11 depicts the estimated off-station population exposed to DNL greater than or equal to 65 dB and its percent change compared to the No Action Alternative. Overall, the affected population would increase by 12 to 16 percent, with the smallest increase attributable to Alternative 3, Scenario A, and the largest attributable to Alternative 3, Scenarios B and E.

Under the high-tempo FCLP year Alternative 3 (Appendix A7), the population exposed to DNL greater than or equal to 65 dB would increase by 14 percent to 18 percent, with the smallest increase occurring under high-tempo FCLP year Alternative 2, Scenario A, and the largest occurring under high-tempo FCLP year Alternative 3, Scenarios C and E. As shown in Table 8-12, the population exposed to DNL greater than or equal to 65 dB would, on average, be 2 percent higher than the average year Alternative 3.

Table 8-11 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 3 (Average Year)²,³

	DNL Cont	our Range	25					
					Greater th	nan or		
	65 to <70	dB DNL	70 to <75	dB DNL	equal to 7	5 dB DNL	Total	
	Area		Area		Area		Area	
	(acres)	Pop⁴	(acres)	Pop⁴	(acres)	Pop ⁴	(acres)	Pop ⁴
Ault Field								
No Action Alternative								
Average Year	3,596	3,279	3,269	2,283	5,549	3,379	12,414	8,941
Alternative 3								
Scenario A (20/80 FCLP split)	4,005	3,690	3,262	1,874	5,866	3,486	13,133	9,050
	(+409)	(+411)	(-7)	(-409)	(+317)	(+107)	(+719)	(+109)
Scenario B (50/50 FCLP split)	3,907	3,591	3,271	2,415	6,357	3,756	13,535	9,762
	(+311)	(+312)	(+2)	(+132)	(+808)	(+377)	(+1,121)	(+821)
Scenario C (80/20 FCLP split)	3,897	3,698	3,129	2,466	6,740	3,913	13,766	10,077
	(+301)	(+419)	(-140)	(+183)	(+1,191)	(+534)	(+1,352)	(+1,136)
Scenario D (30/70 FCLP split)	3,958	3,695	3,233	2,182	6,109	3,597	13,300	9,474
	(+362)	(+416)	(-36)	(-101)	(+560)	(+218)	(+886)	(+533)
Scenario E (70/30 FCLP split)	3,875	3,661	3,151	2,430	6,643	3,869	13,669	9,960
	(+279)	(+382)	(-118)	(+147)	(+1,094)	(+490)	(+1,255)	(+1,019)
OLF Coupeville								
No Action Alternative								
Average Year	3,681	861	3,088	786	638	583	7,407	2,230
Alternative 3								
Scenario A (20/80 FCLP split)	1,563	554	3,323	965	5,246	1,914	10,132	3,433
	(-2,118)	(-307)	(+235)	(+179)	(+4,608)	(+1,331)	(+2,725)	(+1,203)
Scenario B (50/50 FCLP split)	2,058	559	3,458	1,059	3,931	1,500	9,447	3,118
	(-1,623)	(-302)	(+370)	(+273)	(+3,293)	(+917)	(+2,040)	(+888)
Scenario C (80/20 FCLP split)	3,432	1,045	3,168	1,030	1,398	672	7,998	2,747
	(-249)	(+184)	(+80)	(+244)	(+760)	(+89)	(+591)	(+517)
Scenario D (30/70 FCLP split)	1,582	515	3,467	1,023	4,890	1,805	9,939	3,343
	(-2,099)	(-346)	(+379)	(+237)	(+4,252)	(+1,222)	(+2,532)	(+1,113)
Scenario E (70/30 FCLP split)	3,063	871	3,178	1,053	2,518	1,000	8,759	2,924
	(-618)	(+10)	(+90)	(+267)	(+1,880)	(+417)	(+1,352)	(+694)

Table 8-11 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 3 (Average Year)²,³

	DNL Conto	ur Range	es .					
	65 to <70 (dB DNL	70 to <	75 dB DNL	Greater the		Total	
	Area (acres)	Pop⁴	Area (acres)	Pop ⁴	Area (acres)	Pop⁴	Area (acres)	Pop ⁴
NAS Whidbey Island Complex	(
No Action Alternative								
Average Year	7,277	4,140	6,357	3,069	6,187	3,962	19,821	11,171
Alternative 3								
Scenario A (20/80 FCLP split)	5,568	4,244	6,585	2,839	11,112	5,400	23,265	12,483
	(-1,709)	(+104)	(+228)	(-230)	(+4,925)	(+1,438)	(+3,444)	(+1,312)
Scenario B (50/50 FCLP split)	5,965	4,150	6,729	3,474	10,288	5,256	22,982	12,880
	(-1,312)	(+10)	(+372)	(+405)	(+4,101)	(+1,294)	(+3,161)	(+1,709)
Scenario C (80/20 FCLP split)	7,329	4,743	6,297	3,496	8,138	4,585	21,764	12,824
	(+52)	(+603)	(-60)	(+427)	(+1,951)	(+623)	(+1,943)	(+1,653)
Scenario D (30/70 FCLP split)	5,540	4,210	6,700	3,205	10,999	5,402	23,239	12,817
	(-1,737)	(+70)	(+343)	(+136)	(+4,812)	(+1,440)	(+3,418)	(+1,646)
Scenario E (70/30 FCLP split)	6,938	4,532	6,329	3,483	9,161	4,869	22,428	12,884
	(-339)	(+392)	(-28)	(+414)	(+2,974)	(+907)	(+2,607)	(+1,713)

Notes:

- ¹ All five scenarios are outlined in Section 2.3.3, where the split represents the percent of FCLPs conducted at Ault Field and OLF Coupeville, respectively (i.e., 20/80 FCLP split = 20 percent of FCLPs at Ault Field and 80 percent of FCLPs at OLF Coupeville).
- ² Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- ³ The difference between the No Action Alternative and Alternative 1 is noted in parentheses.
- Population counts of people within the DNL contour ranges were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour range, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contour ranges (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁵ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level FCLP = Field Carrier Landing Practice

Table 8-12 Percent Difference in the Estimated Acreage and Population within the Average and High-Tempo FCLP Year DNL Contour Ranges for the NAS Whidbey Island Complex, Alternative 3

	DNL Contour	Ranges ¹						
	65 to <70 dB	DNL	70 to <75 (dB DNL	Greater 1 75 dB DN	than or equal to IL	Total	
DNL Contours	Area (acres)	Рор	Area (acres)	Рор	Area (acres)	Рор	Area (acres)	Рор
Ault Field								
Scenario A	0.5%	-0.1%	0.0%	2.5%	1.0%	0.8%	0.6%	0.8%
Scenario B	0.7%	1.1%	0.0%	1.9%	1.4%	1.0%	0.8%	1.3%
Scenario C	1.3%	1.1%	0.0%	1.3%	1.0%	0.8%	0.9%	1.0%
Scenario D	1.0%	-0.6%	0.8%	1.9%	0.9%	1.8%	0.9%	0.9%
Scenario E	1.7%	1.3%	2.1%	4.6%	0.3%	1.1%	1.1%	2.0%
OLF Coupeville								
Scenario A	0.6%	7.8%	-5.8%	-7.4%	6.6%	5.5%	1.6%	2.2%
Scenario B	-8.3%	-11.8%	0.1%	2.0%	8.0%	6.9%	1.6%	1.9%
Scenario C	0.5%	-1.4%	0.8%	1.5%	13.5%	7.8%	2.9%	1.9%
Scenario D	-2.0%	4.3%	-4.5%	-6.1%	7.1%	6.3%	1.6%	2.2%
Scenario E	-4.6%	-5.2%	1.1%	-0.5%	7.7%	7.5%	1.0%	0.8%
NAS Whidbey I	sland Complex							
Scenario A	0.6%	0.9%	-2.9%	-0.8%	3.6%	2.4%	1.0%	1.2%
Scenario B	-2.4%	-0.6%	0.0%	1.9%	3.9%	2.7%	1.1%	1.4%
Scenario C	0.9%	0.5%	0.4%	1.4%	3.2%	1.9%	1.6%	1.2%
Scenario D	0.1%	0.0%	-2.0%	-0.7%	3.7%	3.3%	1.2%	1.2%
Scenario E	-1.1%	0.1%	1.6%	3.1%	2.4%	2.4%	1.1%	1.8%

Key:

dB = decibel

DNL = day-night average sound level

NAS = Naval Air Station
OLF = outlying landing field

8.4.1 Points of Interest

Figure 8-7 shows the DNL for each POI and comparisons of the DNLs for this alternative's scenarios to those for the No Action Alternative. The average year Alternative 3 under all scenarios would have 12 POIs experience DNL greater than or equal to 65 dB, and five or six residential POIs would experience DNL greater than or equal to 75 dB. Three of the latter category would be near Ault Field (POIs R01, R02, and R14), and three would be near the OLF (POIs R06, R07, and R19). One of the seven schools, POI S02, would experience DNL greater than or equal to 65 dB--i.e., 69 dB.

Among all scenarios for Alternative 3, the increase in DNL would be greatest for Alternative 3, Scenario A, and smallest for Alternative 3, Scenario C. Increases in DNL would range from 1 to 15 dB compared to the No Action Alternative. POIs R06, R07, and EBLA001 would experience the greatest increases in DNL of 10 to 15 dB. POI R07 would be newly impacted, with DNL of 70 to 76 dB.

See Appendix A6 for lists of the five flight profiles with the greatest SEL at each POI.

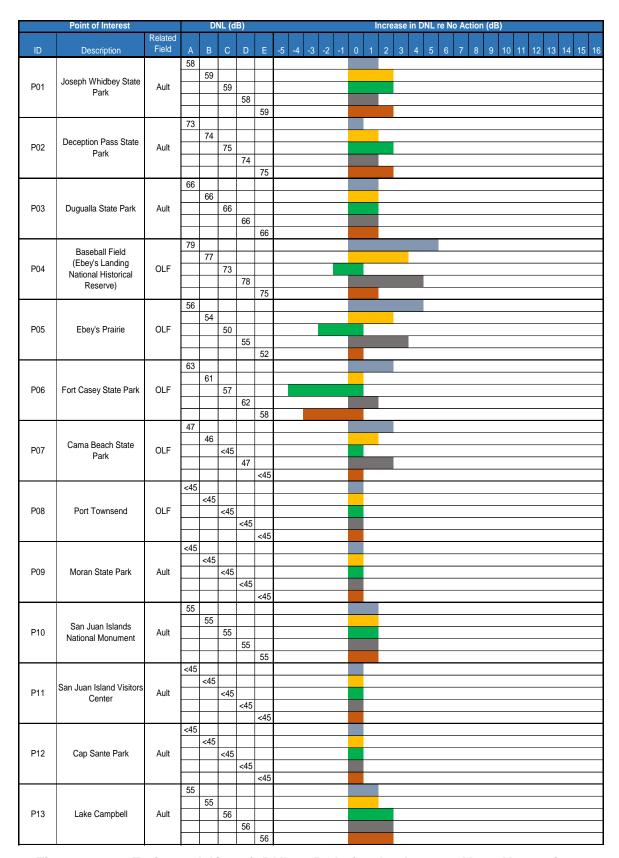


Figure 8-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 3

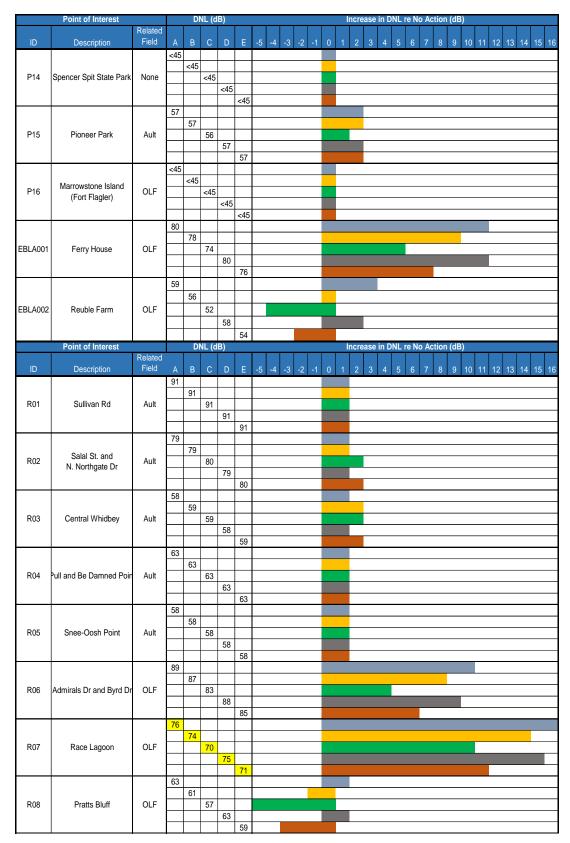


Figure 8-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 3 (continued)



Figure 8-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 3 (continued)

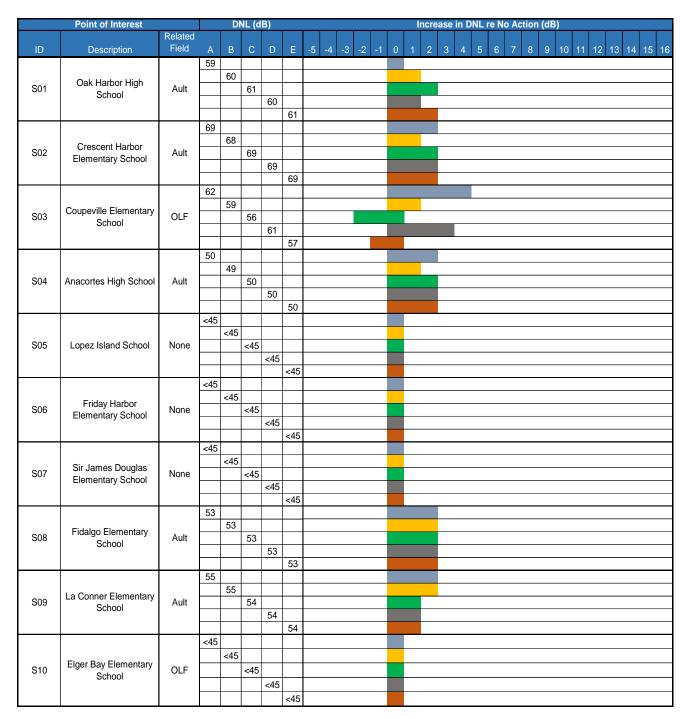


Figure 8-7 Estimated Aircraft DNL at POIs for the Average Year Alternative 3 (concluded)

Under the high-tempo FCLP year Alternative 3 under all scenarios (Appendix A7), 12 POIs would experience DNL greater than or equal to 65 dB, and five or six residential POIs would experience DNL greater than or equal to 75 dB. Three of the latter category would be near Ault Field (POIs R01, R02, and R14), and four would be near the OLF (POIs R06, R07, and R19). Crescent Harbor Elementary, with a DNL of 69 dB under Alternative 3, Scenarios C, and 68 dB under Alternative 3, Scenarios A, B, D, and E, would be the only school exposed to DNL of at least 65 dB.

Among high-tempo FCLP year Alternative 3 under all scenarios, the increase in DNL would be greatest for Alternative 2, Scenario A, and smallest for Alternative 3, Scenario C. Increases in DNL would range from 1 to 15 dB compared to the high-tempo FCLP year No Action Alternative. POIs R07 and R06 would experience increases in DNL of up to 15 and 11 dB, respectively. POI R07 would be newly impacted, with DNL of 70 to 76 dB.

8.4.2 Potential Hearing Loss

Table 8-13 shows estimates of the population within 1-dB bands of $L_{eq(24h)}$ and their associated NIPTS for the average year Alternative 3. The level at which there may be a noticeable NIPTS would be at the 84 to 85 dB $L_{eq(24)}$ range and above. There is an increase in the population within the 80 dB DNL noise contour (i.e., potential at-risk population) under Alternative 3 at both Ault Field and OLF Coupeville. The largest increase in the potential at-risk population in the vicinity of Ault Field would be under Scenario C (47 additional people) and in the vicinity of OLF Coupeville would be under Scenario A (28 additional people). The range of potential NIPTS could be up to 9.5 dB at Ault Field and 6.0 dB at OLF Coupeville. The potential NIPTS values presented in Table 8-13 are only applicable in the extreme case of continuous outdoor exposure at one's residence to all aircraft events occurring over a period of 40 years. Because it is highly unlikely for any individuals to meet all those criteria, the actual potential NIPTS for individuals would be far less than the values reported here.

The USEPA guidelines provided information on the estimated NIPTS exceeded by the 10 percent of the population most sensitive to noise. Using the same 1 dB incremental data in Table 8-13 and the column identified as the 10th Percentile NIPTS, those individuals are vulnerable to noticeable NIPTS at the 77 to 78 dB $L_{eq(24)}$ range and above. Using this even more conservative estimate, the range of potential NIPTS could be up to 18.0 dB for the population most sensitive to noise around Ault Field and up to 12.0 dB for the population most sensitive to noise around OLF Coupeville.

Table 8-13 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level under Alternative 3 at NAS Whidbey Island Complex (Average Year)

			Estimated P	opulation	4,5,6									
			Ault Field						OLF Coupev	ille				
Band of L _{eq(24)} (dB) ¹	Avg NIPTS (dB) ^{2,3}	10 th Pct NIPTS (dB) ^{2,}	No Action	Alt 3A	Alt 3B	Alt 3C	Alt 3D	Alt 3E	No Action	Alt 3A	Alt 3B	Alt 3C	Alt 3D	Alt 3E
75-76	1.0	4.0	0	0	0	6	0	3	31	143	74	35	116	46
				(0)	(0)	(+6)	(0)	(+3)		(+112)	(+43)	(+4)	(+85)	(+15)
76-77	1.0	4.5	123	126	308 ⁷	406 ⁸	140	371 ⁹	45	164	90	59	159	63
				(+3)	(+185)	(+283)	(+17)	(+248)		(+119)	(+45)	(+14)	(+114)	(+18)
77-78	1.5	5.0	233	259	337	398	307	352	47	126	75	87	100	56
				(+26)	(+104)	(+165)	(+74)	(+119)		(+79)	(+28)	(+40)	(+53)	(+9)
78-79	2.0	5.5	145	147	241	296	173	295	24	92	65	4	78	61
				(+2)	(+96)	(+151)	(+28)	(+150)		(+68)	(+41)	(-20)	(+45)	(+37)
79-80	2.5	6.0	92	134	162	239	141	209	7	75	58	0	70	75
				(+42)	(+70)	(+147)	(+49)	(+117)		(+68)	(+51)	(0)	(+63)	(+68)
80-81	3.0	7.0	73	78	97	129	84	118	0	66	59	0	62	3
				(+5)	(+24)	(+56)	(+11)	(+45)		(+66)	(+59)	(0)	(+62)	(+3)
81-82	3.5	8.0	51	62	72	79	67	76	0	58	83	0	55	0
				(+11)	(+21)	(+28)	(+16)	(+25)		(+58)	(+83)	(0)	(+55)	(0)
82-83	4.0	9.0	37	48	58	63	48	60	0	58	4	0	64	0
				(+11)	(+21)	(+26)	(+11)	(+23)		(+58)	(+4)	(0)	(+64)	(0)
83-84	4.5	10.0	34	35	37	38	35	37	0	69	0	0	55	0
				(+1)	(+3)	(+4)	(+1)	(+3)		(+69)	(0)	(0)	(+55)	(0)
84-85	5.5	11.0	11	27	26	29	29	28	0	27	0	0	1	0
				(+16)	(+15)	(+18)	(+18)	(+17)		(+27)	(0)	(0)	(+1)	(0)
85-86	6.0	12.0	9	9	22	26	10	24	0	1	0	0	0	0
				(0)	(+13)	(+17)	(+1)	(+15)		(+1)	(0)	(0)	(0)	(0)
86-87	7.0	13.5	6	9	9	10	9	10	0	0	0	0	0	0
				(+3)	(+3)	(+4)	(+3)	(+4)		(0)	(0)	(0)	(0)	(0)
87-88	7.5	15.0	4	6	7	7	6	7	0	0	0	0	0	0
				(+2)	(+3)	(+3)	(+2)	(+3)		(0)	(0)	(0)	(0)	(0)
88-89	8.5	16.5	2	4	4	5	4	4	0	0	0	0	0	0
				(+2)	(+2)	(+3)	(+2)	(+2)		(0)	(0)	(0)	(0)	(0)
89-90	9.5	18.0	0	1	2	2	1	2	0	0	0	0	0	0
				(+1)	(+2)	(+2)	(+1)	(+2)		(0)	(0)	(0)	(0)	(0)

Table 8-13 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level under Alternative 3 at NAS Whidbey Island Complex (Average Year)

			Estimated Po	pulation4	,5,6									
			Ault Field						OLF Coupevi	lle				
Band of	Avg NIPTS	10th Pct												
Leq(24) (dB)1	$(dB)^{2,3}$	NIPTS (dB) 2,	No Action	Alt 3A	Alt 3B	Alt 3C	Alt 3D	Alt 3E	No Action	Alt 3A	Alt 3B	Alt 3C	Alt 3D	Alt 3E
90-91	10.5	19.5	0	0	0	0	0	0	0	0	0	0	0	0
				(0)	(0)	(0)	(0)	(0)		(0)	(0)	(0)	(0)	(0)

Notes:

- ¹ L_{eq} bands with no population were omitted from table.
- ² NIPTS values rounded to nearest 0.5 dB.
- ³ NIPTS below 5 dB are generally not considered noticeable.
- ⁴ This analysis assumes the population is outdoors at one's residence and exposed to all aircraft noise events for 40 years. Given the amount of time spent indoors and the intermittent occurrence of aircraft noise events, it is highly unlikely that individuals would meet all those criteria, and the actual potential for hearing loss would be far less than the values reported here.
- ⁵ Estimated population was determined by those living within the 80 dB DNL noise contour around each airfield, including those living on base at Ault Field (there is no on-base population at OLF Coupeville).
- Population counts of people within the DNL contours were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). In addition, per guidance on potential hearing loss, on-base populations at Ault Field have been included in the analysis. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁷ Of this estimated population, 23 are a military service member living on base at Ault Field.
- ⁸ Of this estimated population, 68 are military personnel living on base at Ault Field.
- ⁹ Of this estimated population, 23 are military personnel living on base at Ault Field.

Key:

dB = decibel

 $L_{eq(24)}$ = 24-hour Equivalent Sound Level

NIPTS = Noise Induced Permanent Threshold Shift

8.4.3 Residential Nighttime Sleep Disturbance

Table 8-14 lists the PA for applicable POIs for average daily nighttime (10:00 p.m. to 7:00 a.m.) events for average year Alternative 3 under all scenarios. Average PA would range from 8 percent to 16 percent across the listed POIs for either window condition. POIs R01 and R02 would have the greatest PA, 35 percent to 74 percent, depending upon whether windows are open or closed. At six of the POIs, there would be no change in PA compared to the No Action Alternative, but at the remaining 24 POIs, increases in PA would range from 1 percent at several POIs to 31 percent (at POI R06 under Alternative 3, Scenario A).

Under the high-tempo FCLP year Alternative 3 (Appendix A7), the statistics cited above would be 0 percent to 3 percent greater than those listed for the average year Alternative 3, except for the change statistics. At six of the POIs, there would be no change in PA compared to the No Action Alternative, but at the remaining 24 POIs, increases in PA would range from 1 percent at several POIs to 35 percent (at POI R06 under Alternative 3, Scenario A).

Table 8-14 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 3

				Annual A	verage Ni	ghtly (2200	0-0700) Pr	obability o	of Awaken	ing (%) ¹													
						Change fr				Change f	rom			Change fr	om			Change j	rom			Change f	rom
Poin	t of Ir	nterest		Alt3A		No Action	1	Alt3B		No Actio	n	Alt3C		No Action	,	Alt3D		No Actio	n	Alt3E		No Action	1
			Related	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Window	Windows	Windows	Windows	Windows	Windows	Windows	Window:	Windows	Windows	Windows	Windows	Windows
Туре	ID	Description	Field	Open	Closed			Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open		Open		Open		Open	Closed
	R01	Sullivan Rd	Ault	67%	51%		1	70%	54%	12%	11%		58%	16%	15%	68%		10%		73%		15%	14%
	-	Salal St. and	Ault	49%	35%	8%	6%	52%	37%	11%	8%	56%	41%	15%	12%	50%	36%	9%	7%	55%	40%	14%	11%
		N. Northgate																					
	D02	Dr Caratural	Ault	19%	10%	3%	2%	21%	11%	5%	3%	23%	12%	7%	4%	20%	11%	4%	3%	23%	12%	7%	4%
	KU3	Central Whidbey																					
	R04	Pull and Be		25%	12%	6%	3%	26%	12%	7%	3%	27%	12%	8%	3%	25%	12%	6%	3%	27%	12%	8%	3%
		Damned Point	1																				
	R05	Snee-Oosh	Ault	20%	7%	5%	2%	21%	7%	6%	2%	22%	7%	7%	2%	20%	7%	5%	2%	22%	7%	7%	2%
	DO6	Point Admirals Dr	OLF	40%	28%	31%	22%	27%	18%	18%	12%	12%	8%	3%	2%	36%	25%	27%	19%	17%	11%	8%	5%
		and Byrd Dr	OLI	4076	2070	31/6	22/0	2770	1070	1676	12/0	12/0	670	5/6	270	30%	23/0	2770	1570	1770	11/0	070	5/6
		Race Lagoon	OLF	19%	8%	14%	6%	13%	6%	8%	4%	7%	2%	2%	_	17%	8%	12%	6%	9%	3%	4%	1%
		Pratts Bluff			9%				6%	5%	4%		2%	-	_	13%		9%		6%		2%	1%
		Cox Rd and	OLF	12%	8%		6%	7%	5%	4%	3%	3%	2%	-	_	10%	7%	7%	5%	4%	3%	1%	1%
01		Island Ridge Way																					
Residential ²	R10	Skyline	None	7%	3%	2%	1%	8%	3%	3%	1%	9%	3%	4%	1%	8%	3%	3%	1%	9%	3%	4%	1%
Jen	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
esi	R12	Port Angeles	None	1%	0%	1%	-	1%	0%	1%	-	1%	0%	1%	-	1%	0%	1%	-	1%	0%	1%	-
~	R13	Beverly Beach,	OLF	6%	-	4%	-	4%	-	2%	-	2%	-	-	-	5%	-	3%	-	2%	-	-	-
		Freeland																					
		E Sleeper Rd & Slumber Ln		43%	30%	6%	5%	47%	33%	10%	8%	51%	37%	14%	12%	44%	31%	7%	6%	50%	36%	13%	11%
	R15	Long Point Manor	OLF	23%	12%	12%	8%	18%	8%	7%	4%	14%	4%	3%	-	22%	11%	11%	7%	15%	5%	4%	1%
	R16		OLF	11%	4%	2%	1%	12%	4%	3%	1%	13%	4%	4%	1%	12%	4%	3%	1%	13%	4%	4%	1%
		Heights																					
	R17	Port Townsend	None	1%	-	-	-	1%	-	-	-	0%	-	-1%	-	1%	-	-	-	1%	-	-	-
	R18	Marrowstone	None	_	-	-	-	-	-	-	-	0%	-	-	-	-	_	-	-	0%	-	-	-
		Island																					
		(Nordland)																					
		Island Transit	OLF	32%	21%	23%	16%	23%	14%	14%	9%	12%	6%	3%	1%	30%	18%	21%	13%	16%	8%	7%	3%
		Offices,																					
		Coupeville																					

Table 8-14 Average Indoor Nightly Probability of Awakening at Applicable POIs for the Average Year Alternative 3

				Annual A	verage Nig	htly (220	0-0700) Pr	obability	of Awaken	ing (%) ¹													
						Change f	rom			Change j				Change fi				Change f				Change fi	
Poir	t of I	nterest	Dalata d	Alt3A	. 140	No Action		Alt3B	140 - 1	No Actio		Alt3C	100 - 1	No Action		Alt3D	. 147	No Actio		Alt3E	1400 - 1	No Action	
Turne	10	Description	related Field	winaow Open	s Windows Closed	winaows Open	s winaows Closed	Open	s winaows Closed	winaow. Open	s winaows Closed	Open		Winaows Open		winaow Open	s winaows Closed	winaow: Open					Closed
туре		South Lopez Island (Agate Beach)		3%	1%	- -	_	3%	1%	-		3%	1%	-	-	3%	1%	- -		3%	1%	-	-
		High School	Ault	25%		5%		27%		7%		29%		9%	6%	26%	15%	6%		29%			5%
	S02	Crescent Harbor Elementary School	Ault	26%	15%	5%	3%	28%	17%	7%	5%	31%	19%	10%	7%	27%	16%	6%	4%	30%	18%	9%	6%
	S03	Elementary School	OLF	17%		12%		11%		6%	4%	6%		1%	-	15%	9%	10%		7%		2%	1%
<u>-</u>	S04	Anacortes High School	Ault	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-
dentia	S05	Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (near residential)	S06	Friday Harbor Elementary School	None	-	_	_	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	_	-
School (S07	Sir James Douglas Elementary School	None	-	-	-	-	_	-	_	-	_	-	-	-	-	-	_	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	9%	3%	3%	1%	9%	3%	3%	1%	10%	3%	4%	1%	9%	3%	3%	1%	10%	3%	4%	1%
		La Conner Elementary School	Ault	11%	5%	3%	2%	10%	5%	2%	2%	10%		2%	2%	10%	5%	2%	2%	10%	5%	2%	2%
		Elger Bay Elementary School	OLF	0%	0%	-	-	0%	0%		-	0%	0%		-	0%	0%	-	-	0%	0%		-

¹ Assumes 15 dB and 25 dB of noise level reductions for windows open and closed, respectively.

R01 and R06 include interior SELs greater than 100 dB with windows open

8.4.4 Residential Daytime Indoor Speech Interference

Table 8-15 presents the average daily indoor daytime (7:00 a.m. to 10:00 p.m.) events per hour for the applicable POIs that would experience indoor maximum sound levels of at least 50 dB with windows closed and open for average year Alternative 3. Events per hour would be less than one at 12 of the 30 POIs and would range between one and 10 for the remaining 18 POIs, regardless of the window status. Relative to the average year No Action Alternative, increases of one or two events per hour would be experienced by 16 of the POIs.

For the high-tempo FCLP year Alternative 3 (Appendix A7), the statistics cited above would be unchanged.

Table 8-15 Indoor Speech Interference for the Average Year Alternative 3

				Annual A	verage Da	ilv Indoor	Davtime (0700-220	0) Events p	er Hour ¹													
Poi	nt of I	nterest		Alt3A	ecrage Da	Change f No Action	rom	Alt3B	<i>5)</i>	Change f No Actio		Alt3C		Change fr No Action		Alt3D		Change f		Alt3E		Change fi No Action	
ruii	it Oj i		Related		Windows				Windows				Windows								Window		Windows
Туре	: ID			Open								Open	Closed										Closed
	R01	Sullivan Rd	Ault	9	9	10	10	2	2	2	2	9	9	10	10	2	2	+1	+1	10	10	+2	+2
		N. Northgate	Ault	9	9	10	10	2	2	2	2	9	9	10	10	2	2	+1	+1	10	10	+2	+2
	R03	Dr Central Whidbey	Ault	5	-	6	-	1	-	1	-	5	-	6	-	1	-	-	-	6	-	+1	-
				3	1	3	2	1	1	1	-	3	1	3	1	1	-	+1	-	3	1	+1	-
	R05		+	2	1	2	1	-	-	-	-	2	1	2	1	-	-	-	-	2	1	-	-
	R06		OLF	2	2	1	1	1	1	-	-	2	2	1	1	1	1	+2	+2	1	1	+1	+1
	R07	Race Lagoon	OLF	2	1	1	-	1	-	1	-	2	1	1	-	1	-	+2	+1	1	-	+1	1-
	R08	Pratts Bluff	OLF	2	1	1	-	1	-	-	-	2	1	1	-	1	-	+2	+1	1	-	+1	-
2		Cox Rd and Island Ridge Way	OLF	1	-	1	-	1	-	-	-	1	-	-	-	-	-	+1	-	-	-	-	-
Residential ²	R10	Skyline	None	-	-	-	-	-	-	1	-	1	-	1	-	1	-	+1	-	1	-	+1	-
der	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
esi			None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>		Beverly Beach, Freeland	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		E Sleeper Rd & Slumber Ln	Ault	9	8	9	9	1	2	2	2	9	8	10	9	2	2	+1	+1	10	9	+2	+2
		Long Point Manor	OLF	3	2	2	1	1	-	-	-	2	2	1	1	-	-	+1	+1	1	1	-	-
		Heights	OLF	2	1	2	1	-	-	-	-	2	1	2	1	-	-	-	-	2	1	-	-
		Port Townsend	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Marrowstone Island (Nordland)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	2	2	1	1	-	-	-	-	2	2	1	1	-	-	+1	+1	1	1	-	-

Table 8-15 Indoor Speech Interference for the Average Year Alternative 3

				Annual A	verage Da	ily Indoor	Daytime (0700-220	0) Events p	er Hour ¹	l .												
Point	of I	nterest		Alt3A		Change j No Actio	n	Alt3B		Change No Actio	on	Alt3C		Change fi No Action	1	Alt3D		Change j No Actio	n	Alt3E		Change fi No Actior	7
									Windows			Windows											
			Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
		South Lopez Island (Agate Beach)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Oak Harbor High School	Ault	6	2	7	3	1	1	1	1	7	3	7	3	1	1	+1	+1	7	3	+1	+1
		Crescent Harbor Elementary School	Ault	5	2	6	2	1	-	1	1	6	2	6	3	1	1	+1	-	6	3	+1	+1
		Coupeville Elementary School	OLF	2	1	1	1	-	1	-	-	2	1	1	-	-	-	+1	+1	1	-	-	-
		Anacortes High School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
dentia		Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (near residential)		Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	808	Fidalgo Elementary School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		La Conner Elementary School	Ault	1	1	1	1	-	1	-	-	1	-	1	-	-	-	-	-	1	-	-	-
		Elger Bay Elementary School	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

With an indoor maximum sound level of at least 50 dB; assumes 15 dB and 25 dB of noise level reductions for windows open and closed, respectively.

The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School; therefore, this location was not modeled individually, but a similar result for indoor speech interference for POI S03 would apply

8.4.5 Classroom Learning Interference

Table 8-16 presents the potential learning interference for classrooms under the average year Alternative 3. With an $L_{eq(8h)}$ of 69 dB (Alternative 3, Scenarios C and E), POI S02 (Crescent Harbor Elementary) would experience the greatest outdoor $L_{eq(8h)}$. No other locations would experience $L_{eq(8h)}$ greater than or equal to the screening threshold of 60 dB under any of the three alternatives. With windows open, three or four of the POIs would have more than one event per hour. With windows closed, two of the POIs would have more than one event per hour. POI S01, Oak Harbor High School, would have the most events per hour, with up to seven with windows open. POIs S01 and S02 would have the most events per hour (two or three) with windows closed.

Relative to the No Action Alternative, POIs would experience between a 1 and 6 dB increase in $L_{eq(8h)}$ and increases in events per hour of one or two.

Under the high-tempo FCLP year Alternative 3 (Appendix A7), the statistics cited above would be unchanged.

Table 8-16 Classroom Learning Interference for Average Year Alternative 3

				Alt 3A					Change fr	om No A	ction		
					Indoor ¹					Indoor1			
Point of I	nterest	:		Outdoor	Windows C	pen	Window	ws Closed	Outdoor	Window	vs Open	Windo	ws Closed
Туре	ID	Description	Related Field	L _{eq (8h)} (dB)	Leq(8h) (dB)	Events per Hour ²	L _{eq(8h)}	Events per Hour ²	L _{eq (8h)} (dB)	L _{eq(8h)} (dB)	Events per Hour ²	L _{eq(8h)} (dB)	Events per Hour ²
School	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	57	<45	2	<45	1	+6	+6	+2	+6	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	of Sites	Exceeding				4		2			1		-
		ent per Hour											
		per of Intrusive Events	ì			2		2			+2		-
•		eding One											
		ber of Intrusive Events	S			6		2			+2		-
per Hour	іт Ехсе	eding One								1			

Table 8-16 Classroom Learning Interference for Average Year Alternative 3

Point of I	nterest			Alt 3B					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	5	<45	-	+2	+2	+1	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	S02	Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	-
	S03	Coupeville Elementary School	OLF	55	<45	1	<45	1	+4	+4	+1	+4	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				3		2			2		-
One Intru	sive Ev	ent per Hour											
		er of Intrusive Events	;			5		2			+2		-
per Hour	if Exce	eding One											
		per of Intrusive Events	S			7		3			+2		-
per Hour	if Exce	eding One											

Table 8-16 Classroom Learning Interference for Average Year Alternative 3

Point of I	nterest			Alt 3C					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	S02	Crescent Harbor Elementary School	Ault	69	54	6	<45	3	+2	+2	+2	+2	+1
	S03	Coupeville Elementary School	OLF	51	<45	1	<45	-	-	-	+1	-	-
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding	•			3		2			3		-
One Intru	sive Ev	ent per Hour											
		er of Intrusive Events	;			6		3			+2		-
per Hour	if Exce	eding One											
		per of Intrusive Events	S			7		3			+2		-
per Hour	if Exce	eding One											

Table 8-16 Classroom Learning Interference for Average Year Alternative 3

Point of I	nterest			Alt 3D					Chang	e from No i	Action		
School	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	56	<45	2	<45	1	+5	+5	+2	+5	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding	•			4		2			1		-
One Intru	sive Ev	ent per Hour											
		er of Intrusive Events	;			5		2			+2		-
per Hour	if Exce	eding One											
		per of Intrusive Events	S			6		2			+2		-
per Hour	if Exce	eding One											

Table 8-16 Classroom Learning Interference for Average Year Alternative 3

Point of I	nterest			Alt 3E					Chang	e from No A	Action		
School	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-
Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
School	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	S02	Crescent Harbor Elementary School	Ault	69	54	6	<45	2	+2	+2	+2	+2	-
	S03	Coupeville Elementary School	OLF	53	<45	1	<45	-	+2	+2	+1	+2	-
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
Number o	f Sites	Exceeding				3		2			3		-
One Intru	sive Ev	ent per Hour											
Minimum	Numb	er of Intrusive Events	;			6		2			+2		-
per Hour i													
		er of Intrusive Events	5			7		3			+2		-
per Hour i	f Exce	eding One											

Notes:

Assumes 15 dB and 25 dB of noise level reductions for windows open and closed, respectively.

Number of average school-day events per hour during 8-hour school day (0800-1600) at or above an indoor maximum (single-event) sound level (Lmax) of 50 dB.

8.4.6 Recreational Speech Interference

Table 8-17 lists the AAD daytime NA 50 L_{max} per hour for the recreational POIs. The average NA across the 11 POIs would be five events per daytime hour and one event per nighttime hour. Six POIs would be exposed to less than one event per hour. POIs PO1, PO2, RO1, RO2, R14, and SO1 would have the most events per hour, at 10 under Alternative 3, Scenarios C and E. Relative to the average year No Action Alternative, increases of up to two events per hour would be experienced at all but nine of the POIs. The latter nine POIs would experience no change.

Under the high-tempo FCLP year Alternative 3 (Appendix A7), the statistics cited above would be the same.

Table 8-17 Recreational Speech Interference for Average Year Alternative 3

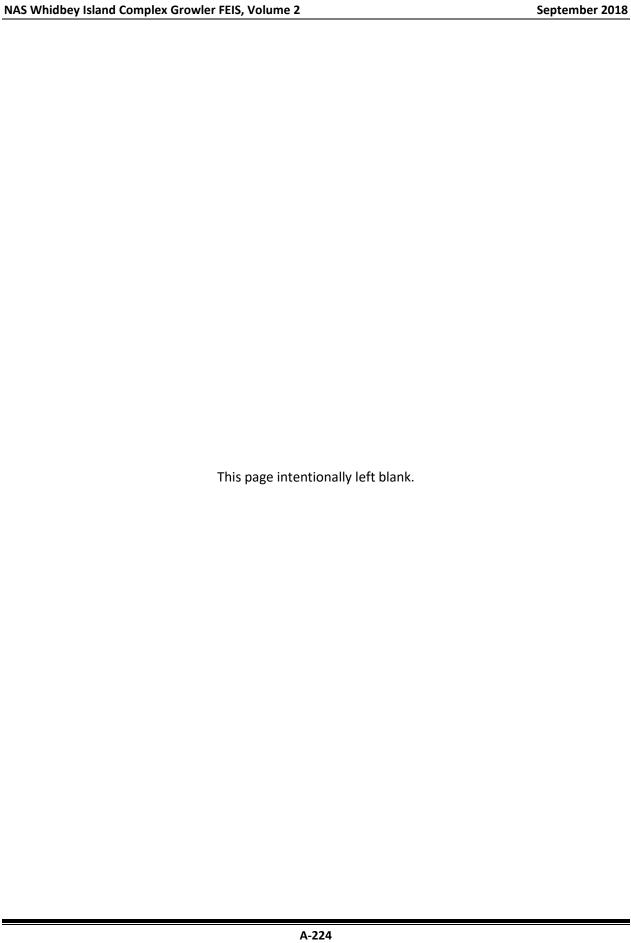

			Annua NA 65		ge Out	door Da	ily Da	ytime E	vents p	per Houi	<i>;</i> ,											
			44.04		Increa		44.00		Increa		44.00			ase re	44.00			ase re	44.05		Increa	
	•	ark Receptor	Alt3A	1	No Ac		Alt3B		No Ac		Alt3C		No A		Alt3D		No A		Alt3E		No Act	
Туре		Description	Day	Night		Night				Night				Night				Night		Night	Day	Night
	P01	Joseph Whidbey State Park	9	2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	P02	Deception Pass State Park	9	2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	P03	Dugualla State Park	9	2	+2	-	9	2	+2		9	2	+2	-	9	2	+2	-	9	2	+2	-
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	P05	Ebey's Landing State Park	4	1	+2	+1	3	1	+1	+1	3	1	+1	+1	4	1	+2	+1	3	1	+1	+1
	P06	Fort Casey State Park	3	1	+2	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	2	-	+1	-
	P07	Cama Beach State Park	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	5	1	+2	+1	4	1	+1	+1
	P08	Port Townsend	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
	P09	Moran State Park	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Park	P10	San Juan Islands National Monument	8	2	+1	+1	9	2	+2	+1	9	2	+2	+1	8	2	+1	+1	9	2	+2	+1
	P11	San Juan Island Visitors Center	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	P12	Cap Sante Park	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
	P13	Lake Campbell	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	P14	Spencer Spit State Park	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	P15	Pioneer Park	5	1	+1	-	4	1	-	-	4	1	-	-	5	1	+1	-	4	1	-	-
	P16	Marrowstone Island (Fort Flagler)	1	1	+1	+1	1	0	+1	-	0	-	-	-	1	1	+1	+1	1	-	+1	-
	EBLA001	Ferry House	4	1	+2	+1	3	1	+1	+1	2	0	-	-	4	1	+2	+1	3	1	+1	+1
	EBLA002	Reuble Farm	4	1	+2	+1	3	1	+1	+1	2	0	-	-	4	1	+2	+1	3	1	+1	+1

Table 8-17 Recreational Speech Interference for Average Year Alternative 3

			Annua NA 65		ge Out	door Do	aily Da	ytime E	vents	oer Houi	; 											
					Incred	ise re			Incred	ise re			Incre	ase re			Incre	ase re			Increa	se re
Repre	sentative	Park Receptor	Alt3A		No Ac	tion	Alt3B	:	No Ac	tion	Alt3C		No A	ction	Alt3D	,	No A	ction	Alt3E		No Ac	tion
Туре	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	R01	Sullivan Rd	9	2	+1		10	2	+2		10	3	+2	+1	10	2	+2	-	10	2	+2	-
	R02	Salal St. and N. Northgate Dr	9	2	+1	-	10	2	+2	-	10	3	+2	+1	10	2	+2	-	10	2	+2	-
	R03	Central Whidbey	8	2	+1	-	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-
	R04	Pull and Be Damned Point	8	2	+1	-	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-
	R05	Snee-Oosh Point	8	2	+1	+1	9	2	+2	+1	9	2	+2	+1	8	2	+1	+1	9	2	+2	+1
	R06	Admirals Dr and Byrd Dr	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	-	+1	-
	R07	Race Lagoon	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	R08	Pratts Bluff	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	-	+1	-
_	R09	Cox Rd and Island Ridge Way	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
ntia	R10	Skyline	4	1	-	-	4	1	-	-	5	1	+1	-	4	1	-	-	4	1	-	-
Residential	R11	Sequim	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
\esi	R12	Port Angeles	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-
"	R13	Beverly Beach, Freeland	1	-	+1	-	0	-	-	-	-	-	-	-	1	-	+1	-	-	-	-	-
	R14	E Sleeper Rd & Slumber Ln	9	2	+1	-	10	2	+2	-	10	3	+2	+1	10	2	+2	-	10	2	+2	-
	R15	Long Point Manor	9	2	+2	+1	9	2	+2	+1	8	2	+1	+1	8	2	+1	+1	8	2	+1	+1
	R16	Rocky Point Heights	5	1	+1	-	5	1	+1	-	5	2	+1	+1	5	1	+1	-	5	2	+1	+1
	R17	Port Townsend	1	1	-	+1	1	0	-	-	0	-	-1	-	1	1	-	+1	1	-	-	-
	R18	Marrowstone Island (Nordland)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	5	1	+2	-	4	1	+1	-	3	1	-	-	4	1	+1	-	3	1	-	-
	R20	South Lopez Island (Agate Beach)	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-

Table 8-17 Recreational Speech Interference for Average Year Alternative 3

			Annua NA 65		ge Out	door Da	ily Da	ytime E	vents	per Houi	ζ,											
					Incred				Incred					ase re				ase re			Increa	
Repre	sentative	Park Receptor	Alt3A		No Ac		Alt3B		No Ac		Alt3C		No A		Alt3D		No A		Alt3E		No Act	
Туре	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	S01	Oak Harbor High School	9	2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	S02	Crescent Harbor Elementary School	8	2	+1	-	9	2	+2	-	9	2	+2	-	9	2	+2	-	9	2	+2	-
	S03	Coupeville Elementary School	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	4	1	+1	+1	3	1	-	+1
	S04	Anacortes High School	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-
_	S05	Lopez Island School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School	S06	Friday Harbor Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S07	Sir James Douglas Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S08	Fidalgo Elementary School	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	S09	La Conner Elementary School	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-
	S10	Elger Bay Elementary School	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-

9 Effect of Considered Hush House

The Navy may consider building and operating a noise suppression facility (also known as a "hush house") for engine maintenance. The purpose of the hush house is to substantially reduce the sound levels associated with high-power run-up operations. The hush house would be capable of conducting in-frame engine run-ups for the Growler during daytime and nighttime periods. Exact specifications of the hush house are unknown at this time, but the facility is anticipated to be similar to other hush houses currently operated by the DoD at other facilities.

The purpose of this chapter is to describe the considered hush house operations and demonstrate the effect the hush house would have on noise from high-power run-ups by the Growler in terms of single-event (L_{max}) noise level and DNL.

The location of the considered hush house in relation to other modeled run-up locations is shown in Figure 9-1. It would be located 2,200 feet northwest of the existing modeled outdoor high power run-up location (Hi-Pwr1) between Taxiways J and G. It would be oriented parallel to Taxiway J with the aircraft facing east. It is assumed the orientation of the exhaust of the considered hush house would be consistent with most hush houses, where the exhaust is pointed skyward. The nozzle of the Growler and the exhaust of the hush house, respectively, were estimated to be at elevations of 26 feet MSL (6 feet above ground level [AGL]) and 60 feet MSL (40 feet AGL).

Figure 9-1 Modeled Run-up Locations and Considered Hush House

Table 9-1 lists the run-ups examined for this chapter. The outdoor high-power run-ups are identical to those modeled for the DNL cases from Table 5-3. To demonstrate the effect of the hush house, the average year No Action Alternative and the high-tempo FCLP year Alternative 2, Scenario B, were chosen because these cases represent the least and most flight operations, respectively. Recall from Section 4.3 that it was assumed the run-up operations from the average year and the high-tempo FCLP year would be identical; however, as the flight operations tend to dominate the overall noise exposure, the cases with the least and most flight operations would show the extremes of the effect of the hush house.

Table 9-1 shows that all of the outdoor high-power run-ups would be transferred to the hush house with no change to the nighttime percentages, event durations, or numbers of engines.

NOISEMAP's database does not contain reference acoustic data for a Growler in a hush house. Therefore, for the purposes of this study, surrogate data were developed. The database contains data for an F-15A Eagle aircraft (with F100-PW-100 engines) in and out of a hush house. The difference between these two datasets was applied to the Growler (outdoor) run-up data, creating the surrogate. This methodology estimates the noise-suppressing effect of a hush house and the change in direction of the noise pattern around the facility compared to unsuppressed outdoor run-ups. In Table 9-1, this method was applied to noise data for each of the four power settings in the run-up cycle.

Figure 9-2 compares L_{max} contours of 60 to 90 dBA, in 10-dB increments, for the Growler at minimum afterburner power at the (unsuppressed) outdoor high-power location/orientation and at the considered hush house location/orientation. The unsuppressed run-up's 60 dB L_{max} contour extends as far as 3.3 miles from the NAS Whidbey Island boundary whereas the hush house's 60 dB L_{max} contour remains wholly within the station's boundary. The L_{max} contours result from the noise generated while the aircraft engine is at afterburner power, typically for 3 minutes per maintenance event. The average year analysis includes 665 annual events, which equates to 5 minutes at afterburner power per average day during Growler maintenance run-ups.

Figure 9-3 shows the maximum effect the hush house would have on cumulative noise exposure, as it compares the DNL contours of 60 to 90 dBA, in 5-dB increments, for the Growler high-power run-up cycle at the (unsuppressed) outdoor high-power location/orientation and at the considered hush house location/orientation, if each were involved with the average year No Action Alternative. As seen in the figure's inset, the hush house's effect would mostly be on station with the 85 and 90 dB DNL contours. A maximum of a 1.1 dB reduction is estimated to occur off station. The largest reductions would occur directly south of West Ault Field Road between Heller Road and North Oak Harbor Road. There would also be reductions east of the station along West Sleeper Road.

Figure 9-4 shows the (near) minimum effect the hush house would have on cumulative noise exposure, as it compares the DNL contours of 60 to 90 dBA, in 5-dB increments, for the Growler high-power run-up cycle at the (unsuppressed) outdoor high-power location/orientation and at the considered hush house location/orientation, if each were involved with the high-tempo FCLP year Alternative 2, Scenario B. As seen in the figure's inset, the hush house's effect would mostly be on station with the 85 and 90 dB DNL contours. A maximum of a 0.9 dB reduction is estimated to occur off station. The largest reductions would occur directly south of West Ault Field Road between Heller Road and North Oak Harbor Road. There would also be reductions east of the station along West Sleeper Road.

Table 9-1 EA-18G High Power Run-Ups for Hush House Analysis

					Annual E	vents								
					Average No Action Alternati	n	High Ten Year Alte 2C		Percento During	age	Power Setti	ng		
Aircraft Type	Engine Type	Run-up Type	Pad ID	Magnetic Heading (degrees)	no Hush House	with Hush House	no Hush House	with Hush House	Day (0700 - 2200)	Night (2200 - 0700)	Reported	Modeled (if different)	Duration of Each Event (Minutes)	No. of Engines Running (each event)
EA-18G	F414- GE-400	High Power	Hi-Pwr1	315	656	0	944	0	90%	10%	Ground Idle	65% NC	25	2
											80%NC	80% NC	10	2
											Mil	96% NC	3	2
											AB	A/B	3	2
EA-18G	F414- GE-400	High Power, In-frame	Proposed Hush House ¹	85	0	656	0	944	90%	10%	Same as abo	ove		

EA-18G modeled with surrogate noise data from the NOISEFILE database (because reference acoustic data for "EA-18G in a hush house" do not exist in NOISEFILE)

Figure 9-2 Comparison of Single-Event Maximum Sound Level Contours for the High Power and Considered Hush House Locations

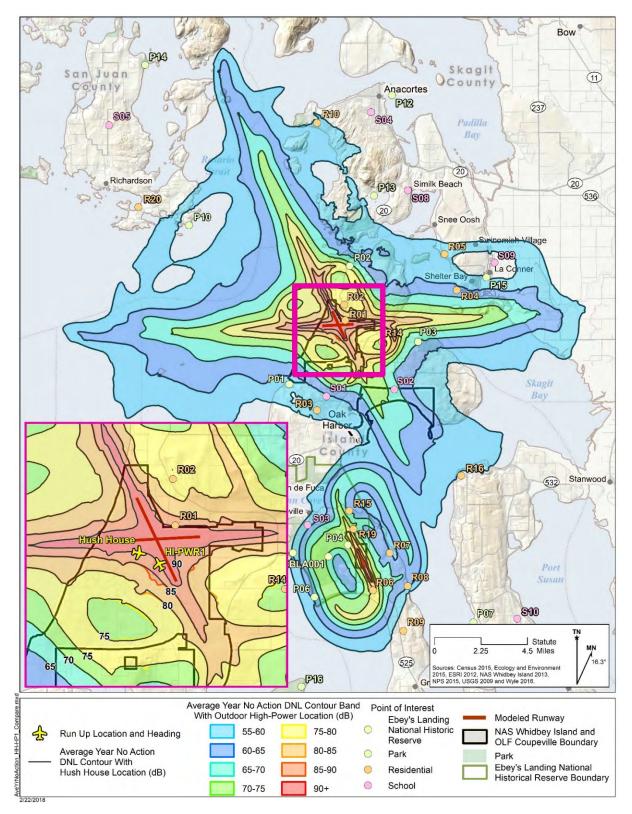


Figure 9-3 Comparison of DNL Contours for the Average Year No Action Alternative for the High Power and Considered Hush House Locations

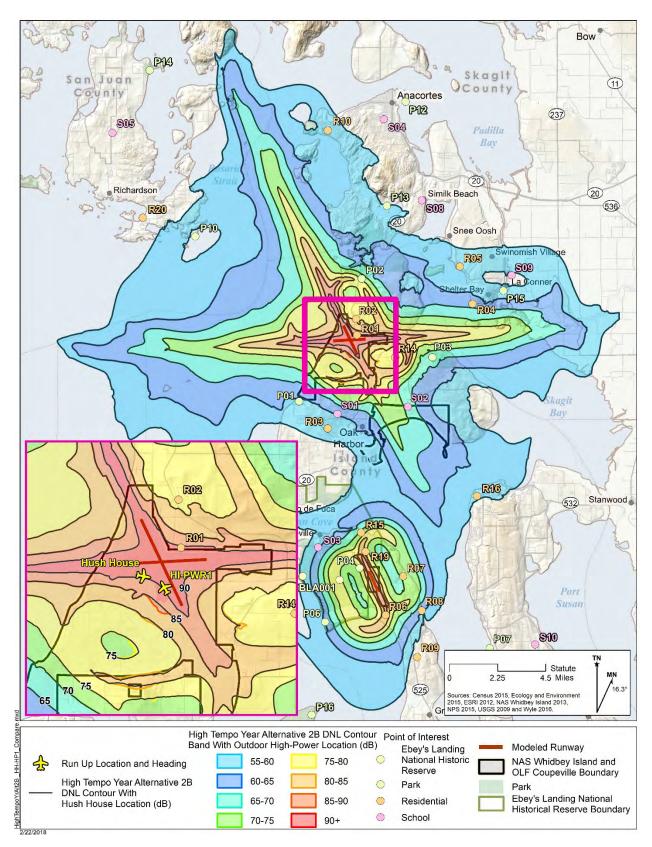
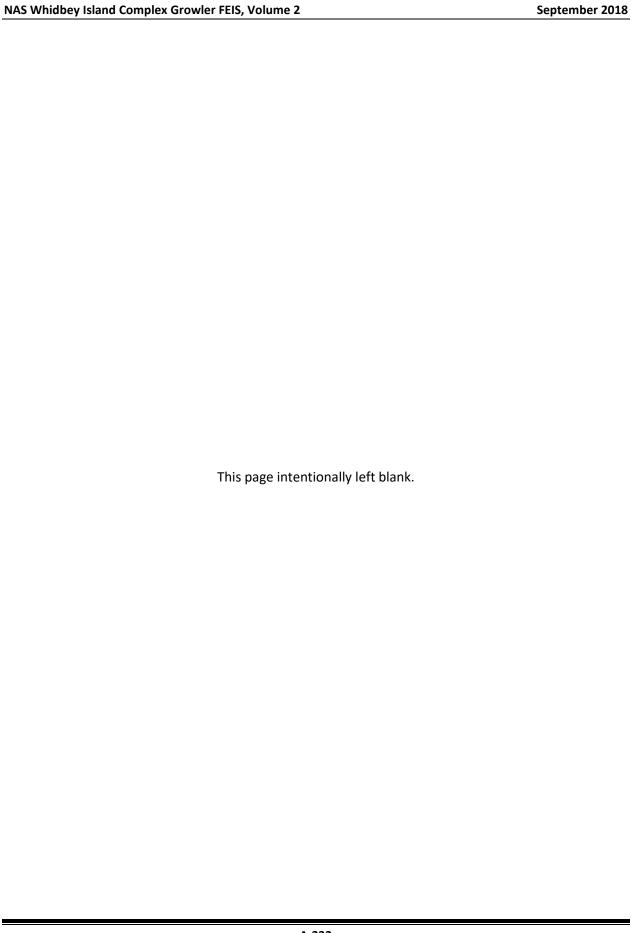



Figure 9-4 Comparison of DNL Contours for the High-Tempo FCLP Year Alternative 2B for the High Power and Considered Hush House Locations

10 Low-Frequency Noise

Tactical military jets such as the EA-18G Growler can generate noticeable low-frequency noise compared to other aircraft types. The following paragraphs describe the low-frequency noise content of the EA-18G and compares it to that of the EA-6B Prowler, which is another aircraft residents surrounding Ault Field and OLF Coupeville have experienced. Two aspects of low-frequency noise are of concern to the public: 1) the potential for structural damage, and 2) increased annoyance. For structural damage, the components of a structure most sensitive to airborne noise are the windows and, infrequently, the plastered walls and ceilings. An evaluation of the sound pressures impinging on the structure may be used to assess the risk for damage. In general, sound levels below 130 dB (unweighted) are unlikely to pose a risk to structures. While certain frequencies (such as 30 Hertz [Hz] for window breakage) may be of more concern than others, conservatively, only sounds lasting more than 1 second above a sound level of 130 dB (unweighted) are potentially damaging to structural components (Committee on Hearing, Bioacoustics, and Biomechanics, 1977).

Noise-induced structural vibration may result from aircraft operating at low altitudes, which would occur during takeoff and landing operations. Such vibrations are likely to cause annoyance to dwelling occupants because of induced secondary vibrations or rattling of objects, such as dishes and hanging pictures, within the dwelling. Window panes may also vibrate noticeably when exposed to high levels of airborne noise. In general, such noise-induced vibrations occur at sound levels of 110 dB (unweighted) or greater.

Aside from structural concerns of low-frequency noise, the perception of low-frequency sound may differ considerably when compared with mid- or high-frequency sound. Laboratory measurements of annoyance by low-frequency noise each use different spectra and levels, making comparisons difficult, but the majority share the same conclusion that annoyance caused by low frequencies increases rapidly with level and that measurements of A-weighted sound level alone can underestimate the effects of low-frequency noises (Leventhall, 2004).

Figures 10-1 through 10-3 show comparisons of the unweighted one-third octave band (OTOB) spectra at lower frequencies from the acoustic reference database (Noisefile) for the Growler and Prowler. The comparisons are for MIL, approach, and traffic pattern engine power settings, respectively. It is important to note that the flyover database contains OTOB spectra at the maximum Perceived Noise Level (PNL) for each measured engine power setting. These spectra are normalized to a distance of 1,000 feet and acoustical standard atmospheric conditions of 59° F and 70 percent relative humidity. For MIL power, the Growler's unweighted spectral levels at 50 Hz and below are, on average, 11 dB greater than the Prowler's. For approach power, the Growler is 5 dB greater, on average, at 50 Hz and below, and for cruise power, the Growler and Prowler are similar, with an average difference of 2 dB. Even with its increased low-frequency content, the Growler's takeoff noise events do not appear to approach the 110 dB threshold for noise-induced vibration for receiver distances 1,000 feet and greater.

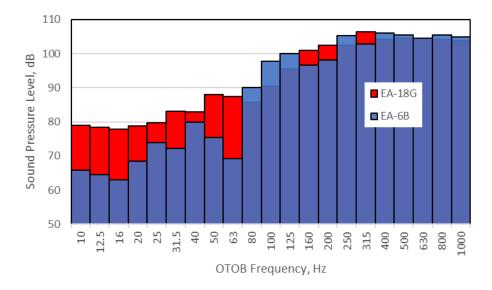


Figure 10-1 Low Frequency One-Third Octave Band Spectral Comparison for the EA-18G and EA-6B for MIL Engine Power

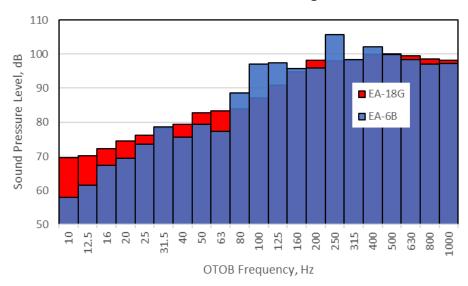


Figure 10-2 Low Frequency One-Third Octave Band Spectral Comparison for the EA-18G and EA-6B for Approach Engine Power

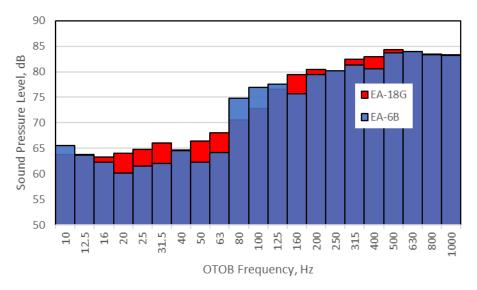
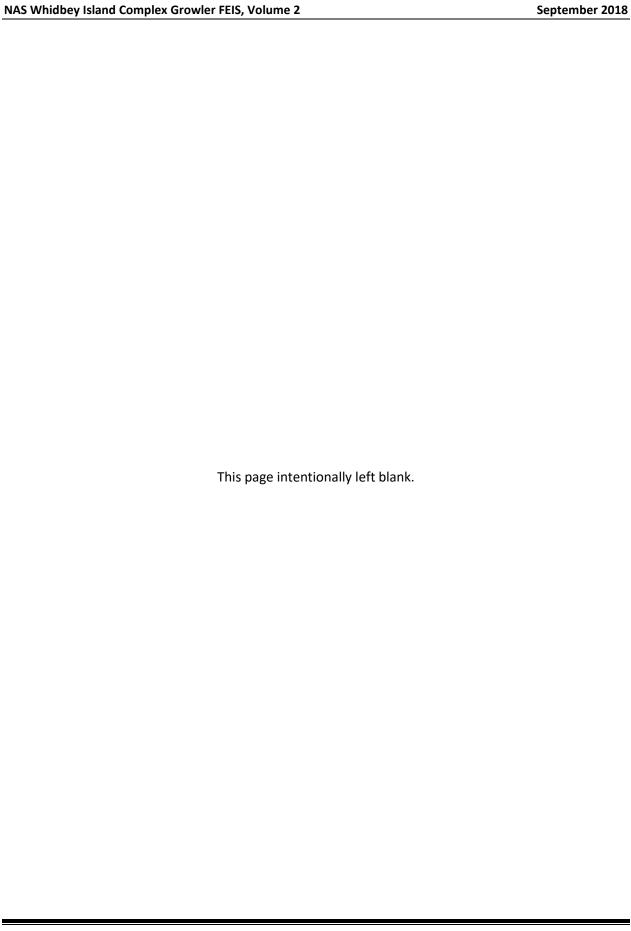



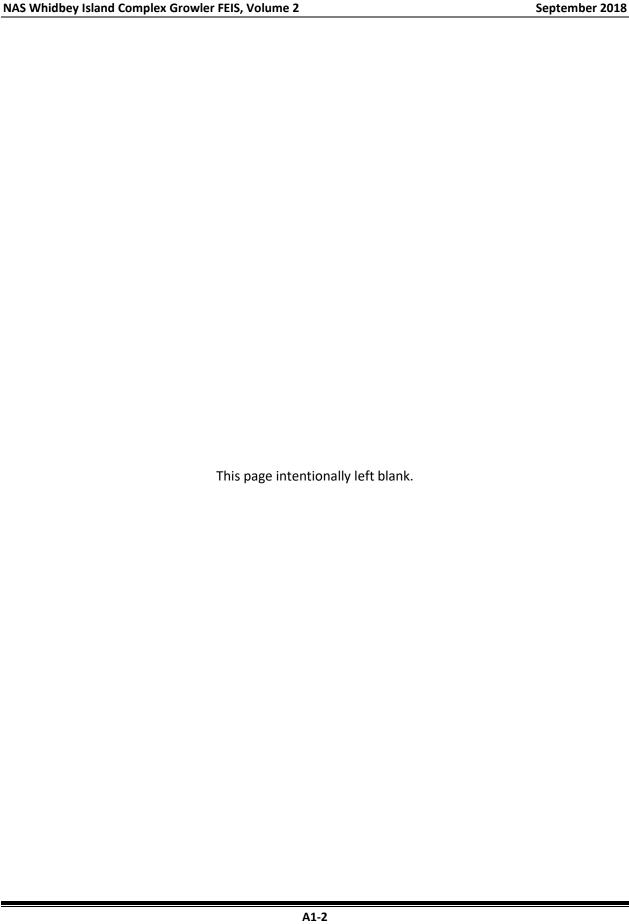
Figure 10-3 Low Frequency One-Third Octave Band Spectral Comparison for the EA-18G and EA-6B for Traffic Pattern Engine Power

11 References

- Airnav. (2016). Airnav.com, KNUW, Whidbey Island Naval Air Station (Ault Field), and KNRA, Coupeville Naval Outlying Field, January (cites FAA Information Effective 10 December 2015).
- ANSI. (2008). Quantities 3 and procedures for description and measurement of environmental sound Part 6: methods for estimation of awakenings associated with outdoor noise events heard in homes. American National Standards Institute ANSI/ASA S12.9-2008. American National Standards Institute and Acoustical Society of America. July 2008.
- ATAC Corporation. (2015). VAQ EIS NASMOD analysis, Naval Air Station Whidbey Island, final report.

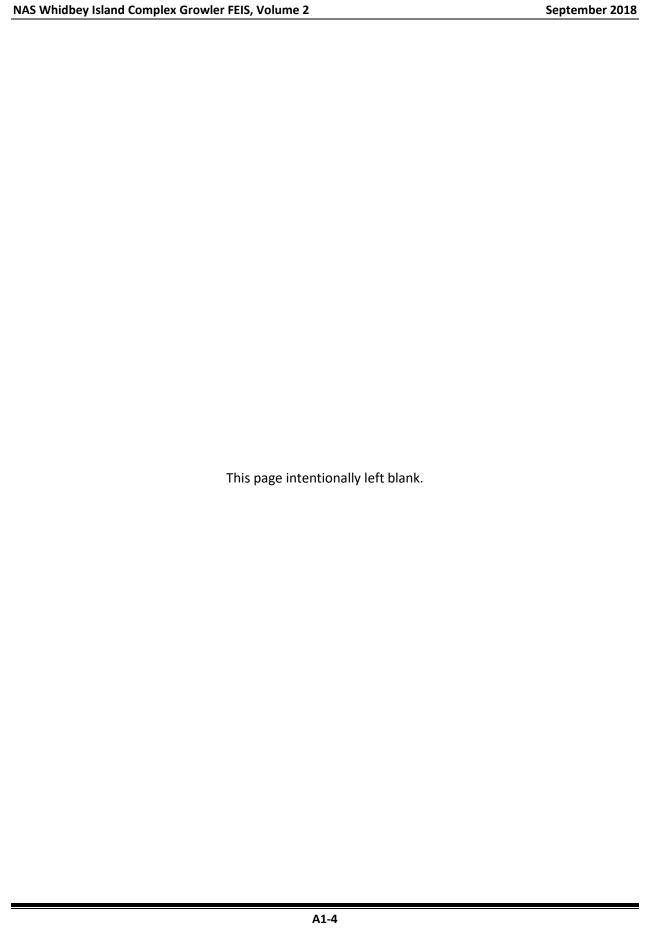
 ATAC Corporation, October 29.
- Baird. (2014). Electronic mail from Victoria B. Baird, NAFD Whidbey Island, to Joseph Czech, Wyle Laboratories, Inc., re: "Whidbey weather," att: "Copy of Ault Field Weather 10NON2014.xlsx," 10 November.
- Committee on Hearing, Bioacoustics, and Biomechanics (CHABA). (1977). *Guidelines for preparing environmental impact statements on noise*. Report of Working Group 69 on evaluation of environmental impact of noise. Office of Naval Research, Contract No. N00014-75-C-0406. National Academy of Science, Washington, DC.
- Czech, J. J., and Plotkin, K. J. (1998). *NMAP 7.0 user's manual*. Wyle Research Report WR 98-13. Wyle Laboratories, Inc. November 1998.
- DoD. (2009a). "Technical bulletin: Using supplemental noise metrics and analysis tools." March 2009.

 _______. (2009b). "Technical bulletin: Sleep disturbance from aviation noise." April 2009.


 ______. (2012). "Technical bulletin: Speech interference from aircraft noise." Defense Noise Working Group, July 2012.
- ______. (2013). "Technical bulletin: Noise-induced hearing impairment." Defense Noise Working Group, December 2012.
- Ecology and Environment, Inc. (2015). Electronic mail from Cynthia Shurling, Ecology and Environment, Inc., to Joseph Czech, Wyle Laboratories, Inc., re: "Whidbey due-outs." September 25, 2015.
- ______. (2017). Electronic mail from Cynthia Shurling, Ecology and Environment, Inc., to Patrick Kester, Wyle Laboratories, Inc., re: "POI analysis." Attachments: "Figure 3.2-6 representative Points of Interest.pdf," "NASWI_POI_analysis.xlsx," POI_Coordinates_05_02_2017.xlsx," May 4, 2017.
- FAA (Federal Aviation Administration). (2016). *Aeronautical information manual: Official guide to basic flight information and ATC procedures*. December 10, 2015; Change 1, May 26, 2016. Retrieved from: http://www.faa.gov/atpubs.
- Fahey, D. (2014). Electronic mail from CDR Dan S. Fahey, CVWP, B386 R3, to Joseph Czech, Wyle Laboratories, Inc., re: "proposed FCLP tracks at OLF Coupeville," November 6, 2014.

- FICAN. (2018). Research review of selected aviation noise issues. Prepared by Federal Interagency Committee on Aviation Noise. April 2018. No. 550/9-82-105. FAA 2016. Airport Diagram for KNUW, NW-1, 07Jan 2016 to 04Feb 2016.
- FICON. (1992). Federal agency review of selected airport noise analysis issues. August 1992.
- Gaber, W. (2014). Electronic mail from CDR Wallace J. Gaber, N32, to Joseph Czech, Wyle Laboratories, Inc., re: "proposed FCLP tracks at OLF Coupeville," November 6, 2014.
- _____. (2015). Electronic mail from CDR Wallace J. Gaber, N32, to Joseph Czech, Wyle Laboratories, Inc., re: "modeled flight track validation redux; revised OLF breaks," 27 January, re: "FW: modeled flight track validation follow-ups", 30 January, 04 February, 05 February, re: "noise modeling flight profiles for review, 1 of 3" 27 February.
- Kester, Patrick H., and Czech, Joseph J. (2017). *Aircraft noise study for Naval Air Station Whidbey Island and Outlying Landing Field Coupeville, Washington*. WR 10-22, Wyle Laboratories, Inc., October 2017.
- Leventhal, H. G. (2004). "Low frequency noise and annoyance." Noise Health. Volume 6, pp. 59-72.
- Navy (2012). Final environmental assessment for the expeditionary transition of EA-6B Prowler squadrons to EA-18G Growler at Naval Air Station Whidbey Island, Oak Harbor, Washington. October 2012.
- ______. (2013). Air operations manual, NAS Whidbey Instruction 3710.1Y, Ault Field, OLF Coupeville. October 21, 2013.
- OSD. (2009). "Memorandum on methodology for assessing hearing loss risk and impacts in DoD environmental impact analysis. The Under Secretary of Defense. June 16, 2013.
- Page, J. A., C. Wilmer, and K. J. Plotkin. *Rotorcraft noise model technical reference and user manual* (Version 7.1). Wyle Report WR 08-04, February 2008.
- Schmidt-Bremer, Jr., M., Downing, J.M., Long, G., LeDoux, T., & Thompkins, V. (2004). Wyle Report WR 04-26, Aircraft Noise Study for Naval Air Station Whidbey Island and Outlying Landing Field Coupeville, Washington. Wyle Laboratories, Inc., October 2004.
- Sharp, B., Albee, W., Connor, T.L., & Bassarab, R. (2009). Wyle Report WR 07-03, Improving Aviation Noise Planning, Analysis and Public Communication with Supplemental Metrics, Guide to Using Supplemental Metrics. Wyle Laboratories, Inc., August.
- USEPA (1974). Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety. Environmental Protection Agency Report No. 550/9-74-004.
- U.S. Geological Survey 2017. 1/3rd arc-second Digital Elevation Models (DEMs) USGS National Map 3DEP Downloadable Data Collection. Reston, Virginia. Updated September 21, 2017; standard metadata 2009. Accessed August 23, 2018: https://nationalmap.gov/3DEP/.
- . (1982). Guidelines for noise impact analysis. Environmental Protection Agency Report

Washington State Office of Financial Management. (2017). Forecast of the state population by age a	ınd
sex: November 2017. Retrieved December 12, 2017: https://ofm.wa.gov/washington-data-	
research/population-demographics/population-forecasts-and-projections/state-population-forecast.	-
Wasmer, F., & Maunsell, F. (2006a). BaseOps 7.3 User's Guide. Wasmer Consulting.	
(2006h) NMPlot 4 955 User's Guide Wasmer Consulting	

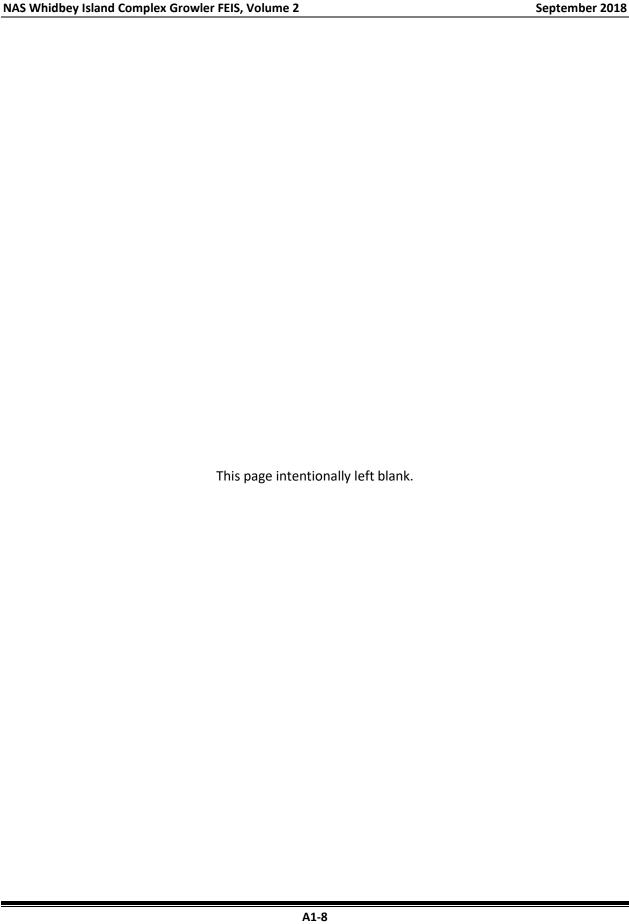

NAS Whidbey Island Complex Growler FEIS, Volume 2	September 2018
This page intentionally left blank.	
,	
A 240	

Appendix A1 Discussion of Noise and Its Effects on the Environment

Acknowledgements

This review of noise and its effects on the environment was prepared by Wyle Laboratories, Inc., with contributions from Blue Ridge Research and Consulting LLC and Ecology and Environment, Inc.

TABLE OF CONTENTS


A1	DISCU	SSION OF NOISE AND ITS EFFECTS ON THE ENVIRONMENT	A1-11
	A1.1	Basics of Sound	A1-11
		A1.1.1 Sound Waves and Decibels	A1-11
		A1.1.2 Sound Levels and Types of Sounds	A1-14
		A1.1.3 Low-Frequency Noise	A1-15
	A1.2	Noise Metrics	A1-16
		A1.2.1 Single Events	A1-17
		A1.2.2 Cumulative Events	A1-18
		A1.2.3 Supplemental Metrics	A1-21
	A1.3	Noise Effects	A1-21
		A1.3.1 Annoyance	A1-22
		A1.3.2 Speech Interference	A1-28
		A1.3.3 Sleep Disturbance	A1-31
		A1.3.4 Noise-Induced Hearing Impairment	A1-34
		A1.3.5 Nonauditory Health Effects	A1-41
		A1.3.6 Performance Effects	A1-49
		A1.3.7 Noise Effects on Children	A1-50
		A1.3.8 Property Values	A1-54
		A1.3.9 Noise-Induced Vibration Effects on Structures and Humans	A1-55
		A1.3.10 Noise Effects on Terrain	A1-58
		A1.3.11 Noise Effects on Historical and Archaeological Sites	A1-58
		A1.3.12 Effects on Domestic Animals and Wildlife	A1-59
	A1.4	References	A1-74

List of Figures

Figure A-1	Sound Waves from a Vibrating Tuning Fork	A1-11
Figure A-2	Frequency Characteristics of A- and C-Weighting	A1-13
Figure A-3	Typical A-weighted Sound Levels of Common Sounds	A1-15
Figure A-4	Sample Time History of Noise Generated by an Aircraft Flyover Event	A1-17
Figure A-5	Example of $L_{eq(24)}$, DNL, and CNEL Computed from Hourly Equivalent Sound	
	Levels	A1-18
Figure A-6	Typical DNL or CNEL Ranges in Various Types of Communities	A1-20
Figure A-7	Schultz Curve Relating Noise Annoyance to DNL	A1-23
Figure A-8	Response of Communities to Noise: A Comparison of Original Schultz (1978)	
	Curve to Finegold et al (1994) Curve	A1-24
Figure A-9	Percent Highly Annoyed: A Comparison of ISO 1996-1 to FICON 1992	A1-26
Figure A-10	Speech Intelligibility Curve	A1-29
Figure A-11	FICAN 1997 Recommended Sleep Disturbance Dose-Response Relationship	A1-32
Figure A-12	RANCH Study Reading Scores Varying with L _{eq}	A1-51
Figure A-13	Depiction of Sound Transmission through Built Construction	A1-56

List of Tables

Table A-1	Non-Acoustic Variables Influencing Aircraft Noise Annoyance	A1-24
Table A-2	Percent Highly Annoyed by Different Transportation-Noise Sources	A1-25
Table A-3	Indoor Noise Level Criteria Based on Speech Intelligibility	A1-31
Table A-4	Probability of Awakening from NA90SEL	A1-33
Table A-5	Average (Ave.) NIPTS and 10^{th} Percentile NIPTS as a Function of $L_{\text{eq}(24)}$	A1-36
Table A-6	Vibration Criteria for the Evaluation of Human Exposure to Whole-Body	
	Vibration	A1-58

Abbreviations and Acronyms

Acronym	Definition
AGL	Above Ground Level
ANSI	American National Standards Institute
СНАВА	Committee on Hearing, Bioacoustics, and Biomechanics
CNEL	Community Noise Equivalent Level
dB	Decibel
dBA or dB(A)	A-Weighted Decibel
DLR	German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt e.V.)
DNL	Day-Night Average Sound Level
DNWG	Defense Noise Working Group
DoD	Department of Defense
EU	European Union
FAA	(U.S.) Federal Aviation Administration
FICAN	Federal Interagency Committee on Aviation Noise
FICON	Federal Interagency Committee on Noise
HYENA	Hypertension and Exposure to Noise near Airports
Hz	Hertz
IHD	Ischemic heart disease
IRR	Incidence Rate Ratio
ISO	International Organization for Standardization
L	Sound Level
LAX	Los Angeles International Airport
Lct	Community Tolerance Level
L _{dn}	Day-Night Average Sound Level

Acronym	Definition
L _{dnmr}	Onset-Rate Adjusted Monthly Day-Night Average Sound Level
L _{eq}	Equivalent Sound Level
Leq(24)	Equivalent Sound Level over 24 hours
L _{eq} (30min)	Equivalent Sound Level over 30 minutes
L _{eq(8)}	Equivalent Sound Level over 8 hours
Leq(h)	Hourly Equivalent Sound Level
L _{max}	Maximum Sound Level
L _{pk}	Peak Sound Pressure Level
mmHg	millimeters of mercury
NA	Number of Events Above
NAL	Number of Events Above a Threshold Level
NDI	Noise Depreciation Index
NIPTS	Noise-induced Permanent Threshold Shift
NORAH	Noise-Related Annoyance, Cognition, and Health
OSHA	United States Occupational Safety and Health Administration
PHL	Potential Hearing Loss
PTS	Permanent Threshold Shift
RANCH	Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health
SEL	Sound Exposure Level
SIL	Speech Interference Level
SUA	Special Use Airspace
TA	Time Above
TTS	Temporary Threshold Shift
	·

Acronym	Definition
U.S.	United States
USEPA	United States Environmental Protection Agency

Acronym	Definition
USFWS	United States Fish and Wildlife Service
WHO	World Health Organization

A1 Discussion of Noise and its Effects on the Environment

This appendix discusses sound and noise, and the potential effects of noise, particularly aircraft noise, on the human and natural environment. Section A1.1 provides an overview of the basics of sound and noise. Section A1.2 defines and describes the various metrics used to describe noise. Section A1.3 reviews the potential effects of aircraft noise, focusing on effects on humans but also addressing effects on property values, terrain, structures, and animals. Section A1.4 contains the list of references cited.

A1.1 Basics of Sound

Section A1.1 describes sound waves and decibels, and Section A1.2 describes sound levels and types of sounds.

A1.1.1 Sound Waves and Decibels

Sound consists of minute vibrations that travel through the air and are sensed by the human ear. Figure A-1 depicts how sound waves emanate from a tuning fork. As shown, the waves move outward as a series of crests, in which the air is compressed, and troughs, in which the air is expanded. The height of the crests and the depth of the troughs determines the *amplitude* of the wave. The sound *pressure* determines the sound wave's energy, or intensity. The number of crests or troughs that pass a given point each second is called the *frequency* of the sound wave.

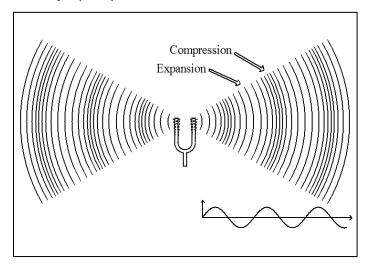


Figure A-1 Sound Waves from a Vibrating Tuning Fork

The measurement and human perception of sound involves three basic physical characteristics: intensity, frequency, and duration.

- Intensity is a measure of the acoustic energy of a sound and is related to sound pressure. The
 greater the sound pressure, the more energy is carried by the sound and the louder the
 perception of that sound will be.
- Frequency determines how the pitch of a sound is perceived. Low-frequency sounds are characterized as rumbles or roars, while high-frequency sounds are often described as sounding like sirens or screeches.

• *Duration* is the length of time a sound can be detected.

The loudest sounds that can be comfortably heard by the human ear have intensities a trillion times higher than those of sounds barely heard. Because of this vast range, it is unwieldy to use a linear scale to represent the intensity of sound. As a result, a logarithmic unit known as the decibel (dB) is used to represent the intensity of a sound. Such a representation is called a sound level and is abbreviated as L. A sound level of 0 dB is approximately the threshold of human hearing and is barely audible under extremely quiet listening conditions. Normal speech has a sound level of approximately 60 dB. Sound levels above 120 dB would be uncomfortable for the average person, and levels of 130 to 140 dB would start to be felt as pain (Berglund and Lindvall, 1995). It is important to realize some people will be more sensitive to sound and some less sensitive; therefore, the level at which sound becomes uncomfortable or painful will vary across the population.

As shown in Figure A-1, the sound from a tuning fork spreads out uniformly as it travels from its source. This spreading causes the sound's intensity to decrease with distance from the source. For a point source of a sound, such as an air conditioning unit, the sound level will decrease by about 6 dB for every doubling of its distance from a receptor. For a busy highway, which creates a linear distribution of noise sources, the sound level will decrease by 3 to 4.5 dB for every doubling of distance.

As sound travels from its source, it is also absorbed by the air. The amount of absorption depends on the frequency composition of the sound and the temperature and humidity of the air. Sound with high-frequency content, such as a human voice, gets absorbed by the air more readily than sound with low-frequency content, such as a military jet. More sound is absorbed in colder and drier air than in hot and wet air. Sound is also affected by wind and temperature gradients, terrain (elevation and ground cover), and structures.

Because of the logarithmic nature of the dB unit, sound levels cannot simply be added or subtracted and are somewhat cumbersome to handle mathematically. However, some simple rules are useful in understanding sound levels.

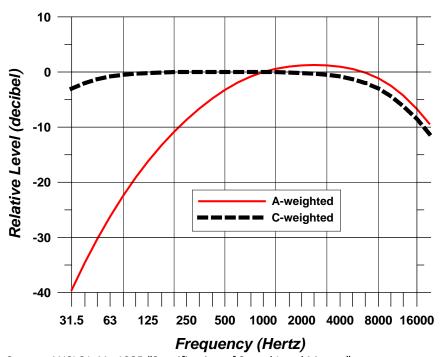
First, if a sound's intensity is doubled, the sound level increases by 3 dB, regardless of the initial sound level. For example:

$$60 \text{ dB} + 60 \text{ dB} = 63 \text{ dB}, \text{ and}$$

 $80 \text{ dB} + 80 \text{ dB} = 83 \text{ dB}.$

Second, the total sound level produced by two sounds of different levels is usually only slightly greater than the higher of the two. For example:

$$60.0 \text{ dB} + 70.0 \text{ dB} = 70.4 \text{ dB}.$$


Because the addition of sounds of differing levels is different than that of simply adding numbers, this process is often referred to as "decibel addition."

The minimum change in the sound level of individual events that an average human ear can detect is about 3 dB. On average, a person perceives a change in sound level of about 10 dB as a doubling (or halving) of that sound's loudness. This relation holds true for both loud and quiet sounds. A decrease in sound level of 10 dB actually represents a 90-percent decrease in sound intensity but only a 50-percent decrease in perceived loudness because the human ear does not respond to sound linearly. Intensity of a sound is the physical measure of the stimulus, and loudness of a sound is the perceptual measure of a listener's response to it.

Sound frequency is measured in terms of cycles per second, or hertz (Hz). The normal ear of a young person can detect sounds that range in frequency from about 20 Hz to 20,000 Hz. Not all sounds in this wide range of frequencies are heard equally. Human hearing is most sensitive to frequencies in the 1,000 to 4,000 Hz range, and as we get older, we lose the ability to hear high-frequency sounds. The notes on a piano range in frequency from just over 27 Hz to 4,186 Hz, with middle C equal to 261.6 Hz. Most sounds (including a single note on a piano) are not simply pure tones like those produced by the tuning fork in Figure A-1 but instead contain a mix, or spectrum, of many frequencies.

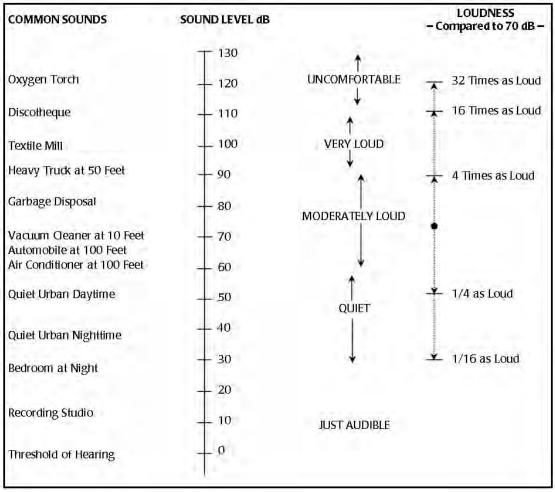
Sounds with different frequency spectra are perceived differently even if the sound levels are the same. Weighting curves have been developed to correspond to the sensitivity and perception of different frequencies of sound. A-weighting and C-weighting are the two most common frequency weightings. These two curves, shown in Figure A-2, are adequate to quantify most environmental sounds. A-weighting puts emphasis on the 1,000 to 4,000 Hz frequency range.

Very loud or impulsive sounds, such as explosions or sonic booms, can sometimes be felt and can cause secondary effects, such as shaking of a structure or rattling of windows. These types of sounds can add to annoyance and are best measured by C-weighted sound levels, denoted dBC. C-weighting is nearly flat throughout the audible frequency range and includes low frequencies that may not be heard but cause shaking or rattling. C-weighting approximates the human ear's sensitivity to higher intensity sounds. For example, using the A-weighted curve, a 125 Hz tone at moderate sound levels (around 50 dB) is perceived to be about 17 dB lower than a 1,000 Hz tone. However, using the C-weighted curve, if the sound level is increased to 100 dB, the two tones are perceived to be the same level.

Source: ANSI S1.4A -1985 "Specification of Sound Level Meters"

Figure A-2 Frequency Characteristics of A- and C-Weighting

A1.1.2 Sound Levels and Types of Sounds


Most environmental sounds are measured and described as A-weighted sound levels, and they may be labeled as dBA or dB(A) rather than dB. When the use of A-weighting is understood, the term "A-weighted" is often omitted, and the unit dB is used. Unless otherwise stated, dB units refer to A-weighted sound levels.

Sound becomes noise when it is unwelcome and interferes with normal activities, such as sleep or conversation. Noise is unwanted sound and can become an issue when its level exceeds the ambient or background sound level. Ambient sound levels in urban areas typically vary from 60 to 70 dB but can be as high as 80 dB in the center of a large city. Quiet suburban neighborhoods experience ambient sound levels around 45 to 50 dB (USEPA [U.S. Environmental Protection Agency], 1978).

Figure A-3 is a chart of dBA sound levels emitted from common sources. For some sources depicted on the figure, such as the air conditioner and vacuum cleaner, the sound levels shown are continuous sounds, and these sound levels are constant for some time. For other sources depicted on the figure, such as the automobile and heavy truck, the sound levels shown are the maximum sound level emitted during an intermittent event such as a vehicle pass-by. Some sound levels shown, for sources such as "urban daytime" and "urban nighttime," are average sound levels over extended periods. A variety of noise metrics have been developed to describe noise over different time periods. These are discussed in detail in Section A1.2.

Aircraft noise consists of two major types of sound events: flight (including takeoffs, landings, and flyovers) and stationary, such as engine maintenance run-ups. The former are intermittent and the latter primarily continuous. Noise from aircraft overflights typically occurs beneath main approach and departure paths at an airfield, in local air traffic patterns around the airfield, and in areas near aircraft parking ramps and staging areas. As aircraft climb, the noise received on the ground drops to lower levels, eventually fading into the background or ambient levels.

Impulsive noises are generally short, loud events, with a single-event duration that is usually less than 1 second. Examples of impulsive noises are small-arms gunfire, hammering, pile driving, metal impacts during rail-yard shunting operations, and riveting. Examples of high-energy impulsive sounds are explosions associated with quarrying or mining operations; sonic booms; demolition explosions; and industrial processes that use high explosives; military ordnance use (e.g., armor, artillery, and mortar fire, and bomb detonation); explosive ignition of rockets and missiles; and any other explosive source where the equivalent mass of dynamite exceeds 25 grams (ANSI [American National Standards Institute], 1996).

Source: Harris 1979.

Figure A-3 Typical A-weighted Sound Levels of Common Sounds

A1.1.3 Low-Frequency Noise

Normally, the components of a structure most sensitive to airborne noise are the windows and, infrequently, the plastered walls and ceilings. An evaluation of the sound pressures impinging on the structure may be used to assess the risk for damage. In general, sound pressure levels below 130 dB (unweighted) are unlikely to pose a risk to structures. While certain frequencies (such as 30 Hz for window breakage) may be of more concern than other frequencies, conservatively, only sounds lasting more than one second and at a sound pressure level above 130 dB (unweighted) are potentially damaging to structural components (CHABA [Committee on Hearing, Bioacoustics, and Biomechanics] 1977).

Noise-induced structural vibration may result from aircraft operating at low altitudes, which would occur during takeoff and landing operations. Such vibrations are likely to cause annoyance to dwelling occupants because of induced secondary vibrations or rattling of objects within the dwelling such as hanging pictures, dishes, plaques, and bric-a-brac. Window panes may also vibrate noticeably when exposed to high levels of airborne noise. In general, such noise-induced vibrations occur at sound pressure levels of 110 dB (unweighted) or greater.

Aside from concerns about potential structural damage from low-frequency noise, the perception of low-frequency sound may differ considerably when compared with mid- or high-frequency sound. Laboratory measurements of annoyance from low-frequency noise each use different spectra and levels, making comparisons difficult, but the majority share the same conclusion that annoyance caused by low-frequency sound increases rapidly with level and that dBA sound level alone can underestimate the effects of low-frequency noises (Leventhall, 2004). The most recent update to the International Organization for Standardization (ISO) standard (ISO 1996:1 [2016]) describes the main causes for these differences as:

- a weakening of pitch sensation as the frequency of the sound decreases below 60 Hz;
- a perception of sounds as pulsations and fluctuations;
- a much more rapid increase in loudness and annoyance with increasing sound pressure levels at low frequencies than at middle or high frequencies;
- complaints about feelings of ear pressure;
- an annoyance caused by secondary effects such as rattling of buildings elements, windows, and doors, or the tinkling of bric-a-brac;
- less building sound-transmission loss at low frequencies than at middle or high frequencies.

While the Federal Interagency Committee of Noise (FICON) recommends the use of the dBA Day-Night Average Sound Level (DNL) metric as the primary basis of both commercial and military aircraft noise impacts (FICON, 1992), in a recent update to a research needs statement, the Federal Interagency Committee on Aviation Noise (FICAN) stated the following for low-frequency noise concerns:

FICAN finds that additional research needs to be conducted before a [low-frequency noise] metric and an associated dose-response relationship can be recommended. For airports with low-frequency noise concerns, supplemental noise analysis--possibly including vibration measurements--should be considered (FICAN, 2018).

A1.2 Noise Metrics

Noise metrics quantify sounds so they can be compared with each other, and with their effects, in a standard way. The simplest metric is the overall dBA sound level, which is appropriate by itself for quantifying constant noise such as that generated by an air conditioner. However, unlike noise from an air conditioning unit, aircraft flyover noise varies with time. During an aircraft overflight, noise starts at the background level, rises to a maximum level as the aircraft flies close to the receptor, and then returns to the background as the aircraft recedes into the distance. An example graph of the resulting sound levels from a flyover is provided in Figure A-4, which also indicates two metrics (Maximum Sound Level $[L_{max}]$ and Sound Exposure Level [SEL]), that are described in Section A1.2.1 below.

A number of metrics can be used to describe a range of situations--from the effect of a particular individual noise event to the cumulative effect of all noise events over a long time. This section describes the metrics relevant to environmental noise analysis of aircraft operations.

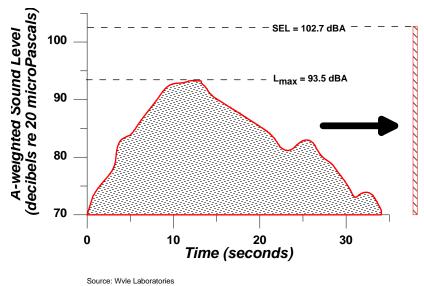


Figure A-4 Sample Time History of Noise Generated by an Aircraft Flyover Event

A1.2.1 Single Events

Maximum Sound Level

The highest dBA sound level measured during a single event in which the sound changes with time, such as a flyover, is called the maximum dBA sound level, or Maximum Sound Level, and is abbreviated L_{max} . The L_{max} is depicted for a sample event in Figure A-4.

 L_{max} is the maximum sound level that occurs over a fraction of a second. For aircraft noise, this "fraction of a second" is one-eighth of a second, denoted as "fast" response on a sound-level measurement meter (ANSI, 1988). Slowly varying or steady sounds are generally measured over 1 second and denoted as "slow" response. L_{max} is important in determining whether a noise event will interfere with conversation, television or radio listening, or other common activities. Although L_{max} provides some measure of a given sound event, it does not fully describe the noise because it does not account for how long the sound is heard.

Peak Sound Pressure Level

The Peak Sound Pressure Level (L_{pk}) is the highest instantaneous level measured by a sound-level measurement meter. L_{pk} is typically measured every 20 microseconds, and it is usually based on unweighted or linear response of the meter. L_{pk} is used to describe individual impulsive events, such as blast noise. Because blast noise varies from explosion to explosion and with meteorological (weather) conditions, the United States (U.S.) Department of Defense (DoD) usually characterizes L_{pk} by the metric PK 15(met), which is the L_{pk} that is exceeded 15 percent of the time. The "met" notation refers to the metric accounting for varied meteorological or weather conditions.

Sound Exposure Level

SEL combines both the intensity of a sound and its duration. For an aircraft flyover, SEL includes the maximum and all lower noise levels produced as part of the overflight, together with how long each part

lasts. SEL represents the total sound energy in the event. Figure A-4 indicates the SEL for a sample flyover event, representing it as if all the sound energy were contained within 1 second.

Because aircraft noise events last more than a few seconds, the SEL value is larger than L_{max} . SEL does not directly represent the sound level heard at any given time during the event but rather during the entire event. SEL provides a much better measure of aircraft flyover noise exposure than L_{max} alone.

A1.2.2 Cumulative Events

Equivalent Sound Level

Equivalent Sound Level (L_{eq}) is a "cumulative" metric that combines a series of noise events, such as aircraft operations, over a period of time. L_{eq} is the sound level that represents the dB average SEL of all sounds in a specific time period. Just as SEL has proven to be a good measure of a single event, L_{eq} has proven to be a good measure of a series of events during a given time period.

The time period of an L_{eq} measurement is usually related to some activity and is given along with the value. The time period is often shown in parenthesis (e.g., $L_{eq(24)}$, or the equivalent sound level for 24 hours). The L_{eq} from 7:00 A.M. to 3:00 P.M. may give exposure of noise for a school day and would be represented as $L_{eq(8)}$, or the equivalent sound level for 8 hours.

Figure A-5 provides an example of $L_{eq(24)}$ using notional hourly equivalent sound levels ($L_{eq(h)}$) for each hour of the day as an example. The $L_{eq(24)}$ for this example is 61 dB.

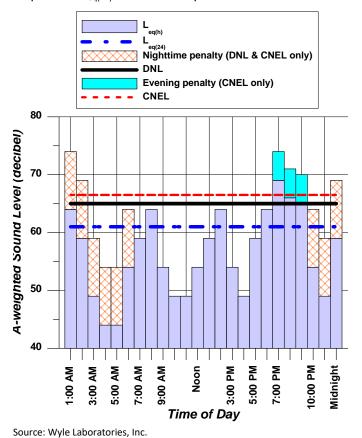


Figure A-5 Example of L_{eq(24)}, DNL, and CNEL Computed from Hourly Equivalent Sound Levels

Day-Night Average Sound Level and Community Noise Equivalent Level

DNL, or L_{dn} , is a cumulative metric that accounts for all noise events, such as aircraft operations, in a 24-hour period. However, unlike $L_{eq(24)}$, DNL contains a nighttime noise adjustment. To account for humans' increased sensitivity to noise at night, DNL applies a 10 dB adjustment to noise events that occur during the nighttime period, defined as 10:00 P.M. to 7:00 A.M. The notations DNL and L_{dn} are both used for Day-Night Average Sound Level and are equivalent.

Community Noise Equivalent Level (CNEL) is a variation of DNL specified by law in California (California Code of Regulations Title 21, *Public Works*) (Wyle Laboratories, 1970). CNEL has the 10 dB nighttime adjustment for noise events that occur between 10:00 P.M. and 7:00 A.M. but also includes a 4.8 dB adjustment for events occurring during the evening period of 7:00 P.M. to 10:00 P.M. This evening adjustment included in CNEL accounts for the added intrusiveness of sounds occurring during that period.

For airports and military airfields, DNL and CNEL represent the average sound level for an average annual day.

Figure A-5 provides an example of DNL and CNEL using notional $L_{eq(h)}$ for each hour of the day. Note the $L_{eq(h)}$ for the hours between 10:00 P.M. and 7:00 A.M. have a 10 dB adjustment assigned. For CNEL, the hours between 7:00 P.M. and 10:00 P.M. have a 4.8 dB adjustment assigned. The DNL for this example is 65 dB and the CNEL is 66 dB.

The dB summation nature of these metrics causes the noise levels of the loudest events to control the 24-hour average. As a simple example, consider a case in which only one aircraft overflight occurs during the daytime over a 24-hour period, creating a sound level of 100 dB for 30 seconds. During the remaining 23 hours, 59 minutes, and 30 seconds of that day, the ambient sound level is 50 dB. The DNL for this 24-hour period is 65.9 dB. Assume, as a second example, that 10 such 30-second overflights occur during daytime hours during the next 24-hour period and with the same ambient sound level of 50 dB during the remaining 23 hours and 55 minutes of the day. The DNL for this 24-hour period is 75.5 dB. Clearly, the averaging of noise over a 24-hour period does not ignore the louder single events and tends to emphasize both the sound levels and number of those events.

A feature of the DNL metric is that a given DNL value could result from a very few noisy events or a large number of quieter events. For example, a single overflight at 90 dB creates the same DNL as 10 overflights at 80 dB.

DNL or CNEL do not represent a sound level heard at any given time, but they represent long-term sound exposure. Scientific studies have found good correlation between the percentages of groups of people highly annoyed by noise and their level of average noise exposure measured in DNL (Schultz, 1978; USEPA, 1978).

DNL or CNEL can be used to measure sound levels in a variety of types of communities. Figure A-6 shows the ranges of DNL or CNEL that occur in various types of communities. For example, under a flight path at a major airport, the DNL may exceed 80 dB, while rural areas not near a major airport may experience DNL less than 45 dB. Sound levels in a downtown area of a major metropolis may be equivalent to the sound levels under a flight path of a major airport.

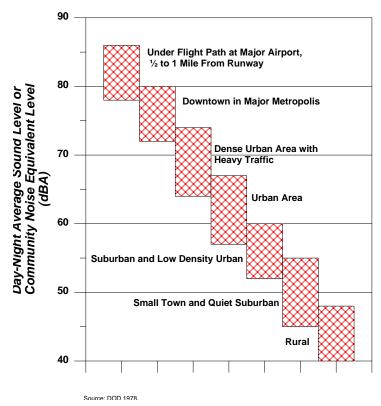


Figure A-6 Typical DNL or CNEL Ranges in Various Types of Communities

Onset-Rate Adjusted Monthly Day-Night Average Sound Level (L_{dnmr}) and Onset-Rate Adjusted Monthly Community Noise Equivalent Level

Military aircraft utilizing Special Use Airspace (SUA), such as Military Training Routes, Military Operations Areas, and Restricted Areas/Ranges, generate a noise environment that is somewhat different from that generated around airfields. Rather than regularly occurring operations such as those conducted at airfields, activity in SUAs is highly sporadic. SUA activity is often seasonal, ranging from 10 operations per hour to less than one per week. Individual military overflight events also differ from typical community noise events in that noise from a low-altitude, high-airspeed flyover can have a rather sudden onset, with rates of up to 150 dB per second.

The cumulative daily noise metric devised to account for the "surprise" effect of the sudden onset of aircraft noise events on humans and the sporadic nature of SUA activity is L_{dnmr} . Onset rates between 15 and 150 dB per second require an adjustment of 0 to 11 dB to the event's SEL, while onset rates below 15 dB per second require no adjustment to the event's SEL (Stusnick et al., 1992). The term "monthly" in L_{dnmr} refers to the noise assessment being conducted for the month with the most operations or sortiesthe so-called "busiest month."

In California, a variant of L_{dnmr} includes an adjustment for evening operations (7:00 P.M. to 10:00 P.M.) and is referred to as the Onset-Rate Adjusted Monthly CNEL.

A1.2.3 Supplemental Metrics

Number of Events Above a Threshold Level

The Number of Events Above (NA) metric gives the total number of events that exceed a noise threshold level (L) during a specified period of time. Combined with the selected threshold, the metric is denoted NAL. The threshold can be either SEL or L_{max} , and it is important that this selection is shown in the nomenclature. When labeling a contour line or point of interest, NAL is followed by the number of events in parentheses. For example, where 10 events exceed an SEL of 90 dB over a given period of time, the nomenclature would be NA90SEL(10). Similarly, for L_{max} it would be NA90L $_{max}$ (10). The period of time can be an average 24-hour day, daytime, nighttime, school day, or any other time period appropriate to the nature and application of the analysis.

NA is a supplemental metric. It is not supported by the amount of science behind DNL or CNEL, but it is valuable in helping to describe the number of noise events the community may hear. A threshold level and metric are selected that best meet the need for each situation. An L_{max} threshold is normally selected to analyze speech interference, while an SEL threshold is normally selected for analysis of sleep disturbance.

The NA metric is the only supplemental metric that combines single-event noise levels with the number of aircraft operations. In essence, it answers the question of how many aircraft (or range of aircraft) flyover events will occur on average at a given location or area at or above a selected threshold noise level.

Time Above a Specified Level

The Time Above (TA) metric is the total time, in minutes, that the dBA noise level is at or above a threshold. Combined with the threshold L, it is denoted TAL. TA can be calculated over a full 24-hour average annual day, the 15-hour daytime and 9-hour nighttime periods, a school day, or any other time period of interest, provided there are operational data for that time.

TA is a supplemental metric, used to help understand noise exposure. It is useful for describing the noise environment in schools, particularly when assessing classroom or other noise-sensitive areas for various scenarios.

TA helps describe the noise exposure of an individual event or many events occurring over a given time period. When computed for a full day, the TA can be compared alongside the DNL in order to determine the sound levels and total duration of events that contribute to the DNL. TA analysis is usually conducted along with NA analysis so the results show not only how many events occur but also the total duration of those events above the threshold.

A1.3 Noise Effects

Noise is of concern because of potential adverse effects. The following subsections describe how noise can affect communities and the environment, and how those effects are quantified. The specific topics discussed are:

- annoyance
- speech interference
- sleep disturbance

- noise-induced hearing impairment
- non-auditory health effects
- performance effects
- noise effects on children
- property values
- noise-induced vibration effects on structures and humans
- noise effects on terrain
- noise effects on historical and archaeological sites
- noise effects on domestic animals and wildlife

A1.3.1 Annoyance

With the introduction of jet aircraft in the 1950s, it became clear that aircraft noise annoyed people and was a significant problem around airports. Early studies, such as those of Rosenblith et al. (1953) and Stevens et al. (1953), showed that effects depended on the quality of the sound, its level, and the number of flights. Over the next 20 years, considerable research was performed refining this understanding and setting guidelines for noise exposure. In the early 1970s, the USEPA published its "Levels Document" (USEPA, 1974), which reviewed the noise factors that affected communities. DNL (or L_{dn}) was identified as an appropriate noise metric, and threshold criteria were recommended.

Threshold criteria for annoyance were identified from social surveys, in which people exposed to noise were asked how noise affected them. Surveys provide direct real-world data on how noise affects actual residents.

Surveys in the early years had a range of designs and formats, and they needed some interpretation to find common ground. In 1978, Schultz showed that the common ground was the number of people "highly annoyed," defined as the upper 28-percent range of whatever response scale a survey used (Schultz, 1978). With that definition, Schultz was able to show a remarkable consistency among the majority of the surveys for which data were available. Figure A-7 shows the result of his study relating DNL to individual annoyance as measured by percent highly annoyed.

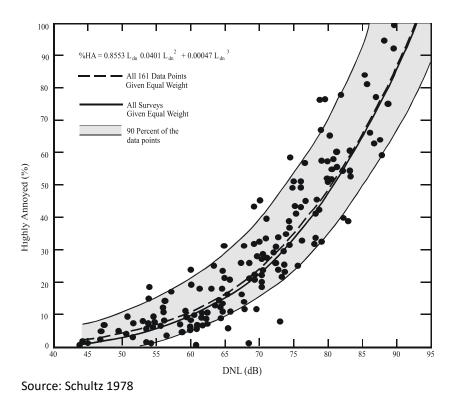


Figure A-7 Schultz Curve Relating Noise Annoyance to DNL

Schultz's original synthesis included 161 data points. Figure A-8 compares revised fits of the Schultz data set with an expanded set of 400 data points collected through 1989 (Finegold et al., 1994). The new form of the curve is the preferred form in the U.S., endorsed by FICAN (1997). Other forms have been proposed, such as that of Fidell and Silvati (2004), but these have not gained widespread acceptance.

When the goodness of fit of the Schultz curve is examined, the correlation between groups of people is high, in the range of 85 to 90 percent. However, the correlation between individuals is much lower, at 50 percent or less. This finding is not surprising, given the personal differences between individuals, with some people more sensitive to noise than others. The surveys underlying the Schultz curve include results that show that annoyance from noise is also affected by non-acoustical factors. The influence of non-acoustical factors is a complex interaction influencing an individual's annoyance response to noise (Brisbane Airport Corporation, 2007). Newman and Beattie (1985) divided the non-acoustic factors into the emotional and physical variables shown in Table A-1.

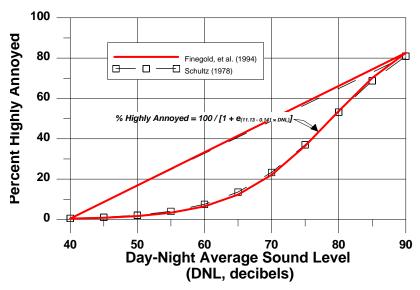


Figure A-8 Response of Communities to Noise: A Comparison of Original Schultz (1978) Curve to Finegold et al (1994) Curve

Table A-1 Non-Acoustic Variables Influencing Aircraft Noise Annoyance

Emotional Variables	Physical Variables
Feeling about the necessity or preventability of the noise	Type of neighborhood
Judgement of the importance and value of the activity that is producing the noise	Time of day
Activity at the time an individual hears the noise	Season
Attitude about the environment	Predictability of the noise
General sensitivity to noise	Control over the noise source
Belief about the effect of noise on one's health	Length of time an individual is exposed to a noise
Feeling of fear associated with the noise	

Schreckenberg and Schuemer (2010) and Laszlo et al. (2012) examined the importance of some of these factors on short-term annoyance. Attitudinal factors were identified as having an effect on annoyance. In formal regression analysis, however, Leq was found to be more important than attitude. Similarly, a series of studies conducted by Marki (2013) at three European airports showed that less than 20 percent of the variance in annoyance can be explained by noise alone (Marki, 2013). Miedema and Voss (1998) found that fear and noise sensitivity have a significant influence on an individual annoyance response. Moreover, in another study, they demonstrated that noise sensitivity is not a function of noise exposure and that noise-sensitive individuals have a steeper annoyance response to increasing noise levels compared to people who are not noise sensitive (Miedema and Vos, 2003).

A study by Plotkin et al. (2011) examined updating DNL to account for these non-acoustic variables. Plotkin et al. (2011) concluded that the data requirements for a general analysis were much greater than are available from most existing studies. It was noted that the most significant issue with DNL is that the

metric is not readily understood by the public and that supplemental metrics such as TA and NA were valuable in addressing attitude when communicating noise analysis to communities (DoD, 2009a).

A factor that is partially non-acoustical is the source of the noise. Miedema and Vos (1998) presented synthesis curves for the relationship between DNL and percentage "annoyed" and percentage "highly annoyed" for three transportation-noise sources. Different curves were found for aircraft, road traffic, and railway noise. Table A-2 summarizes their results. Comparing the updated Schultz curve to these results suggests that the percentage of people highly annoyed by aircraft noise may be higher than previously thought. Authors Miedema and Oudshoorn (2001) supplemented that investigation with further derivation of percentage of population highly annoyed as a function of either DNL or DENL¹, along with the corresponding 95-percent confidence intervals, and obtained similar results.

Table A-2 Percent Highly Annoyed by Different Transportation-Noise Sources

	Percent Highly Annoyed (%HA)				
	Miedema and Vos				
DNL (dB)	Air	Road	Rail	Schultz Combined	
55	12	7	4	3	
60	19	12	7	6	
65	28	18	11	12	
70	37	29	16	22	
75	48	40	22	36	

Source: Miedema and Vos, 1998.

As noted by the World Health Organization (WHO), however, even though aircraft noise seems to produce a stronger annoyance response than road traffic noise, caution should be exercised when interpreting synthesized data from different studies (WHO, 1999).

Consistent with the WHO's recommendations, FICON considered the Schultz curve to be the best source of dose information to predict community response to noise but recommended further research to investigate the differences in perception of noise from different sources (FICON, 1992).

The ISO update (ISO 1996-1 [2016]) introduced the concept of Community Tolerance Level (Lct) as the DNL at which 50 percent of the people in a particular community are predicted to be highly annoyed by noise exposure. Lct accounts for differences between sources and/or communities when predicting the percentage highly annoyed by noise exposure. ISO also recommended a change to the adjustment range used when comparing aircraft noise to road traffic noise. The previous edition suggested a +3 dB to +6 dB adjustment range for aircraft noise relative to road traffic noise, while the latest edition recommends an adjustment range of +5 dB to +8 dB. This adjustment range allows DNL to be correlated to consistent annoyance rates when originating from different noise sources (i.e. road traffic, aircraft, or railroad). This change to the adjustment range would increase the calculated percent highly annoyed at 65 dB DNL by approximately 2 percent to 5 percent greater than the previous ISO definition. Figure A-9 depicts the estimated percentage of people highly annoyed for a given DNL using both the ISO 1996-1 estimation

_

DENL is the Day-Evening-Night Average Sound Level, which is similar to CNEL except it has a 5.0 dB adjustment to the evening period. DENL is not used in the U.S.

and the older FICON 1992 method. The results suggest that the percentage of people highly annoyed may be greater for aircraft noise than previously thought.

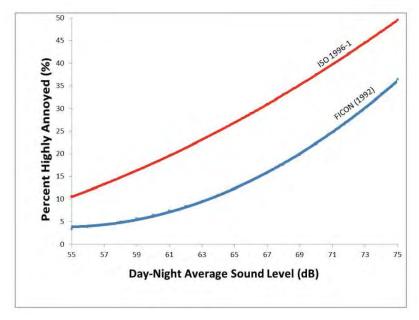


Figure A-9 Percent Highly Annoyed: A Comparison of ISO 1996-1 to FICON 1992

In the 2008 Hypertension and Exposure to Noise near Airports (HYENA) study, annoyance levels due to aircraft noise and road traffic noise were assessed in subjects who lived in the vicinity of six major European airports using the 11-point International Commission on Biological Effects of Noise scale. Exposure-response curves for road noise were congruent with the European Union (EU) standard curves used for predicting the number of highly noise-annoyed subjects, but ratings of annoyance due to aircraft noise were higher than predicted. The study supports findings that people's attitude toward aircraft noise has changed over the years and that the EU standard curve for aircraft noise should be modified (Babisch et al., 2009).

The U.S. Federal Aviation Administration (FAA) is currently conducting a major airport community noise survey at approximately 20 U.S. airports in order to update the relationship between aircraft noise and annoyance (Miller et al., 2014). Results from this study are expected to be released in late 2018.

In a study related to assessing aircraft noise exposure for people in the surrounding community, the Brisbane Airport in Queensland, Australia, assembled a Health Impact Assessment (Volume D7), which discussed, among other noise effects, annoyance and human response to changes in noise exposure versus steady-state response (Section 7.9 of the report) (Brisbane Airport Corporation, 2007). The authors suggest there is a difference between the gradual increase in noise exposure and the additive property of increasing noise levels from a particular event. The latter is called a "step change." The Brisbane Health Impact Assessment references Brown and Kamp (2005), who have reviewed the literature available on human response to such changes. They observe:

"Most information on the relationship between transport noise exposure and subjective reaction (annoyance/dissatisfaction) comes from steady state surveys at sites where there have not been step changes in noise exposure. Environmental appraisals often need to assess the

effects of such step changes in exposure and there is growing evidence that when noise exposure is changed, annoyance-ratings may change more than would be predicted from steady state relationships.

"Conventional wisdom is that human response to a step change in exposure to transport noise can be predicted from exposure-response curves that have been derived from studies where human response has been assessed over a range of steady-state noise conditions. However, in situations where a step change in transport noise exposure has occurred, various surveys suggest that human response may be different, usually greater, as a result of the increase/decrease in noise, to what would be predicted from exposure-response curves derived under steady-state conditions. Further, there are suggestions that such (over)reaction may be more than a short-term effect. (Brown and Kamp, 2005)."

Guski (2004) describes this change effect in a hypothetical model and also notes that where the noise situation is permanently changed, the annoyance of residents usually changes in a way that cannot be predicted by steady-state dose/response relationships. Most studies show an "over reaction" of the residents: with increasing noise levels, people are much more annoyed than would be predicted by steady-state curves, and, with a decrease of noise levels, people are much less annoyed. Guski also notes that the annoyance may change prematurely before the change of levels, with residents expecting an increase in noise levels reacting more annoyed, and residents expecting a decrease in noise levels less annoyed than would be predicted in the steady-state condition.

Brown and Kamp (2005) conclude:

"Our review of the literature on response to changes in noise leads us to the conclusion that we cannot discount the possibility that overreaction to a step change in transport noise may occur, and that this effect may not attenuate over time. However, evidence is still inconclusive and based on limited studies that tend not to be comparable in terms of method, size, design and context. Further, our view is that most explanations given in the literature for an overreaction are only partly supported, in some cases not at all, and generally there is conflicting evidence for them. There is still also no accepted view on the mechanism by which annoyance changes in response to a change in exposure. In particular, most explanations are usually post-hoc and the noise change studies have not been designed to test them. (Brown and Kamp, 2005)."

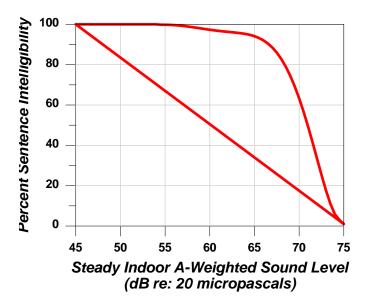
The Brisbane Airport Corporation Health Impact Assessment suggests that the potential for "over-reaction" to stepped changes in noise exists and needs to be recognized; people subject to an increase in noise may experience more annoyance than predicted, while people subject to a decrease in noise may experience less annoyance than predicted. Further, any such over-reaction should not necessarily be assumed to be a temporary phenomenon; evidence from existing studies suggests that it could persist for years after the exposure changes (Brisbane Airport Corporation, 2007).

An individual with an increased sensitivity to sounds may have hyperacusis, which results in a lower tolerance of everyday sound (Aazh et al., 2018). A person with hyperacusis reacts differently to sounds due to reactions of increased distress and discomfort from everyday sounds. This condition arises from a problem with the auditory processes within an afflicted individual's brain. The causes and diagnosis are not well understood (Aazh et al., 2018). Physical causes of hyperacusis may range from head injury, ear damage, or viral diseases, to temporomandibular joint disorders (TMJ). Neurologic causes may range from Post-Traumatic Stress Disorder (PTSD), chronic fatigue syndrome, depression, to migraine headaches (American Academy of Otolaryngology--Head and Neck Surgery, 2018). An individual with

hyperacusis will also likely have tinnitus, which may lead to further discomfort. Hyperacusis can lead to misophonia, which may cause an individual to react with abnormally strong emotions and behaviors to specific sounds, but hyperacusis does not cause this reaction. Studies of misphonia are very limited at this time.

Another condition that falls under the condition of hyperacusis is noise sensitivity (Aazh et al., 2018). A noise-sensitive individual is characteristically more prone to being annoyed by environmental noise compared to a non-noise-sensitive person regardless of the overall noise exposure (Kishikawa et al., 2006). This result indicates that the annoyance response for noise-sensitive people is not a direct function of noise exposure levels.

A1.3.2 Speech Interference


Speech interference from noise is a primary cause of annoyance for communities. Disruption of routine activities such as radio or television listening, telephone use, or conversation leads to frustration and annoyance. The quality of speech communication is also important in classrooms and offices. In the workplace, speech interference from noise can cause fatigue and vocal strain in those who attempt to talk over the noise. In schools it can impair learning.

Speech comprehension is measured in two ways:

- Word Intelligibility, or the percentage of words spoken and understood. This might be especially
 important for students in the lower grades who are learning the English language and
 particularly important for students who are studying English as a Second Language.
- 2. Sentence Intelligibility, or the percentage of sentences spoken and understood. This might be especially important for high-school students and adults who are familiar with the language and who do not necessarily have to understand each word spoken in order to understand sentences.

U.S. Federal Criteria for Interior Noise

In 1974, the USEPA identified a goal of an indoor $L_{eq(24)}$ of 45 dB to minimize speech interference based on sentence intelligibility and the presence of steady noise (USEPA, 1974). Figure A-10 shows the effect of steady indoor background sound levels on sentence intelligibility. For an average adult with normal hearing and fluency in the language, steady background indoor sound levels of less than 45 dB L_{eq} are expected to allow 100-percent sentence intelligibility.

Source: USEPA, 1974

Figure A-10 Speech Intelligibility Curve

The curve in Figure A-10 shows 99-percent intelligibility at L_{eq} below 54 dB and less than 10 percent above 73 dB. Recalling that L_{eq} is dominated by louder noise events, the USEPA $L_{eq(24)}$ goal of 45 dB generally ensures that sentence intelligibility will be high most of the time.

Classroom Criteria

For teachers to be understood, their regular voice must be clear and uninterrupted. Background noise must be below the teacher's voice level. Intermittent noise events that momentarily drown out the teacher's voice need to be kept to a minimum. It is therefore important to evaluate the steady background noise level, the level of voice communication, and the single-event noise level from aircraft overflights that might interfere with speech.

Lazarus (1990) found that for listeners with normal hearing and fluency in the language, complete sentence intelligibility can be achieved when the signal-to-noise ratio (i.e., a comparison of the level of the sound to the level of background noise) is in the range of 15 to 18 dB. The initial American National Standards Institute (ANSI) classroom noise standard (ANSI, 2010) and American Speech-Language-Hearing Association (American Speech-Language-Hearing Association, 2005) guidelines concur, recommending at least a 15 dB signal-to-noise ratio in classrooms. If the teacher's voice level is at least 50 dB, the background noise level must not exceed an average of 35 dB. The National Research Council of Canada (Bradley, 1993) and the WHO (1999) agree with this criterion for background noise.

For eligibility for noise insulation funding, the FAA guidelines state that the design objective for a classroom environment is 45 dB L_{eq} during normal school hours (FAA, 1985).

Most aircraft noise is not continuous. Instead, it consists of individual events like the one depicted by the graph in Figure A-4. Since speech interference in the presence of aircraft noise is caused by individual aircraft flyover events, a time-averaged metric alone, such as $L_{\rm eq}$, is not necessarily appropriate. In addition to the background level criteria described above, single-event criteria that account for those noisy events are also needed.

A 1984 study for the Port Authority of New York and New Jersey recommended using Speech Interference Level (SIL) for classroom noise criteria (Sharp and Plotkin, 1984). SIL is based on the maximum sound levels in the frequency range that most affects speech communication (500 to 2,000 Hz). The study identified an SIL of 45 dB as the goal, a level that would provide 90-percent word intelligibility for the short time periods during aircraft overflights. While SIL is technically the best metric for measuring speech interference, it can be approximated by an L_{max} value. An SIL of 45 dB is equivalent to an L_{max} of 50 dBA for aircraft noise (Wesler, 1986).

Lind et al. (1998) also concluded that an L_{max} criterion of 50 dB would result in 90-percent word intelligibility. Bradley (1985) recommends SEL as a better indicator. His work indicates that 95-percent word intelligibility would be achieved when indoor SEL did not exceed 60 dB. For a typical single aircraft overflight, this corresponds to an L_{max} of 50 dB. While the WHO (1999) only specifies a background L_{max} criterion, the organization also notes the SIL frequencies and that interference can begin at around 50 dB.

The Airport Cooperative Research Program (ACRP) conducted a study to assess aircraft noise conditions affecting student learning by analyzing the interior and exterior sound levels while observing students and teachers at 11 schools surrounding Los Angeles International Airport (LAX). The five schools located under the LAX flight paths experienced frequent overflight events, while the six schools further south of the airport experienced minimal LAX aircraft noise exposure events. The study found a positive correlation between teacher voice-masking or voice-raising and fluctuations in interior noise events. A majority of teachers reported that they felt aircraft noise interfered with teacher-student communication and caused students to lose concentration. However, the student observations were unable to identify any aircraft-noise-related events that caused a distraction in a child. Other students caused the majority of distractions while playing with various items and daydreaming, and were found to be the significant sources of distractions. The authors, as well as the teachers' opinions gathered in the teacher surveys, concluded that even moderate levels of aircraft noise exposure can impact children's learning due to the correlation between voice-masking events and measured interior sound events (National Academies of Sciences, Engineering, and Medicine, 2017).

The United Kingdom Department for Education and Skills established in its classroom acoustics guide a 30-minute time-averaged metric of $L_{eq(30min)}$ for background levels and the metric of $L_{A1,30min}$ for intermittent noises, at thresholds of 30 to 35 dB and 55 dB, respectively. $L_{A1,30min}$ represents the dBA sound level that is exceeded 1 percent of the time (in this case, during a 30-minute teaching session) and is generally equivalent to the L_{max} metric (United Kingdom Department for Education and Skills, 2003).

Table A-3 summarizes the criteria discussed. Other than the FAA (1985) 45 dB L_{max} criterion, the criteria are consistent with a limit on indoor background noise of 35 to 40 dB L_{eq} and a single-event limit of 50 dB L_{max} . It should be noted that the limits listed in Table A-3 were set based on students with normal hearing capability and no special needs. At-risk students may be adversely affected at lower sound levels.

Source Metric/Level (dB) **Effects and Notes** U.S. FAA (1985) Federal assistance criteria for school sound $L_{eq(during school hours)} = 45 dB$ insulation; supplemental single-event criteria may be used. Lind et al. (1998), $L_{max} = 50 dB / SIL 45$ Single-event level permissible in the classroom. Sharp and Plotkin (1984), Wesler (1986) $L_{eq} = 35 \text{ dB}$ WHO (1999) Assumes average speech level of 50 dB and $L_{max} = 50 dB$ recommends signal-to-noise ratio of 15 dB. U.S. ANSI (2010) Leg = 35 dB, based on Room Acceptable background level for continuous and Volume (e.g., cubic feet) intermittent noise. **United Kingdom** $L_{eq(30min)} = 30-35 dB$ Minimum acceptable in classroom and most other Department for Education $L_{max} = 55 dB$ learning environs. and Skills (2003)

Table A-3 Indoor Noise Level Criteria Based on Speech Intelligibility

A1.3.3 Sleep Disturbance

Sleep disturbance is a major concern for communities exposed to aircraft noise at night. A large amount of research developed in the laboratory during the past 30 years has produced variable results, suggesting a complex interaction of factors including the noise characteristics and individual sensitivity, rather than a clear dose-effect relationship (Muzet, 2007; Kwak et al., 2016). Sleep disorders may cause negative health effects such as cardiovascular problems, neuroendocrine abnormalities, and changes in cognition, mood, and memory. The causal relationships between noise exposure, effects on sleep, and contribution to health disturbances, both behavioral and physical, are not yet firmly established (Zaharna, 2010; Perron et al., 2012). A number of studies have attempted to quantify the effects of noise on sleep. This section provides an overview of the major noise-induced sleep disturbance studies. Emphasis is on studies that have influenced U.S. federal noise policy. The studies have been separated into two groups:

- 1. Initial studies, conducted in the 1960s and 1970s, in which the research was focused on sleep observations performed under laboratory conditions.
- 2. Later studies, conducted from the 1990s up to the present, in which the research was focused on field observations.

Initial Studies

The relationship between noise and sleep disturbance is complex and not fully understood. The disturbance depends not only on the depth of sleep and the noise level but also on the non-acoustic factors cited for annoyance. The easiest effect to measure is the number of arousals or awakenings caused by noise events. Much of the literature has therefore focused on predicting the percentage of the population that will be awakened at various noise levels.

FICON's 1992 review of airport noise issues (FICON, 1992) included an overview of relevant research conducted through the 1970s. Literature reviews and analyses were conducted from 1978 through 1989 using existing data (Griefahn, 1978; Griefahn and Muzet, 1978; Lukas, 1978; Pearsons et. al., 1989). Because of large variability in the data, FICON did not endorse the reliability of those results.

FICON did, however, recommend an interim dose-response curve, awaiting future research. That curve predicted the percentage of the population expected to be awakened as a function of the exposure to SEL. This curve was based on research conducted for the U.S. Air Force (Finegold et al., 1994). The data included most of the research performed up to that point and predicted a 10-percent probability of awakening when exposed to an interior SEL of 58 dB. The data used to derive this curve were primarily from controlled laboratory studies.

Recent Sleep Disturbance Research: Field and Laboratory Studies

As noted above, early sleep laboratory studies did not account for some important factors, including habituation to the laboratory, previous exposure to noise, and awakenings from noise other than aircraft. In the early 1990s, field studies in people's homes were conducted to validate the earlier laboratory work conducted in the 1960s and 1970s. The field studies of the 1990s (e.g., Horne et al., 1994) found that 80 to 90 percent of sleep disturbances were not related to outdoor noise events but rather to indoor noises and non-noise factors. The results showed that, in real life conditions, noise had less of an effect on sleep than had been previously reported from laboratory studies. Laboratory sleep studies tend to show more sleep disturbance than field studies show because people who sleep in their own homes are accustomed to their environment and, therefore, do not wake up as easily (FICAN, 1997).

Based on this new information, FICAN in 1997 recommended a dose-response curve to use instead of the earlier 1992 FICON curve (FICAN, 1997). Figure A-11 shows FICAN's curve, the red line, which is based on the results of three field studies, which are also shown in the figure (Ollerhead et al., 1992; Fidell et al., 1994; Fidell et al., 1995a; Fidell et al., 1995b) along with the data from six previous field studies.

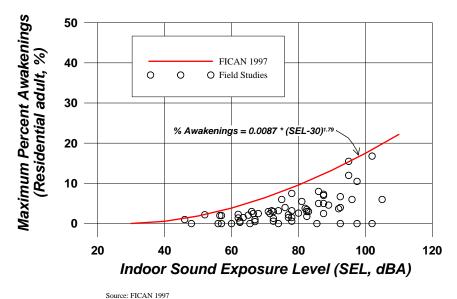


Figure A-11 FICAN 1997 Recommended Sleep Disturbance Dose-Response Relationship

Number of Events and Awakenings

It is reasonable to expect that sleep disturbance is affected by the number of events. The German Aerospace Center (DLR) conducted an extensive study focused on the effects of nighttime aircraft noise on sleep and related factors (Basner et al., 2004). The DLR study was one of the largest studies to examine the link between aircraft noise and sleep disturbance, and it involved both laboratory and inhome field research phases. The DLR investigators developed a dose-response curve that predicts the number of aircraft events at various values of L_{max} expected to produce one additional awakening over the course of a night. The dose-effect curve was based on the relationships found in the field studies.

Later studies by DLR conducted in the laboratory comparing the probability of awakenings from noise generated by different modes of transportation showed that aircraft noise led to significantly lower awakening probabilities than either road traffic or rail noise (Basner et al., 2011). Furthermore, it was noted that the probability of awakening, per noise event, decreased as the number of noise events increased. The authors concluded that by far the majority of awakenings from noise events merely replaced awakenings that would have occurred spontaneously anyway.

A different approach was taken by an ANSI standards committee (ANSI, 2008), which used the average of the data on field studies shown in Figure A-11 rather than the upper envelope (i.e., the red line), to predict average probability of awakening from one event. Probability theory is then used to project the awakening from multiple noise events.

Currently, there are no established criteria for evaluating sleep disturbance from aircraft noise, although recent studies have suggested a benchmark of an outdoor SEL of 90 dB as an appropriate tentative criterion when comparing the effects of different operational alternatives. The corresponding indoor SEL would be approximately 25 dB lower (at 65 dB) with doors and windows closed, and approximately 15 dB lower (at 75 dB) with doors and windows open. According to the ANSI (2008) standard, the probability of awakening from a single aircraft event at this level is between 1 and 2 percent for people habituated to the noise and sleeping in bedrooms with their windows closed, and 2 to 3 percent for those sleeping in bedrooms with their windows open. The probability of the exposed population awakening at least once from multiple aircraft events at noise levels of 90 dB SEL is shown in Table A-4.

Table A-4 Probability of Awakening from NA90SEL

Number of Aircraft	Minimum Probability of Awakening at Least Once	
Events at 90 dB SEL for Average 9-Hour Night	Windows Closed	Windows Open
1	1%	2%
3	4%	6%
5	7%	10%
9 (1 per hour)	12%	18%
18 (2 per hour)	22%	33%
27 (3 per hour)	32%	45%

Source: DoD, 2009b

In December 2008, FICAN recommended the use of this standard. FICAN also recognized that more research is underway by various organizations and that work may result in changes to FICAN's position.

FICAN reaffirmed its recommendation for the use of the ANSI (2008) standard (FICAN, 2008). However, it is noted that this standard has been withdrawn, but it will be used until further recommendations are made by FICAN.

A recent study further examined the relationship between self-reported sleep insufficiency and airport noise using the U.S. Behavioral Risk Factor Surveillance System data and DNL contours generated by the FAA's Integrated Noise Model software for 95 airports (Holt et al., 2015). The survey data comprise the results of a random-digit-dialed telephone survey of non-institutionalized U.S. civilians 18 years or older covering all 50 states. Responses that included sleep insufficiency questions were included in this study totaling more than 700,000 respondents for 2008 and 2009 year datasets. The authors found that, once controlled for individual sociodemographic characteristics and ZIP Code-level socioeconomic status, there were no significant associations between airport noise exposure levels and self-reported sleep insufficiency. These results are consistent with a study that found aircraft-noise-induced awakening are more reasonably predicted from relative rather than absolute SELs (Fidell et al., 2013). However, Kim et al. (2014) found a response relationship between aircraft noise and sleep quality in a community-based cross-sectional study when controlling for a mental health condition (Kim et al., 2014).

The WHO recommends the use of the dBA long-term average sound level L_{night} , measured outside the home, for sleep disturbance and related effects, with an interim target of 55 dB L_{night} , outside and a night noise guideline of 40 dB (WHO, 2009).

The choice of a noise metric for policy-making purposes depends on both the particular type of noise source and the particular effect being studied. Even for sleep disturbance caused by aircraft noise, there is no single noise exposure metric or measurement approach that is generally agreed upon (Finegold, 2010).

Summary

Sleep disturbance research still lacks the details to accurately estimate the population awakened for a given noise exposure. The procedure described in the ANSI (2008) standard and endorsed by FICAN is based on probability calculations that have not yet been scientifically validated. While this procedure certainly provides a much better method for evaluating sleep awakenings from multiple aircraft noise events, the estimated probability of awakenings can only be considered approximate.

A1.3.4 Noise-Induced Hearing Impairment

Residents in communities surrounding airfields express concerns regarding the effects of aircraft noise on hearing. This section provides a brief overview of hearing loss caused by noise exposure. The goal is to provide a sense of perspective as to how aircraft noise (as experienced on the ground) compares to other activities that are often linked with hearing loss.

The *Noise-Induced Hearing Impairment* bulletin is one of a series of technical bulletins issued by the DoD Defense Noise Working Group (DNWG) under the initiative to educate and train DoD military, civilian, and contractor personnel, and the public on noise issues. "The ability to convey the effects of military aircraft noise exposure should facilitate both the public discussions and the environmental assessment process," according to DNWG (2013). In its background discussion on the topic of noise-induced hearing impairment, DNWG (2013) states:

"Considerable data have been collected and analyzed by the scientific/medical community on the effects of noise on workers in industrial settings, and it has been well established that continuous exposure to high noise levels from any source will damage human hearing and result in noise induced hearing loss (USEPA, 1974). The scientific community has concluded that there is little likelihood of hearing damage resulting from exposure to aircraft noise at commercial airports. Until recently, the same was thought true for military airbases, but the introduction of new generation fighter aircraft with high thrust to weight ratio and correspondingly high noise levels has required a re-analysis of the risk of hearing damage for those communities close to military airbases. Residents in surrounding communities are expressing concerns regarding the effects of these new aircraft on hearing."

DNWG goes on to define the major components of hearing loss, temporary versus permanent loss, and threshold shift in hearing, and how they can be differentiated:

"Hearing loss is generally interpreted as a decrease in the ear's sensitivity or acuity to perceive sound, i.e. a shift in the hearing threshold to a higher level. This change can either be a Temporary Threshold Shift or a Permanent Threshold Shift.

"A Temporary Threshold Shift (TTS) can result from exposure to loud noise over a given amount of time, yet the hearing loss is not necessarily permanent. An example of TTS might be a person attending a loud music concert. After the concert is over, the person may experience a threshold shift that may last several hours, depending upon the level and duration of exposure. While experiencing TTS, the person becomes less sensitive to low-level sounds, particularly at certain frequencies in the speech range (typically near 2,000 and 4,000 Hertz). Normal hearing ability eventually returns, as long as the person has enough time to recover in a relatively quiet environment.

"A Permanent Threshold Shift (PTS) usually results from repeated exposure to high noise levels, where the ears are not given adequate time to recover from the strain and fatigue of exposure. A common example of PTS is the result of working in a very noisy environment such as a factory. It is important to note that TTS can eventually become PTS over time. Thus, even if the ear is given time to recover from TTS, repeated occurrence of TTS may eventually lead to permanent hearing loss. The point at which a Temporary Threshold Shift results in a Permanent Threshold Shift is difficult to identify and varies with a person's sensitivity. In general, hearing loss (be it TTS or PTS) is determined by the duration and level of the sound exposure (DNWG, 2013)."

On the topic of noise-induced hearing loss and its specific components, DNWG (2013) provides the following overview:

"The 1982 EPA Guidelines for Noise Impact Analysis presents the risk of hearing loss from exposure to noise in the workplace in terms of the Noise-Induced Permanent Threshold Shift (NIPTS), a quantity that defines the permanent change in hearing level, or threshold, caused by exposure to noise (USEPA, 1982). It represents the difference in PTS between workers exposed to noise and those who are not exposed. Numerically, the NIPTS is the change in threshold averaged over the frequencies 0.5, 1, 2, and 4 kHz that can be expected from daily exposure to noise over a normal working lifetime of 40 years, with the exposure beginning at an age of 20 years. A grand average of the NIPTS over time (40 years) and hearing sensitivity (10 to 90 percentiles of the exposed population) is termed the Average NIPTS, or Ave. NIPTS for short. The Ave. NIPTS that can be expected for noise exposure as measured by the 24-hour average noise level, Leq24, is given in Table A-5 (USEPA, 1982).

Table A-5 Average (Ave.) NIPTS and 10th Percentile NIPTS as a Function of L_{eq(24)}

L _{eq(24)}	Ave. NIPTS (dB)*	10 th Percentile NIPTS (dB)*
75-76	1.0	4.0
76-77	1.0	4.5
77-78	1.6	5.0
78-79	2.0	5.5
79-80	2.5	6.0
80-81	3.0	7.0
81-82	3.5	8.0
82-83	4.0	9.0
83-84	4.5	10.0
84-85	5.5	11.0
85-86	6.0	12.0
86-87	7.0	13.5
87-88	7.5	15.0
88-89	8.5	16.5
89-90	9.5	18.0

Source: DoD, 2012

"Thus, for a noise exposure of 80 Leq24, the expected lifetime average value of NIPTS is 3 dB. The Ave. NIPTS is estimated as an average over all people exposed to the noise. The actual value of NIPTS for any given person will depend on their physical sensitivity to noise – some will experience more hearing loss than others. The EPA Guidelines provide information on this variation in sensitivity in the form of the NIPTS exceeded by 10 percent of the population, which is included in Table A-5 in the '10th Percentile NIPTS' column (USEPA, 1982). As in the example above, for individuals exposed to 80 Leq24, the most sensitive of the population would be expected to show a degradation to their hearing of 7 dB over time. To put these numbers in perspective, changes in hearing level of less than 5 dB are generally not considered noticeable or significant. Furthermore, there is no known evidence that a NIPTS of 5 dB is perceptible or has any practical significance for the individual. Lastly, the variability in audiometric testing is generally assumed to be ±5 dB (USEPA, 1974). (DNWG, 2013)."

According to DNWG, applying these measurement tools for NIPTS to a specific population is the next step in the process of fully understanding noise impacts on a community (DNWG, 2013):

"In order to quantify the overall impact of noise on a community it is necessary to include the numbers of people who are exposed. This is accomplished by calculating the population average value of Ave. NIPTS, known as the Potential Hearing Loss (PHL), using the following equation:

$$PHL = \frac{\sum_{i} NIPTS_{i} \times P_{i}}{\sum_{i} P_{i}}$$
 (1)

^{*} rounded to the nearest 0.5 dB

where NIPTSi is the Ave. NIPTS for people within the *ith* noise level band (see Table A-5), and Pi is the total population living within the *ith* noise level band. The quantity PHL represents the average change in hearing threshold, or the average hearing loss, for the local community exposed to the noise.

The actual noise exposure is determined by the portion of the time the population is outdoors and the outdoor noise levels to which they are exposed. The EPA Guidelines allows for calculating the exposure taking into account the length of time the population is indoors and exposed to lower levels. If the outdoor exposure exceeds 3 hours per day, the contribution of the indoor levels can usually be neglected. (DNWG, 2013)."

The criteria for measuring permanent hearing loss in the workplace are similar but more complex, according to DNWG (2013):

"The database from which the risk of hearing loss in Table A-5 was developed is based almost entirely on extensive audiometric measurements of workers in industrial settings. A considerable amount of hearing loss data have been collected and analyzed, including measurements of hearing loss in people with known histories of noise exposure. The available evidence consists of statistical distributions of hearing levels for populations at various exposure levels. Much of the analysis consists of grouping these measurements into populations of the same age with the same history of noise exposure and determining the percentile distribution of hearing loss for populations with the same noise exposure. Thus, the evidence for noise-induced permanent threshold shift can be clearly seen by comparing the distribution of a noise-exposed population with that of a relatively non-noise-exposed population (USEPA, 1974).

"Most of these data are drawn from cross-sectional rather than longitudinal studies. That is, individuals or populations have been tested at only one point in time. Because complete noise exposure histories do not exist, many conclusions are limited by the need to make certain assumptions about the onset and progression of noise-induced hearing loss. (DNWG, 2013)."

The USEPA, National Academy of Sciences, WHO, the Occupational Safety and Health Administration (OSHA), National Institute for Occupational Safety and Health, and DoD have each established their own criteria for measuring hearing loss within the workplace, according to DNWG (2013):

"Using this database, the EPA established 75 dB for an 8-hour exposure and 70 dB for a 24-hour exposure as the average noise level standard requisite to protect the most sensitive (approximately 1 percent) of the population from greater than a 5 dB permanent threshold shift in hearing. The EPA document explains that the requirement for an adequate margin of safety necessitates a highly conservative approach which dictates the prevention of any effect on hearing, defined here as an essentially insignificant and not measurable NIPTS of less than 5 dB. (USEPA, 1974).

"The National Academy of Sciences Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) identified 75 dB as the minimum level at which hearing loss may occur from continuous, long-term (40 years) exposure (CHABA, 1965).

"The World Health Organization has concluded that environmental and leisure-time noise below a Leq24 value of 70 dB 'will not cause hearing loss in the large majority of the population, even after a lifetime of exposure (WHO, 2000).'

"The OSHA regulation of 1971 standardizes the limits on workplace noise exposure for protection from hearing loss as an average level of 90 dB over an 8-hour work period, or 85 dB over a 16-hour period (U.S. Department of Labor, 1971). The standard is based on a 5 dB decrease in allowable noise level per doubling of exposure time. Exposure at levels greater than this require a hearing conservation program to be implemented. The maximum level for workplace exposure to continuous noise is 115 dB, and exposure to this level is limited to 15 minutes. A maximum level of 140 dB is specified for impulsive noise.

"The National Institute for Occupational Safety and Health recommends a maximum exposure of 85 dB for a period of 8 hours, with a recommended exchange rate of 3 dB per doubling of exposure time (NIOSH, 1998). The maximum allowable exposure level is 140 dB for both continuous and impulsive noise.

"The Department of Defense requirements for hearing conservation specify that a hearing conservation program should be implemented if the 8-hour average noise level (Leq8) is greater than 85 decibels (DoD, 2004). The recommended exchange rate is a decrease of 3 dB per doubling of exposure time, although an alternative rate of 4 dB is allowed. (DNWG, 2013)."

The DoD has issued guidelines for hearing risk assessment in local communities, according to DNWG (2013):

"The current DoD policy for assessing hearing loss risk as part of the EIS process is stated in the June 16, 2009 memorandum "Methodology for Assessing Hearing Loss Risk and Impacts in DoD Environmental Impact Analysis" issued by the Under Secretary of Defense (DoD, 2009c). The memorandum defines the conditions under which assessments are required, references the methodology from the 1982 EPA report, and describes how the assessments are to be calculated.

'Current and future high performance aircraft create a noise environment in which the current impact analysis based primarily on annoyance may be insufficient to capture the full range of impacts on humans. As part of the noise analysis in all future environmental impact statements, DoD components will use the 80 Day-Night A-Weighted (DNL) noise contour to identify populations at the most risk of potential hearing loss. DoD components will use as part of the analysis, as appropriate, a calculation of the Potential Hearing Loss (PHL) of the at risk population. The PHL (sometimes referred to as Population Hearing Loss) methodology is defined in EPA Report No. 550/9-82-105, *Guidelines for Noise Impact Analysis* (USEPA, 1982).' (DoD, 2009c).

"The 2009 DoD policy directive requires that hearing loss risk be estimated for the population most at risk, defined as the population exposed to a Day-Night Average Noise Level (DNL) greater than or equal to 80 dB, including residents of on-base housing. Limiting the analysis to the 80 DNL contour area does not necessarily imply that populations outside this contour, i.e. at lower exposure levels, are not at some degree of risk of hearing loss, but it is generally considered that this risk is small. The exposure of workers inside the base boundary area should be considered occupational and evaluated using the appropriate DoD component regulations for occupational noise exposure.

"Environmental noise assessments normally estimate the number of people exposed to noise expressed in terms of the DNL noise metric, which contains a 10 dB weighting factor for aircraft

operations occurring between the hours of 2200 and 0700 to account for people's increased sensitivity to noise during the normal sleeping period. However, the mechanism by which high noise levels may cause hearing impairment is physical in nature (by damaging the hair cells in the cochlear) and has no such temporal effects – noise is noise as far as the potential for hearing loss is concerned, regardless of the time of day the exposure occurs. Thus, even though the population most at risk is identified in terms of the 80 DNL contour, it is not appropriate to estimate risk using the DNL metric. The actual assessment of hearing loss risk should be conducted using 24-hour average noise levels (Leq24). (DNWG, 2013)."

Regarding community hearing loss and aircraft noise, DNWG (2013) provides this overview:

"The preponderance of available information on hearing loss risk upon which Table A-5 is based is from the workplace with continuous exposure throughout the day for many years. Community exposure to aircraft noise is not continuous but consists of individual events where the sound level exceeds the background level for a limited time period as the aircraft flies past the observer. The maximum noise levels experienced from military aircraft may be very high, and the exposure could result in a temporary threshold shift (TTS). But unless the flights are continuous, the ear may have adequate time to recover from the strain and fatigue of individual exposures, and normal hearing ability may eventually return.

"There is very limited data on the effect of aircraft noise on hearing. From a civilian airport perspective, the scientific community has concluded that there is little likelihood that the resulting noise exposure from aircraft noise could result in either a temporary or permanent hearing loss (Newman and Beattie, 1985). The EPA criterion (Leq24 = 70 dB) can be exceeded in some areas located near airports, but that is only the case outdoors. Inside a building, where people are more likely to spend most of their time, the average noise level will be much less than 70 dB (Eldred and von Gierke, 1993). Eldred and von Gierke (1993) also report that 'several studies in the U.S., Japan, and the U.K. have confirmed the predictions that the possibility for permanent hearing loss in communities, even under the most intense commercial take-off and landing patterns, is remote.' (DNWG, 2013)."

DNWG (2013) then provides a closer look at military aircraft noise specifically:

"Military aircraft are in general much noisier than their civilian counterparts, but the available data, while sometimes contradictory, appears to indicate a similar lack of significant effects of noise on hearing. A laboratory study (Nixon et al., 1993) measured changes in human hearing from noise representative of low-flying aircraft on Military Training Routes (MTRs). The potential effects of aircraft flying along MTRs are of particular concern as the maximum overflight noise levels can exceed 115 dB, with a rapid increase in noise level exceeding 30 dB/sec. In this study, participants were first subjected to four overflight noise exposures at A-weighted levels of 115 dB to 130 dB. One-half of the subjects showed no change in hearing levels, one-fourth had a temporary 5 dB increase in sensitivity, and one-fourth had a temporary 5 dB decrease in sensitivity. In the next phase, participants were subjected to up to eight successive overflights, separated by 90 second intervals, at a maximum level of 130 dB until a temporary shift in hearing was observed. The temporary hearing threshold shift showed a decrease in sensitivity of up to 10 dB.

"In another study of 115 test subjects between 18 and 50 years old, TTSs were measured after laboratory exposure to military low-altitude flight (MLAF) noise (Ising et al., 1999). The results

indicate that repeated exposure to MLAF noise with maximum noise levels greater than 114 dB, may have the potential to cause permanent noise induced hearing loss, especially if the noise level increases rapidly (Ising et al., 1999).

"A report prepared by researchers at the University of Southampton (Lawton and Robinson, 1991) summarized the state of knowledge as of 1991. Their review of the literature indicated that the main body of information with which comparisons can be made of the hearing damage risk from military overflight noise is to be found in standards and regulatory documents published by various organizations. It was concluded that the risk of hearing loss due to a single event of 125 dB maximum level and equivalent duration of the order 0.5 seconds is small, even after repeated daily occurrences over several years. Supplementary experimental evidence, involving TTS, showed that a small amount of TTS might be engendered by military overflight noise at the levels in question, but that this would have no significant long-term effect even on the more susceptible ears. The literature search did uncover a small number of population surveys of hearing loss related to noise, but the quantitative results were rare and only one investigation produced audiometric results linked to noise measurements.

"The report concluded that there is little evidence of hearing loss risk from military overflights, either for adults or children. 'Whether in the case of TTS or PTS, laboratory or field studies, adults or children, there appear to be no reports of significant hearing damage attributable to the noise of aircraft overflights (Lawton and Robinson, 1991).'

"In Japan, audiological tests were conducted on a sample of residents who had lived near Kadena Air Base for periods ranging from 19 to 43 years (Yamamoto, 1999). The sample had been exposed (not necessarily continuously) to noise levels ranging from DNL 75 to 88 dB. Examinations showed that there was a one in ten chance of a NIPTS of 20 dB at 4 kHz. However, the NIPTS at 2 kHz and lower was much less, so that the value of Ave. NIPTS was on the order of 10 dB or so. These results are consistent with the '10th Percentile NIPTS' figures in Table A-5.

"Ludlow and Sixsmith (Ludlow and Sixsmith, 1999) conducted a cross-sectional pilot study to examine the hypothesis that military jet noise exposure early in life is associated with raised hearing thresholds. The authors concluded that there were no significant differences in audiometric test results between military personnel who as children had lived in or near stations where fast jet operations were based, and a similar group who had no such exposure as children. (DNWG, 2013)."

According to DNWG's (2013) conclusions, noise levels at commercial and military airfields have important distinguishing characteristics:

"Aviation noise levels near commercial airports are not comparable to the occupational or recreational noise exposures associated with hearing loss, and studies of aircraft noise levels have not definitively correlated permanent hearing impairment with aircraft activity. It is unlikely that airport neighbors will remain outside their homes 24 hours per day, so there is little likelihood of hearing loss below an average sound level of 75 dB.

"Near military airbases, average noise levels above 75 dB may occur, and while new DoD policy dictates that NIPTS should be evaluated, research results to date have not found a definitive relationship between significant permanent hearing impairment (greater than 10 dB) and prolonged exposure to aviation noise. (DNWG, 2013)."

A1.3.5 Nonauditory Health Effects

The general understanding of the possible effects of aircraft noise has been hindered by the publication of overly sensational and misleading articles in the popular press and by similarly sensational statements from reputed scientists, who are calling attention to their work. These statements have proven less than useful in the research and understanding of potential health effects from aircraft noise exposures. Moreover, the sensational statements have disturbing consequences because they provide misleading information, create unfounded worry and negative bias, distort certain facts, and add to a growing mistrust of science. These sensational statements have been firmly criticized by other researchers as lacking in rigor because they do not consider other known factors that cause health problems and because they analyze only a selection of the available data (ANR, 2010). The following discussion attempts to summarize the research into the possible nonauditory effects of aircraft noise based on a review of peer-reviewed research. The research reviewed ranges from general stress-related effects on health to specific individual studies on effects such as heart disease and stroke. In addition to these individual studies, there are summaries of meta-analyses of pooled results from individual studies addressing the same issue. The meta-analyses evaluate the studies for consistent results among the smaller individual studies, and they derive effect estimates from the different studies for a quantitative risk assessment (Babisch, 2013). Meta-analysis is an analytical technique designed to summarize the results of multiple smaller studies in order to increase the sample size and to identify patterns among the several smaller studies. The validity of meta-analysis is highly dependent on the quality of the included smaller studies because it cannot correct the poor design and/or bias of the original studies. Because of these limitations, a meta-analysis of several smaller studies cannot predict the results of a single large study and may result in misleading information for the general public.

A1.3.5.1 Overview

The potential for aircraft noise to impair one's health deserves special attention and accordingly has been the subject of numerous epidemiological studies and meta-analyses of the gathered data. The basic premise is that noise can cause annoyance, annoyance can cause stress, and prolonged stress is known to be a contributor to a number of health disorders, such as hypertension, myocardial infarction (heart attack), cardiovascular disease, and stroke (Munzel et al., 2014). According to Kryter and Poza (1980), "It is more likely that noise-related general ill-health effects are due to the psychological annoyance from the noise interfering with normal everyday behavior than it is from the noise eliciting, because of its intensity, reflexive response in the autonomic or other physiological systems of the body."

The connection between annoyance and stress and health issues requires careful experimental design because of the large number of confounding issues, such as heredity, medical history, smoking, diet, lack of exercise, and air pollution. Some highly publicized reports on health effects have, in fact, been rooted in poor science. Meecham and Shaw (1979) apparently found a relation between noise levels and mortality rates in neighborhoods located under the approach path to LAX. When the same data were analyzed by others (Frerichs et al., 1980), no relationship was found. Jones and Tauscher (1978) found a high rate of birth defects for the same neighborhoods. But when the Centers for Disease Control performed a more thorough study near Atlanta's Hartsfield International Airport, no relationships were found for DNL greater than 65 dB (Edmonds et al., 1979).

An early study by Cantrell (1974) confirmed that noise can provoke stress, but it noted that results on its effect on cardiovascular health were contradictory. Some studies in the 1990s found a connection between aircraft noise and increased blood pressure (Michalak et al., 1990; Ising et al., 1990; Rosenlund et al., 2001), while others did not (Pulles et al., 1990). This inconsistency in results led the WHO in 2000 to conclude that there was only a weak association between long-term noise exposure and hypertension and cardiovascular effects, and that a dose-response relationship could not be

To put the Odds Ratio (OR) number in context, an OR of 1.5 would be considered a weak relationship between noise and health; 3.5 would be a moderate relationship; 9.0 would be a strong relationship; and 32 a very strong relationship (Cohen, 1988).

established (WHO, 2000). Later, van Kempen concluded that "Whereas noise exposure can contribute to the prevalence of cardiovascular disease, the evidence for a relation between noise exposure and ischemic heart disease is still inconclusive" (van Kempen et al., 2002).

More recently, major studies have been conducted in an attempt to identify an association between noise and health effects, develop a dose-response relationship, and identify a threshold below which the effects are minimal. The most important of these are briefly described below. In these studies, researchers usually present their results in terms of the Odds Ratio, which is the ratio of the odds that health will be impaired by an increase in noise level of 10 dB to the odds that health would be impaired without any noise exposure. An OR of 1.25 means that there is a 25-percent increase in likelihood that noise will impair health. To put the OR number in context, an OR of 1.5 would be considered a weak relationship between noise and health; 3.5 would be a moderate relationship; 9.0 would be a strong relationship; and 32 a very strong relationship (Cohen, 1988). For examples, the OR for the relationship between obesity and hypertension is 3.4 (Pikilidou et al., 2013), and the OR for the relationship between smoking and coronary heart disease is 4.4 (Rosengren et al., 1992). The summary of these studies shows that the relationship between noise and impaired health is a very weak one because none of the statistically significant ORs were greater than 1.5. Most of the ORs were less than 1.2.

A1.3.5.2 Blood Pressure and Hypertension

• The carefully designed HYENA study was conducted around six European airports from 2002 through 2006 (Jarup et al., 2005, 2007, 2008; Babisch et al., 2008). The study covered 4,861 subjects, aged between 45 and 70. Blood pressure was measured, and questionnaires were administered for health, socioeconomic, and lifestyle factors, including diet and physical exercise. Noise from aircraft and highways was predicted from models.
HYENA study results showed an OB loss than 1 for the association between doubtime aircraft.

HYENA study results showed an OR less than 1 for the association between daytime aircraft noise and hypertension, which was not statistically significant² and indicated no positive association. The OR for the relationship between nighttime aircraft noise and hypertension was 1.14--a result that was marginally significant statistically. For daytime road traffic noise, the OR

In many of the studies reported above, the researchers use the word "significant" to describe a relationship between noise and health, conjuring up the idea that the relationship is strong and that the effect is large. But this is an inappropriate and misleading use of the word in statistical analysis. What the researchers really mean is that the relationship is "statistically significant" in that they are sure that it is real. It does not mean that the effect is large or important, or that it has any decision-making utility. A relationship can be statistically significant, i.e. real, while being weak, or small and insignificant.

was 1.1 and not significant. The measured effects were small and not necessarily distinct from other events. A close review of the data for nighttime aircraft noise raised some questions about the data and the methods employed (ACRP, 2008). Using data from the HYENA study, Haralabidis et al. (2008) reported an increase in systolic blood pressure of 6.2 millimeters of mercury (mmHg) for aircraft noise events (about 6 percent) and an increase of 7.4 mmHg (about 7 percent) for other indoor noises, such as snoring; a snoring partner and road traffic had similar impacts on blood pressure.

- Ancona et al. (2010) reported a study on a randomly selected sample of subjects aged 45 to 70 years who had lived in the study area for at least 5 years. Personal data were collected via interview, and blood pressure measurements were taken for a study population of 578 subjects. No statistically significant association was found between aircraft noise levels and hypertension for noise levels above 75 dB L_{eq(24)} compared to levels below 65 dB. However, there was an increase in nocturnal systolic pressure of 5.4 mmHg (about 5 percent) for subjects in the highest exposure category (greater than or equal to 75 dB).
- Eriksson et al. (2007) found that for subjects exposed to energy-averaged levels above 50 dBA, the adjusted relative risk for hypertension was 1.19 (95-percent CI = 1.03 to 1.37). Maximum aircraft noise levels presented similar results, with a relative risk of 1.20 (1.03 to 1.40) for those exposed above 70 dBA. Stronger associations were suggested among older subjects, those with a normal glucose tolerance, nonsmokers, and subjects not annoyed by noise from other sources. The study comprised a cohort of 2,754 men in four municipalities around Stockholm Arlanda airport who were followed from 1992 to 1994 and 2002 to 2004.
- Matsui et al. (2008) reported higher OR for noise levels greater than L_{den} 70 dB, but not
 altogether statistically significant, for hypertension from the effects of military aircraft noise at
 Kadena Air Base in Okinawa, Japan. The study was conducted in 1995 and 1996 but used older
 noise data that were not necessarily appropriate for the same time period.
- A study of Noise-Related Annoyance, Cognition and Health (NORAH), designed to identify transportation noise effects in communities around German airports, has reported results of self-monitoring of blood pressure of approximately 2,000 residents near Frankfurt Airport exposed to aircraft L_{eq(24)} in the range of 40 to 65 dB during the period 2012 to 2014 after the opening of a new runway (Shreckenberg and Guski, 2015). The results showed small positive effects of noise on blood pressure without statistical significance. No statistically significant effect was determined between aircraft noise and hypertension as defined by the WHO.
- A meta-analysis of Huang el al. (2015) examined four research studies comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.36 for men and statistically significant, and 1.31 and not statistically significant for women. No account was taken for any confounding factors. The meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders.
 - The four studies in Huang's meta-analysis include one by Black et al. (2007) that purports to show relatively high OR values for self-reported hypertension, but these results only applied to a select subset of those surveyed that reported high noise stress. When this data set is excluded, Huang's meta-analysis yields results similar to those obtained in the HYENA and NORAH studies. Furthermore, the longitudinal

study included in the analysis that followed 4,721 people for 8 years (Eriksson et al., 2010) reported an OR of 1.02, which was not statistically significant.

- Rhee et al. (2008) found that subjects exposed to helicopter noise had a significantly higher prevalence of hypertension than the unexposed control group. Although a source-specific difference in the risk of cardiovascular disease by environmental noise exposure is suggested, no other study has evaluated whether or not exposure to noise from helicopters differs from exposure to noise from fighter jets in their influence on the prevalence of hypertension.
- Hwang et al. (2012) conducted a 20-year prospective cohort study of 1,301 aviation workers in Taiwan to follow AGT genotypes (TT, TM, and MM) across four exposure categories according to the levels of noise representing high (>80 dBA), medium (80-65 dBA), and low exposure (64-50 dBA) and the reference level (49-40 dBA). AGT (TT vs MM adjusted incidence rate ratio [IRR] 1.77, 95-percent CI 1.24 to 2.51) and noise exposure (high and medium combined) during 3 to 15 years (adjusted IRR 2.35, 95-percent CI 1.42 to 3.88) were independent determinants of hypertension. Furthermore, the risk of hypertension increased with noise exposure (adjusted IRR 3.73, 95-percent CI 1.84 to 7.56) among TT homozygotes but not among those with at least one M allele (Rothman synergy index = 1.05).
- Haralabidis et al. (2011) studied the association between exposure to transportation noise and blood pressure reduction during nighttime sleep utilizing 24-hour ambulatory blood pressure measurements at 15-minute intervals carried out on 149 persons living near four major European airports. Although road traffic noise exposure was found to decrease blood pressure dipping in diastolic blood pressure, no associated decrease in dipping was found for aircraft noise exposure.

A1.3.5.3 Heart Disease and Stroke

- Huss et al. (2010) examined the risk of mortality from myocardial infarction (heart attack) resulting from exposure to aircraft noise using the Swiss National database of mortality records for the period 2000 to 2005. The analysis was conducted on a total of 4.6 million people, with 15,500 deaths from acute myocardial infarction. The results showed that the risk of death from all circulatory diseases combined was not associated with aircraft noise, and there was not any association between noise and the risk of death from stroke. The overall risk of death from myocardial infarction alone was 1.07 and not statistically significant, but it was higher (OR = 1.3 and not statistically significant) in people exposed to aircraft noise of 60 dB DNL or greater for 15 years or more. The risk of death from myocardial infarction was also higher (OR = 1.10), and statistically significant, for those living near a major road. Cardiovascular risk factors, such as smoking, were not directly taken into account in this study.
- Floud (2013) used the HYENA data to examine the relationship between noise levels and self-reported heart disease and stroke. There was no association for daytime noise and no statistically significant association for nighttime noise. However, for those exposed to nighttime aircraft noise for more than 20 years, the OR was 1.25 per 10 dB increase in noise (Lnight) and marginally significant.
- Correia et al. (2013) evaluated the risk of hospitalization for cardiovascular diseases in older people (65 years of age and older) residing in areas exposed to a DNL of at least 45 dB around U.S. airports. Health insurance data from 2009 Medicare records were examined for approximately 6 million people living in neighborhoods around 89 airports in the U.S. The

potential confounding effect of socioeconomic status was extracted from several zip-code-level variables from the 2000 U.S. Census. No controls were included for smoking or diet, both of which are strong risk factors for cardiovascular disease. Noise levels were calculated at census block centroids. Taking into account the potential effects of air pollution, they report an OR of 1.035, which was marginally significant statistically. While the overall results show a link between increased noise and increased health risk, some of the individual airport data show a decreased health risk with increased aircraft noise exposure.

- Hansell et al. (2013) investigated the association of aircraft noise with risk of hospital admission for, and mortality from, stroke, coronary heart disease, and cardiovascular disease in neighborhoods around London's Heathrow airport exposed to an equivalent sound level over 16 hours of at least 50 dB. The data were adjusted for age, sex, ethnicity, deprivation, and a smoking proxy (lung cancer mortality) at the census area level but not at the individual level. It was important to consider the effect of ethnicity (in particular, South Asian ethnicity, which is itself strongly associated with risk of coronary heart disease). The reported ORs for stroke, heart disease, and cardiovascular disease were 1.24, 1.21, and 1.14, respectively. Similar results were reported for mortality. The results suggest a higher risk of mortality from coronary heart disease than cardiovascular disease, which seems counter-intuitive given that cardiovascular disease encompasses all the diseases of the heart and circulation, including coronary heart disease and stroke along with heart failure and congenital heart disease (ERCD, 2014).
- Evrard et al. (2015) studied mortality rates for 1.9 million residents living in 161 communes near three major French airports (Paris-Charles de Gaulle, Lyon Saint-Exupéry, and Toulouse-Blagnac) for the period 2007 to 2010. Noise levels in the communes ranged from 42 to 64 dB L_{den}. Lung cancer mortality at the commune level was used as a proxy measure for smoking because data on individual smoking or smoking prevalence were not available. Noise exposure was expressed in terms of a population-weighted level for each commune. After adjustment for concentration of nitrogen dioxide, Risk Ratios (similar to Odds Ratios) per 10 dB increase in noise were found to be 1.18 for mortality from cardiovascular disease, 1.23 for mortality from coronary heart disease, and 1.31 for mortality from myocardial infarction. There was no association between mortality from stroke and aircraft noise. As the author notes, results at the commune level may not be applicable to the individual level.
- Seidler et al. (2016) found a statistically significant linear exposure-risk relationship with heart failure or hypertensive heart disease for aircraft traffic noise (1.6-percent risk increase per 10 dB increase in the 24-hour continuous noise level; 95-percent CI 0.3 to 3.0 percent), road traffic noise (2.4 percent per 10 dB; 95-percent CI 1.6 to 3.2 percent), and railway noise (3.1 percent per 10 dB; 95-percent CI 2.2 to 4.1 percent). For individuals with 24-hour continuous aircraft noise levels less than 40 dB and nightly maximum aircraft noise levels exceeding 50 dB six or more times, a significantly increased risk was observed. In general, risks of hypertensive heart disease were considerably higher than the risks of heart failure.
- The NORAH study also included an examination of the effect of aircraft noise on cardiovascular disease (heart attack and stroke) based on examination of health insurance data between 2006 and 2010 for approximately 1 million people over the age of 40 exposed to aircraft L_{eq(24)} in the range of 40 to 65 dB (Shreckenberg and Guski, 2015). A questionnaire was used to obtain information on confounding factors. The results showed a non-statistically significant increase in risk for heart attack and stroke, and there was no apparent linear relationship between noise

- level and either effect. There was, however, a marginally significant but small increase in risk for heart failure (OR of 1.016). The risk of cardiovascular disease was found to be greater for road and rail noise than for aircraft noise.
- Meta-analyses from Babisch and Kamp (2009), Babisch et al. (2013), and Babisch (2013) focused on epidemiological studies or surveys directly related to associations between aircraft noise and cardiovascular disease outcomes. Considering studies at 10 airports covering over 45,000 people, the pooled effect estimate of the relative risk for hypertension was 1.13 per 10 dBA and only marginally significant (WHO, 2011). One of the studies included in the analysis was for military aircraft noise at Okinawa (see Matsui et al., 2008) for which the OR was 1.27 but not statistically significant. The authors conclude that "No single, generalized and empirically supported exposure-response relationship can be established yet for the association between aircraft noise and cardiovascular risk due to methodological differences between studies." The pooled results show different slopes from different studies with different noise level ranges and methods being used.
- A meta-analysis of 11 studies on road and aircraft noise exposure in relation to incident cases of
 ischemic heart disease (IHD) was transformed into risk estimates per 10 dB increase in exposure
 by Vienneau et al. (2013). Pooled relative risk for IHD was 1.08 (1.03 to 1.14) per 10 dB increase
 in noise exposure, with the linear exposure-response starting at 50 dB.
- Passchier-Vermeer and Passchier (2000) reviewed studies on noise exposure and health effects
 and found sufficient evidence to support observation thresholds for hearing impairment,
 hypertension, IHD, annoyance, performance, and sleep disturbance due to noise exposure. The
 intent of the article was not to quantify impacts necessarily but instead to show that noise
 exposure can have a major effect in industrial societies in general, and it should be up to policymakers and regulators to address this potential public health problem. In addition, the article
 recommended prioritizing additional study in two topic areas: 1) cardiovascular effects, and 2)
 the underlying mechanisms and the study of the effects of noise on children.
- Seidler et al. (2016) studied myocardial infarction risk due to aircraft, rail, and road noise by investigating patients of the Rhine-Main region of Germany who were diagnosed with myocardial infarction in the years 2006 through 2010. The linear model revealed a statistically significant risk increase due to road noise (2.8 percent per 10 dB rise, 95-percent CI [1.2; 4.5]) and railroad noise (2.3 percent per 10 dB rise [0.5; 4.2]) but not airplane noise. Airplane noise levels of 60 dB and above were associated with a higher risk of myocardial infarction (OR 1.42 [0.62; 3.25]). This higher risk is statistically significant if the analysis is restricted to patients who had died of myocardial infarction by 2014/2015 (OR 2.70 [1.08; 6.74]. In this subgroup, the risk estimators for all three types of traffic noise were of comparable magnitude (3.2 percent to 3.9 percent per 10 dB rise in noise level).
- Floud et al. (2011) examined the health effects of aircraft and road traffic noise exposure and the association with medication use. The cross-sectional study measured the use of prescribed antihypertensives, antacids, anxiolytics, hypnotics, antidepressants, and antiasthmatics in 4,861 persons living near seven airports in six European countries. Differences were found between countries in the effect of aircraft noise on antihypertensive use; for nighttime aircraft noise, a 10 dB increase in exposure was associated with ORs of 1.34 (95-percent CI, 1.14 to 1.57) for the UK and 1.19 (1.02 to 1.38) for the Netherlands, but no significant associations were found for other countries. For daytime aircraft noise, excess risks were found for the UK (OR 1.35; CI: 1.13 to

1.60), but a risk deficit was found for Italy (OR 0.82; CI: 0.71 to 0.96). There was an excess risk of taking anxiolytic medication in relation to aircraft noise (OR 1.28; CI: 1.04 to 1.57 for daytime and OR 1.27; CI: 1.01 to 1.59 for nighttime) that held across countries. The authors also found an association between exposure to 24-hour road traffic noise and the use of antacids by men (OR 1.39; CI 1.11 to 1.74).

A1.3.5.4 Mental Health Issues

- The NORAH study found a risk for unipolar depression to increase with exposure to aircraft noise (OR of 1.09), but the relationship was not linear, with the risk decreasing at the higher noise levels, so this result was not considered reliable (Schreckenberg and Guski, 2015).
- A survey study around Frankfurt Airport explored the relationship between aircraft, road traffic, and railway noise with Quality-of-Life (QoL) concerns for both health and environmental views (Schreckenberg et al., 2010). Aircraft noise affected environmental QoL and, to a lesser extent, health QoL. However, one of the study's observations concerned vulnerable groups, such as people with pre-existing illness and/or high noise sensitivities. This group may have limited resources to deal with noise, which can result in increased health problems.
- A study of the effect of aircraft noise around a large international airport, Schiphol Airport, near Amsterdam, found an association between the use of non-prescribed sleep medication or sedatives with aircraft noise during the late evening (10:00 P.M. to 11:00 P.M.). However, the correlation between L_{den} and L_{eq} (10:00 P.M. to 11:00 P.M.) to sleep aids (ORs 1.25 and 1.26, respectively) was not statistically significant (Franssen et al., 2004).
- Beutel et al. (2016) assessed the association of day and night noise annoyance from road traffic, aircraft, railways, industrial, and neighborhood indoor and outdoor noise to anxiety and depression in 15,000 people ages 35 to 74 living in the Rhein-Main Region of Germany. The source and magnitude of noise annoyance was measured by a self-administered questionnaire. Depression and anxiety were also assessed based on established questionnaires. In this study, aircraft noise was the most commonly reported source of annoyance, followed by road noise annoyance. Depression and anxiety increased with the degree of overall noise annoyance. Compared to no annoyance, prevalence ratios for depression and anxiety, respectively, increased from moderate (PR depression 1.20; 95-percent CI 1.00 to 1.45; PR anxiety 1.42; 95percent CI 1.15 to 1.74) to extreme annoyance (PR depression 1.97; 95-percent CI 1.62 to 2.39; PR anxiety 2.14; 95-percent CI 1.71 to 2.67). Compared to other sources, aircraft noise annoyance was prominent, affecting almost 60 percent of the population. More simply stated, strong noise annoyance was associated with a two-fold higher prevalence of depression and anxiety in the general population. The authors admit that the identified association of annoyance, particularly with aircraft noise, to depression and anxiety is suggestive of a cause but that more study is needed to identify causal relationships. The authors recognized that preexisting anxiety and depression could contribute to increased susceptibility to noise annoyance. Also, the focus of this paper was on subjective annoyance, which is not related to objective measures of noise exposition.
- Van den Berg et al. (2015) conducted a study that explored the suggested limitation in the Beutel (2016) study: the relationship between pre-existing concern and annoyance. More specifically, they sought insight in the relation between worry about a noise source and annoyance from that source. The motivation for the study was the longstanding important

public concern for noise at a political level in Amsterdam, despite implementation of several measures to reduce noise exposure, and the desire to find other variables such as reducing fear and worry that might also help the situation. Using questionnaires from 1,968 respondents and modeling flight-related noise levels in a greater cosmopolitan area around Amsterdam, the researchers found that respondents with a high risk of anxiety/depression are significantly more likely to be highly worried about living close to the airport or an air route compared to those with a low risk (all p < 0.05). Also, respondents who report to have bad/moderate health are significantly more likely to be highly worried about living close to the airport or an air route compared to those with good/excellent health. More generally, the results show there is a strong correlation between annoyance from aircraft or airport noise and worry about the risk for health and/or safety associated with living close to an air route or airport. Also, for aircraft noise, worry increases with both the subjective exposure (annoyance) and the objective exposure (sound level). The authors conclude "that more noise or odor is related to more worry, and this has more effect on persons that have a higher personal risk for being worried and annoyed." When considered within the context of other studies, such as Beutel (2016), it would seem that those who are predisposed to worry are more susceptible to both annoyance and the negative health effects associated with anxiety and depression.

An individual with an increased sensitivity to sounds may have hyperacusis, which results in a lower tolerance of everyday sound (Aazh et al., 2018). A person with hyperacusis reacts differently to sounds due to reactions of increased distress and discomfort from everyday sounds. This condition arises from a problem with the auditory processes within an afflicted individual's brain. The causes and diagnosis are not well understood (Aazh et al., 2018). Physical causes of hyperacusis may range from head injury, ear damage, or viral diseases, to TMJ. Neurologic causes may range from PTSD, chronic fatigue syndrome, depression, to migraine headaches (American Academy of Otolaryngology--Head and Neck Surgery, 2018). An individual with hyperacusis will also likely have tinnitus, which may lead to further discomfort. Hyperacusis can lead to misophonia, which may cause an individual to react with abnormally strong emotions and behaviors to specific sounds, but hyperacusis does not cause this reaction. Studies of misphonia are very limited at this time. Another condition that falls under the condition of hyperacusis is noise sensitivity (Aazh et al., 2018). A noise-sensitive individual is characteristically more prone to being annoyed by environmental noise compared to a nonnoise-sensitive person regardless of the overall noise exposure (Kishikawa et al., 2006). This result indicates that the annoyance response for noise-sensitive people is not a direct function of noise exposure levels.

A1.3.5.5 Hospital and Care Facilities

The ACRP (ACRP, 2008) reviewed the literature available at that time to draw the following conclusions regarding noise impacts on patients in hospitals and care facilities:

"A careful search of recent research regarding aviation noise and hospitals and care facilities identified no studies that addressed this specific issue. It is common for airport noise/land-use compatibility guidelines to list hospitals and care facilities as noise-sensitive uses, although there are no studies that have identified health effects associated with aviation noise. There are numerous studies that identify problems with internal hospital noises such as warning alarms,

pagers, gurney collisions with doors, talking, etc.; however, none that addressed aviation or roadway noise."

The WHO (2000), in its Guidelines for Community Noise (Section 4.3.3), applies available information on noise to derive the following general guidance. However, the guidance is not informed by research on hospital and care facility effects from aircraft noise.

"For most spaces in hospitals, the critical effects of noise are on sleep disturbance, annoyance and communication interference, including interference with warning signals. The L_{Amax} of sound events during the night should not exceed 40 dB indoors. For wardrooms in hospitals, the guideline values indoors are 30 dB L_{Aeq} , together with 40 dB L_{Amax} during the night. During the day and evening the guideline value indoors is 30 dB L_{Aeq} . The maximum level should be measured with the instrument set at 'fast'.

Since patients have less ability to cope with stress, the equivalent sound pressure level should not exceed 35 dB L_{Aeq} in most rooms in which patients are being treated or observed. Particular attention should be given to the sound pressure levels in intensive care units and operating theatres. Sound inside incubators may result in health problems, including sleep disturbance, and may lead to hearing impairment in neonates. Guideline values for sound pressure levels in incubators must await future research."

A1.3.5.6 Summary of Nonauditory Effects

Research studies seem to indicate that aircraft noise may contribute to the risk of health disorders, along with other factors such as heredity, medical history, smoking, alcohol use, diet, lack of exercise, and air pollution, but that the measured effect is small compared to these other factors and often not statistically significant—i.e., not necessarily real. Despite some sensational articles purporting otherwise and the intuitive feeling that noise in some way must impair health, there are no studies that definitively show a causal and significant relationship between aircraft noise and health. Such studies are notoriously difficult to conduct and interpret because of the large number of confounding factors that have to be considered for their effects to be excluded from the analysis. The WHO notes that there is still considerable variation among studies (WHO, 2011). And, almost without exception, research studies conclude that additional research is needed to determine whether such a causal relationship exists. The European Network on Noise and Health (ENNAH, 2013), in its summary report of 2013, concludes that ".....while the literature on non-auditory health effects of environmental noise is extensive, the scientific evidence of the relationship between noise and non-auditory effects is still contradictory."

As a result, it is not possible to state that there is sound scientific evidence that aircraft noise is a significant contributor to health disorders.

A1.3.6 Performance Effects

The effect of noise on the performance of activities or tasks has been the subject of many studies. Some of these studies have found links between continuous high noise levels and performance loss. Noise-induced performance losses are most frequently reported in studies where noise levels are above 85 dB. Moderate noise levels appear to act as a stressor for more sensitive individuals performing a difficult psychomotor task. Little change has typically been found in low-noise cases; however, cognitive learning differences were measured in subjects exposed to noise of passing aircraft with maximum amplitudes of 48 dBA, presented once per minute, while performing text learning compared to a control group

exposed to 35 dBA (Trimmel et al., 2012). The findings suggest that background noise below 50 dBA results in impaired and changed structures of learning, as indicated by reproduction scores, because test persons are less able to switch between strategies

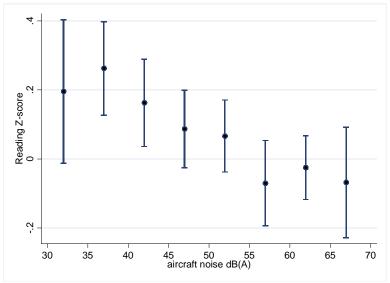
While the results of research on the general effect of periodic aircraft noise on performance have yet to yield definitive criteria, several general trends have been noted, including:

- A periodic intermittent noise is more likely to disrupt performance than a steady-state
 continuous noise of the same level. Flyover noise, due to its intermittent nature, might be more
 likely to disrupt performance than a steady-state noise of equal level.
- Noise is more inclined to affect the quality than the quantity of work.
- Noise is more likely to impair the performance of tasks that place extreme physical and/or mental demands on workers.

A1.3.7 Noise Effects on Children

Recent studies on school children indicate a potential link between aircraft noise and both reading comprehension and learning motivation. The effects may be small but of particular concern for children who are already scholastically challenged.

A1.3.7.1 Effects on Learning and Cognitive Abilities


Early studies in several countries (Cohen et al., 1973, 1980, 1981; Bronzaft and McCarthy, 1975; Green et al., 1982; Evans et al., 1998; Haines et al., 2002; Lercher et al., 2003) showed lower reading scores for children living or attending school in noisy areas than for children away from those areas. In some studies, noise-exposed children were less likely to solve difficult puzzles or more likely to give up while attempting to do so.

A longitudinal study reported by Evans et al. (1998) conducted prior to relocation of the old Munich Airport in 1992, reported that high noise exposure was associated with deficits in long-term memory and reading comprehension in children with a mean age of 10.8 years. Two years after the closure of the airport, these deficits disappeared, indicating that noise effects on cognition may be reversible if exposure to the noise ceases. Most convincing was the finding that deficits in memory and reading comprehension developed over the two-year follow-up for children who became newly noise exposed near the new airport.

More recently, the Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) study (Stansfeld et al., 2005; Clark et al., 2005) compared the effect of aircraft and road traffic noise on over 2,000 children in three countries. This was the first study to derive exposure-effect associations for a range of cognitive and health effects and the first to compare effects across countries.

The study found a linear relation between chronic aircraft noise exposure and impaired reading comprehension and recognition memory. No associations were found between chronic road traffic noise exposure and cognition. Conceptual recall and information recall surprisingly showed better performance in high road-traffic-noise areas. Neither aircraft noise nor road traffic noise affected attention or working memory (Stansfeld et al., 2005; Clark et al., 2005).

Figure A-12 shows RANCH's result relating noise to reading comprehension. It shows that reading falls below average (a z-score of 0) at L_{eq} greater than 55 dB. Because the relationship is linear, reducing exposure at any level should lead to improvements in reading comprehension.

Sources: Stansfeld et al. 2005; Clark et al. 2005

Figure A-12 RANCH Study Reading Scores Varying with Leq

The RANCH study observed that children may be exposed to aircraft noise for many of their childhood years and the consequences of long-term noise exposure were unknown. A follow-up study of the children in the RANCH project is being analyzed to examine the long-term effects on children's reading comprehension (Clark et al., 2009). Preliminary analysis indicated a trend for reading comprehension to be poorer at 15 to 16 years of age for children who attended noise-exposed primary schools. An additional study utilizing the same data set (Clark et al., 2012) investigated the effects of traffic-related air pollution and found little evidence that air pollution moderated the association of noise exposure on children's cognition.

There was also a trend for reading comprehension to be poorer in aircraft-noise-exposed secondary schools. Significant differences in reading scores were found between primary school children in the two different classrooms at the same school (Bronzaft and McCarthy, 1975). One classroom was exposed to high levels of railway noise, while the other classroom was quiet. The mean reading age of the noise-exposed children was 3 to 4 months behind that of the control children. Studies suggest that the evidence of the effects of noise on children's cognition has grown stronger over recent years (Stansfeld and Clark, 2015), but further analysis adjusting for confounding factors is ongoing and is needed to confirm these initial conclusions.

Studies identified a range of linguistic and cognitive factors to be responsible for children's unique difficulties with speech perception in noise. Children have lower stored phonological knowledge to reconstruct degraded speech, reducing the probability of successfully matching incomplete speech input when compared with adults. Additionally, young children are less able than older children and adults to make use of contextual cues to reconstruct noise-masked words presented in sentential context (Klatte et al., 2013).

FICAN funded a pilot study to assess the relationship between aircraft noise reduction and standardized test scores (Eagan et al., 2004; FICAN, 2007). The study evaluated whether abrupt aircraft noise reduction within classrooms, from either airport closure or sound insulation, was associated with

improvements in test scores. Data were collected in 35 public schools near three airports in Illinois and Texas. The study used several noise metrics. These were, however, all computed indoor levels, which makes it hard to compare with the outdoor levels used in most other studies.

The FICAN study found a significant association between noise reduction and a decrease in failure rates for high school students, but not middle or elementary school students. There were some weaker associations between noise reduction and an increase in failure rates for middle and elementary schools. Overall, the study found that the associations observed were similar for children with or without learning difficulties and between verbal and math/science tests. As a pilot study, the FICAN study was not expected to obtain final answers, but it provided useful indications (FICAN, 2007).

A recent study of the effect of aircraft noise on student learning (Sharp et al., 2013) examined student test scores at a total of 6,198 U.S. elementary schools, 917 of which were exposed to aircraft noise at 46 airports and with noise exposures exceeding 55 dB DNL. The study found small but statistically significant associations between airport noise and student mathematics and reading test scores, after taking demographic and school factors into account. Associations were also observed for ambient noise and total noise on student mathematics and reading test scores, suggesting that noise levels per se, as well as from aircraft, might play a role in student achievement. Recent evidence suggests that potential negative effects on classroom performance can be due to chronic ambient noise exposure. A study of French 8- and 9-year-old children found a significant association between ambient noise levels in urban environments due primarily to road noise (Pujol et al., 2014). The study estimated noise levels at children's bedrooms (L_{den}) and found a modest effect of lower scores on French tests, and these lower scores were associated with higher L_{den} at children's homes. Once adjusted for classroom L_{Aeq,day}, the association between L_{den} and math test scores became borderline significant.

As part of the NORAH study conducted at Frankfurt Airport, reading tests were conducted on 1,209 school children at 29 primary schools. It was found that there was a small decrease in reading performance that corresponded to a 1-month reading delay. However, a recent study observing children at 11 schools surrounding LAX found that the majority of distractions to elementary age students were other students, followed by themselves, which includes playing with various items and daydreaming. Less than 1 percent of distractions were caused by traffic noise (National Academies of Sciences, Engineering, and Medicine, 2017).

While there are many factors that can contribute to learning deficits in school-aged children, there is increasing awareness that chronic exposure to high aircraft noise levels may impair learning. This awareness has led the WHO and a North Atlantic Treaty Organization working group to conclude that daycare centers and schools should not be located near major sources of noise, such as highways, airports, and industrial sites (North Atlantic Treaty Organization, 2000; WHO, 1999). The awareness has also led to the classroom noise standard discussed earlier (ANSI, 2010).

A1.3.7.2 Health Effects on Children

A number of studies, including some of the cognitive studies discussed above, have examined the potential for effects on children's health. Health effects include annoyance, psychological health impacts, coronary risk, stress hormones, sleep disturbance, and hearing loss.

Annoyance. Chronic noise exposure causes annoyance in children (Bronzaft and McCarthy, 1975; Evans et al., 1995). Annoyance among children tends to be higher than among adults, and there is little

habituation (Haines et al., 2001a). The RANCH study found annoyance may play a role in how noise affects reading comprehension (Clark et al., 2005).

Psychological Health. The available literature on psychological health impacts of noise exposure reveals inconsistent findings that are perhaps suggestive of highly situational-specific factors. Lercher et al. (2002) found an association between noise and teacher ratings of psychological health, but only for children with biological risk defined by low birth weight and/or premature birth. Haines et al. (2001b) found that children exposed to aircraft noise had higher levels of psychological distress and hyperactivity. Stansfeld et al. (2009) replicated the hyperactivity result, but not the result for distress. Crombie et al. (2011) found similar hyperactivity results but no significant associations between aircraft noise at school and later mental health issues in children at risk at birth--i.e., those with low birth weight.

Dreger et al. (2015) investigated the influence of different environmental noise sources at children's homes on the incidence of mental health problems in school-aged children. Using a survey of reported level of day and night annoyance by parents as the metric of noise level, the study identified an association between exposure to noise at home and mental health problems such as emotional symptoms, conduct problems, and hyperactivity. Road noise was the most common exposure and was significantly associated with the total difficulties score, emotional symptoms, and conduct problems. Noise by neighbors was associated with conduct problems and hyperactivity. However, aircraft noise (by day) and construction work (by day) were not associated with any of the SDQ categories at a significant level. More generally, and perhaps more importantly, the study found that children who were in the group of constant high exposure, and therefore were continuously exposed for a long time, had higher risk for mental health problems. The authors recognized the lack of quantitative noise measurements as an important study limitation but provide evidence from prior studies indicating reported annoyance as a good proxy.

Hjortebjerg et al. (2016) used noise models to determine average time-weighted road and railroad noise exposure for 46,940 children from birth to age 7 years. Airfield noise was similarly determined but only evaluated as a confounding variable, as was air pollution. A 10 dB increase in average time-weighted road traffic noise exposure from birth to 7 years of age was associated with a 7-percent increase in abnormal versus normal total difficulties scores; 5-percent increases in borderline and abnormal hyperactivity/inattention subscale scores, respectively; and 5-percent and 6-percent increases in abnormal conduct problem and peer relationship problem subscale scores, respectively. Exposure to road traffic noise during pregnancy was not associated with child behavioral problems at 7 years of age. While this study is quantitative, its application to airfield noise is limited due to the different nature of road versus airfield noise.

As with studies of adults, the available evidence suggests that chronic noise exposure is probably not associated with serious psychological illness, but there may be effects on well-being and quality of life. Further research is needed.

Coronary Risk. The HYENA study discussed earlier indicated a possible relation between noise and hypertension in older adults. Cohen et al. (1980, 1981) found some increase in blood pressure among school children, but this increase was within the normal range and not indicating hypertension. Hygge et al. (2002) found mixed effects. The RANCH study found some effect for children at home and at night but not at school (van Kempen, 2006). In the Munich study (Evans et al., 1998), chronic noise exposure was found to be associated with both baseline systolic blood pressure and lower reactivity of systolic

blood pressure to a cognitive task presented under acute noise. After the new airport opened, a significant increase in systolic blood pressure was observed, providing evidence for a causal link between chronic noise exposure and raised blood pressure. No association was found between noise and diastolic blood pressure or reactivity (Stansfeld and Crombie, 2011; Stansfeld, 2015).

However, the relationship between aircraft noise and blood pressure was not fully consistent between surveys in different countries. These findings, taken together with those from previous studies, suggest that no unequivocal conclusions can be drawn about the association between aircraft noise exposure and blood pressure. Overall, the evidence for noise effects on children's blood pressure is mixed and less certain than for noise effects on older adults.

Stress Hormones. Some studies investigated hormonal levels between groups of children exposed to aircraft noise and those in a control group. Two studies analyzed cortisol and urinary catecholamine levels in school children as measurements of stress response to aircraft noise (Haines et al., 2001a, 2001b, 2001c). In both instances, there were no differences between the aircraft-noise-exposed children and the control groups.

Sleep Disturbance. A sub-study of RANCH in a Swedish sample used sleep logs and the monitoring of rest/activity cycles to compare the effect of road traffic noise on child and parent sleep (Ohrstrom et al., 2006). An exposure-response relationship was found for sleep quality and daytime sleepiness for children. While this suggests effects of noise on children's sleep disturbance, it is difficult to generalize from one study. Davies (2012) discusses how a study in France among 10-year-old schoolchildren showed that school noise exposure was associated with higher cortisol levels, indicative of a stress reaction; these finding are supported by a Swedish study that found increased prevalence of reduced diurnal cortisol variability in relation with classroom L_{eq} during school day noise levels of between 59 and 87 dBA.

A1.3.8 Property Values

Noise, along with many other conditions, (i.e. location, number of rooms, crime rate, school district) can affect the value of homes. Economic studies of property values based on selling prices and noise have been conducted to find a direct relation. Studies of the effects of aviation noise on property values are highly complex due to differing community environments, market conditions, and methodological approaches, so study results generally range from some negative impacts to significant negative impacts. However, studies that considered positive aspects of airport accessibility have found net positive impacts on property values, while others found poorly informed buyers often bid higher prices in noise-impacted areas, only to potentially be disappointed after purchase (ACRP, 2008). The value-noise relation is usually presented as the Noise Depreciation Index (NDI), or Noise Sensitivity Depreciation Index, for the percent loss of value per dB (measured by the DNL metric). An early study by Nelson (1978) at three airports found an NDI of 1.8 to 2.3 percent per dB. Nelson also noted a decline in NDI over time, which he theorized could be due to either a change in population or the increase in commercial value of the property near airports. Crowley (1973) reached a similar conclusion. A larger study by Nelson (1980) studying property values near 18 airports found an NDI from 0.5 to 0.6 percent per dB.

In a review of property value studies, Newman and Beattie (1985) found a range of NDI from 0.2 to 2 percent per dB. They noted that many factors other than noise affected values. These socioeconomic

factors include size of house, number of rooms per house, repair of the house, distance from amenities and business districts, and demographics.

Frankel (1991) conducted surveys of 200 realtors and 70 appraisers in 35 suburban communities near Chicago O'Hare International Airport and found that a significant segment of buyers lacked adequate information about the noise environment and often overbid, only to be disappointed after purchase. Frankel classified noise-affected property owners into two groups: one that moved to the location while the environment was quiet but later became noise-impacted and another that purchased from a previous owner while the property was already noise impacted. Frankel concluded that the former group members bore the true financial burden of airport noise.

Fidell et al. (1996) studied the influence of aircraft noise on actual sale prices of residential properties in the vicinity of a military base in Virginia and one in Arizona. They found no meaningful effect on home values. Their results may have been affected by non-noise factors, especially the wide differences in homes between the two study areas.

Tomkins (1998) conducted a study of the residential areas near Manchester Airport, England, and showed that when using the Noise and Number Index (no longer used but similar to DNL), there was no significant negative relationship between noise and property values. When L_{eq} measure was analyzed, fewer properties are included, but the most noise-blighted are identified. Ultimately, the proximity to the airport had a significant impact and was found to be a more important factor of property values than noise. This could be that potential buyers were more likely to be aware of potentially negative noise impacts when properties were closest to airports and much less aware at further distances.

Lipscomb (2003) analyzed the City of College Park, Georgia, and found that noise did not significantly affect the values of residential properties. Lipscomb concluded that local residents were more accepting of noise because many were employed in airport-related occupations, so the proximity provided offsetting benefits, such as short work commutes.

Recent studies of noise effects on property values have recognized the need to account for non-noise factors. Nelson (2004) analyzed data from 33 airports and discussed the need to account for those factors and the need for careful statistics. His analysis showed NDI from 0.3 to 1.5 percent per dB, with an average of about 0.65 percent per dB. Nelson (2007) and Andersson et al. (2013) discuss statistical modeling in more detail.

Enough data are available to conclude that aircraft noise has a real effect on property values. This effect falls in the range of 0.2 to 2.0 percent per dB, with the average on the order of 0.5 percent per dB. The actual value varies from location to location, and it is very often small compared to non-noise factors such as location, market conditions, neighborhood characteristics, and property age, size, and amenities.

A1.3.9 Noise-Induced Vibration Effects on Structures and Humans

The sound from an aircraft overflight travels from the exterior to the interior of a house in one of two ways: through the solid structural elements or directly through the air. Figure A-13 illustrates the sound transmission through a wall constructed with a brick exterior, stud framing, interior finished wall, and absorbent material in the cavity. The sound transmission starts with noise impinging on the wall exterior. Some of this sound energy will be reflected away, and some will make the wall vibrate. The vibrating wall radiates sound into the airspace, which in turn sets the interior finished surface vibrating, with some energy lost in the airspace. This surface then radiates sound into the dwelling interior. As the

figure shows, vibrational energy also bypasses the air cavity by traveling through the studs and edge connections.

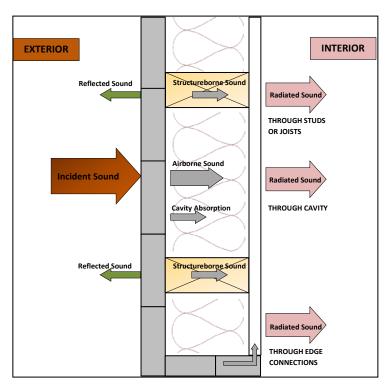


Figure A-13 Depiction of Sound Transmission through Built Construction

High noise levels can cause buildings to vibrate. If noise levels are high enough, building components can be damaged. The most sensitive components of a building are the windows, followed by plaster walls and ceilings. Possibility of damage depends on the sound pressures levels and the resonances of the building. While certain frequencies (such as 30 Hz for window breakage) may be of more concern than other frequencies, in general, only sounds lasting more than one second at greater than an unweighted sound level of 130 dB in the 1 Hz to 1,000 Hz frequency range are potentially damaging to structural components (CHABA, 1977; von Gierke and Ward, 1991). Sound levels from normal aircraft operations are typically much less than 130 dB. Even sounds from low-altitude flyovers of heavy aircraft do not reach the potential for damage (Sutherland, 1990).

Noise-induced structural vibration may cause annoyance to dwelling occupants because of induced secondary vibrations, or "rattle," of objects--hanging pictures, dishes, plaques, and bric-a-brac--within the dwelling. Loose window panes may also vibrate noticeably when exposed to high levels of airborne noise, causing homeowners to fear breakage. In general, rattling occurs at unweighted sound levels that last for several seconds at greater than 110 dB.

A field study conducted by Schomer and Neathammer (1985, 1987) examined the role of structural vibration and rattle in human response to helicopter noise. It showed that human response is strongly and negatively influenced when the noise induces noticeable vibration and rattles in the house structure. The A-frequency weighting was adequate to assess community response to helicopter noise when no vibration or rattle was induced. When rattle or vibrations were induced by the helicopter

noise, however, A-weighting alone did not assess the community response adequately, such that significant corrections from 12 dB (for little vibration or rattles) to 20 dB (high level of vibration or rattles) needed to be applied for subjects indoors. It was also found that the presence or absence of high-level noise-induced vibration and rattles was strongly dependent on the helicopter's slant distance. It was recommended that no housing or noise-sensitive land uses be located in zones where high levels of vibration or rattle are induced by helicopter noise.

Community reactions to conventional helicopter noise from low numbers of operations for two helicopter types were studied by Fields and Powell (1987). Using resident interviews in combination with controlled helicopter operations, the authors obtained relations between the annoyance score and noise exposure for short-term (9-hour daytime) periods. It was determined that annoyance increased steadily with noise exposure measured in L_{eq} from 45 to 60 dBA for that period. Annoyance response in terms of percentage annoyed was also presented on this scale for various annoyance rating values. The shape of these curves is similar to the well-known dose-response relationship (Schultz curve) for general transportation noise but relates to only the 9-hour daytime period and with no direct comparison with long-term noise exposure.

In a later review of human response to aircraft noise and induced building vibration, Powell and Shepherd (1989) also indicate that in aircraft noise surveys, the annoyance scores are on average greater when vibration is detected than with no vibration detected. Based on the results of the study by Fields and Powell (1987), they conclude, however, that no effect of increased annoyance was found for cases where the helicopter noise level and slant distance were such that appreciable rattle was expected to occur, in contrast to the results of Schomer and Neathammer (1987). Powell and Shepherd (1989) also quote a laboratory study (Cawthorn et al., 1978) in which the sound of rattling glassware added to the aircraft flyover noises but did not increase the level of annoyance.

Community annoyance in the vicinity of airports due to noise-induced vibration and rattle resulting from aircraft ground operations was studied by Fidell et al. (1999) and summarized in the Minneapolis-St. Paul International Airport Low Frequency Noise (LFN) Expert Panel Report (Sutherland et al., 2000). These field surveys of operations in the vicinity of a major international airport indicated that low-frequency aircraft noise can lead to secondary vibration and rattle in residential structures, which may significantly increase annoyance. These studies, however, have been criticized (FICAN, 2002) due to the absence of direct measurements of vibration in support of the findings on the presence of perceptible vibration and rattle. These issues were further addressed by Hodgdon et al. (2007). It was confirmed that the highest levels of noise near the runway during start-of-takeoff-roll and acceleration and during thrust reversal are at frequencies below 200 Hz. It was also found that aircraft noise exposures that contained audible rattling were not the most annoying, likely because the rattle content was audible but not loud compared to the overall noise content. This result is consistent with an earlier study of human response to aircraft noise and induced building vibration (Powell and Shepherd, 1989).

In the assessment of vibration on humans, the following factors determine whether a person will perceive and possibly react to building vibrations:

- 1. Type of excitation: steady state, intermittent, or impulsive vibration.
- 2. Frequency of the excitation. ISO standard 2631-2 (ISO, 1989) recommends a frequency range of 1 to 80 Hz for the assessment of vibration on humans.
- 3. Orientation of the body with respect to the vibration.

- 4. The use of the occupied space (i.e., residential, workshop, hospital).
- 5. Time of day.

Table A-6 lists the whole-body vibration criteria from ISO 2631-2 for one-third octave frequency bands from 1 to 80 Hz.

Table A-6 Vibration Criteria for the Evaluation of Human Exposure to Whole-Body Vibration

	RMS Acceleration (m/s/s) Combined Criteria Base		
Frequency (Hz)	Curve	Residential Night	Residential Day
1.00	0.0036	0.0050	0.0072
1.25	0.0036	0.0050	0.0072
1.60	0.0036	0.0050	0.0072
2.00	0.0036	0.0050	0.0072
2.50	0.0037	0.0052	0.0074
3.15	0.0039	0.0054	0.0077
4.00	0.0041	0.0057	0.0081
5.00	0.0043	0.0060	0.0086
6.30	0.0046	0.0064	0.0092
8.00	0.0050	0.0070	0.0100
10.00	0.0063	0.0088	0.0126
12.50	0.0078	0.0109	0.0156
16.00	0.0100	0.0140	0.0200
20.00	0.0125	0.0175	0.0250
25.00	0.0156	0.0218	0.0312
31.50	0.0197	0.0276	0.0394
40.00	0.0250	0.0350	0.0500
50.00	0.0313	0.0438	0.0626
63.00	0.0394	0.0552	0.0788
80.00	0.0500	0.0700	0.1000

Source: ISO, 1989

A1.3.10 Noise Effects on Terrain

It has been suggested that noise levels associated with low-flying aircraft may affect the terrain under the flight path by disturbing fragile soil or snow, especially in mountainous areas, thereby causing landslides or avalanches. There are no known instances of such events. It is improbable that such effects would result from routine subsonic aircraft operations.

A1.3.11 Noise Effects on Historical and Archaeological Sites

Historic buildings and sites can have elements that are more structurally fragile than conventional buildings. Aircraft noise may affect such sites more severely than newer, modern structures. In older structures, seemingly insignificant surface cracks caused by vibrations from aircraft noise may lead to greater damage from natural forces (Hanson et al., 1991). There are few scientific studies of such effects to provide guidance for their assessment.

One study involved measurements of noise and vibration in a restored plantation house, originally built in 1795. It is located 1,500 feet from the centerline at the departure end of Runway 19L at Washington

Dulles International Airport. The aircraft generating the sound measured was the Concorde. There was special concern for the building's windows because roughly half of the house's 324 panes were original. No instances of structural damage were found. Interestingly, despite the high levels of noise during Concorde takeoffs, the induced structural vibration levels were actually less than those induced by touring groups and vacuum cleaning (Wesler, 1977).

As for conventional structures, noise exposure levels for normally compatible land uses should also be protective of historic and archaeological sites. Unique sites should, of course, be analyzed for specific exposure.

A1.3.12 Effects on Domestic Animals and Wildlife

Hearing is critical to an animal's ability to react, compete, reproduce, hunt, forage, and survive in its environment. While the existing literature does include studies on possible effects of jet aircraft noise and sonic booms on wildlife, there appears to have been little concerted effort in developing quantitative comparisons of aircraft noise effects on normal auditory characteristics. Behavioral effects have been relatively well described, but the larger ecological context issues, and the potential for drawing conclusions regarding effects on populations, has not been well developed.

The relationships between potential auditory/physiological effects and species interactions with their environments are not well understood. Manci et al. (1988) assert that the consequences that physiological effects may have on behavioral patterns are vital to understanding the long-term effects of noise on wildlife. Questions regarding the effects (if any) on predator-prey interactions, reproductive success, and intra-inter specific behavior patterns remain.

The following discussion provides an overview of the existing literature on noise effects (particularly jet aircraft noise) on animal species. The literature reviewed here involves those studies that have focused on the observations of the behavioral effects that jet aircraft and sonic booms have on animals.

A great deal of research was conducted in the 1960s and 1970s on the effects of aircraft noise on the public and the potential for adverse ecological impacts. These studies were largely completed in response to the increase in air travel and as a result of the introduction of supersonic jet aircraft. According to Manci et al. (1988), the foundation of information created from that focus does not necessarily correlate or provide information specific to the impacts to wildlife in areas overflown by aircraft at supersonic speed or at low altitudes.

The abilities to hear sounds and noise and to communicate assist wildlife in maintaining group cohesiveness and survivorship. Social species communicate by transmitting calls of warning, introduction, and other types that are subsequently related to an individual's or group's responsiveness.

Animal species differ greatly in their responses to noise. Noise effects on domestic animals and wildlife are classified as primary, secondary, and tertiary. Primary effects are direct, physiological changes to the auditory system, and these most likely include the masking of auditory signals. Masking is defined as the inability of an individual to hear important environmental signals that may arise from mates, predators, or prey. There is some potential that noise could disrupt a species' ability to communicate or could interfere with behavioral patterns (Manci et al., 1988). Although the effects are likely temporary, aircraft noise may cause masking of auditory signals within exposed faunal communities. Animals rely on hearing to avoid predators, obtain food, and communicate with, and attract, other members of their species. Aircraft noise may mask or interfere with these functions. Other primary effects, such as ear

drum rupture or temporary and permanent hearing threshold shifts, are not as likely, given the subsonic noise levels produced by aircraft overflights.

Secondary effects may include non-auditory effects such as stress and hypertension; behavioral modifications; interference with mating or reproduction; and impaired ability to obtain adequate food, cover, or water. Tertiary effects are the direct result of primary and secondary effects, and these include population decline and habitat loss. Most of the effects of noise are mild enough that they may never be detectable as variables of change in population size or population growth against the background of normal variation (Bowles, 1995). Other environmental variables (e.g., predators, weather, changing prey base, ground-based disturbance) also influence secondary and tertiary effects, and confound the ability to identify the ultimate factor in limiting productivity of a certain nest, area, or region (Smith et al., 1988). Overall, the literature suggests that species differ in their response to various types, durations, and sources of noise (Manci et al., 1988).

Many scientific studies have investigated the effects of aircraft noise on wildlife, and some have focused on wildlife "flight" due to noise. Animal responses to aircraft are influenced by many variables, including size, speed, proximity (both height above the ground and lateral distance), engine noise, color, flight profile, and radiated noise. The type of aircraft (e.g., fixed wing versus rotor-wing [helicopter]) and type of flight mission may also produce different levels of disturbance, with varying animal responses (Smith et al., 1988). Consequently, it is difficult to generalize animal responses to noise disturbances across species, especially with respect to habituation and ability to adapt to change.

One result of the Manci et al. (1988) literature review was the conclusion that, while behavioral observation studies were relatively limited, a general behavioral reaction in animals from exposure to aircraft noise is the startle response. The intensity and duration of the startle response appears to be dependent on which species is exposed, whether a group or an individual is exposed, and whether there have been some previous exposures. Responses range from flight, trampling, stampeding, jumping, or running, to movement of the head in the apparent direction of the noise source. Manci et al. (1988) reported that the literature indicated that avian species may be more sensitive to aircraft noise than mammals.

A1.3.12.1 Domestic Animals

Although some studies report that the effects of aircraft noise on domestic animals is inconclusive, a majority of the literature reviewed indicates that domestic animals exhibit some behavioral responses to military overflights but generally seem to habituate to the disturbances over a period of time. Mammals in particular appear to react to noise at sound levels higher than 90 dB, with responses including the startle response, freezing (i.e., becoming temporarily stationary), and fleeing from the sound source. Many studies on domestic animals suggest that some species appear to acclimate to some forms of sound disturbance (Manci et al., 1988). Some studies have reported such primary and secondary effects as reduced milk production and rate of milk release, increased glucose concentrations, decreased levels of hemoglobin, increased heart rate, and a reduction in thyroid activity. These latter effects appear to represent a small percentage of the findings occurring in the existing literature.

Some reviewers have indicated that earlier studies, and claims by farmers linking adverse effects of aircraft noise on livestock, did not necessarily provide clear-cut evidence of cause and effect (Cottereau, 1978). In contrast, many studies conclude that there is no evidence that aircraft overflights affect feed intake, growth, or production rates in domestic animals.

Cattle

In response to concerns about overflight effects on pregnant cattle, milk production, and cattle safety, the U.S. Air Force prepared a handbook for environmental protection that summarized the literature on the impacts of low-altitude flights on livestock (and poultry) and includes specific case studies conducted in numerous airspaces across the country. Adverse effects have been found in a few studies but have not been reproduced in other similar studies. One such study, conducted in 1983, suggested that two of 10 cows in late pregnancy aborted after showing rising estrogen and falling progesterone levels. These increased hormonal levels were reported as being linked to 59 aircraft overflights. The remaining eight cows showed no changes in their blood concentrations and calved normally. A similar study reported abortions occurred in three out of five pregnant cattle after exposing them to flyovers by six different aircraft. Another study suggested that feedlot cattle could stampede and injure themselves when exposed to low-level overflights (U.S. Air Force, 1994a).

A majority of the studies reviewed suggest that there is little or no effect of aircraft noise on cattle. Studies presenting adverse effects to domestic animals have been limited. A number of studies (Parker and Bayley, 1960; Casady and Lehmann, 1967; Kovalcik and Sottnik, 1971) investigated the effects of jet aircraft noise and sonic booms on the milk production of dairy cows. Through the compilation and examination of milk production data from areas exposed to jet aircraft noise and sonic boom events, it was determined that milk yields were not affected. This was particularly evident in those cows that had been previously exposed to jet aircraft noise.

A study examined the causes of 1,763 abortions in Wisconsin dairy cattle over a 1-year time period, and none were associated with aircraft disturbances (U.S. Air Force, 1993). In 1987, researchers contacted seven livestock operators for production data, and no effects of low-altitude and supersonic flights were noted. Of the 43 cattle previously exposed to low-altitude flights, three showed a startle response to an F/A-18 aircraft flying overhead at 500 feet above ground level (AGL) and 400 knots by running less than 10 meters. They resumed normal activity within 1 minute (U.S. Air Force, 1994a). Beyer (1983) found that helicopters caused more reaction than other low-aircraft overflights and that helicopters at 30 to 60 feet overhead did not affect milk production and pregnancies of 44 cows in a 1964 study (U.S. Air Force, 1994a).

Additionally, Beyer (1983) reported that five pregnant dairy cows in a pasture did not exhibit fright-flight tendencies or disturb their pregnancies after being overflown by 79 low-altitude helicopter flights and four low-altitude, subsonic jet aircraft flights. A 1956 study found that the reactions of dairy and beef cattle to noise from low-altitude, subsonic aircraft were similar to those caused by paper blowing about, unfamiliar persons, or other moving objects (U.S. Air Force, 1994a).

In a report to Congress, the U. S. Forest Service concluded that "evidence both from field studies of wild ungulates and laboratory studies of domestic stock indicate that the risks of damage are small (from aircraft approaches of 50-100 m), as animals take care not to damage themselves (U.S. Forest Service, 1992). If animals are overflown by aircraft at altitudes of 50-100 m, there is no evidence that mothers and young are separated, that animals collide with obstructions (unless confined) or that they traverse dangerous ground at too high a rate." These varied study results suggest that, although the confining of cattle could magnify animal response to aircraft overflight, there is no proven cause-and-effect link between startling cattle from aircraft overflights and abortion rates or lower milk production.

Horses

Horses have also been observed to react to overflights of jet aircraft. Several of the studies reviewed reported a varied response of horses to low-altitude aircraft overflights. Observations made in 1966 and 1968 noted that horses galloped in response to jet flyovers (U.S. Air Force, 1993). Bowles (1995) cites Kruger and Erath as observing horses exhibiting intensive flight reactions, random movements, and biting/kicking behavior. However, no injuries or abortions occurred, and there was evidence that the mares adapted somewhat to the flyovers over the course of a month (U.S. Air Force, 1994a). Although horses were observed noticing the overflights, it did not appear to affect either survivability or reproductive success. There was also some indication that habituation to these types of disturbances was occurring.

LeBlanc et al. (1991) studied the effects of F-14 jet aircraft noise on pregnant mares. They specifically focused on any changes in pregnancy success, behavior, cardiac function, hormone production, and rate of habituation. Their findings reported observations of "flight-fright" reactions, which caused increases in heart rates and serum cortisol concentrations. The mares, however, did habituate to the noise. Levels of anxiety and mass body movements were the highest after initial exposure, with intensities of responses decreasing thereafter. There were no differences in pregnancy success when compared to a control group.

Swine

Generally, the literature findings for swine appear to be similar to those reported for cows and horses. While there are some effects from aircraft noise reported in the literature, these effects are minor. Studies of continuous noise exposure (i.e., 6 hours and 72 hours of constant exposure) reported influences on short-term hormonal production and release. Additional constant exposure studies indicated the observation of stress reactions, hypertension, and electrolyte imbalances (Dufour, 1980). A study by Bond et al. (1963) demonstrated no adverse effects on the feeding efficiency, weight gain, ear physiology, or thyroid and adrenal gland condition of pigs subjected to observed aircraft noise. Observations of heart rate increase were recorded, noting that cessation of the noise resulted in the return to normal heart rates. Conception rates and offspring survivorship did not appear to be influenced by exposure to aircraft noise.

Similarly, simulated aircraft noise at levels of 100 to 135 dB had only minor effects on the rate of feed utilization, weight gain, food intake, or reproduction rates of boars and sows exposed, and there were no injuries or inner ear changes observed (Gladwin et al., 1988; Manci et al., 1988).

Domestic Fowl

According to a 1994 position paper by the U.S. Air Force on effects of low-altitude overflights (below 1,000 feet) on domestic fowl, overflight activity has negligible effects (U.S. Air Force, 1994b). The paper did recognize that given certain circumstances, adverse effects can be serious. Some of the effects can be panic reactions, reduced productivity, and effects on marketability (e.g., bruising of the meat caused during "pile-up" situations).

The typical reaction of domestic fowl after exposure to sudden, intense noise is a short-term startle response. The reaction ceases as soon as the stimulus is ended, and within a few minutes all activity returns to normal. More severe responses are possible depending on the number of birds, the frequency of exposure, and environmental conditions. Large flocks of birds, and birds not previously exposed, are more likely to pile up in response to a noise stimulus (U.S. Air Force, 1994b). According to

studies and interviews with growers, it is typically the previously unexposed birds that incite panic crowding, and the tendency to do so is markedly reduced within five exposures to the stimulus (U.S. Air Force, 1994b). This suggests that the birds habituate relatively quickly. Egg productivity was not adversely affected by infrequent noise bursts, even at exposure levels as high as 120 to 130 dB.

Between 1956 and 1988, there were 100 recorded claims against the Navy for alleged damage to domestic fowl. The number of claims averaged three per year, with peak numbers of claims following publications of studies on the topic in the early 1960s. Many of the claims were disproved or did not have sufficient supporting evidence. The claims were filed for the following alleged damages: 55 percent for panic reactions, 31 percent for decreased production, 6 percent for reduced hatchability, 6 percent for weight loss, and less than 1 percent for reduced fertility (U.S. Air Force, 1994b).

The review of the existing literature suggests that there has not been a concerted or widespread effort to study the effects of aircraft noise on commercial turkeys. One study involving turkeys examined the differences between simulated versus actual overflight aircraft noise, turkey responses to the noise, weight gain, and evidence of habituation (Bowles et al., 1990). Findings from the study suggested that turkeys habituated to jet aircraft noise quickly, that there were no growth-rate differences between the experimental and control groups, and that there were some behavioral differences that increased the difficulty in handling individuals within the experimental group.

Low-altitude overflights were shown to cause turkey flocks that were kept inside turkey houses to occasionally pile up and experience high mortality rates due to the aircraft noise and a variety of disturbances unrelated to aircraft (U.S. Air Force, 1994b).

A1.3.12.2 Wildlife

Studies on the effects of overflights and sonic booms on wildlife have been focused mostly on avian species and on ungulates such as caribou (*Rangifer tarandus*) and bighorn sheep (*Ovis canadensis*). Few studies have been conducted on marine mammals, small terrestrial mammals, reptiles, amphibians, and carnivorous mammals. Generally, species that live entirely below the surface of the water have also been ignored due to the fact they do not experience the same level of sound as terrestrial species (National Park Service, 1994). Wild ungulates appear to be much more sensitive to noise disturbance than domestic livestock. This may be due to previous exposure to disturbances. One common factor appears to be that low-altitude flyovers seem to be more disruptive in terrain where there is little cover (Manci et al., 1988).

Mammals

Terrestrial Mammals

Studies of terrestrial mammals have shown that noise levels of 120 dB can damage mammals' ears, and levels at 95 dB can cause temporary loss of hearing acuity. Noise from aircraft has affected other large carnivores by causing changes in home ranges, foraging patterns, and breeding behavior. One study recommended that aircraft not be allowed to fly at altitudes below 2,000 feet AGL over important grizzly bear (*Ursus arctos horribilis*) and polar bear (*Ursus maritimus*) habitat. Wolves (*Canis lupus*) have been frightened by low-altitude flights that were 25 to 1,000 feet AGL. However, wolves have been found to adapt to aircraft overflights and noise as long as they were not being hunted from aircraft (Dufour, 1980).

Wild ungulates (American bison [Bison bison], caribou, bighorn sheep) appear to be much more sensitive to noise disturbance than domestic livestock (Weisenberger et al., 1996). Behavioral reactions may be related to the past history of disturbances by humans and aircraft. Common reactions of reindeer kept in an enclosure exposed to aircraft noise disturbance were a slight startle response, rising of the head, pricking ears, and scenting of the air. Panic reactions and extensive changes in behavior of individual animals were not observed. Caribou in Alaska exposed to fixed-wing aircraft and helicopters exhibited running and panic reactions when overflights were at an altitude of 200 feet or less. The reactions decreased with increased altitude of overflights, and, with more than 500 feet in altitude, the panic reactions stopped. Also, smaller groups reacted less strongly than larger groups. One negative effect of the running and avoidance behavior is increased expenditure of energy. For a 90-kilogram animal, the calculated expenditure due to aircraft harassment is 64 kilocalories per minute when running and 20 kilocalories per minute when walking. When conditions are favorable, this expenditure can be counteracted with increased feeding; however, during harsh winter conditions, this may not be possible. Incidental observations of wolves and bears exposed to fixed-wing aircraft and helicopters in the northern regions suggested that wolves are less disturbed than wild ungulates, while grizzly bears showed the greatest response of any animal species observed (Weisenberger et al., 1996).

It has been proven that low-altitude overflights do induce stress in animals. Increased heart rates, an indicator of excitement or stress, have been found in pronghorn antelope (*Antilocapra Americana*), elk (*Cervus Canadensis*), and bighorn sheep. As such reactions occur naturally as a response to predation, infrequent overflights may not, in and of themselves, be detrimental. However, flights at high frequencies over a long period of time may cause harmful effects. The consequences of this disturbance, while cumulative, are not additive. It may be that aircraft disturbance may not cause obvious and serious health effects, but coupled with a harsh winter, it may have an adverse impact. Research has shown that stress induced by other types of disturbances produces long-term decreases in metabolism and hormone balances in wild ungulates.

Behavioral responses can range from mild to severe. Mild responses include head raising, body shifting, or turning to orient toward the aircraft. Moderate disturbance may be nervous behaviors, such as trotting a short distance. Escape is the typical severe response.

Marine Mammals

The physiological composition of the ear in aquatic and marine mammals exhibits adaptation to the aqueous environment. These differences (relative to terrestrial species) manifest themselves in the auricle and middle ear (Manci et al., 1988). Some mammals use echolocation to perceive objects in their surroundings and to determine the directions and locations of sound sources (Simmons, 1983 in Manci et al. 1988).

In 1980, the Acoustical Society of America held a workshop to assess the potential hazard of manmade noise associated with proposed Alaska arctic (North Slope-Outer Continental Shelf) petroleum operations on marine wildlife and to prepare a research plan to secure the knowledge necessary for proper assessment of noise impacts (Acoustical Society of America, 1980). Since 1980, it appears that research on responses of aquatic mammals to aircraft noise and sonic booms has been limited. Research conducted on northern fur seals (*Callorhinus ursinus*), sea lions, and ringed seals (*Pusa hispida*) indicated that there are some differences in how various animal groups receive frequencies of sound. It was observed that these species exhibited varying intensities of a startle response to airborne noise, and this response was habituated over time. The rates of habituation appeared to vary with species, populations,

and demographics (age, sex). Time of day of exposure was also a factor (Myrberg, 1978 in Manci et al., 1988).

Studies were conducted near the Channel Islands near the area where the space shuttle launches occur. It was found that there were some response differences between species relative to the loudness of sonic booms. Those booms that were between 80 and 89 dB caused a greater intensity of startle reactions than lower-intensity booms at 72 to 79 dB. However, the duration of the startle responses to louder sonic booms was shorter (Jehl and Cooper, 1980).

Jehl and Cooper (1980) indicated that low-flying helicopters, loud boat noises, and humans were the most disturbing to pinnipeds. According to the research, while the space shuttle launch and associated operational activity noises have not had a measurable effect on the pinniped population, it also suggests that there was a greater "disturbance level" exhibited during launch activities. There was a recommendation to continue observations for behavioral effects and to perform long-term population monitoring (Jehl and Cooper, 1980).

The continued presence of single or multiple noise sources could cause marine mammals to leave a preferred habitat. However, it does not appear likely that overflights could cause migration from suitable habitats because aircraft noise over water is mobile and would not persist over any particular area. Aircraft noise, including supersonic noise, currently occurs in the overwater airspace of Eglin, Tyndall, and Langley Air Force bases from sorties predominantly involving jet aircraft. Survey results reported in Davis et al. (2000) indicate that cetaceans (i.e., dolphins) occur under all of the Eglin and Tyndall marine airspace. The continuing presence of dolphins (family Delphinidae) indicates that aircraft noise does not discourage use of the area and apparently does not harm the locally occurring population.

In a summary by the National Park Service (1994) on the effects of noise on marine mammals, it was determined that gray whales (*Eschrichtius robustus*) and harbor porpoises (*Phocoena phocoena*) showed no outward behavioral response to aircraft noise or overflights. Bottlenose dolphins (*Tursiops truncatus*) showed no obvious reaction in a study involving helicopter overflights at 1,200 to 1,800 feet above the water. Neither did they show any reaction to survey aircraft unless the shadow of the aircraft passed over them, at which point there was some observed tendency to dive (Richardson et al., 1995). Other anthropogenic noises in the marine environment from ships and pleasure craft may have more of an effect on marine mammals than aircraft noise (U.S. Air Force, 2000). The noise effects on cetaceans appear to be somewhat attenuated by the air/water interface. The cetacean fauna along the coast of California have been subjected to sonic booms from military aircraft for many years without apparent adverse effects (Tetra Tech, Inc., 1997).

Manatees (*Trichechus spp.*) appear relatively unresponsive to human-generated noise to the point that they are often suspected of being deaf to oncoming boats (although their hearing is actually similar to that of pinnipeds [Bullock et al., 1980]). Little is known about the importance of acoustic communication to manatees, although they are known to produce at least 10 different types of sounds and are thought to have sensitive hearing (Richardson et al., 1995). Manatees continue to occupy canals near Miami International Airport, which suggests they have become habituated to human disturbance and noise (Metro-Dade County, 1995). Since manatees spend most of their time below the surface and do not startle readily, no effect of aircraft overflights on manatees would be expected (Bowles et al., 1993).

Birds

Auditory research conducted on birds indicates that they fall between reptiles and mammals relative to hearing sensitivity. According to Dooling (1978), within the range of 1,000 to 5,000 Hz, birds show a level of hearing sensitivity similar to that of the more sensitive mammals. In contrast to mammals, bird sensitivity falls off at a greater rate with increasing and decreasing frequencies. Passive observations and studies examining aircraft bird strikes indicate that birds nest and forage near airports. Aircraft noise in the vicinity of commercial airports apparently does not inhibit bird presence and use.

High-noise events (like a low-altitude aircraft overflight) may cause birds to engage in escape or avoidance behaviors, such as flushing from perches or nests (Ellis et al., 1991). These activities impose an energy cost on the birds that, over the long term, may affect survival or growth. In addition, the birds may spend less time engaged in necessary activities like feeding, preening, or caring for their young because they spend time in noise-avoidance activity. However, the long-term significance of noise-related impacts is less clear. Several studies on nesting raptors have indicated that birds become habituated to aircraft overflights and that long-term reproductive success is not affected (Ellis et al., 1991; Grubb and King, 1991). Threshold noise levels for significant responses range from 62 dB for the Pacific black brant (*Branta bernicla nigricans*) to 85 dB for the crested tern (*Thalasseus bergii*) (Brown, 1990; Ward and Stehn, 1990).

Songbirds were observed to become silent prior to the onset of a sonic boom event (F-111 jets), followed by "raucous discordant cries." There was a return to normal singing within 10 seconds after the boom (Higgins, 1974 in Manci et al., 1988). Ravens (*Corvus corax*) responded by emitting protestation calls, flapping their wings, and soaring.

Manci et al. (1988) reported a reduction in reproductive success in some small territorial passerines (i.e., perching birds or songbirds) after exposure to low-altitude overflights. However, it has been observed that passerines are not driven any great distance from a favored food source by a nonspecific disturbance, such as aircraft overflights (U.S. Forest Service, 1992). Further study may be warranted.

A cooperative study between the DoD and the U.S. Fish and Wildlife Service (USFWS) assessed the response of the red-cockaded woodpecker (*Leuconotopicus borealis*) to a range of military training noise events, including artillery, small arms, helicopter, and maneuver noise (Pater et al., 1999). The project findings show that the red-cockaded woodpecker successfully acclimates to military noise events. Depending on the noise level that ranged from innocuous to very loud, the birds responded by flushing from their nest cavities. When the noise source was closer and the noise level was higher, the number of flushes increased proportionately. In all cases, however, the birds returned to their nests within a relatively short period of time (usually within 12 minutes). Additionally, the noise exposure did not result in any mortality or statistically detectable changes in reproductive success (Pater et al., 1999). Red-cockaded woodpeckers did not flush when artillery simulators were more than 122 meters away and SELs were 70 dB.

Lynch and Speake (1978) studied the effects of both real and simulated sonic booms on the nesting and brooding eastern wild turkey (*Meleagris gallopavo silvestris*) in Alabama. Hens at four nest sites were subjected to between eight and 11 combined real and simulated sonic booms. All tests elicited similar responses, including quick lifting of the head and apparent alertness for 10 to 20 seconds. No apparent nest failure occurred as a result of the sonic booms. Twenty-one brood groups were also subjected to simulated sonic booms. Reactions varied slightly between groups, but the largest percentage of groups reacted by standing motionless after the initial blast. Upon the sound of the boom, the hens and poults

fled until reaching the edge of the woods (approximately 4 to 8 meters). Afterward, the poults resumed feeding activities while the hens remained alert for a short period of time (approximately 15 to 20 seconds). In no instances were poults abandoned, and they did not scatter and become lost. Every observation group returned to normal activities within a maximum of 30 seconds after a blast.

Bald Eagle

A study by Grubb and King (1991) on the reactions of the bald eagle (*Haliaeetus leucocephalus*) to human disturbances showed that terrestrial disturbances elicited the greatest response, followed by aquatic (i.e., boats) and aerial disturbances. The disturbance regime of the area where the study occurred was predominantly characterized by aircraft noise. The study found that pedestrians consistently caused responses that were greater in both frequency and duration. Helicopters elicited the highest level of aircraft-related responses. Aircraft disturbances, although the most common form of disturbance, resulted in the lowest levels of response. This low response level may have been due to habituation; however, flights less than 170 meters away caused reactions similar to other disturbance types. Ellis et al. (1991) showed that eagles typically respond to the proximity of a disturbance, such as a pedestrian or aircraft within 100 meters, rather than the noise level. Fleischner and Weisberg (1986) stated that reactions of bald eagles to commercial jet flights, although minor (e.g., looking), were twice as likely to occur when the jets passed at a distance of 0.5 mile or less. They also noted that helicopters were four times more likely to cause a reaction than a propeller plane.

The USFWS advised Cannon Air Force Base that flights at or below 2,000 feet AGL from October 1 through March 1 could result in adverse impacts to wintering bald eagles (USFWS, 1998). However, Fraser et al. (1985) suggested that raptors habituate to overflights rapidly, sometimes tolerating aircraft approaches of 65 feet or less.

Golden Eagle

In its guidelines for aerial surveys, USFWS (Pagel et al., 2010) summarized past studies by stating that most golden eagles (*Aquila chrysaetos*) respond to survey aircraft (fixed- and rotary-wing) by remaining on their nests and continuing to incubate or roost. Surveys take place generally as close as 10 to 20 meters from cliffs (including hovering less than 30 seconds if necessary to count eggs) and no farther than 200 meters from cliffs, depending on safety considerations (Pagel et al., 2010).

Grubb et al. (2007) experimented with multiple exposure to two helicopter types and concluded that flights with a variety of approach distances (800, 400, 200, and 100 meters) had no effect on golden eagle nesting success or productivity rates within the same year or on rates of renewed nesting activity the following year when compared to the corresponding data for the larger population of non-manipulated nest sites (Grubb et al., 2007). They found no significant, detrimental, or disruptive responses in 303 helicopter passes near eagles. In 227 AH-64 Apache helicopter experimental passes (considered twice as loud as a civilian helicopter also tested) at test distances of 0 to 800 meters from nesting golden eagles, 96 percent resulted in no more response than watching the helicopter pass. No greater reactions occurred until after hatching, when individual golden eagles exhibited five flatten and three fly behaviors at three nest sites. The flight responses occurred at approach distances of 200 meters or less. No evidence was found of an effect on subsequent nesting activity or success, despite many of the helicopter flights occurring during early courtship and nest repair. None of these responding pairs failed to successfully fledge young, except for one nest that fell later in the season. Excited, startled, or avoidance reactions were never observed. Non-attending eagles or those perched

away from the nests were more likely to fly than attending eagles but also with less potential consequence to nesting success (Grubb et al., 2007). Golden eagles appeared to become less responsive with successive exposures. Much of helicopter sound energy may be at a lower frequency than golden eagles can hear, thus reducing expected impacts. Grubb et al. (2007) found no relationship between helicopter sound levels and corresponding eagle ambient behaviors or limited responses, which occurred throughout recorded test levels (76.7 to 108.8 dB, unweighted). The authors thought that the lower than expected behavioral responses may be partially due to the fact that the golden eagles in the area appear acclimated to the current high levels of outdoor recreational, including aviation, activities. Based on the results of this study, the authors recommended reduction of existing buffers around nest sites to 100 meters (325 feet) for helicopter activity.

Richardson and Miller (1997) reviewed buffers as protection for raptors against disturbance from ground-based human activities. No consideration of aircraft activity was included. They stressed a clear line of sight as an important factor in a raptor's response to a particular disturbance, with visual screening allowing a closer approach of humans without disturbing a raptor. A Geographical Information Systems (GIS)-assisted viewshed approach combined with a designated buffer zone distance was found to be an effective tool for reducing potential disturbance to golden eagles from ground-based activities (Richardson and Miller, 1997). They summarized recommendations that included a median 0.5-mile (800-meter) buffer (range = 200 to 1,600 m, n = 3) to reduce human disturbances (from ground-based activities such as rock climbing, shooting, vehicular activity) around active golden eagle nests from February 1 to August 1 based on an extensive review of other studies (Richardson and Miller, 1997). Physical characteristics (i.e., screening by topography or vegetation) are important variables to consider when establishing buffer zones based on raptors' visual- and auditory-detection distances (Richardson and Miller, 1997).

Osprey

A study by Trimper et al. (1998), in Goose Bay, Labrador, Canada, focused on the reactions of nesting osprey (*Pandion haliaetus*) to military overflights by CF-18 Hornets. Reactions varied from increased alertness and focused observation of planes to adjustments in incubation posture. No overt reactions (e.g., startle response, rapid nest departure) were observed as a result of an overflight. Young nestlings crouched as a result of any disturbance until 1 to 2 weeks prior to fledging. Helicopters, human presence, float planes, and other ospreys elicited the strongest reactions from nesting ospreys. These responses included flushing, agitation, and aggressive displays. Adult osprey showed high nest occupancy rates during incubation regardless of external influences. The osprey observed occasionally stared in the direction of the flight before the flight was audible to the observers. The birds may have been habituated to the noise of the flights; however, overflights were strictly controlled during the experimental period. Strong reactions to float planes and helicopters may have been due to the slower flight and therefore longer duration of visual rather than noise-related stimuli.

Red-tailed Hawk

Anderson et al. (1989) conducted a study that investigated the effects of low-level helicopter overflights on 35 red-tailed hawk (*Buteo jamaicensis*) nests. Some of the nests had not been flown over prior to the study. The hawks that were naïve (i.e., not previously exposed) to helicopter flights exhibited stronger avoidance behavior (nine of 17 birds flushed from their nests) than those that had experienced prior overflights. The overflights did not appear to affect nesting success in either study group. These findings were consistent with the belief that red-tailed hawks habituate to low-level air traffic, even during the nesting period.

Upland Game Birds

Greater Sage-grouse

The greater sage-grouse (*Centrocercus urophasianus*) was recently designated as a candidate species for protection under the Endangered Species Act after many years of scrutiny and research (USFWS, 2010). This species is a widespread and characteristic species of the sagebrush ecosystems in the Intermountain West. Greater sage-grouse, like most bird species, rely on auditory signals as part of mating. Sage-grouse are known to select their leks based on acoustic properties and depend on auditory communication for mating behavior (Braun, 2006). Although little specific research has been completed to determine what, if any, effects aircraft overflight and sonic booms would have on the breeding behavior of this species, factors that may be important include season and time of day, altitude, frequency and duration of overflights, and frequency and loudness of sonic booms.

Booth et al. (2009) found, while attempting to count sage-grouse at leks (breeding grounds) using light sport aircraft at 150 meters (492 feet) to 200 meters (650 feet) AGL, that sage-grouse flushed from leks on 12 of 14 approaches when the airplane was within 656 to 984 feet (200 to 300 meters) of the lek. In the other two instances, male grouse stopped exhibiting breeding behavior and crouched but stayed on the lek. The time to resumption of normal behavior after disturbance was not provided in this study. Strutting ceased around the time when observers on the ground heard the aircraft. The light sport aircraft could be safely operated at very low speed (68 kilometers per hour or 37 nautical miles per hour) and was powered by either a two-stroke or a four-stroke engine. It is unclear how the response to the slow-flying light sport aircraft used in the study would compare to overflight by military jets, operating at speeds 10 to 12 times as great as the aircraft used in the study. It is possible that response of the birds was related to the slow speed of the light sport aircraft causing it to resemble an aerial predator.

Other studies have found disturbance from energy operations, and other nearby development have adversely affected breeding behavior of greater sage-grouse (Holloran, 2005; Doherty, 2008; Walker et al., 2007; Harju et al., 2010). These studies do not specifically address overflights, do not isolate noise disturbance from other types of disturbance (e.g., visual, human presence), and do not generally provide noise levels or qualification of the noise source (e.g., continuous or intermittent, frequency, duration).

Because so few studies have been done on greater sage-grouse response to overflights or sonic booms, research on related species may be applicable. Observations on other upland game bird species include those on the behavior of four wild turkey (*Meleagris gallapavo*) hens on their nests during real and simulated sonic booms (Manci et al., 1988). Simulated sonic booms were produced by firing 5-centimeter mortar shells from a location 300 to 500 feet from the nest of each hen. Recordings of pressure for both types of booms measured 0.4 to 1.0 pounds per square foot at the observer's location.

Turkey hens exhibited only a few seconds of head alert behavior at the sound of the sonic boom. No hens were flushed off the nests, and productivity estimates revealed no effect from the booms. Twenty brood groups were also subjected to simulated sonic booms. In no instance did the hens desert any poults (young birds), and the poults did not scatter or desert the rest of the brood group. In every observation, the brood group returned to normal activity within 30 seconds after a simulated sonic boom. Similarly, researchers cited in Manci et al. (1988) observed no difference in hatching success of bobwhite quail (*Colinus virginianus*) exposed to simulated sonic booms of 100 to 250 micronewtons per square meter.

Migratory Waterfowl

Fleming et al. (1996) conducted a study of caged American black ducks (*Anas rubripes*) and found that noise had negligible energetic and physiologic effects on adult waterfowl. Measurements included body weight, behavior, heart rate, and enzymatic activity. Experiments also showed that adult ducks exposed to high noise events acclimated rapidly and showed no effects.

The study also investigated the reproductive success of captive ducks and indicated that duckling growth and survival rates at Piney Island, North Carolina, were lower than those at a background location. In contrast, observations of several other reproductive indices (i.e., pair formation, nesting, egg production, and hatching success) showed no difference between Piney Island and the background location. Potential effects on wild duck populations may vary because wild ducks at Piney Island have presumably acclimated to aircraft overflights. It was not demonstrated that noise was the cause of adverse impacts. A variety of other factors, such as weather conditions, drinking water and food availability and variability, disease, and natural variability in reproduction, could explain the observed effects. Fleming noted that drinking water conditions (particularly at Piney Island) deteriorated during the study, which could have affected the growth of young ducks. Further research would be necessary to determine the cause of any reproductive effects (Fleming et al., 1996).

Another study by Conomy et al. (1998) exposed previously unexposed ducks to 71 noise events per day that equaled or exceeded 80 dB. It was determined that the proportion of time black ducks reacted to aircraft activity and noise decreased from 38 percent to 6 percent in 17 days and remained stable at 5.8 percent thereafter. In the same study, the wood duck did not appear to habituate to aircraft disturbance. This supports the notion that animal response to aircraft noise is species-specific. Because a startle response to aircraft noise can result in flushing from nests, migrants and animals living in areas with high concentrations of predators would be the most vulnerable to experiencing effects of lowered birth rates and recruitment over time. Species that are subjected to infrequent overflights do not appear to habituate to overflight disturbance as readily.

Black brant (*Branta bernicla nigricans*) studied in the Alaska Peninsula were exposed to jets and propeller aircraft, helicopters, gunshots, people, boats, and various raptors. Jets accounted for 65 percent of all the disturbances. Humans, eagles, and boats caused a greater percentage of brant to take flight. Brant demonstrated a markedly greater reaction to Bell-206-B helicopter flights than fixed wing, single-engine aircraft flights (Ward et al., 1986).

The presence of humans and low-flying helicopters in the Mackenzie Valley North Slope area did not appear to affect the population density of Lapland longspurs (*Calcarius lapponicus*), but the experimental group was shown to have reduced hatching and fledging success and higher nest abandonment. Human presence appeared to have a greater impact than fixed-wing aircraft on the incubating behavior of the black brant, common eider (*Somateria mollissima*), and Arctic tern (*Sterna paradisaea*) (Gunn and Livingston, 1974).

Gunn and Livingston (1974) found that waterfowl and seabirds in the Mackenzie Valley and North Slope of Alaska and Canada became acclimated to float plane disturbance over the course of three days. Additionally, it was observed that potential predators (e.g., the bald eagle) caused a number of birds to leave their nests. Non-breeding birds were observed to be more reactive than breeding birds. Waterfowl were affected by helicopter flights, while snow geese (*Chen caerulescens*) were disturbed by Cessna 185 flights. The geese flushed when the planes were less than 1,000 feet AGL compared to higher flight

elevations. An overall reduction in flock sizes was observed. It was recommended that aircraft flights be reduced in the vicinity of premigratory staging areas.

Manci et al. (1988) reported that waterfowl were particularly disturbed by aircraft noise. The most sensitive appeared to be snow geese. Canada geese (*Branta Canadensis*) and snow geese were thought to be more sensitive to aircraft noise than other animals such as turkey vultures (*Cathartes aura*), coyotes (*Canis latrans*), and raptors (Edwards et al., 1979).

Wading and Shorebirds

Black et al. (1984) studied the effects of low-altitude (less than 500 feet AGL) military training flights with sound levels from 55 to 100 dB on wading bird colonies (i.e., the great egret [Ardea alba], snowy egret [Egretta thula] tricolored heron [Egretta tricolor], and little blue heron [Egretta caerulea]). The training flights involved three or four aircraft and occurred once or twice per day. This study concluded that the reproductive activity--including nest success, nestling survival, and nestling chronology--was independent of F-16 overflights. Dependent variables were more strongly related to ecological factors, including location and physical characteristics of the colony and climatology.

Another study on the effects of circling fixed-wing aircraft and helicopter overflights on wading bird colonies found that at altitudes of 195 to 390 feet, there was no reaction in nearly 75 percent of the 220 observations. Approximately 90 percent displayed no reaction or merely looked toward the direction of the noise source. Another 6 percent stood up, 3 percent walked from the nest, and 2 percent flushed (but were without active nests) and returned within 5 minutes (Kushlan, 1978). Apparently, non-nesting wading birds had a slightly higher incidence of reacting to overflights than nesting birds. Seagulls observed roosting near a colony of wading birds in another study remained at their roosts when subsonic aircraft flew overhead (Burger, 1981). Colony distribution appeared to be most directly correlated to available wetland community types and was found to be distributed randomly with respect to military training routes. These results suggest that wading bird species' presence was most closely linked to habitat availability and that they were not affected by low-level military overflights (U.S. Air Force, 2000).

Burger (1986) studied the response of migrating shorebirds to human disturbance and found that shorebirds did not fly in response to aircraft overflights but did flush in response to more localized intrusions (i.e., humans and dogs on the beach). Burger (1981) studied the effects of noise from JFK Airport in New York on herring gulls (*Larus argentatus*) that nested less than 1 kilometer from the airport. Noise levels over the nesting colony were 85 to 100 dB on approach and 94 to 105 dB on takeoff. Generally, there did not appear to be any prominent adverse effects of subsonic aircraft on nesting, although some birds flushed when the Concorde flew overhead and, when they returned, engaged in aggressive behavior. Groups of gulls tended to loaf in the area of the nesting colony, and these birds remained at the roost when the Concorde flew overhead. Up to 208 of the loafing gulls flew when supersonic aircraft flew overhead. These birds would circle around and immediately land in the loafing flock (U.S. Air Force, 2000).

In 1970, sonic booms were potentially linked to a mass hatch failure of sooty terns (*Onychoprion fuscatus*) on the Dry Tortugas (Austin et al., 1970). The cause of the failure was not certain, but it was conjectured that sonic booms from military aircraft or an overgrowth of vegetation were factors. In the previous season, sooty terns were observed to have reacted to sonic booms by rising in a "panic flight," circling over the island, then usually settling down on their eggs again. Hatching that year was normal. Following the 1969 hatch failure, excess vegetation was cleared, and measures were taken to reduce

supersonic activity. The 1970 hatch appeared to proceed normally. A colony of noddies (*Anous* spp.) on the same island hatched successfully in 1969, the year of the sooty tern hatch failure.

Subsequent laboratory tests of exposure of eggs to sonic booms and other impulsive noises (Cottereau, 1972; Cogger and Zegarra, 1980; Bowles et al., 1991, 1994) failed to show adverse effects on hatching of eggs. A structural analysis by Ting et al. (2002) showed that, even under extraordinary circumstances, sonic booms would not damage an avian egg.

Burger (1981) observed no effects of subsonic aircraft on herring gulls in the vicinity of JFK International Airport. The Concorde aircraft did cause more nesting gulls to leave their nests (especially in areas of higher density of nests), causing the breakage of eggs and the scavenging of eggs by intruder prey. Clutch sizes were observed to be smaller in areas of higher-density nesting (presumably due to the greater tendency for panic flight) than in areas where there were fewer nests.

Raptors

In a literature review of raptor responses to aircraft noise, Manci et al. (1988) found that most raptors did not show a negative response to overflights. When negative responses were observed, they were predominantly associated with rotor-winged aircraft or jet aircraft that were repeatedly passing within 0.5 mile of a nest.

Ellis et al. (1991) performed a study to estimate the effects of low-level military jet aircraft and mid- to high-altitude sonic booms (both actual and simulated) on nesting peregrine falcons (*Falco peregrinus*) and seven other raptors (common black-hawk [*Buteogallus anthracinus*], Harris' hawk [*Parabuteo unicinctus*], zone-tailed hawk [*Buteo albonotatus*], red-tailed hawk, golden eagle, prairie falcon [*Falco mexicanus*], and bald eagle). They observed responses to test stimuli, determined nest success for the year of the testing, and evaluated site occupancy the following year. Both long- and short-term effects were noted in the study. The results reported the successful fledging of young in 34 of 38 nest sites (including all eight species) subjected to low-level flight and/or simulated sonic booms. Twenty-two of the test sites were revisited in the following year, and observations of pairs or lone birds were made at all but one nest. Nesting attempts were underway at 19 of 20 sites that were observed long enough to be certain of breeding activity. Reoccupancy and productivity rates were within or above expected values for self-sustaining populations.

Short-term behavior responses were also noted. Overflights at a distance of 150 meters or less produced few significant responses and no severe responses. Typical responses consisted of crouching or, very rarely, flushing from the perch site. Significant responses were most evident before egg laying and after young were "well grown." Incubating or brooding adults never burst from the nest, thus preventing egg breaking or knocking chicks out of the nest. Jet passes and sonic booms often caused noticeable alarm; however, significant negative responses were rare and did not appear to limit productivity or re-occupancy. Due to the locations of some of the nests, some birds may have been habituated to aircraft noise. There were some test sites located at distances far from zones of frequent military aircraft usage, and the test stimuli were often closer, louder, and more frequent than would be likely for a normal training situation (Ellis et al., 1991).

Manci et al. (1988) noted that a female northern harrier (*Circus hudsonius*) was observed hunting on a bombing range in Mississippi during bombing exercises. The harrier was apparently unfazed by the exercises, even when a bomb exploded within 200 feet. In a similar case of habituation/non-disturbance, a study on the Florida snail-kite (*Rostrhamus sociabilis*) stated that the greatest reaction by

that species to overflights (approximately 98 dB) was "watching the aircraft fly by." No detrimental impacts to distribution, breeding success, or behavior were noted.

Fish and Amphibians

The effects of overflight noise on fish and amphibians have not been well studied, but conclusions regarding their expected responses have involved speculation based upon known physiologies and behavioral traits of these taxa (Gladwin et al., 1988). Although fish do startle in response to noise from low-flying aircraft, and probably to the shadows of aircraft, they have been found to habituate to the sound and overflights. Amphibians that respond to low frequencies and those that respond to ground vibration, such as spadefoot toads, may be affected by noise.

Summary

Some physiological/behavioral responses such as increased hormonal production, increased heart rate, and reduction in milk production have been described in a small percentage of studies. A majority of the studies focusing on these types of effects have reported short-term or no effects.

The relationships between physiological effects and how species interact with their environments have not been thoroughly studied. Therefore, the larger ecological context issues regarding physiological effects of jet aircraft noise (if any) and resulting behavioral pattern changes are not well understood.

Animal species exhibit a wide variety of responses to noise. It is therefore difficult to generalize animal responses to noise disturbances or to draw inferences across species because reactions to jet aircraft noise appear to be species-specific. Consequently, some animal species may be more sensitive than other species and/or may exhibit different forms or intensities of behavioral responses. For instance, wood ducks appear to be more sensitive and more resistant to acclimation to jet aircraft noise than Canada geese in one study. Similarly, wild ungulates seem to be more easily disturbed than domestic animals.

The literature does suggest that common responses include the "startle" or "fright" response and, ultimately, habituation. It has been reported that the intensities and durations of the startle response decrease with the number and frequency of exposures, suggesting no long-term adverse effects. The majority of the literature suggests that domestic animal species (e.g., cows, horses, chickens) and wildlife species exhibit adaptation, acclimation, and habituation after repeated exposure to jet aircraft noise and sonic booms.

Animal responses to aircraft noise appear to be somewhat dependent on, or influenced by, the size, shape, speed, proximity (vertical and horizontal), engine noise, color, and flight profile of the aircraft. Helicopters also appear to induce greater intensities and durations of disturbance behavior as compared to fixed-wing aircraft. Some studies showed that animals that had been previously exposed to jet aircraft noise exhibited greater degrees of alarm and disturbance to other objects creating noise, such as boats, people, and objects blowing across the landscape. Other factors influencing response to jet aircraft noise may include wind direction, speed, and local air turbulence; landscape structures (i.e., amount and type of vegetative cover); and, in the case of bird species, whether the animals are in the incubation/nesting phase.

A1.4 References

- Aazh, H., Knipper, M., Danesh. A.A., Cavanna, A.E., Andersson, L., Paulin J., Schecklmann, M., Heinonen-Guzejev, M., Moore, B.C.J. (2018). Insights from the Third International Conference on hyperacusis: Causes, evaluation, diagnosis, and treatment. *Noise Health* 2018; XX.
- Acoustical Society of America. (1980). San Diego workshop on the interaction between manmade noise and vibration and arctic marine wildlife. Acoustical Society of America, Am. Inst. Physics, New York. 84 pp.
- ACRP (Airport Cooperative Research Program). (2008). *Effects of aircraft noise: Research update on selected topics, a synthesis of airport practice.* Research Sponsored by the Federal Aviation Administration, Transportation Research Board.
- American Academy of Otolaryngology--Head and Neck Surgery. (2018) Hyperacusis: An increased sensitivity to everyday sounds. Accessed on September 18, 2018: https://www.entnet.org//content/hyperacusis-increased-sensitivity-to-everyday sounds
- American Speech-Language-Hearing Association. (2005). Guidelines for addressing acoustics in educational settings. ASHA Working Group on Classroom Acoustics.
- Ancona, C., Badaloni, C., Fano, V., Fabozzi, T., Forastiere, F. & Perucci, C. (2010). "Aircraft noise and blood pressure in the populations living near the Ciampino Airport in Rome." *Epidemiology*: November 2009, Volume 20, Issue 6, pp. S125-S126.
- Anderson, D.E., Rongstad, O.J., & Mytton, W.R. (1989). "Responses of nesting red-tailed hawks to helicopter overflights." *The Condor*. Vol. 91, pp. 296-299.
- Andersson, H., Jonsson, L., & Ogren, M. (2013). "Benefit measures for noise abatement: calculations for road and rail traffic noise." *Eur. Transp. Res. Rev.* 5:135–148.
- ANR. (2010). "German airport association criticizes Greiser studies for lack of peer review." Airport Noise Report. Vol. 22, p. 58, May 14, 2010.
- ANSI. (1985). Specification for sound level meters, ANSI S1.4A-1985 amendment to ANSI S1.4-1983.

 ______. (1988). Quantities and procedures for description and measurement of environmental sound: Part 1, ANSI S12.9-1988.
- ______. (1996). Quantities and procedures for description and measurement of environmental sound: Part 4, ANSI S12.9-1996.
- ______. (2010). Acoustical performance criteria, design requirements, and guidelines for schools, Part 1: permanent schools, ANSI S12.60-2010/Part 1.
- ______. (2008). Methods for estimation of awakenings with outdoor noise events heard in homes, ANSI S12.9-2008/Part6.
- Austin, Jr., O.L., Robertson, Jr., W.B, & Wolfenden, G.E. (1970). "Mass hatching failure in dry tortugas sooty terns (*Sterna fuscata*)." *Proceedings of the XVth International Ornithological Congress*. The Hague, Netherlands, August 30 through September 5.

- Babisch, W. B., Houthuijs, D., Pershagen, G., Katsouyanni, K., Velonakis, M., Cadum, E., & Jarup, L. (2008). "Hypertension and exposure to noise near airports: Results of the HYENA study." 9th international congress on noise as a public health problem (ICBEN) 2008. Foxwoods, CT.
- Babisch, W., Houthuijs, D., Pershagen, G., Cadum, E., Katsouyanni, K., & Velonakis, M. (2009).

 Annoyance due to aircraft noise has increased over the years--results of the HYENA study.

 Environ Int. 2009;35(8):1169-76.
- Babisch, W. & Kamp, I. V. (2009). "Exposure-response relationship of the association between aircraft noise and the risk of hypertension." *Noise Health* 2009;11:161-8.
- Babisch, W. (2013). "Exposure-response curves of the association between transportation noise and cardiovascular diseases An overview." First International Congress on Hygiene and Preventive Medicine, Belgrade, Serbia, 22-24 May 2013.
- Babisch, W., Pershagen, G., Selander, J., Houthuijs, D., Breugelmans, O., Cadum, E., Vigna-Taglianti, F., Katsouyanni, K., Haralabidis, A.S., Dimakopoulou, K., Sourtzi, P., Floud, S., & Hansell, A.L., et al. (2013). "Noise annoyance A modifier of the association between noise level and cardiovascular health?" *Science of the Total Environment*. Volumes 452-453, pp. 50-57, May 2013.
- Basner, M., Buess, H., Miller, U., Platt, G., & Samuel, A. (2004). "Aircraft noise effects on sleep: Final results of DLR laboratory and field studies of 2,240 polysomnographically recorded subject nights." Internoise 2004, The 33rd International Congress and Exposition on Noise Control Engineering, August 22-25.
- Basner, M., Muller, U., & Elmenhorst, E.M. (2011). "Single and combined effects of air, road, and rail traffic noise on sleep and recuperation." Sleep 2011. 34: 11–23.
- Berglund, B., & Lindvall, T., eds. (1995). Community Noise. Jannes Snabbtryck, Stockholm, Sweden.
- Beutel, M. E., Jünger, C., Klein, E. M., Wild, P., Lackner, K., Blettner, M., & Münzel, T. (2016). Noise annoyance is associated with depression and anxiety in the general population: The contribution of aircraft noise. *PLoS ONE*, 11(5), e0155357. Accessed online at: http://doi.org/10.1371/journal.pone.0155357
- Beyer, D. (1983). Studies of the effects of low-flying aircraft on endocrinological and physiological parameters in pregnant cows. Veterinary College of Hannover, München, Germany.
- Black D., Black, J., Issarayangyun, T. & Samuels, S. (2007). "Aircraft noise exposure and residents' stress and hypertension: A public health perspective for airport environmental management." *J Air Transp Manag* 2007;13:264-76.
- Black, B., Collopy, M., Percivial, H., Tiller, A., & Bohall, P. (1984). *Effects of low-altitude military training flights on wading bird colonies in Florida*. Florida Cooperative Fish and Wildlife Research Unit, Technical Report No. 7.
- Booth, D.T., Cox, S.E., Simonds, G.E., & Elmore, B. (2009). "Efficacy of two variations on an aerial lekcount method for greater sage-grouse. *The Western North American Naturalist*. Volume 69(3). Pp. 413-416.

- Bond, J., Winchester, C.F., Campbell, L.E., & Webb, J.C. (1963). *The effects of loud sounds on the physiology and behavior of swine*. U.S. Department of Agriculture Agricultural Research Service Technical Bulletin 1280.
- Bowles, A.E. (1995). "Responses of wildlife to noise." In Knight, R.L., & Gutzwiller, K.J., eds., *Wildlife and recreationists: Coexistence through management and research*. Island Press, Covelo, California, pp. 109-156.
- Bowles, A.E., Book, C., & Bradley, F. (1990). "Effects of low-altitude aircraft overflights on domestic turkey poults." HSD-TR-90-034.
- Bowles, A.E., Awbrey, F.T., & Jehl, J.R. (1991). "The effects of high-amplitude impulsive noise on hatching success: A reanalysis of the sooty tern incident." HSD-TP-91-0006.
- Bowles, A.E., Tabachnick, B., & Fidell, S. (1993). *Review of the effects of aircraft overflights on wildlife*. Volume II of III, Technical Report. National Park Service, Denver, Colorado.
- Bowles, A.E., Knobler, M., Sneddon, M.D., & Kugler, B.A. (1994). "Effects of simulated sonic booms on the hatchability of white leghorn chicken eggs." AL/OE-TR-1994-0179.
- Bradley, J.S. (1985). "Uniform derivation of optimum conditions for speech in rooms." National Research Council, Building Research Note, BRN 239. Ottawa, Canada.
- Bradley, J.S. (1993). "NRC-CNRC NEF validation study: Review of aircraft noise and its effects." National Research Council Canada and Transport Canada, Contract Report A-1505.5.
- Bronzaft, A.L., & McCarthy, D.P. (1975). "The effects of elevated train noise on reading ability" *J. Environment and Behavior.* 7, pp. 517-527.
- Brown, A.L., & Camp, I. van. (2005). Towards a design for studies of response to a change in noise exposure. *Proceedings InterNoise05*. Rio De Janiero, Brazil.
- Braun, C.E. (2006). *A blueprint for sage-grouse conservation and recovery*. Unpublished report. Grouse, Inc. Tucson, Arizona.
- Brisbane Airport Corporation. (2007). New parallel runway draft environmental impact statement/major development plan. September 2007. Volume D—Airspace, Chapter 7: Human Impact Assessment. Retrieved May 7, 2018:

 https://bne.com.au/sites/default/files/docs/BNR_EIS_MDP_D7_Health_Impact_Assess.pdf
- Brown, A.L. (1990). "Measuring the effect of aircraft noise on sea birds." *Environment International*. Vol. 16, pp. 587-592.
- Bullock, T.H., Donning, D.P., & Best, C.R. (1980). "Evoked brain potentials demonstrate hearing in a manatee (*trichechus inunguis*)." *Journal of Mammals*. Vol. 61, No. 1, pp. 130-133.
- Burger, J. (1981). "Behavioral responses of herring gulls (*Larus argentatus*) to aircraft noise." *Environmental Pollution* (Series A), Vol. 24, pp. 177-184.
- Burger, J. (1986). "The effect of human activity on shorebirds in two coastal bays in Northeastern United States." *Environmental Conservation*. Vol. 13, No. 2, pp. 123-130.
- Cantrell, R.W. (1974). "Prolonged exposure to intermittent noise: Audiometric, biochemical, motor, psychological, and sleep effects." *Laryngoscope*, Supplement I, Vol. 84, No. 10, p. 2.

- Casady, R.B., & Lehmann, R.P. (1967). "Response of farm animals to sonic booms." *Studies at Edwards Air Force Base, June 6-30, 1966*. Interim Report, U.S. Department of Agriculture, Beltsville, Maryland, p. 8.
- Cawthorn, J.M., Dempsey, T.K., & Deloach, R. (1978). "Human response to aircraft noise-induced building vibration." NASA Langley Research Center.
- CHABA (Committee on Hearing, Bioacoustics, and Biomechanics). (1977). *Guidelines for preparing environmental impact statements on noise*. Report of Working Group 69 on evaluation of environmental impact of noise. Office of Naval Research, Contract No. N00014-75-C-0406. National Research Council, National Academy of Science, Washington, DC.
- Clark, C., Crombie, R., Head, J., van Kamp, I., van Kempen, E., & Stansfeld, S. A. (2012). "Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample From the RANCH Project." *American Journal of Epidemiology*. 176(4), pp. 327–337
- Clark, C., Martin, R., van Kempen, E., Alfred, T., Head, J., Davies, H.W., Haines, M.M., Barrio, I.L., Matheson, M., & Stansfeld, S.A. (2005). "Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project," *American Journal of Epidemiology*. 163, pp. 27-37.
- Clark, C., Stansfeld, S.A., & Head, J. (2009). "The long-term effects of aircraft noise exposure on children's cognition: findings from the UK RANCH follow-up study." In *Proceedings of the Euronoise Conference*. Edinburgh, Scotland, October.
- Cogger, E.A. & Zegarra, E.G. (1980). "Sonic booms and reproductive performance of marine birds: Studies on domestic fowl as analogues." In Jehl, J.R., & Cogger, C.F., eds., *Potential effects of space shuttle sonic booms on the biota and geology of the California Channel Islands: Research reports.*" San Diego State University Center for Marine Studies, Technical Report No. 80-1.
- Cohen, S., Glass, D.C., & Singer, J. E. (1973). "Apartment noise, auditory discrimination, and reading ability in children." *Journal of Experimental Social Psychology*. 9, pp. 407-422.
- Cohen, S., Evans, G.W., & Krantz, D. S., et al. (1980). "Physiological, motivational, and cognitive effects of aircraft noise on children: Moving from laboratory to field." *American Psychologist*, Vol. 35, pp. 231-243.
- Cohen, S., Evans, G.W., & Krantz, D. S., et al. (1981). "Aircraft noise and children: longitudinal and cross-sectional evidence on adaptation to noise and the effectiveness of noise abatement." *Journal of Personality and Social Psychology*. 40, pp. 331-345.
- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences (2nd ed.)*. New Jersey, Lawrence Erlbaum.
- Conomy, J.T., Dubovsky, J.A., Collazo, J.A., & Fleming, W.J. (1998). "Do black ducks and wood ducks habituate to aircraft disturbance?" *Journal of Wildlife Management*. Vol. 62, No. 3, pp. 1135-1142.
- Correia, A.W., Peters, J.L., Levy, J.I., Melly, S., & Dominici, F. (2013). "Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study." British Medical Journal. 2013;347:f5561 doi: 10.1136/bmj.f5561, 8 October.

- Cottereau, P. (1972). "Les incidences du 'bang' des avions supersoniques sur les productions et la vie animals." *Revue Medicine Veterinaire*. Vol. 123, No. 11, pp. 1367-1409.
- _____. (1978). "The effect of sonic boom from aircraft on wildlife and animal husbandry." In Effects of noise on wildlife. Academic Press, New York, New York, pp. 63-79.
- Crombie, R., et al. (2011). "Environmental noise exposure, early biological risk and mental health in nine to ten year old children: A cross-sectional field study." *Environmental health: a global access science source.*
- Crowley, R.W. (1973). "A case study of the effects of an airport on land values." *Journal of transportation economics and policy*. Vol. 7, May.
- Davies, H., & van Kamp, I. (2012). "Noise and cardiovascular disease: A review of the literature 2008-2011." Noise Health. 2012
- Davis, R.W., Evans, W.E., & Wursig, B., eds. (2000). *Cetaceans, sea turtles, and seabirds in the northern Gulf of Mexico: Distribution, abundance, and habitat associations*. Volume II of Technical Report, prepared by Texas A&M University at Galveston and the National Marine Fisheries Service. U.S. Department of the Interior, Geological Survey, Biological Resources Division, USGS/BRD/CR-1999-0006 and Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, Louisiana, OCS Study MMS 2000-003.
- DNWG (Defense Noise Working Group). (2013). Department of Defense Noise Working Group. *Technical Bulletin. Noise-Induced Hearing Impairment*. December 2013.
- DoD. (2009a). "Improving aviation noise planning, analysis, and public communication with supplemental metrics." Defense Noise Working Group Technical Bulletin, December.
- ______. (2009b). "Sleep disturbance from aviation noise." Defense Noise Working Group Technical Bulletin, November.
- . (2009c). Memorandum from the Under Secretary of Defense, Ashton B. Carter, re: "Methodology for assessing hearing loss risk and impacts in DoD environmental impact analysis." June 16, 2009.
- ______. (2012). "Noise-induced hearing impairment." Defense Noise Working Group Technical Bulletin. July 2012.
- Doherty, K.E. (2008). Sage-grouse and energy development: Integrating science with conservation planning to reduce impacts. Presented as a dissertation to the University of Montana, Missoula, Montana. Autumn.
- Dooling, R.J. (1978). "Behavior and psychophysics of hearing in birds." *J. Acoust. Soc. Am.* Supplement 1, Vol. 65, p. S4.
- Dreger, S., Meyer, N., Fromme, H., & Bolte, G. (2015). "Environmental noise and incident mental health problems: A prospective cohort study among school children in Germany." *Environ Res.* 2015 Nov; 143(Pt A):49-54. doi: 10.1016/j.envres.2015.08.003. Epub 2015 Oct 1
- Dufour, P.A. (1980). *Effects of noise on wildlife and other animals: Review of research since 1971*. U.S. Environmental Protection Agency.

- Eagan, M.E., Anderson, G., Nicholas, B., Horonjeff, R., & Tivnan, T. (2004). "Relation between aircraft noise reduction in schools and standardized test scores." Washington, DC, FICAN.
- Edmonds, L.D., Layde, P.M., & Erickson, J.D. (1979). "Airport noise and teratogenesis." *Archives of environmental health*. Vol. 34, No. 4, pp. 243-247.
- Edwards, R.G., Broderson, A.B., Harbour, R.W., McCoy, D.F., & Johnson, C.W. (1979). *Assessment of the environmental compatibility of differing helicopter noise certification standards*. U.S. Department of Transportation, Washington, D.C. 58 pp.
- Eldred, K, & von Gierke, H. (1993). "Effects of noise on people." *Noise News International*. 1(2), pp. 67-89, June.
- Ellis, D.H., Ellis, C.H., & Mindell, D.P. (1991). "Raptor responses to low-level jet aircraft and sonic booms." *Environmental Pollution*. Vol. 74, pp. 53-83.
- ENNAH. (2013). *Final report ENNAH European network on noise and health*. EU Project No. 226442, FP-7-ENV-2008-1.
- ERCD. (2014). "Aircraft noise, sleep disturbance and health effects." CAP 1164, Environmental Research and Consultancy Department, UK Civil Aviation Authority.
- Eriksson, C., Rosenlund, M., Pershagen, G., Hilding, A., Ostenson, C.G., & Bluhm, G. (2007). "Aircraft noise and incidence of hypertension." *Epidemiology* (Cambridge, MA). 2007;18(6): pp. 716-721.
- Eriksson, C., Bluhm, G., Hilding, A., Ostenson, C.G., & Pershagen, C.G. (2010). "Aircraft noise and incidence of hypertension: gender specific effects." *Environ Res* 2010; 110: pp. 764-772
- Evans, G.W., Hygge, S., & Bullinger, M. (1995). "Chronic noise and psychological stress." *J. Psychological Science*. 6, pp. 333-338.
- Evans, G.W., Bullinger, M., & Hygge, S. (1998). "Chronic noise exposure and physiological response: A prospective study of children living under environmental stress." *Psychological Science*, Vol. 9, pp. 75-77.
- Evrard, A.S., Bouaoun, L., Champelovier, P., Lambert, J., & Laumon, B. (2015). "Does exposure to aircraft noise increase the mortality from cardiovascular disease in the population living in the vicinity of airports? Results of an ecological study in France." *Noise Health* 2015;17:328-336
- FAA. (1985). Airport Improvement Program (AIP) Handbook. Order No. 100.38.
- FICAN. (1997). "Effects of aviation noise on awakenings from sleep." June 1997.
- ______. (2002). "FICAN on the findings of the Minneapolis-St. Paul International Airport (MSP) low-frequency noise (LFN) expert panel." FICAN, Washington, DC.
- ______. (2007). "Findings of the FICAN pilot study on the relationship between aircraft noise reduction and changes in standardised test scores." Washington, DC, FICAN.
- ______. (2008). "FICAN recommendation for use of ANSI standard to predict awakenings from aircraft noise." December.
- ______. (2018). *Research review of selected aviation noise issues*. Prepared by Federal Interagency Committee on Aviation Noise. April 2018.

- FICON. (1992). "Federal agency review of selected airport noise analysis issues." August.
- Fidell, S., Silvati, L., Pearsons, K., Lind, S., & Howe, R. (1999). "Field study of the annoyance of low-frequency runway sideline noise." *J Acoust Soc Am.* 106(3), pp. 1408-1415.
- Fidell, S., & Silvati, L. (2004). "Parsimonious alternatives to regression analysis for characterizing prevalence rates of aircraft noise annoyance." *Noise Control Eng. J.* 52, pp. 56–68.
- Fidell, S., Pearsons, K., Howe, R., Tabachnick, B., Silvati, L., & Barber, D.S. (1994). *Noise-induced sleep disturbance in residential settings*. AL/OE-TR-1994-0131, Wright Patterson AFB, OH, Armstrong Laboratory, Occupational & Environmental Health Division.
- Fidell, S., Pearsons, K., Tabachnick, B., Howe, R., Silvati, L., & Barber, D.S. (1995a). "Field study of noise-induced sleep disturbance." *Journal of the Acoustical Society of America*. Vol. 98, No. 2, pp. 1025-1033.
- Fidell, S., Howe, R., Tabachnick, B., Pearsons, K., & Sneddon, M. (1995b). *Noise-induced sleep disturbance in residences near two civil airports*. NASA Contractor Report 198252.
- Fidell, S., Tabachnick, B., & Silvati, L. (1996). Effects of military aircraft noise on residential property values. BBN Systems and Technologies, BBN Report No. 8102.
- Fidell, S., Tabachnick, B., Mestre, V., & Fidell, L. (2013). "Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels." *J Acoust Soc Am* 134(5):3645-3653.
- Fields, J.M., & Powell, C.A. (1987). "Community reactions to helicopter noise: Results from an experimental study." *J Acoust Soc Am*. 82(2), pp. 479-492.
- Finegold, L.S., Harris, C.S., & von Gierke, H.E. (1994). "Community annoyance and sleep disturbance: updated criteria for assessing the impact of general transportation noise on people." *Noise Control Engineering Journal*. Vol. 42, No. 1, pp. 25-30.
- Finegold, L.S. (2010). "Sleep disturbance due to aircraft noise exposure." *Noise Health*. 2010;12(47):88-94. doi:10.4103/1463-1741.63208.
- Fleischner, T.L., & Weisberg, S. (1986). "Effects of jet aircraft activity on bald eagles in the vicinity of Bellingham International Airport." Unpublished Report, DEVCO Aviation Consultants, Bellingham, WA.
- Fleming, W.J., Dubovsky, J., & Collazo, J. (1996). An assessment of the effects of aircraft activities on waterfowl at Piney Island, North Carolina. Final report by the North Carolina Cooperative Fish and Wildlife Research Unit, North Carolina State University, prepared for the Marine Corps Air Station, Cherry Point.
- Floud, S., Vigna-Taglianti, F., Hansell, A., Blangiardo, M., Houthuijs, D., Breugelmans, O., et al. (2011). "Medication use in relation to noise from aircraft and road traffic in six European countries: results of the HYENA study." Occupational and environmental medicine. 2011;68(7):518-524.
- Floud, S. (2013). "Exposure to aircraft and road traffic noise and associations with heart disease and stroke in six European countries: A cross-sectional study." *Environmental Health*. 2013, 12:89.
- Frankel, M., (1991). "Aircraft noise and residential property values: Results of a survey study," *The Appraisal Journal*, Jan. 1991, pp. 96–108.

- Franssen, E.A., van Wiechen, C.M., Nagelkerke, J.J., & Lebret, E. (2004). "Aircraft noise around a large international airport and its Impact on general health and medication use." *Occupational and Environmental Medicine*. Vol. 61, No. 5. May 2004, pp. 405-413
- Fraser, J.D., Franzel, L.D., & Mathiesen, J.G. (1985). "The impact of human activities on breeding bald eagles in north-central Minnesota." Journal of Wildlife Management. Vol. 49, pp. 585-592.
- Frerichs, R.R., Beeman, B.L., & Coulson, A.H. (1980). "Los Angeles Airport noise and mortality: Faulty analysis and public policy." *Am. J. Public Health*. Vol. 70, No. 4, pp. 357-362, April 1980.
- Gladwin, D.N., Manci, K.M, & Villella, R. (1988). "Effects of aircraft noise and sonic booms on domestic animals and wildlife." *Bibliographic Abstracts, NERC-88/32*. U.S. Fish and Wildlife Service National Ecology Research Center, Fort Collins, Colorado.
- Green, K.B., Pasternack, B.S., & Shore, R.E. (1982). Effects of aircraft noise on reading ability of schoolage children. *Archives of Environmental Health*. Vol. 37, No. 1, pp. 24-31.
- Griefahn, B. (1978). "Research on noise disturbed sleep since 1973." *Proceedings of Third Int. Cong. on Noise as a Public Health Problem*. pp. 377-390 (as appears in NRC-CNRC NEF Validation Study: (2) Review of Aircraft Noise and Its Effects, A-1505.1, p. 31).
- Griefahn, B., and Muzet, A. (1978). "Noise-induced sleep disturbances and their effects on health." Journal of Sound and Vibration. 1978;59(1): pp. 99-106.
- Grubb, T.G., Delaney, D.K., & Bowerman, W.W. (2007). *Investigating potential effects of heli-skiing on golden eagles in the Wasatch Mountains, Utah.* Final report to the Wasatch-Cache National Forest. November 10, 2007.
- Grubb, T.G., & King, R.M. (1991). "Assessing human disturbance of breeding bald eagles with classification tree models." *Journal of Wildlife Management*. Vol. 55, No. 3, pp. 500-511.
- Gunn, W.W.H., & Livingston, J.A. (1974). "Disturbance to birds by gas compressor noise simulators, aircraft, and human activity in the MacKenzie Valley and the North Slope." Chapters VI-VIII, *Arctic Gas Biological Report*, Series Vol. 14.
- Guski, R. (2004). How to forecast community annoyance in planning noisy facilities. *Noise and Health*, Vol. 6 (22), pp 59-64.
- Haines, M.M., Stansfeld, S.A., Job, R.F., Berglund, B., & Head, J. (2001a). Chronic aircraft noise exposure, stress responses, mental health and cognitive performance in school children. *Psychological Medicine*. Vol. 31, pp. 265 277, February.
- Haines, M.M., Stansfeld, S.A., Brentnall, S., Head, J., Berry, B., Jiggins, M., & Hygge, S. (2001b). The West London schools study: The effects of chronic aircraft noise exposure on child health. *Psychological Medicine*. Vol. 31, pp. 1385-1396. November.
- Haines, M.M., Stansfeld, S.A., Job, R.F., Berglund, B., & Head, J. (2001c). A follow-up study of effects of chronic aircraft noise exposure on child stress responses and cognition. *International journal of epidemiology.* 2001;30(4): pp. 839-845.
- Haines, M.M., Stansfeld, S.A., Head, J., & Job, R.F.S. (2002). "Multilevel modelling of aircraft noise on performance tests in schools around Heathrow Airport London." *Journal of Epidemiology and Community Health*. 56, pp. 139-144.

- Hansell, A.L., Blangiardo, M., Fortunato, L., Floud, S., de Hoogh, K., Fecht, D., Ghosh, R.E., Laszlo, H.E., Pearson, C., Beale, L., Beevers, S., Gulliver, J., Best, N., Richardson, S., & Elliott, P. (2013). "Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study." *British Medical Journal*. 2013;347:f5432 doi: 10.1136/bmj.f5432, 8 October.
- Hanson, C.E., King, K.W., Eagan, M.E., & Horonjeff, R.D. (1991). "Aircraft noise effects on cultural resources: Review of technical literature." Report No. HMMH-290940.04-1, available as PB93-205300, sponsored by National Park Service, Denver CO.
- Haralabidis, A.S., Dimakopoulou, K., Vigna-Taglianti, F., Giampaolo, M, Borgini, A., Dudley, M.-L., Pershagen, G., Bluhm, G., Houthuijs, D., Babisch, W., Velonakis, M., Katsouyanni, K., and Jarup, L. (2008). "Acute effects of night-time noise exposure on blood pressure in populations living near airports." Published for the HYENA Consortium. *European heart journal*. doi:10.1093/eurheartj/ehn013.
- Haralabidis, A.S., Dimakopoulou, K., & Velonaki, V., et al. (2011). "Can exposure to noise affect the 24 h blood pressure profile? Results from the HYENA study." *J Epidemiol Community Health*. 2011;65(6):535-541.
- Harju, S.M., Dzialak, M.R., Taylor, R.C., Hayden-Wing, L.D., & Winstead, J.B. (2010). "Thresholds and time lags in effects of energy development on greater sage-grouse populations." *Journal of wildlife management*. Volume 74, Number 3: 437–448.
- Harris, C.M. (1979). Handbook of noise control. McGraw-Hill Book Co.
- Hjortebjerg, D., Andersen, A. M. N., Christensen, J. S., Ketzel, M., Raaschou-Nielsen, O., Sunyer, J., & Sørensen, M. (2016). "Exposure to road traffic noise and behavioral problems in 7-year-old children: A cohort study." *Environmental Health Perspectives*. 124(2), 228–234. http://doi.org/10.1289/ehp.1409430.]
- Higgins, T.H. (1974). "The response of songbirds to the seismic compression waves preceding sonic booms." *Natl. Tech. Inf. Serv.*, Springfield, VA, FAA-RD-74-78. 28 pp.
- Hodgdon, K., Atchley, A., & Bernhard, R. (2007). *Low frequency noise study*. PARTNER-COE-2007-001 Federal Aviation Administration, Washington DC.
- Holloran, M.J. (2005). "Greater sage-grouse (*Centrocercus urophasianus*) population response to natural gas field development in western Wyoming." A dissertation submitted to the Department of Zoology and Physiology and the Graduate School of the University of Wyoming, Laramie, Wyoming. December.
- Holt J.B., Zhang, X., Sizov, N., & Croft, J.B. (2015). "Airport noise and self-reported sleep insufficiency, United States, 2008 and 2009." *Preventing Chronic Disease 2015*;12:140551
- Horne, J.A., Pankhurst, F.L., Reyner, L.A., Hume, K., & Diamond, I.D. (1994). "A field study of sleep disturbance: Effects of aircraft noise and other factors on 5,742 nights of actimetrically monitored sleep in a large subject sample." *American Sleep Disorders Association and Sleep Research Society: Sleep*, Vol. 17, No. 2, 1994, pp. 146–195.
- Huang, D., Song, X., Cui, Q., Tian, J., Wang, Q., & Yang, K. (2015). "Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16,784 participants." Noise Health 2015;17:93-7

- Huss, A., Spoerri, A., Egger, M., & Röösli, M., "Aircraft noise, air pollution, and mortality from myocardial infarction," *Epidemiology*, Vol. 21, No. 6, November, 2010, pp. 829-836.
- Hwang, B., Chang, T., & Cheng, K., et al. (2012). "Gene—environment interaction between angiotensinogen and chronic exposure to occupational noise contribute to hypertension." *Occup Environ Med* 2012;69:236-242.
- Hygge, S., Evans, G.W., & Bullinger, M. (2002). "A prospective study of some effects of aircraft noise on cognitive performance in school children." *Psychological Science* Vol. 13, pp. 469-474.
- Ising, H., Rebentisch, E., Poustka, F., & Curio, I. (1990). "Annoyance and health risk caused by military low-altitude flight noise." *Int Arch Occup Environ Health*. 1990;62(5):357-363.
- Ising, H., Joachims, Z., Babisch, W., & Rebentisch, E. (1999). "Effects of military low-altitude flight noise I temporary threshold shift in humans." *Zeitschrift fur Audiologie* (Germany), Vol. 38, No. 4, pp. 118-127.
- ISO. (1989). "Evaluation of human exposure to whole-body vibration Part 2: Continuous and shock-induced vibration in buildings (1 to 80 Hz)." International Organization for Standardization, Standard 2631-2, February 1989.
- ______. (2016). ISO 1996-1. International standard, acoustics, description, measurement, and assessment of environmental noise Part 1: Basic quantities and assessment procedures. Third edition, 03-01-2016.
- Jarup, L., Dudley, M.L., Babisch, W., Houthuijs, D., Swart, W., Pershagen, G., Bluhm, G., Katsouyanni, K., Velonakis, M., Cadum, E., & Vigna-Taglianti, F. (2005). "Hypertension and exposure to noise near airports (HYENA): Study design and noise exposure assessment." *Environ Health Perspect* 2005, 113: 1473–1478. Published for the HYENA Consortium.
- Jarup, L., Dudley, M., Babisch, W., Houthuijs, D., Swart, W., & Pershagen, G. (2007). "Hypertension and exposure to noise near airports--the HYENA study." *Epidemiology*. 2007;18(5):S137.
- Jarup L., W. Babisch, D. Houthuijs, G. Pershagen, K. Katsouyanni, E. Cadum, M-L. Dudley, P. Savigny,
 I. Seiffert, W. Swart, O. Breugelmans, G. Bluhm, J. Selander, A. Haralabidis, K. Dimakopoulou, P. Sourtzi, M. Velonakis, and F. VignaTaglianti, on behalf of the HYENA study team. 2008.
 "Hypertension and Exposure to Noise near Airports--the HYENA study," Environ Health Perspect 2008, 116:329-33.
- Jehl, J.R., & Cooper, C.F., eds. (1980). *Potential effects of space shuttle sonic booms on the biota and geology of the California Channel Islands*. Technical Report No. 80-1, Center for Marine Studies, San Diego State University, San Diego, CA.
- Jones, F.N. & Tauscher, J. (1978). "Residence under an airport landing pattern as a factor in teratism." Archives of Environmental Health, pp. 10-12, January/February.
- Kim, S.J., Chai, S.K., Lee, K.W., Park, J.B., Min, K.B., & Kil, H.G., et al. (2014). "Exposure-response relationship between aircraft noise and sleep quality: A community-based cross-sectional study." Osong Public Health and Research Perspectives. 5(2);108-114.

- Kishikawa, H., Matsui, T., Uchiyama, I., Miyakawa, M., Hiramatsu, K., Stansfeld, S.A. (2006). The development of Weinstein's noise sensitivity scale. *Noise Health 8*, pp. 154-160 [serial online] Accessed on September 18, 2018: http://www.noiseandhealth.org/text.asp?2006/8/33/154/34703
- Klatte, M., Bergström, K., & Lachmann, T. (2013). "Does noise affect learning? A short review on noise effects on cognitive performance in children." *Frontiers in Psychology*. 4:578.
- Kovalcik, K., & Sottnik, J. (1971). "Vplyv Hluku Na Mliekovú Úzitkovost Kráv [The effect of noise on the milk efficiency of cows]." *Zivocisná Vyroba*. Vol. 16, Nos. 10-11, pp. 795-804.
- Kryter, K.D., & Poza, F. (1980). "Effects of noise on some autonomic system activities." *J. Acoust. Soc. Am.* Vol. 67, No. 6, pp. 2036-2044.
- Kushlan, J.A. (1978). "Effects of helicopter censuses on wading bird colonies." *Journal of Wildlife Management*. Vol. 43, No. 3, pp. 756-760.
- Kwak, K.M., Ju, Y.S., Kwon, Y.J., Chung, Y.K., Kim, B.K., Kim, H., & Youn, K. (2016). "The effect of aircraft noise on sleep disturbance among the residents near a civilian airport: a cross-sectional study." *Annals of Occupational and Environmental Medicine*. 2016;28(1):38.
- Laszlo, H., McRobie, E., Stansfeld, S., & Hansell, A. (2012). "Annoyance and other reaction measures to changes in noise exposure--A review." *Sci Total Environ*. 2012;435:551-562.
- Lazarus, H. (1990). "New methods for describing and assessing direct speech communication under disturbing conditions." *Environment International*. 16: 373-392.
- LeBlanc, M.M., Lombard, C., Lieb, S., Klapstein, E., & Massey, R. (1991). "Physiological responses of horses to simulated aircraft noise." U.S. Air Force, NSBIT Program for University of Florida.
- Lercher, P., Evans, G.W., Meis, M., & Kofler, K. (2002). "Ambient neighbourhood noise and children's mental health." *J. Occupational and Environmental Medicine*. 59, 380-386.
- Lercher, P., Evans, G.W., & Meis, M. (2003). "Ambient noise and cognitive processes among primary school children." *J. Environment and Behavior*. 35, 725-735.
- Leventhall, H.G. (2004). "Low frequency noise and annoyance." Noise Health. 2004;6:59-72
- Lind, S.J., Pearsons, K., & Fidell, S. (1998). "Sound insulation requirements for mitigation of aircraft noise impact on highline school district facilities." Volume I, BBN Systems and Technologies, BBN Report No. 8240.
- Lipscomb, C., (2003). "Small cities matter, too: The impacts of an airport and local infrastructure on housing prices in a small urban city." *Review of Urban and Regional Development Studies*. Vol. 15, No. 3, Nov. 2003, pp. 255–273.
- Ludlow, B., & Sixsmith, K. (1999). Long-term effects of military jet aircraft noise exposure during childhood on hearing threshold levels. *Noise and health*. 5:33-39.
- Lukas, J.S. (1978). "Noise and sleep: A literature review and a proposed criterion for assessing effect." In Daryl N. May, ed., *Handbook of noise assessment.*, Van Nostrand Reinhold Company: New York, NY, pp. 313-334.

- Lynch, T.E., & Speake, D.W. (1978). "Eastern wild turkey behavioral responses induced by sonic boom." In *Effects of noise on wildlife*. Academic Press, New York, NY, pp. 47-61.
- Manci, K.M., Gladwin, D.N., Villella, R., & Cavendish, M.G. (1988). *Effects of aircraft noise and sonic booms on domestic animals and wildlife: A literature synthesis*. U.S. Fish and Wildlife Service National Ecology Research Center, Ft. Collins, CO, NERC-88/29. 88 pp.
- Márki, F. (2013). Outcomes of EU COSMA (Community Oriented Solutions to Minimise Aircraft Noise Annoyance) Project. Budapest University of Technology and Economics, London, May 2013.
- Matsui, T., Uehara, T., Miyakita, T., Hiramatsu, K., & Yamamoto, T. (2008). "Dose-response relationship between hypertension and aircraft noise exposure around Kadena airfield in Okinawa." 9th International Congress on Noise as a Public Health Problem (ICBEN). 2008. Foxwoods, CT.
- Meecham, W.C., & Shaw, N. (1979). "Effects of jet noise on mortality rates." *British journal of audiology*. 77-80. August 1979.
- Metro-Dade County. (1995). *Dade County manatee protection plan*. DERM Technical Report 95-5, Department of Environmental Resources Management, Miami, Florida.
- Miedema, H.M., & Oudshoorn, C.G. (2001). "Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals." *Environmental Health Perspectives* 109.4: 409–416.
- Miedema, M.E., & Vos, H. (2003). "Noise sensitivity and reactions to noise and other environmental conditions." *J. Acoust. Soc. Am.* 113(3), March 2003, pp. 1492 to 1504.
- Miedema, H.M., & Vos, H. (1998). "Exposure-response relationships for transportation noise." *J. Acoust. Soc. Am.* 104(6): pp. 3432–3445, December 1998.
- Michalak, R., Ising, H., & Rebentisch, E. (1990). "Acute circulatory effects of military low-altitude flight noise." *International Archives of Occupational and Environmental Health*. Vol. 62, No. 5, pp. 365-372.
- Miller, N., Sizov, N., Lor, S., & Cantor, D. (2014). "New research on community reaction to aircraft noise in the United States." 11th International Congress on Noise as a Public Health Problem (ICBEN).

 Nara, Japan
- Munzel, T., Gori, T., Babisch, W., & Basner, M. (2014). "Cardiovascular effects of environmental noise exposure." *European heart journal* 35(13):829-836.
- Muzet, A. (2007). "Environmental noise, sleep and health." Sleep medicine reviews. 2007;11:135-42.
- Myrberg, A.A., Jr. (1978). "Ocean noise and the behavior of marine animals: relationships and implications." pp. 169-208 in Fletcher, J.L., and Busnel, R.G., eds. *Effects of noise on wildlife*. Academic Press, New York.
- National Academies of Sciences, Engineering, and Medicine. (2017). *Assessing aircraft noise conditions affecting student learning–Case studies*. Washington, DC: The National Academies Press. https://doi.org/10.17226/24941.
- National Park Service. (1994). "Report to congress: Report on effects of aircraft overflights on the national park system." Prepared pursuant to Public Law 100-91, The National Parks Overflights Act of 1987. September 12, 1994.

- North Atlantic Treaty Organization. (2000). "The effects of noise from weapons and sonic booms, and the impact on humans, wildlife, domestic animals and structures." Final report of the Working Group Study Follow-up Program to the Pilot Study on Aircraft Noise. Report No. 241, June.
- Nelson, J.P. (1978). *Economic analysis of transportation noise abatement*. Ballenger Publishing Company, Cambridge, MA.
- _____. (1980). "Airports and property values: a survey of recent evidence." *Journal of transport economics and policy*. 14, pp. 37-52.
- ______. (2004). "Meta-analysis of airport noise and hedonic property values--problems and prospects." *Journal of transport economics and policy*. Volume 38, Part 1, pp. 1-28, January.
- in *Hedonic methods on housing markets*. Andrea Barazini, Jose Ramerez, Caroline Schaerer and Philippe Thalman, eds., pp. 57-82, Springer.
- Newman, J.S., & Beattie, K.R. (1985). *Aviation noise effects*. U.S. Department of Transportation, Federal Aviation Administration Report No. FAA-EE-85-2.
- Nixon, C.W., West, D.W., & Allen, N.K. (1993). "Human auditory responses to aircraft flyover noise." In Vallets, M., ed., *Proceedings of the 6th International Congress on Noise as a Public Problem*. Vol. 2, Arcueil, France: INRETS.
- Öhrström, E., Hadzibajramovic, E., Holmes, M., & Svensson, H. (2006). "Effects of road traffic noise on sleep: studies on children and adults." *Journal of environmental psychology*. 26, pp. 116-126.
- Ollerhead, J.B., Jones, C.J., Cadoux, R.E., Woodley, A., Atkinson, B.J., Horne, J.A., Pankhurst, F., Reyner, L., Hume, K.I., Van, F., Watson, A., Diamond, I.D., Egger, P., Holmes, D., & McKean, J. (1992). Report of a field study of aircraft noise and sleep disturbance. Commissioned by the UK Department of Transport for the 36 UK Department of Safety, Environment and Engineering, London, England: Civil Aviation Authority, December 1992.
- Pagel, J.E., Whittington, D.M., & Allen, G.T. (2010). *Interim golden eagle inventory and monitoring protocols, and other recommendations*. Division of Migratory Bird Management, U.S. Fish and Wildlife Service. February 2010.
- Parker, J.B., & Bayley, N.D. (1960). *Investigations on effects of aircraft sound on milk production of dairy cattle, 1957-58.* U.S. Agricultural Research Services, U.S. Department of Agriculture, Technical Report Number ARS 44 60.
- Passchier-Vermeer, W., & Passchier, W.F. (2000). "Noise exposure and public health." *Environ health perspect*. 2000;108 Suppl. 1:123-131.
- Pater, L.D., Delaney, D.K., Hayden, T.J., Lohr, B., & Dooling, R. (1999). *Assessment of training noise impacts on the red-cockaded woodpecker: Preliminary results Final report.* Technical Report 99/51, U.S. Army Corps of Engineers, CERL, Champaign, IL.
- Pearsons, K.S., Barber, D.S., & Tabachnick, B.G. (1989). *Analyses of the predictability of noise-induced sleep disturbance*. USAF Report HSD-TR-89-029, October 1989.
- Perron, S., Tétreault, L.F., King, N., Plante, C., & Smargiassi, A. (2012). "Review of the effect of aircraft noise on sleep disturbance in adults." *Noise health*. 2012;14(57):58-67.

- Pikilidou, M.I., Scuteri, A., Morrell, C., & Lakatta, E.G. (2013). "The burden of obesity on blood pressure is reduced in older persons: The Sardinia study." *Obesity* (Silver Spring), Jan 21(1).
- Plotkin, K.J., Sharp, B.H., Connor, T., Bassarab, R., Flindell, I., & Schreckenberg, D. (2011). *Updating and supplementing the day-night average sound level (DNL)*. Wyle Report 11-04, DOT/FAA/AEE/2011-03, June 2011.
- Powell, C.A., & Shepherd, K.P. (1989). "Aircraft noise induced building vibration and effects on human response." *InterNoise '89*. Newport Beach, CA, (December 1989):567-572.
- Pujol, S., et al. (2014). "Association between ambient noise exposure and school performance of children living in an urban area: a cross-sectional population-based study." *Journal of Urban Health* 91.2: pp. 256-271.
- Pulles, M.P.J., Biesiot, W., & Stewart, R. (1990). "Adverse effects of environmental noise on health: An interdisciplinary approach." *Environment International*. Vol. 16, pp. 437-445.
- Rhee, M.Y., Kim, H.Y., Roh, S.C., Kim, H.J., & Kwon, H.J. (2008). "The effects of chronic exposure to aircraft noise on the prevalence of hypertension." *Hypertension research*. 31(4), pp. 641-647.
- Richardson, W.J., Greene, C.R., Jr., Malme, C.I., & Thomson, D.H. (1995). *Marine mammals and noise*. Academic Press, San Diego, CA.
- Richardson, C.T., & Miller, C.K. (1997). "Recommendations for protecting raptors from human disturbance: A review." Wildlife society bulletin. Volume 25, Number 3: 634-638.
- Rosenblith, W.A., Stevens, K.N., & Staff of Bolt, Beranek, and Newman. (1953). *Handbook of acoustic noise control, Vol. 2, noise and man.* USAF Report WADC TR-52-204.
- Rosengren A., Wilhelmson, L., & Wedel, H. (1992). "Coronary heart disease, cancer and mortality in male middle-aged light smokers." *Journal of internal medicine*. Volume 231, Issue 4, pp.357–362, April 1992.
- Rosenlund, M., Berglind, N., Bluhm, G., Jarup, L., & Pershagen, G. (2001). "Increased prevalence of hypertension in a population exposed to aircraft noise." *Occupational and Environmental Medicine*. Vol. 58, No. 12, pp. 769 773. December 2001.
- Schomer, P.D., & Neathammer, R.D. (1985). *The role of vibration and rattle in human response to helicopter noise.* CERL N-85/14 , 1-162. USA-CERL.
- Schomer, P.D., & Neathammer, R.D. (1987). "The role of helicopter noise-induced vibration and rattle in human response." *J Acoust Soc Am.* 81(4), pp. 966-976.
- Schreckenberg, D., & Guski, R. (2015). "Transportation noise effects in communities around German airports Summaries of the sub-studies of the NORAH Project." Summary (in English) of the study "Verkehrslärmwirkungen im Flughafenumfeld."
- Schreckenberg, D., Meis, M., Kahl, C., Peschel, C., & Eikmann, T. (2010). "Aircraft noise and quality of life around Frankfurt Airport." *Int. J. Environ. Res. Public Health*. 2010, 7, pp. 3382-3405.
- Schreckenberg, D., & Schuemer, R. (2010) "The impact of acoustical, operational and non-auditory factors on short-term annoyance due to aircraft noise," *Internoise 2010*, Lisbon, Portugal, June 2010.

- Schultz, T.J. (1978). "Synthesis of social surveys on noise annoyance." *J. Acoust. Soc. Am.* Vol. 64, No. 2, pp. 377-405, August 1978.
- Seidler, A., Wagner, M., Schubert, M., Dröge, P., Römer, K.I., & Pons-Kühnemann, J., et al. (2016). "Aircraft, road and railway traffic noise as risk factors for heart failure and hypertensive heart disease—A case-control study based on secondary data." *International journal of hygiene and environmental health.* 219(8): pp. 749-758.
- Seidler, A., Wagner, M., Schubert, M., Dröge, P., & Pons-Kühnemann, J., et al. (2016). "Myocardial infarction risk due to aircraft, road and rail traffic noise Results of a case-control study based on secondary data." *Deutsches Ärzteblatt International*. 113, pp. 407-414.
- Sharp, B., Connor, T., McLaughlin, D., Clark, C., Stansfeld, S., & Hervey, J. (2013). "Assessing aircraft noise conditions affecting student learning, ACRP Web Document 16. Accessed at:

 http://www.trb.org/Aviation1/Blurbs/170328.aspx Airport Cooperative Research Program, Transportation Research Board, Washington, DC.
- Sharp, B.H., & Plotkin, K.J. (1984). "Selection of noise criteria for school classrooms." Wyle Research Technical Note TN 84-2 for the Port Authority of New York and New Jersey, October.
- Simmons, J.A. (1983). "Localization of sounds and targets in air and water by echolocating animals." (Abstract only). *J. Acoust. Soc. Am.* 73(Suppl.1):18.
- Smith, D.G., Ellis, D.H., & Johnston, T.H. (1988). "Raptors and aircraft" In Glinski, R.L., Gron-Pendelton, B., Moss, M.B., LeFranc, M.N., Jr., Millsap, B.A., & Hoffman, S.W., eds. *Proceedings of the Southwest Raptor Management Symposium*. National Wildlife Federation, Washington, D.C., pp. 360-367.
- Stansfeld, S.A., Berglund, B., Clark, C., Lopez-Barrio, I., Fischer, P., Öhrström, E., Haines, M.M., Head, J., Hygge, S., van Kamp, I., & Berry, B.F., on behalf of the RANCH study team. (2005). "Aircraft and road traffic noise and children's cognition and health: a cross-national study." *Lancet*. 365, 1942-1949.
- Stansfeld, S.A. & Clark, C. (2015). "Health effects of noise exposure in children." *Current environmental health reports.* 2(2): pp. 171-178.
- Stansfeld, S.A., Clark, C., Cameron, R.M., Alfred, T., Head, J., Haines, M.M., van Kamp, I., van Kampen, E., & Lopez-Barrio, I. (2009). "Aircraft and road traffic noise exposure and children's mental health," *Journal of environmental psychology*. 29, pp. 203-207.
- Stansfeld, S.A., & Crombie, R. (2011). "Cardiovascular effects of environmental noise: Research in the United Kingdom." *Noise Health.* 2011;13(52): pp. 229-233.
- Stevens, K.N., Rosenblith, W.A., & Bolt, R.H. (1953). "Neighborhood Reaction to Noise: A Survey and Correlation of Case Histories (A)," *J. Acoust. Soc. Am.* Vol. 25, 833.
- Stusnick, E., D.A. Bradley, J.A. Molino, and G. DeMiranda. 1992. *The effect of onset rate on aircraft noise annoyance, Volume 2: Rented home experiment.* Wyle Laboratories Research Report WR 92-3, March.
- Sutherland, L.C., Fidell, S., & Harris, A. (2000). *Finding of the low-frequency noise expert panel*. September 30, 2000.

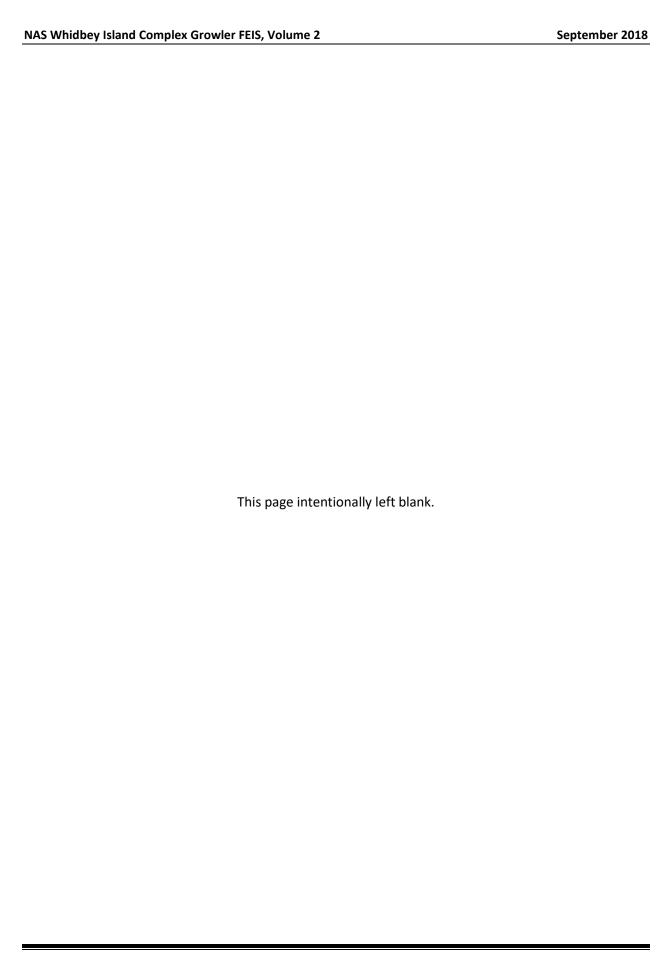
- Sutherland, L.C. (1990). Assessment of potential structural damage from low altitude subsonic aircraft. Wyle Research Report 89-16 (R).
- Tetra Tech, Inc. (1997). Final environmental assessment issuance of a letter of authorization for the incidental take of marine mammals for programmatic operations at Vandenberg Air Force Base, California." July 1997.
- Ting, C., Garrelick, J., & Bowles, A. (2002). "An analysis of the response of sooty tern eggs to sonic boom overpressures." *J. Acoust. Soc. Am.*, Vol. 111, No. 1, Pt. 2, pp. 562-568.
- Tomkins, J., Topham, N., Twomey, J., & Ward, R. (1998). "Noise versus access: The impact of an airport in an urban property market." *Urban studies*, Vol. 35, No. 2, 1998, pp. 243–258.
- Trimmel, M., et al. (2012). "Effects of low intensity noise from aircraft or from neighbourhood on cognitive learning and electrophysiological stress responses." *International journal of hygiene and environmental health*. 215.6: pp. 547-554.
- Trimper, P.G., Standen, N.M., Lye, L.M., Lemon, D., Chubbs, T.E., & Humphries, G.W. (1998). "Effects of low-level jet aircraft noise on the behavior of nesting osprey." *Journal of applied ecology*. Vol. 35, pp. 122-130.
- United Kingdom Department for Education and Skills. (2003). *Building Bulletin 93, acoustic design of schools--A design guide*. London: The Stationary Office.
- U.S. Air Force. (1993). *The impact of low altitude flights on livestock and poultry, Air Force handbook.* Volume 8, Environmental Protection, January 28, 1993.
- . (1994a). "Air Force position paper on the effects of aircraft overflights on large domestic stock." Approved by HQ USAF/CEVP, October 3, 1994.
- ______. (1994b). "Air Force position paper on the effects of aircraft overflights on domestic fowl." Approved by HQ USAF/CEVP, October 3, 1994.
- ______. (2000). Preliminary final supplemental environmental impact statement for Homestead Air Force Base closure and reuse. Prepared by SAIC, July 20, 2000.
- U.S. Department of Labor. (1971). "Occupational Safety & Health Administration, occupational noise exposure." Standard No. 1910.95.
- USEPA. (1974). "Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety." U.S. Environmental Protection Agency Report 550/9-74-004, March 1974.
- _____. (1978). "Protective Noise Levels," Office of Noise Abatement and Control, Washington, D.C. U.S. Environmental Protection Agency Report 550/9-79-100, November 1978.
- ______. (1982). "Guidelines for Noise Impact Analysis," U.S. Environmental Protection Agency Report 550/9-82-105, April 1982.
- USFWS (U.S. Fish and Wildlife Service). (2010). 12-Month Findings for Petitions to List the Greater Sage-Grouse (Centrocercus urophasianus) as Threatened or Endangered. Federal Register, Volume 75, Number 55: 13910-14014. March 23, 2010.

- . (1998). "Consultation Letter #2-22-98-I-224 explaining restrictions on endangered species required for the proposed force structure and foreign military sales actions at Cannon AFB, NM" to Alton Chavis HQ ACC/CEVP at Langley AFB from Jennifer Fowler-Propst, USFWS Field Supervisor, Albuquerque, NM, December 14, 1998.
- U.S. Forest Service. (1992). *Report to congress: Potential impacts of aircraft overflights of national forest system wilderness.* U.S. Government Printing Office 1992-0-685-234/61004, Washington, D.C.
- Van den Berg, F., Verhagen, C., & Uitenbroek, D. (2015). "The relation between self-reported worry and annoyance from air and road traffic." *International journal of environmental research and public health.* 12(3), pp. 2486–2500. http://doi.org/10.3390/ijerph120302486
- van Kempen, E.M.M, Hanneke, K., Hendriek, C., Boshuizen, H.C., Ameling, C.B., Staatsen, B.A.M., & de Hollander, A.E.M. (2002). "The association between noise exposure and blood pressure and ischemic heart disease: A meta-analysis." *Environmental health perspectives*. Vol. 110, No. 3, March 2002.
- van Kempen, E.M.M. (2006). "Noise exposure and children's blood pressure and heart rate: the RANCH project." *Occup Environ Med.* 2006;63: pp. 632–639
- Vienneau, D., Perez, L., Schindler, C., Probst-Hensch, N., & Röösli, M. (2013). "The relationship between traffic noise exposure and ischemic heart disease: a meta-analysis." *Proceedings of InterNoise* 2013. September 2013.
- von Gierke, H.E., & Ward, W.D. (1991). "Criteria for noise and vibration exposure." *Handbook of acoustical measurements and noise control*. Harris, C.M., ed., third edition.
- Walker, B.L., Naugle, D.E., & Doherty, K.E. (2007). *Greater sage-grouse population response to energy development and habitat loss* (pre-print version). Wildlife Biology Program, College of Forestry and Conservation, University of Montana. Missoula, Montana. June 2007.
- Ward, D.H., & Stehn, R.A. (1990). Response of brant and other geese to aircraft disturbances at Izembek Lagoon, Alaska. Final Technical Report, Number MMS900046. Performing Organization: Alaska Fish and Wildlife Research Center, Anchorage, AK, Sponsoring Organization: Minerals Management Service, Anchorage, AK, Alaska Outer Continental Shelf Office.
- Ward, D.H., Taylor, E.J., Wotawa, M.A., Stehn, R.A., Derksen, D.V., & Lensink, C.J. (1986). *Behavior of Pacific black brant and other geese in response to aircraft overflights and other disturbances at Izembek Lagoon, Alaska*. 1986 Annual Report, p. 68.
- Weisenberger, M.E., Krausman, P.R., Wallace, M.C., De Young, D.W., & Maughan, O.E. (1996). "Effects of simulated jet aircraft noise on heart rate and behavior of desert ungulates." *Journal of Wildlife Management*, Vol. 60, No. 1, pp. 52-61.
- Wesler, J.E. (1977). "Concorde operations at Dulles International Airport." *NOISEXPO '77*. Chicago, IL, March 1977.
- Wesler, J.E. (1986). *Priority selection of schools for soundproofing*. Wyle Research Technical Note TN 96-8 for the Port Authority of New York and New Jersey, October 1986.
- WHO. (1999). "Guidelines for Community Noise," Berglund, B., T. Lindvall, and D. Schwela, eds.

 . (2000). *Guidelines for community noise*. World Health Organization.

(2009). Night noise guidelines for Europe. World Health Organization.	
(2011). Burden of disease from environmental noise. World Health Organiza	ition.
Wyle Laboratories. (1970). Supporting information for the adopted noise regulations for airports. Wyle Report WCR 70-3(R).	California

Zaharna, M., & Guilleminault, C. (2010). "Sleep, noise and health: review." Noise health. 2010.


NAS Whidbey Island Complex Growler FEIS, Volume 2

September 2018

NAS Whidbey Island Complex Growler FEIS, Volume 2	September 2018
This page intentionally left blank.	
The page mentany research.	
A1-92	

Appendix A2

Annual Flight Operations for School Cases (Average Year) and High-Tempo FCLP Year Cases

List of Tables

Table A2-1	Detailed Annual School Day Flight Operations for the Average Year Baseline Scenario	A2-7
Table A2-2	Detailed Annual School Day Flight Operations for the Average Year No Action Alternative	A2-8
Table A2-3	Detailed Annual School Day Flight Operations for the Average Year Alternative 1A	A2-9
Table A2-4	Detailed Annual School Day Flight Operations for the Average Year Alternative 18	A2-10
Table A2-5	Detailed Annual School Day Flight Operations for the Average Year Alternative 1C	A2-11
Table A2-6	Detailed Annual School Day Flight Operations for the Average Year Alternative 1D	A2-12
Table A2-7	Detailed Annual School Day Flight Operations for the Average Year Alternative 1E	A2-13
Table A2-8	Detailed Annual School Day Flight Operations for the Average Year Alternative 2A	A2-14
Table A2-9	Detailed Annual School Day Flight Operations for the Average Year Alternative 2B	A2-15
Table A2-10	Detailed Annual School Day Flight Operations for the Average Year Alternative 2C	A2-16
Table A2-11	Detailed Annual School Day Flight Operations for the Average Year Alternative 2D	A2-17
Table A2-12	Detailed Annual School Day Flight Operations for the Average Year Alternative 2E	A2-18
Table A2-13	Detailed Annual School Day Flight Operations for the Average Year Alternative 3A	A2-19
Table A2-14	Detailed Annual School Day Flight Operations for the Average Year Alternative 3B	A2-20
Table A2-15	Detailed Annual School Day Flight Operations for the Average Year Alternative 3C	A2-21
Table A2-16	Detailed Annual School Day Flight Operations for the Average Year Alternative 3D	A2-22
Table A2-17	Detailed Annual School Day Flight Operations for the Average Year Alternative 3E	A2-23
Table A2-18	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Year Baseline Alternative	A2-24
Table A2-19	Detailed Annual School Day Flight Operations for the High Tempo FCLP Year Year No Action Alternative	

Table A2-20	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Year Alternative 1A	A2-26
Table A2-21	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1B	A2-27
Table A2-22	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1C	A2-28
Table A2-23	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1D	A2-29
Table A2-24	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1E	A2-30
Table A2-25	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2A	A2-31
Table A2-26	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2B	A2-32
Table A2-27	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2C	A2-33
Table A2-28	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2D	A2-34
Table A2-29	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2E	A2-35
Table A2-30	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3A	A2-36
Table A2-31	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3B	A2-37
Table A2-32	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3C	A2-38
Table A2-33	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3D	A2-39
Table A2-34	Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3E	A2-40
Table A2-35	Summary of Annual Flight Operations for the High-Tempo FCLP Year Baseline Scenario	A2-41
Table A2-36	Detailed Annual Flight Operations for the High-Tempo FCLP Year Baseline Scenario	A2-42
Table A2-37	Summary of Annual Flight Operations for the High-Tempo FCLP Year No Action Alternative	
Table A2-38	Detailed Annual Flight Operations for the High-Tempo FCLP Year No Action Alternative	
Table A2-39	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 1A	

Table A2-40	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 1A	A2-46
Table A2-41	Summary of Annual Flight Operations for the High-Tempo Year FCLP Alternative 1B	A2-47
Table A2-42	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 1D	A2-48
Table A2-43	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 1E	A2-49
Table A2-44	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 1E	A2-50
Table A2-45	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2A	A2-51
Table A2-46	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2A	A2-52
Table A2-47	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2B	A2-53
Table A2-48	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2B	A2-54
Table A2-49	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2C	A2-55
Table A2-50	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2C	A2-56
Table A2-51	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2D	A2-57
Table A2-52	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2D	A2-58
Table A2-53	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2E	A2-59
Table A2-54	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2E	A2-60
Table A2-55	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3A	A2-61
Table A2-56	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3A	A2-62
Table A2-57	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3B	A2-63
Table A2-58	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3B	A2-64
Table A2-59	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3C	A2-65
Table A2-60	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3C	A2-66
Table A2-61	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3D	A2-67
Table A2-62	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3D	A2-68
Table A2-63	Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3E	A2-69
Table A2-64	Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3E	A2-70

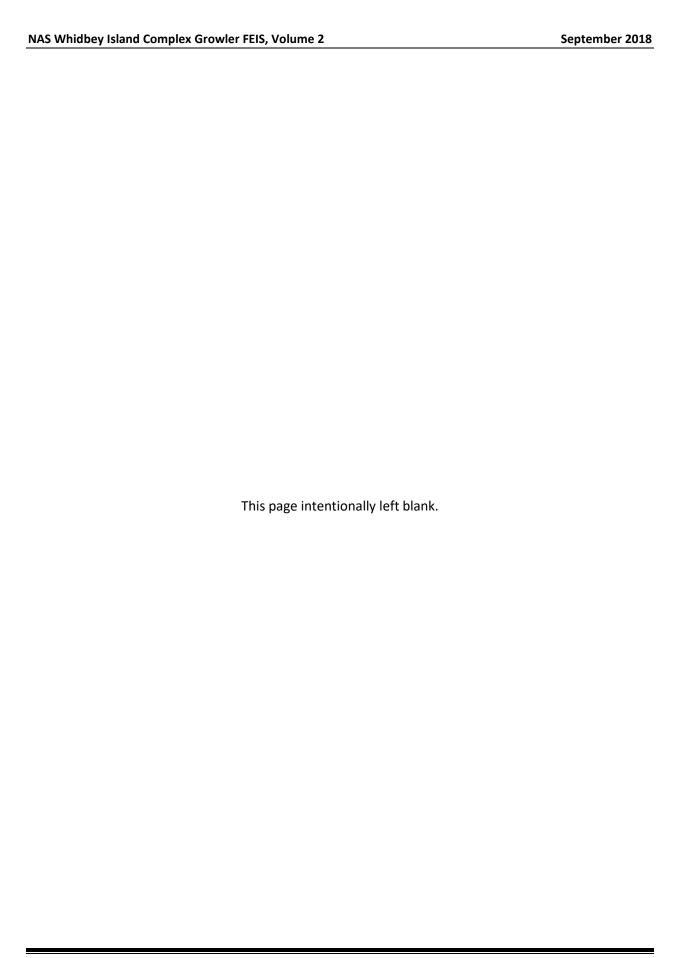


Table A2-1 Detailed Annual School Day Flight Operations for the Average Year Baseline Scenario

							-	•			Ū				
					Arrival			Inter	facility			Closed	Pattern*		
Airfield	Aircraft	uadron		VFR SI/ Non-	Overhead		Departure	Break Arrival	Helo Departure	Helo Arrival					
₹	Ai	Sq	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	2,941	1,097	1,756	217	56	46	-	-	2,089	1,255	1,005	1,224	11,686
		FRS	3,056	1,361	1,672	119	55	44	-	-	2,904	2,353	-	2,646	14,210
		RES	693	268	416	37	2	1	-	-	28	277	233	261	2,216
70		EXP	919	333	539	71	-	-	-	-	-	325	302	335	2,824
Ault Field	EP3	All	365	204	-	213	-	-	-	-	-	648	-	337	1,767
품	Р3	All	938	362	-	136	-	-	-	-	-	2,919	-	1,261	5,616
<	P8	All	-	ı	-	1	-	-	-	-	-	-	-	-	-
	H60	SAR	290	303	-	1	-	-	73	73	-	-	-	-	739
	C-40	-	299	224	-	81	-	-	-	-	-	255	-	133	992
	JET_LRG	-	116	112	-	7	-	-	-	-	-	-	-	-	235
	Total		9,617	4,264	4,383	881	113	91	73	73	5,021	8,032	1,540	6,197	40,285
					Arrival			Inter	facility			Closed	Pattern*		
		ron		VFR SI/			FCLP Break	FCLP	Helo	Helo					
e	raft	70		Non-	Overhead		Arrival	Departure	Arrival	Departure					
Airfield	Aircraft	Squa	Departure		Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					56	46	-	-	712	-			814
JOLF		FRS					55	44	-	-	701	-			800
1 2		DEC					2				26				20

91

73

73

73

73

1,439

146

146

Total Annual	Ault =	5,021	75%
EA-18G	NOLF =	1,643	25%
FCLP-Related Ops	Total =	6,664	

H60

Total

SAR

Grand Total (Ault+NOLF) 42,220

292

1,935

113

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-2 Detailed Annual School Day Flight Operations for the Average Year No Action Alternative

		SI			Arrival			Interfa	acility			Clo	sed Patter	n*	
Airfield	Aircraft	Squadrons	Departure	VFR SI/ Non-Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	2,958	1,109	1,785	192	63	58	-	-	2,087	1,348	1,035	1,347	11,982
		FRS	3,121	1,368	1,641	130	64	59	-	-	3,199	2,343	-	2,689	14,614
		RES	698	247	427	56	3	3	-	-	100	306	275	291	2,406
		EXP	932	366	531	59	-	-	-	-	-	309	309	319	2,825
Ault Field	EP3	All	-	1	1	-	1	1	1	-	1	ı	-	1	-
Ault	Р3	All	-	1	-	-	1	1	1	-	-	1	-	1	-
	P8	All	1,189	411	-	108	-	1	-	-	-	1,301	-	652	3,661
	Н60	SAR	292	300	-	-	-	-	74	74	-	-	-	-	740
	C-40	-	301	226	-	86	-	-	-	-	-	255	-	136	1,004
	JET_LRG	-	125	111	-	9	-	1	-	-	-	1	-	-	245
	Total		9,616	4,138	4,384	640	130	120	74	74	5,386	5,862	1,619	5,434	37,477
					Arrival		Interfacility					Closed Pattern*			
Airfield	Aircraft	Squadrons	Departure	VFR SI/ Non-Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					63	58	-	-	856	-			977
NOLF		FRS					64	59	-	-	873	-			996
2		RES					3	3	-	-	42	-			48
	Н60	SAR					-	-	74	74	-	148			296
	Total					-	130	120	74	74	1,771	148	-	•	2,317
	Total Annual Ault = 5,386 73% EA-18G NOLF = 2,021 27% FCLP-Related Ops Total = 7,407				7.7									Grand Total (Ault+NOLF)	39,794

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

FCLP-Related Ops

Table A2-3 Detailed Annual School Day Flight Operations for the Average Year Alternative 1A

		_			Arrival			Interf	acility			Close	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,540	1,585	2,579	376	317	317	-	-	893	1,762	1,560	1,998	15,927
		FRS	2,712	1,173	1,393	146	197	197	-	-	656	1,867	-	2,350	10,691
		RES	609	202	361	46	4	4	-	-	41	259	237	249	2,012
9		EXP	817	298	441	78	-	-	-	-	-	284	241	291	2,450
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ħ	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
٩	P8	All	1,164	933	-	231	-	-	-	-	-	1,283	-	631	4,242
	H60	SAR	291	291	-	-	-	-	73	73	-	-	-	-	728
	C-40	-	302	216	-	87	-	-	-	-	-	251	-	130	986
	JET_LRG	-	137	125	-	12	-	-	-	-	-	-	-	-	274
	Total		10,572	4,823	4,774	976	518	518	73	73	1,590	5,706	2,038	5,649	37,310
					Arrival	Interfacility						Close	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					317	317	-	-	4,147	-			4,781
NOLF		FRS					197	197	-	-	2,580	-			2,974
Ž		RES					4	4	-	-	60	-			68
	H60	SAR					-	-	73	73	-	146			292
	Total				-	-	518	518	73	73	6,787	146	-	-	8,115
	Total Annual Ault = 1,590 17% EA-18G NOLF = 7,823 83%													Grand Total (Ault+NOLF)	45,425

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

9,413

Table A2-4 Detailed Annual School Day Flight Operations for the Average Year Alternative 1B

					Arrival			Interf	acility			Clo	osed Patte	rn*	
75	¥	dron						Break	Helo	Helo					
Airfield	Aircraft	T C		VFR SI/	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Squa	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,554	1,579	2,597	379	209	209			2,764	1,973	1,633	2,069	17,966
		FRS	2,700	1,163	1,407	130	116	116			2,025	1,997	-	2,402	12,056
		RES	620	203	372	45	2	2			56	279	228	261	2,068
<u>0</u>		EXP	792	285	445	60	-	-			-	263	248	275	2,368
Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	Р3	All	1	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,171	942	-	229	-	-	-	-	-	1,238	-	634	4,214
	H60	SAR	297	297	-	-	1	-	72	72	-	-	-	-	738
	C-40	-	298	214	-	83	-	-	-	-	-	251	-	134	980
	JET_LRG	-	136	128	-	8	•	-	-	-	-	-	-	-	272
	Total		10,568	4,811	4,821	934	327	327	72	72	4,845	6,001	2,109	5,775	40,662

					Arrival			Interf	acility			Cle	osed Patte	ern*	
							FCLP								
-	æ	Iror					Break	FCLP	Helo	Helo					
field	cra	uad		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					209	209	-	-	2,703	-			3,121
NOLF		FRS					116	116	-	-	1,506	-			1,738
Ž		RES					2	2	-	-	32	-			36
	H60	SAR					-	-	72	72	-	143			287
	Total		-	1	-	-	327	327	72	72	4,241	143	-	-	5,182

Total Annual	Ault =	4,845	50%
EA-18G	NOLF =	4,895	50%
FCLP-Related Ops	Total =	9,740	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-5 Detailed Annual School Day Flight Operations for the Average Year Alternative 1C

		_			Arrival			Interfac	cility			Clo	sed Patter	'n*	
-	#	Squadron						Break	Helo	Helo					
Airfield	Aircraft	nac		VFR SI/	Overhead		Departure to	Arrival from	Departure	Arrival					
Ą	Air	Sq	Departure	Non-Break	Break	IFR	OLF	OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,557	1,600	2,600	357	75	75			4,409	2,162	1,560	2,048	19,443
		FRS	2,737	1,180	1,423	134	53	53			3,335	2,167	-	2,428	13,510
		RES	601	199	355	47	4	4			8	265	236	259	1,978
0		EXP	819	294	461	64	-	-			-	288	259	295	2,480
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
품	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
٧	P8	All	1,171	962	-	209	-	-	-	-	-	1,253	-	613	4,208
	H60	SAR	294	294	-	1	-	-	73	73	-	-	-	1	734
	C-40	-	302	215	-	87	-	-	-	-	-	256	-	133	993
	JET_LRG	-	131	120	-	11	-	-	-	-	-	-	-	-	262
	Total		10,612	4,864	4,839	909	132	132	73	73	7,752	6,391	2,055	5,776	43,608
					Arrival			Interfac	cility			Clo	sed Patter	n*	
ਰ	#	Squadron					FCLP	FCLP	Helo	Helo					
Airfield	Aircraft	nac		VFR SI/	Overhead		Break Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					75	75	-	-	940	-			1,090
NOLF		FRS					53	53	-	-	705	-			811
ž		RES					4	4	-	-	49	-			57
	H60	SAR					-	-	73	73	-	146		-	292
	Total		-	-	-	-	132	132	73	73	1,694	146	-	-	2,250
	otal Annı	ıal _	Ault =	7,752	80%								J	Grand Total	
	Total Annual		NOLE -	1,752	20%									(Ault+NOLE)	45,858

EA-18G
 NOLF =
 1,958
 20%

 FCLP-Related Ops
 Total =
 9,710

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-6 Detailed Annual School Day Flight Operations for the Average Year Alternative 1D

		_			Arrival			Interf	acility			Close	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,540	1,585	2,579	376	277	277	-	-	1,340	1,762	1,560	1,998	16,294
		FRS	2,712	1,173	1,393	146	172	172	-	-	984	1,867	-	2,350	10,969
		RES	609	202	361	46	4	4	-	-	62	259	237	249	2,033
9		EXP	817	298	441	78	-	-	-	-	-	284	241	291	2,450
Ault Field		All	-	-	-	-	-	-	-	-	-	-	-	-	-
불		All	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,164	933	-	231	-	-	-	-	-	1,283	-	631	4,242
	H60	SAR	291	291	-	-	-	-	73	73	-	-	-	-	728
	C-40	-	302	216	-	87	-	-	-	-	-	251	-	130	986
	JET_LRG	-	137	125	-	12	-	•	-	-	-	-	-	-	274
	Total		10,572	4,823	4,774	976	453	453	73	73	2,386	5,706	2,038	5,649	37,976
					Arrival			Interf	acility			Close	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					277	277	-	-	3,629	-			4,183
NOLF		FRS					172	172	-	-	2,258	-			2,602
2		RES					4	4	-	-	53	-			61
	H60	SAR					-	-	73	73	-	146			292
	Total		-	-	-	-	453	453	73	73	5,940	146	-	-	7,138
	Total Ann EA-18G		Ault = NOLF =	2,386 6,846	26% 74%									Grand Total (Ault+NOLF)	45,114

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-7 Detailed Annual School Day Flight Operations for the Average Year Alternative 1E

					Arrival			Interfac	ility			Clo	sed Patter	n*	
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	CVW	4,557	1,600	2,600	357	113	113			3,858	2,162	1,560	2,048	18,968
		FRS	2,737	1,180	1,423	134	80	80			2,918	2,167	-	2,428	13,147
		RES	601	199	355	47	6	6			7	265	236	259	1,981
2		EXP	819	294	461	64	-	-			-	288	259	295	2,480
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
불	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,171	962	-	209	-	-	-	-	-	1,253	-	613	4,208
	H60	SAR	294	294	-	-	-	-	73	73	-	-	-	-	734
	C-40	-	302	215	-	87	-	-	-	-	-	256	-	133	993
	JET_LRG	-	131	120	-	11	-	-	-	-	-	-	-	-	262
	Total		10,612	4,864	4,839	909	199	199	73	73	6,783	6,391	2,055	5,776	42,773
		_			Arrival			Interfac	ility			Clo	sed Patter	n*	
Airfield	Aircraft	Squadron		VFR SI/	Overhead		FCLP Break Arrival	FCLP Departure	Helo Arrival	Helo Departure					
Air	Ain	Sqı	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	CVW					113	113	-	-	1,410	-			1,636
NOLF		FRS					80	80	-	-	1,058	-			1,218
ž		RES					6	6	-	-	74	-			86
	H60	SAR					-	-	73	73	-	146			292
	Total		-	-	-	-	199	199	73	73	2,542	146	-	-	3,232
1	otal Annı	ual	Ault =	6,783	70%									Grand Total	46 005

Total Annual	Ault =	6,783	70%
EA-18G	NOLF =	2,940	30%
FCLP-Related Ops	Total =	9,723	

(Ault+NOLF)

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

FCLP-Related Ops

Total =

9,159

Table A2-8 Detailed Annual School Day Flight Operations for the Average Year Alternative 2A

				,	Arrival			Interf	acility			Clo	sed Patte	rn*	
-	يد	Squadron						Break	Helo	Helo					
Airfield	Aircraft	nad		VFR SI/	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Sq	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,274	1,534	2,407	334	291	291	ı	-	996	1,731	1,416	1,982	15,256
		FRS	2,735	1,183	1,431	122	199	199	-	-	733	1,848	-	2,389	10,839
		RES	611	214	349	47	2	2	-	-	49	238	229	214	1,955
9		EXP	1,382	485	793	104	-	-	-	-	-	445	495	452	4,156
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
불	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
■ 4	P8	All	1,188	974	-	214	-	-	-	-	-	1,090	-	586	4,052
	H60	SAR	298	298	-	-	-	-	72	72	-	-	-	-	740
	C-40	-	300	218	-	82	-	-	-	-	-	247	-	130	977
	JET_LRG	-	133	124	-	9	-	1	1	-	-	-	1	1	266
	Total		10,921	5,030	4,980	912	492	492	72	72	1,778	5,599	2,140	5,753	38,241
				Į.	Arrival			Interf	acility			Clo	sed Patte	rn*	
		_					FCLP								
70	پ	<u>10</u>					Break	FCLP	Helo	Helo					
Airfield	Aircraft	Squadron		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					291	291	-	-	3,811	-			4,393
NOLF		FRS					199	199	-	-	2,572	-			2,970
2		RES					2	2	-	-	14	-			18
	H60	SAR					-	-	72	72	-	145			289
	Total						492	492	72	72	6,397	145	_		7,670
	TOtal		_	_	_	_	732	432	12		0,001				/
	otal Annu	ıal	Ault =	1,778	19%		432	432	72	72	0,007			Grand Total	45,911

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Equivalent Annual 42,224

Table A2-9 Detailed Annual School Day Flight Operations for the Average Year Alternative 2B

		iabi	C AZ-J	Detaile	Aiiiiuui	30110	ooi bay i i	iigiit Opc	i ations i	or the Ave	ruge i	cai Ai	ternativ	JC ZD	
					Arrival			Inter	facility			Clos	ed Pattern	۱*	
75	æ	Squadron						Break	Helo	Helo					
Airfield	Aircraft	nao		VFR SI/	Overhead		Departure	Arrival	Departure	Arrival from					
Air	Air	Sqi	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,225	1,526	2,440	258	192	192	-	-	2,554	1,896	1,503	1,958	16,744
		FRS	2,685	1,182	1,403	100	116	116	-	-	1,952	2,035	-	2,428	12,017
		RES	596	201	355	39	2	2	-	-	66	255	220	249	1,985
ъ		EXP	1,333	467	775	90	-	-	-	-	-	445	472	461	4,043
Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	
Ault	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	
₹	P8	All	1,154	948	-	206	-	-	-	-	-	1,312	-	665	4,285
	H60	SAR	293	293	-	-	-	-	72	72	-	-	-	-	730
	C-40	-	299	220	-	79	-	-	-	-	-	251	-	133	982
	JET_LRG	-	123	116	-	7	-	-	-	-	-	-	-	-	246
	Total		10,708	4,953	4,973	779	310	310	72	72	4,572	6,194	2,195	5,894	41,032
					Arrival			Inter	facility			Clos	ed Patterr	1*	
							FCLP								
_	<u></u>	ron					Break	FCLP	Helo	Helo					
ield	raft	ad		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					

				Į.	Arrival			Inter	facility			Clos	ed Patterr	1 *	
		_					FCLP								
-5	aft	<u>5</u>					Break	FCLP	Helo	Helo					
Airfield	cra	Squadron		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Ą	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	CVW					274	274	-	-	2,472	-			3,020
NOLF		FRS					165	165	-	-	1,491	-			1,821
2		RES					3	3	-	-	33	-			39
	H60	SAR					-	-	72	72		144			288
	Total		-	-	-	-	442	442	72	72	3,996	144	_	-	5,168

Total Annual	Ault =	4,572	48%
EA-18G	NOLF =	4,880	52%
FCLP-Related Ops	Total =	9,452	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-10 Detailed Annual School Day Flight Operations for the Average Year Alternative 2C

		_		· ·	Arrival			Inter	acility			Clos	sed Patter	n*	
e d	Aircraft	Squadron		VFR SI/	Overhead		Departure	Break Arrival	Helo Departure	Helo Arrival					
Airfield	Airc	nbs	Departure		Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,314	1,534	2,488	292	78	78	-	-	3,811	2,039	1,432	1,978	18,044
		FRS	2,722	1,177	1,435	109	42	42	-	-	3,466	2,202	-,	2,420	13,615
		RES	615	207	360	48	4	4	-	-	38	222	241	221	1,960
-		EXP	1,408	519	795	95	-	-	-	-	-	427	481	450	4,175
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
불	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ā	P8	All	1,168	966	-	203	-	-	-	-	-	1,238	-	638	4,213
	H60	SAR	288	288	1	-	-	-	74	74	-	-	-	-	724
	C-40	-	299	222	-	77	-	-	-	-	-	247	-	131	976
	JET_LRG	-	135	125	-	9	-	-	-	-	-	-	-	-	269
	Total		10,949	5,038	5,078	833	124	124	74	74	7,315	6,375	2,154	5,838	43,976
					Arrival			Inter	acility			Clos	sed Patter	n*	
							FCLP		,						
-	٠,	ron					Break	FCLP	Helo	Helo					
Airfield	Aircraft	Squadron		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Air	Air	Sqı	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					78	78	-	-	1,007	-			1,163
NOLF		FRS					42	42	-	-	548	-			632
ž		RES					4	4	-	-	46	-			54
	H60	SAR					-	-	74	74	-	149			297
	Total		-	-	-	-	124	124	74	74	1,601	149	-	-	2,146
-	otal Annu	al _	Ault =	7,315	80%									Grand Total	
	EA-18G		NOLF =	1,849	20%									(Ault+NOLF)	46,122
FCL	.P-Related		Total =	9,164											

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-11 Detailed Annual School Day Flight Operations for the Average Year Alternative 2D

		_		Į.	Arrival			Inter	facility			Clo	sed Patter	'n*	
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,274	1,534	2,407	334	255	255	-	-	1,494	1,731	1,416	1,982	15,682
		FRS	2,735	1,183	1,431	122	174	174	-	-	1,100	1,848	-	2,389	11,156
		RES	611	214	349	47	2	2	-	-	74	238	229	214	1,980
-		EXP	1,382	485	793	104	-	-	-	-	-	445	495	452	4,156
Ault Field	EP3	All	_	-	-	-	-	-	-	_	-	-	-	-	-
품	Р3	All	-	,	-	-	-	-	-	-	1	-	-	-	-
<	P8	All	1,188	974	-	214	-	-	-	-	-	1,090	-	586	4,052
	H60	SAR	298	298	-	-	-	-	72	72	-	-	-	-	740
	C-40	-	300	218	-	82	-	-	-	-	-	247	-	130	977
	JET_LRG	-	133	124	-	9	-	-	-	-	-	-	-	1	266
	Total		10,921	5,030	4,980	912	431	431	72	72	2,668	5,599	2,140	5,753	39,009
				Į.	Arrival			Inter	facility			Clo	sed Patter	n*	
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					255	255	-	-	3,335	-			3,845
NOLF		FRS					174	174	-	-	2,251	-			2,599
2		RES					2	2	-	-	12	-			16
	H60	SAR					-	-	72	72	-	145			289
	Total		-	-	-	-	431	431	72	72	5,598	145	-	-	6,749
Т	Total Total Annual FA-18G		Ault =	2,668 6 460	29% 71%									Grand Total (Ault+NOLF)	45,758

EA-18G **FCLP-Related Ops** Total = 9,128

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-12 Detailed Annual School Day Flight Operations for the Average Year Alternative 2E

		ıab	ie AZ-1Z	Detaile	u Alliluai	SCII	ooi Day F	iigiit Ope	rations i	or the Ave	erage 1	rear A	iternati	ve ze	
		1		1	Arrival			Interf	acility			Clo	sed Patter	n*	
Airfield	Aircraft	quadron		VFR SI/	Overhead		Departure		Helo Departure						
₹	₹	Sqı	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,314	1,534	2,488	292	117	117	-	-	3,335	2,039	1,432	1,978	17,646
		FRS	2,722	1,177	1,435	109	63	63	-	-	3,033	2,202	-	2,420	13,224
		RES	615	207	360	48	6	6	-	-	33	222	241	221	1,959
ੲ		EXP	1,408	519	795	95	-	-	-	-	-	427	481	450	4,175
Fiel	EP3	All	-	-	-	-	-	-	1	-	1	-	-	-	
Ault Field	Р3	All	-	-	-	-	-	-	-	-	1	-	-	-	-
₹	P8	All	1,168	966	-	203	-	-	-	-	-	1,238	-	638	4,213
	H60	SAR	288	288	-	-	-	-	74	74	-	-	-	-	724
	C-40	-	299	222	-	77	-	-	-	-	-	247	-	131	976
	JET_LRG	-	135	125	-	9	-	-	-	-	-	-	-	-	269
	Total		10,949	5,038	5,078	833	186	186	74	74	6,401	6,375	2,154	5,838	43,186
				-	Arrival			Interf	acility			Clo	sed Patter	n*	
Airfield	Aircraft	Squadron	Donorture	VFR SI/ Non-Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T9.6	ReEnter	GCA/CCA	Total

				ļ.	Arrival			Interf	acility			Clo	sed Patter	n*	
		_					FCLP								
-	<u> </u>	ro.					Break	FCLP	Helo	Helo					
Airfield	cra	nadr		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					117	117	-	-	1,511	-			1,745
LF.		FRS					63	63	-	-	822	-			948
NOL		RES					6	6	-	-	69	-			81
	H60	SAR					-	-	74	74	1	149			297
	Total		-	-	-	-	186	186	74	74	2,402	149	-	-	3,071

Total Annual	Ault =	6,401	70%
EA-18G	NOLF =	2,774	30%
FCLP-Related Ops	Total =	9,175	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-13 Detailed Annual School Day Flight Operations for the Average Year Alternative 3A

		_			Arrival			Interfa	cility			Clos	ed Patterr	ı*	
Airfield	Aircraft	quadron		VFR SI/	Overhead		Departure to	Break Arrival	Helo Departure	Helo Arrival				22. (22.	
⋖	∢	Sqi	Departure	Non-Break	Break	IFR	OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,234	1,469	2,411	354	311	311	-	-	1,081	1,710	1,447	1,953	15,281
		FRS	2,673	1,138	1,402	134	210	210	-	-	680	1,825	-	2,328	10,600
		RES	589	205	342	43	1	1	-	-	24	241	216	228	1,890
-		EXP	1,299	467	731	102	-	-	-	-	-	461	445	482	3,987
Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,165	909	-	255	-	-	-	-	-	1,244	-	639	4,212
	H60	SAR	288	288	-	-	-	-	71	71	-	-	-	-	718
	C-40	-	295	210	-	85	-	-	-	-	-	247	-	130	967
	JET_LRG	-	118	108	-	9	-	-	-	-	-	-	-	-	235
	Total		10,661	4,794	4,886	982	522	522	71	71	1,785	5,728	2,108	5,760	37,890

					Arrival			Interfa	cility			Clos	ed Patterr	1*	
9	#	Iron					FCLP	FCLP	Helo	Helo					
virfield	cra	uadr		VFR SI/	Overhead		Break Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					311	311	-	-	4,051	-			4,673
Ä		FRS					210	210	-	-	2,760	-			3,180
NOL		RES					1	1	-	-	25	1			27
	H60	SAR					-	1	71	71	-	141			283
	Total		-	-	-	-	522	522	71	71	6,836	141	-	-	8,163

Total Annual	Ault =	1,785	18%
EA-18G	NOLF =	7,880	82%
FCLP-Related Ops	Total =	9,665	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-14 Detailed Annual School Day Flight Operations for the Average Year Alternative 3B

		_			Arrival			Interfac	ility			Clo	sed Patter	n*	
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non-Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,265	1,501	2,438	326	212	212	-	-	2,822	1,805	1,497	1,906	16,984
		FRS	2,713	1,164	1,410	140	116	116	-	-	2,003	1,995	-	2,350	12,007
		RES	603	204	357	42	2	2	-	-	59	251	226	235	1,981
7		EXP	1,306	466	731	109	-	-	-	-	-	431	466	455	3,964
Ault Field	EP3	All	-	-	-	-	1	-	-	-	-	-	-	-	-
井	Р3	All	-	-	-	-	-	•	-	-	-	-	-	_	-
⋖	P8	All	1,177	960	-	217	-	-	-	-	-	1,264	-	633	4,251
	H60	SAR	291	291	-	-	-	-	72	72	-	-	-	-	726
	C-40	-	298	218	-	79	-	-	-	-	-	241	-	127	963
	JET_LRG	-	122	112	-	10	-	-	-	-	-	-	-	-	244
	Total		10,775	4,916	4,936	923	330	330	72	72	4,884	5,987	2,189	5,706	41,120
		_			Arrival			Interfac	ility			Clo	sed Patter	n*	
70	#	uadron					FCLP	FCLP	Helo	Helo					
Airfield	Aircraft	uac		VFR SI/	Overhead		Break Arrival	Departure	Arrival	Departure					
Ā	Aii	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					212	212	-	-	2,751	-			3,175
NOLF		FRS					116	116	-	-	1,488	-			1,720
ž		RES					2	2	-	-	30	-			34
	H60	SAR					-	-	72	72	-	145			289
	Total		-	-	-	-	330	330	72	72	4,269	145	-	-	5,218
1	otal Annu	ıal	Ault =	4,884	50%									Grand Total	

Total Annual	Ault =	4,884	50%
EA-18G	NOLF =	4,929	50%
FCLP-Related Ops	Total =	9,813	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-15 Detailed Annual School Day Flight Operations for the Average Year Alternative 3C

		_			Arrival			Inter	facility			Clos	sed Patter	n*	
75	#	adron						Break	Helo	Helo					
Airfield	Aircraft	nac		VFR SI/	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Squ	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,322	1,555	2,441	326	81	81	-	-	4,079	1,964	1,474	1,883	18,206
		FRS	2,693	1,186	1,381	127	47	47	-	-	3,695	2,173	-	2,451	13,800
		RES	610	200	353	57	2	2	-	-	42	258	229	245	1,998
ъ		EXP	1,355	487	758	111	-	•	-	•	1	462	422	473	4,068
Field	EP3	All	-	-	-	1	1	•	-	•	1	-	-	-	-
Ault	Р3	All	-	-	-	1	1	•	-	•	1	-	-	-	-
⋖	P8	All	1,169	943	-	226	1	•	-	•	1	1,220	-	622	4,180
	H60	SAR	292	292	-	•	1	•	74	74	1	-	-	-	732
	C-40	-	298	216	-	82	-	-	-	-	-	244	-	126	966
	JET_LRG	-	125	110	-	15	-	•	-	-	1	-	-	-	250
	Total		10,864	4,989	4,933	944	130	130	74	74	7,816	6,321	2,125	5,800	44,200

					Arrival			Inter	facility			Clos	sed Patter	n*	
		_					FCLP								
-	æ	ron					Break	FCLP	Helo	Helo					
virfield	cra	Squadr		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					81	81	-	-	1,058	-			1,220
NOLF		FRS					47	47	-	-	624	-			718
2		RES					2	2	-	-	26	-			30
	H60	SAR					-	-	74	74	-	149			297
	Total		-		-	-	130	130	74	74	1,708	149	•	-	2,265

Total Annual	Ault =	7,816	80%
EA-18G	NOLF =	1,968	20%
FCLP-Related Ops	Total =	9,784	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-16 Detailed Annual School Day Flight Operations for the Average Year Alternative 3D

					Arrival			Interfa	cility			Clos	ed Patterr	*	
75	#	dron						Break	Helo	Helo					
Airfield	Aircraft	E a		VFR SI/	Overhead		Departure to	Arrival	Departure	Arrival					
Air	Air	Sq	Departure	Non-Break	Break	IFR	OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,234	1,469	2,411	354	272	272	-	-	1,622	1,710	1,447	1,953	15,744
		FRS	2,673	1,138	1,402	134	184	184	-	-	1,020	1,825	-	2,328	10,888
		RES	589	205	342	43	1	1	-	-	36	241	216	228	1,902
0		EXP	1,299	467	731	102	-	-	-	-	-	461	445	482	3,987
Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	P3	All	-	-	-	-	-	1	1	-	1	-	-	-	-
<	P8	All	1,165	909	-	255	-	1	1	-	1	1,244	-	639	4,212
	H60	SAR	288	288	-	-	-	1	71	71	1	-	-	-	718
	C-40	-	295	210	-	85	-	-	-	-	-	247	-	130	967
	JET_LRG	-	118	108	-	9	-	-	-	-	-	-	-	-	235
	Total		10,661	4,794	4,886	982	457	457	71	71	2,678	5,728	2,108	5,760	38,653

					Arrival			Interfa	cility			Clos	ed Patterr	1*	
70	ے ا	dron					FCLP	FCLP	Helo	Helo					
irfield	cra	ő		VFR SI/	Overhead		Break Arrival	Departure	Arrival	Departure					
Air	Air	nbs	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					272	272	-	-	3,545	-			4,089
Ä		FRS					184	184	-	-	2,415	-			2,783
NOL		RES					1	1	-	-	22	-			24
	H60	SAR					-	-	71	71	-	141			283
	Total		-	-	•	-	457	457	71	71	5,982	141	-	-	7,179

Total Annual	Ault =	2,678	28%
EA-18G	NOLF =	6,896	72%
FCLP-Related Ops	Total =	9,574	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-17 Detailed Annual School Day Flight Operations for the Average Year Alternative 3E

		_			Arrival			Inter	facility			Clos	sed Patter	n*	
75	æ	5						Break	Helo	Helo					
Airfield	Aircraft	Squadron		VFR SI/	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Sqı	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,322	1,555	2,441	326	122	122	-	-	3,569	1,964	1,474	1,883	17,778
		FRS	2,693	1,186	1,381	127	71	71			3,233	2,173	-	2,451	13,386
		RES	610	200	353	57	3	3			37	258	229	245	1,995
ъ		EXP	1,355	487	758	111	-	-			-	462	422	473	4,068
Ault Field	EP3	All	-		-	1	-	-	-	-	1	-	-	-	-
품	Р3	All	-	-	-	-	-	1	-	-	-	-	-	-	-
⋖	P8	All	1,169	943	-	226	-	1	-	-	1	1,220	-	622	4,180
	H60	SAR	292	292	-	-	-	1	74	74	1	-	-	1	732
	C-40	-	298	216	-	82	-	-	-	-	-	244	-	126	966
	JET_LRG	-	125	110	-	15	-	1	-	-	1	-	-	1	250
	Total		10,864	4,989	4,933	944	196	196	74	74	6,839	6,321	2,125	5,800	43,355
					Arrival			Closed Pattern*							
					Allivai		FCLP	IIICEI	facility			Cio	seu ratter		
		E .					Break	FCLP	Helo	Helo					
eld	raft	quadron		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
Airfield	Aircraft	nb	Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
Q	EA18	CVW	Departure	Non-break	Dreak	IFK		122	Holli Aut	to Auit		180	RELITTE	GCA/CCA	
ш	EATS	FRS					122	71	-	-	1,587	_			1,831
NOLF							71		-	-	936	-			1,078
Z		RES					3	3	-	-	39	-			45

74

74

149

Total Annual	Ault =	6,839	70%
EA-18G	NOLF =	2,954	30%
FCLP-Related Ops	Total =	9,793	

H60

Total

SAR

Grand Total (Ault+NOLF) 46,606

297 3.251

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-18 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Year Baseline Alternative

		St			Arrival			Interfa	acility			Closed	Pattern*		
Airfield	Aircraft	Squadrons		VFR SI/ Non-	Overhead		Departure	Break Arrival	Helo Departure	Helo Arrival					
Air	Airc	nbs	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	2,556	882	1,423	204	45	39	-	-	2,370	1,088	765	1,016	10,388
		FRS	1,064	387	551	91	-	-	-	-	-	336	300	356	3,085
		RES	2,817	1,197	1,416	152	28	20	-	-	3,424	2,062	-	2,374	13,490
7		EXP	563	193	314	34	3	-	-	-	48	232	183	202	1,772
Ault Field	EP3	All	313	186	-	184	-	-	-	-	-	590	-	288	1,561
불	Р3	All	921	292	-	118	-	-	-	-	-	2,766	-	1,196	5,293
•	Р8	All	-	-	-	-	-	-	-	-	-	-	-	-	-
	H60	SAR	287	256	-	-	-	-	67	67	-	-	-	-	677
	C-40	-	95	103	-	13	-	-	-	-	-	-	-	-	211
	JET_LR	-	287	190	-	66	-	-	-	-	-	210	-	116	869
	Total		8,903	3,686	3,704	862	76	59	67	67	5,842	7,284	1,248	5,548	37,346
					Arrival			Interfa	ocility			Closed	Pattern*		
		10			Allivai		FCLP	IIICII	cincy			Closed	rattern		
		Squadrons		VFR SI/			Break	FCLP	Helo	Helo					
<u>je</u>	Aircraft	adı		Non-	Overhead		Arrival	Departure	Arrival	Departure					
Airfield	Airc	Squ	Departure	Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	-	-	-	-	45	39	-	-	570	-	-	-	654
5		FRS	-	-	-	-	-	-	-	-	380	-	-	-	380
NOLF		RES					28	20		-	12				60
	H60	SAR	-	-	-	-	-	-	67	67	-	133	-	_	267
	Total		-	-	-	-	73	59	67	67	962	133		-	1,361
-	tal Anni	u a l	Ault =	5,842	84%									Grand Total	
	EA-18G		NOLF =	1.094										(Ault+NOLF)	38,707

Total Annual	Auit =	5,842	84%
EA-18G	NOLF =	1,094	16%
FCLP-Related Ops	Total =	6,936	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-19 Detailed Annual School Day Flight Operations for the High Tempo FCLP Year Year No Action Alternative

		SI	ns		Arrival			Inter	facility			Clo	sed Patte	rn*	
Airfield	Aircraft	Squadror	Departure	VFR SI/ Non- Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	2,443	950	1,463	170	43	42	-	-	1,561	1,136	783	1,117	9,708
		FRS	2,728	1,232	1,442	117	39	34	-	-	1,938	1,988	-	2,307	11,825
		RES	539	180	331	51	6	6	-	-	105	238	220	243	1,919
ᅙ		EXP	995	401	563	77	-	-	-	-	-	350	340	375	3,101
Field	EP3	All	-	-	-	-	-	-	ı	-	-	1	-	-	-
Ault	Р3	All	-	ı	-	-	-	-	1	•	1	-	-	-	-
•	P8	All	1,224	392	-	101	-	-	1	•	1	1,266	-	630	3,613
	H60	SAR	293	305	-	-	-	-	75	75	-	-	-	-	748
	C-40	-	300	222	-	87	-	-	-	-	_	254	-	132	995
	JET_LRG) -	122	98	-	11	-	-	-	-	-	-	-	-	231
	Tota		8,644	3,780	3,799	614	88	82	75	75	3,604	5,232	1,343	4,804	32,140

				Arrival				Inter	facility		Closed Pattern*				
field	craft	uadrons		VFR SI/ Non-	Overhead		FCLP Break Arrival	FCLP Departur	Helo Arrival	Helo Departure					
Air	Air		Departure	Break	Break	IFR	from Ault	e to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					43	42	-	-	598	-			683
NOLF		FRS					39	34	-	-	517	-			590
Ž		RES					6	6	1	-	88	i			100
	H60	SAR					-	-	75	75	-	149			299
	Total		•	•	•	•	88	82	75	75	1,203	149	•	-	1,672

Total Annual	Ault =	3,604	72%
EA-18G	NOLF =	1,373	28%
FCLP-Related Ops	Total =	4,977	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-20 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Year Alternative 1A

					Arrival			Interf	acility			Closed	Pattern*		
75	<u>ب</u>	Squadron		VFR SI/				Break	Helo	Helo					
Airfield	Aircraft	uad		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Sq	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,183	1,489	2,364	329	375	375	-	-	1,107	1,654	1,470	1,920	15,266
		FRS	2,712	1,155	1,404	153	182	182	-	-	722	1,866	-	2,247	10,623
		RES	532	179	334	20	8	8	-	-	77	264	228	245	1,895
2		EXP	1,012	372	544	96	-	-	-	-	-	352	308	362	3,046
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
품	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,178	918	-	260	-	-	-	-	-	1,288	-	644	4,288
	H60	SAR	284	284	-	-	-	-	73	73	-	-	-	-	714
	C-40	-	307	224	-	83	-	-	-	-	-	242	-	124	980
		-	147	133	-	14	-	-	-	-	-	-	-	-	294
	Total		10,355	4,754	4,646	955	565	565	73	73	1,906	5,666	2,006	5,542	37,106
	Total		10,355	4,754		955	565			73	1,906			5,542	37,106
	Total		10,355	4,754	4,646 Arrival	955	565	565 Interf		73	1,906		2,006 Pattern*	5,542	37,106
	Total		10,355	4,754		955	FCLP			73	1,906			5,542	37,106
D		ron	10,355	4,754 VFR SI/		955				Helo	1,906			5,542	37,106
field		nadron	10,355			955	FCLP	Interf	acility		1,906			5,542	37,106
Airfield	Aircraft	Squadron	10,355	VFR SI/	Arrival	955	FCLP Break	Interf FCLP	acility Helo	Helo	1,906			5,542	37,106
		WV3		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival	Interf FCLP Departur	acility Helo Arrival	Helo Departure		Closed	Pattern*		
	Aircraft			VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault	Interf FCLP Departur e to Ault	acility Helo Arrival	Helo Departure	FCLP	Closed	Pattern*		Total
NOLF Airfield	Aircraft	cvw		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 375	FCLP Departur e to Ault 375	acility Helo Arrival	Helo Departure	FCLP 4,883	Closed	Pattern*		Total 5,633
	Aircraft	CVW FRS		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 375 182	FCLP Departur e to Ault 375 182	acility Helo Arrival	Helo Departure	FCLP 4,883 2,381	Closed	Pattern*		Total 5,633 2,745
	EA18	CVW FRS RES		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 375 182	FCLP Departur e to Ault 375 182	acility Helo Arrival from Ault	Helo Departure to Ault	FCLP 4,883 2,381	Closed T&G	Pattern*		Total 5,633 2,745 126
NOLF	EA18	CVW FRS RES SAR		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 375 182 8	FCLP Departur e to Ault 375 182 8	Helo Arrival from Ault	Helo Departure to Ault - - - 73	FCLP 4,883 2,381 110	T&G 146	Pattern*		Total 5,633 2,745 126 292

Total Annual	Ault =	1,906	18%
EA-18G	NOLF =	8,504	82%
FCLP-Related Ops	Total =	10,410	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-21 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1B

					Arrival			Inter	facility			Closed	Pattern*		
Airfield	Aircraft	Squadron		VFR SI/	Overhead		Departure	Break Arrival		Helo Arrival from					
Air	Air	Sq	Departure	Non-Break	Break	IFR	to OLF	from OLF	to OLF	OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	CVW	4,142	1,464	2,335	343	221	221	-	-	2,991	1,908	1,501	2,006	17,132
		FRS	2,750	1,197	1,418	134	126	126	-	-	2,169	1,998	-	2,408	12,326
		RES	544	179	328	37	6	6	-	-	106	279	198	263	1,946
ъ		EXP	980	362	544	74	1	1	-	-	-	304	312	318	2,894
Ault Field	EP3	All	-	-	-	-	-	1	-	-	-	-	-	-	-
품	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,179	956	-	223	-	-	-	-	-	1,303	-	651	4,312
	H60	SAR	294	294	-	-	-	-	72	72	-	-	-	-	732
	C-40	-	299	219	-	80	-	-	-	-	-	244	-	129	971
	JET_LRG	-	131	122	-	9	-	1	-	-	-	-	-	-	262
	Total		10,319	4,793	4,625	900	353	353	72	72	5,266	6,036	2,011	5,775	40,575
					Arrival			Inter	facility			Closed			
					Allivai			IIItei	raciiity			Cioseu	rattern		
		_					FCLP								
<u> </u>	# #	dro					Break	FCLP	Helo	Helo					
Airfield	Aircraft	Squadron		VFR SI/	Overhead		Arrival	Departure	Arrival	Departure					
₹			Departure	Non-Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
١	EA18	cvw					221	221	-	-	2,825	-			3,267
NOLF		FRS					126	126	-	-	1,688	-			1,940
Ž		RES					6	6	-	-	92	-			104
	H60	SAR					-	-	72	72	-	145			289
	Total		-	-	-	-	353	353	72	72	4,605	145	-	-	5,600
-	Total Anni	ıal	Ault =	5,266	50%									Grand Total	
	Total Annual FA-18G		NOLE =	5 311										(Ault+NOLE)	46,175

Total Annual	Ault =	5,266	50%
EA-18G	NOLF =	5,311	50%
FCLP-Related Ops	Total =	10,577	

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-22 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1C

					Arrival			Interfa	n office o			Classed	Pattern*		
Airfield	craft	Squadron		VFR SI/ Non-	Overhead		Departure	Break Arrival from	Helo	Helo Arrival		Closed	Pattern		
Aiı	Air	Sq	Departure	Break	Break	IFR	to OLF	OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,190	1,465	2,340	385	82	82	-	-	5,067	2,133	1,450	1,983	19,177
		FRS	2,744	1,178	1,411	156	57	57	-	-	3,336	2,155	-	2,439	13,533
		RES	543	181	319	44	5	5	-	-	24	228	208	224	1,781
ъ		EXP	1,026	387	542	99	-	-	-	-	-	351	316	356	3,077
Field	EP3	All													-
Ault	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ā	P8	All	1,174	948	-	226	-	-	-	-	-	1,232	-	591	4,171
	H60	SAR	298	298	-	-	-	-	71	71	-	-	-	-	738
	C-40	-	299	213	-	86	-	-	-	-	-	273	-	136	1,007
	JET_LRG	-	136	123	-	13	-	-	-	-	-	-	-	-	272
	Total		10,410	4,793	4,612	1,009	144	144	71	71	8,427	6,372	1,974	5,729	43,756
					Arrival			Interfa	acility			Closed	Pattern*		
		uo		VER SI/			FCLP Break	FCLP	Helo	Helo					

					Arrival			Interfacility				Closed Pattern*			
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					82	82	-	-	990	-			1,154
Ĭ.		FRS					57	57	-	-	779	-			893
NOL		RES					5	5	-	-	69	-			79
	H60	SAR					-	-	71	71	-	142			284
	Total		-	-	-	-	144	144	71	71	1,838	142	-	-	2,410

Total Annual EA-18G	Ault =	8,427	80%
	NOLF =	2,126	20%
	Total =	10,553	

Grand Total (Ault+NOLF) 46,166

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

FCLP-Related Ops

Total =

10,300

Table A2-23 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1D

												-			
		5		VFR SI/	Arrival			Interf Break	acility Helo	Helo		Close	ed Pattern*		
ple	aft	quadron		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Airfield	Aircraft	da	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
٩	EA18	CVW	4,183	1,489	2,364	329	328	328	to ori	HOIH OLI	1,661	1,654	1,470	1,920	15,726
	LAIO	FRS	2,712	1,155	1,404	153	159	159	-	_	1,083	1,866	1,470	2,247	10,938
		RES	532	1,133	334	20	7	7	-	_	1,083	264	228	2,247	1,932
		EXP	1,012	372	544	96	,	,	-	_	110	352	308	362	3,046
eld	EP3	All	1,012	3/2	344	30	_	_				332	306	302	3,040
Ault Field	P3	All			_		_	_	_						
Au	P8	All	1,178	918		260	_	_	_			1,288		644	4,288
	H60	SAR	284	284	_		_	_	73	73	_	1,200	_	-	714
	C-40	_	307	224	_	83	_	_	75	,,,	_	242	_	124	980
	C-40		147	133	_	14	_	_		_		242		124	294
		<u> </u>			_		_	_	_	_	_	_	_	_	
	Lotal		10 255	1 751	4 646	955	191	/10/	72	72	2 860	5 666	2 006	5 5/12	27 019
	Total		10,355	4,754	4,646	955	494	494	73	73	2,860	5,666	2,006	5,542	37,918
	Total		10,355	4,754	4,646 Arrival	955	494	494 Interf		73	2,860	· · ·	2,006 ed Pattern*	5,542	37,918
	Total		10,355	4,754	· · ·	955	494 FCLP			73	2,860	· · ·		5,542	37,918
		ron	10,355	4,754 VFR SI/	· · ·	955				73 Helo	2,860	· · ·		5,542	37,918
ield		ıadron	10,355		· · ·	955	FCLP	Interf	acility		2,860	· · ·		5,542	37,918
Airfield	Aircraft	Squadron	10,355 Departure	VFR SI/	Arrival	955	FCLP Break	Interf FCLP	acility Helo	Helo	2,860 FCLP	· · ·		5,542 GCA/CCA	37,918 Total
Airfield		WV3		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival	Interf FCLP Departur	acility Helo Arrival	Helo Departure		Close	ed Pattern*		
	Aircraft			VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault	Interf FCLP Departur e to Ault	acility Helo Arrival	Helo Departure	FCLP	Close	ed Pattern*		Total
NOLF Airfield	Aircraft	cvw		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault	FCLP Departur e to Ault 328	acility Helo Arrival	Helo Departure	FCLP 4,273	Close	ed Pattern*		Total 4,929
	Aircraft	CVW FRS		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 328 159	FCLP Departur e to Ault 328 159	acility Helo Arrival	Helo Departure	FCLP 4,273 2,083	Close	ed Pattern*		Total 4,929 2,401
	Aircraft Aircraft	CVW FRS RES		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 328 159	FCLP Departur e to Ault 328 159	acility Helo Arrival from Ault	Helo Departure to Ault	FCLP 4,273 2,083	Close T&G	ed Pattern*		Total 4,929 2,401 110
NOLF	H60	CVW FRS RES SAR		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 328 159 7	FCLP Departur e to Ault 328 159 7	Acility Helo Arrival from Ault 73	Helo Departure to Ault - - - 73	FCLP 4,273 2,083 96	T&G 146	ed Pattern*		Total 4,929 2,401 110 292

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-24 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 1E

		Ē			Arrival			Interfa				Closed	Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,190	1,465	2,340	385	123	123	-	-	4,434	2,133	1,450	1,983	18,626
		FRS	2,744	1,178	1,411	156	86	86	-	-	2,919	2,155	-	2,439	13,174
		RES	543	181	319	44	8	8	-	-	21	228	208	224	1,784
ъ		EXP	1,026	387	542	99	-	-	1	-	-	351	316	356	3,077
Ault Field	EP3	All													-
불	Р3	All	-	1	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,174	948	-	226	-	-	-	-	-	1,232	-	591	4,171
	H60	SAR	298	298	-	-	-	-	71	71	-	-	1	=	738
	C-40	-	299	213	-	86	-	-	-	-	-	273	-	136	1,007
	JET_LRG	-	136	123	-	13	-	-	-	-	-	-	-	-	272
	Total		10,410	4,793	4,612	1,009	217	217	71	71	7,374	6,372	1,974	5,729	42,849
					Arrival			Interfa	acility			Closed	Pattern*		
		u _o ,		VFR SI/			FCLP Break	FCLP	Helo	Helo					

					Arrival			Interfacility				Closed Pattern*				
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total	
	EA18	cvw					123	123	-	-	1,485	-			1,731	
NOLF		FRS					86	86	-	-	1,169	-			1,341	
Ž		RES					8	8	-	-	104	1			120	
	H60	SAR					-	1	71	71	1	142			284	
	Total		-	-	-	-	217	217	71	71	2,758	142	-	-	3,476	

Total Annual EA-18G	Ault =	7,374	70%
	NOLF =	3,192	30%
retr-helated Ops	Total =	10,566	

Grand Total (Ault+NOLF) 46,325

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-25 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2A

		1			Arrival			Inte	rfacility			Closed	Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	3,910	1,429	2,196	284	423	423	-	-	1,295	1,566	1,332	1,861	14,719
	27120	FRS	2,719	1,187	1,428	102	261	261	-	_	948	1,861	- 1,552	2,358	11,125
		RES	550	200	302	48	4	4	-	_	95	209	213	185	1,810
_		EXP	1,628	578	935	115	-	-	-	-	-	516	574	520	4,866
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	1	-
불	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ā	P8	All	1,190	976	-	214	-	-	-	-	-	1,068	-	568	4,016
	H60	SAR	297	297	-	-	-	-	71	71	1	1	-	-	736
	C-40	-	298	216	-	82	-	-	-	-	-	251	-	132	979
	JET_LRG	-	125	116	-	8	-	-	-	-	-	-	-	-	249
	Total		10,717	4,999	4,861	853	688	688	71	71	2,338	5,471	2,119	5,624	38,500
					Arrival			Inte	rfacility			Closed	Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departur e to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					423	423	-	-	4,394	-			5,240
NOLF		FRS					261	261	-	-	2,646	-			3,168
2		RES					4	4	-	-	46	1			54

71

71

7,086

143

Total Annual	Ault =	2,338	22%
EA-18G	NOLF =	8,462	78%
FCLP-Related Ops	Total =	10,800	

H60

Total

SAR

Grand Total (Ault+NOLF) 47,247

285

8,747

688

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-26 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2B

					Arrival			Interfa	acility			Closed	Pattern*		
<u> </u>	æ	quadron		VFR SI/				Break	Helo	Helo					
Airfield	Aircraft	uac		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Ą	Air	Sq	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	3,914	1,384	2,206	325	221	221	-	-	3,036	1,851	1,310	1,920	16,388
		FRS	2,696	1,187	1,380	130	114	114	-	-	1,934	1,999	-	2,334	11,888
		RES	544	187	310	47	7	7	-	-	99	204	204	206	1,815
≖		EXP	1,601	563	886	153	-	-	-	-	-	536	506	549	4,794
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
불	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
<	P8	All	1,143	911	-	233	-	-	-	-	-	1,316	-	639	4,242
	H60	SAR	294	294	-	-	-	-	73	73	-	-	-	-	734
	C-40	-	294	216	-	78	-	-	-	-		253	-	137	978
	JET_LRG	-	114	105	-	9	-	-	-	-	-	-	-	-	228
	Total		10,600	4,847	4,782	975	342	342	73	73	5,069	6,159	2,020	5,785	41,067
					Arrival			Interfa	acility			Closed	Pattern*		
							E01.0								
		u.		VED CL			FCLP	FOLD							
<u> </u>	aft	dre		VFR SI/	Out of the second		Break	FCLP	Helo	Helo					
Airfield	Aircraft	Squadron		Non- Break	Overhead Break	IED.	Arrival	Departure	Arrival	Departure	ECLD	T0.0	DeFuter	CCA/CCA	
⋖		CVW	Departure	break	ьгеак	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
ш	EA18						221	221	-	-	2,876	-			3,318
NOLF		FRS					114	114	-	-	1,455	-			1,683
2		RES					7	7	- 72	- 72	99	- 4.45			113
		SAR					242	242	73	73	- 4.420	145			291
	Total		-	-	-	-	342	342	73	73	4,430	145	-	-	5,405
_	otal Annu	a l	Ault -	5.069	50%									Grand Total	

Total Annual	Ault =	5,069	50%
EA-18G	NOLF =	5,114	50%
FCLP-Related Ops	Total =	10,183	

Grand Total (Ault+NOLF) 46,472

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-27 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2C

		_			Arrival			Interf	acility			Closed	Pattern*		
멸	生	Squadron		VFR SI/				Break	Helo	Helo					
Airfield	Aircraft	dna		Non-	Overhead		Departure	Arrival	Departure	Arrival				004/004	
⋖		_	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	3,991	1,404	2,268	319	88	88	-	-	4,353	1,986	1,272	1,894	17,663
		FRS	2,721	1,179	1,419	123	43	43	-	-	3,641	2,150	-	2,380	13,699
		RES	574	193	319	62	5	5	-	-	114	205	208	201	1,886
ᅙ		EXP	1,673	611	931	131	-	-	-	-	-	489	584	524	4,943
i.E	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault Field	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
`	P8	All	1,193	976	-	218	-	-		-	-	1,146	-	585	4,118
	H60	SAR	293	293	-	-	-	-	75	75	-	-	-	-	736
	C-40	-	297	223	-	74	-	-	-	-	-	236	-	127	957
	JET_LRG	-	133	122	-	11	-	-	-	-	-	-	-	-	266
	Total		10,875	5,001	4,937	938	136	136	75	75	8,108	6,212	2,064	5,711	44,268
					Arrival			Interf	acility			Closed	Pattern*		
							FCLP								
- 5		Squadron		VFR SI/			Break	FCLP	Helo	Helo					
Airfield	Aircraft	nad		Non-	Overhead		Arrival	Departure	Arrival	Departure					
Ą	Air	Sqı	Departure	Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					88	88	-	-	1,132	-			1,308
NOLF		FRS					43	43	-	-	574	-			660
2		RES					5	5	-	-	67	-			77
	H60	SAR					-	-	75	75	-	149			299
	Total		-	_	-	-	136	136	75	75	1,773	149	-		2,344
	Total Annual Ault = 8,108 80% EA-18G FCLP-Related Ops Total = 10.153													Grand Total (Ault+NOLF)	46,612

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-28 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2D

					Arrival			Into	rfacility			Classed	Pattern*		
Airfield	Aircraft	uadron		VFR SI/ Non-	Overhead		Departure	Break Arrival	Helo Departure	Helo Arrival from		Cioseu	rattern		
Airf	Airc	nbs	Departure		Break	IFR	to OLF	from OLF		OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	3,910	1,429	2,196	284	370	370	-	-	1,943	1,566	1,332	1,861	15,261
		FRS	2,719	1,187	1,428	102	228	228	-	-	1,422	1,861	-	2,358	11,533
		RES	550	200	302	48	4	4	-	-	143	209	213	185	1,858
ъ		EXP	1,628	578	935	115	-	-	-	-	-	516	574	520	4,866
Field	EP3	All	-	1	-	-	-	-	-	-	-	-	-	ı	
Ault	Р3	All	-	1	-	-	-	-	-	-	-	-	-	-	
¥	P8	All	1,190	976	-	214	-	-	-	-	-	1,068	-	568	4,016
	H60	SAR	297	297	-	-	-	-	71	71	-	-	-	ı	736
	C-40	-	298	216	-	82	-	-	-	-	-	251	-	132	979
	JET_LRG	-	125	116	-	8	-	-	-	-	-	-	-	-	249
	Total		10,717	4,999	4,861	853	602	602	71	71	3,508	5,471	2,119	5,624	39,498
					Arrival			Inte	rfacility			Closed	Pattern*		
eld	aft	adron		VFR SI/	Overhead		FCLP Break	FCLP	Helo	Helo					

Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departur e to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					370	370	-	-	3,845				4,585
NOLF		FRS					228	228	-	-	2,133	-			2,589
2		RES					4	4	-	-	215	-			223
	H60	SAR					-	-	71	71	-	143			285
	Total		-	-	-	-	602	602	71	71	6,193	143	-	-	7,682

Total Annual	Ault =	3,508	32%
EA-18G	NOLF =	7,397	68%
FCLP-Related Ops	Total =	10,905	

Grand Total (Ault+NOLF) 47,180

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-29 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 2E

					Arrival			Inter	acility			Closed	Pattern*		
-	بو	Squadron		VFR SI/				Break	Helo	Helo					
Airfield	Aircraft	nad		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Sqı	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	3,991	1,404	2,268	319	132	132	-	-	3,809	1,986	1,272	1,894	17,207
		FRS	2,721	1,179	1,419	123	65	65	-	-	3,186	2,150	-	2,380	13,288
		RES	574	193	319	62	8	8	-	-	100	205	208	201	1,878
ъ		EXP	1,673	611	931	131	-	-	-	-	-	489	584	524	4,943
Fiel	EP3	All	-	1	-	-	-	-	-	-	-	-	-	1	-
Ault Field	Р3	All	-	1	-	-	-	-	-	-	-	-	-	1	-
<	P8	All	1,193	976	-	218	-	-	-	-	-	1,146	-	585	4,118
	H60	SAR	293	293	-	-	-	-	75	75	-	-	-	-	736
	C-40		297	223	-	74	-	-	1	-	-	236	-	127	957
	JET_LRG		133	122	-	11	-	-	ı	-	-	-	-	ı	266
	Total		10,875	5,001	4,937	938	205	205	75	75	7,095	6,212	2,064	5,711	43,393
	Arrival					Inter	acility								
Airfield	Aircraft	Squadron		VFR SI/ Non-	Overhead		FCLP Break Arrival	FCLP Departure	Helo Arrival	Helo Departure					
₹			Departure	Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
l	EA18	cvw					132	132	-	-	1,698	-			1,962
NOLF		FRS					65	65	-	-	861	-			991
Z		RES					8	8	-	-	101	-			117
		SAR					-	-	75	75	-	149			299
	Total		-	-	-	-	205	205	75	75	2,660	149	-	-	3,369
	Total Annual EA-18G FCLP-Related Ops Total = 10,165 70%													Grand Total (Ault+NOLF)	46,762

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-30 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3A

		_			Arrival			Inter	facility			Close	d Pattern*		
흥	aft	dro		VFR SI/	0			Break	Helo	Helo					
Airfield	Aircr	dua		Non- Break	Overhead Break	IFR	Departure to OLF	Arrival from OLF	Departure to OLF	Arrival from OLF	FCLP	T&G	DeFeter	GCA/CCA	Total
⋖	⋖	S	Departure	break	Dieak	IFK	to OLF	HOIH OLF	to OLF	HOIH OLF	FCLP	Iau	ReEnter	GCA/CCA	Total
	EA18	cvw	4,027	1,416	2,158	452	327	327	-	-	1,121	1,575	1,312	1,870	14,585
		FRS	2,678	1,139	1,337	202	200	200	-	-	787	1,753	-	2,325	10,621
		RES	537	181	312	46	5	5	-	-	75	241	187	227	1,816
-		EXP	1,598	541	879	177	-	-	-	-	-	571	582	597	4,945
Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ault	Р3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
Ā	P8	All	1,195	906	-	289	-	-	-	-	-	1,161	-	589	4,140
	H60	SAR	283	283	-	-	-	-	73	73	-	-	-	-	712
	C-40	-	298	204	-	94	-	-	-	-	-	255	-	132	983
	JET_LRG	-	119	111	-	8	-	-	-	-	-	-	-	-	238
					1,268	532	532	73	73	1,983	5,556	2,081	5,740	38,040	
Arrival				Interfacility				Closed Pattern*							

					Arrival			Inter	acility			Close	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	CVW					327	327	-	-	4,325	-			4,979
NOLF		FRS					200	200	-	-	2,710	-			3,110
Ž		RES					5	5	-	-	67	-			77
	H60	SAR					-	-	73	73	-	146			292
	Total		-	•	-	1	532	532	73	73	7,102	146		-	8,458

Total Annual EA-18G	Ault =	1,983	20%
	NOLF =	8,166	80%
retr-kelated Ops	Total =	10,149	

Grand Total (Ault+NOLF) 46,498

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-31 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3B

					Arrival			Interf	acility			Closed	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	Departure to OLF	Break Arrival from OLF	Helo Departure to OLF	Helo Arrival from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	3,988	1,460	2,166	364	215	215	-	-	3,089	1,735	1,264	1,784	16,280
		FRS	2,748	1,183	1,397	168	130	130	-	-	1,910	2,034	-	2,374	12,074
		RES	554	187	327	39	4	4	-	-	65	225	199	216	1,820
₽		EXP	1,625	564	900	160	-	-	-	-	-	548	618	574	4,989
Ault Field	EP3	All													
품	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	
⋖	P8	All	1,182	941	-	241	-	-	-	-	-	1,294	-	626	4,284
	H60	SAR	291	291	-	-	-	-	73	73	-	-	-	-	728
	C-40	-	297	216	-	81	-	-	-	-	-	237	-	130	961
	JET_LRG	-	125	116	-	8	-	-	-	I	-	-	-	-	249
	Total		10,810	4,958	4,790	1,061	349	349	73	73	5,064	6,073	2,081	5,704	41,385
					Arrival			Interf	acility			Closed	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total

Airfield	Aircraft	Squadro	Departure	Non- Break	Overhead Break	IFR	Arrival from Ault		Arrival from Ault	Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					215	215	-	-	2,664	-			3,094
NOLF		FRS					130	130	-	-	1,691	-			1,951
2		RES					4	4	-	-	62	-			70
	H60	SAR					-	-	73	73	-	146			292
	Total		-	•	-	-	349	349	73	73	4,417	146	•	-	5,407

Total Annual	Ault =	5,064	50%
EA-18G	NOLF =	5,115	50%
FCLP-Related Ops	Total =	10,179	

Grand Total (Ault+NOLF) 46,792

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

FCLP-Related Ops

Total =

10,144

Table A2-32 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3C

					Arrival			Interf	acility			Closed	Pattern*		
_		uo.		VFR SI/	Affival			Break	Helo	Helo		Ciosea	Pattern		
iel	irafi	Squadron		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Airfield	Aircraft	Squ	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,020	1,431	2,238	352	92	92	-	-	4,676	1,967	1,394	1,795	18,057
		FRS	2,693	1,204	1,354	135	39	39	-	-	3,396	2,080	-	2,415	13,355
		RES	565	199	318	49	3	3	-	-	29	234	214	225	1,839
≖		EXP	1,681	602	938	141	-	-	-	-	-	552	580	563	5,057
Ault Field	EP3	All	-	-	-	-	-	-	-	-	-	-	-	-	-
불		All	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All	1,198	953	-	245	-	-	-	-	-	1,260	-	661	4,317
		SAR	285	285	-	-	-	-	74	74	-	-	-	-	718
	C-40	-	296	211	-	85	-	-	-	-	-	251	-	131	974
	JET_LRG	-	126	110	-	15	-	-	-	-	-	-	-	-	251
	Total														
	Total		10,864	4,995	4,848	1,022	134	134	74	74	8,101	6,344	2,188	5,790	44,568
	Total		10,864	4,995	4,848 Arrival	1,022	134	134 Interf		74	8,101	•	2,188 Pattern*	5,790	44,568
Airfield	Aircraft	Squadron	10,864 Departure	VFR SI/ Non- Break	, i	1,022	FCLP Break Arrival from Ault			Helo Departure to Ault	8,101	•		5,790 GCA/CCA	44,568 Total
		WV Squadron		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival	Interf. FCLP Departure	acility Helo Arrival	Helo Departure		Closed	Pattern*		
	EA18	CVW FRS		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault	Interf. FCLP Departure to Ault	acility Helo Arrival	Helo Departure	FCLP	Closed	Pattern*		Total
NOLF Airfield	FA18	CVW FRS RES		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault	FCLP Departure to Ault 92	Helo Arrival from Ault	Helo Departure to Ault	FCLP 1,206	Closed T&G	Pattern*		Total 1,390 614 39
	EA18	CVW FRS		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 92 39 3	FCLP Departure to Ault 92 39 3	Helo Arrival from Ault	Helo Departure to Ault - - - 74	FCLP 1,206 536 33	T&G 148	Pattern*		Total 1,390 614 39 296
	FA18	CVW FRS RES		VFR SI/ Non-	Arrival Overhead		FCLP Break Arrival from Ault 92 39	FCLP Departure to Ault 92 39	Helo Arrival from Ault	Helo Departure to Ault	FCLP 1,206 536	Closed T&G	Pattern*		Total 1,390 614 39

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-33 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3D

		_			Arrival			Inter	facility			Close	d Pattern*		
Ъ	aft	dror		VFR SI/				Break	Helo	Helo					
Airfield	5	nac		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Sq	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,027	1,416	2,158	452	286	286	-		1,682	1,575	1,312	1,870	15,064
		FRS	2,678	1,139	1,337	202	175	175	-	-	1,181	1,753	-	2,325	10,965
		RES	537	181	312	46	4	4	-	-	113	241	187	227	1,852
ъ		EXP	1,598	541	879	177	-	-	-	-	-	571	582	597	4,945
Field	EP3	All	-	-	-	-	-	-	-	1	-	-	-	-	-
Ault	Р3	All	-	1	-	-	-	-	-	1	-	-	-	-	-
<	P8	All	1,195	906	-	289	-	-	-	1	-	1,161	-	589	4,140
	H60	SAR	283	283	-	-	-	-	73	73	-	-	-	-	712
	C-40	-	298	204	-	94	-	-	-	-	-	255	-	132	983
	JET_LRG	-	119	111	-	8	-	-	-	-	-	-	-	-	238
	Total		10,735	4,781	4,686	1,268	465	465	73	73	2,976	5,556	2,081	5,740	38,899

					Arrival			Interf	acility			Close	d Pattern*		
Airfield	Aircraft	Squadron	Departure	VFR SI/ Non- Break	Overhead Break	IFR	FCLP Break Arrival from Ault	FCLP Departure to Ault	Helo Arrival from Ault	Helo Departure to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					286	286	-	-	3,784	-			4,356
NOLF		FRS					175	175	-	-	2,371	-			2,721
2		RES					4	4	-	-	59	-			67
	H60	SAR					-	-	73	73	-	146			292
	Total		-	-	-	-	465	465	73	73	6,214	146	-	-	7,436

Total Annual EA-18G	Ault =	2,976	29%
FCLP-Related Ops	NOLF =	7,144	71%
retr-helated Ops	Total =	10,120	

Grand Total (Ault+NOLF) 46,335

=

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-34 Detailed Annual School Day Flight Operations for the High-Tempo FCLP Year Alternative 3E

					Arrival			Interf	acility			Closed	Pattern*		
-5	æ	Squadron		VFR SI/				Break	Helo	Helo					
Airfield	Aircraft	nad		Non-	Overhead		Departure	Arrival	Departure	Arrival					
Air	Air	Sqı	Departure	Break	Break	IFR	to OLF	from OLF	to OLF	from OLF	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw	4,020	1,431	2,238	352	138	138	-	-	4,092	1,967	1,394	1,795	17,565
		FRS	2,693	1,204	1,354	135	59	59	-	-	2,972	2,080	-	2,415	12,971
		RES	565	199	318	49	5	5	-	-	25	234	214	225	1,839
ъ		EXP	1,681	602	938	141	ı	•	-	-	-	552	580	563	5,057
Ault Field	EP3	All	-	1	-	-	-	1	-	-	-	-	-	-	1
품	Р3	All	-	1	-	-	-	1	-	-	-	-	-	-	1
⋖	P8	All	1,198	953	-	245	1	ı	-	-	1	1,260	-	661	4,317
	H60	SAR	285	285	-	-	ı	-	74	74	1	-	-	-	718
	C-40	-	296	211	-	85	-	-	-	-	-	251	-	131	974
	JET_LRG	-	126	110	-	15	-	-	-	-	-	-	-	-	251
	Total		10,864	4,995	4,848	1,022	202	202	74	74	7,089	6,344	2,188	5,790	43,692
					Arrival			Interf	acility			Closed	Pattern*		
					AIII			III CIT				Ciosca	- determ		
		_					FCLP								
<u> </u>	#	Squadron		VFR SI/			Break	FCLP	Helo	Helo					
Airfield	Aircraft	nac		Non-	Overhead		Arrival	Departure	Arrival	Departure					
Air	Air	Sq	Departure	Break	Break	IFR	from Ault	to Ault	from Ault	to Ault	FCLP	T&G	ReEnter	GCA/CCA	Total
	EA18	cvw					138	138	-	-	1,809	-			2,085
NOLF		FRS					59	59	-	-	804	-			922
ž		RES					5	5	-	-	50	-			60
	H60	SAR					-	-	74	74	-	148			296
	Total		_	_	_	_	202	202	74	74	2 663	148		_	3 363

Total Annual	Ault =	7,089	70%
EA-18G	NOLF =	3,067	30%
FCLP-Related Ops	Total =	10,156	

Grand Total (Ault+NOLF) 47,055

^{*} Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-35 Summary of Annual Flight Operations for the High-Tempo FCLP Year Baseline Scenario

			of Flight ration	
Airfield	Aircraft Type or Category	FCLP (2)	Other ⁽³⁾	Total
	EA-18G	17,300	52,800	70,100
۸ الد التا ما ما	Other Based	-	17,500	17,500
Ault Field	Transient	-	2,300	2,300
	Subtotal	17,300	72,600	89,900
OLF	EA-18G	6,100	-	6,100
Coupeville	HH-60	-	400	400
(4)	Subtotal	6,100	400	6,500
(bo	Total oth airfields)	23,400	73,000	98,400

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100; rounded to nearest 10 if greater than or equal to 10 (and less than 100); set to 10 if between 1 and 9.

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Ault Field, includes departures, arrivals, pattern operations and interfaction For the OLF, includes HH-60 interfacility departures, arrivals and pattern wo (4) excludes 900 interfacility Growler operations (FCLP-related).

Table A2-36 Detailed Annual Flight Operations for the High-Tempo FCLP Year Baseline Scenario

										Arri	val										Int	erfacility							
		v		Departure		N	VFR SI/ Ion-Brea	k		Overl Bre	ak			IFR			Departure				reak Arrival			Depa	Helo arture to	OLF	Arriy	Helo ral from OL	F
Airfield	Aircraft	Squadrons	Day (0700-	Night (2200-	Total	Day (0700-	Night (2200-	Total	(07	ay 700- 00) DK	Night (2200- 0700) DK	Tatal		Night (2200-	Total	Da (070 220 DL	0-	Night (2200- 0700) DK	Total	Da (07) 220 DL	00- 00)	Night (2200- 0700) DK	T-1-1		Night (2200-	Total		Night (2200-	
	EA18	CVW FRS RES EXP	2200) 4,522 6,151 1,122 1,843	0700) 244 405 85 90	Total 4,766 6,556 1,207 1,933	2200) 1,592 2,333 393 694	0700) 63 319 25 22	1,655 2,652 418 716	1,496 1,506 435 605	1,160 1,439 251 430	110 690 26 40	2,766 3,635 712 1,075	2200) 332 230 72 136	0700) 6 39 2 4	338 269 74 140	126 173 19			166 198 19	74 99 9	39 62 9	53 37	Total 166 198 18	2200)	0700)	Total	2200)	0700)	Total
Ault Field	EP3 P3 P8 H60	AII AII AII SAR	644 1,601 - 382	126 103	770 1,704 - 382	398 1,306 - 382	17	415 1,435 - 382	- - -	-	- - -	-	349 261 -	- 7 -	349 268 -									- - 90		90	- - - 90	-	90
	C-40 JET_L To		390 392 17,047	115 1,168	390 507 18,215	284 361 7,743	100 675	284 461 8,418	4,042	3,280	- - 866	8,188	106 32 1,518	14 72	106 46 1,590	318	-	65	383	182	110	90	382	90	-	90	90	-	90
																					Int	erfacility							
Airfield	Aircraft															Da (070 220 Daylight	00-	Night (2200- 0700) DK		Da (07) 220 Daylight	00- 00) DK	Night (2200- 0700) DK	Total	Day	Helo val from Night (2200- 0700)	Ault Total	Day	Helo arture to Au Night (2200- 0700)	ult Total
OLF	EA18	RES SAR														126 173 19	-	40 25 -	166 198 19	74 99 9	39 62 9	53 37 90	18	90		90	90		90
	10	(a)								d Pattern*								TOTAL	363	182	110	90	362	90		90	90	-	90
Airfield	Aircraft	Squadrons	D; (07 220 DL		Night (2200- 0700) DK	Total	D: (07 220 DL	ay 00-	**G Night (2200- 0700) DK	Total	Day (0700-	Night (2200-0700)	Total	Day (0700- 2200)	Night (2200-0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total										
ield	EA18	CVW FRS RES EXP	2,541 1,519 71		2,210 905 -	9,544 7,510 170 0	584 866 16	1,958 3,514 518 632 1,260	488 1,042 8 12	3,030 5,422 542 644 1,260	1,448 - 406 588	56 - 4 36	1,504 0 410 624	2,616 4,718 544 622 636	1,446 938 8 12	4,062 5,656 552 634 636	23,281 27,696 3,964 5,550 3,287		27,997 32,096 4,122 5,766 3,430										
Ault Field	P3 P8	AII					-	6,438	332	6,770	-	-		2,840	124 -	2,964	12,446	695	13,141										
	H60 C-40 JET_L						-	324 -	-	324 -	-	-		- 162 -	- - -	- 162 -	944 1,266 785	229	944 1,266 1,014										
OLF	EA18	CVW FRS RES SAR	4,131 984 1,308 120	9,978 724 1,063 139	3,115 624 393	2,332 2,764 259	1,466	14,644		17,992	2,442	96	2,538	12,138	2,528	14,666	79,219 1,947 2,705 296 360	10,557 717 455	89,776 2,664 3,160 296 360										
	Tot		2,412	1,926	1,017	5,355	180	-		180							5,308	1,172											
	otal A EA-1	innual L8G	Ault =		17,2 6.1		(73.8% (26.2%								Grand To		84,527	11,729	96,256										

Notes:

* Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

23,344

 $Squadrons: \ CVW = Carrier, \ FRS = Fleet \ Replacement, \ RES = Reserve, \ EXP = Expeditionary$

Table A2-37 Summary of Annual Flight Operations for the High-Tempo FCLP Year No Action Alternative

			tion Alter Tempo \		Chang	e from Ba	aseline
	Aircraft	Type o Oper	f Flight ation		Type o Oper		
Airfield	Type or Category	FCLP	Other ⁽³⁾	Total	FCLP (2)	Other	Total
Ault Field	EA-18G Other Based	14,000	53,600 11,400	67,600 11,400	-3,300 -	+800 -6,100	-2,500 -6,100
Ault Field	Transient Subtotal	14,000	2,300 67,300	2,300 81,300	-3,300	- -5,300	-8,600
OLF Coupeville	EA-18G HH-60	6,100 -	- 400	6,100 400	-	-	-
	Subtotal OTAL airfields)	6,100 20,100	400 67,700	6,500 87,800	-3,300	- -5,300	-8,600

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

(4) Excludes 900 interfacility Growler operations (Baseline and No Action).

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations;

Table A2-38 Detailed Annual Flight Operations for the High-Tempo FCLP Year No Action Alternative

									. ,																			
										Arriv	ral										Inte	erfacility						
				Donortur			VFR SI/ Ion-Brea	L.		Overh Brea				IFR			Departure	to OLE		Bros	k Arrival	from OLF		Dona	Helo ture to O	N E		lelo from OLF
		sus		Departure		,	оп-вгеа	`	D	ay	Night			IFK		Da		Night		Day	K AIIIVai	Night		Бера	ture to O	/LF	AIIIVa	HOIH OLF
<u> </u>		Squadrons	Day	Night		Day	Night		(07	00-	(2200-		Day	Night		(070	00-	(2200-		(0700-		(2200-			Night			light
Airfield		gdn:	(0700- 2200)	(2200- 0700)	Total	(0700-	(2200- 0700)	Total	22 DL	00) DK	0700) DK	Total	(0700-	(2200- 0700)	Total	220 DL	0) DK	0700) DK	Total	2200) DL	DK	0700) DK	Total		(2200- 0700)	Total		2200- 700) Tota
		cvw	4,478	305	4,783	1,686	44	1,730	1,575	1,131	69	2,775	271	4	275	162	- DR		197	98	49	49	197	-	-	TOtal	-	-
	EA18	FRS	6,163	401	6,564	2,342	345	2,687	1,523	1,464	663	3,650	205	22	227	180	-		206	107	59	42	208	-	-		-	-
		RES EXP	1,135 1,822	72 116	1,207 1,938	385 697	19 25	404 722	454 648	233 413	33 39	720 1,100	76 107	5 4	81 111	17	-	2	19 0	10	6	4	19 0	-				
Ault Field	EP3	All	1,022		1,930	- 037		-	-	- 413	-	-	-		-	-1	-			-	-	-	0	-	-		-	-
=	P3	All	-		-	-		-	-	-	-	-	-		-	-	-	-		-	-	-		-	-		-	-
<	P8 H60	AII SAR	1,918 383	104	2,022 383	1,408 383	255	1,663 383	-	-	-	-	304	55	359	-	-	-		-	-	-		90	-	90	90	- 9
	C-40	-	390	-	390	279	-	279	-	-	-	-	111	-	111	-	-	-			-	-		-		30	-	-
		LRG -	392	115	507	390	86	476	-	-	-	-	23	8	31	-	-	-		-	-	-		-	-		-	-
	To	otal	16,681	1,113	17,794	7,570	774	8,344	4,200	3,241	804	8,245	1,097	98	1,195	359	-	64	422	215	114	95	424	90	-	90	90	- 9
																					Inte	erfacility						
																Br	eak Arrival	from Ault		D	eparture :	to Ault		Arriv	Helo al from Au	ult		Helo ure to Ault
		suo														Da	y	Night		Day		Night						
e Id		quadro														(070 220		(2200- 0700)		(0700- 2200)		(2200- 0700)			Night			light
Airfield		Squadrons														Davlight	DK	DK	Total	Daylight	DK	DK	Total		(2200- 0700)	Total		2200- (700) Tota
		CVW														162	-	35	201	98	49	49	203					
P.F.	EA18	FRS RES														180 17	-	26 2	215	107	59	42	216					
"	H60	SAR	1													17	-		21	10	6	4	22	90	-	90	90	- 9
	To	tal														359	-	64	437	215	114	95	441	90	-	90	90	- (
									Close	l Pattern*								TOTAL		I								
		vo			LP				&G		Ŗ	teEnter			GCA/CC	A		TOTAL										
-		rons	Da (070		Night (2200-		D:		Night			Nii-la		D-111				Minte										
Airfield		Squadro	220		0700)		(07 22		(2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Day (0700-	Night (2200-	Total									
Α̈́			DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	2200)	0700)										
		CVW FRS	3,080 4,147	2,123 1,576	2,053 843	7,256 6,566	554 972	1,996 3,586	506 1,000	3,056 5,558	1,484	40	1,524 0	2,802 4,908	1,412 922	4,214 5,830	21,490 27,232		26,007 31,496									
	EA18	RES	120	58	- 043	178	18	492	20	530	448	20	468	548	16	5,630	3,999	191	4,190									
Field		EXP	-	-	-	0	-	656	20	676	644	20	664	650	20	670	5,637	244	5,881									
ΙĒ	EP3 P3	AII	-	-			-	-			-			-		-	-	-		1								
Ault	P8	All					-	3,894	662	4,556	-			1,686	182	1,868	9,210	1,258	10,468									
	H60	SAR	<u> </u>	-	-		-	-		-	-	-		-	-	-	946	-	946									
	C-40 JET	LRG -	1 -	-	-		-	326	-	326	-	-		164	-	164	1,270 805	209	1,270 1,014									
		otal	7,347	3,757	2,896	14,000	1,544	10,950	2,208	14,702	2,576	80	2,656	10,758	2,552	13,310	70,589	10,683	81,272									
	EAA	CVW	1,101	870	481	2,452											2,281	565	2,846									
P.F.	EA18	FRS RES	1,198 113	1,029 88	356 38	2,583 239											2,573 233	424 44	2,997 277									
	H60	SAR					181	-		181							361	-	361									
	To	otal	2,412	1,987	875	5,274	181	-	-	181							5,448	1,033	6,481	l								
	otal	Annual	Ault =		14.0	000	(69.6%								Grand To	ntal												
		18G	OLF =			20	(30.4%	_							It+Coup		76,036	11,717	87,753									

Notes

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

 $Squadrons: \ CVW = Carrier, \ FRS = Fleet \ Replacement, \ RES = Reserve, \ EXP = Expeditionary$

Table A2-39 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 1A

			Iternative 1 h Tempo Y		Chang	e from No	Action
	Aircraft	7.1	f Flight ation		Type o Oper		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	6,800	67,500	74,300	-7,200	+13,900	+6,700
Ault Field	Other Based	-	11,800	11,800	-	+400	+400
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	6,800	81,600	88,400	-7,200	+14,300	+7,100
OLF	EA-18G	27,300	-	27,300	+21,200	-	+21,200
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	27,300	400	27,700	+21,200	-	+21,200
	OTAL airfields)	34,100	82,000	116,100	+14,000	+14,300	+28,300

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 4800 interfacility (FCLP-related) operations; not shown separately.

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-40 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 1A

										Ai	rrival					,				· ·		Interfac	cility						
				Departure	e	N	VFR SI/ Ion-Breal	k		Over				IFR			Departur	e to OLF		Brea	ak Arriva	l from Ol	LF	Dep	Helo arture to	OLF	Arri	Helo val from	OLF
Airfield	Aircraft	Squadron	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (070 220 DL	0-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Di (07 220 DL	00-	Night (2200- 0700) DK	Total	Da (070 220) DL	0-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total
		CVW	7,076	440	7,516	2,589	81	2,670	4,198	-	190	4,388	454	5	459	569	231	337	1,137	914	-	223	1,137						
	EA18	FRS	5,614	347	5,961	2,135	304	2,439	2,394	316	599	3,309	188	25	213	287	146	123	556	477	-	79	556						
	EA18	RES	1,140	72	1,212	370	29	399	732	-	27	759	54	-	54	8	8	-	16	15	-	-	15						
0		EXP	1,858	88	1,946	694	27	721	1,039	-	49	1,088	135	2	137	-	-	-	0	-	-	-	0						
Field	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
불	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
Ā	P8	All	1,934	84	2,018	1,375	285	1,660	-	-	-	-	289	68	357														
	H60	SAR	385	-	385	385	-	385		-	-	-	_	-	-									89	-	89	89	-	89
	C-40	-	392	-	392	282	-	282	-	-	-	-	110	-	110														
	JET_LRG	-	399	111	510	384	98	482	-		-		24	3	27												-		
	Total		18,798	1,142	19,940	8,214	824	9,038	8,363	316	865	9,544	1,254	103	1,357	864	385	460	1,709	1,406	-	302	1,708	89	-	89	89	-	89
																						Interfac	cility						
																									Helo			Helo	
																Bre	eak Arriva	I from Aı	ılt	п	eparture	to Ault		Δrri	val from	Ault	Den:	arture to	Ault
		_														Di		Night		Da		Night		AIII	vairioiii	Auit	БСР	arture to	Aut
0	raft	유														(07		(2200-		(070		(2200-		Day	Night		Day	Night	
Airfield		nac														220		0700)		220		0700)		(0700-	(2200-		(0700-	(2200-	
Ā	Air	Squadron														DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		cvw														914	-	223	1,137	569	231	337	1,137						
P.F.	EA18	FRS														477	-	79	556	287	146	123	556						
ᅙ		RES														15		_	15	8	Ω	_	16						

									Close	d Pattern	*									
				FC	LP			Τŧ	kG			ReEnter		(GCA/CCA			TO	AL	
Airfield	rcraft	uadrons	Da (07) 220	00-	Night (2200- 0700)		Da (07) 220	00-	Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-		Da (070 220	0-	Night (2200- 0700)	
Ail	Air	Sq	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
		CVM	2,029	1,414	1,107	4,550	3,598	753	1,225	5,576	2,447	78	2,525	4,855	3,371	8,226	28,729	2,398	7,057	38,184
	EA18	FRS	1,321	524	302	2,147	3,601	722	1,008	5,331	-	-	0	4,651	1,071	5,722	20,668	1,708	3,858	26,234
	LAIO	RES	95	46	-	141	558	12	12	582	401	6	407	568	12	580	3,941	66	158	4,165
Field		EXP	-	-	-	0	632	-	24	656	574	28	602	626	20	646	5,558	-	238	5,796
ıΞ	EP3	AII					-	-	-	-	-	-	-	-	-	-	-	-	-	-
불	P3	AII					-	-	-	-	-	-	-	-	-	-	-	-	-	-
⋖	P8	All					4,119	-	673	4,792	-	-	-	1,780	199	1,979	9,497	-	1,309	10,806
	H60	SAR					-	-	-	-	-	-	-	-	-	-	948	-	-	948
	C-40	-					321	-	-	321	-	-	-	161	-	161	1,266	-	-	1,266
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	807	-	212	1,019
	Total		3,445	1,984	1,409	6,838	12,829	1,487	2,942	17,258	3,422	112	3,534	12,641	4,673	17,314	71,414	4,172	12,832	88,418
		CVW	7,644	4,271	3,993	15,908											9,127	4,502	4,553	18,182
님	EA18	FRS	3,830	2,662	1,288	7,780											4,594	2,808	1,490	8,892
0		RES	100	115	-	215											123	123	-	246
	H60	SAR					179			179							357		-	357
	Total		11,574	7,048	5,281	23,903	179	-	-	179							14,201	7,433	6,043	27,677

Notes.

* Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

DL = Daylight, DK = Darkness

Grand Totals (Ault+OLF)

85,615 11,605 18,875 116,095

Table A2-41 Summary of Annual Flight Operations for the High-Tempo Year FCLP Alternative 1B

			ternative ′ h Tempo Y		Change	from No A	Action
	Aircraft	7.	f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	17,100	66,100	83,200	+3,100	+12,500	+15,600
Ault Field	Other Based	-	11,700	11,700	-	+300	+300
Ault Field	Transient	-	2,300	2,300	-	-	-
	Subtotal	17,100	80,100	97,200	+3,100	+12,800	+15,900
OLF	EA-18G	17,100	-	17,100	+11,000	-	+11,000
	Other	-	400	400	-	-	-
Coupeville	Subtotal	17,100	400	17,500	+11,000	-	+11,000
	OTAL airfields)	34,200	80,500	114,700	+14,100	+12,800	+26,900

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 3000 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-42 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 1D

										A	rival										Interfac	ility						
			C	eparture	Э	N	VFR SV Ion-Brea	k		Over Bre	head eak			IFR			Departur			Breal	k Arrival from Ol		Depa	Helo arture to	OLF	Arriya	Helo al from (OLF
Airfield	Aircraft	Squadron	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (070 220 DL	00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	D: (07 22) DL		Night (2200- 0700) DK	Total	Day (0700 2200) DL	- (2200-	Total	Day (0700- 2200)	Night (2200- 0700)	Total	(0700-	Night (2200- 0700)	Tota
	EA18	CVW FRS RES EXP	7,076 5,614 1,140 1,858	440 347 72 88	7,516 5,961 1,212 1,946	2,589 2,135 370 694	81 304 29 27	2,670 2,439 399 721	4,198 2,394 732 1,039	- 316 -	190 599 27	4,388 3,309 759 1,088	454 188 54 135	5 25 - 2	459 213 54 137	498 251 7	202 128 7	295 108 -	995 487 14 0	800 417 13	- 195 - 69 -	995						
Ault Field	EP3 P3 P8 H60	AII AII AII SAR	1,934 385	- 84	0	1,375 385	-	1,660 385	-	- - -	- - -	0 -	289	- - 68	0 - 357								89		89	89		
	C-40 JET_LRG Total	-	392 399 18,798	- 111 1,142	392 510 19,940	282 384 8,214	98 824	282 482	8,363	316		9,544	110 24 1,254	3 103	110 27 1,357	756	337	403	1,495	1,230	- 264	1,495	90	-	90	90	-	
Airfield	Aircraft	Squadron									Br D: (07	00-	al from A Night (2200- 0700)	ult	De Day (0700 2200	- (2200-	ility	Arri Day (0700-	Helo val from A Night (2200-	Ault	Day	Helo ture to Night (2200-	Ault					
OLF	EA18	CVW FRS RES SAR														B00 417 13	DK -	DK 195 69	Total 995 487 13	DL 498 251 7	DK DK 202 295 128 108 7	Total 995 487 14	2200)	0700)	Total 89		0700)	Tot
	Total	SAR														1,230	-	264	1,495	756	337 403	1,495	89	-	89	89	-	
				FC	LP			Τέ		d Pattern		ReEnter		(SCA/CCA			т	OTAL									
Airfield	Aircraft	Squadrons	Da (07) 220 DL	ıy 00-	Night (2200- 0700) DK	Total	D: (07 220 DL	ay '00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (070 220 DL	y 00-	Night (2200- 0700) DK	Total								
	EA18	CVW FRS RES EXP	3,044 1,982 143	2,121 786 69	1,661 453 -	6,825 3,221 212 0	3,598 3,601 558 632	753 722 12	1,225 1,008 12 24	5,576 5,331 582 656	2,447 - 401 574	78 - 6 28	2,525 0 407 602	4,855 4,651 568 626	3,371 1,071 12 20	8,226 5,722 580 646	29,558 21,233 3,986 5,558	3,076 1,952 88	7,541 3,984 158 238	40,175 27,169 4,232 5,796								
Ault Field	EP3 P3 P8 H60	AII AII AII SAR					- - 4,119 -	- - -	-	- 4,792	- - - -	-	- - -	- - 1,780 -		- 1,979 -	9,497 948	-	- - 1,309 -	10,806 948								
	C-40 JET_LRG Total		5,168	2,976	2,114		321 - 12,829	1,487	-	321 - 17,258	3,422	112	3,534	161 - 12,641	4,673	161 - 17,314	1,266 807 72,853	5,116	212 13,441	1,266 1,019 91,410								
OLF	EA18	FRS RES	6,689 3,351	3,737 2,329	3,494 1,127	13,920 6,808											7,986 4,020	3,939 2,457	3,984 1,304	15,909 7,781								

Total Annual	Ault =	10,257	(30%)	
EA-18G FCLP-	NOLF =	23,905	(70%)	
Related Ops	Total =	34,162		

188

179

RES

SAR

Grand Total (Ault+OLF)

108

357

357

* Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

179

DL = Daylight, DK = Darkness

ALT3B

Table A2-43 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 1E

			ternative [/] h Tempo Y		Change	from No	Action
	Aircraft	~ *	f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	23,900	65,300	89,200	+9,900	+11,700	+21,600
Ault Field	Other Based	-	11,600	11,600	-	+200	+200
Auit Field	Transient	-	2,300	2,300	-	-	
	Subtotal	23,900	79,200	103,100	+9,900	+11,900	+21,800
OLF	EA-18G	10,300	-	10,300	+4,200	-	+4,200
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	10,300	400	10,700	+4,200	-	+4,200
	OTAL airfields)	34,200	79,600	113,800	+14,100	+11,900	+26,000

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 1200 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-44 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 1E

									Arrival										Interfacilit	у						
						VFR SI/		(Overhead													Helo			Helo	
			Departu	re	N	on-Break			Break			IFR			Departur				rrival from	OLF	Depart	ture to	OLF	Arriva	l from (OLF
_		u _o .						Day	Nigh	l				Da		Night		Day	Night							
Airfield	Aircraft	quadron	Day Night		Day	Night		(0700- 2200)	(2200 0700)		Day	Night		(07)		(2200- 0700)		(0700- 2200)	(2200- 0700)			Night		Day 1		
Aif	Airc	nbs	(0700- (2200- 2200) 0700)	Total	(0700- 2200)	(2200- 0700)	Total	DL D	к рк	Total	(0700- 2200)	(2200- 0700)	Total	DL	DK	DK	Total	DL	DK DK	Total		2200- 0700) T	Гotal	(0700- (2200) (2200- 0700) T	Гotal
	EA18	cvw	7,054 459	7,513	2,595	79	2,674 4	,169	- 15	4,322	513	4	517	206	111	95	411	351	- 60	411						
		FRS	5,599 340	5,939	2,093	306	2,399 2	,408	287 600	3,295	217	29	246	110	60	45	215	185	- 30	215						
		RES	1,120 92	1,212	394	23		702	- 29		64	-	64	9	9	-	18	17	-	17						
20		EXP	1,826 114	1,940	700	27	727 1	,016	- 4	1,060	144	8	152	-	-	-	0	-	-	0						
Field	EP3	All		-	-	-	-	-	-	-		-	-													
Ault	P3	All		-	-	-	-	-	-		-	-	-													
•	P8	All	1,922 93	2,015	1,362	266	1,628	-	-		328	59	387													
	H60	SAR	384 -	384	384	-	384	-	-		-	-	-								89	-	89	89	-	89
	C-40	-	391 -	391	283	-	283	-	-		108	-	108													
	JET_LRG	-	408 100	508	368	98	466	-		-	26	16	42													
	Total		18,704 1,198	19,902	8,179	799	8,978 8	,295	287 82	9,408	1,400	116	1,516	324	180	140	644	552	- 90	642	89	-	89	89	-	89
																			Interfacilit	у						
														Bre	eak Arriva	I from A	ult	Depa	irture to Au	lt		Helo			Helo	
		8														Night		Day	Night							
eld	Aircraft	quadron												(07)	00-	(2200- 0700)		(0700- 2200)	(2200- 0700)			Night		Day 1		
Airfield	Airc	a de												DL	DK	DK	Total	DL	DK DK	Total	(0700- (2200-	Fotal	(0700- (2200) (2200- 1700) T	[otal
	EA18	cvw												351	-	60	411	206		411		07007	Otai	2200)	3700/	otai
ш		FRS												185	-	30	215	110	60 45	215						
OLF		RES												17	-	-	17	9	9	18						
	H60	SAR																			89	-	89	89	-	89
	Total	<u>'</u>												552	-	90	642	324	180 140	644	89	-	89	89	-	89
							Cle	sed Patte																		
			-	CLP			T&G		1111	ReEnter			GCA/CC			то	TAL									
		_	Day	Night		Da		light		Keliitei			JCA/CC/		Da		Night									
2	₩	dron	(0700-					2200-	Day	Night		Day	Night		(070	00-	(2200-									
Airfield	Aircraft	Squadr	2200)	0700)		2200		700)	(0700	(2200-			(2200-		220		0700)									
Ä		•	DL DK	DK	Total	DL		DK To		0700)	Total	2200)	0700)	Total	DL	DK	DK	Total								
	EA18	cvw	7,210 3,789	4,832	15,831	3,598			2,44	7 78		4,855	3,371	8,226	32,998		10,355	48,006								
		FRS	5,046 1,786	1,103	7,935	3,601			331		0	4,651	1,071	5,722	23,909	2,855	4,532	31,296								
		RES	77 55	-	132 0	558 632	12		582 40: 556 574			568 626	12 20	580 646	3,910 5,518	76	174 265	4,160 5,783								
Field	EP3	All		_	U	032	-	24		- 20	002	020		040	3,316		203	3,763								
프	P3	All				-						_			-											
Ault	P8	All				4,050	-	628 4,		-		1,759	160	1,919	9,421		1,206	10,627								
	H60	SAR				-,		-	-			-,	-	-,	946	-	-,	946								
	C-40	-				325	-		325		-	162	-	162	1,269	-	-	1,269								
	JET_LRG	-				-	-	-	-			-	-	-	802	-	214	1,016								
	Total		12,333 5,630	5,934	23,897	12,764	1,487 2	,897 17,	148 3,42	112	3,534	12,621	4,634	17,255	78,772	7,584	16,746	103,102								
					Closed B	attorn*																				
			_	CLP	Closed P	attern*	T&G										TAL									
	_					Da		light							Da		Night									
			Day			Da									(070		(2200-									
P	#	dron	Day (0700-	Night (2200-				2200-							220		0700)									
rfield	rcraft	uadron	(0700- 2200)	(2200- 0700)		2200) (700)																		
Airfield	Aircraft	bs	(0700- 2200) DL DK	(2200- 0700) DK	Total) (tal						DL	DK	DK	Total								
	Aircraft Aircraft	cvw	(0700- 2200) DL DK 2,729 1,902	(2200- 0700) DK 1,116	5,747	2200) (700)	tal						3,285	2,013	1,271	6,569								
		CVW FRS	(0700- 2200) DL DK 2,729 1,902 1,496 1,026	(2200- 0700) DK	5,747 2,999	2200) (700)	tal						3,285 1,790	2,013 1,086		6,569 3,428								
OLF Airfield	EA18	CVW FRS RES	(0700- 2200) DL DK 2,729 1,902	(2200- 0700) DK 1,116	5,747	2200 DL	D) (DK To							3,285 1,790 137	2,013	1,271	6,569 3,428 273								
	EA18 H60	CVW FRS	(0700- 2200) DL DK 2,729 1,902 1,496 1,026 111 128	(2200- 0700) DK 1,116 477	5,747 2,999 239	2200 DL	D) (DK To	179						3,285 1,790 137 357	2,013 1,086 137	1,271 552 -	6,569 3,428 273 357								
	EA18	CVW FRS RES	(0700- 2200) DL DK 2,729 1,902 1,496 1,026	(2200- 0700) DK 1,116 477	5,747 2,999 239	2200 DL	D) (DK To							3,285 1,790 137	2,013 1,086	1,271	6,569 3,428 273								
OLF	EA18 H60	CVW FRS RES	(0700- 2200) DL DK 2,729 1,902 1,496 1,026 111 128 4,335 3,056	(2200- 0700) DK 1,116 477	5,747 2,999 239	2200 DL	D) (DK To	179			Gi	rand Tot	al	3,285 1,790 137 357 5,568	2,013 1,086 137 - 3,236	1,271 552 - - 1,823	6,569 3,428 273 357 10,626								
Tota	H60 Total	CVW FRS RES SAR Ault = NOLF =	(0700-2200) DL DK 2,729 1,902 1,496 1,026 111 128 4,335 3,056 23,897 10,269	(2200- 0700) DK 1,116 477	5,747 2,999 239	2200 DL	D) (DK To	179				rand Tot		3,285 1,790 137 357	2,013 1,086 137 - 3,236	1,271 552 -	6,569 3,428 273 357								
Tota	H60 Total	CVW FRS RES SAR	(0700-2200) DL DK 2,729 1,902 1,496 1,026 111 128 4,335 3,056 23,897 10,269	(2200- 0700) DK 1,116 477 - 1,593	5,747 2,999 239	2200 DL	D) (DK TO	179						3,285 1,790 137 357 5,568	2,013 1,086 137 - 3,236	1,271 552 - - 1,823	6,569 3,428 273 357 10,626								

Notes:

* Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-45 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2A

			ternative 2 h Tempo Y		Change	from No A	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	6,400	69,100	75,500	-7,600	+15,500	+7,900
Ault Field	Other Based	-	11,700	11,700	-	+300	+300
Auit Field	Transient	-	2,300	2,300	-	-	-
	Subtotal	6,400	83,100	89,500	-7,600	+15,800	+8,200
OLF	EA-18G	26,100	-	26,100	+20,000	-	+20,000
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	26,100	400	26,500	+20,000	-	+20,000
	OTAL airfields)	32,500	83,500	116,000	+12,400	+15,800	+28,200

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 4600 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-46 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2A

										Arri	val					· ·				·		Interfa	cility						
			Į.	Departure	9	N	VFR SI/ Ion-Breal	k		Overh Bre				IFR		I	Departur	e to OLF		Brea	ak Arriva	ıl from Ol	LF	Dep	Helo arture to	OLF	Arri	Helo val from	OLF
rfield	rcraft	uadron	Day (0700-	Night (2200-		Day (0700-	Night (2200-		Da (070 220	0-	Night (2200- 0700)		Day (0700-	Night (2200-		Da (070 220	0-	Night (2200- 0700)		Day (070 220	0-	Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-	
Ā	Αï	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		CVW	6,563	443	7,006	2,405	74	2,479	2,333	1,619	146	4,098	415	13	428	530	256	269	1,055	883	-	173	1,056						
	EA18	FRS	5,661	369	6,030	2,182	304	2,486	1,400	1,306	631	3,337	173	35	208	290	153	121	564	488	-	76	564						
	EAIO	RES	1,140	81	1,221	419	13	432	432	245	22	699	75	15	90	5	4	3	12	10	-	2	12						
eld		EXP	3,029	168	3,197	1,093	42	1,135	1,019	776	78	1,873	182	6	188	-	-	-	0	-	-	-	0						
벁	EP3	All	-	-	0	-	-	0	-	-	-	0	-	-	0														
풀	P3	All	-	-	-	-	-	-	-	-	-	-	-	-	-														
₹	P8	All	1,929	106	2,035	1,439	248	1,687	-	-	-	-	293	56	349														
	H60	SAR	388	-	388	388	-	388	-	-	-	-	-	-	-									90	-	90	90	-	90
	C-40	-	394	-	394	284	-	284	-	-	-	-	110	-	110														
	JET_LRG	i -	407	105	512	378	95	473	-	-	-	-	23	16	39														
	Total		19,511	1,272	20,783	8,588	776	9,364	5,184	3,946	877	10,007	1,271	141	1,412	825	413	393	1,631	1,381	-	251	1,632	90	-	90	90	-	90
																						Interfa	cility						
																									Helo			Helo	

								Interfa	cility						
											Helo			Helo	
		Bre	ak Arriva	al from A	ult	D	eparture	to Ault		Arri	val from	Ault	Depa	arture to	l
- E		Da	ay	Night		Day	/	Night							ſ
		(070	00-	(2200-		(070	0-	(2200-		Day	Night		Day	Night	1
na l		220	00)	0700)		2200	0)	0700)		(0700-	(2200-		(0700-	(2200-	
S		DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	
CVW		883	-	173	1,056	530	256	269	1,055						Г
FRS		488	-	76	564	290	153	121	564						
RES		10	-	2	12	5	4	3	12						
SAR										90	-	90	90	-	
al		1,381	-	251	1,632	825	413	393	1,631	90		90	90		

									Closed	Pattern*										
		w		FC	LP			Τ8	G			ReEnter			GCA/CCA	4		TO	TAL	
		ü	Da	ıy	Night		Da	ay	Night								Da	ay	Night	
흦	aft	ㅎ	(070	00-	(2200-		(07	00-	(2200-		Day	Night		Day	Night		(07	00-	(2200-	
Airfield	5	dna	220	0)	0700)		220	00)	0700)		(0700-	(2200-		(0700-	(2200-		220	00)	0700)	
Ψ	Air	Š	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total
		CVW	1,350	1,764	908	4,022	1,148	3,041	1,021	5,210	2,175	107	2,282	4,540	3,135	7,675	22,342	6,680	6,289	35,311
		FRS	488	1,464	272	2,224	1,106	3,417	929	5,452	-	-	0	4,735	1,000	5,735	16,523	6,340	3,737	26,600
	LAIO	RES	70	97	-	167	24	433	12	469	427	12	439	471	12	483	3,073	779	172	4,024
2		EXP	-	-	-	0	-	994	32	1,026	1,084	44	1,128	994	24	1,018	7,401	1,770	394	9,565
Field		All					-		-	-	-	-	-	-	-	-	-	-	-	_
Ault	P3	AII					-	-	-	-	-	-	-	-	-	-	-	-	-	-
₹	P8	AII					-	4,034	661	4,695	-	-	-	1,739	206	1,945	5,400	4,034	1,277	10,711
	H60	SAR					-	-	-	-		-	-	-	-	-	956	-	-	956
	C-40	-					-	326		326	-	-	-	164	-	164	952	326	-	1,278
	JET_LRG	-					-	-	-	-	-	-	-	-	-	-	808	-	216	1,024
	Total		1,908	3,325	1,180	6,413	2,278	12,245	2,655	17,178	3,686	163	3,849	12,643	4,377	17,020	57,455	19,929	12,085	89,469
		CVW	7,080	4,622	3,064	14,766											8,493	4,878	3,506	16,877
片	EA18	FRS	3,877	2,761	1,278	7,916											4,655	2,914	1,475	9,044
ō		RES	68	79	36	183											83	83	41	207
	H60	SAR					180			180							360	-	-	360
	Total		11,025	7,462	4,378	22,865	180	-	-	180							13,591	7,875	5,022	26,488

Total Annual	Ault =	6,413	(19.7%)
EA-18G FCLP-	NOLF =	26,128	(80.3%)
Related Ops	Total =	32,541	

Grand Total (Ault+OLF) 71,046 27,804 17,107 115,957

* Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

 $Squadrons: CWW = Carrier, FRS = Fleet \ Replacement, \ RES = Reserve, \ EXP = Expeditionary \ DL = Daylight, \ DK = Darkness$

Table A2-47 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2B

			ternative 2 h Tempo Y		Change	from No A	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	16,300	67,500	83,800	+2,300	+13,900	+16,200
Ault Field	Other Based	-	11,800	11,800	-	+400	+400
Ault Field	Transient	-	2,300	2,300	-	-	-
	Subtotal	16,300	81,600	97,900	+2,300	+14,300	+16,600
OLF	EA-18G	16,300	-	16,300	+10,200	-	+10,200
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	16,300	400	16,700	+10,200	-	+10,200
	OTAL airfields)	32,600	82,000	114,600	+12,500	+14,300	+26,800

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 2900 interfacility (FCLP-related) operations; not shown separatel;

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-48 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2B

_											Arri	val											Interfa	cility						
								VFR SI/			Over															Helo			Helo	
			_	D	eparture	•	1	Ion-Brea	k		Bre				IFR			Departure				ık Arrival		.F	Depa	rture to	OLF	Arri	val from	OLF
_			ron							Da		Night					Da		Night		Day		Night							
Airfield		Aircraft	uadr	Day	Night		Day	Night		(070 220		(2200-		Day	Night		(07) 220		(2200- 0700)		(0700 2200		(2200- 0700)		Day	Night		Day	Night	
当		흘	nb	(0700-	(2200-	Total	(0700-	(2200-	T-1-1	DL		0700)	Total	(0700-	(2200-		DL	DK		T-1-1	DL	DK	DK	Total	(0700-	(2200-	T-1-1	(0700-	(2200-	Total
⋖			O) DAT	2200)	0700)	Total	2200)	0700)	Total	_	DK	DK	Total	2200)	0700)	Total				Total				Total	2200)	0700)	Total	2200)	0700)	Total
			CVW FRS	6,575 5,609	364 361	6,939 5,970	2,371	74 301	2,445 2,483	2,265 1,364	1,607 1,280	146 626	4,018 3,270	473 200	16	478 216	331 180	173 91	153 78	657 349	556 301	-	101 49	657 350						
	EA		RES	1,144	67	1,211	399	20	419	428	244	28	700	79	12	91	7	7	76	14	14	- 1	49	14						
-			EXP	2,993	166	3,159	1,067	31	1,098	1,023	716	84	1,823	232	6	238				0	14			0						
Field	EP		All	2,993		3,139	1,007		0 0	1,023	- 710		1,023	- 232		0	-		-	U	-	-	- 1	U						
L L	P3		All	-						_																				
Auk	P8		All	1,898	91	1,989	1,378	275	1,653	-	-			289	47	336														
_	Н6		SAR	383		383	383	-	383	-	-		-	-		-									90	-	90	90	-	90
		-40	-	390	-	390	284	-	284	-	-	-	-	106	-	106														
	JE	T_LRG	-	401	106	507	371	98	469	-	-	-	-	25	13	38														
		Total		19,393	1,155	20,548	8,435	799	9,234	5,080	3,847	884	9,811	1,404	99	1,503	518	271	231	1,020	871	-	150	1,021	90	-	90	90	-	90
																							Interfa	oility						
																ŀ							interra	Cility						
				Helo Break Arrival from Ault Departure to Ault Arrival from Ault																Helo										
				Break Arrival from Ault Departure to Ault Arrival from Ault Day Night Day Night															Depa	arture to	Ault									
-		٠,	ron																						l	NII what		D		
9		<u>=</u>	ad														(07) 220		(2200- 0700)		(0700 2200		(2200- 0700)		Day	Night (2200-		Day	Night (2200-	
Airfield		Aircraft	Squadr													ŀ	DI	DK		Total	DL	DK	DK	Total	(0700- 2200)	0700)	Total	(0700- 2200)	0700)	Total
4			CVW														556	DK -	101	657	331	173	153	657	2200)	0700)	Total	2200)	0700)	Total
ш	FΔ		FRS														301	-	49	350	180	91	78	349						
片	-^		RES														14		43	14	7	7	- 70	14						-
_	Н6		SAR													ŀ				- ' '					90	-	90	90	-	90
		Total															871	-	150	1,021	518	271	231	1,020	90	-	90	90	-	90
										<u> </u>																				
					FC				т.	Closed F	attern*		ReEnter		1	GCA/CCA			тот	Α1										
			suo.	Da		Night		D		Night			Recnter			GCA/CCA		Da		Night										
7		±	교	(070		(2200-		(07																						
<u>ie</u>		Aircraft	лас	220						/2200-		Day	Night		Day	Night														
Airfield		Ā	Squadr	DL		0700)				(2200- 0700)		Day	Night		Day	Night		(070	00-	(2200-										
				UL	DK	0700) DK	Total	22	00)	0700)	Total	Day (0700- 2200)	(2200-	Total	Day (0700- 2200)	(2200-	Total		00-	(2200- 0700)	Total									
- 1	- 1		CVW	2,920	DK 4,774	0700) DK 2,802	Total 10,496				Total 5,210	(0700-		Total	(0700-		Total 7,675	(070 220	00- 00) DK	(2200-	Total 40,857									
	-		CVW FRS			DK		220 DL	00) DK	0700) DK		(0700- 2200)	(2200- 0700)		(0700- 2200)	(2200- 0700)		(070 220 DL	00- 00) DK	(2200- 0700) DK										
	EA	A18		2,920	4,774	DK 2,802	10,496	DL 1,148	00) DK 3,041	0700) DK 1,021	5,210	(0700- 2200)	(2200- 0700)	2,282	(0700- 2200) 4,540	(2200- 0700) 3,135	7,675	070 220 DL 23,354	00- 00) DK 9,595	(2200- 0700) DK 7,908	40,857									
<u> </u>		A18	FRS	2,920 1,099	4,774 3,674	DK 2,802	10,496 5,660	DL 1,148 1,106	00) DK 3,041 3,417	0700) DK 1,021 929	5,210 5,452	(0700- 2200) 2,175	(2200- 0700) 107	2,282 0	(0700- 2200) 4,540 4,735	(2200- 0700) 3,135 1,000	7,675 5,735	070 220 DL 23,354 16,776	00- 00) DK 9,595 8,462	(2200- 0700) DK 7,908 4,247	40,857 29,485									
Field		A18 P3	FRS RES EXP	2,920 1,099	4,774 3,674	DK 2,802	10,496 5,660 180	DL 1,148 1,106	00) DK 3,041 3,417 433 994	0700) DK 1,021 929 12 32	5,210 5,452 469	(0700- 2200) 2,175 - 427 1,084	(2200- 0700) 107 - 12 44	2,282 0 439	(0700- 2200) 4,540 4,735 471 994	(2200- 0700) 3,135 1,000 12 24	7,675 5,735 483	070 220 DL 23,354 16,776 3,051 7,393	00- 00) DK 9,595 8,462 806 1,710	(2200- 0700) DK 7,908 4,247 163	40,857 29,485 4,020									
ult Field		A18 P3 3	FRS RES EXP All	2,920 1,099	4,774 3,674	DK 2,802	10,496 5,660 180	DL 1,148 1,106	00) DK 3,041 3,417 433 994	0700) DK 1,021 929 12 32 -	5,210 5,452 469 1,026	(0700- 2200) 2,175 - 427 1,084	(2200- 0700) 107 - 12 44 -	2,282 0 439	(0700- 2200) 4,540 4,735 471 994	(2200- 0700) 3,135 1,000 12 24	7,675 5,735 483 1,018	070 220 DL 23,354 16,776 3,051 7,393	00- 00) DK 9,595 8,462 806 1,710	(2200- 0700) DK 7,908 4,247 163 387	40,857 29,485 4,020 9,490									
Ault Field	EP P3 P8	A18 P3 3	FRS RES EXP All All	2,920 1,099	4,774 3,674	DK 2,802	10,496 5,660 180	DL 1,148 1,106	00) DK 3,041 3,417 433 994	0700) DK 1,021 929 12 32 -	5,210 5,452 469	(0700- 2200) 2,175 - 427 1,084	(2200- 0700) 107 - 12 44 -	2,282 0 439	(0700- 2200) 4,540 4,735 471 994	(2200- 0700) 3,135 1,000 12 24	7,675 5,735 483	(070 220 DL 23,354 16,776 3,051 7,393	00- 00) DK 9,595 8,462 806 1,710	(2200- 0700) DK 7,908 4,247 163	40,857 29,485 4,020 9,490									
Ault Field	EP P3 P8 H6	A18 P3 3 3 60	FRS RES EXP All	2,920 1,099	4,774 3,674	DK 2,802	10,496 5,660 180	DL 1,148 1,106	00) DK 3,041 3,417 433 994 - 4,234	0700) DK 1,021 929 12 32 -	5,210 5,452 469 1,026 - - 4,874	(0700- 2200) 2,175 - 427 1,084 - -	(2200- 0700) 107 - 12 44 - -	2,282 0 439	(0700- 2200) 4,540 4,735 471 994 - 1,827	(2200- 0700) 3,135 1,000 12 24	7,675 5,735 483 1,018 - - 2,011	(070 220 DL 23,354 16,776 3,051 7,393 - 5,392 946	9,595 8,462 806 1,710	(2200- 0700) DK 7,908 4,247 163 387	40,857 29,485 4,020 9,490 - 10,863 946									
Ault Field	EP P3 P8 H6	P3 3 3 3 60 440	FRS RES EXP All All SAR	2,920 1,099	4,774 3,674	DK 2,802	10,496 5,660 180	DL 1,148 1,106	00) DK 3,041 3,417 433 994	0700) DK 1,021 929 12 32 -	5,210 5,452 469 1,026	(0700- 2200) 2,175 - 427 1,084	(2200- 0700) 107 - 12 44 - -	2,282 0 439	(0700- 2200) 4,540 4,735 471 994	(2200- 0700) 3,135 1,000 12 24	7,675 5,735 483 1,018	070 220 DL 23,354 16,776 3,051 7,393 - 5,392 946 952	00- 00) DK 9,595 8,462 806 1,710	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237	40,857 29,485 4,020 9,490 - - 10,863 946 1,294									
Ault Field	EP P3 P8 H6 C-4 JE	P3 3 3 60 40 ET_LRG	FRS RES EXP All All SAR	2,920 1,099 58	4,774 3,674 122	DK 2,802 887	10,496 5,660 180 0	22(DL 1,148 1,106 24 - - -	00) DK 3,041 3,417 433 994 4,234 342	0700) DK 1,021 929 12 32 640	5,210 5,452 469 1,026 - - 4,874 - 342	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	(070 220 DL 23,354 16,776 3,051 7,393 	00- 00) DK 9,595 8,462 806 1,710 - 4,234	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217	40,857 29,485 4,020 9,490 - 10,863 946 1,294 1,014									
Ault Field	EP P3 P8 H6 C-4 JE	P3 3 3 5 60 40 ET_LRG	FRS RES EXP All All SAR -	2,920 1,099 58 -	4,774 3,674 122 -	DK 2,802 887 - -	10,496 5,660 180 0	22(DL 1,148 1,106 24 - - -	00) DK 3,041 3,417 433 994 - 4,234	0700) DK 1,021 929 12 32 640	5,210 5,452 469 1,026 - - 4,874 - 342	(0700- 2200) 2,175 - 427 1,084 - -	(2200- 0700) 107 - 12 44 - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - 1,827	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	070 220 DL 23,354 16,776 3,051 7,393 - - 5,392 946 952 797 56,912	00- 00) DK 9,595 8,462 806 1,710 - 4,234 342 - 24,807	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217	40,857 29,485 4,020 9,490 									
	EP P3 P8 H6 C-4 JE	P3 3 3 60 40 ET_LRG	FRS RES EXP AII AII SAR - -	2,920 1,099 58 - - 4,077 4,444	4,774 3,674 122 - - 8,570 2,965	2,802 887 - - 3,689 1,786	10,496 5,660 180 0	22(DL 1,148 1,106 24 - - -	00) DK 3,041 3,417 433 994 4,234 342	0700) DK 1,021 929 12 32 640	5,210 5,452 469 1,026 - - 4,874 - 342	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	(070 220 DL 23,354 16,776 3,051 7,393 - - 5,392 946 952 797 56,912 5,331	00- 00) DK 9,595 8,462 806 1,710 - - 4,234 - 342 - 24,807 3,138	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217 13,942 2,040	40,857 29,485 4,020 9,490 									
	EP P3 P8 H6 C-4 JE	P3 3 3 60 40 ET_LRG Total	FRS RES EXP AII AII SAR - - CVW FRS	2,920 1,099 58 - - - 4,077 4,444 2,406	4,774 3,674 122 - - 8,570 2,965 1,704	DK 2,802 887 - -	10,496 5,660 180 0 16,336 9,195 4,904	22(DL 1,148 1,106 24 - - -	00) DK 3,041 3,417 433 994 4,234 342	0700) DK 1,021 929 12 32 640	5,210 5,452 469 1,026 - - 4,874 - 342	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	(070 220 DL 23,354 16,776 3,051 7,393 - - 5,392 946 952 797 56,912 5,331 2,887	0) DK 9,595 8,462 806 1,710 	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217	40,857 29,485 4,020 9,490 									
OLF Ault Field	EP P3 P8 H6 C-4 JE	A18 P3 3 3 60 -40 ET_LRG Total	FRS RES EXP AII AII SAR - - CVW FRS RES	2,920 1,099 58 - - 4,077 4,444	4,774 3,674 122 - - 8,570 2,965	2,802 887 - - 3,689 1,786	10,496 5,660 180 0	22(DL 1,148 1,106 24 - - -	00) DK 3,041 3,417 433 994 4,234 342	0700) DK 1,021 929 12 32 - 640 - 2,634	5,210 5,452 469 1,026 - - 4,874 - 342 - 17,031	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	(070 220 DL 23,354 16,776 3,051 7,393 - - 5,392 946 952 797 56,912 5,331	00- 00) DK 9,595 8,462 806 1,710 - - 4,234 - 342 - 24,807 3,138	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217 13,942 2,040	40,857 29,485 4,020 9,490 									
	EP P3 P8 H6 C-4 JE	A18 P3 3 3 60 -40 ET_LRG Total	FRS RES EXP AII AII SAR - - CVW FRS	2,920 1,099 58 - - - 4,077 4,444 2,406	8,570 2,965 1,704 106	2,802 887 - - - 3,689 1,786 794	10,496 5,660 180 0 16,336 9,195 4,904 198	22(DL 1,148 1,106 24 	00) DK 3,041 3,417 433 994 4,234 - 342 - 12,119	0700) DK 1,021 929 12 32 - 640 - 2,634	5,210 5,452 469 1,026 - - 4,874 - 342	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	(070 220 DL 23,354 16,776 3,051 7,393 - - - 5,392 946 952 797 56,912 5,331 2,887 113	0) DK 9,595 8,462 806 1,710 4,234 24,807 3,138 1,795 113	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - 217 13,942 2,040 921	40,857 29,485 4,020 9,490 									
	EP P3 P8 H6 C-4 JE	A18 P3 3 3 60 -40 ET_LRG Total A18 60	FRS RES EXP AII AII SAR - - CVW FRS RES	2,920 1,099 58 - - - - - - - - - - - - - - - - - -	8,570 2,965 1,704 106	2,802 887 - - 3,689 1,786	10,496 5,660 180 0 16,336 9,195 4,904 198	220 DL 1,148 1,106 24 - - - - - - - - - - - - - - - - - -	00) DK 3,041 3,417 433 994 4,234 12,119	0700) DK 1,021 929 12 32 - 640 - 2,634	5,210 5,452 469 1,026 - - 4,874 - 342 - 17,031	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,735 483 1,018 - - 2,011 - 172	(070 220 23,354 16,776 3,051 7,393 	0) DK 9,595 8,462 806 1,710 4,234 342 24,807 3,138 1,795 113	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - 217 13,942 2,040 921	40,857 29,485 4,020 9,490 									
OLF	EP P3 P8 H6 C-4 JE	A18 P3 3 3 60 -40 ET_LRG Total A18 60 Total	FRS RES EXP AII AII SAR - - CVW FRS RES	2,920 1,099 58 - - - - - - - - - - - - - - - - - -	8,570 2,965 1,704 106	3,689 1,786 794	10,496 5,660 180 0 16,336 9,195 4,904 198	220 DL 1,148 1,106 24 - - - - - - - - - - - - - - - - - -	00) DK 3,041 3,417 433 994 4,234 12,119	0700) DK 1,021 929 12 32 - 640 - 2,634	5,210 5,452 469 1,026 - - 4,874 - 342 - 17,031	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - 1,827 - 172 - 12,567	(2200- 0700) 3,135 1,000 12 24 - - 184 - - 4,355	7,675 5,735 483 1,018 - 2,011 - 172 - 16,922	(070 220 DL 23,354 16,776 3,051 7,393 	00000000000000000000000000000000000000	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217 13,942 2,040 921 - -	40,857 29,485 4,020 9,490 10,863 946 1,294 1,014 10,509 5,603 226 360 16,698									
OLF	EP P3 P8 H6 C-4 JE	A18 P3 3 3 60 -40 ET_LRG Total A18 60	FRS RES EXP AII AII SAR - - CVW FRS RES	2,920 1,099 58 - - - - - - - - - - - - - - - - - -	8,570 2,965 1,704 106	2,802 887 	10,496 5,660 180 0 16.336 9,195 4,904 198	220 DL 1,148 1,106 24 - - - - - - - - - - - - - - - - - -	00) DK 3,041 3,417 433 994 4,234 12,119	0700) DK 1,021 929 12 32 - 640 - 2,634	5,210 5,452 469 1,026 - - 4,874 - 342 - 17,031	(0700- 2200) 2,175 - 427 1,084 - - -	(2200- 0700) 107 - 12 44 - - -	2,282 0 439 1,128 - - -	(0700- 2200) 4,540 4,735 471 994 - - 1,827 - 172 - 12,567	(2200- 0700) 3,135 1,000 12 24 - - 184	7,675 5,736 483 1,018 - - 2,011 - 172 - 16,922	(070 220 DL 23,354 16,776 3,051 7,393 	0) DK 9,595 8,462 806 1,710 4,234 342 24,807 3,138 1,795 113	(2200- 0700) DK 7,908 4,247 163 387 - - 1,237 - - 217 13,942 2,040 921 - -	40,857 29,485 4,020 9,490 									

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-49 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2C

			ternative 2 h Tempo Y		Change	from No /	Action
	Aircraft	7	f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	26,100	66,400	92,500	+12,100	+12,800	+24,900
Ault Field	Other Based	-	11,700	11,700	-	+300	+300
Ault Fleid	Transient	-	2,300	2,300	-	-	
	Subtotal	26,100	80,400	106,500	+12,100	+13,100	+25,200
OLF	EA-18G	6,500	-	6,500	+400	-	+400
	Other	-	400	400	-	-	-
Coupeville	Subtotal	6,500	400	6,900	+400	-	+400
	OTAL airfields)	32,600	80,800	113,400	+12,500	+13,100	+25,600

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 1200 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-50 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2C

											Arr												Interfa	cility						
								VFR SI/				head														Helo	a. =	١	Helo	
			_		Departure	2	P	Non-Breal	K		ay Bre	eak Night			IFR		Da		e to OLF Night		Bre Da		al from O Night		Depa	arture to	OLF	Arri	val from	OLF
_	:	∉	dron	Day	Night		Day	Night			'00-	(2200-		Day	Night		(07		(2200-		(070		(2200-		Day	Night		Day	Night	
Airfield		Aircraft	Squadr	(0700-	(2200-		(0700-	(2200-			00)	0700)		(0700-	(2200-		220		0700)		220		0700)		(0700-	(2200-		(0700-	(2200-	
Air		Air	Sa	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
			CVW	6,589	360	6,949	2,401	87	2,488	2,237	1,604	159	4,000	452	10	462	133	55	76	264	216	-	49	265						
	F	A18	FRS	5,649	338	5,987	2,128	315	2,443	1,410	1,325	583	3,318	192	34	226	68	41	26	135	117	-		135						
_			RES	1,131	80	1,211	380	26	406	408	270	21	699	96	10	106	6	3	1	10	10	-	-	10						
Field	} <u> -</u> -	D2	EXP All	3,020	156	3,176	1,077		1,127	1,039	737	62	1,838	210	2	212	-	-	-	0			-	0						
Ē	P3	P3	All			-	_	_	-	_	-		0	_	_	U														
Auk	PE		All	1,910	99	2,009	1,374	232	1,606		-		_	333	70	403														
		60	SAR	385	-	385	385		385	-	-		-	-	-	-									90	-	90	90	-	90
	C-	-40	-	392	-	392	289	-	289	-	-	-	-	103	-	103														
	JE	ET_LRG	-	403	105	508	381	93	474	-			-	23	11	34														
		Total		19,479	1,138	20,617	8,415	803	9,218	5,094	3,936	825	9,855	1,409	137	1,546	207	99	103	409	343	-	67	410	90	-	90	90	-	90
					103 105 508 381 93 474 23 11 34 9 9 103 409 343 - 67 410 90 - 90 90 103 409 343 - 67 410 90 - 90 90 103 409 343 - 67 410 90 - 90 90 103 409 10																									
					Interfacility Helo Helo																									
					Helo Helo Break Arrival from Ault Departure to Ault Arrival from Ault Departure to A															Ault										
			등		Break Arrival from Ault Departure to Ault Arrival from Ault Departure Day Night Day Night																									
Airfield		Aircraft	Squadron														(07		(2200-		(070		(2200-		Day	Night		Day	Night	
Ē		<u> </u>) j														220		0700)		220		0700)		(0700-	(2200-		(0700-	(2200-	
⋖		∢															DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
ш	. F	A18	CVW FRS														216 117	-		265 135	133 68	55 41	76 26	264 135						
P.	; [-		RES														10		10	10	6	3		10						
	н	60																												
		บบ	SAR																	10				10	90	-	90	90	-	90
		Total	SAR														343	-		410	207	99		409	90		90 90		-	90 90
			SAR							Closed	Pattern*															-			-	
					FC	LP			T8	Closed	Pattern*		ReEnter			GCA/CCA	343			410						-			-	
		Total		Da	ay	Night		Da	ay	&G Night	Pattern*						343	- Da	67 TO	410 TAL Night						-			-	
<u>e</u>		Total		(07	ay 00-	Night (2200-		(07	ay 00-	%G Night (2200-	Pattern*	Day	Night		Day	Night	343	- Da (07)	67 TO	410 TAL Night (2200-						-			-	
Airfield		Total		(07) 22(ay 00- 00)	Night (2200- 0700)	Total	(07) 220	ay 00- 00)	Night (2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-	343	- Da (07) 220	67 TO [*] ay 00- 00)	410 TAL Night (2200- 0700)	207					-			-	
Airfield			Squadrons	(07) 220 DL	ay 00- 00) DK	Night (2200- 0700) DK	Total	(07) 220 DL	ay 00- 00) DK	%G Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	343	- Da (07) 22(DL	67 TO ⁻ ay 00- 00) DK	410 TAL Night (2200- 0700) DK	207					-			-	
Airfield		Aircraft		(07) 22(ay 00- 00)	Night (2200- 0700)	Total 16,678 9,237	(07) 220	ay 00- 00) DK	Night (2200- 0700)		Day (0700-	Night (2200- 0700)		Day (0700-	Night (2200-	343	Da (07) 220 DL 24,518	67 TO ⁻ ay 00- 00) DK	410 TAL Night (2200- 0700)	207					-			-	
Airfield		Total	C W Sdnadrons	(07) 220 DL 4,627	ay 00- 00) DK 7,750	Night (2200- 0700) DK 4,301	16,678	(07) 220 DL 1,148	ay 00- 00) DK 3,041	Night (2200- 0700) DK 1,021 929	Total 5,210	Day (0700- 2200)	Night (2200- 0700) 107	Total 2,282	Day (0700- 2200) 4,540	Night (2200- 0700) 3,135	343 A Total 7,675	Da (07) 220 DL 24,518	TO ay 00- 00) DK 12,450 10,670 837	410 TAL Night (2200- 0700) DK 9,305	Total 46,273 32,668 4,058					-			-	
	E	Total Aircraft	CVW FRS RES EXP	(07) 220 DL 4,627 2,113	DK 7,750 5,887	Night (2200- 0700) DK 4,301	16,678 9,237	(07) 220 DL 1,148 1,106	ay 00- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	Total 2,282 0	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	343 Total 7,675 5,735	Da (07) 22(DL 24,518 17,518 3,047 7,424	TO- ay 000- 000) DK 12,450 10,670 837 1,731	410 TAL Night (2200- 0700) DK 9,305 4,480 174 370	207 Total 46,273 32,668								-	
	E	Total Viccatt A18	CVW FRS RES EXP	(07) 220 DL 4,627 2,113	DK 7,750 5,887	Night (2200- 0700) DK 4,301	16,678 9,237 225	(07) 220 DL 1,148 1,106	ay 00- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - - 12 44	Total 2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	343 Total 7,675 5,735 483	Da (07) 220 DL 24,518 17,518 3,047	TO ay 000- 000) DK 12,450 10,670 837 1,731	7AL Night (2200- 0700) DK 9,305 4,480 174 370	Total 46,273 32,668 4,058					-			-	
	E	Total Aircraft Aircraft Aircraft Aircraft	CVW FRS RES EXP All	(07) 220 DL 4,627 2,113	DK 7,750 5,887	Night (2200- 0700) DK 4,301	16,678 9,237 225	(07/ 220 DL 1,148 1,106 24 -	ay 000- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	Total 2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (07/220 DL 24,518 17,518 3,047 7,424 -	TO ay 00-000 DK 12,450 10,670 837 1,731	TAL Night (2200- 0700) DK 9,305 4,480 174 370	Total 46,273 32,668 4,058 9,525					-			-	
Ault Field	E/ Pi	Total Historia Viceral Alia	CVW FRS RES EXP All	(07) 220 DL 4,627 2,113	DK 7,750 5,887	Night (2200- 0700) DK 4,301	16,678 9,237 225	(07) 220 DL 1,148 1,106	ay 00- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	Total 2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (07/ 220 DL 24,518 17,518 3,047 7,424	TO ay 00-000 DK 12,450 10,670 837 1,731	7AL Night (2200- 0700) DK 9,305 4,480 174 370	Total 46,273 32,668 4,058 9,525					-			-	
	E/	Total Aircraft Aircraft Aircraft Aircraft	CVW FRS RES EXP All	(07) 220 DL 4,627 2,113	DK 7,750 5,887	Night (2200- 0700) DK 4,301	16,678 9,237 225	(07/ 220 DL 1,148 1,106 24 -	ay 000- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	Total 2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (07/ 220 DL 24,518 17,518 3,047 7,424	TO ay 00-000 DK 12,450 10,670 837 1,731	TAL Night (2200- 0700) DK 9,305 4,480 174 370	Total 46,273 32,668 4,058 9,525					-				
	E/ EI P? P?	Total Hall All All All All All All All All All	CVW FRS RES EXP All	(07) 220 DL 4,627 2,113	DK 7,750 5,887	Night (2200- 0700) DK 4,301	16,678 9,237 225	(07/ 220 DL 1,148 1,106 24 -	ay 000- 000) DK 3,041 3,417 433 994 - 4,230	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	Total 2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994 - 1,832	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (077/22/ DL 24,518 17,518 3,047 7,424 - - 5,449 950	TO ay 00-000 DK 12,450 10,670 837 1,731 - 4,230	TAL Night (2200- 0700) DK 9,305 4,480 174 370	Total 46,273 32,668 4,058 9,525 									
	E/ EI P? P?	Total A18 A18 P3 3 8 60 -40	Suopenbs CVW FRS RES EXP All All All SAR	(07/ 220 DL 4,627 2,113 94 -	ay 000- 00) DK 7,750 5,887 131	Night (2200- 0700) DK 4,301 1,237	16,678 9,237 225 0	(07/ 220 DL 1,148 1,106 24 - - -	ay 000- 000) DK 3,041 3,417 433 994 - 4,230	Night (2200- 0700) DK 1,021 929 12 32 - 559	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - - 1,832 - 162	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 483 1,018	Da (077) 220 DL 24,518 3,047 7,424	TO ay 00- 00) DK 12,450 10,670 837 1,731 - 4,230 - 319 30,237	410 TAL Night (2200- 0700) DK 9,305 4,480 174 370 - 1,116 - 209 15,654	Total 46,273 32,668 4,058 9,525 950 1,265 1,016 106,550									
Ault Field	E/ PS PS HG C- JE	Total A18 P3 3 8 60 40 Total	Suppose Suppos	(07/ 220 DL 4,627 2,113 94 - - - - - - - - - - - - - - - - - -	2y 00- 00) DK 7,750 5,887 131	Night (2200- 0700) DK 4,301 1,237	16,678 9,237 225 0 26,140 3,709	(07/ 220 DL 1,148 1,106 24 - - -	ay 000- 00) DK 3,041 3,417 433 994 - 4,230 - 319	Night (2200- 0700) DK 1,021 929 12 32 - 559	Total 5,210 5,452 469 1,026 - 4,789 319	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - - 1,832 - 162	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 4,838 1,988 1,988	Da (07/22) DL 24,518 17,518 3,047 7,424 5,449 950 946 807 60,659 2,132	TO ay 00-000 DK 12,450 10,670 837 1,731 - 4,230 - 319 - 30,237 1,084	410 TAL Night (2200- 0700) DK 9,305 4,480 174 370 - 1,116 - 209 15,654 1,022	Total 46,273 32,668 4,058 9,525 - 10,795 950 1,265 1,016 106,550 4,238									
Ault Field	E/ PS PS HG C- JE	Total A18 P3 3 8 60 40 ET_LRG	CVW FRS AII AII SAR CVW FRS	(07/ 220 DL 4,627 2,113 94 - - - - - - - - - - - - - - - - - -	28 y 000-000 DK 7,750 5,887 131	Night (2200- 0700) DK 4,301 1,237	16,678 9,237 225 0 26,140 3,709 1,884	(07/ 220 DL 1,148 1,106 24 - - -	ay 000- 00) DK 3,041 3,417 433 994 - 4,230 - 319	Night (2200- 0700) DK 1,021 929 12 32 - 559	Total 5,210 5,452 469 1,026 - 4,789 319	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - - 1,832 - 162	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 4,838 1,988 1,988	Da (077) 220 DL 24,518 3,047 7,424 5,449 950 946 807 60,659 2,132 1,079	TO ay 00- 00) DK 12,450 10,670 837 1,731 4,230 319 30,237 1,084 758	A10 TAL Night (2200- 0700) DK 9,305 4,480 174 370 1,116 209 15,654 1,022 317	Total 46,273 32,668 4,058 9,525 									
	E/ Pi Pi Pi Ht	A18 P3 3 8 60 -40 ET LRG Total	CVW FRS RES AII AII SAR CVW FRS RES	(07/ 220 DL 4,627 2,113 94 - - - - - - - - - - - - - - - - - -	2y 00- 00) DK 7,750 5,887 131	Night (2200- 0700) DK 4,301 1,237	16,678 9,237 225 0 26,140 3,709	(07/ 220 DL 1,148 1,106 24 - - - - - - - 2,278	DK 3,041 3,417 433 994 - 4,230 - 319	Night (2200-0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026 - - 4,789 - 319 - 17,265	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - - 1,832 - 162	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 4,838 1,988 1,988	Da (07/22/2 DL 24,518 17,518 3,047 7,424 5,449 950 946 807 60,659 2,132 1,079 90	TO ay 00-00) DK 12,450 10,670 837 1,731 4,230 -30,237 1,084 758 59	A10 TAL Night (2200- 0700) DK 9,305 4,480 174 370 1,116 209 15,654 1,022 317 1	Total 46,273 32,668 4,058 9,525 10,795 1,265 1,016 106,550 4,238 2,154 150									
Ault Field	E/ Pi Pi Pi Ht	Total A18 P3 3 8 60 -40 ET_LRG Total A18 60	CVW FRS AII AII SAR CVW FRS	(07/ 220 DL 4,627 2,113 94 - - - - - - - - - - - - - - - - - -	13,768 1,029 717 56	Night (2200- 0700) DK 4,301 1,237 - - - - - - - - - - - - - - - - - - -	16,678 9,237 225 0 26,140 3,709 1,884 130	(07/ 22(DL 1,148 1,106 24 - - - - - - - 2,278	ay 000- 00) DK 3,041 3,417 433 994 - 4,230 - 319	Night (2200- 0700) DK 1,021 929 12 32 - 559 - 2,553	Total 5,210 5,452 469 1,026 - 4,789 - 319 - 17,265	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - - 1,832 - 162	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 4,838 1,988 1,988	Da (077220 DL 24,518 17,518 3,047 7,424 5,449 950 946 807 60,659 2,132 1,079 90 360	TO ay 00- 00) DK 12,450 10,670 837 1,731 4,230 - 319 - 30,237 1,084 758 59	A10 TAL Night (2200- 0700) DK 9,305 4,480 174 370 - 1,116 - 209 15,654 1,022 317 1	Total 46,273 32,668 9,525 									
Ault Field	E/ Pi Pi Pi Ht	A18 P3 3 8 60 -40 ET LRG Total	CVW FRS RES AII AII SAR CVW FRS RES	(07/ 220 DL 4,627 2,113 94 - - - - - - - - - - - - - - - - - -	13,768 1,029 717 56	Night (2200- 0700) DK 4,301 1,237	16,678 9,237 225 0 26,140 3,709 1,884	(07/ 220 DL 1,148 1,106 24 - - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - 4,230 - 319 - 12,434	Night (2200- 0700) DK 1,021 929 12 32 - 559 - 2,553	Total 5,210 5,452 469 1,026 - 4,789 - 319 - 17,265	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - - 1,832 - 162	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 4,838 1,988 1,988	Da (07/22/2 DL 24,518 17,518 3,047 7,424 5,449 950 946 807 60,659 2,132 1,079 90	TO ay 00-00) DK 12,450 10,670 837 1,731 4,230 -30,237 1,084 758 59	A10 TAL Night (2200- 0700) DK 9,305 4,480 174 370 1,116 209 15,654 1,022 317 1	Total 46,273 32,668 4,058 9,525 10,795 1,265 1,016 106,550 4,238 2,154 150								-	
OLF	E/ EF: P3: P8: H6: C- JE	Total A18 P3 3 8 60 40 ET LRG Total A18 60 Total	CVW FRS RES AII AII SAR CVW FRS RES	(07/ 220 DL 4,627 2,113 94 - - - - - - - - - - - - - - - - - -	13,768 1,029 717 56	Night (2200- 0700) DK 4,301 1,237 - - - 5.538 897 273	16,678 9,237 225 0 26,140 3,709 1,884 130	(07/ 22(DL 1,148 1,106 24 - - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - 4,230 - 319 - 12,434	Night (2200- 0700) DK 1,021 929 12 32 - 559 - 2,553	Total 5,210 5,452 469 1,026 - 4,789 - 319 - 17,265	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 994 - 1,832 162 - 12,734	Night (2200- 0700) 3,135 1,000 12 24 - - 156 - - 4,327	Total 7,675 5,735 483 1,018 - - 1,988 - 162 - 17,061	000 (077 22(DL 24,518 3,047 7,424 	TO ay 00- 000) DK 12,450 10,670 837 1,731 - 4,230 319 - 30,237 1,084 758 59 1,901	A10 TAL Night (2200- 0700) DK 9,305 4,480 174 370 - 1,116 - 209 15,654 1,022 317 1 1,340	Total 46,273 32,668 4,058 9,525 950 1,265 1,016 106,550 4,218 4,154 150 360 6,902								-	
OLF Aut Field	E/ P3 P8 H6 C- JE	Total A18 P3 3 8 60 -40 ET_LRG Total A18 60	CVW FRS RES AII AII SAR CVW FRS RES	(07/ 220 DL 4,627 2,113 94 	13.768 1,802 26,	Night (2200- 0700) DK 4,301 1,237 - - - 5.538 897 273	16,678 9,237 225 0 26,140 3,709 1,884 130 5,723	(07/ 22(DL 1,148 1,106 24 - - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - 4,230 - 319 - 12,434	Night (2200- 0700) DK 1,021 929 12 32 - 559 - 2,553	Total 5,210 5,452 469 1,026 - 4,789 - 319 - 17,265	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 - -	Total 2,282 0 439 1,128	Day (0700- 2200) 4,540 4,735 471 1994 - 1,832 162 12,734	Night (2200- 0700) 3,135 1,000 12 24 - - - 156	Total 7,675 5,735 483 1,018 1,988 162 17,061	000 (077 22(DL 24,518 3,047 7,424 	TO ay 00- 00) DK 12,450 10,670 837 1,731 4,230 - 319 - 30,237 1,084 758 59	A10 TAL Night (2200- 0700) DK 9,305 4,480 174 370 - 1,116 - 209 15,654 1,022 317 1 1,340	Total 46,273 32,668 9,525 								-	

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-51 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2D

			ternative 2 h Tempo Y		Change	from No A	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	Type or	9,600	68,700	78,300	-4,400	+15,100	+10,700
Ault Field	Other Based	-	11,700	11,700	-	+300	+300
Ault Field	Transient	-	2,300	2,300	-	-	-
	Subtotal	9,600	82,700	92,300	-4,400	+15,400	+11,000
OL F	EA-18G	22,900	-	22,900	+16,800	-	+16,800
OLF	Other	-	400	400	-	-	-
Coupeville	Subtotal	22,900	400	23,300	+16,800	-	+16,800
	OTAL airfields)	32,500	83,100	115,600	+12,400	+15,400	+27,800

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 2900 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-52 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2D

																													-
										Arri												Interfa	cility						
			-	eparture			VFR SI/ Ion-Brea	b		Overl Bre				IFR			Departur	o to OLE		Dro	ak Arriva	ol from O		Don	Helo arture to	OL E	Arri	Helo val from	OLE I
		u		eparture		, r	оп-вгеа	<u> </u>	Da		Night			IF N		Da		Night		Da		Night		Dep	arture to	OLF	AIII	vai iroiii	OLF
므	# #		Day	Night		Day	Night		(07		(2200-		Day	Night		(07		(2200-		(07)		(2200-		Day	Night		Day	Night	
Airfield	Aircraft	quadr	(0700-	(2200-		(0700-	(2200-		220		0700)		(0700-	(2200-		220		0700)		220		0700)		(0700-	(2200-		(0700-	(2200-	
₹	₹	й	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		CVW FRS	6,563 5,661	443 369	7,006 6,030	2,405 2,182	74 304	2,479 2,486	2,333 1,400	1,619	146 631	4,098 3,337	415 173	13 35	428 208	464 254	224 134	235 106	923 494	773 427	-		924 494						
	EA18	RES	1,140	81	1,221	419	13	432	432	245	22	699	75	15	90	4	4	3	11	9			11						
0		EXP	3,029	168	3,197	1,093	42			776	78		182	6	188	-	-	-	0	-	-	-	0						
Field	EP3	All	-	-	0	-		0	-	-	-	0	-	-	0														
Auk	P3	All	-	-	-	-	-	-	-	-		-	-	-	-														
<	P8 H60	All	1,929	106	2,035	1,439	248	1,687	-	-	-	-	293	56	349									90		90	90		90
	C-40	SAR	388 394	- 1	388 394	388 284	-	388 284	-	-	-		110	-	110									90	-	90	90	-	90
	JET LR	G -	407	105	512	378	95	473	-				23	16	39														
	Total		19,511		20,783	8,588	776	9,364	5,184	3,946	877	10,007	1,271	141		722	361	344	1,427	1,208	-	220	1,428	90	-	90	90	-	90
																						Interfa	cility						
															İ										Holo			Helo	
																		Dep	arture to	Ault									
		le le													İ	Da	ay	Night		Da	ıy	Night							
Airfield	Aircraft	quadro														(07		(2200-		(070		(2200-		Day	Night		Day	Night	
皇	直	dní														220		0700)		220		0700)		(0700-	(2200-		(0700-	(2200-	
⋖	⋖	CVW														DL 773	DK -	DK 151	Total 924	DL 464	DK 224	DK 235	Total 923	2200)	0700)	Total	2200)	0700)	Total
щ	EA18	FRS													ŀ	427	- 1	67	494	254	134	106	494						
OLF		RES														9	-	2	11	4	4	3	11						
	H60	SAR																						90	-	90	90		90
	Total															1.208			1.428		361		1.427			90			90
																1,200	-	220	1,720	722	001	344	1,427	90	-	30	90		
									Closed I	Pattern*										122	301	344	1,421	90	-	30	90		
		ns	Do	FC					&G	Pattern*		ReEnter		(GCA/CCA			тот	TAL	122	301	344	1,421	90	-	30	90		
<u> </u>	#	drons	Da (07)	ıy	Night		D:	ay	&G Night	Pattern*							Da	TO1	TAL Night	122		344	1,421	90	-	30	90		
field	rcraft		Da (07) 220	iy 00-			D: (07 22)	ay 00-	&G	Pattern*	Day (0700-	ReEnter Night (2200-		Day (0700-	GCA/CCA Night (2200-			TO1 ay 00-	TAL	122	301	344	1,421	90	-	30	90		
Airfield	Aircraft	Squadr	(070 220 DL	19 10- 10) DK	Night (2200- 0700) DK	Total	(07 220 DL	ay 00- 00) DK	%G Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (070 220 DL	TO ay 00- 00) DK	TAL Night (2200- 0700) DK	Total	301	344	1,421	90	-	30	90		
Airfield	Aircraft	WYS Squadr	(070 220 DL 2,025	00- 00) DK 2,646	Night (2200- 0700) DK 1,362	6,033	(07 22) DL 1,148	ay 000- 000) DK 3,041	Night (2200- 0700) DK 1,021	Total 5,210	Day (0700-	Night (2200-	2,282	Day (0700- 2200) 4,540	Night (2200- 0700) 3,135	Total 7,675	Da (070 220 DL 22,840	TOT ay 00- 00) DK 7,530	TAL Night (2200- 0700) DK 6,688	Total 37,058		344	1,427	90		30	90		
Airfield	Aircraft Aircraft	CVW FRS	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK	6,033 3,336	(07 220 DL 1,148 1,106	ay (00- 00) DK 3,041 3,417	Night (2200- 0700) DK 1,021 929	Total 5,210 5,452	Day (0700- 2200) 2,175	Night (2200- 0700) 107	2,282 0	Day (0700- 2200) 4,540 4,735	Night (2200- 0700) 3,135 1,000	Total 7,675 5,735	Da (070 220 DL 22,840 16,670	TO ay 000- 00) DK 7,530 7,053	TAL Night (2200- 0700) DK 6,688 3,848	Total 37,058 27,571		344	1,427	90		30	90		
		CVW FRS RES	(070 220 DL 2,025	00- 00) DK 2,646	Night (2200- 0700) DK 1,362	6,033 3,336 251	(07 22) DL 1,148	ay 000- 000) DK 3,041 3,417 433	Night (2200- 0700) DK 1,021 929 12	Total 5,210 5,452 469	Day (0700- 2200) 2,175 - 427	Night (2200- 0700) 107 - 12	2,282 0 439	Day (0700- 2200) 4,540 4,735 471	Night (2200- 0700) 3,135 1,000	Total 7,675 5,735 483	Da (070 220 DL 22,840 16,670 3,106	TO ay 000- 000) DK 7,530 7,053 827	TAL Night (2200- 0700) DK 6,688 3,848 171	Total 37,058 27,571 4,105		344	1,927	90	-	30	90		
		CVW FRS	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK 1,362	6,033 3,336	(07 220 DL 1,148 1,106	ay (00- 00) DK 3,041 3,417	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452	Day (0700- 2200) 2,175	Night (2200- 0700) 107 - 12 44	2,282 0	Day (0700- 2200) 4,540 4,735	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735	Da (070 220 DL 22,840 16,670	TO ay 000- 00) DK 7,530 7,053	TAL Night (2200- 0700) DK 6,688 3,848	Total 37,058 27,571		3 44	1,927	90	-	30	90		
	EA18 EP3 P3	CVW FRS RES EXP All	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK 1,362	6,033 3,336 251	(07 220 DL 1,148 1,106	ay 00- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (070 220 DL 22,840 16,670 3,106 7,401	TO ay 00- 00) DK 7,530 7,053 827 1,770	Night (2200-0700) DK 6,688 3,848 171 394	Total 37,058 27,571 4,105 9,565		344	1,927	90	-	30	90		
Ault Field Airfield	EA18 EP3 P3 P8	CVW FRS RES EXP All All	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK 1,362	6,033 3,336 251	(07 220 DL 1,148 1,106	ay 000- 000) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44	2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (07(220 DL 22,840 16,670 3,106 7,401 - - 5,400	TO ay 00- 00) DK 7,530 7,053 827 1,770	TAL Night (2200- 0700) DK 6,688 3,848 171 394	Total 37,058 27,571 4,105 9,565		344	1,427	90		30	90		
	EA18 EP3 P3 P8 H60	CVW FRS RES EXP All	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK 1,362	6,033 3,336 251	(07 220 DL 1,148 1,106	ay 00- 00) DK 3,041 3,417 433 994 - 4,034	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (077 220 DL 22,840 16,670 3,106 7,401 - - 5,400 956	TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT	Night (2200-0700) DK 6,688 3,848 171 394	Total 37,058 27,571 4,105 9,565		344	1,427	90		30	90		
	EA18 EP3 P3 P8 H60 C-40	CVW FRS RES EXP All All SAR	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK 1,362	6,033 3,336 251	(07 220 DL 1,148 1,106	ay 00- 00) DK 3,041 3,417 433 994	Night (2200- 0700) DK 1,021 929 12 32	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084	Night (2200- 0700) 107 - 12 44 -	2,282 0 439	Day (0700- 2200) 4,540 4,735 471 994	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018	Da (070 220 DL 22,840 16,670 3,106 7,401 - - 5,400 956 952	TO ay 00- 00) DK 7,530 7,053 827 1,770	TAL Night (2200- 0700) DK 6,688 3,848 171 394 - 1,277	Total 37,058 27,571 4,105 9,565 - - 10,711 956 1,278		344	1,427	90		30	90		
	EA18 EP3 P3 P8 H60	CVW FRS RES EXP All All SAR -	070 220 DL 2,025 732	DK 2,646 2,196	Night (2200- 0700) DK 1,362	6,033 3,336 251	(07 220 DL 1,148 1,106 24 	ay 00- 00) DK 3,041 3,417 433 994 - 4,034	Night (2200- 0700) DK 1,021 929 12 32 - - 661 -	Total 5,210 5,452 469 1,026	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739	Night (2200- 0700) 3,135 1,000 12 24	Total 7,675 5,735 483 1,018 - 1,945 - 164	Da (07/ 220 DL 22,840 16,670 3,106 7,401 - - 5,400 956 952 808	TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT	Night (2200-0700) DK 6,688 3,848 171 394	Total 37,058 27,571 4,105 9,565		344	1,442.7	90	•	30	90		
Ault Field	EA18 EP3 P3 P8 H60 C-40 JET_LR	CVW FRS RES EXP All All All SAR - CVW	(070 220 DL 2,025 732 105	DK 2,646 2,196 146	Night (2200- 0700) DK 1,362 408	6,033 3,336 251 0	(07 220 DL 1,148 1,106 24 	ay 00- 00) DK 3,041 3,417 433 994 - 4,034 - 326	Night (2200- 0700) DK 1,021 929 12 32 - - 661 -	Total 5,210 5,452 469 1,026 - 4,695 326	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739 - 164	Night (2200- 0700) 3,135 1,000 12 24 - - 206	Total 7,675 5,735 483 1,018 - 1,945 - 164	Da (07/ 220 DL 22,840 16,670 3,106 7,401 - - 5,400 956 952 808	TO ay 000-000 DK 7,530 7,053 827 1,770 - 4,034 - 326	TAL Night (2200- 0700) DK 6,688 3,848 171 394 - 1,277 - 216	Total 37,058 27,571 4,105 9,565 - - 10,711 956 1,278 1,024	307	344	1,442.7	90	•	30	90		
Ault Field	EA18 EP3 P3 P8 H60 C-40 JET_LR	CVW FRS RES EXP All All SAR - CVW FRS	(070 220 DL 2,025 732 105 - - - - - - - - - - - - - - - - - - -	DK 2,646 2,196 146 	Night (2200- 0700) DK 1,362 408	9,620 12,920 6,927	(07 220 DL 1,148 1,106 24 	ay 00- 00) DK 3,041 3,417 433 994 - 4,034 - 326	Night (2200- 0700) DK 1,021 929 12 32 - - 661 -	Total 5,210 5,452 469 1,026 - 4,695 326	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739 - 164	Night (2200- 0700) 3,135 1,000 12 24 - - 206	Total 7,675 5,735 483 1,018 - 1,945 - 164	Da (077 220 DL 22,840 16,670 3,106 7,401 - - 5,400 956 952 808 58,133 7,431 4,073	TO ay 000-000 DK 7,530 7,053 827 1,770 - 4,034 - 21,540 4,268 2,550	Night (2200-0700) DK 6,688 171 394 - 1,277 - 216 12,595 3,068 1,291	Total 37,058 27,571 4,105 9,565 		344	1,442.7	30	•	30	90		
	EA18 EP3 P3 P8 H60 C-40 JET LR Total	CVW FRS RES EXP AII AII AII SAR - CVW FRS RES CVW FRS RES	(070 220 DL 2,025 732 105 - - - 2.862 6,195	00- 00) DK 2,646 2,196 146 - -	Night (2200- 0700) DK 1,362 408 - - 1,770 2,681	6,033 3,336 251 0 9,620 12,920	(07 220 DL 1,148 1,106 24 - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - 4,034 - 326 - 12,245	Night (2200- 0700) DK 1,021 929 12 32 - 661 - 2.655	Total 5,210 5,452 469 1,026 - 4,695 326	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739 - 164	Night (2200-0700) 3,135 1,000 12 24 - 206	Total 7,675 5,735 483 1,018 - 1,945 - 164	Da (077 222,840 16,670 3,106 7,401 - - 5,400 956 952 808 58,133 7,431 4,073 73	TOT ay 00- 000) DK 7,530 7,053 827 1,770 - - 4,034 - 326 - 21,540 4,268 2,550 73	TAL Night (2200- 0700) DK 6,688 3,848 171 394 - 1,277 - 216 12.595 3,068 1,291 36	Total 37,058 27,571 4,105 9,565 	307	344	1,446.7	30	•	30	90		
Ault Field	EA18 EP3 P3 P8 H60 C-40 JET LR Total EA18	CVW FRS RES EXP All All SAR - CVW FRS	(070 220 DL 2,025 732 105 - - - 2,862 6,195 3,392 60	00-000 DK 2,646 2,196 146 4,988 4,044 2,416 69	Night (2200- 0700) DK 1,362 408 - - - 2,681 1,118 32	9,620 12,920 6,927 160	(07 220 DL 1,148 1,106 24 - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - - 4,034 - 326 -	Night (2200- 0700) DK 1,021 929 12 32 661 2,655	Total 5,210 5,452 469 1,026 - 4,695 - 326 17.178	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739 - 164	Night (2200-0700) 3,135 1,000 12 24 - 206	Total 7,675 5,735 483 1,018 	Da (077 220 DL 22,840 16,670 3,106 7,401 - - 5,400 956 952 808 808 58,133 7,431 4,073 73 360	TOTO 29 00-000 DK 7,530 7,053 827 1,770 - 4,034 - 221,540 4,268 2,550 73	TAL Night (2200- 0700) DK 6,688 3,848 171 394 - 1,277 - 216 12.595 3,068 1,291 36	Total 37,058 27,571 4,105 9,565 		344	1,442.7	30		30	90		
Ault Field	EA18 EP3 P3 P8 H60 C-40 JET LR Total	CVW FRS RES EXP AII AII AII SAR - CVW FRS RES CVW FRS RES	(070 220 DL 2,025 732 105 - - - - - - - - - - - - - - - - - - -	DK 2,646 2,196 146 	Night (2200- 0700) DK 1,362 408 - - - 1,770 2,681 1,118 32	9,620 12,920 6,927	(07 220 DL 1,148 1,106 24 - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - 4,034 - 326 - 12,245	Night (2200- 0700) DK 1,021 929 12 32 661 2,655	Total 5,210 5,452 469 1,026 - 4,695 326	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - - 1,739 - 164	Night (2200-0700) 3,135 1,000 12 24 - 206	Total 7,675 5,735 483 1,018 	Da (077 222,840 16,670 3,106 7,401 - - 5,400 956 952 808 58,133 7,431 4,073 73	TOT ay 00- 000) DK 7,530 7,053 827 1,770 - - 4,034 - 326 - 21,540 4,268 2,550 73	TAL Night (2200- 0700) DK 6,688 3,848 171 394 - 1,277 - 216 12.595 3,068 1,291 36	Total 37,058 27,571 4,105 9,565 10,711 956 1,278 1,024 92,268 14,767 7,914 181 360		344	1,446.7	30		30	90		
OLF Ault Field	EA18 EP3 P3 P8 H60 C-40 JET LR Total EA18	CVW FRS RES EXP All All All SAR - CVW FRS RES SAR	(070 220 DL 2,025 732 105 - - - 2,862 6,195 3,392 60	00-000 DK 2,646 2,196 146 4,988 4,044 2,416 69	Night (2200- 0700) DK 1,362 408 - - - 1,770 2,681 1,118 32 3,831	9,620 12,920 6,927 160	(07 220 DL 1,148 1,106 24 - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - - 4,034 - 326 -	Night (2200- 0700) DK 1,021 929 12 32 661 2,655	Total 5,210 5,452 469 1,026 - 4,695 - 326 17.178	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 471 994 - 1,739 - 164 -	Night (2200- 0700) 3,135 1,000 12 24 - - - 206 - - - - - - - - - - - - - - - - - - -	Total 7,675 5,735 483 1,018 - - 1,945 - 164 - - 17,020	Da (077 220 DL 22,840 16,670 3,106 7,401 5,400 956 952 808 58,133 7,431 4,073 73 360 11,937	TO ay 000- 000) DK 7,530 7,053 827 1,770 - - 4,034 - 326 - 21,540 4,268 2,550 73 - 6,891	TAL Night (2200- 0700) DK 6,688 3,848 171 394 1,277 - 216 12,595 3,068 1,291 36 4,394	Total 37,058 27,571 4,105 9,565 		344	1,442.7	30		30	90		
OLF Ault Field	EA18 EP3 P3 P8 H60 C-40 JET LR Total EA18 H60 Total	CVW FRS EXP All All All SAR - GG - CVW FRS RES SAR	2,862 6,195 3,392 60	4,988 4,044 2,416 69 6,529	Night (2200- 0700) DK 1,362 408 	9,620 12,920 6,927 160 20,007	(07 220 DL 1,148 1,106 24 - - - - - - 2,278	ay 00- 00) DK 3,041 3,417 433 994 - - - 4,034 - 326 -	Night (2200- 0700) DK 1,021 929 12 32 661 2,655	Total 5,210 5,452 469 1,026 - 4,695 - 326 17.178	Day (0700- 2200) 2,175 - 427 1,084 - -	Night (2200- 0700) 107 - 12 44 -	2,282 0 439 1,128 - - -	Day (0700- 2200) 4,540 4,735 4711 994 - 1,739 - 164 - 12,643	Night (2200-0700) 3,135 1,000 12 24 - 206	Total 7,675 5,735 483 1,018 - 1,945 - 164 - 17,020	Da (077 220 DL 22,840 16,670 3,106 7,401 5,400 956 952 808 58,133 7,431 4,073 73 360 11,937	TOTO 29 00-000 DK 7,530 7,053 827 1,770 - 4,034 - 221,540 4,268 2,550 73	TAL Night (2200- 0700) DK 6,688 3,848 171 394 1,277 - 216 12,595 3,068 1,291 36 4,394	Total 37,058 27,571 4,105 9,565 		344	1,442.7	30		30	90		

* Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-53 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 2E

			Iternative h Tempo Y		Change	from No A	Action
	Aircraft		of Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	22,900	66,800	89,700	+8,900	+13,200	+22,100
Ault Field	Other Based	-	11,700	11,700	-	+300	+300
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	22,900	80,800	103,700	+8,900	+13,500	+22,400
OLF	EA-18G	9,800	-	9,800	+3,700	-	+3,700
	Other	-	400	400	-	-	-
Coupeville	Subtotal	9,800	400	10,200	+3,700	-	+3,700
	OTAL airfields)	32,700	81,200	113,900	+12,600	+13,500	+26,100

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 1200 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-54 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 2E

										Arri	val											Interfac	ility						
			,)eparture		,	VFR SI/	l.		Overl				IFR			Departur	o to OLE		Prook	Arrival fr	rom Ol	_	Dong	Helo arture to	OLE	Arri	Helo val from	OLE
Airfield	Aircraft	Squadron	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (07) 220 DL	iy 00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (07) 220 DL	ay 00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	(2 0	light 2200- 700) DK	.r Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total
	EA18	CVW FRS RES EXP	6,589 5,649 1,131 3,020	360 338 80 156	6,949 5,987 1,211 3,176	2,401 2,128 380 1,077	87 315 26 50	2,488 2,443 406 1,127	2,237 1,410 408 1,039	1,604 1,325 270 737	159 583 21 62	4,000 3,318 699 1,838	452 192 96 210	10 34 10 2	462 226 106 212	200 102 9	83 62 5	114 39 2	396 203 15 0	324 176 15	- - -	74 27 -	398 203 15 0		J. 337	. 0.44			
Ault Field	P3 P8 H60	AII AII SAR	- 1,910 385		2,009 385	- 1,374 385	-	1,606 385	- - -	- - -	-	- - -	333	- 70	0 - 403									90	-	90	90	-	90
	C-40 JET_LRG	- - -	392 403 19,479	105 1,138	392 508 20,617	289 381 8,415	93 803	289 474 9,218	5.094	3.936	825	9.855	103 23 1,409	- 11 137	103 34 1,546	311	149	155	614	515	-	101	615	90	_	90	90	-	90
				.,	,	-,		-,	-,,	-,		-,	-,		.,				***			nterfac							
		E														Bre Da		al from Au Night	ult	De Day	parture to		Jiity	Arri	Helo val from	Ault	Dep	Helo arture to	Ault
Airfield	Aircraft	Squadro														(07) 220 DL	00- 00) DK	(2200- 0700) DK	Total	(0700- 2200) DL	DK (2	2200- 700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total
OLF	EA18 H60	FRS RES SAR														324 176 15	- - -	27	398 203 15	200 102 9	83 62 5	114 39 2	396 203 15	90		90	90		90
	Total	OAR														515	-	101	615	311	149	155	614	90	-	90	90	-	90
				FC	LP			T	Closed I	Pattern*		ReEnter		(GCA/CCA	\		TO	ΓAL										
Airfield	Aircraft	Squadrons	Da (07) 220 DL	00-	Night (2200- 0700) DK	Total	D: (07 220 DL	00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (07) 220 DL	00- 00)	Night (2200- 0700) DK	Total									
2	EA18	FRS RES EXP	4,049 1,849 82	6,781 5,151 115	3,763 1,082 -	14,593 8,082 197 0	1,148 1,106 24	3,041 3,417 433 994	1,021 929 12 32	5,210 5,452 469 1,026	2,175 - 427 1,084	107 - 12 44	2,282 0 439 1,128	4,540 4,735 471 994	3,135 1,000 12 24	7,675 5,735 483 1,018	24,114 17,346 3,043 7,424	11,509 9,955 822 1,731	8,830 4,347 175 370	44,453 31,648 4,040 9,525									
Ault Field	EP3 P3 P8	AII AII					-	4,230	-	4,789	- -		-	1,832	-	1,988	- - 5,449	- - 4 230	1,116	10,795									
	H60 C-40 JET LRG	SAR -					-	319		319	-		-	162		162	950 946 807	319	209	950 1,265 1,016									
	Total	<u> </u>	5,980	12,047	4,846	22,873	2,278	12,434	2,553	17,265	3,686	163	3,849	12,734	4,327	17,061	60,080	28,566	15,047	103,692									
OLF	EA18	CVW FRS RES	2,675 1,341 111	1,544 1,076 84	1,346 410	5,564 2,826 195											3,198 1,619 135	1,626 1,137 89	1,533 476 2	6,357 3,231 225									
	H60 Total	SAR	4,127	2,703	1,755	8,585	180 180	-		180 180							360 5.312	2,852	2,010	360 10,173									
EA-	al Annual 18G FCLP- lated Ops		Ault = NOLF = Total =	22,8 9,8 32.6	873 13	(70%) (30%)	180		-	180					rand Tota Ault+OLF			31,417		113,865									

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-55 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3A

			ternative 3 h Tempo Y		Change	from No A	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	6,500	67,800	74,300	-7,500	+14,200	+6,700
Ault Field	Other Based	-	11,500	11,500	-	+100	+100
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	6,500	81,600	88,100	-7,500	+14,300	+6,800
OLF	EA-18G	26,200	-	26,200	+20,100	-	+20,100
	Other	-	400	400	-	-	-
Coupeville	Subtotal	26,200	400	26,600	+20,100	-	+20,100
	OTAL airfields)	32,700	82,000	114,700	+12,600	+14,300	+26,900

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 4600 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-56 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3A

										Arr	ival										Interfa	acility						
							VFR SI/			Over	head													Helo			Helo	
			D	eparture	•	N	lon-Brea	ık		Bre				IFR			Departure				ival from O	LF	Dep	arture to	OLF	Arri	val from	OLF
-	#	ron	Day	Night		Day	Night		Da (07)		Night (2200-		Day	Night		Da (07)		Night (2200-		Day (0700-	Night (2200-		Day	Night		Day	Night	
Airfield	Aircraft	nadr	(0700-	(2200-		(0700-	(2200-		220		0700)		(0700-	(2200-		220		0700)		2200)	0700)		(0700-	(2200-		(0700-	(2200-	
Air	Air	Sq	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK	DK	Total	DL DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		CVW	6,581	374	6,955	2,437	66	2,503	2,221	1,545	128	3,894	550	7	557	526	208	324	1,058	834	- 225	1,059						
	EA18	FRS	5,617	356	5,973	2,095	318	2,413		1,324	611	3,292	247	21	268	292	154	119	565	487	- 78	565						
-		RES EXP	1,128 2,542	84 152	1,212 2,694	409 879	17 39	426 918	439 1,022	249 670	27 81	715 1,773	66 281	5	71 281	5	8		13	13		13						
Field	EP3	All	- 2,042	- 102	0	- 075		0	1,022	-		0	- 201		0		-		- 0			-						
Auk	P3	All	-	-	-	-		-	-	-		-	-		-													
₹	P8	AII	1,937	83	2,020	1,343	314	1,657	-	-		-	302	62	364													
	H60 C-40	SAR	384 391	-	384 391	384 274	-	384 274	-	-		-	117	-	117								89	-	89	89		89
	JET LRG	3 -	406	102	508	361	114	475]	23	10	33													
	Total		18,986		20,137	8,182	868			3,788	847	9,674	1,586	105		823	370	443	1,636	1,334	- 303	1,637	89	-	89	89	-	89
																					Interfa	ecility						
																								Helo			Helo	
																Bre	ak Arriva	al from Au	it	Depart	ure to Ault		Arri	val from	Ault	Dep	arture to	Ault
		8														Da		Night		Day	Night							
<u>e</u>	r aff	uadr														(070 220		(2200-		(0700- 2200)	(2200-		Day	Night		Day	Night	
Airfield	Aircraft	nbg														DL	DK	0700) DK	Total	DL DK	0700) DK	Total	(0700-	(2200- 0700)	Total	(0700- 2200)	(2200- 0700)	Total
		CVW														834	- DR		1,059	526 20	_	1,058	2200)	0700)	TOTAL	2200)	0700)	I Otal
OLF.	EA18	FRS														487	-	78	565	292 1		565						
0		RES														13	-	-	13	5	8 -	13						
	H60 Total	SAR														1.334	-	303	1.637	823 3	0 443	1.636	89 89	-	89 89	89 89	-	89 89
	, otal								21							.,55.			.,00.	020		.,000		1		- 55		30
				FCI	I P			T	Closed I &G	Pattern*		ReEnter			GCA/CCA			тот	ΔΙ									
		ons	Da		Night		D		Night								Da		Night									
Airfield	Aircraft	adro	(070		(2200-		(07		(2200-		Day	Night		Day	Night		(070		2200-									
ij	irci	gdns	220		0700)	T-1-1	220		0700)	T-1-1	(0700-	(2200-	Total	(0700-	(2200-	T-1-1	220		0700)	Total								
⋖	< <	CVW	DL 1,861	DK 1,254	DK 1,005	Total 4,120	DL 1,214	DK 2,879	DK 957	Total 5,050	2,232	0700) 79	Total 2,311	2200) 4,605	0700) 2,941	Total 7,546	DL 23,061	DK 5,886	DK 6,106	Total 35,053								
		FRS	1,451	498	256	2,205	961	3,310		5,312	- 2,232	-	2,311	4,760	1,034	5,794	17,267	5,286	3,834	26,387								
	EA18	RES	96	46	-	142	16	503	12	531	428	16	444	533	12	545	3,133	806	173	4,112								
Field		EXP	-	-	-	0	-	985	56	1,041	983	36	1,019	973	52	1,025	6,680	1,655	416	8,751								
Ē	EP3 P3	AII				***************************************	-	-			-		-	-	-	-	-											
Ault	P8	All					-	3,925		4,653	-		-	1,670	223	1,893	5,252		1,410	10,587								
	H60	SAR					-	-	-	-	-	-	-	-	-	-	946	-	-	946								
	C-40	. -					-	329	-	329	-	-	-	164	-	164	946	329	-	1,275								
	JET_LRG Total	j -	3.408	1.798	1.261	6.467	2 101	11.931	2.794	16.916	3.643	131	3 774	12,705	4 262	16.967	790 58.075	17.887	226	1,016 88,127								
	Total	CVW	7,083	3,847	3,899	14,829	2,191	1,931	2,794	10,916	3,043	131	3,774	12,705	4,262	16,967	8,443		4,448	16,946								
					1,158	7,905											4,668		1,355	9,035								
4	EA18	FRS	3,889	2,858	1,100												83	125	-	208								
OLF		RES	3,889	117	1,130	182																						
OLF	H60		65	117	-	182	178			178							356	-	- 5 902	356								
OLF		RES		117	5,057		178 178	-		178 178							356 13,550	7,192	5,803									
	H60 Total	RES	65	117	5,057	182								G	rand Tot	al	13,550	7,192		356 26,545								
Tot	H60	RES	11,037	6,822	5,057 67	182 22,916									rand Tota		13,550	-		356								

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

Table A2-57 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3B

			ternative 3 h Tempo Y		Change	from No	Action
	Aircraft		of Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	16,400	67,100	83,500	+2,400	+13,500	+15,900
Ault Field	Other Based	-	11,400	11,400	-	-	-
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	16,400	80,800	97,200	+2,400	+13,500	+15,900
OLF	EA-18G	16,400	-	16,400	+10,300	-	+10,300
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	16,400	400	16,800	+10,300	-	+10,300
	OTAL airfields)	32,800	81,200	114,000	+12,700	+13,500	+26,200

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 2900 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-58 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3B

Airfield										Arri	val											Interfa	cility						
rfield			,				VFR SI			Overl				IFD.						D		· · · · · · · · · · · ·	_		Helo	01.5	A	Helo	01.5
rfield		_	D	eparture	9	N	Ion-Brea	K	Da	Bre	ak Night			IFR		Da	Departure	Night		Brea Day	k Arrival	Night	F	Depa	rture to	OLF	Arri	val from	OLF
iệ l	aft	dro	Day	Night		Day	Night		(070		(2200-		Day	Night		(07)		(2200-		(0700		(2200-		Day	Night		Day	Night	
	Aircraft	quadr	(0700-	(2200-		(0700-	(2200-		220		0700)		(0700-	(2200-		220		0700)		2200		0700)		(0700-	(2200-		(0700-	(2200-	
₹		Ŏ	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK		Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		CVW FRS	6,563 5,623	380 341	6,943 5,964	2,465 2,140	63 292	2,528 2,432	2,161 1,363	1,576 1,271	162 582	3,899 3,216	498 267	16 49	514 316	325 181	146 101	186 72	657 354	533 303	-	124 50	657 353						
E		RES	1,132	78	1,210	391	25	416	437	260	25	722	68	4	72	5	7	- '-	12	12	-	-	12						
<u>₽</u> L		EXP	2,943	158	3,101	1,051	36	1,087	1,035	660	57	1,752	262	-	262	-	-	-	0	-	-	-	0						
		All	-	-	0	-		0	-	-		0	-		0														
		All	1,932	- 86	2,018	1,333		1,622	-	-			331		395														
		SAR	384	- 00	384	384	209	384	-	-			-		393									90	-	90	90	-	90
	C-40	-	390	-	390	276	-	276	-	-	-	-	114	-	114														
J	JET_LRG	-	410	97	507	374	102	476	-		-		18	13	31														
	Total		19,377	1,140	20,517	8,414	807	9,221	4,996	3,767	826	9,589	1,558	146	1,704	511	254	258	1,023	848	-	174	1,022	90	-	90	90	-	90
																						Interfa	cility						
																									Helo			Helo	
		_																I from Aul	t		parture			Arriv	al from	Ault	Depa	arture to	Ault
7	#	Ī														Da (07)		Night (2200-		Day (0700		Night (2200-		Day	Night		Day	Night	
Airfield	Aircraft	Squadr														220		0700)		2200		0700)		(0700-	(2200-		(0700-	(2200-	
Ā																DL	DK		Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
l l-		CVW														533	-	124	657	325	146	186	657						
P.		FRS RES														303	-	50	353 12	181	101 7	72	354 12						
		SAR													ľ									90	-	90	90	-	90
	Total															848	-	174	1,022	511	254	258	1,023	90	-	90	90	-	90
									Closed I	Pattern*																			
		S		FC	I D																								
									kG			ReEnter		(GCA/CCA			TOTA											
-	==	rons	Da		Night		D:	ay	Night								Da	y l	Night										
field	craft	uadror	(070	0-	Night (2200-		(07	ay '00-	Night (2200-		Day	Night		Day	Night		(070	y 1 0- (:	Night 2200-										
Airfield	Aircraft	Squadror		0-	Night	Total		ay '00-	Night	Total			Total			Total		y 1 0- (; 0) (Night	Total									
Airfield		W Squadr	(070 220 DL 4,861	00- 00) DK 3,000	Night (2200- 0700) DK 2,715	10,576	(07 22) DL 1,214	ay 00- 00) DK 2,879	Night (2200- 0700) DK 957	5,050	Day (0700-	Night (2200-	2,311	Day (0700- 2200) 4,605	Night (2200- 0700) 2,941	Total 7,546	(070 220 DL 25,457	y 1 0- (; 0) (; DK 7,601	Night 2200- 0700) DK 7,623	40,681									
	-A18	CVW FRS	070 220 DL 4,861 3,653	DK 3,000 1,317	Night (2200- 0700) DK	10,576 5,655	(07 220 DL 1,214 961	ay 00- 00) DK 2,879 3,310	Night (2200- 0700) DK 957 1,041	5,050 5,312	Day (0700- 2200) 2,232	Night (2200- 0700) 79	2,311 0	Day (0700- 2200) 4,605 4,760	Night (2200- 0700) 2,941 1,034	Total 7,546 5,794	070 220 DL 25,457 19,251	y 0- (200) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Night 2200- 0700) DK 7,623 4,146	40,681 29,396									
E	EA18	CVW FRS RES	(070 220 DL 4,861	00- 00) DK 3,000	Night (2200- 0700) DK 2,715	10,576 5,655 139	(07 22) DL 1,214	ay 000- 000) DK 2,879 3,310 503	Night (2200- 0700) DK 957 1,041	5,050 5,312 531	Day (0700- 2200) 2,232 - 428	Night (2200- 0700) 79 -	2,311 0 444	Day (0700- 2200) 4,605 4,760 533	Night (2200- 0700) 2,941 1,034 12	Total 7,546 5,794 545	070 220 DL 25,457 19,251 3,103	y 6 0- (; 0) 0 DK 7,601 5,999 828	Night 2200- 0700) DK 7,623 4,146 172	40,681 29,396 4,103									
E	EA18	CVW FRS	070 220 DL 4,861 3,653	DK 3,000 1,317	Night (2200- 0700) DK 2,715	10,576 5,655	(07 220 DL 1,214 961	ay 00- 00) DK 2,879 3,310	Night (2200- 0700) DK 957 1,041 12 56	5,050 5,312	Day (0700- 2200) 2,232	Night (2200- 0700) 79 - 16 36	2,311 0	Day (0700- 2200) 4,605 4,760	Night (2200- 0700) 2,941 1,034 12 52	Total 7,546 5,794	070 220 DL 25,457 19,251	y 0- (200) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Night 2200- 0700) DK 7,623 4,146	40,681 29,396									
E	EA18 EP3	CVW FRS RES EXP All	070 220 DL 4,861 3,653	DK 3,000 1,317	Night (2200- 0700) DK 2,715	10,576 5,655 139	(07 220 DL 1,214 961	ay 00- 00) DK 2,879 3,310 503 985	Night (2200- 0700) DK 957 1,041 12 56	5,050 5,312 531 1,041	Day (0700- 2200) 2,232 - 428 983	Night (2200- 0700) 79 - 16 36	2,311 0 444	Day (0700- 2200) 4,605 4,760 533 973	Night (2200- 0700) 2,941 1,034 12 52	Total 7,546 5,794 545 1,025	(070 220 DL 25,457 19,251 3,103 7,247	y	Night 2200- 0700) DK 7,623 4,146 172 395	40,681 29,396 4,103 9,287									
Ault Field	EP3 23	CVW FRS RES EXP All	070 220 DL 4,861 3,653	DK 3,000 1,317	Night (2200- 0700) DK 2,715	10,576 5,655 139	(07 220 DL 1,214 961	ay 000- 000) DK 2,879 3,310 503 985	Night (2200- 0700) DK 957 1,041 12 56	5,050 5,312 531	Day (0700- 2200) 2,232 - 428 983	Night (2200- 0700) 79 - 16 36	2,311 0 444	Day (0700- 2200) 4,605 4,760 533 973	Night (2200- 0700) 2,941 1,034 12 52	Total 7,546 5,794 545	(070 220 DL 25,457 19,251 3,103 7,247	y	Night 2200- 0700) DK 7,623 4,146 172	40,681 29,396 4,103 9,287 - 10,493									
Ault Field	EA18 EP3 P3 P8 H60	CVW FRS RES EXP All	070 220 DL 4,861 3,653	DK 3,000 1,317	Night (2200- 0700) DK 2,715	10,576 5,655 139	(07 220 DL 1,214 961	ay 00- 00) DK 2,879 3,310 503 985 - 3,957	Night (2200- 0700) DK 957 1,041 12 56	5,050 5,312 531 1,041 - - 4,575	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 -	2,311 0 444	Day (0700- 2200) 4,605 4,760 533 973 - 1,707	Night (2200- 0700) 2,941 1,034 12 52	Total 7,546 5,794 545 1,025 - - 1,883	(070 220 DL 25,457 19,251 3,103 7,247 - - 5,303 948	y 0- 0- 0) 0. ((200) 0. (100)	Night 2200- 0700) DK 7,623 4,146 172 395	40,681 29,396 4,103 9,287 - - 10,493 948									
Ault Field	EP3 23	CVW FRS RES EXP All All SAR	070 220 DL 4,861 3,653	DK 3,000 1,317	Night (2200- 0700) DK 2,715	10,576 5,655 139	(07 220 DL 1,214 961	ay 00- 00) DK 2,879 3,310 503 985	Night (2200- 0700) DK 957 1,041 12 56	5,050 5,312 531 1,041	Day (0700- 2200) 2,232 - 428 983	Night (2200- 0700) 79 - 16 36 -	2,311 0 444	Day (0700- 2200) 4,605 4,760 533 973	Night (2200- 0700) 2,941 1,034 12 52	Total 7,546 5,794 545 1,025	(070 220 DL 25,457 19,251 3,103 7,247	y	Night 2200- 0700) DK 7,623 4,146 172 395	40,681 29,396 4,103 9,287 - 10,493									
Ault Field	EP3 23 28 460 C-40 JET_LRG Total	CVW FRS RES EXP All All SAR	(070 220 DL 4,861 3,653 81	0)0- 0) DK 3,000 1,317 58	Night (2200- 0700) DK 2,715 685	10,576 5,655 139 0	(07 221 DL 1,214 961 16 	ay 00- 00) DK 2,879 3,310 503 985 - 3,957	Night (2200- 0700) DK 957 1,041 12 56 618	5,050 5,312 531 1,041 - - 4,575	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - 1,707	Night (2200- 0700) 2,941 1,034 12 52 - 176	Total 7,546 5,794 545 1,025 - - 1,883 - 162	(070 220) DL 25,457 19,251 3,103 7,247 - - 5,303 948 942 802 63,053	y 0- ((0) (0) (0) (0) (0) (0) (0) (0) (0) (0	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 - 212 3,781	40,681 29,396 4,103 9,287 									
Ault Field	EA18 EP3 23 28 160 C-40 JET_LRG Total	CVW FRS RES EXP All All SAR	(070 220 DL 4,861 3,653 81 -	0) DK 3,000 1,317 58 - - - - - - - - - - - - - - - - - -	Night (2200- 0700) DK 2,715 685 - - - 3,400 2,210	10,576 5,655 139 0	(07 221 DL 1,214 961 16 	ay 00- 00) DK 2,879 3,310 503 985 - - 3,957 - 322	Night (2200- 0700) DK 957 1,041 12 56 618	5,050 5,312 531 1,041 - - 4,575 - 322	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - - 1,707 - 162	Night (2200- 0700) 2,941 1,034 12 52 - 176	Total 7,546 5,794 545 1,025 - - 1,883 - 162	(070 220) DL 25,457 19,251 3,103 7,247 - - 5,303 948 942 802 63,053 5,243	y 0- 00) (00) (00) (00) (00) (00) (00) (00)	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 - 212 3,781 2,520	40,681 29,396 4,103 9,287 									
Ault Field	EA18 EP3 P8 H60 C-40 JET_LRG Total	CVW FRS EXP All All SAR CVW FRS	(070 220 DL 4,861 3,653 81 	DK 3,000 1,317 58 - 4,375 2,614 1,670	Night (2200- 0700) DK 2,715 685	10,576 5,655 139 0 16,370 9,209 4,955	(07 221 DL 1,214 961 16 	ay 00- 00) DK 2,879 3,310 503 985 - - 3,957 - 322	Night (2200- 0700) DK 957 1,041 12 56 618	5,050 5,312 531 1,041 - - 4,575 - 322	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 - -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - - 1,707 - 162	Night (2200- 0700) 2,941 1,034 12 52 - 176	Total 7,546 5,794 545 1,025 - - 1,883 - 162	(070 220) DL 25,457 19,251 3,103 7,247 	y 0- 0- 00) 0 0 DK 7,601 5,999 828 1,645 - 3,957 - 322 - 20,352 1,771	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 - 212 3,781	40,681 29,396 4,103 9,287 									
OLF Ault Field	EA18 EP3 23 28 460 C-40 JET_LRG Total	CVW FRS RES EXP All All SAR	(070 220 DL 4,861 3,653 81 -	0) DK 3,000 1,317 58 - - - - - - - - - - - - - - - - - -	Night (2200- 0700) DK 2,715 685 - - - 3,400 2,210	10,576 5,655 139 0	(07 221 DL 1,214 961 16 	ay 00- 00) DK 2,879 3,310 503 985 - - 3,957 - 322	Night (2200- 0700) DK 957 1,041 12 56 - - - - - - - - - - - - - - - - - -	5,050 5,312 531 1,041 - - 4,575 - 322	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 - -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - - 1,707 - 162	Night (2200- 0700) 2,941 1,034 12 52 - 176	Total 7,546 5,794 545 1,025 - - 1,883 - 162	(070 220) DL 25,457 19,251 3,103 7,247 - - 5,303 948 942 802 63,053 5,243	y 0- 00) (00) (00) (00) (00) (00) (00) (00)	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 - 212 3,781 2,520	40,681 29,396 4,103 9,287 									
OLF Ault Field	EA18 EP3 23 28 460 C-40 JET_LRG Total	CVW FRS RES EXP AII AII SAR CVW FRS RES	(070 220 DL 4,861 3,653 81 	0)0- 0) DK 3,000 1,317 58 - 4,375 2,614 1,670	Night (2200- 0700) DK 2,715 685 - - - 3,400 2,210	10,576 5,655 139 0 16,370 9,209 4,955 166	(07 220 DL 1,214 961 16 - - - - - - - - - - - - - - - - -	ay 00- 00) DK 2,879 3,310 503 985 - - 3,957 - 322 -	Night (2200- 0700) DK 957 1,041 12 56 - - 618 - - 2,684	5,050 5,312 531 1,041 - - 4,575 - 322 - 16,831	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 - -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - - 1,707 - 162	Night (2200- 0700) 2,941 1,034 12 52 - 176	Total 7,546 5,794 545 1,025 - - 1,883 - 162	(070 220) DL 25,457 19,251 3,103 7,247 - - 5,303 948 942 802 63,053 5,243 2,900 76	y 0- 0- 00) 0 0 DK 7,601 5,999 828 1,645 - 3,957 - 322 - 20,352 1,771 1,771	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 212 3,781 2,520 991	40,681 29,396 4,103 9,287 									
OLF Ault Field	EA18 EP3 P8 H60 C-40 IET LRG Total EA18 H60 Total	CVW FRS RES EXP AII AII SAR CVW FRS RES	(070 220 220 220 220 24,861 3,653 81 - - - - - - - - - - - - - - - - - -	0)- 0) DK 3,000 1,317 58 - 4,375 2,614 1,670 107	Night (2200- 0700) DK 2,715 685 - - - - 3,400 2,210 869 - 3,079	10,576 5,655 139 0 16,370 9,209 4,955 166	(07 220 DL 1,214 961 16 - - - - - 2,191	ay 00- 00) DK 2,879 3,310 503 985 - - 3,957 - 322 11,956	Night (2200- 0700) DK 957 1,041 12 56 - - 618 - - 2,684	5,050 5,312 531 1,041 - 4,575 - 322 - 16,831	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 - -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - 1,707 - 162 - 12,740	Night (2200- 0700) 2,941 1,034 12 52 - 176 - 4,215	Total 7,546 5,794 545 1,025 - 1,883 - 162 - 16,955	(070 220) DL 25,457 19,251 3,103 7,247 - - 5,303 948 942 802 63,053 5,243 2,900 76	y 0- 0- 00) (0 00) C DK 7,601 5,999 828 1,645 - - 3,957 322 20,352 1,2760 1,771 114	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 212 3,781 2,520 991	40,681 29,396 4,103 9,287 									
OLF Aut Field	EA18 EP3 23 28 8660 C-40 JET LRG Total	CVW FRS RES EXP AII AII SAR CVW FRS RES	(070 2200 2200 4,861 3,653 81 - - - 8,595 4,385 2,416 59	0)0- 0) DK 3,000 1,317 58 - 4,375 2,614 1,670	Night (2200- 0700) DK 2,715 685 	10,576 5,655 139 0 16,370 9,209 4,955 166	(07 220 DL 1,214 961 16 - - - - - 2,191	ay 00- 00) DK 2,879 3,310 503 985 - - 3,957 - 322 11,956	Night (2200- 0700) DK 957 1,041 12 56 - - 618 - - 2,684	5,050 5,312 531 1,041 - 4,575 - 322 - 16,831	Day (0700- 2200) 2,232 - 428 983 - -	Night (2200- 0700) 79 - 16 36 - -	2,311 0 444 1,019 - - -	Day (0700- 2200) 4,605 4,760 533 973 - 1,707 - 162 - 12,740	Night (2200- 0700) 2,941 1,034 12 52 - 176	Total 7,546 5,794 545 1,025 - 1,883 - 162 - 16,955	(070 220 210 25,457 19,251 3,103 7,247 	y 0- 0- 00) (0 00) C DK 7,601 5,999 828 1,645 - - 3,957 322 20,352 1,2760 1,771 114	Night 2200- 0700) DK 7,623 4,146 172 395 - 1,233 - 212 3,781 2,520 991 - 3,511	40,681 29,396 4,103 9,287 									

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

DL = Daylight, DK = Darkness

Table A2-59 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3C

			ternative 3 h Tempo Y		Change	from No /	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	26,200	65,700	91,900	+12,200	+12,100	+24,300
Ault Field	Other Based	-	11,500	11,500	-	+100	+100
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	26,200	79,500	105,700	+12,200	+12,200	+24,400
OLF	EA-18G	6,600	-	6,600	+500	-	+500
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	6,600	400	7,000	+500	-	+500
	OTAL airfields)	32,800	79,900	112,700	+12,700	+12,200	+24,900

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 1200 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-60 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3C

										Arri	val										Interfa	acility						
							VFR SI/			Over	nead													Helo			Helo	
			D	eparture		N	Ion-Brea	k		Bre				IFR			Departure			Break Arri		LF	Dep	arture to	OLF	Arri	val from	OLF
-		E E		Millerton			All or both		Da		Night			NII oo bo a		D:		Night		Day	Night		D	All orbot				
Airfield	Aircraft	uadr	Day (0700-	Night (2200-		Day (0700-	Night (2200-		(07) 220		(2200- 0700)		Day (0700-	Night (2200-		(07 22		(2200- 0700)		(0700- 2200)	(2200- 0700)		Day (0700-	Night (2200-		Day (0700-	Night (2200-	
- ₹	P ir	nbg	2200)	0700)	Total	2200)	0700)	Total	DL	DK	DK	Total	2200)	0700)	Total	DL	DK		otal	DL DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		cvw	6,522	390	6,912	2,408	62	2,470	2,198	1,627	124	3,949	486	7	493	130	61		265	217	- 49	266	2200)	0700)	Total	2200)	0100)	I Otal
		FRS	5,550	373	5,923	2,164	314	2,478	1,330	1,260	620	3,210	208	25	233	66	44	25	135	118	- 17	135						
	EA18	RES	1,137	68	1,205	387	27	414	443	225	35	703	83	5	88	4	6	-	10	10		10						
<u> </u>		EXP	2,942	140	3,082	1,077	45	1,122	977	699	60	1,736	219	6	225	-	-	-	0	-		0						
Field	EP3	All	-		0	-		0	-	-		0	-		0													
Auk	P3	All	-		-	-		-	-	-		-	-		-													
<	P8 H60	SAR	1,907 380	87	1,994 380	1,367	258	1,625 380	-	-			309		369								90		90	90		00
	C-40	SAR	380	-	388	380 281	-	281	-		-		107		107								90		90	90	-	90
	JET_LRG	.E	391	113	504	358	104	462					29	13	42													
	Total	<u>' </u>	19.217		20.388	8.422	810		4.948	3.811	839	9.598	1.441	116	1.557	200	111	99	410	345	- 66	411	90	-	90	90	-	90
																					Interfa	acility				1		
																								Helo			Helo	
		_																I from Ault			ire to Ault		Arri	val from	Ault	Depa	arture to	Ault
-	2	<u> </u>														D: (07		Night (2200-		Day (0700-	Night (2200-		Day	Night		Day	Night	
Airfield	Aircraft	Tad														220		0700)		2200)	0700)		(0700-	(2200-		(0700-	(2200-	
Ā	Air	Squadr														DL	DK		otal	DL DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total
		CVW														217	-		266	130 6	1 74	265						
OLF	EA18	FRS														118	-	17	135	66 4		135						
ō		RES														10	-	-	10	4	6 -	10						
	H60 Total	SAR														345	-	66	411	200 11	1 99	410	90 90	-	90	90	-	90
	lotai		l													345	-1	00	411	200 11	1 99	410	90	-	90	90	•	90
									Closed I	Pattern*																		
		SI		FC			_		kG			ReEnter		1	GCA/CCA	1		TOTAL										
-	=	rons	Da (070		Night (2200-		D: (07		Night (2200-		Davi	Night		Davi	Night		Da (070		ight 200-									
Airfield	Aircraft	Jac	220		0700)		220		0700)		Day (0700-	(2200-		Day (0700-	(2200-		220		(00)									
Αį	Air	Squadr	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200)	0700)	Total	DL			otal								
		cvw	7,625	5,206	4,008	16,839	1,214	2,879	957	5,050	2,232	79	2,311	4,605	2,941	7,546	27,637			5,101								
	EA18	FRS	5,850	2,043	1,305	9,198	961	3,310		5,312	-	-	0	4,760	1,034	5,794	21,007			2,418								
		RES	89	64	-	153	16	503	12	531	428	16	444	533	12	545	3,130			,103								
e		EXP	-	-	-	0	-	985	56	1,041	983	36	1,019	973	52	1,025	7,171		395	,250								
Ault Field	EP3 P3	All					-	-			-		-	-		-		-										
=	P8	All						4,033		4,674	-			1,737		1,918	5,320		,227 1	,580								
- 4		SAR						-,000	- 5-1	-,07-4	-			- 1,737	- 101	1,510	940	-,000	- 1	940								
<	H60						-	318	-	318	-	-	-	159	-	159	935	318	-	,253								
•	H60 C-40	-										-	-	-	-	-	778			,008								
٩	C-40 JET_LRG	-					-		-							46.007	66.918	23.263 15	.472 10	.653								
4	C-40	- i -	13,564	7,313	5,313	26,190	2,191	12,028	2,707	16,926	3,643	131	3,774	12,767	4,220	10,967												
	C-40 JET_LRG Total	- cvw	1,740	1,095	885	3,720	2,191	12,028	2,707	16,926	3,643	131	3,774	12,767	4,220	16,967	2,087	1,156 1	,008	,251								
	C-40 JET_LRG	CVW	1,740 894	1,095 723		3,720 1,886	2,191	12,028	2,707	16,926	3,643	131	3,774	12,767	4,220	16,967	2,087 1,078	1,156 1 767	,008	1,251 2,156								
OLF A	C-40 JET_LRG Total	CVW FRS RES	1,740	1,095	885	3,720					3,643	131	3,774	12,767	4,220	16,967	2,087 1,078 60	1,156 1 767 90	,008	1,251 1,156 150								
	C-40 JET_LRG Total EA18 H60	CVW	1,740 894 46	1,095 723 84	885 269 -	3,720 1,886 130	179	-	-	179	3,643	131	3,774	12,767	4,220	10,907	2,087 1,078 60 359	1,156 1 767 90	,008 311 -	1,251 2,156 150 359								
	C-40 JET_LRG Total	CVW FRS RES	1,740 894	1,095 723	885 269 -	3,720 1,886			-		3,643	131	3,774	12,767	4,220	10,907	2,087 1,078 60	1,156 1 767 90	,008 311 -	1,251 1,156 150								
OLF	C-40 JET_LRG Total EA18 H60	CVW FRS RES	1,740 894 46	1,095 723 84	885 269 - 1,154	3,720 1,886 130	179	-	-	179	3,643	131	3,774		4,220		2,087 1,078 60 359 3,584	1,156 1 767 90 - 2,013 1	,008 311 - - ,319	3,251 2,156 150 359 3,916								
OFF	C-40 JET_LRG Total EA18 H60 Total	CVW FRS RES	1,740 894 46 2,680	1,095 723 84 1,902	885 269 - 1,154	3,720 1,886 130 5,736	179	-	-	179	3,643	131	3,774	G		al	2,087 1,078 60 359 3,584	1,156 1 767 90	,008 311 - - ,319	1,251 2,156 150 359								

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

DL = Daylight, DK = Darkness

Table A2-61 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3D

			ternative 3 h Tempo Y		Change	from No /	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	9,700	67,400	77,100	-4,300	+13,800	+9,500
Ault Field	Other Based	-	11,500	11,500	-	+100	+100
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	9,700	81,200	90,900	-4,300	+13,900	+9,600
OLF	EA-18G	22,900	-	22,900	+16,800	-	+16,800
	Other	-	400	400	-	-	-
Coupeville	Subtotal	22,900	400	23,300	+16,800	-	+16,800
	OTAL airfields)	32,600	81,600	114,200	+12,500	+13,900	+26,400

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

⁽³⁾ For Growler at the OLF, values include 2900 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-62 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3D

										Arri	ival											Interfac	cility						
			,	Departure			VFR SI/	ı.		Overl				IFR			Departur	to to OLE		Propl	k Arrival	from Ol	_	Done	Helo arture to	OLE	Arri	Helo val from	OLE
Airfield	Aircraft	Squadron	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (07) 220 DL	1y 00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	D: (07 220 DL	ay 00-	Night (2200- 0700) DK	Total	Day (0700 2200)	- (Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total
	EA18	CVW FRS RES EXP	6,581 5,617 1,128 2,542	374 356 84 152	6,955 5,973 1,212 2,694	2,437 2,095 409 879	66 318 17 39	2,503 2,413 426 918	2,221 1,357 439 1,022	1,545 1,324 249 670	128 611 27 81	3,894 3,292 715 1,773	550 247 66 281	7 21 5	557 268 71 281	460 256 4	182 135 7	284 104 -	926 494 11 0	730 426 11	- - -	197 68 -	927 494 11 0	2200)	0700)	Total	2200)	0700)	Total
Ault Field	EP3 P3 P8 H60	AII AII AII SAR	1,937 384		2,020 384	1,343 384	-	1,657 384	-	- - -	-	-	302	62	364									89		89	89		. 89
	C-40 JET_LRG	-	391 406 18,986	- 102 1,151	391 508 20,137	274 361 8,182	114 868	274 475 9,050	- - 5,039	3,788	847	9,674	117 23 1,586	10 105	117 33 1,691	720	324	388	1,432	1,167	-	265	1,432	89	-	89	89	-	89
																						Interfac	cility						
		_														Bre Di		al from A	ult	De Day	parture t	to Ault Night		Arri	Helo val from	Ault	Dep	Helo arture to	Ault
Airfield	Aircraft	Squadro														(07 220 DL	00-	(2200- 0700) DK	Total	(0700 2200) DL	- ((2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total
OLF	EA18	FRS RES														730 426 11	- - -	68	927 494 11	460 256 4	182 135 7	284 104 -	926 494 11				-		
	H60 Total	SAR														1,167	-	265	1,432	720	324	388	1,432	89 89		89 89	89 89	-	89
				FC	LP			T	Closed I	Pattern*		ReEnter			GCA/CCA	1		TO ⁻	ΓAL										
Airfield	Aircraft	Squadrons	Da (07) 220 DL	00-	Night (2200- 0700) DK	Total	D: (07 220 DL	00-	Night (2200- 0700) DK	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Day (0700- 2200)	Night (2200- 0700)	Total	Da (07) 220 DL	00-	Night (2200- 0700) DK	Total									
p	EA18	FRS RES EXP	2,792 2,177 144	1,881 747 69	1,508 384	6,180 3,308 213 0	1,214 961 16	2,879 3,310 503 985	957 1,041 12 56	5,050 5,312 531 1,041	2,232 - 428 983	79 - 16 36	2,311 0 444 1,019	4,605 4,760 533 973	2,941 1,034 12 52	7,546 5,794 545 1,025	23,822 17,895 3,179 6,680	6,487 5,516 828 1,655	6,540 3,937 173 416	36,848 27,348 4,180 8,751									
Ault Field	EP3 P3 P8	AII AII					-	3,925	-	- 4,653	-		-	- 1,670	223	1,893	5,252	3.925	- 1,410	10,587									
	H60 C-40 JET LRG	SAR -						329		329	-			164 -		164	946 946 790	329	226	946 1,275 1,016									
	Total		5,112	2,697	1,892	9,701	2,191	11,931	2,794	16,916	3,643	131	3,774	12,705	4,262	16,967	59,509	18,740	12,702	90,951									
OLF	EA18	FRS RES	6,198 3,403 57	3,366 2,501 102	3,412 1,013	12,975 6,917 159											7,388 4,085 73	3,548 2,636 109	3,892 1,186	14,828 7,906 182									
	H60 Total	SAR	9,657	5,969	4,425	20,052	179 179	-		179 179							357 11.902	6,293	5,078	357 23.272									
	Total		9,057	5,969	4,425	20,052	179	-	-	179							11,902	0,293	3,078	23,212									
EA-	al Annual 18G FCLP- lated Ops		Ault = NOLF = Total =	9,7 22,9 32,6	915	(29.7%) (70.3%)									rand Tota Ault+OLF		71,411	25,033	17,780	114,224									

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts. Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

DL = Daylight, DK = Darkness

Table A2-63 Summary of Annual Flight Operations for the High-Tempo FCLP Year Alternative 3E

			ternative : h Tempo Y		Change	from No	Action
	Aircraft		f Flight ation		Type of Opera		
Airfield	Type or Category	FCLP (2, 3)	Other ⁽⁴⁾	Total	FCLP (2, 5)	Other	Total
	EA-18G	22,900	66,100	89,000	+8,900	+12,500	+21,400
Ault Field	Other Based	-	11,500	11,500	-	+100	+100
Ault Fleid	Transient	-	2,300	2,300	-	-	-
	Subtotal	22,900	79,900	102,800	+8,900	+12,600	+21,500
OLF	EA-18G	9,800	-	9,800	+3,700	-	+3,700
_	Other	-	400	400	-	-	-
Coupeville	Subtotal	9,800	400	10,200	+3,700	-	+3,700
	OTAL airfields)	32,700	80,300	113,000	+12,600	+12,600	+25,200

⁽¹⁾ rounded to nearest 100 if greater than or equal to 100;

⁽²⁾ each closed pattern is counted as 2 operations.

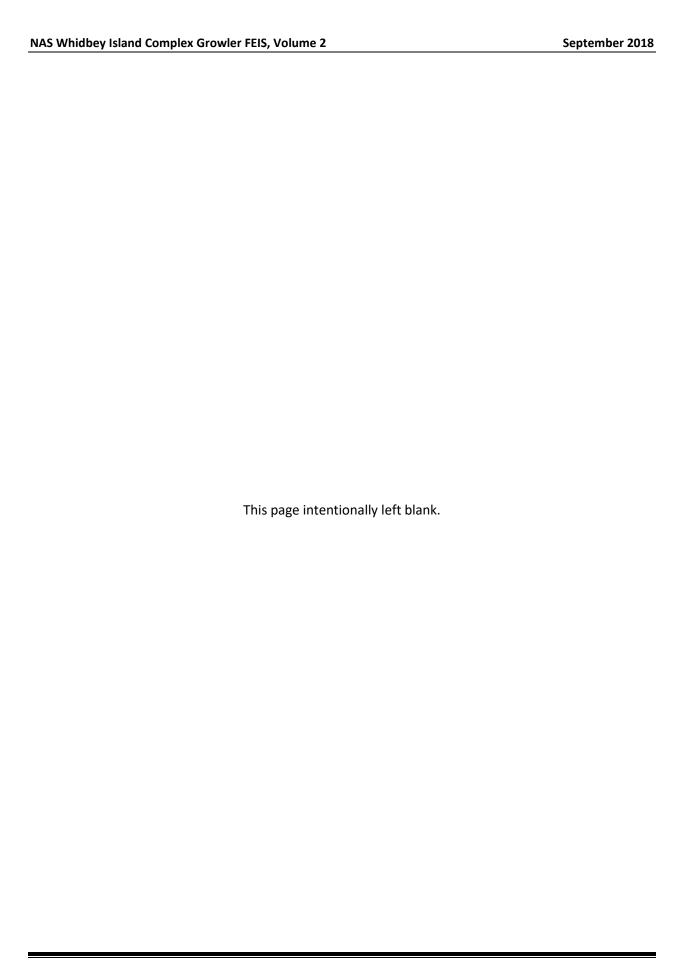
⁽³⁾ For Growler at the OLF, values include 1200 interfacility (FCLP-related) operations; not shown separately

⁽⁴⁾ For Ault Field, includes departures, arrivals, pattern operations and interfacility operations; For the OLF, includes HH-60 interfacility departures, arrivals and pattern work.

⁽⁵⁾ No Action excludes 900 interfacility Growler operations (FCLP-related).

Table A2-64 Detailed Annual Flight Operations for the High-Tempo FCLP Year Alternative 3E

											Arr	ival											Interfa	cility					
								VFR SI/			Over	head														Helo		He	
				D	eparture	•	ı	Non-Breal	k		Bre				IFR			Departure					I from OI	LF	Dep	rture to	OLF	Arrival fr	om OLF
			o.				_			Da		Night					D		Night		Day		Night						
Picioni V	9	Aircraft	Squadr	Day	Night		Day	Night		(07) 220		(2200- 0700)		Day	Night		(07 22		(2200- 0700)		(070) 2200		(2200- 0700)		Day	Night		Day Nig	
3.		Ę	nbg	(0700- 2200)	(2200- 0700)	Total	(0700- 2200)	(2200- 0700)	Total	DL	DK	DK	Total	(0700- 2200)	(2200- 0700)	Total	DL	DK	DK	Total	DL 2200	DK	DK	Total	(0700- 2200)	(2200- 0700)	Total	(0700- (22) 2200) 070	
_	•	_	CVW	6,522	390	6,912	2,408	62	2,470	2,198	1,627	124	3,949	486	7	493	195	92	111	398	326	- DK		399	2200)	0700)	l Otal	2200) 070	u) Total
			FRS	5,550	373	5,923	2,164	314	2,478	1,330	1,260	620	3,210	208	25	233	99	66	38	203	177	-	26	203					
	E	A18	RES	1,137	68	1,205	387	27	414	443	225	35	703	83	5	88	6	9		15	15	-		15					
3	<u> </u>		EXP	2,942	140	3,082	1,077	45	1,122	977	699	60	1,736	219	6	225		-	-	0	-	-	-	0					
3	E	P3	All	-	-	0	-		0	-	-		0	-		0													
1	≝ LP	3	All	-	-	-	-		-	-	-		-	-		-													
<		8	AII	1,907	87	1,994	1,367	258	1,625	-	-		-	309	60	369													
		160 :-40	SAR	380 388		380 388	380 281	-	380 281	-				107		107									90	-	90	90	- 90
		ET LRG	- 1	391	113	504	358	104	462	- 1				29	13	42													
	J	Total	-	19.217		20.388	8.422	810	9.232	4.948	3.811	839	9.598	1.441	116		300	167	149	615	518	-	99	617	90	_	90	90	- 90
	=	rotar			.,	20,000	0,122	0.0	OjEOE	1,010	0,011	000	0,000	.,		1,001	555			0.0	0.0,								
																							Interfa	cility					
																	_									Helo		He	
																		ak Arriva		ult		eparture			Arri	al from	Ault	Departur	to Ault
-		æ	Squadron														D: (07		Night (2200-		Day (070		Night (2200-		Day	Might		Day Nic	he
Picioni V		Aircraft	nad														220		0700)		2200		0700)		(0700-	Night (2200-		Day Nig (0700- (22)	
	7	Ě) bg														DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	2200) 070	
			cvw														326	-	74	399	195	92	111	398		0.00,	. otal	2200) 010	o) 10.a.
2	۱, E	A18	FRS														177	-	26	203	99	66	38	203					
7			RES														15	-	-	15	6	9	-	15					
	H	160	SAR																						90	-	90	90	- 90
		Total															518	-	99	617	300	167	149	615	90	-	90	90	- 90
										Closed I	Pattern*																		
			ω.		FC					kG			ReEnter		1	GCA/CCA	4		TOT										
٠,	_		Squadrons	Da		Night		Da		Night					_			Da		Night									
3	AIITIEID	Aircraft	ad	(070 220		(2200- 0700)		(07) 220		(2200- 0700)		Day (0700-	Night (2200-		Day	Night (2200-		(070 220		(2200- 0700)									
3	-	i d	nbg	DL	DK	DK	Total	DL	DK	DK	Total	2200)	0700)	Total	(0700-	0700)	Total	DL		DK	Total								
			CVW	6,672	4,555	3,507	14,734	1,214		957	5,050	2,232	79	2,311	4,605	2,941	7,546	26,857	9,153	8,252	44,262								
	_		FRS	5,119	1,788	1,142	8,048	961	3,310	1,041	5,312	-,	-	0	4,760	1,034	5,794	20,368	6,424	4,612	31,403								
	E	A18	RES	78	56	-	134	16	503	12	531	428	16	444	533	12	545	3,126	793	175	4,094								
3	<u> </u>		EXP	-	-	-	0	-	985	56	1,041	983	36	1,019	973	52	1,025	7,171	1,684	395	9,250								
100	ĔĒ	P3	AII	1				-	-		-	-		-	-		-	-	-	-	-								
4		3	All					-	4,033		4,674	-		-	1,737		1.010	F 220	4,033	1,227	10,580								
^		'8 160	SAR	-				1	4,033	641	4,074	-		-	1,/3/	181	1,918	5,320 940	4,033	1,227	940								
		-40	-		_			 	318		318				159		159	935	318		1,253								
	C							-	-	-	-	-	-		-	-	-	778	-	230	1,008								
			-	-							_	3.643	404	2 774	12,767	4,220	16,987		22,404	14,890	102,790								
		ET_LRG Total	-	11,869	6,399	4,649		2,191	12,028	2,707	16,926	3,643	131	3,114															
	J	ET_LRG Total	- CVW	2,610	1,643	1,328	5,580	2,191	12,028	2,707	16,926	3,643	131	3,774	12,10.				1,734	1,512	6,377								
	J	ET_LRG	FRS	2,610 1,341	1,643 1,085		5,580 2,829	2,191	12,028	2,707	16,926	3,643	131	3,774	12,101			1,617	1,151	1,512 467	3,234								
<u> </u>	J	Total	FRS RES	2,610	1,643	1,328	5,580					3,643	131	3,174				1,617 90			3,234 225								
<u>.</u>	J	ET_LRG Total EA18	FRS	2,610 1,341 69	1,643 1,085 126	1,328 404 -	5,580 2,829 195	179	-	-	179	3,643	131	3,114				1,617 90 359	1,151 135	467	3,234 225 359								
i d	J	Total	FRS RES	2,610 1,341	1,643 1,085	1,328 404 -	5,580 2,829			-		3,643	131	3,114				1,617 90	1,151	467	3,234 225								
	J E O H	ET_LRG Total EA18 I60 Total	FRS RES	2,610 1,341 69 4,020	1,643 1,085 126 2,853	1,328 404 - 1,731	5,580 2,829 195 8,604	179	-	-	179	3,643	131	3,774		rand Tex	ol .	1,617 90 359	1,151 135	467	3,234 225 359								
1	J E H	ET LRG Total EA18 I60 Total Annual	FRS RES	2,610 1,341 69 4,020 Ault =	1,643 1,085 126 2,853	1,328 404 - 1,731	5,580 2,829 195 8,604	179	-	-	179	3,643	131	3,774	G	irand Tot		1,617 90 359	1,151 135 - 3,020	467 - - 1,979	3,234 225 359								
1 E	J E H	ET_LRG Total EA18 I60 Total	FRS RES	2,610 1,341 69 4,020	1,643 1,085 126 2,853	1,328 404 - 1,731 016 36	5,580 2,829 195 8,604	179	-	-	179	3,643	131	3,774	G	irand Tot Ault+OLF		1,617 90 359 5,197	1,151 135 - 3,020	467 - - 1,979	3,234 225 359 10,195								


routes.

*Closed pattern circuits consist of two operations (i.e., one departure and one arrival). Table values are closed pattern departure and arrival operation counts.

Squadrons: CVW = Carrier, FRS = Fleet Replacement, RES = Reserve, EXP = Expeditionary

DL = Daylight, DK = Darkness

Appendix A3 EA-18G Runway Utilization Percentage

List of Tables

Table A3-1	Runway Utilization Percentages for EA-18G at Ault Field for Average Year Scenarios	A3-5
Table A3-2	Runway Utilization Percentages for EA-18G at OLF Coupeville for Average Year Scenarios	A3-5
Table A3-3	Runway Utilization Percentages for EA-18G at Ault Field for Average Year School-Day Scenarios	A3-6
Table A3-4	Runway Utilization Percentages for EA-18G at OLF Coupeville for Average Year School-Day Scenarios	A3-6
Table A3-5	Runway Utilization Percentages for EA-18G at Ault Field for High Tempo Year Scenarios	A3-7
Table A3-6	Runway Utilization Percentages for EA-18G at OLF Coupeville for High Tempo Year Scenarios	A3-8
Table A3-7	Runway Utilization Percentages for EA-18G at Ault Field for High Tempo Year School-Day Scenarios	A3-8
Table A3-8	Runway Utilization Percentages for EA-18G at OLF Coupeville for High Tempo Year School-Day Scenarios	A3-9

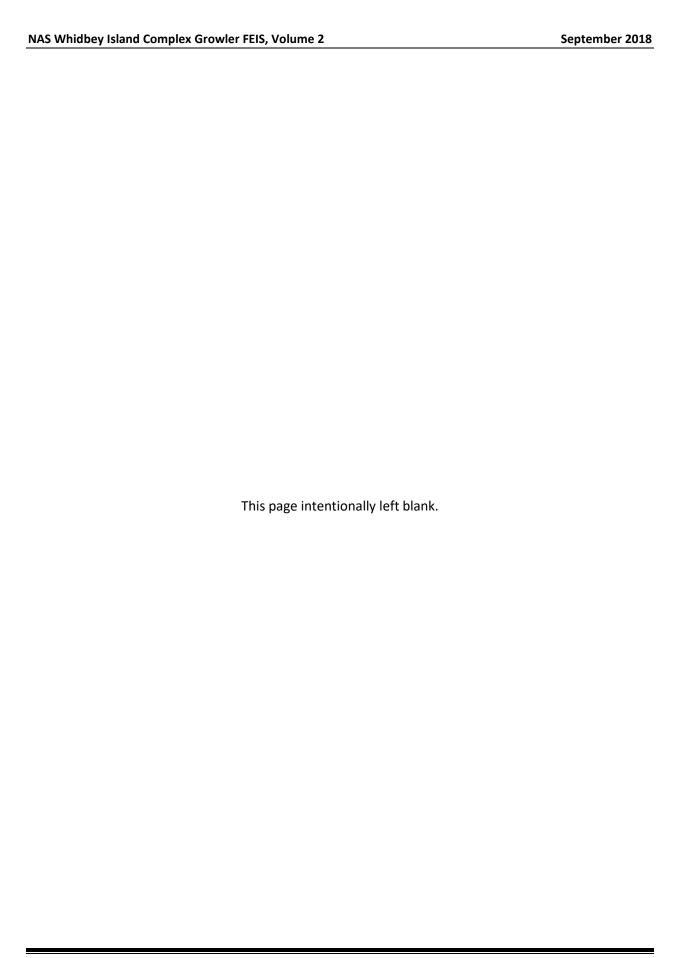


Table A3-1 Runway Utilization Percentages for EA-18G at Ault Field for Average Year Scenarios

			Base	eline	No A	Action	Alts '	1, 2, 3
Opera	ntion Type	Runway	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)
		07	17%	18%	17%	16%	17%	16%
Do		14	31%	32%	27%	26%	30%	31%
De	parture	25	48%	46%	51%	53%	50%	49%
		32	4%	4%	5%	5%	3%	4%
		07	14%	8%	23%	16%	18%	18%
Interfocilit	v to/from OLE	14	32%	44%	23%	28%	30%	31%
interiaciiit	y to/from OLF	25	53%	48%	48%	51%	50%	48%
		32	1%	0%	6%	5%	2%	3%
		07	18%	18%	17%	18%	17%	16%
	VFR Arrivals	14	31%	33%	27%	27%	30%	31%
	(Non-breaks)	25	47%	45%	51%	50%	49%	50%
		32	4%	4%	5%	5%	4%	3%
		07	18%	17%	17%	15%	17%	16%
A 1	Overhead	14	30%	32%	27%	28%	29%	30%
Arrival	Break Arrivals	25	48%	46%	51%	52%	50%	50%
		32	4%	5%	5%	5%	4%	4%
		07	17%	23%	16%	13%	16%	22%
	IED Amirala	14	36%	18%	24%	36%	27%	27%
	IFR Arrivals	25	44%	59%	55%	41%	53%	47%
		32	3%	0%	5%	10%	4%	4%
		07	15%	9%	21%	14%	22%	19%
	FCLP	14	30%	35%	34%	36%	30%	29%
	FCLP	25	52%	54%	39%	43%	47%	50%
		32	3%	2%	6%	7%	1%	2%
		07	17%	14%	18%	16%	18%	18%
	T	14	30%	33%	27%	29%	30%	30%
	Touch and Go	25	49%	49%	50%	51%	49%	49%
Closed		32	4%	4%	5%	4%	3%	3%
Patterns		07	17%	24%	16%	21%	17%	17%
	Depart and	14	28%	23%	26%	36%	29%	28%
	ReEnter	25	50%	49%	53%	40%	50%	51%
		32	5%	4%	5%	3%	4%	4%
		07	17%	12%	18%	19%	18%	18%
	CCA Boy	14	30%	35%	27%	30%	30%	30%
	GCA Box	25	49%	51%	50%	47%	49%	50%
		32	4%	2%	5%	4%	3%	2%

Table A3-2 Runway Utilization Percentages for EA-18G at OLF Coupeville for Average Year Scenarios

		Base	eline	No A	Action	Alts	1,2,3
Operation Type	Runway	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)
All	14	17%	18%	17%	20%	28%	31%
AII	32	83%	82%	83%	80%	72%	69%

Table A3-3 Runway Utilization Percentages for EA-18G at Ault Field for Average Year School-Day Scenarios

Opera	tion Type	Runway	Baseline	No Action	Alts 1,2,3
		07	17%	17%	17%
Dor	parture	14	31%	27%	30%
Del	Darture	25	48%	51%	50%
		32	4%	5%	3%
		07	14%	16%	18%
Interfacility	/ to/from OLF	14	32%	24%	30%
lintenaciity	/ to/lioni OLi	25	53%	55%	50%
		32	1%	5%	2%
		07	18%	17%	17%
	VFR Arrivals	14	31%	27%	30%
	(Non-breaks)	25	47%	51%	49%
		32	4%	5%	4%
		07	18%	17%	17%
Arrival	Overhead Break	14	30%	27%	29%
Allivai	Arrivals	25	48%	51%	50%
	711114010	32	4%	5%	4%
		07	17%	16%	16%
	IFR Arrivals	14	36%	24%	27%
	IFK Allivais	25	44%	55%	53%
		32	3%	5%	4%
		07	15%	21%	22%
	FCLP	14	30%	34%	30%
	FOLF	25	52%	39%	47%
		32	3%	6%	1%
		07	17%	18%	18%
	Touch and	14	30%	27%	30%
	Go	25	49%	50%	49%
Closed		32	4%	5%	3%
Patterns		07	17%	16%	17%
	Depart and	14	28%	26%	29%
	ReEnter	25	50%	53%	50%
		32	5%	5%	4%
		07	17%	18%	18%
	GCA Box	14	30%	27%	30%
	GUA BUX	25	49%	50%	49%
		32	4%	5%	3%

Table A3-4 Runway Utilization Percentages for EA-18G at OLF Coupeville for Average Year School-Day Scenarios

Operation Type	Runway	Baseline	No Action	Alts 1,2,3
A 11	14	17%	19%	28%
AII	32	83%	81%	72%

Table A3-5 Runway Utilization Percentages for EA-18G at Ault Field for High Tempo Year Scenarios

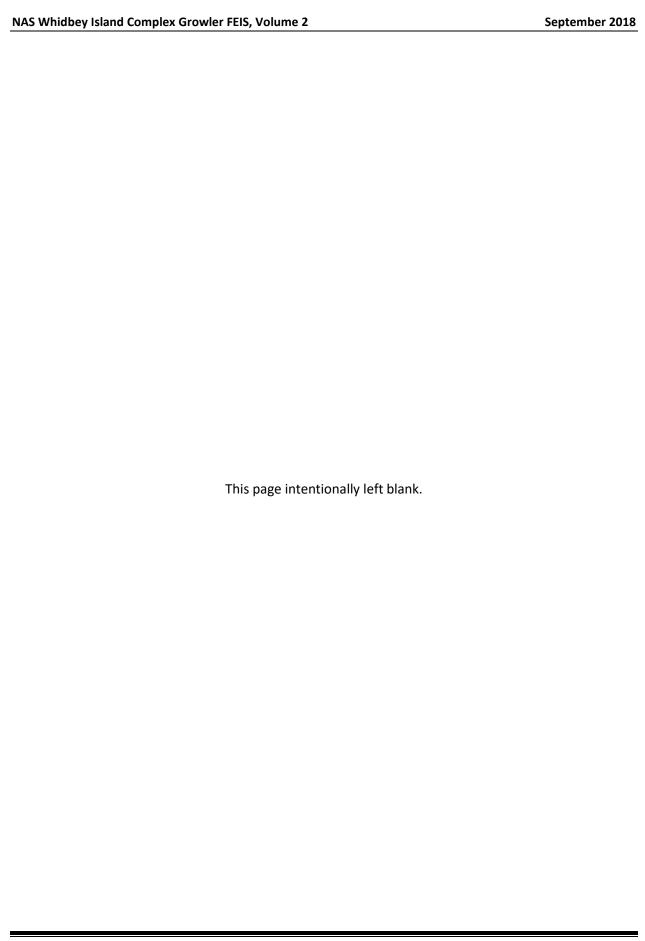
			Bas	eline	No Action		Alts 1, 2, 3	
Opera	ition Type	Runway	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)
		07	17%	18%	17%	16%	17%	16%
Б.		14	31%	32%	27%	26%	30%	31%
De	parture	25	48%	46%	51%	53%	50%	49%
		32	4%	4%	5%	5%	3%	4%
		07	14%	8%	23%	16%	18%	18%
last a official list		14	32%	44%	23%	28%	30%	31%
interiacilit	y to/from OLF	25	53%	48%	48%	51%	50%	48%
		32	1%	0%	6%	5%	2%	3%
		07	18%	18%	17%	18%	17%	16%
	VFR Arrivals	14	31%	33%	27%	27%	30%	31%
	(Non-breaks)	25	47%	45%	51%	50%	49%	50%
		32	4%	4%	5%	5%	4%	3%
		07	18%	17%	17%	15%	17%	16%
A	Overhead	14	30%	32%	27%	28%	29%	30%
Arrival	Break Arrivals	25	48%	46%	51%	52%	50%	50%
		32	4%	5%	5%	5%	4%	4%
		07	17%	23%	16%	13%	16%	22%
	IED Amiroda	14	36%	18%	24%	36%	27%	27%
	IFR Arrivals	25	44%	59%	55%	41%	53%	47%
		32	3%	0%	5%	10%	4%	4%
		07	15%	9%	21%	14%	22%	19%
	FCLP	14	30%	35%	34%	36%	30%	29%
	FCLP	25	52%	54%	39%	43%	47%	50%
		32	3%	2%	6%	7%	1%	2%
		07	17%	14%	18%	16%	18%	18%
	Touch and Co	14	30%	33%	27%	29%	30%	30%
	Touch and Go	25	49%	49%	50%	51%	49%	49%
Closed		32	4%	4%	5%	4%	3%	3%
Patterns		07	17%	24%	16%	21%	17%	17%
	Depart and	14	28%	23%	26%	36%	29%	28%
	ReEnter	25	50%	49%	53%	40%	50%	51%
		32	5%	4%	5%	3%	4%	4%
		07	17%	12%	18%	19%	18%	18%
	GCA Box	14	30%	35%	27%	30%	30%	30%
	GCA BUX	25	49%	51%	50%	47%	49%	50%
		32	4%	2%	5%	4%	3%	2%

Table A3-6 Runway Utilization Percentages for EA-18G at OLF Coupeville for High Tempo Year Scenarios

Operation Type		Baseline		No Action		Alts 1,2,3	
	Runway	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)	Day (0700- 2200)	Night (2200- 0700)
All	14	17%	18%	17%	20%	28%	31%
	32	83%	82%	83%	80%	72%	69%

Table A3-7 Runway Utilization Percentages for EA-18G at Ault Field for High Tempo Year School-Day Scenarios

Opera	tion Type	Runway	Baseline	No Action	Alts 1,2,3
		07	17%	17%	17%
Departure		14	31%	27%	30%
Det	Darture	25	48%	51%	50%
		32	4%	5%	3%
		07	14%	16%	18%
Interfacility	to/from OLF	14	32%	24%	30%
Interfacility	/ to/lioni OLF	25	53%	55%	50%
		32	1%	5%	2%
		07	18%	17%	17%
	VFR Arrivals	14	31%	27%	30%
	(Non-breaks)	25	47%	51%	49%
		32	4%	5%	4%
		07	18%	17%	17%
A www. wo.l	Overhead	14	30%	27%	29%
Arrival	Break Arrivals	25	48%	51%	50%
	711114415	32	4%	5%	4%
	IFR Arrivals	07	17%	16%	16%
		14	36%	24%	27%
		25	44%	55%	53%
		32	3%	5%	4%
		07	15%	21%	22%
	FCLP	14	30%	34%	30%
	FCLP	25	52%	39%	47%
		32	3%	6%	1%
		07	17%	18%	18%
	Touch and	14	30%	27%	30%
	Go	25	49%	50%	49%
Closed		32	4%	5%	3%
Patterns		07	17%	16%	17%
	Depart and	14	28%	26%	29%
	ReEnter	25	50%	53%	50%
		32	5%	5%	4%
		07	17%	18%	18%
	CCARO	14	30%	27%	30%
	GCA Box	25	49%	50%	49%
		32	4%	5%	3%


Table A3-8 Runway Utilization Percentages for EA-18G at OLF Coupeville for High Tempo Year School-Day Scenarios

Operation Type	Runway	Baseline	No Action	Alts 1,2,3
A II	14	17%	19%	28%
All	32	83%	81%	72%

NAS Whidbey Island Complex Growle	r FEIS, Volume 2	September 2018
	This page intentionally left blank.	

Appendix A4

Modeled Flight Tracks and Growler Track Utilization Percentages

List of Figures

Figure A4-1	Modeled Average Daily Departure Flight Tracks on Runway 07/25 at Ault Field	A4-5
Figure A4-2	Modeled Average Daily Departure Flight Tracks on Runway 14/32 at Ault Field	A4-6
Figure A4-3	Modeled Average Daily Straight-in Non-break Arrival Flight Tracks to Runway 07/25 at Ault Field	A4-7
Figure A4-4	Modeled Average Daily Straight-in Non-break Arrival Flight Tracks to Runway 14/32 at Ault Field	A4-8
Figure A4-5	Modeled Average Daily Other Arrival Flight Tracks to Runway 07/25 at Ault Field (non-Growler)	A4-9
Figure A4-6	Modeled Average Daily Other Arrival Flight Tracks to Runway 14/32 at Ault Field (non-Growler)	. A4-10
Figure A4-7	Modeled Average Daily Overhead Break Arrival Flight Tracks to Runway 07/25 at Ault Field	. A4-11
Figure A4-8	Modeled Average Daily Overhead Break Arrival Flight Tracks to Runway 14/32 at Ault Field	. A4-12
Figure A4-9	Modeled Average Daily High TACAN Arrival Flight Tracks at Ault Field	. A4-13
Figure A4-10	Modeled Average Daily Low TACAN Arrival Flight Tracks at Ault Field	. A4-14
Figure A4-11	Modeled Average Daily FCLP/Touch and Go Flight Tracks for Runway 07/25 at Ault Field (Growler Only)	. A4-15
Figure A4-12	Modeled Average Daily FCLP/Touch and Go Flight Tracks for Runway 14/32 at Ault Field (Growler Only)	. A4-16
Figure A4-13	Modeled Average Daily Touch and Go Flight Tracks for Runway 07/25 at Ault Field (non-Growler)	. A4-17
Figure A4-14	Modeled Average Daily Touch and Go Flight Tracks for Runway 14/32 at Ault Field (non-Growler)	. A4-18
Figure A4-15	Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 07 at Ault Field	. A4-19
Figure A4-16	Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 25 at Ault Field	. A4-20
Figure A4-17	Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 14 at Ault Field	. A4-21
Figure A4-18	Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 32 at Ault Field	. A4-22
Figure A4-19	Modeled Average Daily GCA Box Pattern Flight Tracks at Ault Field	. A4-23
Figure A4-20	Modeled Average Daily Interfacility Flight Tracks from Runway 07/25 at Ault Field to the OLF for Baseline and No Action Alternative	. A4-24
Figure A4-21	Modeled Average Daily Interfacility Flight Tracks from Runway 14/32 at Ault Field to the OLF for Baseline and No Action Alternative	. A4-25

Figure A4-22	Modeled Average Daily FCLP Flight Tracks at the OLF for Baseline and No Action	
	Alternative	A4-26
Figure A4-23	Modeled Average Daily Interfacility Flight Tracks from the OLF to Ault Field	A4-27
Figure A4-24	Modeled Average Daily Interfacility Flight Tracks from Runway 07/25 at Ault Field to the OLF for Numbered Alternatives	A4-28
Figure A4-25	Modeled Average Daily Interfacility Flight Tracks from Runway 14/32 at Ault Field to the OLF for Numbered Alternatives	A4-29
Figure A4-26	Modeled Average Daily FCLP Flight Tracks at the OLF for Numbered Alternatives	A4-30

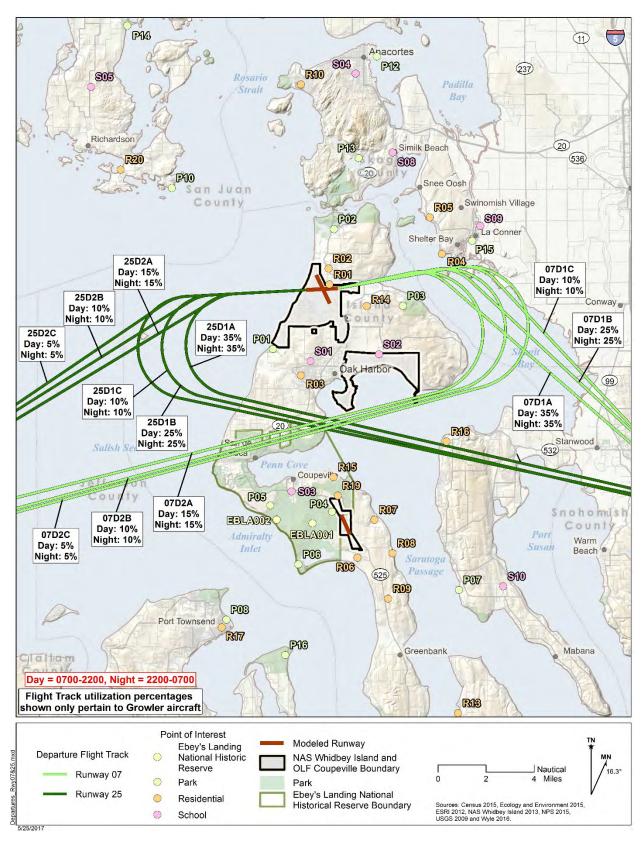


Figure A4-1 Modeled Average Daily Departure Flight Tracks on Runway 07/25 at Ault Field

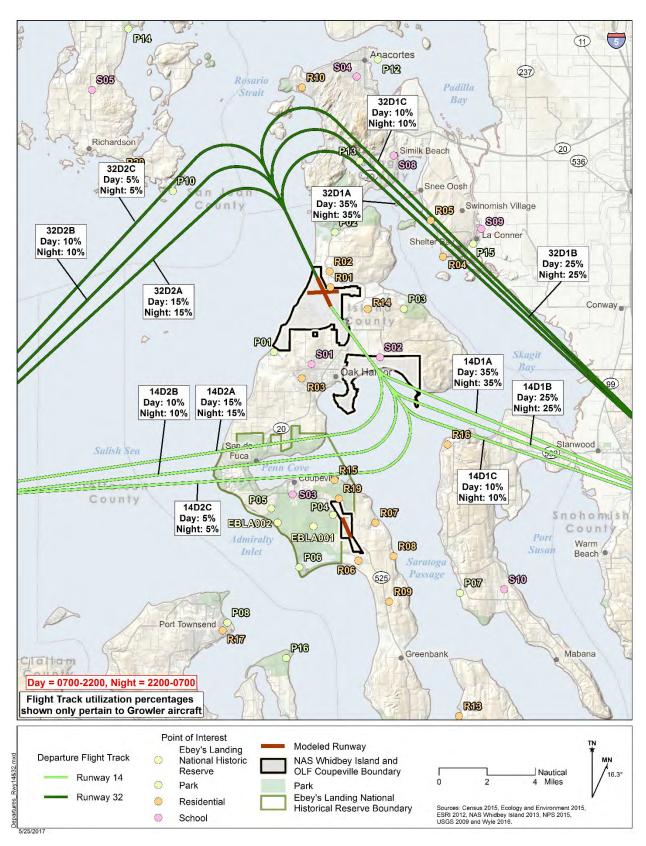


Figure A4-2 Modeled Average Daily Departure Flight Tracks on Runway 14/32 at Ault Field

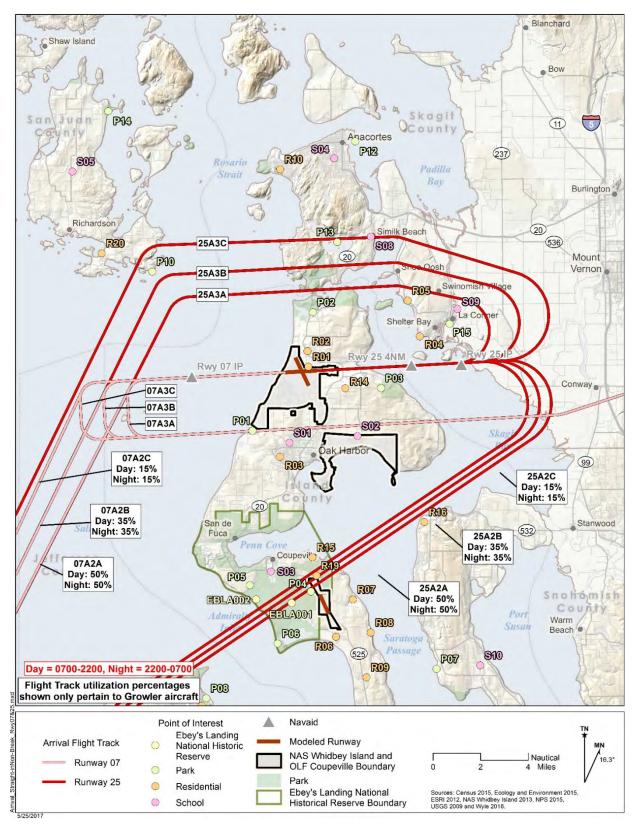


Figure A4-3 Modeled Average Daily Straight-in Non-break Arrival Flight Tracks to Runway 07/25 at Ault Field

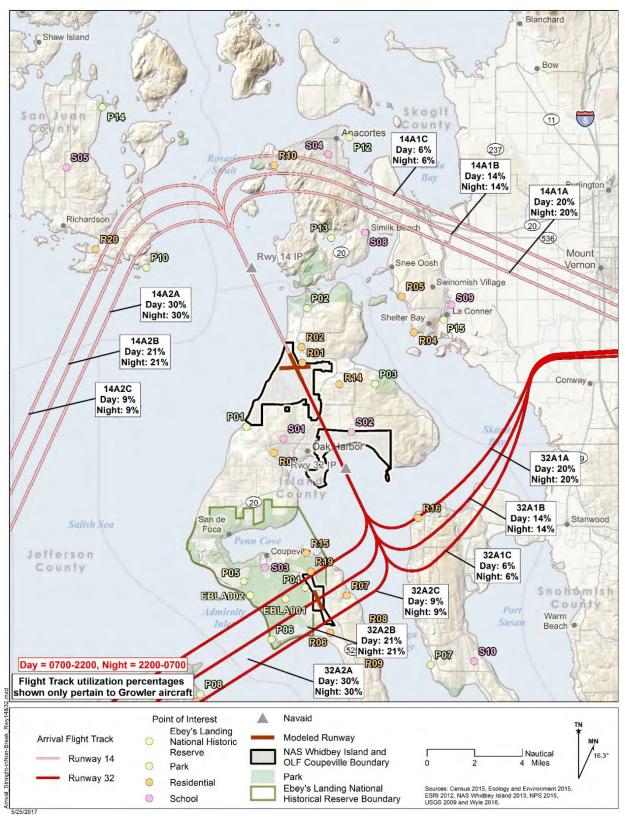


Figure A4-4 Modeled Average Daily Straight-in Non-break Arrival Flight Tracks to Runway 14/32 at Ault Field

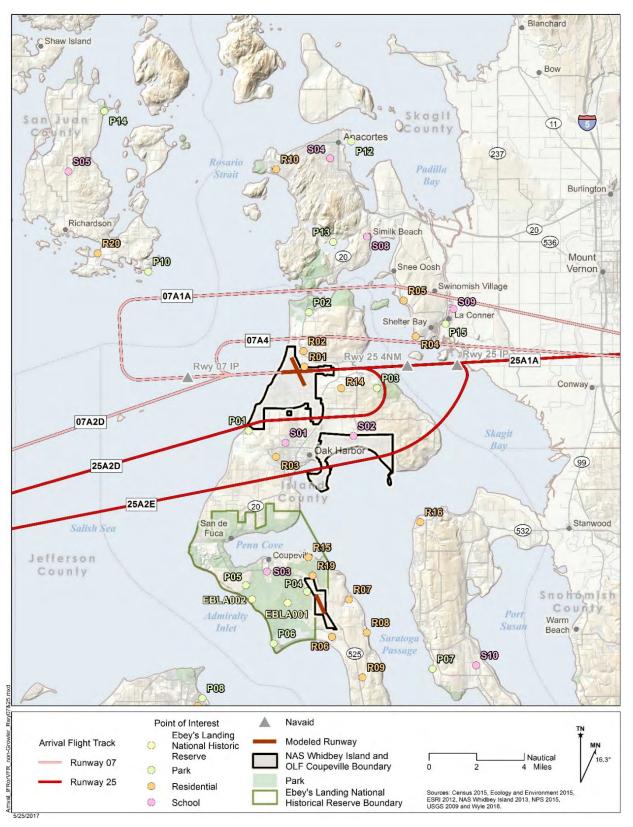


Figure A4-5 Modeled Average Daily Other Arrival Flight Tracks to Runway 07/25 at Ault Field (non-Growler)

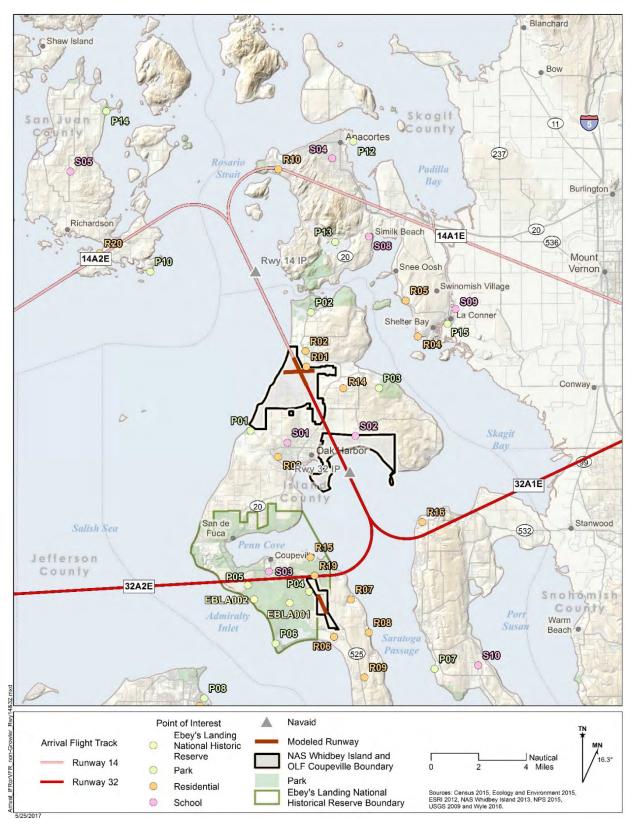


Figure A4-6 Modeled Average Daily Other Arrival Flight Tracks to Runway 14/32 at Ault Field (non-Growler)

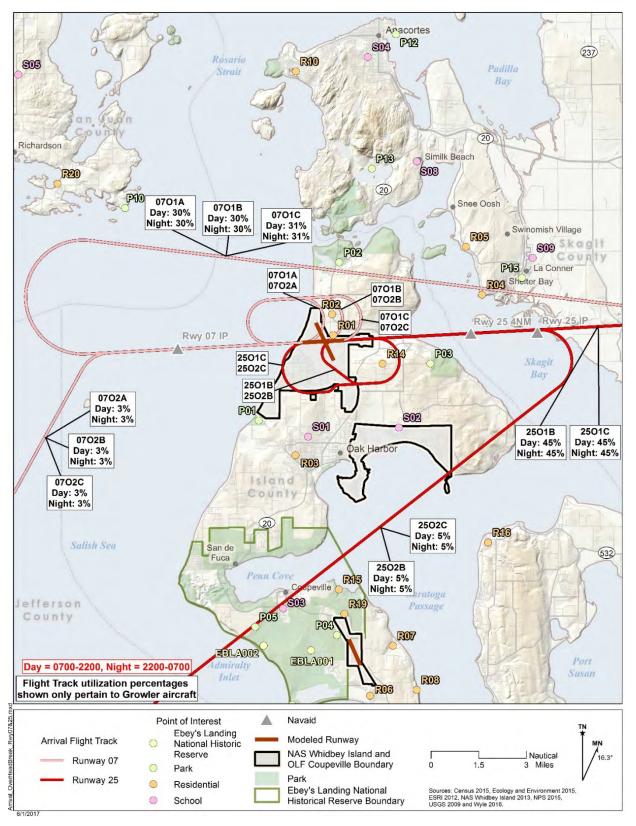


Figure A4-7 Modeled Average Daily Overhead Break Arrival Flight Tracks to Runway 07/25 at Ault Field

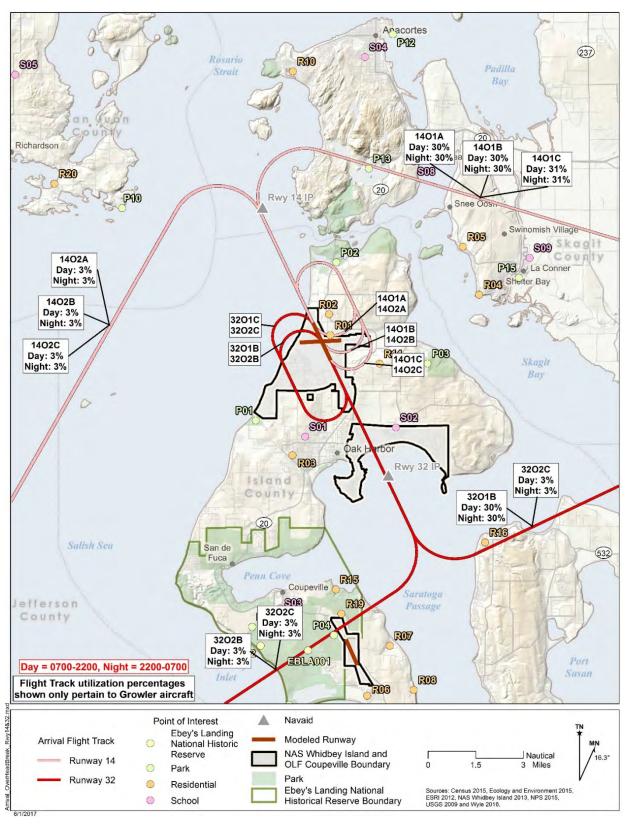


Figure A4-8 Modeled Average Daily Overhead Break Arrival Flight Tracks to Runway 14/32 at Ault Field

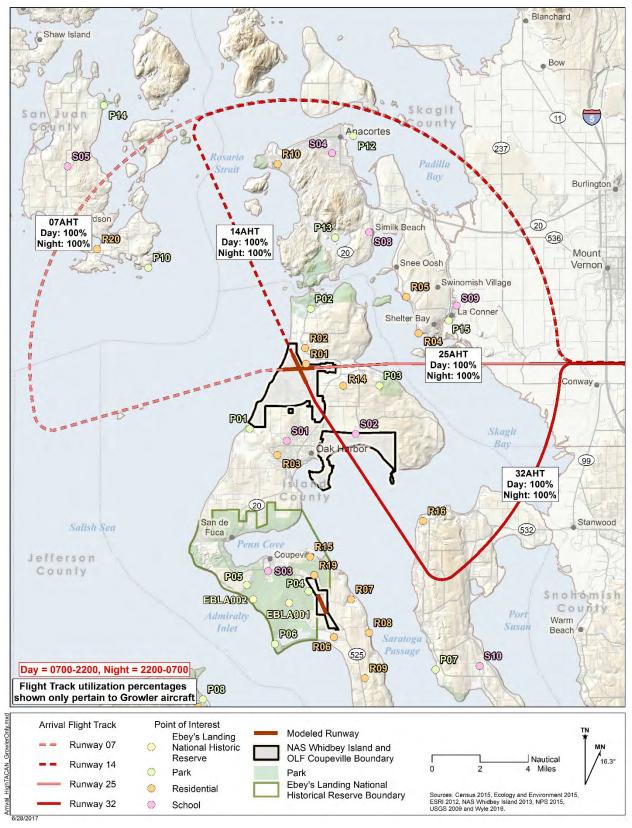


Figure A4-9 Modeled Average Daily High TACAN Arrival Flight Tracks at Ault Field

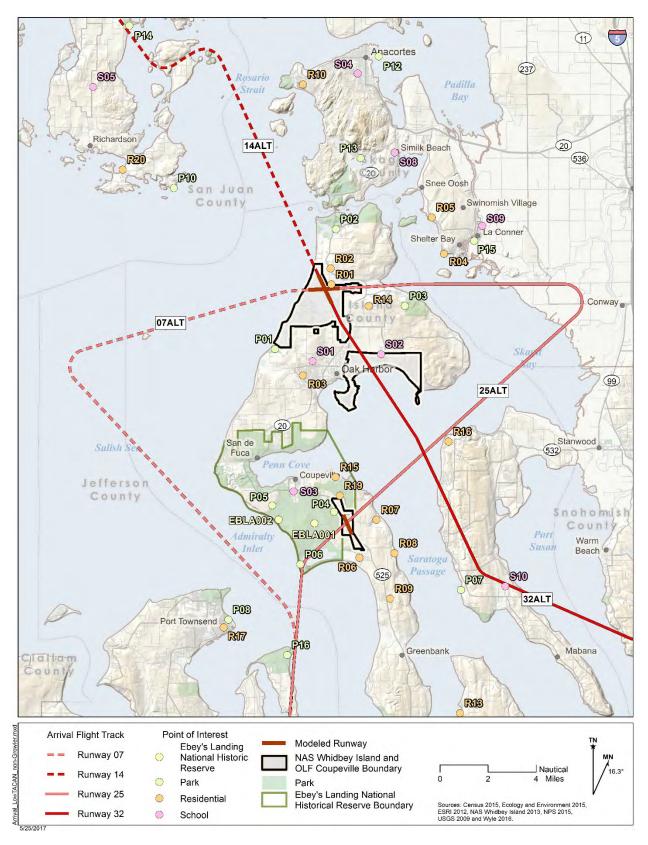


Figure A4-10 Modeled Average Daily Low TACAN Arrival Flight Tracks at Ault Field

Figure A4-11 Modeled Average Daily FCLP/Touch and Go Flight Tracks for Runway 07/25 at Ault Field (Growler Only)

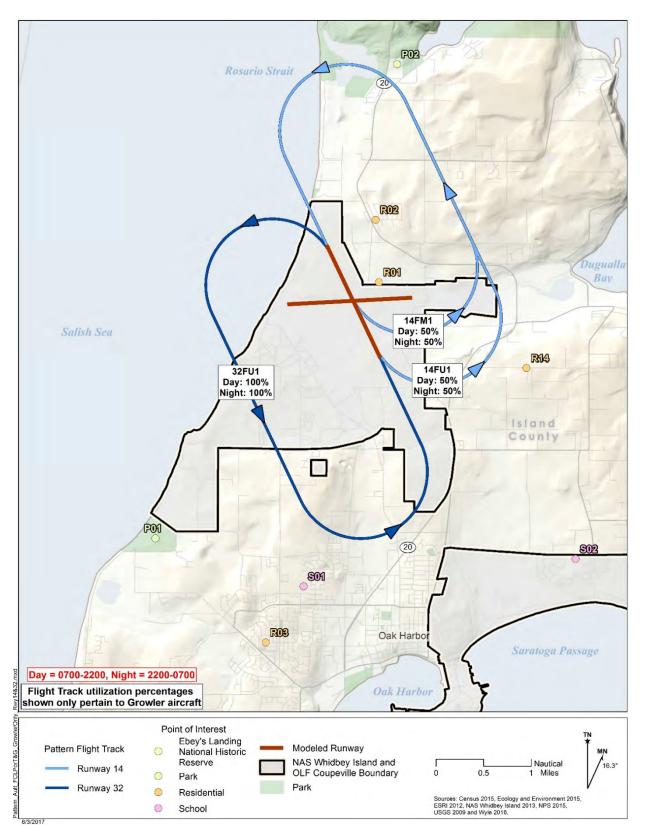


Figure A4-12 Modeled Average Daily FCLP/Touch and Go Flight Tracks for Runway 14/32 at Ault Field (Growler Only)

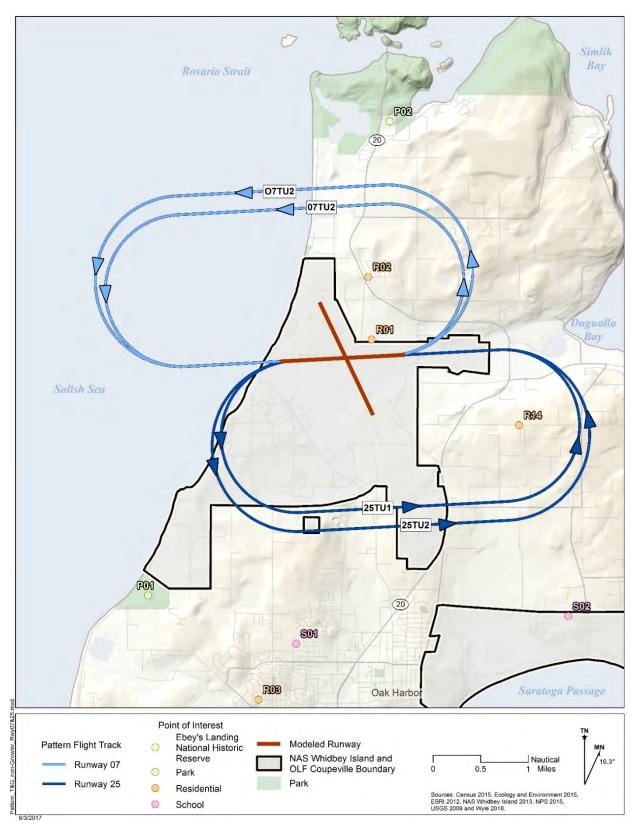


Figure A4-13 Modeled Average Daily Touch and Go Flight Tracks for Runway 07/25 at Ault Field (non-Growler)

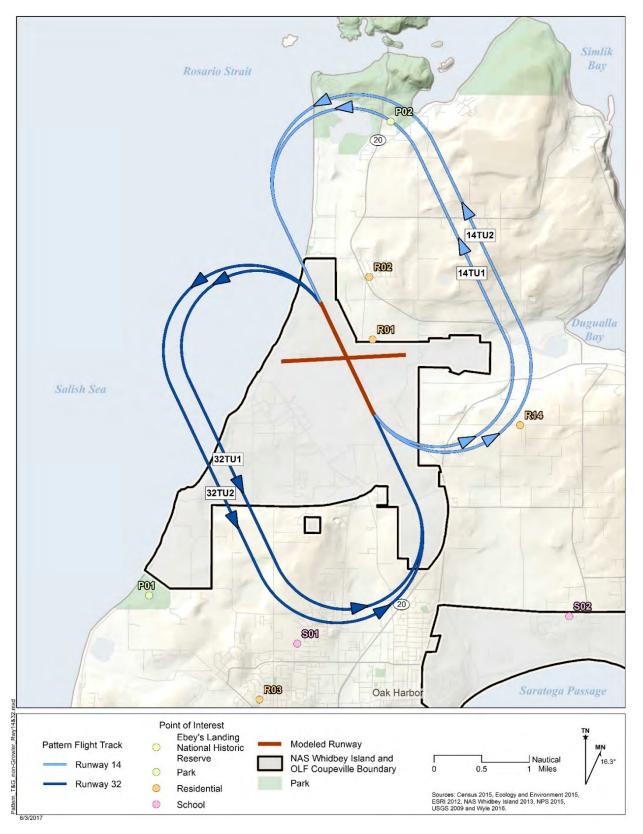


Figure A4-14 Modeled Average Daily Touch and Go Flight Tracks for Runway 14/32 at Ault Field (non-Growler)

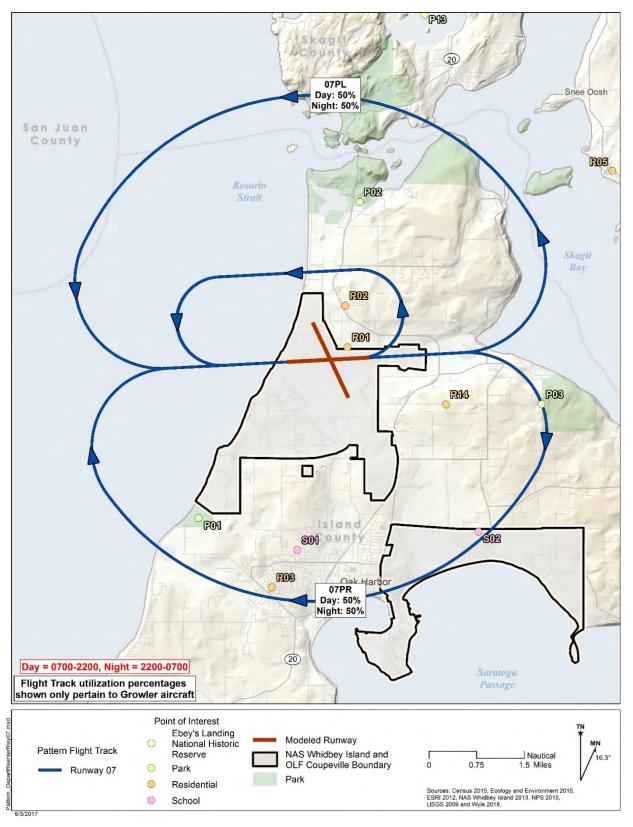


Figure A4-15 Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 07 at Ault Field

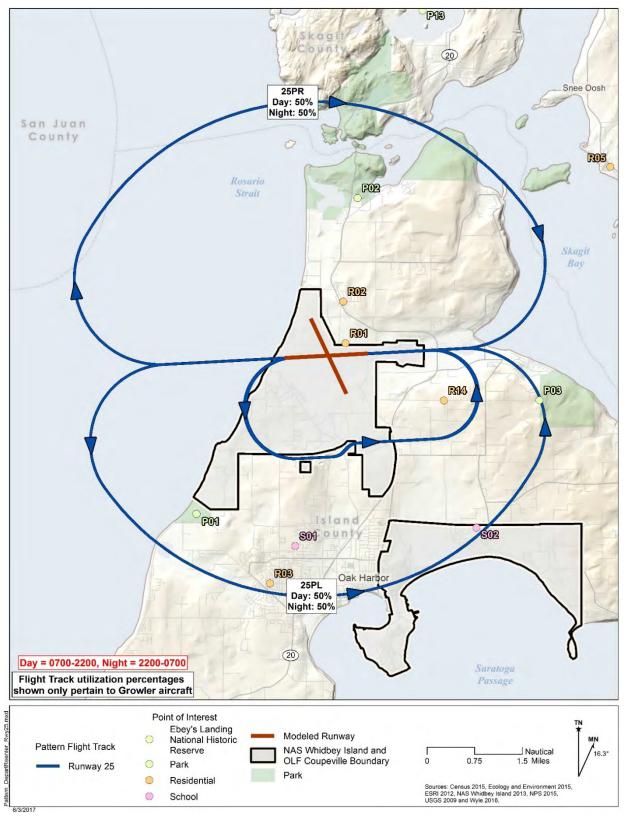


Figure A4-16 Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 25 at Ault Field

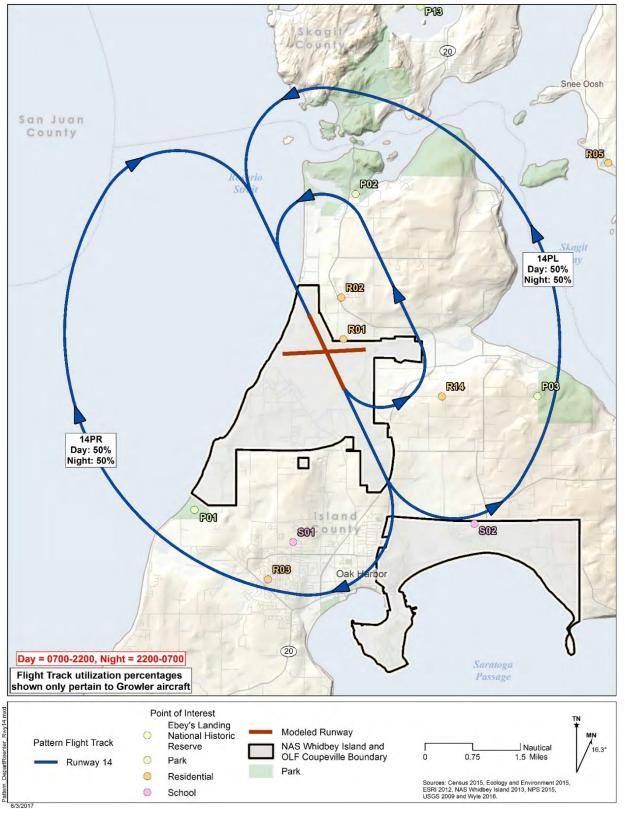


Figure A4-17 Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 14 at Ault Field

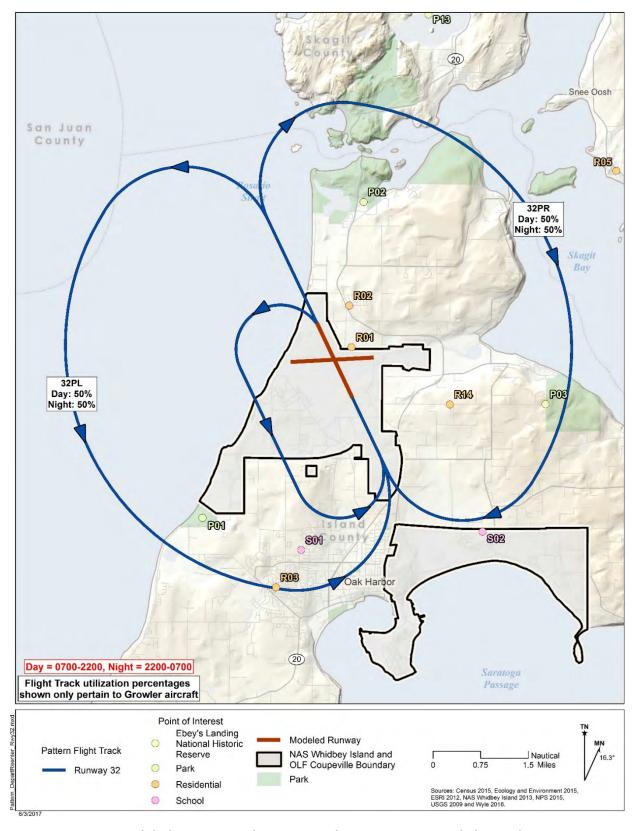


Figure A4-18 Modeled Average Daily Depart and Re-Enter Pattern Flight Tracks on Runway 32 at Ault Field

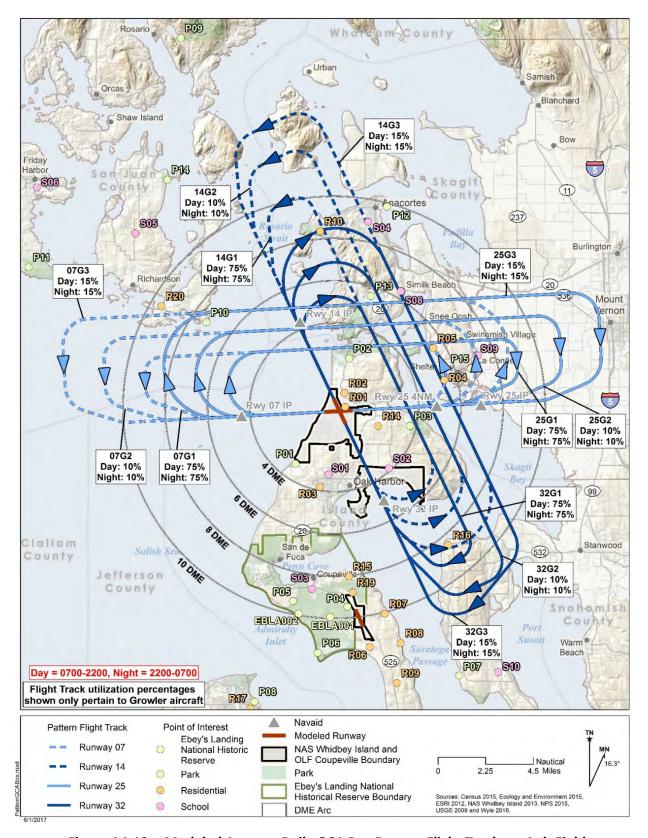


Figure A4-19 Modeled Average Daily GCA Box Pattern Flight Tracks at Ault Field

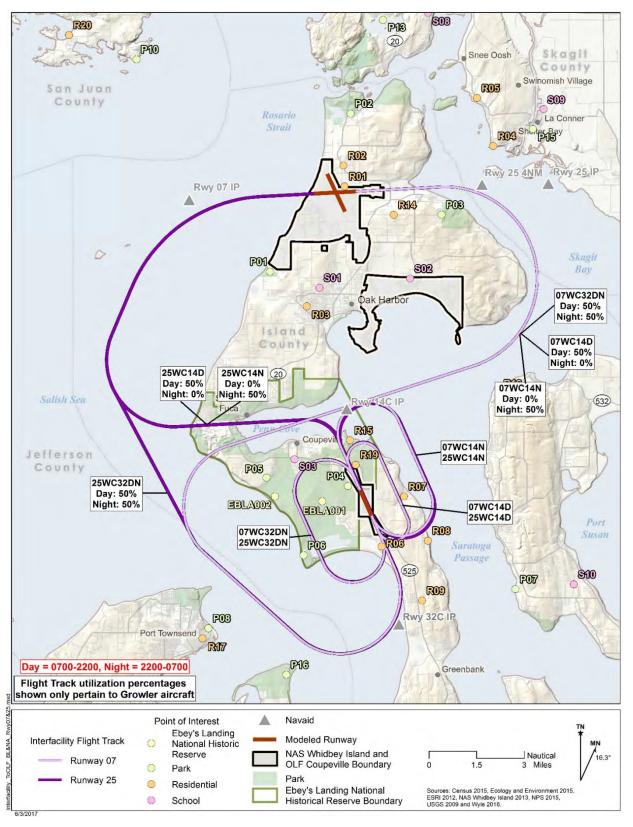


Figure A4-20 Modeled Average Daily Interfacility Flight Tracks from Runway 07/25 at Ault Field to the OLF for Baseline and No Action Alternative

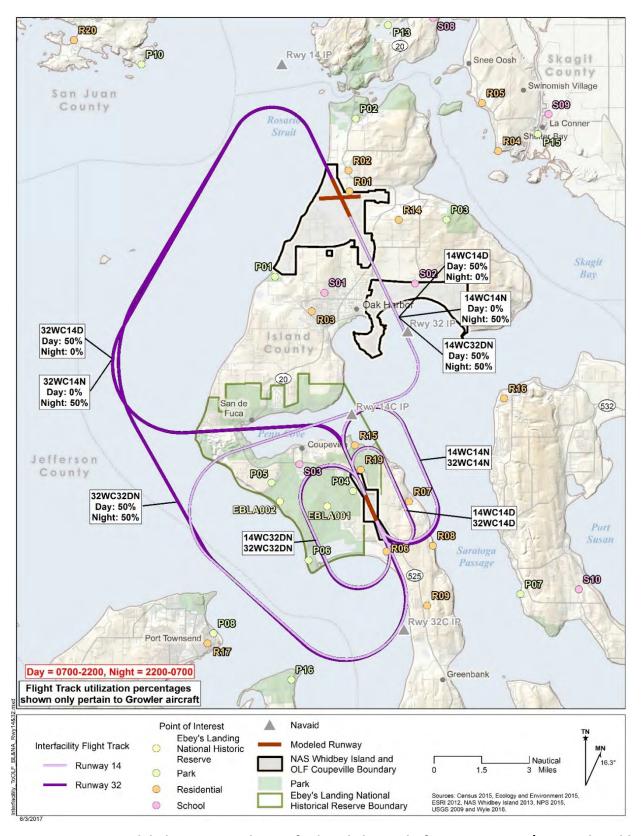


Figure A4-21 Modeled Average Daily Interfacility Flight Tracks from Runway 14/32 at Ault Field to the OLF for Baseline and No Action Alternative

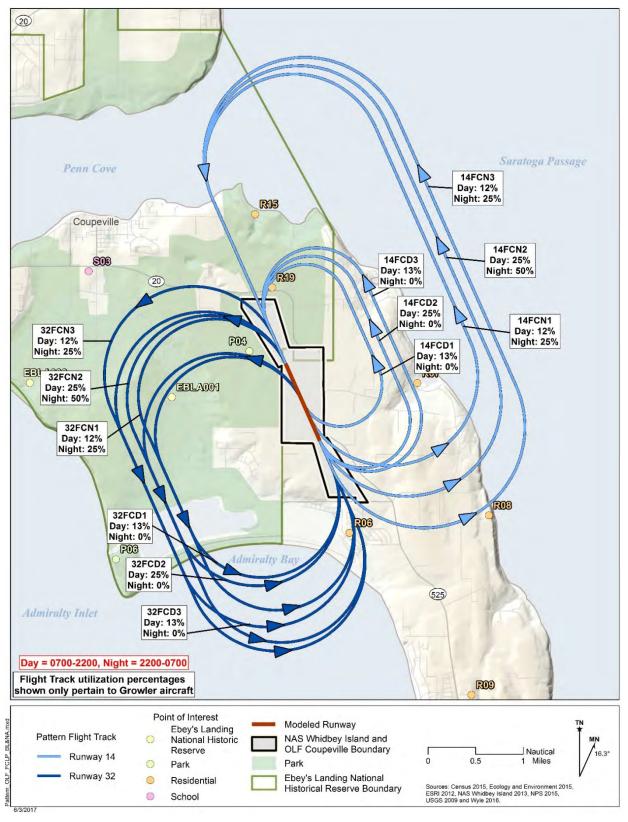


Figure A4-22 Modeled Average Daily FCLP Flight Tracks at the OLF for Baseline and No Action Alternative

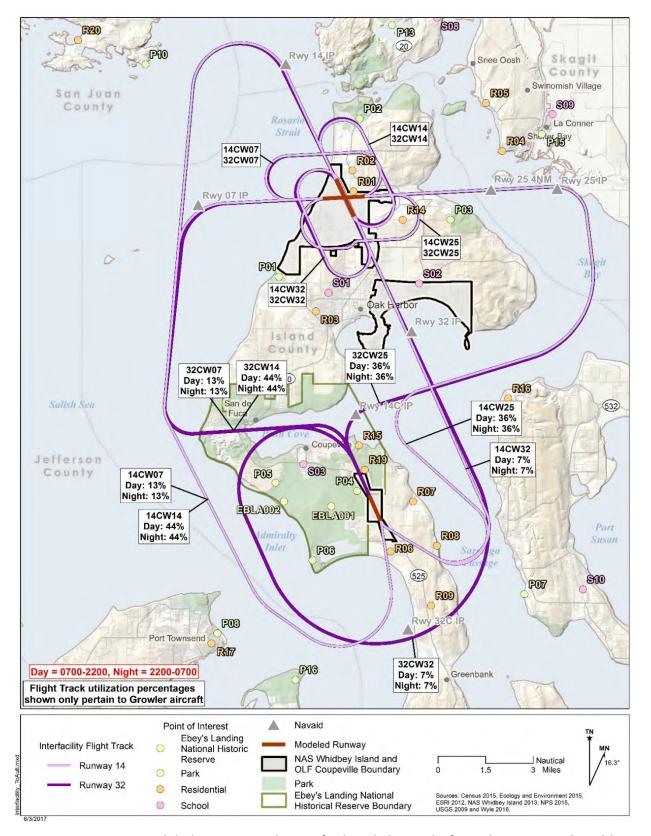


Figure A4-23 Modeled Average Daily Interfacility Flight Tracks from the OLF to Ault Field

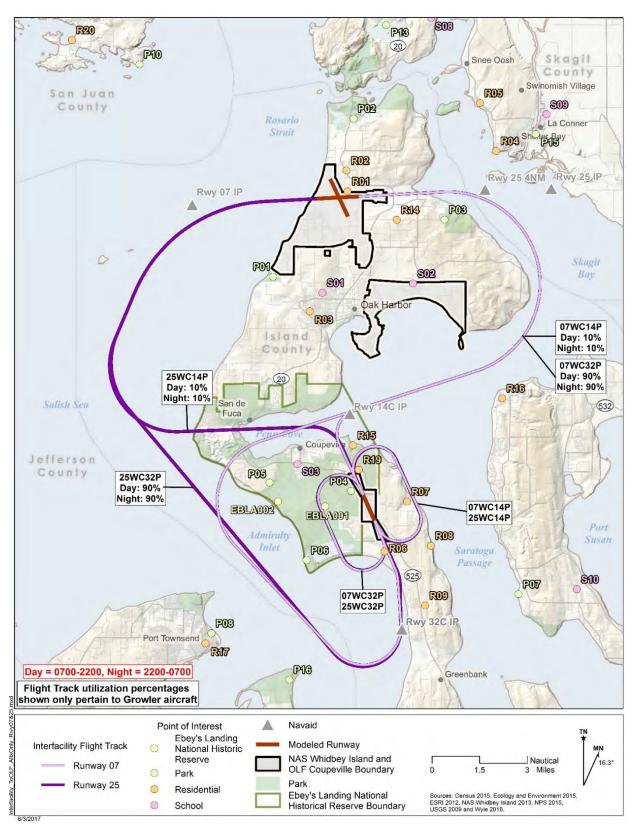


Figure A4-24 Modeled Average Daily Interfacility Flight Tracks from Runway 07/25 at Ault Field to the OLF for Numbered Alternatives

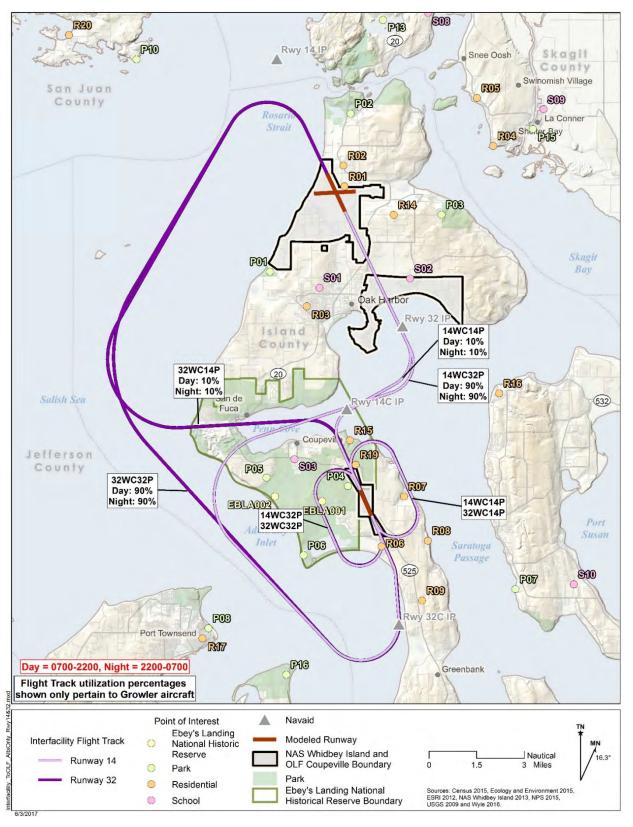


Figure A4-25 Modeled Average Daily Interfacility Flight Tracks from Runway 14/32 at Ault Field to the OLF for Numbered Alternatives

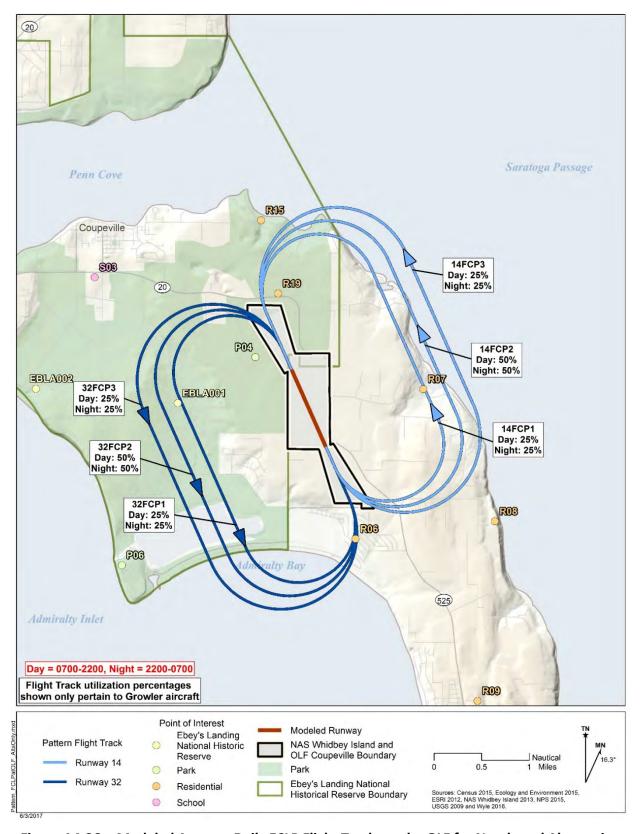
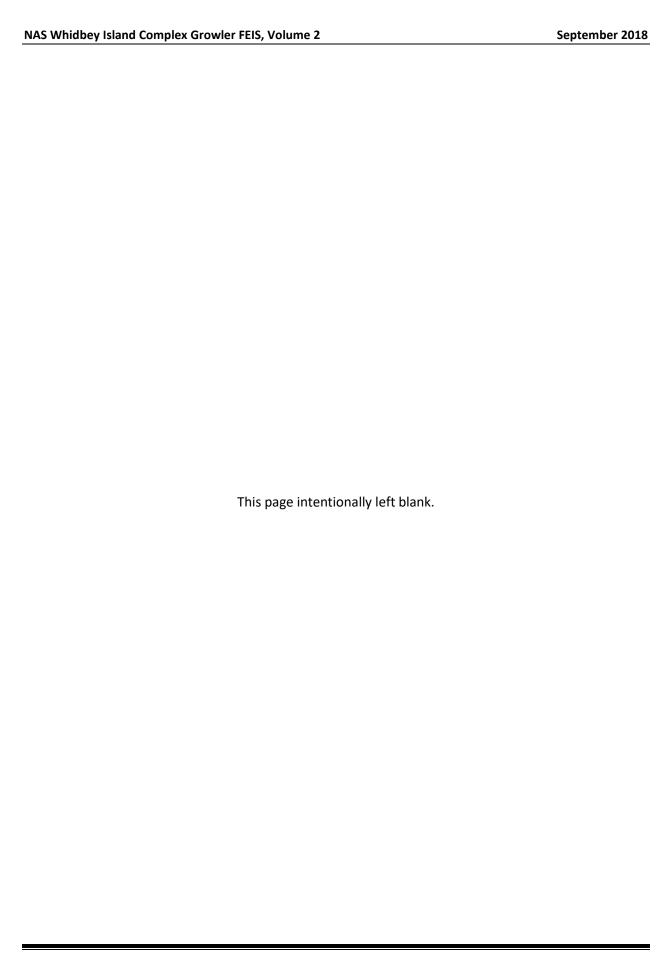



Figure A4-26 Modeled Average Daily FCLP Flight Tracks at the OLF for Numbered Alternatives

Appendix A5

Representative Flight Profiles for EA-18G, P-3C, P-8A, and Transient Large Jet Aircraft

List of Figures

Figure A5-1	EA-18G Departure Flight Profile (with Afterburner for Takeoff Roll) at Ault Field Runway 25	A5-7
Figure A5-2	EA-18G VFR Straight-in Arrival Flight Profile at Ault Field Runway 14	A5-8
Figure A5-3	EA-18G Overhead Break Arrival Flight Profile at Ault Field Runway 14 (Midfield Break)	A5-9
Figure A5-4	EA-18G High TACAN Arrival Flight Profiles at Ault Field Runway 14	A5-10
Figure A5-5	EA-18G Existing Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 14 during Daylight	. A5-11
Figure A5-6	EA-18G Existing Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 14 during Darkness	. A5-12
Figure A5-7	EA-18G Proposed Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 14	. A5-13
Figure A5-8	EA-18G (Baseline and No Action) Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 32 during Daylight	. A5-14
Figure A5-9	EA-18G (Baseline and No Action) Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 32 during Darkness	. A5-15
Figure A5-10	EA-18G Proposed Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 32	. A5-16
Figure A5-11	EA-18G Interfacility Flight Profile from OLF Coupeville Runway 14 to Ault Field Runway 07	. A5-17
Figure A5-12	EA-18G Depart and Re-enter Profile at Ault Field Runway 25	A5-18
Figure A5-13	EA-18G FCLP Flight Profile at Ault Field Runway 14	A5-19
Figure A5-14	EA-18G Touch and Go Flight Profile at Ault Field Runway 14	A5-20
Figure A5-15	EA-18G Existing FCLP Flight Profile at OLF Coupeville Runway 14 during Daylight	A5-21
Figure A5-16	EA-18G Existing FCLP Flight Profile at OLF Coupeville Runway 14 during Darkness	A5-22
Figure A5-17	EA-18G Proposed FCLP Flight Profile at OLF Coupeville Runway 14	A5-23
Figure A5-18	EA-18G GCA Box Flight Profile at Ault Field Runway 14	A5-24
Figure A5-19	P-3C Departure Flight Profile at Ault Field Runway 25	A5-25
Figure A5-20	P-3C Straight-in Arrival Flight Profile at Ault Field Runway 25 (Shorter Final)	A5-26
Figure A5-21	P-3C Straight-in Arrival Flight Profile at Ault Field Runway 25 (Longer Final)	A5-27
Figure A5-22	P-3C Low TACAN Arrival Flight Profile at Ault Field Runway 14	A5-28
Figure A5-23	P-3C GCA Box Pattern Flight Profile at Ault Field Runway 25	A5-29
Figure A5-24	P-3C Touch and Go Pattern Flight Profile at Ault Field Runway 32	A5-30
Figure A5-25	P-8A Departure Flight Profile at Ault Field Runway 25	. A5-31
Figure A5-26	P-8A Straight-in Arrival Flight Profile at Ault Field Runway 14	. A5-32
Figure A5-27	P-8A Straight-in Arrival Flight Profile at Ault Field Runway 25 (Longer Final)	. A5-33

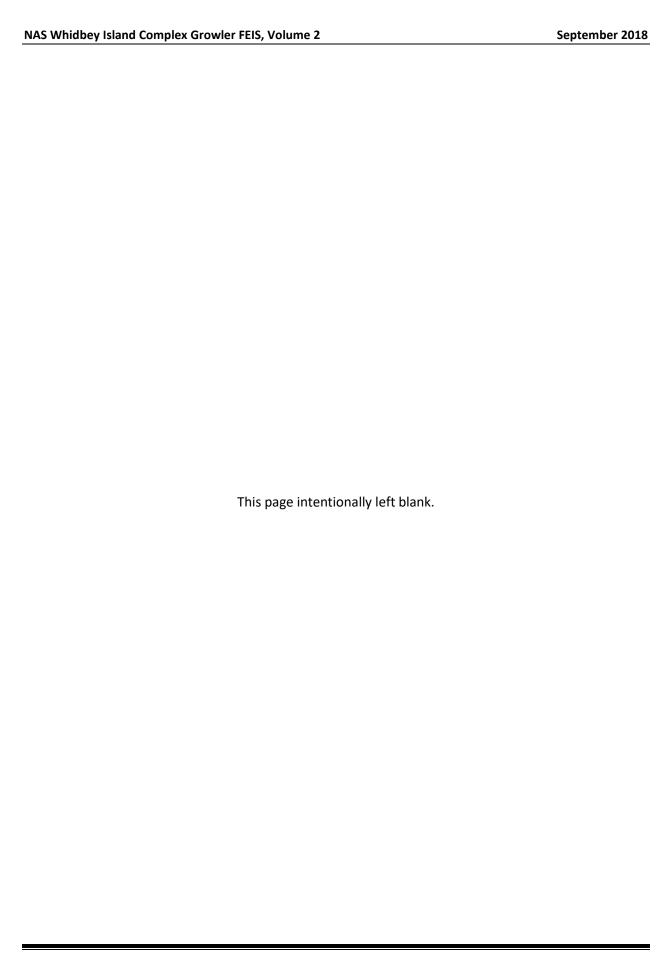
Figure A5-28	P-8A Low TACAN Arrival Flight Profile at Ault Field Runway 14	. A5-34
Figure A5-29	P-8A GCA Box Pattern Flight Profile at Ault Field Runway 25	. A5-35
Figure A5-30	P-8A Touch and Go Pattern Flight Profile at Ault Field Runway 14	. A5-36
Figure A5-31	Transient Large Jet Departure Flight Profile at Ault Field Runway 14	. A5-37
Figure A5-32	Transient Large Jet Straight-in Arrival Flight Profile at Ault Field Runway 14	. A5-38
Figure A5-33	Transient Large Jet Straight-in Arrival Flight Profile at Ault Field Runway 25	
	(Longer Final)	. A5-39
Figure A5-34	Transient Large Jet GCA Box Pattern Profile at Ault Field Runway 25	A5-40
Figure A5-35	Transient Large Jet Touch and Go Pattern Flight Profile at Ault Field Runway 14	A5-41

This appendix provides scaled plots of representative flight profiles for each modeled aircraft type on a representative flight track. The representative flight profiles consist of flight parameters (i.e., altitude, distance, power setting, and speed) for a given aircraft. Each representative flight profile is applied to all applicable flight tracks of the same type. In some cases when the representative profile is spread to applicable flight tracks, the distances may need to be adjusted to account for Air Traffic Control rules, but profile parameters remain unchanged.

The background is an aerial image with the Naval Air Station Whidbey Island complex boundary shown as a red line. The 4-, 6-, 8-, and 10-nautical-mile Distance Measuring Equipment radius circles are depicted with light gray lines. The profile's flight track is depicted as a red line. In some cases, flight tracks related to the profile's flight track are shown in cyan.

The flight profiles are shown in the following order:

Pages	Aircraft Type
A5-7-A5-24	EA-18G
A5-25-A5-30	P-3C
A5-31-A5-36	P-8A
A5-37-A5-41	Transient Large Jet


Each figure includes a table describing the profile parameters of the associated flight track. The columns of the profile data tables are described below:

Column Heading	Description
Point	Sequence letter along flight track denoting change in flight parameters
Distance (feet)	Distance along flight track from runway threshold, in feet
Height (feet)	Altitude of aircraft in feet Above Ground Level (AGL) or relative to Mean Sea Level (MSL)
Power (Appropriate Unit)*	Engine power setting and Drag Configuration/Interpolation Code (defines sets of interpolation code in NOISEMAP (F for FIXED, P for PARALLEL, V for VARIABLE))
Speed (kts)	Indicated airspeed of aircraft, in knots

Notes: * not applicable to helicopter

A5-5

The noise modeling includes over 377 flight profiles. For brevity, only representative flight profiles are included in this appendix.

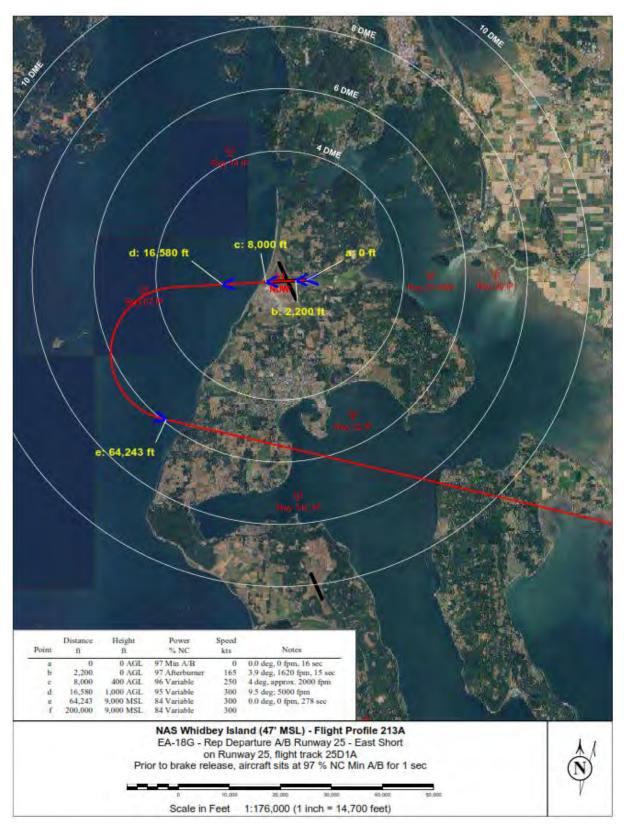


Figure A5-1 EA-18G Departure Flight Profile (with Afterburner for Takeoff Roll) at Ault Field Runway 25

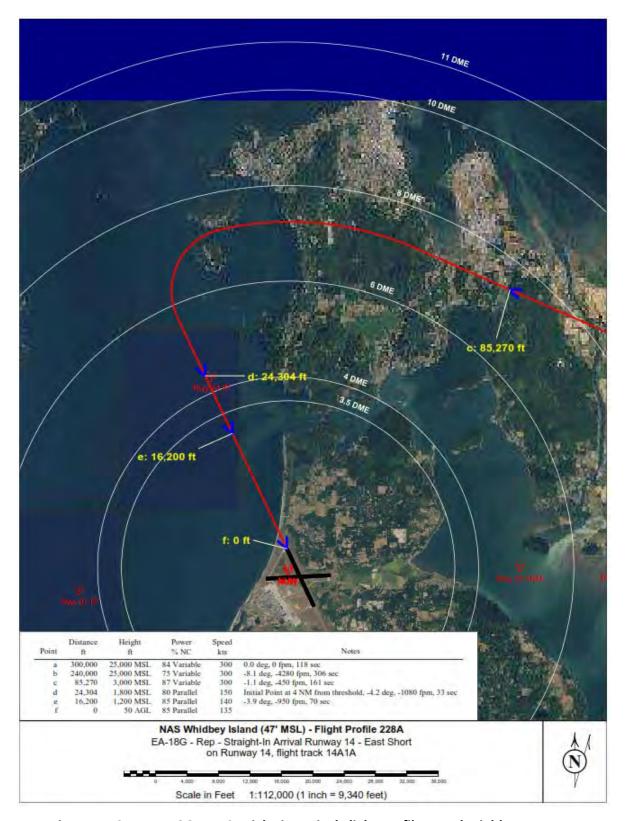


Figure A5-2 EA-18G VFR Straight-in Arrival Flight Profile at Ault Field Runway 14

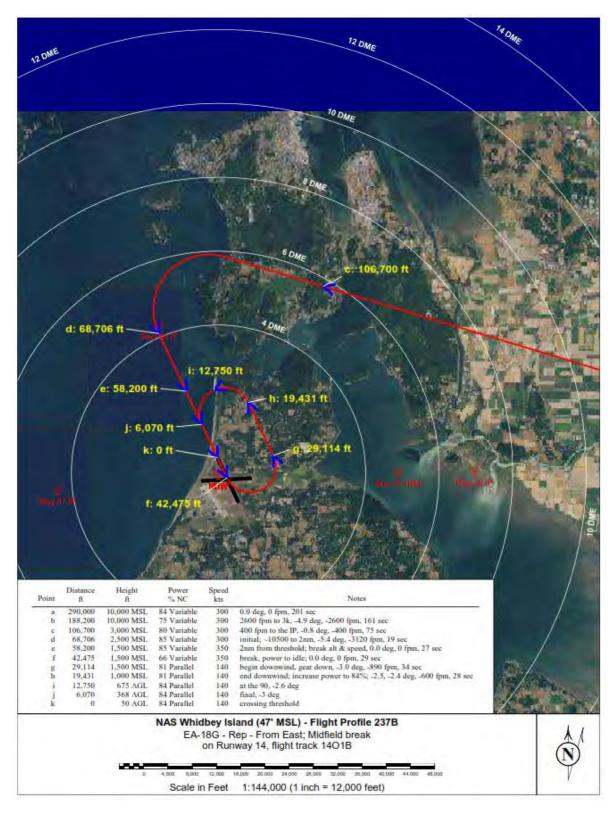


Figure A5-3 EA-18G Overhead Break Arrival Flight Profile at Ault Field Runway 14 (Midfield Break)

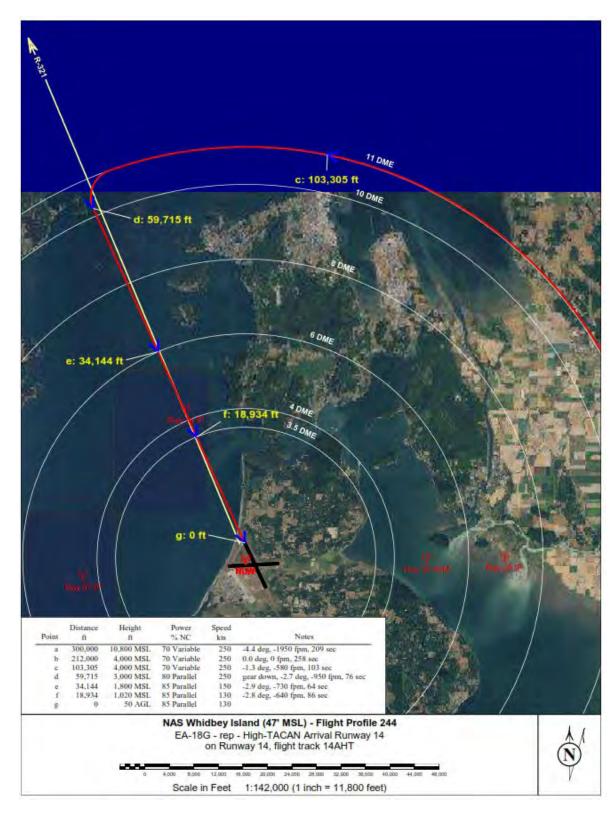


Figure A5-4 EA-18G High TACAN Arrival Flight Profiles at Ault Field Runway 14

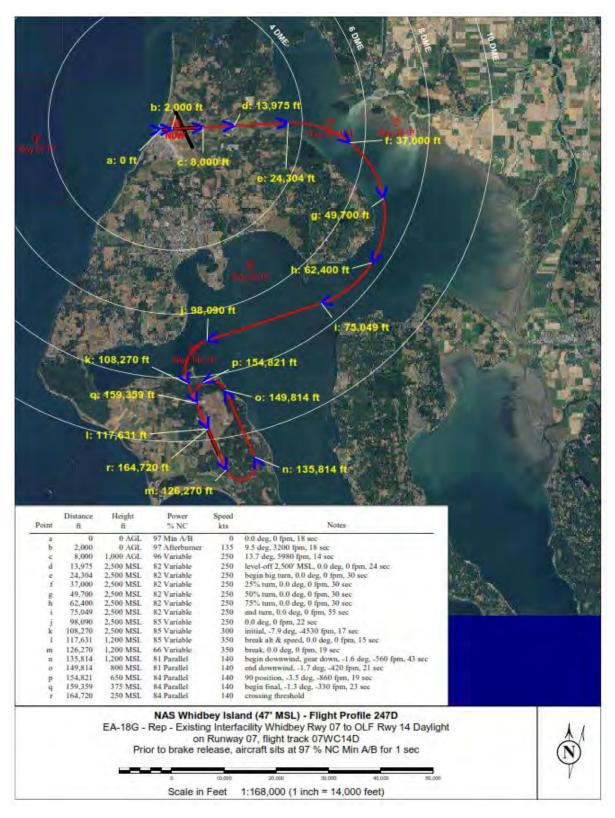


Figure A5-5 EA-18G Existing Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 14 during Daylight

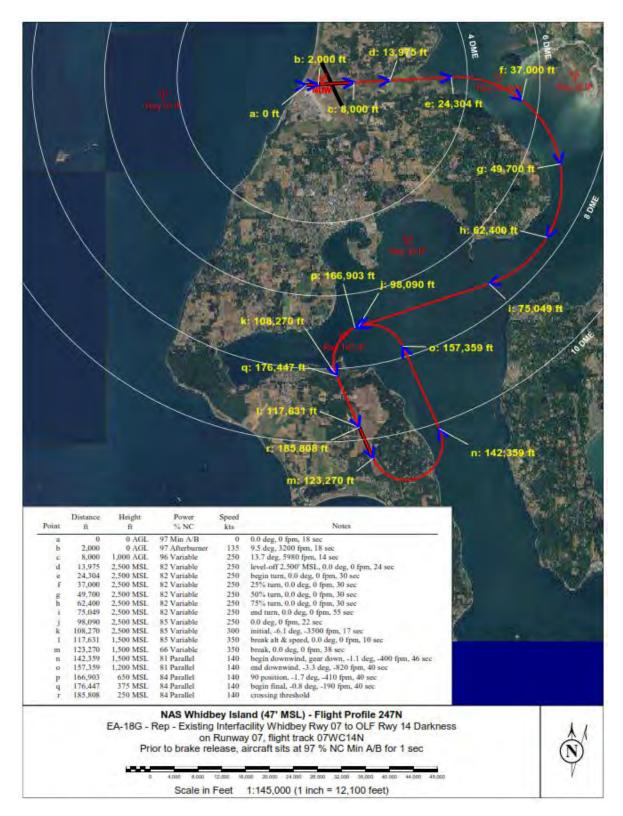


Figure A5-6 EA-18G Existing Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 14 during Darkness

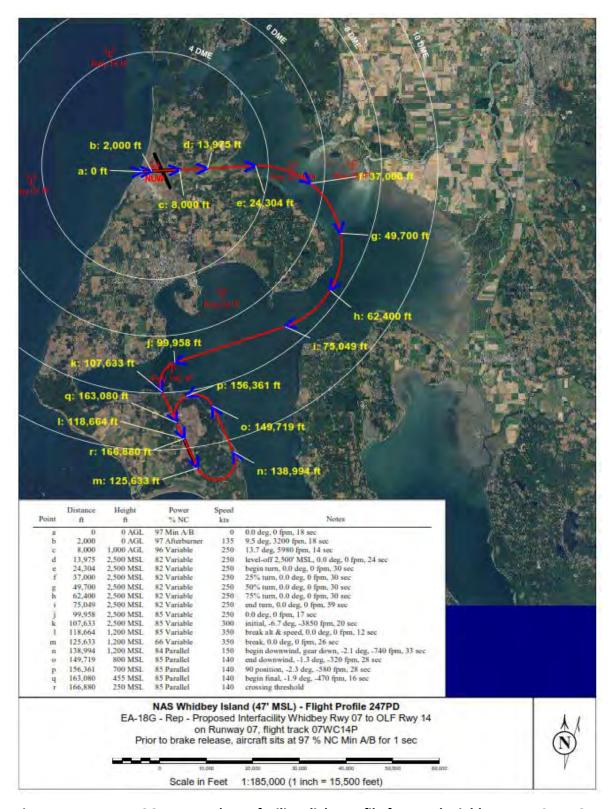


Figure A5-7 EA-18G Proposed Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 14

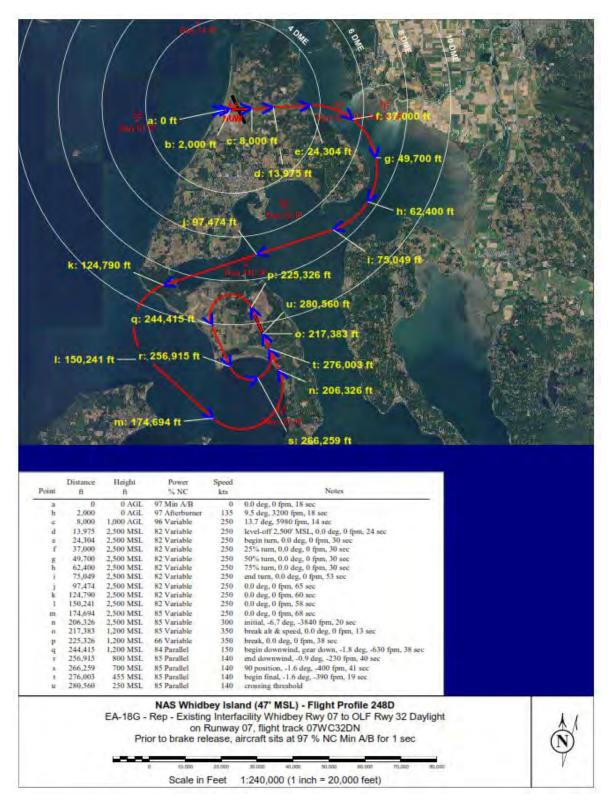


Figure A5-8 EA-18G (Baseline and No Action) Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 32 during Daylight

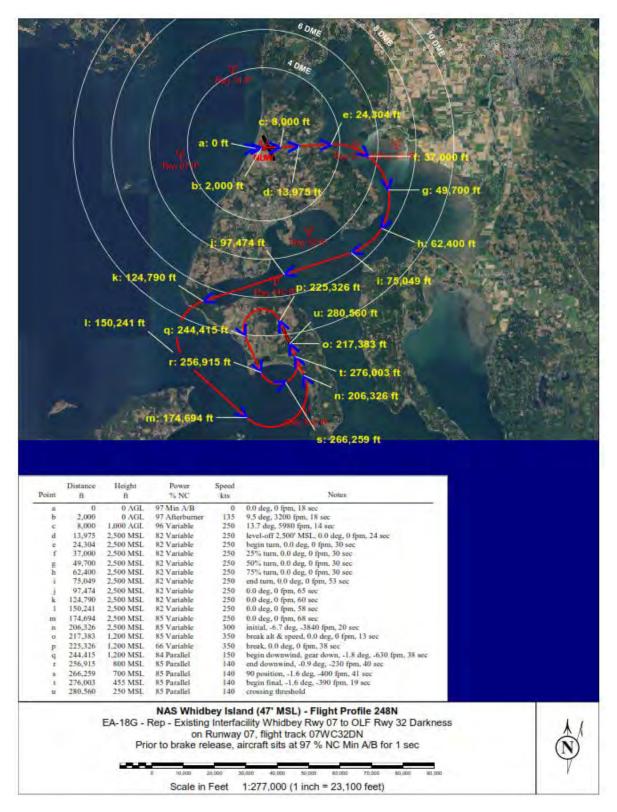


Figure A5-9 EA-18G (Baseline and No Action) Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 32 during Darkness

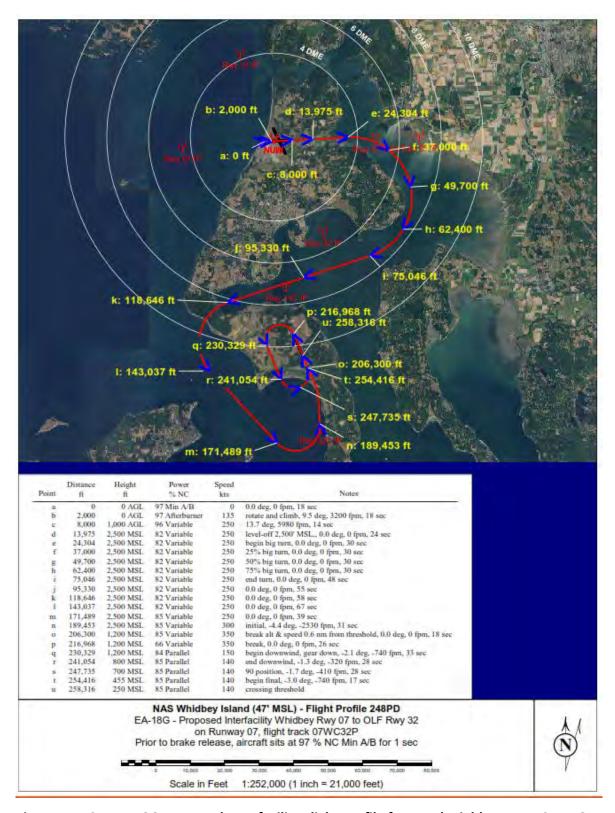


Figure A5-10 EA-18G Proposed Interfacility Flight Profile from Ault Field Runway 07 to OLF Coupeville Runway 32

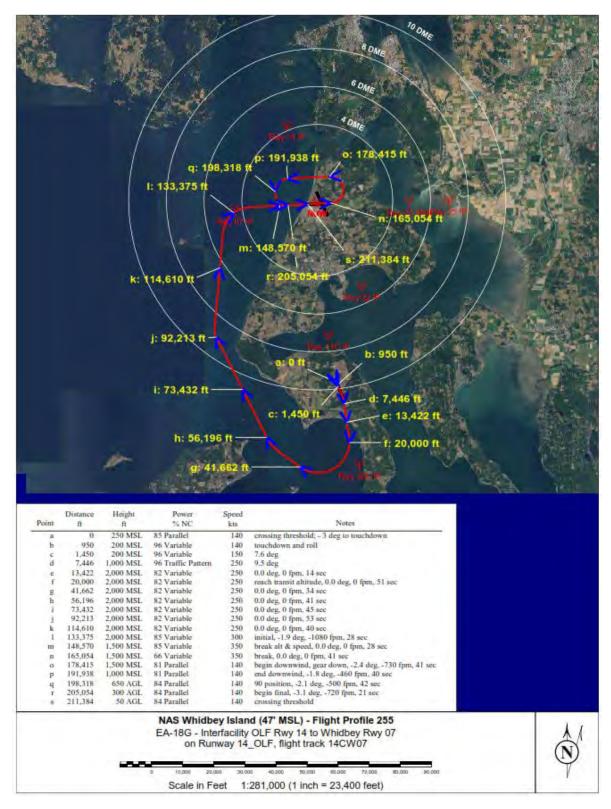


Figure A5-11 EA-18G Interfacility Flight Profile from OLF Coupeville Runway 14 to Ault Field Runway 07

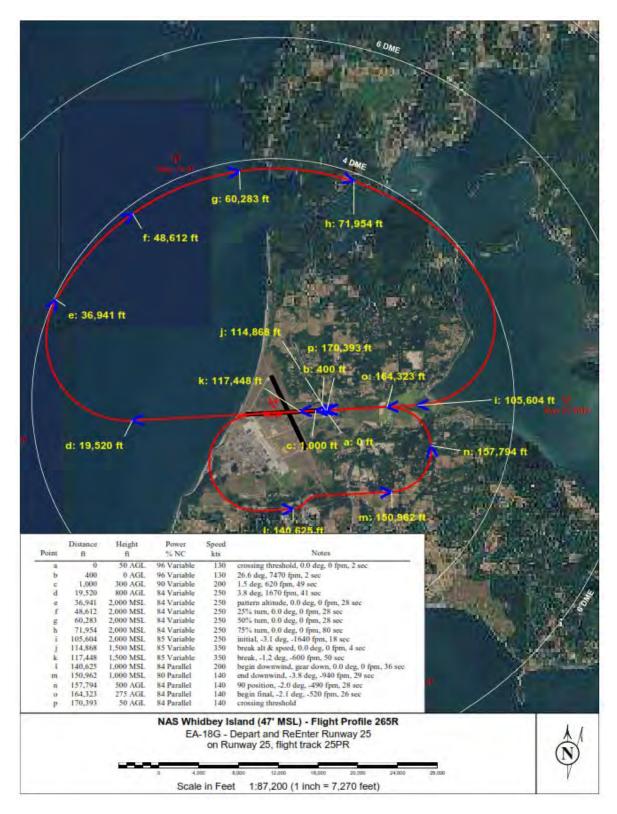


Figure A5-12 EA-18G Depart and Re-enter Profile at Ault Field Runway 25

Figure A5-13 EA-18G FCLP Flight Profile at Ault Field Runway 14

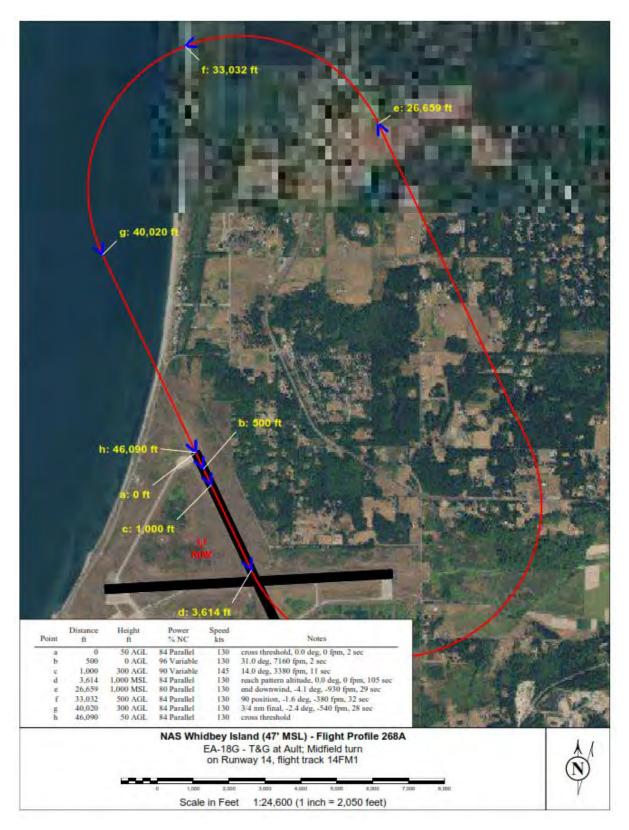


Figure A5-14 EA-18G Touch-and-Go Flight Profile at Ault Field Runway 14

Figure A5-15 EA-18G Existing FCLP Flight Profile at OLF Coupeville Runway 14 during Daylight

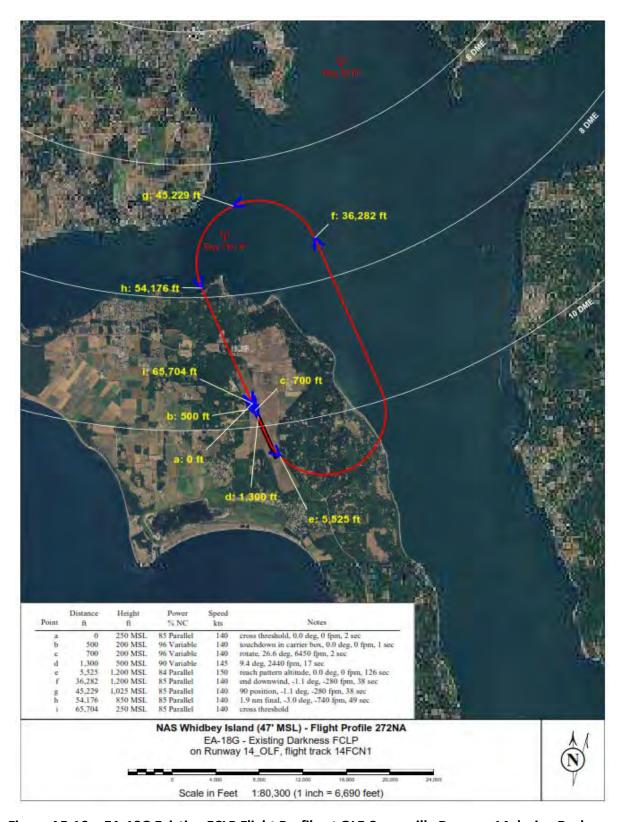


Figure A5-16 EA-18G Existing FCLP Flight Profile at OLF Coupeville Runway 14 during Darkness

Figure A5-17 EA-18G Proposed FCLP Flight Profile at OLF Coupeville Runway 14

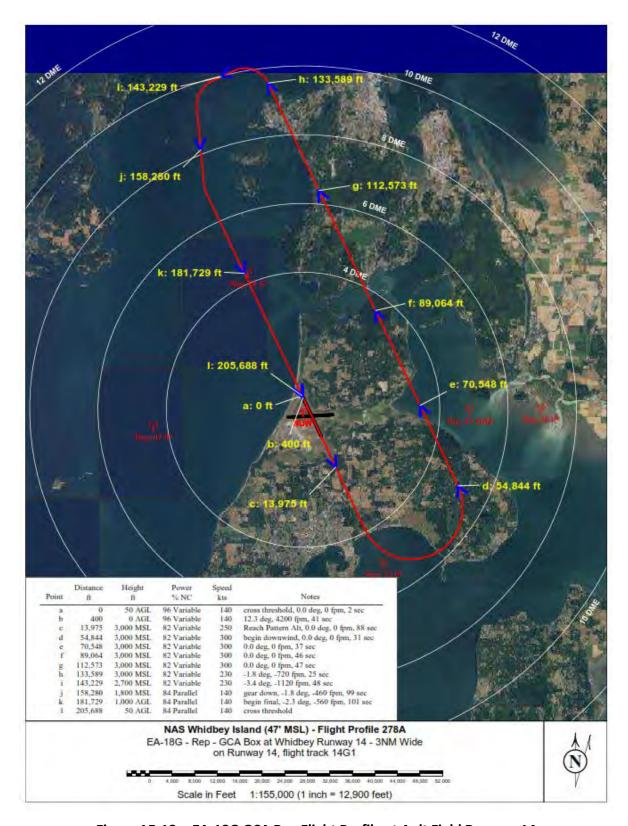


Figure A5-18 EA-18G GCA Box Flight Profile at Ault Field Runway 14

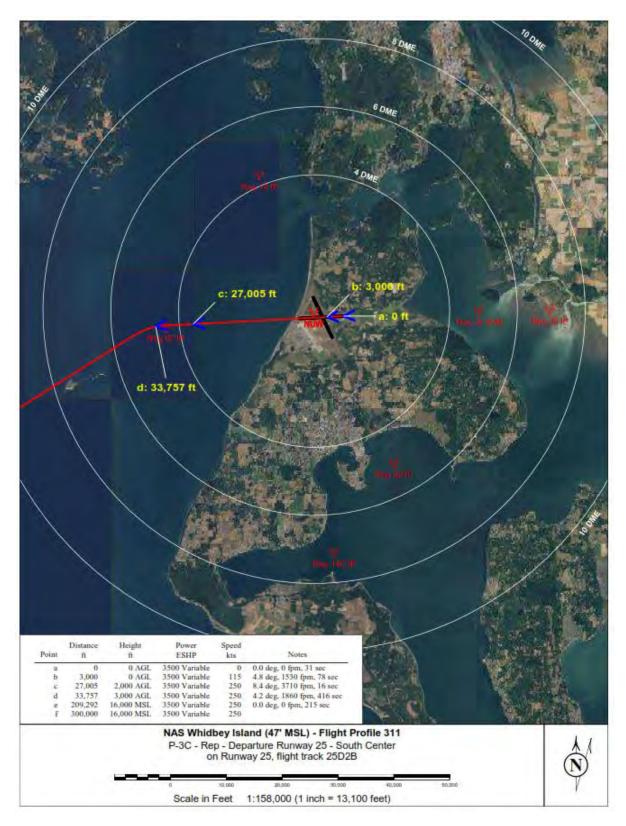


Figure A5-19 P-3C Departure Flight Profile at Ault Field Runway 25

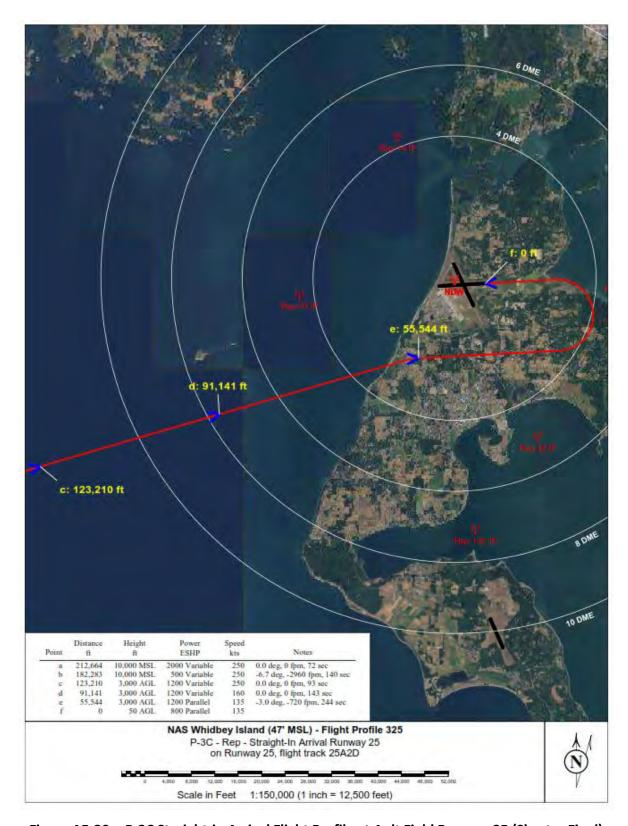


Figure A5-20 P-3C Straight-in Arrival Flight Profile at Ault Field Runway 25 (Shorter Final)

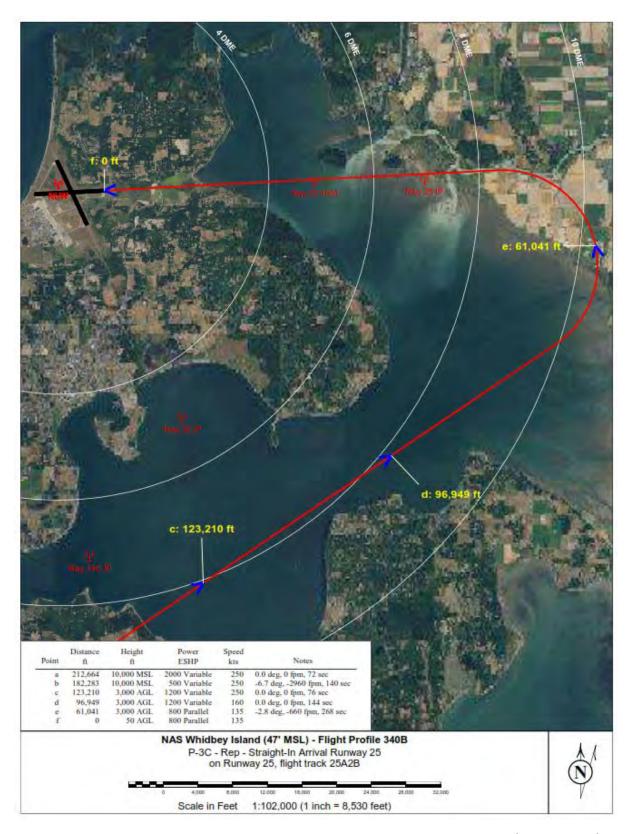


Figure A5-21 P-3C Straight-in Arrival Flight Profile at Ault Field Runway 25 (Longer Final)

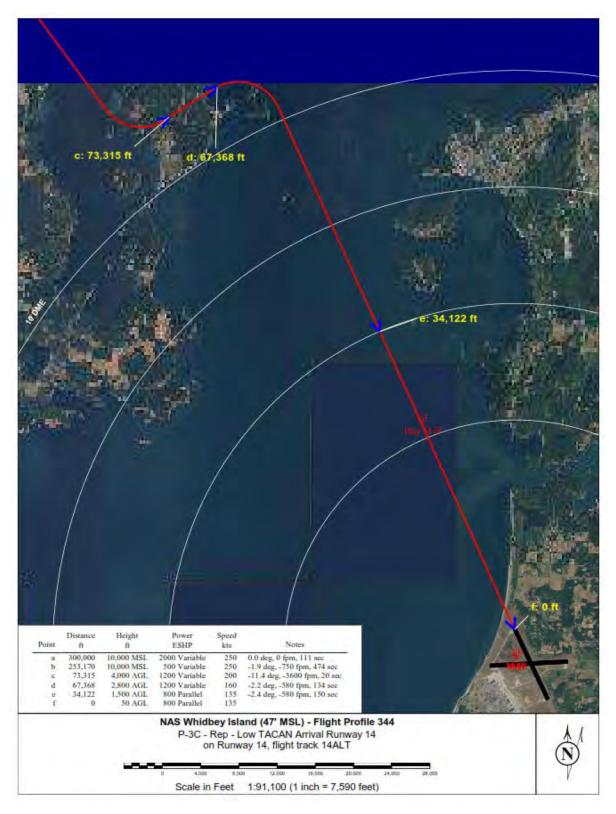


Figure A5-22 P-3C Low TACAN Arrival Flight Profile at Ault Field Runway 14

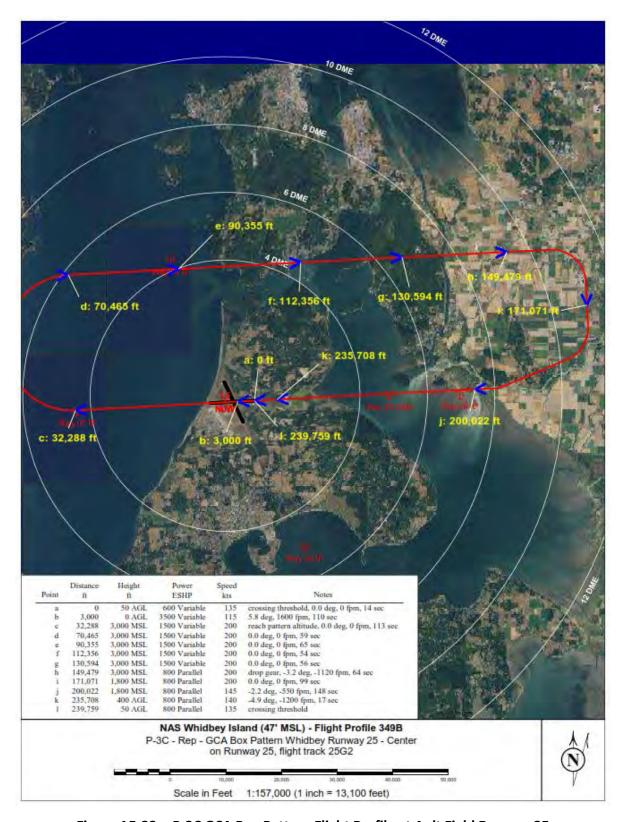


Figure A5-23 P-3C GCA Box Pattern Flight Profile at Ault Field Runway 25

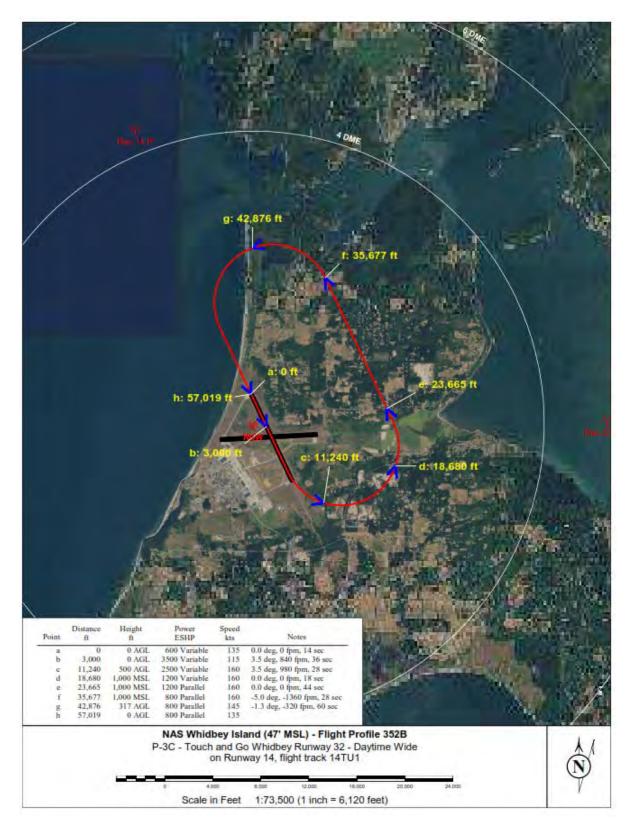


Figure A5-24 P-3C Touch-and-Go Pattern Flight Profile at Ault Field Runway 32

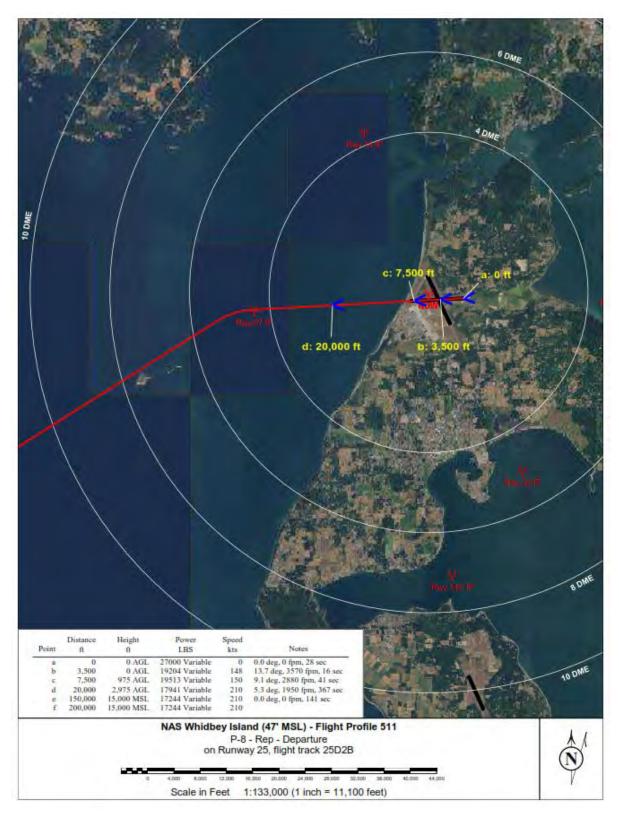


Figure A5-25 P-8A Departure Flight Profile at Ault Field Runway 25



Figure A5-26 P-8A Straight-in Arrival Flight Profile at Ault Field Runway 14

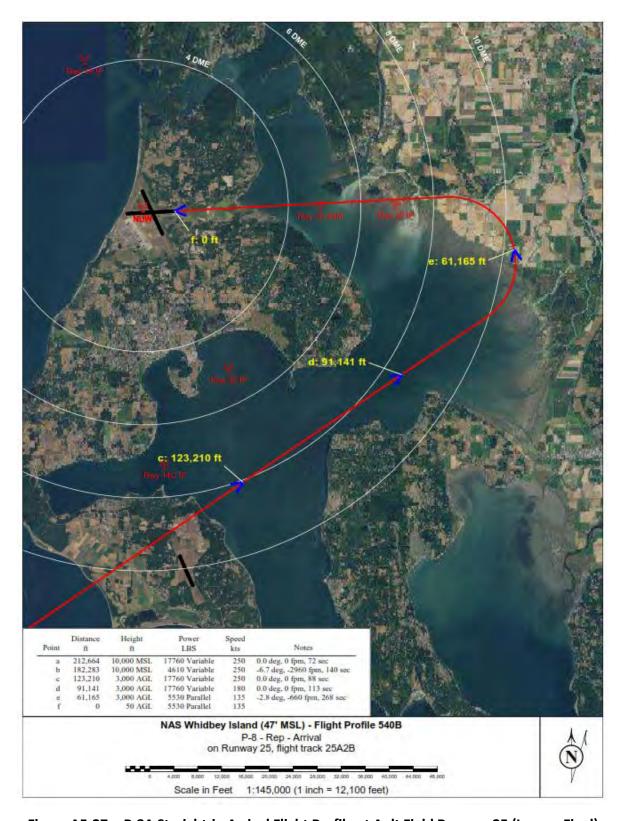


Figure A5-27 P-8A Straight-in Arrival Flight Profile at Ault Field Runway 25 (Longer Final)

Figure A5-28 P-8A Low TACAN Arrival Flight Profile at Ault Field Runway 14

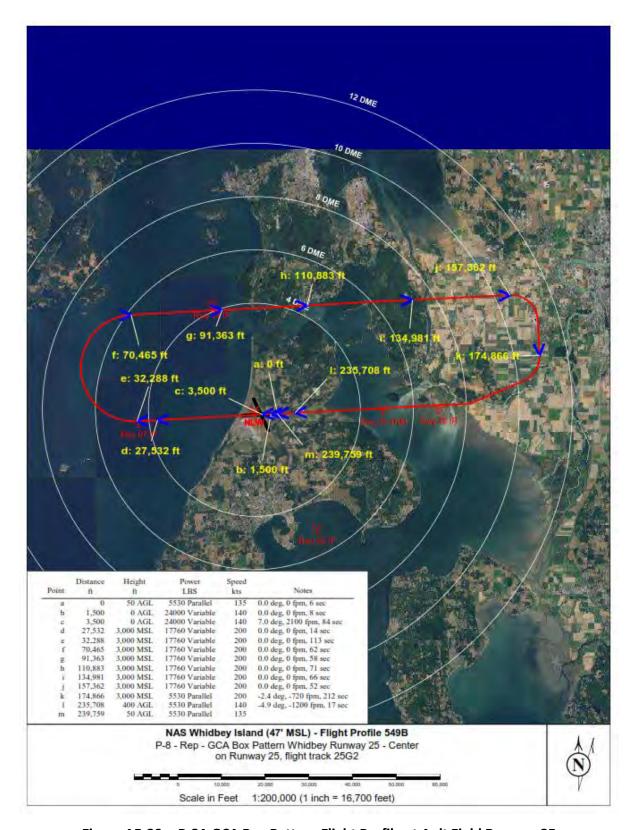


Figure A5-29 P-8A GCA Box Pattern Flight Profile at Ault Field Runway 25

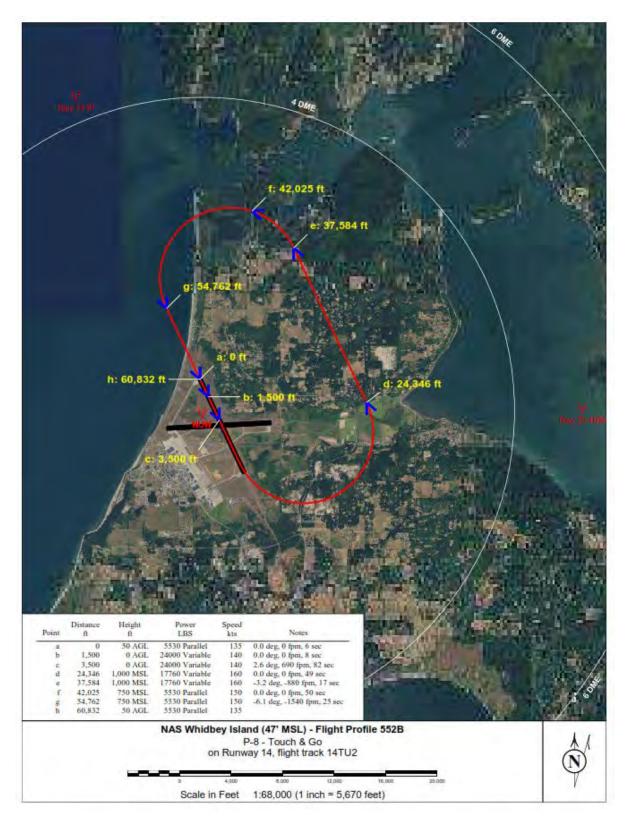


Figure A5-30 P-8A Touch-and-Go Pattern Flight Profile at Ault Field Runway 14

Figure A5-31 Transient Large Jet Departure Flight Profile at Ault Field Runway 14

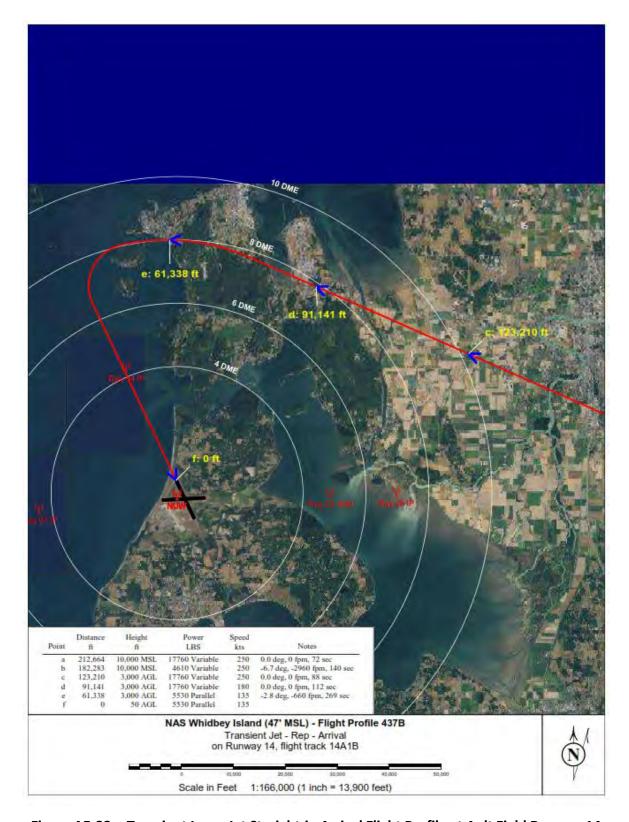


Figure A5-32 Transient Large Jet Straight-in Arrival Flight Profile at Ault Field Runway 14

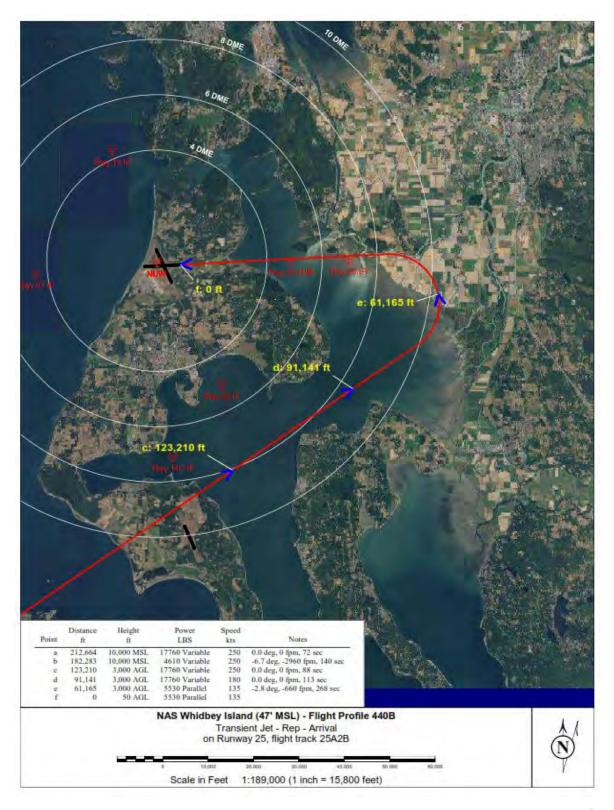


Figure A5-33 Transient Large Jet Straight-in Arrival Flight Profile at Ault Field Runway 25 (Longer Final)

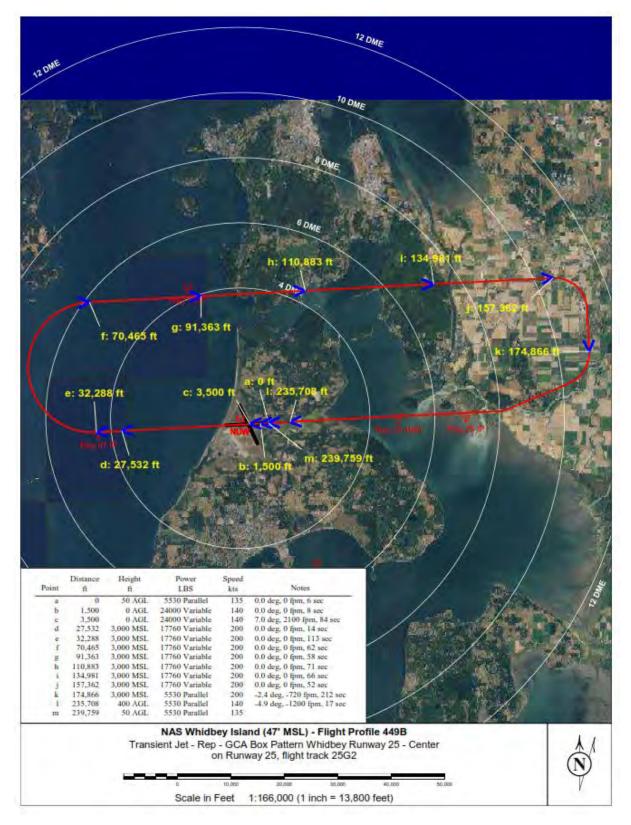


Figure A5-34 Transient Large Jet GCA Box Pattern Profile at Ault Field Runway 25

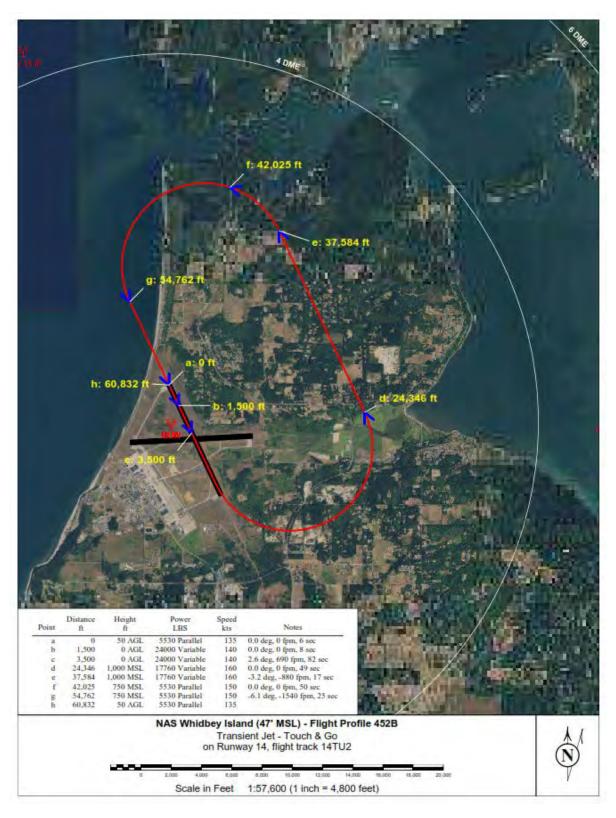
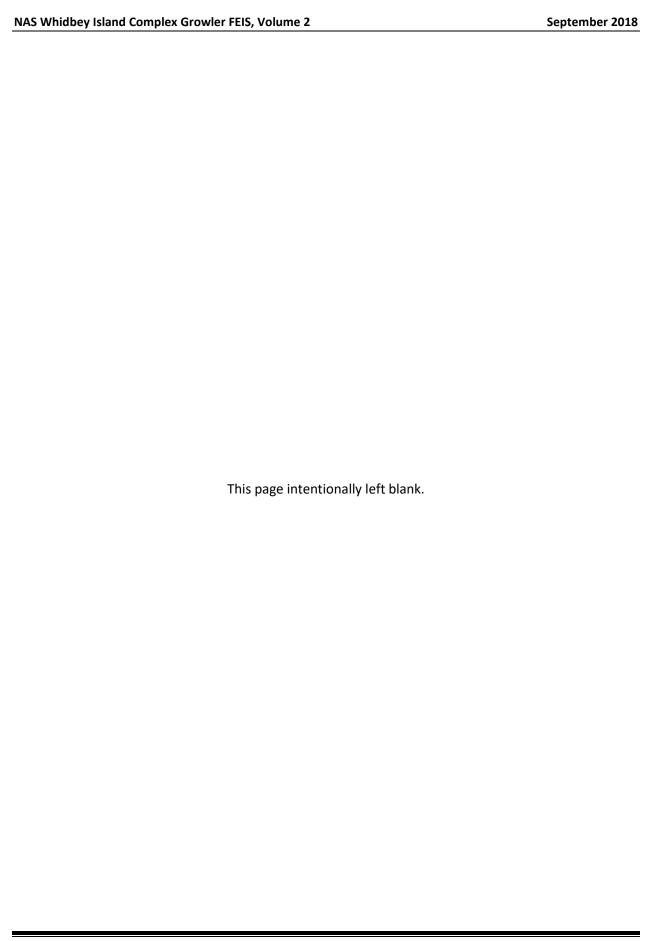



Figure A5-35 Transient Large Jet Touch-and-Go Pattern Flight Profile at Ault Field Runway 14

NAS Whidbey Island Complex Growler FEIS, Volume 2	September 2018
This page intentionally left blank.	
This page intentionally left blank.	

Appendix A6 Point of Interest (POI) Event Data

List of Tables

Table A6-1	SEL-Ranked Flight Profiles for Average Year Baseline Scenario
Table A6-2	SEL-Ranked Flight Profiles for Average Year No Action Alternative
Table A6-3	SEL-Ranked Flight Profiles for Alternative 1 for Average Year
Table A6-4	SEL-Ranked Flight Profiles for Alternative 2 for Average Year
Table A6-5	SEL-Ranked Flight Profiles for Alternative 3 for Average Year
Table A6-6	SEL-Ranked Flight Profiles for High-Tempo FCLP Year Baseline Scenario A6-23
Table A6-7	SEL-Ranked Flight Profiles for High-Tempo FCLP Year No Action Alternative A6-26
Table A6-8	SEL-Ranked Flight Profiles for Alternative 1 for High-Tempo FCLP Year A6-29
Table A6-9	SEL-Ranked Flight Profiles for Alternative 2 for High-Tempo FCLP Year A6-33
Table A6-10	SEL-Ranked Flight Profiles for Alternative 3 for High-Tempo FCLP Year A6-37
Table A6-11	Maximum SEL and Maximum L_{max} of Top Noise Contributor for All Alternatives
	and No Action Alternative
Table A6-12	Annual Average Daily NA 80 L _{max} for Alternative 1 for Average Year A6-42
Table A6-13	Annual Average Daily NA 90 L _{max} for Alternative 1 for Average Year A6-43
Table A6-14	Annual Average Daily NA 100 L _{max} for Alternative 1 for Average Year A6-44
Table A6-15	Annual Average Daily NA 80 L _{max} for Alternative 2 for Average Year A6-45
Table A6-16	Annual Average Daily NA 90 L _{max} for Alternative 2 for Average Year A6-46
Table A6-17	Annual Average Daily NA 100 L _{max} for Alternative 2 for Average Year A6-47
Table A6-18	Annual Average Daily NA 80 L_{max} for Alternative 3 for Average Year
Table A6-19	Annual Average Daily NA 90 L_{max} for Alternative 3 for Average Year A6-49
Table A6-20	Annual Average Daily NA 100 L _{max} for Alternative 3 for Average Year A6-50
Table A6-21	Annual Average Daily NA 80 L_{max} for Alternative 1 for High-Tempo FCLP Year A6-51
Table A6-22	Annual Average Daily NA 90 L_{max} for Alternative 1 for High-Tempo FCLP Year A6-52
Table A6-23	Annual Average Daily NA 100 L_{max} for Alternative 1 for High-Tempo FCLP Year A6-53
Table A6-24	Annual Average Daily NA 80 L_{max} for Alternative 2 for High-Tempo FCLP Year A6-54
Table A6-25	Annual Average Daily NA 90 L_{max} for Alternative 2 for High-Tempo FCLP Year A6-55
Table A6-26	Annual Average Daily NA 100 L_{max} for Alternative 2 for High-Tempo FCLP Year A6-56
Table A6-27	Annual Average Daily NA 80 L_{max} for Alternative 3 for High-Tempo FCLP Year A6-57
Table A6-28	Annual Average Daily NA 90 L_{max} for Alternative 3 for High-Tempo FCLP Year A6-58
Table A6-29	Annual Average Daily NA 100 L_{max} for Alternative 3 for High-Tempo FCLP Year A6-59

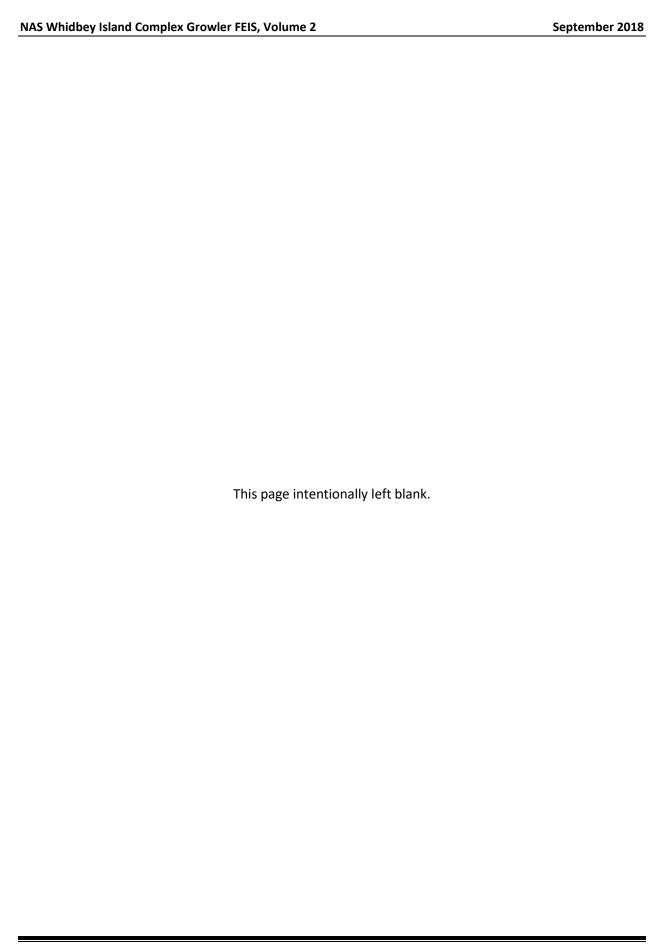


Table A6-1 SEL-Ranked Flight Profiles for Average Year Baseline Scenario

										Annual Av	erage Daily its ⁽³⁾	Esti	mated
POI ID	SEL Rank	Aircroft Type	Profile ID	Type of Operation	Track ID	Power	Speed (kts) ⁽¹⁾	Altitude (ft MSL) (2)	Slant Range	Daytime (0700- 2200)	Nighttime (2200- 0700)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾
שו	Tallk 1	Aircraft Type EA-18G	266L	Depart and Re-enter Pattern	32PL	Setting 84 % NC	250	2,000	(ft) 4,401	0.088	0.003	93	82
	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84 % NC	250	2,000	4,415	0.492	0.017	92	82
P01	3	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	4,889	0.879	0.031	92	80
-	<u>4</u> 5	EA-18G EA-18G	263R 269B	Depart and Re-enter Pattern FCLP at Ault Field	07PR 25FU1	84 % NC 84 % NC	250 130	2,000 1,000	4,943 9,077	0.299 2.673	0.011 0.497	91 87	80 76
	1	EA-18G		FCLP at Ault Field	14FM1	82.2 % NC	130	852	1,389	1.637	0.305	107	104
	2	EA-18G	268B	FCLP at Ault Field	14FU1	82.2 % NC	130	859	1,393	1.637	0.305	107	103
P02	3	EA-18G EA-18G	282A 282B	FCLP at Ault Field FCLP at Ault Field	14FM1 14FU1	82.2 % NC 82.2 % NC	140 140	893 859	1,393 1,393	2.542 2.542	0.558 0.558	107 106	100 100
-	5	EA-18G		Depart and Re-enter Pattern	14PR	82.2 % NC	140	859	1,393	0.492	0.017	106	100
	1	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	1,477	1,206	0.299	0.011	105	98
	2	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	1,599	0.879	0.031	103	95
P03	3 4	EA-18G EA-18G	264L 266R	Depart and Re-enter Pattern Depart and Re-enter Pattern	14PL 32PR	84 % NC 84 % NC	250 250	1,999 2,000	2,306 2,401	0.492 0.088	0.017 0.003	99	90 90
h	5	EA-18G	245	TACAN Arrival	25AHT	85 % NC	150	1,023	5,395	0.784	0.059	97	87
	1	EA-18G		FCLP at Coupeville	32FCD2	84 % NC	150	800	674	1.236	0	115	106
DO 4	2	EA-18G		FCLP at Coupeville	32FCD1	84 % NC	150	800	759	0.618	0	114	106
P04	3	EA-18G EA-18G	260 259	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	32CW14 32CW07	96 % NC 96 % NC	150 150	936 936	1,943 1,943	0.29	0.093 0.027	111	106 106
-	5	EA-18G	261	Interfacility Coupeville to Ault Field	32CW25	96 % NC	150	936	1,943	0.000	0.027	111	100
	1	EA-18G	275NC	FCLP at Coupeville	32FCN3	84 % NC	150	1,200	6,861	0.603	0.301	91	77
DO.	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,200	5,714	0.102	0 010	89	77
P05	3	EA-18G EA-18G	248N 274DC	Interfacility Ault Field to Coupeville FCLP at Coupeville	07WC32DN 32FCD3	85 % NC 84 % NC	350 150	1,500 800	5,773 7,987	0.618	0.019	89 89	77 77
	5	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85 % NC	350	1,199	5,867	0.818	0	88	76
	1	EA-18G	274DC	FCLP at Coupeville	32FCD3	84 % NC	150	800	3,679	0.618	0	100	85
	2	EA-18G	275NC	FCLP at Coupeville	32FCN3	84 % NC	150	1,200	3,776	0.603	0.301	100	84
P06	3	EA-18G EA-18G	248D 254D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 32WC32DN	82.2 % NC 82.2 % NC	250 250	895 900	2,970 2,979	0.102 0.007	0	99	81 81
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	82.2 % NC	250	893	3,062	0.387	0	99	79
	1	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	12,064	0.009	0.003	82	73
	2	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2,000	11,825	0.049	0.016	82	73
P07	3	EA-18G EA-18G	280C 262	GCA Pattern Interfacility Coupeville to Ault Field	32G3 32CW32	82 % NC 82 % NC	230 250	2,208 2,000	17,859 9,777	0.07 0.046	0.018 0.015	80 79	68 71
-	5	EA-18G	280B	GCA Pattern	32G2	82 % NC	230	2,332	23,457	0.046	0.013	78	66
	1	transient	442C	VFR non breaks	32A2C	17760 LBS	250	3,047	3,389	0.022	0.003	85	N/A
	2	transient	442B	VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	0.022	0.003	81	N/A
P08	3 4	EA-18G EA-18G	248D 254D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 32WC32DN	82 % NC 82 % NC	250 250	2,500 2,500	10,529 10,496	0.102 0.007	0	78 78	66 66
	5	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	82 % NC	250	2,500	10,572	0.007	0	78	64
	1	EA-18G	244	TACAN Arrival	14AHT	78 % NC	250	3,163	48,626	0.641	0.048	62	51
DOO.	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	230	2,403	34,003	0.523	0.134	61	52
P09	3 4	EA-18G EA-18G	215A 251N	Departure Interfacility Ault Field to Coupeville	25D1C 25WC14N	95 % NC 82 % NC	300 250	4,765 2,500	109,923 112,051	1.89	0.115 0.016	55 55	53 48
	5	EA-18G	251D	Interfacility Ault Field to Coupeville	25WC14D	82 % NC	250	2,500	112,051	0.079	0.010	55	43
	1	EA-18G	229A	P3 P8 IFR and Growler VFR non breaks	14A2A	87 % NC	300	2,577	4,579	1.078	0.092	95	85
P10	2	EA-18G		Departure	32D2B	95 % NC	300	8,291	9,255	0.157	0.01	90	80
PIU	3	EA-18G EA-18G		GCA Pattern GCA Pattern	25G3 07G3	82 % NC 82 % NC	250 300	3,000 3,000	4,073 4,085	0.854 0.296	0.218 0.076	89 89	80 79
	5	EA-18G	277B	GCA Pattern	07G2	82 % NC	300	3,000	4,387	0.197	0.051	88	78
	1	EA-18G	277C	GCA Pattern	07G3	82 % NC	230	2,926	21,053	0.296	0.076	64	50
P11	3	transient transient	447C 423	GCA Pattern	07G3 14A2E	17760 LBS 17760 LBS	200 250	3,000	21,066	0.021	0.005	63 57	N/A N/A
FII	4	transient	423 447B	IFR non breaks GCA Pattern	07G2	17760 LBS	200	3,047 3,000	30,649 32,405	0.064 0.021	0.005	56	N/A N/A
	5	EA-18G	277B	GCA Pattern	07G2	82 % NC	230	2,891	32,410	0.197	0.051	56	44
]	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2,941	9,040	0.323	0.028	82	74
P12	3	EA-18G EA-18G		GCA Pattern P3 P8 IFR and Growler VFR non breaks	14G3 14A1B	82 % NC 87 % NC	300	3,000 2,784	7,718 12,784	0.523 0.754	0.134 0.064	80 79	72 68
' '2	4	transient		GCA Pattern	14G3	17760 LBS	200	3,000	7,718	0.734	0.064		N/A
$oxed{\Box}$	5	transient	437C	VFR non breaks	14A1C	17760 LBS	180	3,047	9,073	0.119	0.024	76	N/A
	1	EA-18G		Departure	32D1A	95 % NC	300	7,686	7,575	0.525	0.032	94	86
P13	3	EA-18G EA-18G		GCA Pattern GCA Pattern	14G2 07G3	82 % NC 82 % NC	300	3,000 3,000	3,526 3,689	0.348 0.296	0.089 0.076	91	81 80
"	4	EA-18G		GCA Pattern	25G3	82 % NC	300	3,000	3,689	0.854	0.076	90	81
	5	EA-18G	280B	GCA Pattern	32G2	82 % NC	300	3,000	3,526	0.046	0.012	90	81
	1	EA-18G		GCA Pattern	14G3	82 % NC	230	1,822	20,245	0.523	0.134	76	63
P14	3	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCD3 32FCD2	84 % NC 84 % NC	150 150	800 800	129,685 132,707	0.618 1.236	0	75 75	59 59
' '	4	EA-18G		GCA Pattern	14G2	82 % NC	230	2,166	23,933	0.348	0.089	72	61
Ш	5	EA-18G	271DA	FCLP at Coupeville	14FCD1	85 % NC	140	597	129,635	0.127	0	71	59
	1	EA-18G		Departure	07D2C	95 % NC	300	5,213	8,277	0.287	0.017	92	83
P15	2	EA-18G EA-18G	203A 277B	Departure GCA Pattern	07D1C 07G2	95 % NC 82 % NC	300 250	5,155 3,000	8,368 3,437	0.669 0.197	0.041 0.051	92 91	83 80
"	4	EA-18G		Departure	07D2B	95 % NC	300	4,892	9,517	0.669	0.031	90	79
Ш	5	EA-18G	202A	Departure	07D1B	95 % NC	300	4,743	10,004	1.562	0.095	89	78
	1	EA-18G		Interfacility Ault Field to Coupeville	32WC32DN	85 % NC	250	2,500	7,309	0.007	0 010	85	70
P16	3	EA-18G EA-18G	248N 248D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 07WC32DN	85 % NC 85 % NC	250 250	2,500 2,500	7,526 7,526	0.102	0.019	84 84	68 68
"	4	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85 % NC	250	2,500	7,612	0.102	0	84	68
1 [5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	250	2,500	7,587	0.387	0	84	69

Table A6-1 SEL-Ranked Flight Profiles for Average Year Baseline Scenario (continued)

												erage Daily	Esti	mated
POI	SEL		Drofile			D		Speed	Altitude	Slant	Daytime	Nighttime	ee!	Lmax
ID		Aircraft Type	Profile ID	Type of Operation	Track ID	Por Set	wer ting	(kts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	(0700- 2200)	(2200- 0700)	SEL (dBA)	(dBA) ⁽⁴⁾
	1	EA-18G		FCLP at Coupeville	32FCD1	84	% NC	150	800	878	0.618	0	~~~~~~~~~~	109
P17	2 3	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCD2 32FCN1	84 84	% NC % NC	150 150	800 1,200	1,257 2,411	1.236 0.603	0.301	111 106	105 95
	4	EA-18G		FCLP at Coupeville	32FCN2	84	% NC	150	1,200	3,071	1.206	0.603	104	92
	5	EA-18G		FCLP at Coupeville	32FCD3	84	% NC	150	800	3,649	0.618	0		90
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCN3 32FCD3	84 84	% NC % NC	150 150	1,200 800	4,924 5,592	0.603 0.618	0.301	96 94	85 82
P18	3	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	350	1,200	3,960	0.102	0		81
	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	350	1,500	4,056	0	0.019		80
	5 1	EA-18G EA-18G	252D 252N	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32DN 25WC32DN	85 97	% NC % NC	350 135	1,200 59	4,055 1,093	0.387	0.073	93 121	80 114
	2	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	97	% NC	135	59	1,093	0.387	0.073		114
R01	3	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	97	% NC	135	59	1,093	0	0.016	121	114
	4 5	EA-18G EA-18G	251D 204A	Interfacility Ault Field to Coupeville Departure	25WC14D 07D2A	97 97	% NC % NC	135 165	59 302	1,093 1,118	0.079 0.956	0.058	121 120	114 116
	1	EA-18G	250N	Interfacility Ault Field to Coupeville	14WC32DN	97	% NC	0	47	3,519	0.936	0.036	110	96
	2	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	97	% NC	0	47	3,519	0.234	0	110	96
R02	3	EA-18G	249N	Interfacility Ault Field to Coupeville	14WC14N	97	% NC	0	47	3,519	0 0 0 4 0	0.01	110	96
	4 5	EA-18G EA-18G	249D 210A	Interfacility Ault Field to Coupeville Departure	14WC14D 14D2A	97 97	% NC % NC	0	47 47	3,519 3,519	0.048 1.743	0.106	110 109	96 100
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84	% NC	250	2,000	1,787	0.088	0.003	101	93
Doo	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84	% NC	250	2,000	1,967	0.492	0.017	101	92
R03	3 4	EA-18G EA-18G	265L 263R	Depart and Re-enter Pattern Depart and Re-enter Pattern	25PL 07PR	84 84	% NC % NC	250 250	2,000 2,000	1,971 2,001	0.879 0.299	0.031	100 100	92 92
	5	EA-18G	270B	FCLP at Ault Field	32FU1	82.2	% NC	130	817	8,282	0.436	0.081	88	78
	1	EA-18G	205A	Departure	07D2B	95	% NC	300	4,035	5,492	0.669	0.041	99	88
R04	3	EA-18G EA-18G	202A 206A	Departure Departure	07D1B 07D2C	95 95	% NC % NC	300	4,007 4,096	5,530 5,708	1.562 0.287	0.095 0.017	98 98	88 88
1104	4	EA-18G	203A	Departure	07D1C	95	% NC	300	4,096	5,708	0.669	0.041	98	88
	5	EA-18G	204A	Departure	07D2A	95	% NC	300	3,804	6,519	0.956	0.058	96	86
	1 2	EA-18G EA-18G	277A 279A	GCA Pattern GCA Pattern	07G1 25G1	82 82	% NC % NC	250 300	3,000 3,000	3,009 3,350	1.481 4.268	0.379 1.092	92 91	84 82
R05	3	EA-18G	280C	GCA Pattern	32G3	82	% NC	300	3,000	3,491	0.07	0.018	90	82
	4	EA-18G	278C	GCA Pattern	14G3	82	% NC	300	3,000	3,491	0.523	0.134	90	82
	5	EA-18G	205A 274DC	Departure	07D2B	95	% NC % NC	300 140	3,808	13,742	0.669	0.041	85	75 114
	1 2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCD3 32FCN1	85 85	% NC	140	503 610	567 599	0.618 0.603	0.301	118 118	113
R06	3	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	140	421	675	0.102	0		113
	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	140	421	675	0	0.019	117	113
	5 1	EA-18G EA-18G	254D 271DC	Interfacility Ault Field to Coupeville FCLP at Coupeville	32WC32DN 14FCD3	85 84	% NC % NC	140 150	412 800	706 847	0.007 0.127	0		113 109
	2	EA-18G		FCLP at Coupeville	14FCD2	84	% NC	150	799	1,359	0.253	0		104
R07	3	EA-18G	251D	Interfacility Ault Field to Coupeville	25WC14D	82.2	% NC	250	1,082	1,489	0.079	0		100
	4 5	EA-18G EA-18G	253D 247D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	32WC14D 07WC14D	82.2 82.2	% NC % NC	250 250	1,082 1,080	1,493 1,506	0.001 0.021	0		100 100
	1	EA-18G	272NC	FCLP at Coupeville	14FCN3	84	% NC	150	1,200	1,128	0.123	0.062	112	106
	2	EA-18G		FCLP at Coupeville	14FCN2	84	% NC	150	1,200	3,099	0.247	0.123	102	93
R08	3 4	EA-18G EA-18G	257 258	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW25 14CW32	82 82	% NC % NC	250 250	2,000 2,000	2,690 2,690	0.049	0.016 0.003	99 99	92 92
	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85	% NC	350	1,500	2,437	0.005	0.016		91
	1	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85	% NC	250	2,499	4,551	0.234	0		82
R09	3	EA-18G EA-18G	252D 254D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32DN 32WC32DN	85 85	% NC % NC	250 250	2,499 2,499	4,690 4,762	0.387 0.007	0		82 81
	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,499	4,777	0.007	0.019		81
	5	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,499	4,777	0.102	0		81
	2	EA-18G EA-18G		P3 P8 IFR and Growler VFR non breaks P3 P8 IFR and Growler VFR non breaks	14A1B 14A1C	87 87	% NC % NC	300 300	2,480 2,620	3,143 3,563	0.754 0.323	0.064 0.028	100 98	90 88
R10	3	EA-18G		GCA Pattern	32G3	82	% NC	250	3,000	2,980	0.323	0.028	93	84
	4	EA-18G	278A	GCA Pattern	14G1	82	% NC	300	2,999	3,168	2.613	0.669	92	83
	5 1	EA-18G EA-18G	228A 238A	P3 P8 IFR and Growler VFR non breaks Overhead Break Arrival	14A1A 14O2A	87 84	% NC % NC	300 300	2,347 10,000	7,186 13,520	1.078 0.202	0.092 0.023	90 73	77 60
	2	EA-18G	238B	Overhead Break Arrival	1402A 1402B	84	% NC	300	10,000	13,567	0.202	0.023	73	60
R11	3	EA-18G	238C	Overhead Break Arrival	14O2C	84	% NC	300	10,000	13,609	0.208	0.024	73	60
	<u>4</u> 5	EA-18G EA-18G		Overhead Break Arrival Overhead Break Arrival	07O2B 07O2A	84 84	% NC % NC	300	10,000 10,000	13,739 13,740	0.121 0.121	0.014 0.014		59 59
	1	EA-18G EA-18G		Departure	07O2A 07D2B	84	% NC	300	9,000	9,677	0.121	0.014	75	65
	2	EA-18G	216A	Departure	25D2A	84	% NC	300	9,000	16,276	2.7	0.164	70	58
R12	3	EA-18G		Departure	25D2B	84	% NC	300	9,000	16,448	1.89	0.115		58 55
	<u>4</u> 5	EA-18G EA-18G		Departure Departure	25D2C 07D2C	84 84	% NC % NC	300	9,000	18,999 24,952	0.81 0.287	0.049 0.017	67 66	55 55
	1	EA-18G	271DB	FCLP at Coupeville	14FCD2	84	% NC	150	800	49,661	0.253	0	75	55
D49	2	EA-18G		FCLP at Coupeville	14FCD3	84	% NC	150	800	49,257	0.127	0		55
R13	3 4	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCD1 14FCN2	84 84	% NC % NC	150 150	800 1,200	52,723 46,508	0.127 0.247	0.123	74 74	55 53
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82	% NC	250	2,000	30,019	0.046	0.015	71	51
	1	EA-18G		FCLP at Ault Field FCLP at Ault Field	14FU1	84	% NC	130	1,000	2,575	1.637	0.305	104	96
R14	3	EA-18G EA-18G		FCLP at Ault Field FCLP at Ault Field	25FU1 25FU1	82.2 82.2	% NC % NC	130 140	693 715	3,116 3,119	2.673 4.407	0.497 0.967	103 103	96 91
	4	EA-18G	269A	FCLP at Ault Field	25FM1	82.2	% NC	130	702	3,119	2.673	0.497	103	91
	5	EA-18G	265L	Depart and Re-enter Pattern	25PL	82.2	% NC	140	697	3,095	0.879	0.031	103	91

SEL-Ranked Flight Profiles for Average Year Baseline Scenario (concluded) Table A6-1

											erage Daily		
									Slant	Ever Daytime	nts ⁽³⁾ Nighttime	Esti	imated
POI	SEL		Profile			Power	Speed	Altitude	Range	(0700-	(2200-	SEL	Lmax
ID	Rank	Aircraft Type	ID OF A D	Type of Operation	Track ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	(ft)	2200)	0700)	(dBA)	(dBA) ⁽⁴⁾
	2	EA-18G EA-18G	251D 253D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC14D 32WC14D	85 % NC 85 % NC	140 140	601 609	1,353 1,370	0.079 0.001	0	110 110	105 105
R15	3	EA-18G	247D	Interfacility Ault Field to Coupeville	07WC14D	85 % NC	140	621	1,423	0.021	0	110	105
	4	EA-18G		Interfacility Ault Field to Coupeville	14WC14D	85 % NC		616	1,435	0.048	0	110	105
	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85 % NC	140	401	1,933	0	0.016	108	99
	2	EA-18G EA-18G	233A 209A	P3 P8 IFR and Growler VFR non breaks Departure	32A1A 14D1C	87 % NC 95 % NC	300 300	2,756 6,951	2,575 8,107	0.139 1.22	0.012 0.074	100 93	91 85
R16	3	EA-18G	278C	GCA Pattern	14G3	82 % NC		3,000	3,185	0.523	0.134	91	82
	4	EA-18G	208A	Departure	14D1B	95 % NC	300	6,815	9,922	2.848	0.173	90	81
	5	EA-18G	246	TACAN Arrival	32AHT	82.2 % NC	250	2,475	6,673	0.053	0.004	89	81
	2	transient transient	442C 442B	VFR non breaks VFR non breaks	32A2C 32A2B	17760 LBS 17760 LBS	250 250	3,047 3,047	2,963 6,202	0.022 0.022	0.003	85 79	N/A N/A
R17	3	P-3	342C	P3 P8 IFR and Growler VFR non breaks	32A2C	1200 ESHF		3,047	2,963	0.022	0.003	74	68
	4	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	82 % NC	250	2,500	12,679	0	0.019	74	61
	5	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	82 % NC	250	2,500	12,679	0.102	0	73	61
	1	EA-18G		Interfacility Ault Field to Coupeville	32WC32DN	85 % NC		2,500	22,311	0.007	0 010	65	47
R18	3	EA-18G EA-18G	248N 248D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 07WC32DN	85 % NC 85 % NC		2,500 2,500	22,575 22,575	0.102	0.019	65 65	47
	4	EA-18G		Interfacility Ault Field to Coupeville	14WC32DN	85 % NC		2,500	22,587	0.234	0	65	47
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC		2,500	22,613	0.387	0	65	47
	1	EA-18G		FCLP at Coupeville	14FCD1	85 % NC		513	422	0.127	0	120	118
R19	3	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCD2 14FCD3	85 % NC 85 % NC		499 490	461 534	0.253 0.127	0	119 119	116 115
17.19	4	EA-18G		Interfacility Ault Field to Coupeville	25WC14N	85 % NC		321	1,011	0.127	0.016	113	106
	5	EA-18G	251D	Interfacility Ault Field to Coupeville	25WC14D	85 % NC	140	361	1,150	0.079	0	113	106
	11	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC		2,933	3,692	0.323	0.028	95	87
R20	2	EA-18G EA-18G	277C 229B	GCA Pattern P3 P8 IFR and Growler VFR non breaks	07G3 14A2B	82 % NC 87 % NC	300	3,000	3,898	0.296 0.754	0.076 0.064	89 88	52 78
K20	3	transient	423	IFR non breaks	14A2B 14A2E	87 % NC 17760 LBS	180	2,769 3,047	6,744 3,071	0.754	0.064	88 86	N/A
	5	transient	438C	VFR non breaks	14A2C	17760 LBS	180	3,047	3,781	0.178	0.036	84	N/A
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2 % NC	140	773	4009	0.088	0.003	98	90
	2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2 % NC		802	4008	0.436	0.081	96	90
S01	3	EA-18G EA-18G	284B 266R	FCLP at Ault Field	32FU1 32PR	82.2 % NC 82.2 % NC	140	839 773	4014	0.508 0.088	0.112	96 96	84 84
	5	EA-18G	262	Depart and Re-enter Pattern Interfacility Coupeville to Ault Field	32CW32	82.2 % NC	140	861	3936	0.046	0.003	95	83
	1	EA-18G	212A	Departure	14D2C	95 % NC	300	2514	3432	0.523	0.032	104	94
	2	EA-18G	209A	Departure	14D1C	95 % NC	300	2514	3432	1.22	0.074	104	93
S02	3	EA-18G	207A	Departure	14D1A	95 % NC	300	2514	3432	4.068	0.247	104	94
	<u>4</u> 5	EA-18G EA-18G	211A 208A	Departure Departure	14D2B 14D1B	95 % NC 95 % NC	300	2514 2514	3432 3432	1.22 2.848	0.074 0.173	104 104	94 94
	1	EA-18G	275NC	FCLP at Coupeville	32FCN3	84 % NC	150	1200	3915	0.603	0.301	98	89
	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1200	2749	0.102	0	97	89
S03	3	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	350	1200	2808	0.387	0	97	89
	<u>4</u> 5	EA-18G EA-18G	248N 250D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 14WC32DN	85 % NC 85 % NC	350 350	1500 1200	2879 2890	0 0.234	0.019 0	96 96	89 88
	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC		2882	4781	0.323	0.028	93	83
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3000	2903	0.523	0.134	92	84
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC		2719	7342	0.754	0.064	87	76
	5	transient EA-18G	448C 280C	GCA Pattern GCA Pattern	14G3 32G3	17760 LBS 82 % NC	200 250	3000 3000	2903 5064	0.037 0.07	0 0.018	85 84	N/A 76
	1	EA-18G	243	TACAN Arrival	07AHT	78 % NC		3529	3374	0.303	0.018	76	68
	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC		2712	19217	0.323	0.028	70	56
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC		2592	23773	0.754	0.064	66	51
	4	EA-18G	224A	Departure VER pop brooks	32D2C	95 % NC		8249	32151	0.067	0.004	65	52 N/A
\vdash	5 1	transient EA-18G	438C 224A	VFR non breaks Departure	14A2C 32D2C	17760 LBS 84 % NC	180 300	3047 9000	19344 61543	0.178 0.067	0.036 0.004	64 51	N/A 39
	2	EA-18G	223A	Departure	32D2B	84 % NC		9000	66657	0.157	0.004	50	39
S06	3	transient	447C	GCA Pattern	07G3	17760 LBS	200	3000	40394	0.021	0	50	37
	4	EA-18G	222A	Departure COA Parterna	32D2A	95 % NC		8656	71520	0.225	0.014	49	37
	5 1	EA-18G EA-18G	278C 277C	GCA Pattern GCA Pattern	14G3 07G3	82 % NC 82 % NC		1883 2810	57832 88787	0.523 0.296	0.134 0.076	49 61	37 51
	2	EA-18G	250N	Interfacility Ault Field to Coupeville	14WC32DN	82 % NC		2500	161086	0.296	0.076	60	47
S07	3	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	82 % NC	250	2500	161073	0.234	0	60	47
	4	EA-18G	253N	Interfacility Ault Field to Coupeville	32WC14N	82 % NC		2500	135294	0	0	59	42
$\vdash\vdash$	5 1	EA-18G EA-18G	253D 280C	Interfacility Ault Field to Coupeville GCA Pattern	32WC14D 32G3	82 % NC 82 % NC		2500 3000	135294 2779	0.001	0 0.018	59 93	42 81
	2	EA-18G EA-18G	278C	GCA Pattern GCA Pattern	14G3	82 % NC		3000	2779	0.07	0.018	93	81
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC		2851	6041	1.078	0.092	89	80
	4	EA-18G	279C	GCA Pattern	25G3	82 % NC	300	3000	4183	0.854	0.218	88	79
\vdash	5	EA-18G	277C	GCA Pattern	07G3	82 % NC		3000	4183	0.296	0.076	88	79
	2	EA-18G EA-18G	232A 277B	P3 P8 IFR and Growler VFR non breaks GCA Pattern	25A3A 07G2	87 % NC 82 % NC		3000 3000	4033 3025	0.817 0.197	0.07 0.051	92 91	86 78
S09	3	EA-18G	279A	GCA Pattern	25G1	82 % NC		3000	5300	4.268	1.092	87	75
	4	EA-18G	206A	Departure	07D2C	95 % NC	300	5403	11786	0.287	0.017	86	76
\square	5	EA-18G	203A	Departure	07D1C	95 % NC		5300	11968	0.669	0.041	86	76
	2	EA-18G EA-18G	280C 257	GCA Pattern Interfacility Coupeville to Ault Field	32G3 14CW25	82 % NC 82 % NC		2333 2000	19814 20733	0.07 0.049	0.018 0.016	71 70	59 58
S10	3	EA-18G EA-18G	258	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW25	82 % NC		2000	20783	0.049	0.016	70	58
"	4	EA-18G	246	TACAN Arrival	32AHT	78 % NC	250	3085	23749	0.053	0.004	70	53
1 [5	EA-18G	212A	Departure	14D2C	95 % NC	300	7389	43096	0.523	0.032	70	47

Notes:
(1) 0 ft indicates the contributing profile is the beginning of takeoff roll
(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

Table A6-2 SEL-Ranked Flight Profiles for Average Year No Action Alternative

				_						Annual Av	orogo Doily		
										Ever	erage Daily its ⁽³⁾	Esti	mated
									Slant	Daytime	Nighttime		
POI	SEL		Profile			Power	Speed	Altitude	Range	(0700-	(2200-	SEL	Lmax
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) (1)	(ft MSL) (2)	(ft)	2200)	0700)	(dBA)	(dBA) ⁽⁴⁾
	2	EA-18G EA-18G	266L 264R	Depart and Re-enter Pattern Depart and Re-enter Pattern	32PL 14PR	84 % NC 84 % NC	250 250	2,000 2,000	4,401 4,415	0.091 0.471	0.003 0.016	93 92	82 82
P01	3	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	4,889	0.96	0.033	92	80
	4	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	2,000	4,943	0.29	0.01	91	80
	5	EA-18G	269B	FCLP at Ault Field	25FU1	84 % NC	130	1,000	9,077	2.772	0.5	87	76
	1	EA-18G	268A	FCLP at Ault Field	14FM1	82.2 % NC	130	852	1,389	1.497	0.27	107	104
P02	2	EA-18G EA-18G	268B 282A	FCLP at Ault Field FCLP at Ault Field	14FU1 14FM1	82.2 % NC 82.2 % NC	130 140	859 893	1,393 1,393	1.497 2.122	0.27 0.5	107 107	103 100
1 02	4	EA-18G	282B	FCLP at Ault Field	14FU1	82.2 % NC	140	859	1,393	2.122	0.5	106	100
	5	EA-18G	264R	Depart and Re-enter Pattern	14PR	82.2 % NC	140	859	1,393	0.471	0.016	106	100
	11	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	1,477	1,206	0.29	0.01	105	98
P03	2	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	1,599	0.96	0.033	103	95
P03	3 4	EA-18G EA-18G	264L 266R	Depart and Re-enter Pattern Depart and Re-enter Pattern	14PL 32PR	84 % NC 84 % NC	250 250	1,999 2,000	2,306 2,401	0.471 0.091	0.016 0.003	99	90 90
	5	EA-18G	245	TACAN Arrival	25AHT	85 % NC	150	1,023	5,395	0.091	0.063	97	87
	1	EA-18G		FCLP at Coupeville	32FCD2	84 % NC	150	800	674	1.266	0.000	115	106
	2	EA-18G	274DA	FCLP at Coupeville	32FCD1	84 % NC	150	800	759	0.633	0	114	106
P04	3	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	96 % NC	150	936	1,943	0.333	0.096	111	106
	4	EA-18G	259	Interfacility Coupeville to Ault Field	32CW07	96 % NC	150	936	1,943	0.098	0.028	111	106
-	5 1	EA-18G EA-18G	261 275NC	Interfacility Coupeville to Ault Field FCLP at Coupeville	32CW25 32FCN3	96 % NC 84 % NC	150 150	936 1,200	1,943 6,861	0.272 0.617	0.079 0.249	111 91	100 77
	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,200	5,714	0.817	0.249	89	77
P05	3	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,500	5,773	0.10	0.034	89	77
	4	EA-18G	274DC	FCLP at Coupeville	32FCD3	84 % NC	150	800	7,987	0.633	0	89	77
	5	EA-18G		Interfacility Ault Field to Coupeville	14WC32DN	85 % NC	350	1,199	5,867	0.19	0	88	N/A
	1	EA-18G		FCLP at Coupeville	32FCD3	84 % NC	150	800	3,679	0.633	0	100	85
P06	3	EA-18G EA-18G	275NC 248D	FCLP at Coupeville Interfacility Ault Field to Coupeville	32FCN3 07WC32DN	84 % NC 82.2 % NC	150 250	1,200 895	3,776 2,970	0.617 0.19	0.249	100 99	84 81
1 00	4	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	82.2 % NC	250	900	2,979	0.19	0	99	81
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	82.2 % NC	250	893	3,062	0.396	0	99	79
	1	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	12,064	0.01	0.003	82	73
	2	EA-18G		Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2,000	11,825	0.052	0.015	82	73
P07	3	EA-18G	280C	GCA Pattern	32G3	82 % NC	230	2,208	17,859	0.089	0.022	80	68
	<u>4</u> 5	EA-18G EA-18G	262 280B	Interfacility Coupeville to Ault Field	32CW32 32G2	82 % NC 82 % NC	250 230	2,000	9,777	0.053 0.059	0.015 0.015	79 78	71 66
	1	P-8	542C	GCA Pattern P3 P8 IFR and Growler VFR non breaks	32G2 32A2C	17760 LBS	250	2,332 3,047	23,457 3,389	0.059	0.015	85	N/A
	2	transient	442C	VFR non breaks	32A2C	17760 LBS	250	3,047	3,389	0.037	0.003	85	N/A
P08	3	P-8	542B	P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	0.057	0.009	81	N/A
	4	transient	442B	VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	0.027	0	81	N/A
	5	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	82 % NC	250	2,500	10,529	0.19	0	78	64
	1	EA-18G	244	TACAN Arrival	14AHT	78 % NC	250	3,163	48,626	0.423	0.028	62	51
P09	2 3	EA-18G P-8	278C 544	GCA Pattern Low TACAN Departure	14G3 14ALT	82 % NC 4610 LBS	230 250	2,403 5,632	34,003 28,942	0.481 0.227	0.121 0.037	61 55	52 53
1 03	4	EA-18G	215A	Departure	25D1C	95 % NC	300	4,765	109,923	2.005	0.037	55	48
	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	82 % NC	250	2,500	112,051	0	0.012	55	43
	11	EA-18G	229A	P3 P8 IFR and Growler VFR non breaks	14A2A	87 % NC	300	2,577	4,579	0.941	0.079	95	85
	2	EA-18G		Departure	32D2B	95 % NC	300	8,291	9,255	0.197	0.012	90	80
P10	3	EA-18G	279C	GCA Pattern	25G3	82 % NC	250	3,000	4,073	0.891	0.224	89	80
	<u>4</u> 5	EA-18G EA-18G	277C 277B	GCA Pattern GCA Pattern	07G3 07G2	82 % NC 82 % NC	300	3,000 3,000	4,085 4,387	0.321 0.214	0.081 0.054	89 88	79 78
	1	EA-18G		GCA Pattern	07G3	82 % NC	230	2,926	21,053	0.321	0.081	64	50
	2	P-8		GCA Pattern	07G3	17760 LBS	200	3,000	21,066	0.192	0.02	63	N/A
P11	3	transient	447C	GCA Pattern	07G3	17760 LBS	200	3,000	21,066	0.018	0	63	N/A
	4	P-8	527	P3 P8 C40 VFR non breaks	14A2E	17760 LBS	250	3,047	30,649	0.067	0.011	57	N/A
	5	transient EA-18G		P3 P8 IFR and Growler VFR non breaks	14A2E	17760 LBS	250	3,047	30,649	0.058	0.004	57	N/A
	2	EA-18G EA-18G	228C 278C	GCA Pattern	14A1C 14G3	87 % NC 82 % NC	300 300	2,941 3,000	9,040 7,718	0.282 0.481	0.024 0.121	82 80	74 72
P12	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,784	12,784	0.659	0.055	79	68
	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3,000	7,718	0.312	0.029	78	N/A
	5	transient		GCA Pattern	14G3	17760 LBS	200	3,000	7,718	0.032	0	78	N/A
	1	EA-18G		Departure	32D1A	95 % NC	300	7,686	7,575	0.655	0.041	94	86
D40	2	EA-18G		GCA Pattern	14G2	82 % NC	300	3,000	3,526	0.321	0.081	91	81
P13	<u>3</u> 4	EA-18G EA-18G		GCA Pattern GCA Pattern	07G3 25G3	82 % NC 82 % NC	300	3,000 3,000	3,689 3,689	0.321 0.891	0.081 0.224	90	80 81
	5	EA-18G EA-18G		GCA Pattern	32G2	82 % NC	300	3,000	3,526	0.891	0.224	90	81
	1	EA-18G		GCA Pattern	14G3	82 % NC	230	1,822	20,245	0.481	0.121	76	63
	2	EA-18G	274DC	FCLP at Coupeville	32FCD3	84 % NC	150	800	129,685	0.633	0	75	59
P14	3	EA-18G		FCLP at Coupeville	32FCD2	84 % NC	150	800	132,707	1.266	0	75	59
	4	P-8	544	Low TACAN Departure	14ALT	4610 LBS	250	4,622	4,657	0.227	0.037	72	N/A
\vdash	5 1	EA-18G EA-18G	278B 206A	GCA Pattern Departure	14G2 07D2C	82 % NC 95 % NC	230 300	2,166	23,933	0.321 0.286	0.081 0.018	72 92	59 83
	2	EA-18G EA-18G	206A 203A	Departure	07D2C	95 % NC 95 % NC	300	5,213 5,155	8,277 8,368	0.286	0.018	92	83
P15	3	EA-18G	277B	GCA Pattern	07G2	82 % NC	250	3,000	3,437	0.000	0.042	91	80
	4	EA-18G		Departure	07D2B	95 % NC	300	4,892	9,517	0.668	0.042	90	79
	5	EA-18G	202A	Departure	07D1B	95 % NC	300	4,743	10,004	1.56	0.098	89	78
	1	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	85 % NC	250	2,500	7,309	0.05	0	85	70
P16	3	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC 85 % NC	250	2,500	7,526	0 10	0.034	84	68
F 10	4	EA-18G EA-18G	248D 250D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 14WC32DN	85 % NC 85 % NC	250 250	2,500 2,500	7,526 7,612	0.19 0.19	0	84 84	68 68
	5	EA-18G		Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	250	2,500	7,512	0.396	0	84	69
						,,,,,,,			,	2.220			

Table A6-2 SEL-Ranked Flight Profiles for Average Year No Action Alternative (continued)

												rerage Daily	Feti	mated
	SEL	Aircraft Type	Profile ID	Type of Operation	Track ID	Pov Sett		Speed (kts) (1)	Altitude (ft MSL) (2)	Slant Range (ft)	Daytime (0700-	Nighttime (2200- 0700)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾
	1	EA-18G		FCLP at Coupeville	32FCD1	84	% NC	150	800	878	0.633		114	109
[2	EA-18G		FCLP at Coupeville	32FCD2	84	% NC	150	800	1,257	1.266	0	111	105
P17_	3	EA-18G		FCLP at Coupeville	32FCN1	84	% NC	150	1,200	2,411	0.617	0.249	106	95
-	<u>4</u> 5	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCN2 32FCD3	84 84	% NC % NC	150 150	1,200 800	3,071	1.235 0.633	0.497 0	104 102	92 90
	1	EA-18G		FCLP at Coupeville	32FCN3	84	% NC	150	1,200	4,924	0.617	0.249	96	85
	2	EA-18G	274DC	FCLP at Coupeville	32FCD3	84	% NC	150	800	5,592	0.633	0	94	82
P18	3	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	350	1,200	3,960	0.19	0	93	81
	<u>4</u> 5	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 25WC32DN	85 85	% NC % NC	350 350	1,500 1,200	4,056 4,055	0.396	0.034	93 93	80 80
_	1	EA-18G		Interfacility Ault Field to Coupeville	25WC32DN	97	% NC	135	59	1,093	0.550	0.072	121	114
	2	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	97	% NC	135	59	1,093	0.396	0	121	114
R01	3	EA-18G		Interfacility Ault Field to Coupeville	25WC14N	97	% NC	135	59	1,093	0	0.012	121	114
-	4	EA-18G		Interfacility Ault Field to Coupeville	25WC14D	97	% NC	135	59	1,093	0.075	0	121	114
-+	5 1	EA-18G EA-18G	204A 250N	Departure Interfacility Ault Field to Coupeville	07D2A 14WC32DN	97 97	% NC % NC	165 0	302 47	1,118 3,519	0.955 0	0.06 0.034	120 110	116 96
-	2	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	97	% NC	0	47	3,519	0.19	0.004	110	96
R02	3	EA-18G	249N	Interfacility Ault Field to Coupeville	14WC14N	97	% NC	0	47	3,519	0		110	96
_	4	EA-18G	249D	Interfacility Ault Field to Coupeville	14WC14D	97	% NC	0	47	3,519	0.036	0	110	96
	5 1	EA-18G EA-18G		Departure Depart and Re-enter Pattern	14D2A 32PL	97 84	% NC % NC	0 250	2,000	3,519 1,787	1.516 0.091	0.096 0.003	109 101	100 93
	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84	% NC	250	2,000	1,767	0.031	0.003	101	92
R03	3	EA-18G	265L	Depart and Re-enter Pattern	25PL	84	% NC	250	2,000	1,971	0.96	0.033	100	92
	4	EA-18G		Depart and Re-enter Pattern	07PR	84	% NC	250	2,000	2,001	0.29	0.01	100	92
\rightarrow	5	EA-18G		FCLP at Ault Field	32FU1	82.2	% NC	130	817	8,282	0.554	0.1	88	78
-	2	EA-18G EA-18G		Departure Departure	07D2B 07D1B	95 95	% NC % NC	300 300	4,035 4,007	5,492 5,530	0.668 1.56	0.042 0.098	99 98	88 88
R04	3	EA-18G		Departure	07D2C	95	% NC	300	4,096	5,708	0.286	0.018	98	88
	4	EA-18G		Departure	07D1C	95	% NC	300	4,096	5,708	0.668	0.042	98	88
	5	EA-18G		Departure	07D2A	95	% NC	300	3,804	6,519	0.955	0.06	96	86
-	12	EA-18G EA-18G		GCA Pattern GCA Pattern	07G1 25G1	82 82	% NC % NC	250 300	3,000 3,000	3,009 3,350	1.604 4.455	0.403 1.12	92 91	84 82
R05	3	EA-18G		GCA Pattern	32G3	82	% NC	300	3,000	3,491	0.089	0.022	90	82
	4	EA-18G		GCA Pattern	14G3	82	% NC	300	3,000	3,491	0.481	0.121	90	82
	5	EA-18G		Departure	07D2B	95	% NC	300	3,808	13,742	0.668	0.042	85	75
	1	EA-18G		FCLP at Coupeville	32FCD3	85	% NC	140	503	567	0.633	0	118	114
R06	2	EA-18G EA-18G		FCLP at Coupeville Interfacility Ault Field to Coupeville	32FCN1 07WC32DN	85 85	% NC % NC	140 140	610 421	599 675	0.617 0.19	0.249 0	118 117	113 113
-	4	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	140	421	675	0.10		117	113
	5	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	85	% NC	140	412	706	0.05		116	113
-	1	EA-18G		FCLP at Coupeville	14FCD3	84	% NC	150	800	847	0.13	0	114	109
R07	2	EA-18G EA-18G		FCLP at Coupeville Interfacility Ault Field to Coupeville	14FCD2 25WC14D	84 82.2	% NC % NC	150 250	799 1,082	1,359 1,489	0.259 0.075	0	110 104	104 100
····/	4	EA-18G		Interfacility Ault Field to Coupeville	32WC14D	82.2	% NC	250	1,082	1,493	0.009	0	104	100
	5	EA-18G		Interfacility Ault Field to Coupeville	07WC14D	82.2	% NC	250	1,080	1,506	0.036	0	104	100
_	1	EA-18G		FCLP at Coupeville	14FCN3	84	% NC	150	1,200	1,128	0.126	0.051	112	106
R08	2	EA-18G EA-18G	272NB 257	FCLP at Coupeville	14FCN2 14CW25	84 82	% NC % NC	150 250	1,200 2,000	3,099 2,690	0.253 0.052	0.102 0.015	102 99	93 92
-	4	EA-18G	258	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW25	82	% NC	250	2,000	2,690	0.032	0.013	99	92
	5	EA-18G		Interfacility Ault Field to Coupeville	25WC14N	85	% NC	350	1,500	2,437	0	0.012	99	91
_	1	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85	% NC	250	2,499	4,551	0.19	0	92	82
R09	2	EA-18G EA-18G	252D 254D	Interfacility Ault Field to Coupeville	25WC32DN 32WC32DN	85 85	% NC % NC	250 250	2,499 2,499	4,690 4,762	0.396 0.05	0	91 91	82 81
1.09	4	EA-18G	248N	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,499	4,777	0.03	0.034	91	81
	5	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,499	4,777	0.19		91	81
_	11	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1B	87	% NC	300	2,480	3,143	0.659	0.055	100	90
R10	3	EA-18G EA-18G		P3 P8 IFR and Growler VFR non breaks GCA Pattern	14A1C 32G3	87 82	% NC	300 250	2,620 3,000	3,563 2,980	0.282 0.089	0.024 0.022	98 93	88 84
K10	4	EA-18G		GCA Pattern	14G1	82	% NC % NC	300	2,999	3,168	2.406		92	83
	5	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1A	87	% NC	300	2,347	7,186	0.941	0.079	90	77
T	1	EA-18G		Overhead Break Arrival	1402A	84	% NC	300	10,000	13,520	0.183	0.02	73	60
B11	2	EA-18G		Overhead Break Arrival	1402B	84	% NC	300	10,000	13,567	0.183	0.02	73	60
R11_	3 4	EA-18G EA-18G		Overhead Break Arrival Overhead Break Arrival	14O2C 07O2B	84 84	% NC % NC	300 300	10,000 10,000	13,609 13,739	0.188 0.115	0.021 0.013	73 72	60 59
-	5	EA-18G		Overhead Break Arrival	07O2A	84	% NC	300	10,000	13,740	0.115	0.013	72	59
	1	EA-18G	205A	Departure	07D2B	84	% NC	300	9,000	9,677	0.668	0.042	75	65
Bask	2	EA-18G		Departure	25D2A	84	% NC	300	9,000	16,276	2.864	0.18	70	58
R12	3 4	EA-18G EA-18G		Departure Departure	25D2B 25D2C	84 84	% NC % NC	300 300	9,000 9,000	16,448 18,999	2.005 0.859	0.126 0.054	70 67	58 55
-	5	EA-18G		Departure	07D2C	84	% NC	300	9,000	24,952	0.839	0.034	66	55
	1	EA-18G	271DB	FCLP at Coupeville	14FCD2	84	% NC	150	800	49,661	0.259	0	75	55
D42	2	EA-18G		FCLP at Coupeville	14FCD3	84	% NC	150	800	49,257	0.13		74	55
R13	<u>3</u> 4	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCD1 14FCN2	84 84	% NC % NC	150 150	800 1,200	52,723 46,508	0.13 0.253	0.102	74 74	55 53
	5	EA-18G		Interfacility Coupeville to Ault Field	32CW32	82	% NC	250	2,000	30,019	0.253	0.102	71	51
\neg	1	EA-18G		FCLP at Ault Field	14FU1	84	% NC	130	1,000	2,575	1.497	0.27	104	96
ļ	2	EA-18G		FCLP at Ault Field	25FU1	82.2	% NC	130	693	3,116	2.772	0.5	103	96
D4 .		E 4 100												
R14	3 4	EA-18G EA-18G		FCLP at Ault Field FCLP at Ault Field	25FU1 25FM1	82.2	% NC % NC	140 130	715 702	3,119 3,119	2.434 2.772		103 103	91 91

Table A6-2 SEL-Ranked Flight Profiles for Average Year No Action Alternative (concluded)

										Slant	Daytime	erage Daily Nighttime	Esti	mated
POI	SEL		Profile			Po	wer	Speed	Altitude	Range	(0700-	(2200-	SEL	Lmax
ID	Rank	Aircraft Type		Type of Operation	Track ID		ting	(kts) (1)	(ft MSL) (2)	(ft)	2200)	0700)	(dBA)	(dBA) (4)
	1	EA-18G	251D	Interfacility Ault Field to Coupeville	25WC14D	85	% NC	140	601	1,353	0.075	0	110	105
	2	EA-18G	253D	Interfacility Ault Field to Coupeville	32WC14D	85	% NC	140	609	1,370	0.009	0	110	105
R15	3	EA-18G	247D	Interfacility Ault Field to Coupeville	07WC14D	85	% NC	140	621	1,423	0.036	0	110	105
	4	EA-18G	249D	Interfacility Ault Field to Coupeville	14WC14D	85	% NC	140	616	1,435	0.036	0	110	105
	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85	% NC	140	401	1,933	0	0.012	108	99
	1	EA-18G	233A	P3 P8 IFR and Growler VFR non breaks	32A1A	87	% NC	300	2,756	2,575	0.174	0.015	100	91
	2	EA-18G	209A	Departure	14D1C	95	% NC	300	6,951	8,107	1.062	0.067	93	85
R16	3	EA-18G	278C	GCA Pattern	14G3	82	% NC	250	3,000	3,185	0.481	0.121	91	82
	4	EA-18G	208A	Departure	14D1B	95	% NC	300	6,815	9,922	2.477	0.156	90	81
	5	EA-18G	246 542C	P3 P8 IFR and Growler VFR non breaks	32AHT 32A2C	82.2	% NC	250 250	2,475 3,047	6,673	0.088	0.006 0.009	89	81 N/A
	2	P-8 transient	442C	VFR non breaks	32A2C 32A2C	17760 17760		250	3,047	2,963	0.057 0.027	0.009	85 85	N/A N/A
R17	3	P-8	542B	P3 P8 IFR and Growler VFR non breaks	32A2B	17760		250	3,047	2,963 6,202	0.027	0.009	 79	N/A
13.17	4	transient	442B	VFR non breaks	32A2B	17760		250	3,047	6,202	0.037	0.009	79	N/A
	5	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	82	% NC	250	2,500	12,679	0.027	0.034	74	59
	1	P-8	543	Low TACAN Departure	07ALT	4610	LBS	250	5,971	5,979	0.064	0.013	68	N/A
	2	P-8	545	Low TACAN Departure	25ALT	4610		250	6,446	6,474	0.116	0.017	67	N/A
R18	3	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	85	% NC	250	2,500	22,311	0.05	0.017	65	47
	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,500	22,575	0	0.034	65	47
	5	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,500	22,575	0.19	0	65	47
	1	EA-18G	271DA	FCLP at Coupeville	14FCD1	85	% NC	140	513	422	0.13	0		118
	2	EA-18G		FCLP at Coupeville	14FCD2	85	% NC	140	499	461	0.259	0	119	116
R19	3	EA-18G		FCLP at Coupeville	14FCD3	85	% NC	140	490	534	0.13	0	119	115
	4	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85	% NC	140	321	1,011	0	0.012	113	106
	5	EA-18G	251D	Interfacility Ault Field to Coupeville	25WC14D	85	% NC	140	361	1,150	0.075	0	113	106
	1	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87	% NC	300	2,933	3,692	0.282	0.024	95	87
	2	EA-18G	277C	GCA Pattern	07G3	82	% NC	300	3,000	3,898	0.321	0.081	89	52
R20	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87	% NC	300	2,769	6,744	0.659	0.055	88	78
	4	transient	423	IFR non breaks	14A2E	17760		180	3,047	3,071	0.058	0.004	86	N/A
	5	P-8	527	P3 P8 C40 VFR non breaks	14A2E	17760		180	3,047	3,071	0.067	0.011	86	N/A
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2	% NC	140	773	4009	0.091	0.003	98	90
	2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2	% NC	130	802	4008	0.554	0.1	96	90
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2	% NC	140	839	4014	0.749	0.177	96	84
	4	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2	% NC	140	773	4003	0.091	0.003	96	84
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2	% NC	140	861	3936	0.053	0.015	95	83
	1	EA-18G	212A	Departure	14D2C	95	% NC	300	2514	3432	0.455	0.029	104	94
S02	2	EA-18G	209A	Departure	14D1C	95	% NC	300	2514	3432	1.062	0.067	104	93
302	3 4	EA-18G EA-18G	207A 211A	Departure	14D1A 14D2B	95 95	% NC % NC	300	2514 2514	3432	3.538	0.223 0.067	104 104	94 94
	5	EA-18G	208A	Departure Departure	14D2B	95	% NC	300	2514	3432 3432	1.062 2.477	0.067	104	94
	1	EA-18G	275NC	FCLP at Coupeville	32FCN3	84	% NC	150	1200	3915	0.617	0.130	98	89
	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	350	1200	2749	0.19	0.243	97	89
S03	3	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85	% NC	350	1200	2808	0.396	0	97	89
000	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	350	1500	2879	0	0.034	96	89
	5	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85	% NC	350	1200	2890	0.19	0	96	88
	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87	% NC	300	2882	4781	0.282	0.024	93	83
	2	EA-18G	278C	GCA Pattern	14G3	82	% NC	300	3000	2903	0.481	0.121	92	84
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87	% NC	300	2719	7342	0.659	0.055	87	76
	4	P-8	548C	GCA Pattern	14G3	17760	LBS	200	3000	2903	0.312	0.029	85	N/A
	5	transient	448C	GCA Pattern	14G3	17760	LBS	200	3000	2903	0.032	0	85	N/A
	1	EA-18G	243	TACAN Arrival	07AHT	78	% NC	250	3529	3374	0.282	0.018	76	68
	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87	% NC	300	2712	19217	0.282	0.024	70	56
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87	% NC	300	2592	23773	0.659	0.055	66	51
	4	EA-18G	224A	Departure	32D2C	95	% NC	300	8249	32151	0.084	0.005	65	52
$\vdash \vdash$	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760	LBS	180	3047	19344	0.308	0.053	64	N/A
	2	EA-18G EA-18G	224A 223A	Departure	32D2C 32D2B	84 84	% NC % NC	300	9000 9000	61543 66657	0.084	0.005 0.012	51 50	39
S06		P-8		Departure GCA Pattern							0.197			39
500	<u>3</u> 4	transient	547C 447C	GCA Pattern GCA Pattern	07G3 07G3	17760 17760		200	3000	40394 40394	0.192 0.018	0.02	50 50	37 37
	5	EA-18G	222A	Departure	32D2A	95	% NC	300	8656	71520	0.018	0.018	49	37
\vdash	1	EA-18G	277C	GCA Pattern	07G3	82	% NC	230	2810	88787	0.321	0.010	61	51
	2	EA-18G	250N	Interfacility Ault Field to Coupeville	14WC32DN	82	% NC	250	2500	161086	0.321	0.034	60	47
S07	3	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	82	% NC	250	2500	161073	0.19	0.054	60	47
	4	EA-18G	253N	Interfacility Ault Field to Coupeville	32WC14N	82	% NC	250	2500	135294	0	0.001	59	45
	5	EA-18G	253D	Interfacility Ault Field to Coupeville	32WC14D	82	% NC	250	2500	135294	0.009	0	59	45
	1	EA-18G	280C	GCA Pattern	32G3	82	% NC	300	3000	2779	0.089	0.022	93	81
	2	EA-18G	278C	GCA Pattern	14G3	82	% NC	300	3000	2779	0.481	0.121	93	81
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87	% NC	300	2851	6041	0.941	0.079	89	80
	4	EA-18G	279C	GCA Pattern	25G3	82	% NC	300	3000	4183	0.891	0.224	88	79
	5	EA-18G	277C	GCA Pattern	07G3	82	% NC	300	3000	4183	0.321	0.081	88	79
	11	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87	% NC	300	3000	4033	0.889	0.075	92	86
	2	EA-18G	277B	GCA Pattern	07G2	82	% NC	250	3000	3025	0.214	0.054	91	78
S09	3	EA-18G	279A	GCA Pattern	25G1	82	% NC	300	3000	5300	4.455	1.12	87	75
	4	EA-18G	206A	Departure	07D2C	95	% NC	300	5403	11786	0.286	0.018	86	76
	5	EA-18G	203A	Departure	07D1C	95	% NC	300	5300	11968	0.668	0.042	86	76
	1	P-8	546	Low TACAN Departure	32ALT	17760		250	3616	3501	0.021	0.003	83	N/A
640	2	EA-18G	280C	GCA Pattern	32G3	82	% NC	230	2333	19814	0.089	0.022	71	61
S10	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25 14CW32	82	% NC	250	2000	20733	0.052	0.015	70 70	58 58
		EA-18G	258	Interfacility Coupeville to Ault Field TACAN Arrival		82	% NC	250	2000	20783	0.01	0.003		58
Notes	5	EA-18G	246	TACAN ARTIVAL	32AHT	78	% NC	250	3085	23749	0.088	0.006	70	53

(1) of trindicates the contributing profile is the beginning of takeoff roll
(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

Table A6-3 SEL-Ranked Flight Profiles for Alternative 1 for Average Year

															Ann	ual Averag	e Daily Even	to (3)			
								Aleksada	Slant	Esti	mated	1.	A	1			C Daily Even		D	1	E
POI ID	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID		ipeed cts) ⁽¹⁾	Altitude (ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	4,401	93	82	0.096	0.004	0.096	0.004	0.096	0.004	0.096	0.004	0.096	0.004
	2	EA-18G	264R	Depart and Re-enter Pattern	14PR		250	2,000	4,415	92	82	0.697	0.029	0.697	0.029	0.745	0.031	0.745	0.031	0.745	0.031
P01	3 4	EA-18G EA-18G	265L 263R	Depart and Re-enter Pattern	25PL 07PR		250 250	2,000 2,000	4,889 4,943	92 91	80 80	1.202 0.409	0.049 0.017	1.226 0.385	0.05 0.016	1.154 0.409	0.047 0.017	1.154 0.409	0.047 0.017	1.154 0.409	0.047 0.017
	- 4 - 5	EA-18G	269B	Depart and Re-enter Pattern FCLP at Ault Field	25FU1	84 % NC	130	1,000	9,077	87	76	3.268	0.017	3.401	0.749	3.201	0.705	3.201	0.017	3.201	0.705
	1	EA-18G	268A	FCLP at Ault Field	14FM1	82.2 % NC	130	852	1,389	107	104	2.001	0.441	1.934	0.426	2.134	0.47	2.134	0.47	2.134	0.47
	2	EA-18G	268B	FCLP at Ault Field	14FU1		130	859	1,393	107	103	2.001	0.441	1.934	0.426	2.134	0.47	2.134	0.47	2.134	0.47
P02	3	EA-18G		FCLP at Ault Field	14FM1	OL.L /0110	140	893	1,393	107	100	0.984	0.278	2.339	0.641	4.276	1.341	1.625	0.459	3.742	1.173
	5	EA-18G EA-18G		FCLP at Ault Field Depart and Re-enter Pattern	14FU1 14PR		140	859 859	1,393 1,393	106 106	100 100	0.984 0.697	0.278	2.339 0.697	0.641	4.276 0.745	1.341 0.031	1.625 0.745	0.459 0.031	3.742 0.745	1.173 0.031
	1	EA-18G		Depart and Re-enter Pattern	07PR		250	1,477	1,206	105	98	0.409	0.017	0.385	0.016	0.409	0.017	0.409	0.017	0.409	0.017
	2	EA-18G	265L	Depart and Re-enter Pattern	25PL		250	2,000	1,599	103	95	1.202	0.049	1.226	0.05	1.154	0.047	1.154	0.047	1.154	0.047
P03	3 4	EA-18G EA-18G	264L	Depart and Re-enter Pattern	14PL 32PR		250 250	1,999	2,306 2,401	99	90	0.697 0.096	0.029	0.697 0.096	0.029	0.745 0.096	0.031 0.004	0.745	0.031 0.004	0.745 0.096	0.031
	5	EA-18G EA-18G	266R 245	Depart and Re-enter Pattern TACAN Arrival	25AHT	84 % NC 85 % NC	150	2,000 1,023	5,395	99	87	1.349	0.004	1.369	0.004	1.195	0.004	0.096 1.273	0.004	1.195	0.004
	1	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	96 % NC	150	936	1,943	111	106	1.119	0.231	0.684	0.137	0.281	0.055	0.965	0.199	0.422	0.083
	2	EA-18G	259	Interfacility Coupeville to Ault Field	32CW07	96 % NC	150	936	1,943	111	106	0.331	0.068	0.202	0.04	0.083	0.016	0.285	0.059	0.125	0.025
P04	34	EA-18G	261	Interfacility Coupeville to Ault Field	32CW25	96 % NC	150	936 936	1,943 1,943	111	106	0.915	0.189	0.559 0.109	0.112 0.022	0.23 0.045	0.045	0.79 0.154	0.163 0.032	0.345	0.068
	5	EA-18G EA-18G	262 273PDA	Interfacility Coupeville to Ault Field FCLP at Coupeville	32CW32 14FCP1	96 % NC 85 % NC	150 140	337	1,943	108	106 100	0.178 1.001	0.037	0.109	0.022	0.045	0.009	0.154	0.032	0.067	0.013
	1	EA-18G		FCLP at Coupeville	32FCP3	84 % NC	150	1,200	8,512	88	77	1.636	1.154	1.017	0.676	0.425	0.268	1.412	0.996	0.638	0.402
	2	EA-18G		FCLP at Coupeville	32FCP3	84 % NC	150	800	8,475	88	77	2.573	0	1.566	0	0.631	0	2.22	0	0.946	0
P05	3 4	EA-18G EA-18G		FCLP at Coupeville	32FCP2 32FCP2	84 % NC 84 % NC	150 150	1,200	9,601 9,568	87 87	77	3.273 5.146	2.307	2.034	1.353	0.851 1.261	0.536	2.823 4.44	1.991	1.276 1.893	0.804
	- 4	transient	430	FCLP at Coupeville IFR non breaks	32FCP2 32A2E	17760 LBS	180	800 3,047	3,122	85	N/A	0.009	0.001	3.133 0.011	0.001	0.011	0.001	0.011	0.001	0.011	0.001
	1	EA-18G		FCLP at Coupeville	32FCP3		150	799	5,329	96	85	2.573	0.001	1.566	0.001	0.631	0.001	2.22	0.001	0.946	0.001
	2	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC	150	1,199	5,397	96	84	1.636	1.154	1.017	0.676	0.425	0.268	1.412	0.996	0.638	0.402
P06	3	EA-18G		FCLP at Coupeville	32FCP2		150	799	6,534	93	81	5.146	0	3.133	0	1.261	0 500	4.44	0	1.893	0
	<u>4</u> 5	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP1		150 150	1,199 1,199	6,590 7,791	93 91	81 79	3.273 1.636	2.307 1.154	2.034 1.017	1.353 0.676	0.851 0.425	0.536 0.268	2.823 1.412	1.991 0.996	1.276 0.638	0.804 0.402
	1	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32		250	2,000	12,064	82	73	0.069	0.014	0.047	0.009	0.018	0.004	0.063	0.013	0.027	0.005
	2	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25		250	2,000	11,825	82	73	0.356	0.073	0.24	0.048		0.018	0.323	0.067	0.141	0.028
P07	3_4	EA-18G		FCLP at Coupeville	14FCP2 32G3		150 230	800	23,102	80	68 71	2.001 0.065	0.005	1.343	0 024	0.515 0.086	0.034	1.813 0.086	0.034	0.773 0.086	0.034
	5	EA-18G EA-18G	280C 262	GCA Pattern Interfacility Coupeville to Ault Field	32CW32		250	2,208 2,000	17,859 9,777	80 79	66	0.065	0.025 0.037	0.086 0.109	0.034 0.022	0.086	0.034	0.086	0.034	0.086	0.034
	1	P-8	542C	P3 P8 IFR and Growler VFR non breaks	32A2C		250	3,047	3,389	85	N/A	0.046	0.007	0.045	0.013	0.046	0.015	0.046	0.016	0.046	0.015
	2	transient	442C		32A2C		250	3,047	3,389	85	N/A	0.016	0.002	0.021	0.005	0.021	0.006	0.022	0.006	0.021	0.006
P08	34	P-8 transient	542B 442B	P3 P8 IFR and Growler VFR non breaks VFR non breaks	32A2B 32A2B		250 250	3,047 3,047	5,353 5,353	81 81	N/A N/A	0.046	0.007	0.045 0.021	0.013	0.046 0.021	0.015 0.006	0.046 0.022	0.016 0.006	0.046 0.021	0.015
	5	EA-18G	255	Interfacility Coupeville to Ault Field	14CW07	82 % NC	250	2,000	10,604	76	64	0.129	0.002	0.021	0.003	0.021	0.007	0.022	0.024	0.051	0.00
	1	EA-18G	244	TACAN Arrival	14AHT	78 % NC	250	3,163	48,626	62	51	0.687	0.037	0.635	0.035	0.669	0.021	0.713	0.038	0.669	0.021
Doo	2	EA-18G	278C	GCA Pattern	14G3		230	2,403	34,003	61	52	0.645	0.254	0.624	0.246	0.688	0.271	0.688	0.271	0.688	0.271
P09	34	P-8 EA-18G	544 215A	Low TACAN Departure Departure	14ALT 25D1C		250 300	5,632 4,765	28,942 109,923	55 55	53 48	0.204 2.293	0.038	0.22 2.36	0.042 0.146	0.205 2.181	0.036 0.134	0.209 2.201	0.041 0.132	0.205 2.181	0.036 0.134
	5	EA-18G	217A	Departure	25D2B		300	3,835	110,307	54	43	2.293	0.138	2.36	0.146		0.134	2.201	0.132	2.181	0.134
	1	EA-18G	229A	P3 P8 IFR and Growler VFR non breaks	14A2A	87 % NC	300	2,577	4,579	95	85	1.206	0.091	1.11	0.084	1.271	0.099	1.286	0.097	1.271	0.099
D10	2	EA-18G	223A	Departure CCA Pottern	32D2B		300	8,291	9,255	90	80	0.138	0.008	0.182	0.011	0.227	0.014	0.229	0.014	0.227	0.014
P10	<u>3</u> 4	EA-18G EA-18G	279C 277C	GCA Pattern GCA Pattern	25G3 07G3		250 300	3,000 3,000	4,073 4,085	89 89	80 79	1.054 0.387	0.415 0.152	1.097 0.344	0.432 0.135	1.054 0.323	0.415 0.127	1.054 0.323	0.415 0.127	1.054 0.323	0.415 0.127
	5	EA-18G		GCA Pattern	07G2		300	3,000	4,387	88	78	0.258	0.102	0.229	0.09	0.215	0.085	0.215	0.085	0.215	0.085
	11	EA-18G		GCA Pattern	07G3		230	2,926	21,053	64	50	0.387	0.152	0.344	0.135	0.323	0.127	0.323	0.127	0.323	0.127
P11	3	P-8 transient		GCA Pattern GCA Pattern	07G3 07G3		200	3,000 3,000	21,066 21,066	63 63	N/A N/A	0.221	0.025	0.203 0.018	0.019	0.181 0.017	0.018	0.184 0.017	0.021	0.181	0.018
FIL	4	P-8		P3 P8 C40 VFR non breaks	14A2E		250	3,000	30,649	57	N/A N/A	0.018	0.015	0.018	0.014	0.017	0.014	0.017	0.016	0.017	0.014
	5	transient	423	IFR non breaks	14A2E		250	3,047	30,649	57	N/A	0.063	0.004	0.062	0.007	0.069	0.007	0.07	0.005	0.069	0.007
	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1C		300	2,941	9,040	82	74	0.362	0.027	0.333	0.025	0.381	0.03	0.386	0.029	0.381	0.03
P12	3	EA-18G EA-18G	278C 228B	GCA Pattern P3 P8 IFR and Growler VFR non breaks	14G3 14A1B		300	3,000 2,784	7,718 12,784	80 79	72 68	0.645 0.844	0.254	0.624 0.777	0.246	0.688	0.271 0.07	0.688	0.271 0.068	0.688	0.271 0.07
F12	4	P-8	548C	GCA Pattern	14A1B 14G3		200	3,000	7,718	79 78	N/A	0.844	0.064	0.777	0.059	0.89	0.07	0.381	0.068	0.89	0.07
	5	transient	448C		14G3	17760 LBS	200	3,000	7,718	78	N/A	0.034	0	0.032	0	0.035	0	0.035	0	0.035	0
	1	EA-18G	219A	Departure	32D1A		300	7,686	7,575	94	86	0.459	0.028	0.605	0.037	0.757	0.047	0.764	0.046	0.757	0.047
P13	3	EA-18G EA-18G	278B 277C	GCA Pattern GCA Pattern	14G2 07G3		300	3,000 3,000	3,526 3,689	91 90	81 80	0.43	0.169 0.152	0.416 0.344	0.164 0.135	0.459 0.323	0.181 0.127	0.459 0.323	0.181 0.127	0.459 0.323	0.181 0.127
1. 13	4	EA-18G		GCA Pattern	25G3		300	3,000	3,689	90	81	1.054	0.132	1.097	0.133	1.054	0.127	1.054	0.127	1.054	0.127
	5	EA-18G		GCA Pattern	32G2	82 % NC	300	3,000	3,526	90	81	0.043	0.017	0.057	0.023	0.057	0.023	0.057	0.023	0.057	0.023

Table A6-3 SEL-Ranked Flight Profiles for Alternative 1 for Average Year (continued)

															Anr	ual Averag	e Daily Ever	nts ⁽³⁾			
POI	SEL		Profile			Power	Speed	Altitude	Slant	Esti	imated	1	Α	1		1	IC		ID	1	E
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1	EA-18G	278C	GCA Pattern	14G3	82 % NC	230	1,822	20,245	76	63	0.645	0.254	0.624	0.246	0.688	0.271	0.688	0.271	0.688	0.271
D4.4	2	P-8	544	Low TACAN Departure	14ALT	4610 LBS	250	4,622	4,657	72	N/A	0.204	0.038	0.22	0.042	0.205	0.036	0.209	0.041	0.205	0.036
P14	34	EA-18G EA-18G	278B 221A	GCA Pattern Departure	14G2 32D1C	82 % NC 95 % NC	230 300	2,166 6,560	23,933 43,942	72 69	58 49	0.43	0.169	0.416 0.182	0.164 0.011	0.459 0.227	0.181 0.014	0.459	0.181	0.459	0.181
	5	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,569	25,383	67	55	0.362	0.027	0.333	0.025	0.381	0.03	0.386	0.029	0.381	0.03
	1	EA-18G	206A	Departure	07D2C	95 % NC		5,213	8,277	92	83	0.334	0.02	0.311	0.019	0.312	0.019	0.314	0.019	0.312	0.019
P15	3	EA-18G EA-18G	203A 277B	Departure GCA Pattern	07D1C 07G2	95 % NC 82 % NC		5,155 3,000	8,368 3,437	92 91	83 80	0.78 0.258	0.047 0.102	0.726 0.229	0.045		0.045 0.085	0.734 0.215	0.044	0.727 0.215	0.045 0.085
	4	EA-18G	205A	Departure	07D2B	95 % NC		4,892	9,517	90	79	0.78	0.047	0.726	0.045	0.727	0.045	0.734	0.044	0.727	0.045
	5	EA-18G EA-18G	202A 256	Departure Interfacility Coupeville to Ault Field	07D1B 14CW14	95 % NC 82 % NC		4,743 2,000	10,004 8,724	89 79	78 67	1.819 0.435	0.109	1.694 0.293	0.105	1.696 0.115	0.104 0.022		0.103	1.696 0.172	0.104 0.034
	2	EA-18G	255	Interfacility Coupeville to Ault Field	14CW14	82 % NC		2,000	8,724	79	67	0.435	0.09	0.293	0.059	0.115	0.022		0.081	0.172	0.034
P16	3	EA-18G	252PD		25WC32P	82 % NC	250	2,500	10,146	78	64	1.135	0	0.704	0	0.248	0	0.843	0	0.374	0
	4			Interfacility Ault Field to Coupeville	07WC32P	82 % NC		2,500	10,318	78	64	0	0.136	0	0.079 0.122	0	0.025	0		0	0.037
	5			Interfacility Ault Field to Coupeville FCLP at Coupeville	14WC32P 32FCP1	82 % NC 84 % NC	250 150	2,500 799	10,355 742	78 115	64 110	2.573		1.566	0.122	0.631	0.065	2.22		0.946	0.098
	2	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC	150	1,199	1,129	111	106	1.636	1.154	1.017	0.676	0.425	0.268	1.412	0.996	0.638	0.402
P17	3 4			FCLP at Coupeville	32FCP2	84 % NC		799	1,206	111	105	5.146	0	3.133	0	1.201	0 500	4.44	0	1.893	0
	5			FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP3	84 % NC 84 % NC	150 150	1,199 799	1,476 2,304	109 106	103 97	3.273 2.573	2.307	2.034 1.566	1.353	0.851 0.631	0.536	2.823	1.991	1.276 0.946	0.804
	1	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC	150	1,200	6,600	92	82	1.636	1.154	1.017	0.676		0.268	1.412	0.996	0.638	0.402
D40	2			FCLP at Coupeville	32FCP3	84 % NC	150	800	6,544	91	82	2.573	0	1.566	0	0.631	0 500	2.22	0	0.946	0
P18	34			FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP2	84 % NC 84 % NC	150 150	1,200 800	7,760 7,712	90	79 79	3.273 5.146	2.307	2.034 3.133	1.353	0.851 1.261	0.536	2.823	1.991	1.276 1.893	0.804
	5	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC	150	1,200	8,929	87	78	1.636	1.154	1.017	0.676		0.268	1.412	0.996	0.638	0.402
	11			Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0	0.17	0	0.108		0.034	0	0.128	0	0.051
R01	3		251PD 252PN	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC14P 25WC32P	97 % NC 97 % NC	135 135	59 59	1,093	121 121	114 114	0.441	0.378	0.302	0.218	0.101	0.076	0.344		0.153	0.114
	4		252PD		25WC32P	97 % NC		59	1,093	121	114	1.135	0	0.704	0	0.248	0.07.0	0.843	0	0.374	0
	5	EA-18G	204A	Departure	07D2A	97 % NC		302	1,118	120	116	1.114	0.067	1.037	0.064	1.039	0.064	1.048		1.039	0.064
1	1 2	EA-18G EA-18G	250PN 250PD	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC32P 14WC32P	97 % NC 97 % NC	0	47 47	3,519 3,519	110 110	96 96	0.681	0.227	0.394	0.122	0.214	0.065	0.725		0.322	0.098
R02	3		249PN		14WC14P	97 % NC	0	47	3,519	110	96	0.001	0.102	0.001	0.06		0.029	0.720	0.11	0.022	0.044
	4		249PD		14WC14P	97 % NC	0	47	3,519	110	96	0.265	0	0.169	0	0.007	0	0.296	0	0.131	0
	5	EA-18G EA-18G	210A 266L	Departure Depart and Re-enter Pattern	14D2A 32PL	97 % NC 84 % NC	0 250	2,000	3,519 1,787	109 101	100 93	1.965 0.096	0.118	1.815 0.096	0.112	2.012 0.096	0.124 0.004	2.031	0.122 0.004	2.012	0.124 0.004
	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84 % NC		2,000	1,967	101	92	0.697	0.029	0.697	0.029	0.745	0.031	0.745	0.031	0.745	0.031
R03	3	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC		2,000	1,971	100	92	1.202	0.049	1.226	0.05		0.047	1.154	0.047	1.154	0.047
	5	EA-18G EA-18G	263R 270B	Depart and Re-enter Pattern FCLP at Ault Field	07PR 32FU1	84 % NC 82.2 % NC		2,000 817	2,001 8,282	100 88	92 78	0.409	0.017 0.088	0.385 0.533	0.016		0.017 0.118	0.409	0.017	0.409	0.017 0.118
	1	EA-18G	205A	Departure	07D2B	95 % NC		4,035	5,492	99	88	0.78	0.047	0.726	0.045		0.045	0.734	0.044	0.727	0.045
	2	EA-18G	202A	Departure	07D1B	95 % NC	300	4,007	5,530	98	88	1.819	0.109	1.694	0.105		0.104	1.712	0.103	1.696	0.104
R04	3 4	EA-18G EA-18G	206A 203A	Departure Departure	07D2C 07D1C	95 % NC 95 % NC		4,096 4,096	5,708 5,708	98 98	88 88	0.334 0.78	0.02 0.047	0.311 0.726	0.019	0.312 0.727	0.019 0.045	0.314	0.019 0.044	0.312	0.019 0.045
	5	EA-18G	204A	Departure	07D2A	95 % NC	300	3,804	6,519	96	86	1.114	0.067	1.037	0.064	1.039	0.064	1.048	0.063	1.039	0.064
	1 2	EA-18G	277A	GCA Pattern	07G1	82 % NC		3,000	3,009	92	84	1.935	0.762	1.72	0.677	1.613	0.635	1.613		1.613	0.635
R05	3	EA-18G EA-18G	279A 280C	GCA Pattern GCA Pattern	25G1 32G3	82 % NC 82 % NC	300	3,000	3,350 3,491	91	82 82	5.269 0.065	2.074 0.025	5.484 0.086	2.159 0.034	5.269 0.086	2.074 0.034	5.269 0.086	2.074 0.034	5.269 0.086	2.074 0.034
	4	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3,000	3,491	90	82	0.645	0.254	0.624	0.246	0.688	0.271	0.688	0.271	0.688	0.271
	5	EA-18G	205A	Departure	07D2B	95 % NC	300	3,808	13,742	85	75	0.78	0.047	0.726	0.045	0.727	0.045	0.734	0.044	0.727	0.045
	2			FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP3	85 % NC 85 % NC	140 140	515 508	389 405	121 120	114 113	5.146 2.573	0	3.133 1.566	0	1.261 0.631	0	4.44	0	1.893 0.946	0
R06	3	EA-18G	276PDA	FCLP at Coupeville	32FCP1	85 % NC	140	524	412	120	113	2.573	0	1.566	0	0.631	0	2.22	0	0.946	0
	4			Interfacility Ault Field to Coupeville	25WC32P	84 % NC	140	526	399	120	113	1.135	0	0.704	0		0	0.843	0	0.374	0
	5			Interfacility Ault Field to Coupeville FCLP at Coupeville	32WC32P 14FCP1	84 % NC 84 % NC	140 150	523 799	399 769	120 115	113 109	0.045 1.001	0	0.056 0.671	0		0	0.118	0	0.052	0
	2	EA-18G	273PNA	FCLP at Coupeville	14FCP1	84 % NC		1,199	1,167	111	104	0.636	0.449	0.436	0.29		0.109	0.577	0.407		0.164
R07	3			FCLP at Coupeville	14FCP2	84 % NC		799	1,512	110	100	2.001	0	1.343	0	0.515	0	1.813	0	0.773	0
	<u>4</u> 5	EA-18G EA-18G		FCLP at Coupeville Interfacility Ault Field to Coupeville	14FCP2 32WC14P	84 % NC 82.2 % NC		1,199 1,104	1,749 1,725	108 105	100 100	1.273 0.018	0.897	0.872 0.024	0.58	0.347 0.014	0.219	1.153 0.048	0.813	0.521 0.021	0.329
	1			FCLP at Coupeville	14FCP3	84 % NC		800	3,154	101	106	1.001	0	0.671	0	0.258	0	0.907	0	0.387	0
Boo	2			FCLP at Coupeville	14FCP3	84 % NC	150	1,200	3,252	100	93	0.636	0.449	0.436	0.29		0.109	0.577	0.407	0.261	0.164
R08	3	EA-18G EA-18G	257 258	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW25 14CW32	82 % NC 82 % NC	250 250	2,000 2,000	2,690 2,690	99	92 92	0.356 0.069	0.073 0.014	0.24 0.047	0.048	0.094 0.018	0.018 0.004	0.323	0.067 0.013	0.141	0.028 0.005
	5			FCLP at Coupeville	14FCP2	84 % NC		800	4,008	98	91	2.001	0.514	1.343	0.000	0.515	0.004	1.813	0.010	0.773	0

Table A6-3 SEL-Ranked Flight Profiles for Alternative 1 for Average Year (continued)

									F-4	mated				Ann	ual Average	e Daily Even	its ⁽³⁾			
DO!	051		D. Cit.			Power Speed	Altitude	Slant	ESt	mated	1	A	1	В	1	С	1	D	1	E
POI	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID	Power Speed Setting (kts) ((ft MSL) (2)	Range	SEL	Lmax	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
10	Nank		10			Setting (Kts)	(IT WISE)	(ft)	(dBA)	(dBA) (4)	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
									<u> </u>	V	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G		Interfacility Ault Field to Coupeville	32WC32P	85 % NC 300	2,231	5,007	90	82	0.045	0	0.056	0	0.035	0	0.118	0	0.052	0
	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	85 % NC 300	2,236	5,091	90	82	0.681	0	0.394	0	0.214	0	0.725	0	0.322	0
R09	3	EA-18G	252PD	Interfacility Ault Field to Coupeville	25WC32P	85 % NC 300	2,180	5,083	90	81	1.135	0	0.704	0	0.248	0	0.843	0	0.374	0
	5	EA-18G		Interfacility Ault Field to Coupeville	14WC32P	85 % NC 300	2,299	5,114	90	81	0	0.227	0	0.122	0	0.065	0		0	0.098
-	1	EA-18G EA-18G	262 228B	Interfacility Coupeville to Ault Field P3 P8 IFR and Growler VFR non breaks	32CW32	82 % NC 250 87 % NC 300	2,000 2,480	3,677 3,143	90 100	81 90	0.178 0.844	0.037	0.109 0.777	0.022	0.045	0.009	0.154	0.032 0.068	0.067	0.013
H	2	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1B 14A1C	87 % NC 300	2,480	3,143	98	88	0.844	0.064	0.777	0.059	0.89	0.07	0.386	0.008	0.89	0.07
R10	3	EA-18G		GCA Pattern	32G3	82 % NC 250	3,000	2,980	93	84	0.065	0.027	0.086	0.023	0.086	0.034	0.086	0.029	0.086	0.034
11.10	4	EA-18G	278A	GCA Pattern	14G1	82 % NC 300	2,999	3,168	92	83	3.226	1.27	3.118	1.228	3.441	1.355	3.441	1.355	3.441	1.355
	5	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC 300	2,347	7,186	90	77	1.206	0.091	1.11	0.084	1.271	0.099	1.286	0.097	1.271	0.099
	1	EA-18G	238A	Overhead Break Arrival	1402A	84 % NC 300	10,000	13,520	73	60	0.23	0.022	0.221	0.021	0.246	0.024	0.246	0.024	0.246	0.024
	2	EA-18G	238B	Overhead Break Arrival	14O2B	84 % NC 300	10,000	13,567	73	60	0.23	0.022	0.221	0.021	0.246	0.024	0.246	0.024	0.246	0.024
R11	3	EA-18G	238C	Overhead Break Arrival	1402C	84 % NC 300	10,000	13,609	73	60	0.237	0.023	0.228	0.022	0.253	0.025	0.253	0.024	0.253	0.025
	4	EA-18G	236B	Overhead Break Arrival	07O2B	84 % NC 300	10,000	13,739	72	59	0.135	0.013	0.127	0.012	0.127	0.012	0.127	0.012	0.127	0.012
	5	EA-18G	236A	Overhead Break Arrival	07O2A	84 % NC 300	10,000	13,740	72	59	0.135	0.013	0.127	0.012	0.127	0.012	0.127	0.012	0.127	0.012
	1	EA-18G	205A	Departure	07D2B	84 % NC 300	9,000	9,677	75	65	0.78	0.047	0.726	0.045	0.727	0.045	0.734	0.044	0.727	0.045
	2	EA-18G	216A	Departure	25D2A	84 % NC 300	9,000	16,276	70	58	3.276	0.197	3.372	0.209	3.116	0.192	3.145	0.189	3.116	0.192
R12	3	EA-18G	217A	Departure	25D2B	84 % NC 300	9,000	16,448	70	58	2.293	0.138	2.36	0.146	2.181	0.134	2.201	0.132	2.181	0.134
	4	EA-18G	218A	Departure	25D2C	84 % NC 300	9,000	18,999	67	55	0.983	0.059	1.011	0.063	0.935	0.057	0.943	0.057	0.935	0.057
-	5	EA-18G	206A	Departure	07D2C	84 % NC 300	9,000	24,952	66	55	0.334	0.02		0.019	0.312	0.019	0.314	0.019	0.312	0.019
H	2			FCLP at Coupeville	14FCP1 14FCP2	84 % NC 150 84 % NC 150	1,200	47,518 46,886	75 74	63 62	1.001 1.273	0.897	0.671 0.872	0.58	0.258 0.347	0.219	0.907 1.153	0.813	0.387 0.521	0.329
R13	3			FCLP at Coupeville FCLP at Coupeville	14FCP2 14FCP1	84 % NC 150	1,200	47,526	74	62	0.636	0.897	0.872	0.29	0.347	0.219	0.577	0.813	0.521	0.329
1013	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC 250	2,000	30,019	71	51	0.030	0.449	0.436	0.022	0.174	0.009	0.154	0.407	0.261	0.104
	5	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	85 % NC 140	250	52,917	71	51	1.119	0.231	0.684	0.137	0.281	0.055	0.965	0.199	0.422	0.083
	1	EA-18G	268B	FCLP at Ault Field	14FU1	84 % NC 130	1,000	2,575	104	96	2.001	0.441	1.934	0.426	2.134	0.47	2.134	0.47	2.134	0.47
	2	EA-18G	269B	FCLP at Ault Field	25FU1	82.2 % NC 130	693	3,116	103	96	3.268	0.72	3,401	0.749	3.201	0.705	3.201	0.705	3.201	0.705
R14	3	EA-18G	283B	FCLP at Ault Field	25FU1	82.2 % NC 140	715	3,119	103	91	1.542	0.436	4.344	1.19	6.35	1.991	2.412	0.682	5.556	1.742
	4	EA-18G	269A	FCLP at Ault Field	25FM1	82.2 % NC 130	702	3,119	103	91	3.268	0.72	3.401	0.749	3.201	0.705	3.201	0.705	3.201	0.705
	5	EA-18G	265L	Depart and Re-enter Pattern	25PL	82.2 % NC 140	697	3,095	103	91	1.202	0.049	1.226	0.05	1.154	0.047	1.154	0.047	1.154	0.047
	1	EA-18G	273PDC	FCLP at Coupeville	14FCP3	85 % NC 140	575	1,544	110	103	1.001	0	0.671	0	0.258	0	0.907	0	0.387	0
	2	EA-18G		FCLP at Coupeville	14FCP3	85 % NC 140	698	1,589	109	103	0.636	0.449	0.436	0.29	0.174	0.109	0.577	0.407	0.261	0.164
R15	3			FCLP at Coupeville	14FCP2	85 % NC 140	585	1,871	107	101	2.001	0	1.343	0	0.515	0	1.813	0	0.773	0
	4			FCLP at Coupeville	14FCP2	85 % NC 140	718	1,912	107	101	1.273	0.897	0.872	0.58	0.347	0.219	1.153	0.813	0.521	0.329
	5	EA-18G		Interfacility Ault Field to Coupeville	07WC14P	84 % NC 140	588	2,009	106	98	0.159	0	0.109	0	0.033	0	0.112	0	0.05	0
1 1	2	EA-18G EA-18G	233A 209A	P3 P8 IFR and Growler VFR non breaks	32A1A	87 % NC 300 95 % NC 300	2,756	2,575 8,107	100	91 85	0.161	0.012	0.198 1.271	0.015	0.159 1.409	0.012	0.161	0.012 0.085	0.159	0.012 0.087
R16	3	EA-18G EA-18G	278C	Departure GCA Pattern	14D1C 14G3	95 % NC 300 82 % NC 250	6,951 3,000	3,185	93 91	85	1.376 0.645	0.083 0.254	0.624	0.079 0.246	0.688	0.087 0.271	1.422 0.688	0.085	1.409 0.688	0.087
K IO	4	EA-18G	208A	Departure	14D1B	95 % NC 300	6,815	9,922	90	81	3.21	0.234	2.965	0.246	3.287	0.202	3.317	0.271	3.287	0.202
	5	EA-18G	246	TACAN Arrival	32AHT	82.2 % NC 250	2,475	6,673	89	81	0.102	0.005	0.147	0.008	0.119	0.004	0.127	0.007	0.119	0.004
	1	P-8		P3 P8 IFR and Growler VFR non breaks	32A2C	17760 LBS 250	3,047	2.963	85	N/A	0.102	0.003	0.045	0.003	0.046	0.004	0.046	0.007	0.046	0.004
	2	transient	442C	VFR non breaks	32A2C	17760 LBS 250	3,047	2,963	85	N/A	0.016	0.002	0.043	0.005	0.021	0.006	0.022	0.006	0.021	0.006
R17	3	P-8	542B	P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS 250	3,047	6,202	79	N/A	0.046	0.007	0.045	0.013	0.046	0.015	0.046	0.016	0.046	0.015
	4	transient	442B	VFR non breaks	32A2B	17760 LBS 250	3,047	6,202	79	N/A	0.016	0.002	0.021	0.005	0.021	0.006	0.022	0.006	0.021	0.006
	5	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC 250	2,000	12,686	73	59	0.435	0.09	0.293	0.059	0.115	0.022	0.394	0.081	0.172	0.034
	1	P-8	543	Low TACAN Departure	07ALT	4610 LBS 250	5,971	5,979	68	N/A	0.072	0.017	0.068	0.015	0.067	0.012	0.068	0.013	0.067	0.012
	2	P-8	545	Low TACAN Departure	25ALT	4610 LBS 250	6,446	6,474	67	N/A	0.132	0.026	0.119	0.022	0.13	0.021	0.132	0.023	0.13	0.021
R18	3	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC 250	2,000	24,403	64	53	0.435	0.09	0.293	0.059	0.115	0.022	0.394	0.081	0.172	0.034
	4	EA-18G	255	Interfacility Coupeville to Ault Field	14CW07	82 % NC 250	2,000	24,403	64	53	0.129	0.027	0.087	0.017	0.034	0.007	0.117	0.024	0.051	0.01
\longrightarrow	5	EA-18G	252PD	Interfacility Ault Field to Coupeville	25WC32P	85 % NC 250	2,500	22,831	63	47	1.135	0	0.704	0	0.248	0	0.843	0	0.374	0
	1	EA-18G	253PD	Interfacility Ault Field to Coupeville	32WC14P	84 % NC 140	438	907	114	108	0.018	0	0.024	0	0.014	0 005	0.048	0	0.021	0
DAG	2	EA-18G		Interfacility Ault Field to Coupeville	32WC14P	84 % NC 140	438	907	114	108	0	0.007	0 0.74	0.009	0 250	0.005	0 007	0.018	0 207	0.007
R19	3			FCLP at Coupeville	14FCP1	85 % NC 140	492	1,069	114	108	1.001	0 440	0.671	0	0.258	0.400	0.907	0.407	0.387	0 404
1 }	5	EA-18G EA-18G		FCLP at Coupeville Interfacility Ault Field to Coupeville	14FCP1 25WC14P	85 % NC 140 84 % NC 140	530 444	1,080 962	113 113	107 107	0.636	0.449	0.436 0.302	0.29	0.174 0.101	0.109	0.577 0.344	0.407	0.261	0.164
\vdash	1	EA-18G	251PD	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC 140	2,933	3.692	95	87	0.441	0.027	0.302	0.025	0.101	0.03	0.344	0.029	0.153	0.03
1 1	2	EA-18G	277C	GCA Pattern	07G3	82 % NC 300	3,000	3,898	89	78	0.362	0.027	0.333	0.025	0.323	0.03	0.323	0.029	0.381	0.03
R20	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC 300	2,769	6,744	88	78	0.844	0.132	0.777	0.059	0.89	0.127	0.525	0.068	0.89	0.127
	4	transient	423	IFR non breaks	14A2E	17760 LBS 180	3,047	3,071	86	N/A	0.063	0.004	0.062	0.007	0.069	0.007	0.07	0.005	0.069	0.007
	5	P-8		P3 P8 C40 VFR non breaks	14A2E	17760 LBS 180	3,047	3.071	86	N/A	0.072	0.015	0.002	0.014	0.078	0.014	0.079	0.016	0.078	0.014
	Ŭ		U			30 220 100	0,041	0,0.1			0.072	0.010	0.071	0.017	0.070	3.314	0.070	0.010	0.070	0.017

Table A6-3 SEL-Ranked Flight Profiles for Alternative 1 for Average Year (concluded)

															Ann	ual Avera	e Daily Even	its (3)			
									Slant	Esti	mated		Δ		1B	uui Aveiu	1C		1D		1F
POI	SEL	Aircraft Type	Profile	Type of Operation	Track ID	Power	Speed	Altitude	Range			Davtime	Nighttime	Davtime	Nighttime	Davtime	Nighttime	Davtime	Nighttime	Davtime	Nighttime
ID	Rank	All of dit Type		Type of operation	Truck ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	(ft)	SEL	Lmax	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
									(11)	(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
		E4.400	0001	December 1 December 1 Deliver	32PL	00.0 10/ NO	140	770	4000	00	00										
-	2	EA-18G	266L	Depart and Re-enter Pattern	32PL 32FU1	82.2 % NC 82.2 % NC		773	4009 4008	98	90	0.096	0.004	0.096	0.004	0.096	0.004	0.096	0.004	0.096	0.004
004		EA-18G	270B	FCLP at Ault Field				802		96	90	0.4	0.088	0.533	0.118	0.533	0.118	0.533	0.118	0.533	0.118
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2 % NC		839	4014	96	84	0.066	0.019	0.668	0.183	0.777	0.244	0.295	0.083	0.68	0.213
	<u>4</u>	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2 % NC		773	4003	96	84	0.096	0.004	0.096	0.004	0.096	0.004	0.096	0.004	0.096	0.004
\vdash		EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2 % NC		861	3936	95	83	0.178	0.037	0.109	0.022	0.045	0.009	0.154	0.032	0.067	0.013
1 1	1	EA-18G	212A	Departure	14D2C	95 % NC		2514	3432	104	94	0.59	0.035	0.545	0.034	0.604	0.037	0.609	0.037	0.604	0.037
	2	EA-18G	209A	Departure	14D1C	95 % NC		2514	3432	104	93	1.376	0.083	1.271	0.079	1.409	0.087	1.422	0.085	1.409	0.087
S02	3	EA-18G	207A	Departure	14D1A	95 % NC		2514	3432	104	94	4.586	0.275	4.236	0.262	4.696	0.289	4.739	0.284	4.696	0.289
	4	EA-18G	211A	Departure	14D2B	95 % NC		2514	3432	104	94	1.376	0.083	1.271	0.079	1.409	0.087	1.422	0.085	1.409	0.087
	5	EA-18G	208A	Departure	14D1B	95 % NC		2514	3432	104	94	3.21	0.193	2.965	0.184	3.287	0.202	3.317	0.199	3.287	0.202
	11	EA-18G	276PDC	FCLP at Coupeville	32FCP3	84 % NC		800	5231	94	89	2.573	0	1.566	0	0.631	0	2.22	0	0.946	0
	2	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC		1200	5297	94	89	1.636	1.154	1.017	0.676	0.425	0.268	1.412	0.996	0.638	0.402
S03	3	EA-18G	276PDB	FCLP at Coupeville	32FCP2	84 % NC		800	6105	92	89	5.146	0	3.133	0	1.261	0	4.44	0	1.893	0
	4	EA-18G	276PNB	FCLP at Coupeville	32FCP2	84 % NC		1200	6162	92	89	3.273	2.307	2.034	1.353	0.851	0.536	2.823	1.991	1.276	0.804
	5	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC		1200	7058	90	88	1.636	1.154	1.017	0.676	0.425	0.268	1.412	0.996	0.638	0.402
	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2882	4781	93	83	0.362	0.027	0.333	0.025	0.381	0.03	0.386	0.029	0.381	0.03
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3000	2903	92	84	0.645	0.254	0.624	0.246	0.688	0.271	0.688	0.271	0.688	0.271
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2719	7342	87	76	0.844	0.064	0.777	0.059	0.89	0.07	0.9	0.068	0.89	0.07
	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	N/A	0.381	0.042	0.355	0.037	0.374	0.031	0.381	0.036	0.374	0.031
	5	transient	448C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	76	0.034	0	0.032	0	0.035	0	0.035	0	0.035	0
	1	EA-18G	243	TACAN Arrival	07AHT	78 % NC	250	3529	3374	76	68	0.407	0.022	0.293	0.016	0.406	0.013	0.433	0.023	0.406	0.013
	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC		2712	19217	70	56	0.362	0.027	0.333	0.025	0.381	0.03	0.386	0.029	0.381	0.03
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC		2592	23773	66	51	0.844	0.064	0.777	0.059	0.89	0.07	0.9	0.068	0.89	0.07
	4	EA-18G	224A	Departure	32D2C	95 % NC		8249	32151	65	52	0.059	0.004	0.078	0.005	0.097	0.006	0.098	0.006	0.097	0.006
	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760 LBS		3047	19344	64	N/A	0.355	0.069	0.318	0.056	0.356	0.061	0.355	0.063	0.356	0.061
	1	EA-18G	224A	Departure	32D2C	84 % NC		9000	61543	51	39	0.059	0.003	0.078	0.005	0.097	0.006	0.098	0.006	0.097	0.006
	2	EA-18G	223A	Departure	32D2B	84 % NC		9000	66657	50	39	0.033	0.004	0.182	0.003	0.037	0.014	0.229	0.000	0.037	0.000
S06	3	P-8	547C	GCA Pattern	07G3	17760 LBS		3000	40394	50	37	0.130	0.005	0.203	0.019	0.181	0.014	0.184	0.014	0.181	0.014
000	4	transient	447C	GCA Pattern	07G3	17760 LBS		3000	40394	50	37	0.018	0.023	0.203	0.013	0.017	0.010	0.104	0.021	0.017	0.010
H	5	EA-18G	222A	Departure	32D2A	95 % NC		8656	71520	49	37	0.018	0.012	0.018	0.016	0.325	0.02	0.328	0.02	0.325	0.02
-	1	EA-18G	277C	GCA Pattern	07G3	82 % NC		2810	88787	61	51	0.197	0.012	0.239	0.016	0.323	0.02	0.323	0.02	0.323	0.02
ŀ	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0.681	0.132	0.394	0.133	0.323	0.127	0.725	0.127	0.323	0.127
S07	3		250PD					2500	165180	59	47						0.065		0.245		0.098
307		EA-18G	250PN 254PD	Interfacility Ault Field to Coupeville	14WC32P 32WC32P					59	47	0	0.227	0.056	0.122	0.035		0		0.052	
1 1	4	EA-18G		Interfacility Ault Field to Coupeville				2500	135475			0.045	0		0		0	0.118	0		0
\vdash	5	EA-18G	254PN	Interfacility Ault Field to Coupeville	32WC32P	82 % NC		2500	135475	59	47	0	0.015	0	0.017	0	0.011	0	0.04	0	0.016
		EA-18G	280C	GCA Pattern	32G3	82 % NC		3000	2779	93	81	0.065	0.025	0.086	0.034	0.086	0.034	0.086	0.034	0.086	0.034
200	2	EA-18G	278C	GCA Pattern	14G3	82 % NC		3000	2779	93	81	0.645	0.254	0.624	0.246	0.688	0.271	0.688	0.271	0.688	0.271
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC		2851	6041	89	80	1.206	0.091	1.11	0.084	1.271	0.099	1.286	0.097	1.271	0.099
	4	EA-18G	279C	GCA Pattern	25G3	82 % NC		3000	4183	88	79	1.054	0.415	1.097	0.432	1.054	0.415	1.054	0.415	1.054	0.415
\vdash	5	EA-18G	277C	GCA Pattern	07G3	82 % NC		3000	4183	88	79	0.387	0.152	0.344	0.135	0.323	0.127	0.323	0.127	0.323	0.127
	1	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87 % NC		3000	4033	92	86	0.985	0.074	1.011	0.076	0.953	0.074	0.965	0.073	0.953	0.074
1	2	EA-18G	277B	GCA Pattern	07G2	82 % NC		3000	3025	91	78	0.258	0.102	0.229	0.09	0.215	0.085	0.215	0.085	0.215	0.085
S09	3	EA-18G	279A	GCA Pattern	25G1	82 % NC		3000	5300	87	75	5.269	2.074	5.484	2.159	5.269	2.074	5.269	2.074	5.269	2.074
1 .	4	EA-18G	206A	Departure	07D2C	95 % NC		5403	11786	86	76	0.334	0.02	0.311	0.019	0.312	0.019	0.314	0.019	0.312	0.019
	5	EA-18G	203A	Departure	07D1C	95 % NC		5300	11968	86	76	0.78	0.047	0.726	0.045	0.727	0.045	0.734	0.044	0.727	0.045
	1	P-8	546	Low TACAN Departure	32ALT	17760 LBS		3616	3501	83	N/A	0.017	0.003	0.017	0.005	0.017	0.005	0.017	0.006	0.017	0.005
	2	EA-18G	280C	GCA Pattern	32G3	82 % NC	230	2333	19814	71	61	0.065	0.025	0.086	0.034	0.086	0.034	0.086	0.034	0.086	0.034
S10	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2000	20733	70	58	0.356	0.073	0.24	0.048	0.094	0.018	0.323	0.067	0.141	0.028
	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2000	20783	70	58	0.069	0.014	0.047	0.009	0.018	0.004	0.063	0.013	0.027	0.005
	5	EA-18G	246	TACAN Arrival	32AHT	78 % NC	250	3085	23749	70	53	0.102	0.005	0.147	0.008	0.119	0.004	0.127	0.007	0.119	0.004
Notes:						-							_								

(1) 0 ft indicates the contributing profile is the beginning of takeoff roll

(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

(3) not operations. Patterns counted as 1 event, vice 2 operations.

(4) n/a = not available: NOISEMAP's database does not include Lmax data for flight events for this aircraft type (B737-700).

(5) Estimated from the average difference of SEL and Lmax of similar events at this POI

Table A6-4 SEL-Ranked Flight Profiles for Alternative 2 for Average Year

Polision Company Polision Company Polision Company C	
Rank ArtCraft Type D	D 2E
2	Nighttime (2200- (0700- (0700) (2200) (2200- (0700) (2200) (2200)
POI 3	0.003 0.102 0.003
EA-18G 283R Depart and Re-enter Pattern 0.7PR 84 % NC 250 2.000 4.943 91 80 0.435 0.014 0.409 0.013 0.435 0.014 0.435	0.026 0.793 0.026 0.04 1.228 0.04
S	0.014 0.435 0.014
2	0.66 3.238 0.66
P02 3	0.44 2.159 0.44
## EA-18G 282B FCLP at Ault Field 14FU1 82.2 % NC 140 859 1,393 106 100 0.971 0.248 2.239 0.606 4.17 1.194 1.603 5 EA-18G 264R Depart and Re-enter Pattern 14PR 82.2 % NC 140 859 1,393 106 100 0.742 0.024 0.742 0.024 0.793 0.026 0.793 1 EA-18G 263R Depart and Re-enter Pattern 07PR 84 % NC 250 1,477 1,206 105 98 0.435 0.014 0.099 0.013 0.435 0.014 0.014	0.44 2.159 0.44 0.41 3.649 1.045
5 EA18G 264R Depart and Re-enter Pattern 14PR 82.2 % NC 140 859 1,333 106 100 0.742 0.024 0.742 0.024 0.733 0.026 0.793 1 EA18G 265L Depart and Re-enter Pattern 25PL 84 % NC 250 2,000 1,599 103 95 1,279 0.042 1,305 0.043 1,228 0.04 1,228 P03 3 EA-18G 266L Depart and Re-enter Pattern 14PL 84 % NC 250 1,999 2,306 99 90 0.042 1,305 0.043 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 1,228 0.04 0.04 0.04 0.04 0.04 0.04	0.41 3.649 1.045
2 EA-18G 265L Depart and Re-enter Pattern 25PL 84 % NC 250 2,000 1,599 103 95 1,279 0,042 1,305 0,043 1,228 0,04 1,228	0.026 0.793 0.026
P03 3 EA-18G 264L Depart and Re-enter Pattern 14PL 84 % NC 250 1.999 2.306 99 90 0.742 0.024 0.742 0.024 0.793 0.026 0.026 0	0.014 0.435 0.014
4 EA-18G 266R Depart and Re-enter Pattern 32PR 84 % NC 250 2,000 2,401 99 90 0.102 0.003 0.014 0.057 0.026 0.0121 0.0267 0.024 0.062 0.121 0.062 0.0121 0.0267 0.0267 0.026 0.0287 0.0287 0.0281 0.043 111 106 0.318 0.063 0.196 0.036 0.079 0.015 0.034 0.043 0.042	0.04 1.228 0.04 0.026 0.793 0.026
1 EA-18G 260 Interfacility Coupeville to Aut Field 32CW14 96 % NC 150 936 1,943 111 106 1.075 0.212 0.662 0.121 0.267 0.052 0.928	0.003 0.102 0.003
2 EA-18G 259 Interfacility Coupeville to Aut Field 32CW07 96 % NC 150 936 1,943 111 106 0.318 0.063 0.063 0.076 0.079 0.015 0.274 4 EA-18G 262 Interfacility Coupeville to Aut Field 32CW32 96 % NC 150 936 1,943 111 106 0.88 0.173 0.542 0.099 0.218 0.0043 0.759 5 EA-18G 279DA FCLP at Coupeville 32CW32 96 % NC 150 936 1,943 111 106 0.171 0.034 0.105 0.019 0.042 0.008 0.148 5 EA-18G 279DA FCLP at Coupeville 32FCP3 84 % NC 150 150 8.00 8.475 88 77 1.612 1.034 0.988 0.61 0.413 0.243 1.391 2 EA-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 8.00 8.475 88 77 1.612 1.034 0.988 0.61 0.413 0.243 1.391 2 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 8.00 8.475 88 77 3.224 2.068 1.977 1.221 0.825 0.487 2.782 4 EA-18G 276PDE FCLP at Coupeville 32FCP2 84 % NC 150 800 9.568 87 77 3.224 2.068 1.977 1.221 0.825 0.487 2.782 5 transient 430 IFR non breaks 32A2E 17760 LBS 180 3.047 3.122 85 N/A 0.009 0.001 0.011 0.001 0.011 6 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 7.99 5.329 96 85 2.474 0 1.514 0 0.609 0 2.135 6 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 7.99 5.329 96 85 2.474 0 1.514 0 0.609 0 2.135 7 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 7.99 5.329 96 85 2.474 0 1.514 0 0.609 0 2.135 8 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 7.99 5.329 96 85 2.474 0 1.514 0 0.609 0 2.135 9 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 7.99 6.534 93 81 3.224 2.688 1.977 1.221 0.825 0.487 2.782 9 EA-18G 276PDA FCLP at Coupeville 32FCP2 84 % NC 150 7.99 6.534 93 81 3.224 2.6	0.067 1.079 0.06
P04 3 EA-18G 261 Interfacility Coupeville to Ault Field 32CW25 96 % NC 150 936 1,943 111 106 0.88 0.173 0.542 0.099 0.218 0.043 0.759 0.042 0.008 0.148 0.044 0.058 0.049 0.042 0.008 0.148 0.045 0.049 0.042 0.068 0.049 0.042 0.068 0.049	0.183 0.401 0.079 0.054 0.119 0.023
5 EA-18G 273POA FCLP at Coupeville 14FCP1 85 % NC 140 337 1,801 108 100 0.962 0 0.649 0 0.249 0 0.872 1 E.A-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 8.00 8,475 88 77 1.612 1.034 0.988 0.61 0.413 0.243 1.331 2 EA-18G 276PDC FCLP at Coupeville 32FCP2 84 % NC 150 800 8,475 88 77 2.474 0 1.514 0 0.609 0 2.135 P05 3 EA-18G 276PDE FCLP at Coupeville 32FCP2 84 % NC 150 1,200 9,601 87 77 3.224 2.068 1,977 1,221 0.825 0.487 2,782 4 E.A-18G 276PDE FCLP at Coupeville 32FCP2 84 % NC 150 80 9,568 87 77 4,949	0.15 0.328 0.064
1 EA-18G 276PNC FCLP at Coupeville 32FCP3 84 % NC 150 1,200 8,512 88 77 1.612 1.034 0.988 0.61 0.413 0.243 1.391 2 EA-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 800 8,475 88 77 2.474 0 1.514 0 0.609 0 2.135 84 EA-18G 276PNB FCLP at Coupeville 32FCP2 84 % NC 150 1,200 9,601 87 77 3.224 2.068 1.977 1.221 0.825 0.487 2.782 84 EA-18G 276PNB FCLP at Coupeville 32FCP2 84 % NC 150 800 9,568 87 77 4.949 0 3.027 0 1.217 0 4.271 5 transient 430 IFR non breaks 32AEE 17760 LBS 180 3,047 3.122 85 N/A 0.009 0.001 0.011 0.001 0.011 1 EA-18G 276PNC FCLP at Coupeville 32FCP2 84 % NC 150 799 5,329 96 85 2.474 0 1.514 0 0.609 0 2.135 82 EA-18G 276PNC FCLP at Coupeville 32FCP2 84 % NC 150 799 5,329 96 85 2.474 0 1.514 0 0.609 0 2.135 82 EA-18G 276PNC FCLP at Coupeville 32FCP2 84 % NC 150 799 5,397 96 84 1.612 1.034 0.988 0.61 0.413 0.243 1.391 82FCP2 84 % NC 150 799 6,534 93 81 4.949 0 3.027 0 1.217 0.4271	0.029 0.064 0.013
2 EA-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 800 8,475 88 77 2,474 0 1,514 0 0,609 0 2,135 3 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 1,200 9,601 87 77 3,224 2,668 1,977 1,221 0,825 0,487 2,782 5 transient 430 IFR non breaks 32AE 17760 LBS 180 3,047 3,122 85 N/A 0,009 0,001 0,011 0,001 0,001 0,001 1 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 799 6,5329 96 85 2,474 0 1,514 0 0,609 0 2,135 2 EA-18G 276PDB FCLP at Coupeville 32FCP3 84 % NC 150 799 5,329 96 85 2,474 0 1,514 0 0,609 0 2,135 2 EA-18G 276PDB FCLP at Coupeville 32FCP3 84 % NC 150 799 6,5329 96 85 2,474 0 1,514 0 0,609 0 2,135 2 EA-18G 276PDB FCLP at Coupeville 32FCP3 84 % NC 150 799 6,534 93 81 4,949 0 3,027 0 1,217 0 4,271 4 EA-18G 276PDB FCLP at Coupeville 32FCP3 84 % NC 150 799 6,534 93 81 4,949 0 3,027 0 1,217 0 4,271 4 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 1,199 6,590 93 81 3,224 2,688 1,977 1,221 0,825 0,487 2,782 5 EA-18G 276PDB FCLP at Coupeville 32FCP3 84 % NC 150 1,199 6,590 93 81 3,224 2,688 1,977 1,221 0,825 0,487 2,782 5 EA-18G 276PDB FCLP at Coupeville 32FCP3 84 % NC 150 1,199 7,791 91 79 1,612 1,034 0,988 0,61 0,413 0,243 1,391 1 EA-18G 276PDB FCLP at Coupeville 132FCP3 84 % NC 150 1,199 7,791 91 79 1,612 1,034 0,988 0,61 0,413 0,243 1,391 1 EA-18G 276PDB FCLP at Coupeville 132FCP3 84 % NC 150 1,199 7,791 91 79 1,612 1,034 0,988 0,61 0,413 0,243 1,391 1 EA-18G 276PDB FCLP at Coupeville 132FCP3 84 % NC 150 1,199 7,791 91 79 1,612 1,034 0,988 0,61 0,413 0,243 1,391 1 EA-18G 276PDB FCLP at Coupeville 14CW32 82 % NC 250 2,000 12,064 82 73 0,067 0,013 0,045 0,008 0,017 0,003 0,066 1 EA-18G 276PDB FCLP at Coupeville 14CW32 82 % NC 250 2,000 12,064 82 73 0,067 0,013 0,045 0,008 0,017 0,003 0,066 1 EA-18G 276PDB FCLP at Coupeville 14CW32 82 % NC 250 2,000 12,064 82 73 0,067 0,013 0,045 0,008 0,017 0,003 0,066 0,008 0,0	0 0.373 0
P05 3 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 1,200 9,601 87 77 3.224 2.068 1.977 1.221 0.825 0.487 2.782	0.892 0.619 0.365 0 0.913 0
5 transient 430 IFR non breaks 32A2E 17760 LBS 180 3,047 3,122 85 N/A 0,009 0,001 0,011 0,001 0,001 0,001 0,001 1 1 EA-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 799 5,329 96 85 2,474 0 1,514 0 0,988 0,61 0,413 0,243 1,391 0,243	1.784 1.238 0.73
1 EA-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 799 5,329 96 85 2,474 0 1,514 0 0,609 0 2,135 2 EA-18G 276PDC FCLP at Coupeville 32FCP3 84 % NC 150 1,199 5,397 96 84 1,612 1,034 0,988 0,61 0,413 0,243 1,391 5 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 799 6,534 93 81 4,949 0 3,027 0 1,217 0 4,271 4 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 1,199 6,590 93 81 3,224 2,088 1,977 1,221 0,825 0,487 2,782 5 EA-18G 276PDB FCLP at Coupeville 32FCP1 84 % NC 150 1,199 7,791 91 79 1,612 1,034 0,988 0,61 0,413 0,243 1,391 1 EA-18G 258 Interfacility Coupeville to Aut Field 14CW32 82 % NC 250 2,000 12,064 82 73 0,067 0,013 0,045 0,008 0,017 0,003 0,066 0,007 0,008 0,017 0,008 0,008 0,007	0 1.826 0
Pote 2 EA-18G 276PNC FCLP at Coupeville 32FCP3 84 %NC 150 1,199 5,397 96 84 1.612 1.034 0.988 0.61 0.413 0.243 1.391	0.001 0.01 0.001
P06 3 EA-18G 276PDB FCLP at Coupeville 32FCP2 84 % NC 150 799 6,534 93 81 4,949 0 3.027 0 1.217 0 4.271 4 EA-18G 276PNB FCLP at Coupeville 32FCP2 84 % NC 150 1,199 6,590 93 81 3.224 2.068 1,977 1.221 0.925 0.467 2.782 5 EA-18G 276PNA FCLP at Coupeville 32FCP1 84 % NC 150 1,199 7,791 91 79 1.612 1.034 0.988 0.61 0.413 0.243 1.391 1 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2,000 12,064 82 73 0.067 0.013 0.045 0.008 0.017 0.003 0.068 0.018 0	0 0.913 0 0.892 0.619 0.365
5 EA-18G 276PNA FCLP at Coupeville 32FCP1 84 %NC 150 1,199 7,791 91 79 1.612 1.034 0.988 0.61 0.413 0.243 1.391 1 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 %NC 250 2,000 12,064 82 73 0.067 0.013 0.045 0.008 0.017 0.003 0.06	0 1.826 0
1 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2,000 12,064 82 73 0.067 0.013 0.045 0.008 0.017 0.003 0.06	1.784 1.238 0.73
	0.892 0.619 0.365 0.012 0.026 0.005
	0.061 0.134 0.026
P07 3 EA-18G 273PDB FCLP at Coupeville 14FCP2 84 % NC 150 800 23,102 80 68 1.925 0 1.297 0 0.497 0 1.744	0 0.746 0
4 EA-18G 280C GCA Pattern 32G3 82 %NC 230 2,208 17,859 80 71 0.065 0.024 0.086 0.032 0.086 0.032 0.086	0.032 0.086 0.032
5 EA-18G 262 Interfacility Coupeville to Ault Field 32CW32 82 %NC 250 2,000 9,777 79 66 0.171 0.034 0.105 0.019 0.042 0.008 0.148 1 P-8 542C P3 P8 IFR and Growler VFR non breaks 32A2C 17760 LBS 250 3,047 3,389 85 N/A 0.047 0.007 0.046 0.013 0.046 0.015 0.047	0.029 0.064 0.013 0.015 0.046 0.015
2 transient 442C VFR non breaks 32A2C 17760 LBS 250 3,047 3,389 85 N/A 0.022 0.002 0.002 0.002 0.002 0.002 0.002	0.006 0.022 0.005
P08 3 P-8 542B P3 P8 IFR and Growler VFR non breaks 32A2B 17760 LBS 250 3,047 5,353 81 N/A 0.047 0.007 0.046 0.013 0.046 0.015 0.047	0.015 0.046 0.015
4 transient 442B VFR non breaks 32A2B 17760 LBS 250 3,047 5,353 81 N/A 0.022 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.022 0.005 0.022 5 EA-18G 255 Interfacility Coupeville to Ault Field 14CW07 82 %NC 250 2,000 10,604 76 64 0.124 0.024 0.084 0.015 0.032 0.006 0.112	0.006 0.022 0.005 0.022 0.048 0.01
5 EA-18G 255 Interfacility Coupeville to Ault Field 14CW07 82 % NC 250 2,000 10,604 76 64 0.124 0.024 0.084 0.015 0.032 0.006 0.112 1 EA-18G 244 TACAN Arrival 14AHT 78 % NC 250 3,163 48,626 62 51 0.646 0.036 0.57 0.026 0.604 0.034 0.67	0.038 0.604 0.034
2 EA-18G 278C GCA Pattern 14G3 82 %NC 230 2,403 34,003 61 52 0.648 0.239 0.627 0.231 0.691 0.255 0.691	0.255 0.691 0.255
P09 3 P-8 544 Low TACAN Departure 14ALT 4610 LBS 250 5,632 28,942 55 53 0.197 0.037 0.201 0.039 0.205 0.041 0.201	0.04 0.205 0.041
4 EA-18G 215A Departure 25D1C 95 %NC 300 4,765 109,923 55 48 2.357 0.147 2.432 0.15 2.254 0.131 2.263 5 EA-18G 217A Departure 25D2B 95 %NC 300 3.835 110,307 54 43 2.357 0.147 2.432 0.15 2.254 0.131 2.263	0.142 2.254 0.131 0.142 2.254 0.131
1 EA-18G 229A P3 P8 IFR and Growler VFR non breaks 14A2A 87 % NC 300 2.577 4.579 95 85 1.249 0.093 1.157 0.082 1.323 0.11 1.332	0.099 1.323 0.13
2 EA-18G 223A Departure 32D2B 95 %NC 300 8,291 9,255 90 80 0.141 0.009 0.187 0.012 0.235 0.014 0.236	0.015 0.235 0.014
P10 3 EA-18G 279C GCA Pattern 25G3 82 % NC 250 3,000 4,073 89 80 1.059 0.39 1.102 0.406 1.059 0.39 1.059 4 EA-18G 277C GCA Pattern 07G3 82 % NC 300 3,000 4,085 89 79 0.389 0.143 0.346 0.127 0.324 0.119 0.324	0.39 1.059 0.39 0.119 0.324 0.119
4 EA-18G 277C GCA Pattern 07G3 82 % NC 300 3,000 4,085 89 79 0.389 0.143 0.346 0.127 0.324 0.119 0.324 5 EA-18G 277B GCA Pattern 07G2 82 % NC 300 3,000 4,387 88 78 0.259 0.096 0.23 0.085 0.216 0.08 0.216	0.119 0.324 0.119
1 EA-18G 277C GCA Pattern 07G3 82 % NC 230 2,926 21,053 64 50 0.389 0.143 0.346 0.127 0.324 0.119 0.324	0.119 0.324 0.119
2 P-8 547C GCA Pattern 07G3 17760 LBS 200 3,000 21,066 63 N/A 0.222 0.025 0.201 0.021 0.187 0.019 0.185	0.021 0.187 0.019
P11 3 transient 447C GCA Pattern 07G3 17760 LBS 200 3,000 21,066 63 N/A 0.021 0 0.018 0 0.017 0 0.017 0 0.017 4 P-8 527 P3 P8 C40 VFR non breaks 14A2E 17760 LBS 250 3,047 30,649 57 N/A 0.069 0.014 0.065 0.013 0.078 0.016 0.076	0 0.017 0 0.015 0.078 0.016
4 P-8 527 P3 P8 C40 VFR non breaks 14A2E 17760 LBS 250 3,047 30,649 57 N/A 0.069 0.014 0.065 0.013 0.078 0.016 0.076 0.076 0.077 0.078 0.0	0.007 0.064 0.006
1 EA-18G 228C P3 P8 IFR and Growler VFR non breaks 14A1C 87 % NC 300 2,941 9,040 82 74 0.375 0.028 0.347 0.024 0.397 0.03 0.4	0.03 0.397 0.03
2 EA-18G 278C GCA Pattern 14G3 82 % NC 300 3,000 7,718 80 72 0.648 0.239 0.627 0.231 0.691 0.255 0.691	0.255 0.691 0.255
P12 3 EA-18G 228B P3 P8 IFR and Growler VFR non breaks 14A1B 87 %NC 300 2,784 12,784 79 68 0.874 0.065 0.81 0.057 0.926 0.07 0.932 4 P-8 548C GCA Pattern 14G3 17760 LBS 200 3,000 7,718 78 N/A 0.382 0.042 0.351 0.041 0.386 0.034 0.382	0.07 0.926 0.07 0.037 0.386 0.034
4 P-6 3466 GA Pattern 14G3 17760 LBS 200 3,000 7,718 78 N/A 0,336 0 0,032 0 0.035 0 0.036 0 0,035 0 0.036 0 0,	0 0.035 0.034
1 EA-18G 219A Departure 32D1A 95 %NC 300 7,686 7,575 94 86 0.471 0.029 0.624 0.038 0.783 0.045 0.786	0.049 0.783 0.045
2 EA-18G 278B GCA Pattern 14G2 82 %NC 300 3,000 3,526 91 81 0.432 0,159 0.418 0.154 0.461 0.47 0.461	0.17 0.461 0.17
P13 3 EA-18G 277C GCA Pattern 07G3 82 % NC 300 3,000 3,689 90 80 0.389 0.143 0.346 0.127 0.324 0.119 0.324 4 EA-18G 279C GCA Pattern 25G3 82 % NC 300 3,000 3,689 90 81 1.059 0.39 1.102 0.406 1.059 0.39 1.059	0.119 0.324 0.119 0.39 1.059 0.39
5 EA-18G 2808 GCA Pattern 32G2 82 % NC 300 3,000 3,526 90 81 0.043 0.016 0.058 0.021 0.058 0.021 0.058	0.021 0.058 0.021

Table A6-4 SEL-Ranked Flight Profiles for Alternative 2 for Average Year (continued)

												Annual Average Daily Events (8)									
POI	SEL		Profile			Power	Speed	Altitude	Slant	Esti	imated	2	2A	2	В	Averag	C C		2D	2	Е
ID	Rank	Aircraft Type	ID	Type of Operation	pe of Operation Track ID Setting		(kts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1	EA-18G	278C	GCA Pattern	14G3	82 % NC		1,822	20,245	76	63	0.648		0.627	0.231	0.691	0.255	0.691	0.255	0.691	0.255
P14	3	P-8 EA-18G	544 278B	Low TACAN Departure GCA Pattern	14ALT 14G2	4610 LBS 82 % NC	250 230	4,622 2,166	4,657 23,933	72 72	N/A 58	0.197 0.432	0.037 0.159	0.201 0.418	0.039 0.154	0.205 0.461	0.041 0.17	0.201	0.04	0.205 0.461	0.041
F14	4	EA-18G	221A	Departure	32D1C	95 % NC		6,560	43,942	69	49	0.432	0.139	0.418	0.134	0.461	0.014	0.461	0.015	0.461	0.014
	5	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,569	25,383	67	55	0.375	0.028	0.347	0.024	0.397	0.03	0.4	0.03	0.397	0.03
	2	EA-18G EA-18G	206A 203A	Departure	07D2C 07D1C	95 % NC 95 % NC	300 300	5,213 5,155	8,277 8,368	92 92	83 83	0.344 0.802	0.021	0.321 0.748	0.02	0.322 0.751	0.019 0.044	0.323 0.754	0.02	0.322 0.751	0.019 0.044
P15	3	EA-18G	277B	Departure GCA Pattern	07G2	82 % NC	250	3,000	3,437	91	80	0.802	0.096	0.748	0.046		0.044	0.734	0.047	0.731	0.044
	4	EA-18G	205A	Departure	07D2B	95 % NC	300	4,892	9,517	90	79	0.802	0.05	0.748	0.046	0.751	0.044	0.754	0.047	0.751	0.044
	5 1	EA-18G EA-18G	202A 256	Departure Interfacility Coupeville to Ault Field	07D1B 14CW14	95 % NC 82 % NC	300 250	4,743 2,000	10,004 8,724	89 79	78 67	1.87 0.418	0.117	1.746 0.284	0.108	1.753 0.109	0.102 0.021		0.11	1.753 0.164	0.102
•	2	EA-18G	255	Interfacility Coupeville to Ault Field	14CW14	82 % NC		2,000	8,724	79	67	0.418	0.082	0.284	0.032		0.021		0.073	0.164	0.032
P16	3		252PD	Interfacility Ault Field to Coupeville	25WC32P	82 % NC	250	2,500	10,146	78	64	1.101	0	0.68	0	0.233	0	0.817		0.351	0
-	<u>4</u> 5			Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32P 14WC32P	82 % NC 82 % NC	250 250	2,500 2,500	10,318 10,355	78 78	64 64	0		0	0.072 0.112	0	0.024 0.064	0		0	0.037 0.097
	1			FCLP at Coupeville	32FCP1	84 % NC	150	799	742	115	110	2.474		1.514	0.112	0.609	0.004	2.135		0.913	0.037
	2	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC	150	1,199	1,129	111	106	1.612	1.034	0.988	0.61	0.413	0.243	1.391	0.892	0.619	0.365
P17	3 4			FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP2	84 % NC 84 % NC	150 150	799 1,199	1,206 1,476	111	105 103	4.949 3.224	2.068	3.027 1.977	1.221	1.217 0.825	0.487	4.271 2.782	1.784	1.826 1.238	0.73
	5			FCLP at Coupeville	32FCP3	84 % NC	150	799	2,304	106	97	2.474	2.000	1.514	0	0.609	0.407	2.135	0	0.913	0.73
	1	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC	150	1,200	6,600	92	82	1.612	1.034	0.988	0.61	0.413	0.243	1.391	0.892	0.619	0.365
P18	2			FCLP at Coupeville FCLP at Coupeville	32FCP3 32FCP2	84 % NC 84 % NC	150 150	1,200	6,544 7,760	91 90	82 79	2.474 3.224	2.068	1.514 1.977	1.221	0.609 0.825	0.487	2.135 2.782	1.784	0.913 1.238	0.73
1 10	4			FCLP at Coupeville	32FCP2	84 % NC	150	800	7,712	90	79	4.949	2.000	3.027	0	1.217	0.407	4.271	0	1.826	0.73
	5			FCLP at Coupeville	32FCP1	84 % NC	150	1,200	8,929	87	78	1.612		0.988	0.61	0.413	0.243	1.391	0.892	0.619	0.365
	2		251PN 251PD	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC14P 25WC14P	97 % NC 97 % NC	135 135	59 59	1,093	121 121	114 114	0.428		0.291	0.099	0.095	0.034	0.334	0.117	0.143	0.051
R01	3			Interfacility Ault Field to Coupeville	25WC32P	97 % NC	135	59	1,093	121	114	0.420		0.231	0.2		0.075	0.554		0.143	0.113
	4		252PD		25WC32P	97 % NC	135	59	1,093	121	114	1.101	0	0.68	0	0.233	0	0.817		0.351	0
\vdash	5 1	EA-18G EA-18G	204A	Departure Interfacility Ault Field to Coupeville	07D2A 14WC32P	97 % NC 97 % NC	165 0	302 47	1,118 3,519	120 110	116 96	1.145		1.069	0.066		0.062 0.064	1.078		1.073	0.062 0.097
	2	EA-18G	250PD		14WC32P	97 % NC	0	47	3,519	110	96	0.66	0.207	0.381	0.112	0.201	0.064	0.703		0.302	0.097
R02	3		249PN	Interfacility Ault Field to Coupeville	14WC14P	97 % NC	0	47	3,519	110	96	0		0	0.055		0.029	0	0.101	0	0.044
	<u>4</u> 5	EA-18G EA-18G	249PD 210A	Interfacility Ault Field to Coupeville Departure	14WC14P 14D2A	97 % NC 97 % NC	0	47 47	3,519 3,519	110 109	96 100	0.257 2.021	0.126	0.163 1.871	0.115	0.082 2.08	0.121	0.287 2.088	0.131	0.123 2.08	0.121
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	1,787	101	93	0.102	0.003	0.102	0.003	0.102	0.003	0.102	0.003	0.102	0.003
	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84 % NC	250	2,000	1,967	101	92	0.742	0.024	0.742	0.024	0.793	0.026		0.026	0.793	0.026
R03	3_4	EA-18G EA-18G	265L 263R	Depart and Re-enter Pattern Depart and Re-enter Pattern	25PL 07PR	84 % NC 84 % NC		2,000 2,000	1,971 2,001	100 100	92 92	1.279 0.435	0.042	1.305 0.409	0.043	1.228 0.435	0.04 0.014		0.04	1.228 0.435	0.04
	5	EA-18G		FCLP at Ault Field	32FU1	82.2 % NC	130	817	8,282	88	78	0.405	0.082	0.54	0.11	0.54	0.014		0.11	0.54	0.11
	1	EA-18G	205A	Departure	07D2B	95 % NC	300	4,035	5,492	99	88	0.802		0.748	0.046	0.751	0.044	0.754	0.047	0.751	0.044
R04	3	EA-18G EA-18G	202A 206A	Departure Departure	07D1B 07D2C	95 % NC 95 % NC	300	4,007 4,096	5,530 5,708	98 98	88 88	1.87 0.344	0.117 0.021	1.746 0.321	0.108		0.102 0.019	1.76	0.11	1.753 0.322	0.102
1.0.	4	EA-18G	203A	Departure	07D1C	95 % NC	300	4,096	5,708	98	88	0.802	0.05	0.748	0.046		0.044	0.754	0.047	0.751	0.044
	5	EA-18G	204A	Departure	07D2A	95 % NC		3,804	6,519	96	86	1.145		1.069	0.066		0.062	1.078		1.073	0.062
	1 2	EA-18G EA-18G	277A 279A	GCA Pattern GCA Pattern	07G1 25G1	82 % NC 82 % NC	250 300	3,000 3,000	3,009 3,350	92 91	84 82	1.945 5.294	0.717 1.951	1.728 5.51	0.637 2.031	1.62 5.294	0.597 1.951	1.62 5.294	0.597 1.951	1.62 5.294	0.597 1.951
R05	3	EA-18G	280C	GCA Pattern	32G3	82 % NC	300	3,000	3,491	90	82	0.065	0.024	0.086	0.032	0.086	0.032	0.086	0.032	0.086	0.032
	4	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3,000	3,491	90	82	0.648	0.239	0.627	0.231	0.691	0.255	0.691	0.255	0.691	0.255
	5 1	EA-18G EA-18G	205A 276PDB	Departure FCLP at Coupeville	07D2B 32FCP2	95 % NC 85 % NC	300 140	3,808 515	13,742 389	85 121	75 114	0.802 4.949	0.05	0.748 3.027	0.046	0.751 1.217	0.044	0.754	0.047	0.751 1.826	0.044
	2			FCLP at Coupeville	32FCP3	85 % NC	140	508	405	120	113	2.474	0	1.514	0		0	2.135	0	0.913	0
R06	3	EA-18G	276PDA	FCLP at Coupeville	32FCP1	85 % NC	140	524	412	120	113	2.474	0	1.514	0	0.000	0	2.135	0	0.913	0
	5			Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32P 32WC32P	84 % NC 84 % NC	140 140	526 523	399 399	120 120	113 113	1.101 0.044	0	0.68	0		0	0.817 0.114	0	0.351	0
	1			FCLP at Coupeville	14FCP1	84 % NC	150	799	769	115	109	0.044	0	0.054	0		0	0.114	0	0.049	0
	2	EA-18G	273PNA	FCLP at Coupeville	14FCP1	84 % NC	150	1,199	1,167	111	104	0.627	0.402	0.424	0.262	0.169	0.099	0.568	0.364	0.253	0.149
R07	3			FCLP at Coupoville	14FCP2 14FCP2	84 % NC 84 % NC	150 150	799	1,512 1,749	110 108	100 100	1.925 1.254	0.804	1.297 0.847	0.523	0.497 0.337	0.199	1.744 1.136	0.729	0.746 0.506	0.298
	5	EA-18G EA-18G		FCLP at Coupeville Interfacility Ault Field to Coupeville	32WC14P	84 % NC 82.2 % NC		1,199 1,104	1,749	108	100	0.017		0.847	0.523	0.337	0.199	0.047	0.729	0.506	0.298
	11	EA-18G	273PDC	FCLP at Coupeville	14FCP3	84 % NC	150	800	3,154	101	106	0.962	0	0.649	0	0.249	0	0.872	0	0.373	0
R08	2	EA-18G EA-18G	273PNC 257	FCLP at Coupeville	14FCP3 14CW25	84 % NC 82 % NC	150 250	1,200 2,000	3,252 2,690	100 99	93 92	0.627 0.342	0.402 0.067	0.424 0.232	0.262 0.042	0.169 0.089	0.099 0.017	0.568	0.364 0.061	0.253 0.134	0.149
1100	4	EA-18G EA-18G	258	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW25	82 % NC 82 % NC	250	2,000	2,690	99	92	0.342	0.067	0.232	0.042		0.017	0.31	0.061	0.134	0.026 0.005
	5			FCLP at Coupeville	14FCP2	84 % NC		800	4,008	98	91	1.925	0	1.297	0	0.497	0	1.744	0	0.746	0

Table A6-4 SEL-Ranked Flight Profiles for Alternative 2 for Average Year (continued)

															A 10 10						
									Slant	Estimated		2	A	2		uai Averag	e Daily Ever		2D	2E	
POI	SEL	Aircraft Type	Profile	Type of Operation	Track ID	Power	Speed	Altitude	Range	051	Lmax	Daytime	Nighttime								
ID	Rank					Setting	(kts) ⁽¹⁾	(ft MSL) (2)	(ft)	SEL (dBA)	(dBA) (4)	(0700-		(0700-		(0700-		(0700-	(2200-		(2200-
										<u> </u>		2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G		Interfacility Ault Field to Coupeville	32WC32P	85 % NC	300	2,231	5,007	90	82	0.044	0	0.054	0	0.033	0	0.114	0	0.049	0
R09	3	EA-18G EA-18G	250PD 252PD		14WC32P 25WC32P	85 % NC 85 % NC	300	2,236 2,180	5,091 5,083	90	82 81	0.66 1.101	0	0.381	0	0.201 0.233	0	0.703 0.817	0	0.302 0.351	0
1103	4	EA-18G		Interfacility Ault Field to Coupeville	14WC32P	85 % NC	300	2,180	5,063	90	81	0	0.207	0.00	0.112	0.233		0.817		0.331	0.097
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	3,677	90	81	0.171	0.034	0.105	0.019	0.042		0.148		0.064	0.013
	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,480	3,143	100	90	0.874	0.065	0.81	0.057	0.926		0.932		0.926	0.07
	2	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2,620	3,563	98	88	0.375	0.028	0.347	0.024	0.397		0.4		0.397	0.03
R10	34	EA-18G EA-18G	280C 278A	GCA Pattern	32G3 14G1	82 % NC 82 % NC	250 300	3,000 2,999	2,980 3,168	93 92	84	0.065 3.241	0.024 1.195	0.086 3.133	0.032 1.155	0.086 3.457	0.032 1.274	0.086 3.457		0.086 3.457	0.032 1.274
	- 4	EA-18G		GCA Pattern P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC	300	2,999	7,186	90	77	1.249	0.093	1.157	0.082	1.323		1.332		1.323	0.1
	1	EA-18G	238A	Overhead Break Arrival	14O2A	84 % NC	300	10,000	13,520	73	60	0.238	0.023	0.23	0.022	0.255		0.255		0.255	0.024
	2	EA-18G	238B	Overhead Break Arrival	14O2B	84 % NC	300	10,000	13,567	73	60	0.238	0.023	0.23	0.022	0.255		0.255		0.255	0.024
R11	3	EA-18G	238C	Overhead Break Arrival	14O2C	84 % NC	300	10,000	13,609	73	60	0.245	0.024	0.237	0.023	0.263		0.262		0.263	0.024
	4	EA-18G	236B	Overhead Break Arrival	07O2B	84 % NC	300	10,000	13,739	72	59	0.14	0.013	0.131	0.013	0.132		0.131		0.132	0.012
	5	EA-18G EA-18G	236A 205A	Overhead Break Arrival	07O2A 07D2B	84 % NC 84 % NC	300	10,000 9,000	13,740 9,677	72 75	59 65	0.14 0.802	0.013	0.131 0.748	0.013	0.132 0.751	0.012	0.131 0.754		0.132 0.751	0.012
	2	EA-18G EA-18G	205A 216A	Departure Departure	25D2A	84 % NC	300	9,000	16,276	75	58	3.368	0.05	3.475	0.046	3.22		3.233	0.047	3.22	0.044
R12	3	EA-18G	217A	Departure	25D2A	84 % NC	300	9,000	16,448	70	58	2.357	0.147	2.432	0.15	2.254	0.131	2.263	0.142	2.254	0.131
	4	EA-18G	218A	Departure	25D2C	84 % NC	300	9,000	18,999	67	55	1.01	0.063	1.042	0.064	0.966		0.97		0.966	0.056
	5	EA-18G	206A	Departure	07D2C	84 % NC	300	9,000	24,952	66	55	0.344	0.021	0.321	0.02	0.322		0.323	0.02	0.322	0.019
	1	EA-18G		FCLP at Coupeville	14FCP1	84 % NC	150	800	47,518	75	63	0.962	0	0.649	0	0.249		0.872		0.373	0
R13	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCP2 14FCP1	84 % NC 84 % NC	150 150	1,200 1,200	46,886 47,526	74 74	62 62	1.254 0.627	0.804 0.402	0.847 0.424	0.523 0.262	0.337 0.169	0.199 0.099	1.136 0.568	0.729 0.364	0.506 0.253	0.298 0.149
IXIO	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	30,019	71	51	0.027	0.402	0.424	0.262	0.169		0.368		0.253	0.149
	5	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	85 % NC	140	250	52,917	71	51	1.075	0.212	0.662	0.121	0.267	0.052	0.928		0.401	0.079
	1	EA-18G	268B	FCLP at Ault Field	14FU1	84 % NC	130	1,000	2,575	104	96	2.024	0.412	1.956	0.398	2.159		2.159		2.159	0.44
	2	EA-18G		FCLP at Ault Field	25FU1	82.2 % NC	130	693	3,116	103	96	3.305	0.673	3.44	0.701	3.238	0.66	3.238	0.66	3.238	0.66
R14	3	EA-18G	283B	FCLP at Ault Field	25FU1	82.2 % NC	140	715	3,119	103	91	1.522	0.389	4.158	1.125 0.701	6.192		2.38	0.609	5.418	1.551
-	5	EA-18G EA-18G	269A 265L	FCLP at Ault Field Depart and Re-enter Pattern	25FM1 25PL	82.2 % NC 82.2 % NC	130 140	702 697	3,119 3.095	103 103	91 91	3.305 1.279	0.673 0.042	3.44 1.305	0.701	3.238 1.228		3.238 1.228	0.66	3.238 1.228	0.66 0.04
	1	EA-18G		FCLP at Coupeville	14FCP3	85 % NC	140	575	1.544	110	103	0.962	0.042	0.649	0.043	0.249		0.872	0.04	0.373	0.04
	2	EA-18G		FCLP at Coupeville	14FCP3	85 % NC	140	698	1,589	109	103	0.627	0.402	0.424	0.262	0.169		0.568	0.364	0.253	0.149
R15	3			FCLP at Coupeville	14FCP2	85 % NC	140	585	1,871	107	101	1.925	0	1.297	0	0.497	0	1.744	0	0.746	0
	4			FCLP at Coupeville	14FCP2	85 % NC	140	718	1,912	107	101	1.254	0.804	0.847	0.523	0.337	0.199	1.136	0.729	0.506	0.298
	5 1	EA-18G EA-18G	247PD 233A	Interfacility Ault Field to Coupeville P3 P8 IFR and Growler VFR non breaks	07WC14P 32A1A	84 % NC 87 % NC	140 300	588 2,756	2,009 2,575	106 100	98 91	0.154 0.166	0.012	0.105 0.207	0.015	0.031 0.165	0.012	0.109 0.166	0.012	0.047 0.165	0.012
	2	EA-18G	209A	Departure	14D1C	95 % NC	300	6,951	8.107	93	85	1,414	0.012	1.31	0.015	1.456	0.012	1.462	0.012	1.456	0.012
R16	3	EA-18G	278C	GCA Pattern	14G3	82 % NC	250	3,000	3,185	91	82	0.648	0.239	0.627	0.231	0.691	0.255	0.691	0.255	0.691	0.255
	4	EA-18G	208A	Departure	14D1B	95 % NC	300	6,815	9,922	90	81	3.3	0.206	3.056	0.188	3.397	0.197	3.41	0.213	3.397	0.197
	5	EA-18G	246	TACAN Arrival	32AHT	82.2 % NC	250	2,475	6,673	89	81	0.096	0.005	0.132	0.006	0.108	0.006	0.12		0.108	0.006
	1	P-8	542C	P3 P8 IFR and Growler VFR non breaks	32A2C	17760 LBS	250	3,047	2,963	85	N/A	0.047	0.007	0.046	0.013	0.046	0.015	0.047	0.015	0.046	0.015
R17	2	transient P-8	442C 542B	VFR non breaks P3 P8 IFR and Growler VFR non breaks	32A2C 32A2B	17760 LBS 17760 LBS	250 250	3,047 3,047	2,963 6,202	85 79	N/A N/A	0.022 0.047	0.002	0.022	0.005 0.013	0.022 0.046	0.005 0.015	0.022 0.047	0.006	0.022 0.046	0.005
1817	4	transient	442B	VFR non breaks	32A2B 32A2B	17760 LBS	250	3,047	6,202	79	N/A N/A	0.047	0.007	0.046	0.013	0.046	0.015	0.047	0.015	0.046	0.015
	5	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC	250	2,000	12,686	73	59	0.418	0.082	0.284	0.052	0.109		0.379		0.164	0.032
	1	P-8	543	Low TACAN Departure	07ALT	4610 LBS	250	5,971	5,979	68	N/A	0.07	0.016	0.062	0.014	0.067		0.066		0.067	0.013
	2	P-8	545	Low TACAN Departure	25ALT	4610 LBS	250	6,446	6,474	67	N/A	0.127	0.025	0.108	0.02	0.13		0.127	0.023	0.13	0.023
R18	3	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC	250 250	2,000	24,403	64	53	0.418	0.082	0.284	0.052	0.109		0.379		0.164	0.032
	<u>4</u> 5	EA-18G EA-18G	255 252PD	Interfacility Coupeville to Ault Field Interfacility Ault Field to Coupeville	14CW07 25WC32P	82 % NC 85 % NC	250	2,000 2,500	24,403 22,831	64	53 47	0.124 1.101	0.024	0.084	0.015	0.032 0.233	0.006	0.112 0.817		0.048 0.351	0.01
	1	EA-18G	253PD		32WC14P	84 % NC	140	438	907	114	108	0.017	0	0.023	0	0.233	0	0.017	0	0.02	0
	2	EA-18G		Interfacility Ault Field to Coupeville	32WC14P	84 % NC	140	438	907	114	108	0.017	0.006	0.020	0.008	0.010		0.011	0.016	0.02	0.007
R19	3	EA-18G		FCLP at Coupeville	14FCP1	85 % NC	140	492	1,069	114	108	0.962	0	0.649	0	0.249	0	0.872		0.373	0
	4			FCLP at Coupeville	14FCP1	85 % NC	140	530	1,080	113	107	0.627	0.402	0.424	0.262	0.169		0.568	0.364	0.253	0.149
	5	EA-18G		Interfacility Ault Field to Coupeville	25WC14P	84 % NC	140	444	962	113	107	0.428	0 0000	0.291	0 001	0.095		0.334		0.143	0 00
	1 2	EA-18G EA-18G	229C 277C	P3 P8 IFR and Growler VFR non breaks GCA Pattern	14A2C 07G3	87 % NC 82 % NC	300	2,933 3,000	3,692 3,898	95 89	87 78	0.375 0.389	0.028	0.347 0.346	0.024 0.127	0.397 0.324	0.03 0.119	0.4 0.324	0.03	0.397 0.324	0.03 0.119
R20	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2,769	6.744	88	78	0.369	0.065	0.346	0.127	0.926	0.119	0.932	0.119	0.926	0.119
	4	transient	423	IFR non breaks	14A2E	17760 LBS	180	3,047	3,071	86	N/A	0.063	0.006	0.059	0.006	0.064	0.006	0.07	0.007	0.064	0.006
	5	P-8		P3 P8 C40 VFR non breaks	14A2E	17760 LBS	180	3,047	3,071	86	N/A	0.069	0.014	0.065	0.013	0.078	0.016	0.076		0.078	0.016
		-		•																	

Table A6-4 SEL-Ranked Flight Profiles for Alternative 2 for Average Year (concluded)

								_				Annual Average Daily Events (3)									
			Profile						Slant	Estimated				2B							
POI	SEL					Power	Speed	Altitude					A				2C		2D		2E
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) (1)	(ft MSL) (2)	Range	SEL	Lmax	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
						_	' '	` ′	(ft)	(dBA)	(dBA) (4)	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
										V /	V	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2 % NC		773	4009	98	90	0.102	0.003	0.102	0.003	0.102	0.003	0.102	0.003	0.102	0.003
	2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2 % NC		802	4008	96	90	0.405	0.082	0.54	0.11	0.54	0.11	0.54	0.11	0.54	0.11
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2 % NC		839	4014	96	84	0.065	0.017	0.64	0.173	0.758	0.217	0.291	0.075	0.663	0.19
	4	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2 % NC		773	4003	96	84	0.102	0.003	0.102	0.003	0.102	0.003	0.102	0.003	0.102	0.003
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2 % NC		861	3936	95	83	0.171	0.034	0.105	0.019	0.042	0.008	0.148	0.029	0.064	0.013
	1	EA-18G	212A	Departure	14D2C	95 % NC		2514	3432	104	94	0.606	0.038	0.561	0.035	0.624	0.036	0.626	0.039	0.624	0.036
	2	EA-18G	209A	Departure	14D1C	95 % NC		2514	3432	104	93	1.414	0.088	1.31	0.081	1.456	0.084	1.462	0.091	1.456	0.084
S02	3	EA-18G	207A	Departure	14D1A	95 % NC		2514	3432	104	94	4.715	0.295	4.366	0.269	4.852	0.281	4.872	0.305	4.852	0.281
	4	EA-18G	211A	Departure	14D2B	95 % NC		2514	3432	104	94	1.414	0.088	1.31	0.081	1.456	0.084	1.462	0.091	1.456	0.084
	5	EA-18G	208A	Departure	14D1B	95 % NC		2514	3432	104	94	3.3	0.206	3.056	0.188	3.397	0.197	3.41	0.213	3.397	0.197
	1	EA-18G	276PDC	FCLP at Coupeville	32FCP3	84 % NC		800	5231	94	89	2.474	0	1.514	0	0.609	0	2.135	0	0.913	0
	2	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC	150	1200	5297	94	89	1.612	1.034	0.988	0.61	0.413	0.243	1.391	0.892	0.619	0.365
S03	3	EA-18G	276PDB	FCLP at Coupeville	32FCP2	84 % NC		800	6105	92	89	4.949	0	3.027	0	1.217	0	4.271	0	1.826	0
	4	EA-18G	276PNB	FCLP at Coupeville	32FCP2	84 % NC		1200	6162	92	89	3.224	2.068	1.977	1.221	0.825	0.487	2.782	1.784	1.238	0.73
	5	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC		1200	7058	90	88	1.612	1.034	0.988	0.61	0.413	0.243	1.391	0.892	0.619	0.365
17	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC		2882	4781	93	83	0.375	0.028	0.347	0.024	0.397	0.03	0.4	0.03	0.397	0.03
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC		3000	2903	92	84	0.648	0.239	0.627	0.231	0.691	0.255	0.691	0.255	0.691	0.255
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2719	7342	87	76	0.874	0.065	0.81	0.057	0.926	0.07	0.932	0.07	0.926	0.07
	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	N/A	0.382	0.042	0.351	0.041	0.386	0.034	0.382	0.037	0.386	0.034
	5	transient	448C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	76	0.036	0	0.032	0	0.035	0	0.036	0	0.035	0
	1	EA-18G	243	TACAN Arrival	07AHT	78 % NC	250	3529	3374	76	68	0.383	0.021	0.263	0.012	0.367	0.02	0.407	0.023	0.367	0.02
	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2712	19217	70	56	0.375	0.028	0.347	0.024	0.397	0.03	0.4	0.03	0.397	0.03
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2592	23773	66	51	0.874	0.065	0.81	0.057	0.926	0.07	0.932	0.07	0.926	0.07
l i	4	EA-18G	224A	Departure	32D2C	95 % NC	300	8249	32151	65	52	0.061	0.004	0.08	0.005	0.101	0.006	0.101	0.006	0.101	0.006
l i	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760 LBS	180	3047	19344	64	N/A	0.361	0.067	0.322	0.058	0.354	0.06	0.361	0.061	0.354	0.06
	1	EA-18G	224A	Departure	32D2C	84 % NC	300	9000	61543	51	39	0.061	0.004	0.08	0.005	0.101	0.006	0.101	0.006	0.101	0.006
l i	2	EA-18G	223A	Departure	32D2B	84 % NC		9000	66657	50	39	0.141	0.009	0.187	0.012	0.235	0.014	0.236	0.015	0.235	0.014
S06	3	P-8	547C	GCA Pattern	07G3	17760 LBS	200	3000	40394	50	37	0.222	0.025	0.201	0.021	0.187	0.019	0.185	0.021	0.187	0.019
	4	transient	447C	GCA Pattern	07G3	17760 LBS		3000	40394	50	37	0.021	0	0.018	0	0.017	0	0.017	0	0.017	0
l i	5	EA-18G	222A	Departure	32D2A	95 % NC		8656	71520	49	37	0.202	0.013	0.267	0.016	0.335	0.019	0.337	0.021	0.335	0.019
	1	EA-18G	277C	GCA Pattern	07G3	82 % NC		2810	88787	61	51	0.389	0.143	0.346	0.127	0.324	0.119	0.324	0.119	0.324	0.119
	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0.66	0.1.0	0.381	0	0.201	0	0.703	0	0.302	0
S07	3	EA-18G	250PN	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0.00	0.207	0.001	0.112	0.201	0.064	0.700	0.224	0.002	0.097
007	4	EA-18G	254PD	Interfacility Ault Field to Coupeville	32WC32P	82 % NC		2500	135475	59	47	0.044	0.207	0.054	0.112	0.033	0.004	0.114	0.224	0.049	0.037
	5	EA-18G	254PN	Interfacility Ault Field to Coupeville	32WC32P	82 % NC		2500	135475	59	47	0.044	0.014	0.004	0.016	0.000	0.01	0.114	0.036	0.043	0.016
\vdash	1	EA-18G	280C	GCA Pattern	32G3	82 % NC		3000	2779	93	81	0.065	0.014	0.086	0.010	0.086	0.032	0.086	0.032	0.086	0.010
1 1	2	EA-18G	278C	GCA Pattern	14G3	82 % NC		3000	2779	93	81	0.648	0.024	0.627	0.032	0.691	0.052	0.691	0.032	0.691	0.052
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC		2851	6041	89	80	1.249	0.233	1.157	0.082	1.323	0.233	1.332	0.099	1.323	0.233
555	4	EA-18G	279C	GCA Pattern	25G3	82 % NC		3000	4183	88	79	1.059	0.093	1.102	0.406	1.059	0.39	1.059	0.39	1.059	0.39
	5	EA-18G	277C	GCA Pattern	07G3	82 % NC		3000	4183	88	79	0.389	0.143	0.346	0.400	0.324	0.119	0.324	0.119	0.324	0.119
\vdash	1	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87 % NC		3000	4033	92	86	1.02	0.143	1.054	0.127	0.992	0.119	0.999	0.119	0.992	0.119
	2	EA-18G	277B	GCA Pattern	07G2	82 % NC		3000	3025	91	78	0.259	0.076	0.23	0.074	0.992	0.075	0.999	0.074	0.992	0.075
S09	3	EA-18G	279A	GCA Pattern GCA Pattern	25G1	82 % NC		3000	5300	87	75	5.294	1.951	5.51	2.031	5.294	1.951	5.294	1.951	5.294	1.951
309	4	EA-18G	206A	Departure	07D2C	95 % NC		5403	11786	86	76	0.344	0.021	0.321	0.02	0.322	0.019	0.323	0.02	0.322	0.019
	5	EA-18G EA-18G	206A 203A		07D2C			5300	11786	86	76	0.344	0.021	0.321	0.02	0.322	0.019	0.323	0.02	0.322	0.019
\vdash	1	P-8	546	Departure	32ALT	95 % NC 17760 LBS		3616	3501	83	N/A	0.802	0.002	0.748	0.046	0.751	0.044	0.754	0.047	0.751	0.044
	2		280C	Low TACAN Departure						71	N/A 61										
646		EA-18G		GCA Pattern	32G3	82 % NC		2333	19814			0.065	0.024	0.086	0.032	0.086	0.032	0.086	0.032	0.086	0.032
S10	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82 % NC		2000	20733	70	58	0.342	0.067	0.232	0.042	0.089	0.017	0.31	0.061	0.134	0.026
1 }	<u>4</u> 5	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC		2000	20783	70	58	0.067	0.013	0.045	0.008	0.017	0.003	0.06	0.012	0.026	0.005
ш	5	EA-18G	246	TACAN Arrival	32AHT	78 % NC	250	3085	23749	70	53	0.096	0.005	0.132	0.006	0.108	0.006	0.12	0.007	0.108	0.006
Notes:																					

(1) 0 it indicates the contributing profile is the beginning of takeoff roll
(2) FTI, Aut Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL
(3) not operations. Patterns counted as 1 event, vice 2 operations.
(4) n/a = not available: NOISEMAP's database does not include Lmax data for flight events for this aircraft type (B737-700).

Table A6-5 SEL-Ranked Flight Profiles for Alternative 3 for Average Year

The color of the																Ann	ual Averag	e Daily Even	ts (3)			
Column Proceed Systems Proced Systems Procedure Procedur	BOL	051		B (") .				Cusad	Alsianda	Slant	Esti	imated	3.	A	3					D	3	E
			Aircraft Type		Type of Operation	Track ID					SEL	Lmax										
February February								()	()	(ft)	(dBA)	(dBA) (4)			(
2		1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	4,401	93	82							,			
## E-118 2008 2004 2004 2016				264R	Depart and Re-enter Pattern				2,000						0.714		0.763					
For Part P	P01																					
February Fig. 2686 198																						
For Fig. 286 Color C																						0.443
BA-160 286 CLC of A Af Fall 14FU 622 SNC 140 859 1,385 196 100 107 102	P02																					
EA-180 2886 Deart archive - Fathern Corporation A. Table 200 1.477 1.268 190 98 0.148 0.016	1 02																					1.006
Post Company																						
Post Section Post																						
Fig. Fig.	P03																					0.043
1																						0.004
Per Control		_		_																		
Pot A		· · · · · · · · · · · · · · · · · · ·																				
6 EA-180 ZPSPAPCTC PIA Couponits 14FCP1 85 No.NC 140 337 1,091 108 100 0,086 0 0,041 0 0,048 0 0,085 0 0,0373 0 0,000 0,	P04				Interfacility Coupeville to Ault Field				936	1,943				0.181								0.064
1														0.035		0.021		0.008		0.031		0.013
2														1.094		0.661		0.264		0.944		0.396
4 E-1.16 ProPosition Application		2		276PDC	FCLP at Coupeville									0		0		0		0		0
Stransent 430 FR Ron Dreeks 32ACE 17780 LBS 180 3.047 3.122 85 NA 0.000 0.001 0.011 0.001 0.011 0.001 0.012 0.001 0.012 0.011 0.001 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.01	P05													2.188		1.323		0.528		1.887		0.792
1 EA-18G PPPOCFICLP Coupeville 32FCP7 38 % NO 150 799 5.329 96 84 1.557 1.094 0.948 0.661 0.389 0.264 1.343 0.944 0.														0.001		0.001		0.001		0.001		0.001
2 EA-18G DEPENDENCE Let a Couperille 32F PS 84 %NC 150 1199 5.397 96 84 1.557 1.094 0.948 0.661 0.389 0.264 1.343 0.944 0.584 0.389 0.394 0.661 0.389 0.265 1.343 0.944 0.584 0.389 0.394 0.661 0.389 0.265 1.343 0.944 0.584 0.389 0.394 0.661 0.389 0.265 1.343 0.944 0.584 0.389 0.394 0.389 0.394		-												0.001		0.001		0.001		0.001		0.001
4 ER-18G ZPRNBFCLP at Coupevile 32FCP2 84 %NC 150 1,199 5,590 93 81 3,113 2,188 1,396 1,320 0,778 0,528 2,686 1,887 1,168 0,779 1 ER-18G ZPRNBFCLP at Coupevile to Aut Field 14CV23 82 %NC 250 2,000 12,064 82 73 0,066 0,014 0,044 0,049 0,017 0,003 0,06 0,012 0,026 0,000 1				276PNC	FCLP at Coupeville				1,199	5,397	96	84		1.094		0.661	0.389	0.264	1.343	0.944	0.584	0.396
S	P06													0 100		4 222		0 520		4 007		0.700
1 EA-18G 258 Interfacility Couperville to Aut Field 14CW23 28, **shC 250 2,000 12,064 82 73 0,066 0,014 0,044 0,009 0,017 0,030 0,06 0,012 0,046 0,047		·····																				
POT Section February Febr			EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	12,064	82	73	0.066	0.014	0.044	0.009	0.017	0.003	0.06	0.012	0.026	0.005
EA-18G 280C GCA Pattern 32C3 82 % NC 230 2,208 17,859 80 71 0,066 0,024 0,087 0,032 0,087 0,032 0,087 0,032 0,087 0,032 0,087 0,033 0,087 0,03	D07													0.07		0.046		0.017		0.064		0.026
EA-18G 282 Interfacility Congessile to Aut Field 3CW32 82 % NC 250 2.000 9,777 79 66 0.168 0.035 0.013 0.021 0.042 0.008 0.146 0.031 0.063 0.011 0.068 0.161 0.468 0.161 0.1	P07													0.024		0.032		0.032		0.032		0.032
2 transient 442C VFR non breaks 32AC 17760 LBS 250 3,047 3,389 85 NA 0,021 0,003 0,022 0,005 0,021 0,006		· · · · · · · · · · · · · · · · · · ·																				
PoB 3																						
4 transient 442B VFR non breaks 32A2B VFR 00 152 250 3,047 5,353 81 N/A 0,021 0,003 0,002 0,005 0,021 0,006 0,021 0,006 0,021 0,006 1,002 0,000 1,000	P08																					
1 EA-18G 244 TACAN Arrival 14AHT 78 % NC 250 3,163 48,626 62 51 0,658 0,032 0,672 0,038 0,667 0,032 0,689 0,253 0,68																						0.006
2	_	-																				
Pos 3 P.8 544 LowTACAN Departure																						
4 EA-18G 215A Departure 25D1C 95 % NC 300 4,765 109,923 55 48 2,353 0.144 2,45 0.149 2,243 0.137 2,259 0.138 2,243 0.137 1 EA-18G 229A P3 PB IFR and Growler VFR non breaks 14A2A 87 % NC 300 2,577 4,579 95 85 1,246 0.091 1,158 0.082 1,327 0.096 1,329 0.097 1,327 0.096 2 EA-18G 229A Departure 32D2B % NC 300 8,291 9,265 90 80 0.141 0.009 0.188 0.011 0.234 0.014 0.234 0.014 0.234 0.014 0.234 0.014 0.234 0.014 0.234 0.014 0.234 0.014 0.034 0.014 0.034 0.014 0.024 0.014 0.024 0.014 0.024 0.014 0.024 0.014 0.024 0.014	P09																					0.04
1 EA-18G 229A P3 P8 IFR and Growler VFR non breaks 14A2A 87 % NC 300 2,577 4,579 95 85 1,246 0,091 1,158 0,082 1,327 0,096 1,329 0,097 1,327 0,096 2 EA-18G 223A Departure 32D2B 95 % NC 300 8,291 9,255 90 80 0,141 0,009 0,188 0,011 0,234 0,014 0,235 0,014 0,234 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,014 0,235 0,126 0,328 0,197 0,387 1,071 0,387 1									4,765										2.259			
2 EA-18G 223A Departure 32D2B 95 % NC 300 8,291 9,255 90 80 0.141 0.009 0.188 0.011 0.234 0.014 0.235 0.014 0.234 0.014 0.235 0.014 0.025 0.014 0.025 0.014 0.025	-	۰		21171																		
4 EA-18G 277C GCA Pattern 07G3 82 % NC 300 3,000 4,085 89 79 0.393 0.142 0.35 0.166 0.328 0.119 0.228 0.118 0.021																						
5 EA-18G 277B GCA Pattern 07G2 82 % NC 300 3,000 4,387 88 78 0.262 0.095 0.233 0.084 0.219 0.079 0.219 0.079 0.219 0.075 1 EA-18G 277C GCA Pattern 07G3 187 0.2926 21,053 64 50 0.393 0.142 0.35 0.126 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.328 0.119 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.017 0.018 0.027 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 <	P10																					
1 EA-18G 277C GCA Pattern 07G3 82 % NC 230 2,926 21,053 64 50 0.393 0.142 0.35 0.126 0.328 0.119 0.328																						
P1 3 transient 447C GCA Pattern 07G3 17760 LBS 200 3,000 21,066 63 N/A 0.216 0.026 0.19 0.019 0.183 0.021 0.18 0.022 0.183 0.021 0.18 3 0.021 0.18 0.022 0.183 0.021 0.18 3 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.183 0.021 0.18 0.022 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.021 0.018 0.022 0.018 0.021 0.018 0.021 0.018 0.022 0.018 0.021 0.022		·		1																		
4 P-8 527 P3 P8 CAU VFR non breaks 14A2E 17760 LBS 250 3,047 30,649 57 N/A 0.071 0.015 0.071 0.013 0.074 0.015 0.078 0.016 0.074 0.016 5 transient 423 IFR non breaks 14A2E 17760 LBS 250 3,047 30,649 57 N/A 0.064 0.006 0.062 0.006 0.069 0.027 0.071 0.007 0.069 0.007 0.007 0.069 0.007 0.071 0.007 0.069 0.007 0.071 0.007 0.069 0.029 0.398 0.029 0.398 0.029 0.398 0.029 0.398 0.029 0.398 0.029 0.099 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0.699 0.253 0			P-8	547C	GCA Pattern	07G3	17760 LBS	200	3,000	21,066	63	N/A	0.216		0.19	0.019	0.183		0.18		0.183	
5 transient 423 IFR non breaks 14A2E 17760 LBS 250 3,047 30,649 57 N/A 0.064 0.006 0.062 0.006 0.069 0.007 0.071 0.007 0.069 0.007 1 EA-18G 228C P3 P8 IFR and Growler VFR non breaks 14A1C 87 % NC 300 2,941 9,040 82 74 0.374 0.027 0.348 0.025 0.398 0.029 0.399 0.029 0.399 0.025 0.699 0.253 0.093 0.09	P11													0 015				0.015		0.010		0.015
1 EA-18G 228C P3 P8 IFR and Growler VFR non breaks 14A1C 87 % NC 300 2,941 9,040 82 74 0.374 0.027 0.348 0.025 0.398 0.029 0.399 0.029 0.399 0.025 2 EA-18G 278C GCA Pattern 14G3 82 % NC 300 3,000 7,718 80 72 0.656 0.237 0.634 0.229 0.699 0.253 0.699 0.253 0.699 0.255 0.255 0.																						
P12 3 EA-18G 228B P3 P8 IFR and Growler VFR non breaks 14A1B 87 % NC 300 2,784 12,784 79 68 0.872 0.064 0.811 0.058 0.929 0.067 0.93 0.068 0.929 0.067 4 P-8 548C GCA Pattern 14G3 17760 LBS 200 3,000 7,718 78 N/A 0.372 0.043 0.333 0.038 0.378 0.037 0.372 0.038 0.378 0.037 0.372 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.037 0.038 0.378 0.03		1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2,941	9,040	82	74	0.374	0.027	0.348	0.025	0.398	0.029	0.399	0.029	0.398	0.029
4 P-8 548C GCA Pattern 14G3 17760 LBS 200 3,000 7,718 78 N/A 0.372 0.043 0.372 0.037 0.372 0.038 0.378 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.038 0.037 0.038 0.037 0.035 0	Dia																					0.253
5 transient 448C GCA Pattern 14G3 17760 LBS 200 3,000 7,718 78 N/A 0.035 0 0.032 0 0.035 0 0.0	P12																					
1 EA-18G 219A Departure 32D1A 95 % NC 300 7,686 7,575 94 86 0.471 0.029 0.628 0.038 0.779 0.048 0.784 0.048 0.779 0.048 2 EA-18G 278B GCA Pattern 0.7G3 82 % NC 300 3,000 3,526 91 81 0.437 0.158 0.422 0.153 0.466 0.169 0.169 0.466 0.169 0.16														0.043		0.036		0.037		0.036		0.037
P13 3 EA-18G 277C GCA Pattern 07G3 82 %NC 300 3,000 3,689 90 80 0.393 0.142 0.35 0.126 0.328 0.119 0.119 0.328 0.119 0.119 0.328 0.119 0.119 0.328 0.119 0.119 0.328 0.119 0.1			EA-18G	219A	Departure	32D1A	95 % NC	300	7,686	7,575	94	86	0.471		0.628		0.779		0.784		0.779	0.048
4 EA-18G 279C GCA Pattern 25G3 82 % NC 300 3,000 3,689 90 81 1.071 0.387 1.114 0.403 1.071 0.387 1.071 0.387 1.071 0.387	P12																					
	113																					0.119
5 EA-18G 280B GCA Pattern 32G2 82 % NC 300 3,000 3,526 90 81 0.044 0.016 0.058 0.021 0.058 0.021 0.058 0.021 0.058 0.021 0.058 0.021		5															0.058					0.021

Table A6-5 SEL-Ranked Flight Profiles for Alternative 3 for Average Year (continued)

															Ann	ual Ave <u>rao</u>	e Daily Even	ts ⁽³⁾			
POI	SEL		Profile			Power	Speed	Altitude	Slant	Esti	mated		3A		В	3	3C	3	,	3E	
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1	EA-18G		GCA Pattern	14G3	82 % NC	230	1,822	20,245	76	63	0.656	0.237	0.634	0.229	0.699	0.253	0.699	0.253	0.699	0.253
P14	2	P-8 EA-18G		Low TACAN Departure GCA Pattern	14ALT 14G2	4610 LBS 82 % NC	250	4,622 2,166	4,657 23,933	72 72	N/A 58	0.202 0.437	0.04 0.158	0.219 0.422	0.039 0.153	0.195 0.466	0.04	0.206 0.466	0.042	0.195	0.04 0.169
F 14	4	EA-18G		Departure	32D1C	95 % NC	300	6,560	43,942	69	49	0.437	0.138	0.422	0.133	0.466	0.169	0.466	0.109	0.486	0.109
\perp	5	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,569	25,383	67	55	0.374	0.027	0.348	0.025	0.398	0.029	0.399	0.029	0.398	0.029
	1 2	EA-18G	206A	Departure	07D2C	95 % NC	300	5,213	8,277	92 92	83	0.343		0.323 0.754	0.02	0.32	0.02	0.323	0.02 0.046	0.32	0.02 0.046
P15		EA-18G EA-18G		Departure GCA Pattern	07D1C 07G2	95 % NC 82 % NC	300 250	5,155 3,000	8,368 3,437	91	83 80	0.8 0.262	0.049 0.095	0.754	0.046 0.084	0.748	0.046 0.079	0.753 0.219	0.046	0.748	0.046
0	4	EA-18G		Departure	07D2B	95 % NC	300	4,892	9,517	90	79	0.8	0.049	0.754	0.046	0.748	0.046	0.753	0.046	0.748	0.046
_	5	EA-18G		Departure	07D1B	95 % NC	300	4,743	10,004	89	78	1.866	0.114	1.759	0.107	1.744		1.757	0.107	1.744	0.106
	1 2	EA-18G EA-18G	256 255	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW14 14CW07	82 % NC 82 % NC	250 250	2,000 2,000	8,724 8,724	79 79	67 67	0.413 0.122	0.086 0.025	0.278 0.082	0.056 0.017	0.108	0.021	0.375 0.111	0.078 0.023	0.163	0.032 0.01
P16	3	EA-18G		Interfacility Ault Field to Coupeville	25WC32P	82 % NC	250	2,500	10,146	78	64	1.081	0.020	0.664	0.017	0.232	0.000	0.803	0.020	0.348	0.01
	4	EA-18G		Interfacility Ault Field to Coupeville	07WC32P	82 % NC	250	2,500	10,318	78	64	0	0.13	0	0.077	0	0.025	0	0.089	0	0.037
-	5	EA-18G EA-18G		Interfacility Ault Field to Coupeville FCLP at Coupeville	14WC32P 32FCP1	82 % NC 84 % NC	250 150	2,500 799	10,355 742	78 115	64 110	2.457	0.217	1.495	0.12	0.608	0.000	2.12	0.234	0.912	0.098
	2	EA-18G		FCLP at Coupeville	32FCP1	84 % NC	150	1,199	1,129	111	106	1.557	1.094	0.948	0.661	0.889	0.264	1.343	0.944	0.584	0.396
P17	3	EA-18G	276PDB	FCLP at Coupeville	32FCP2	84 % NC	150	799	1,206	111	105	4.914	0	2.991	0	1.216	0	4.24	0	1.824	0
	<u>4</u> 5	EA-18G EA-18G		FCLP at Coupeville	32FCP2 32FCP3	84 % NC 84 % NC	150 150	1,199 799	1,476 2,304	109 106	103 97	3.113 2.457	2.188	1.896 1.495	1.323	0.778	0.528	2.686	1.887	1.168 0.912	0.792
-	1			FCLP at Coupeville FCLP at Coupeville	32FCP3 32FCP3	84 % NC 84 % NC	150	1,200	6,600	92	82	1.557	1.094	0.948	0.661	0.808	0.264	2.12 1.343	0.944	0.584	0.396
	2			FCLP at Coupeville	32FCP3	84 % NC	150	800	6,544	91	82	2.457	0	1.495	0	0.608	0	2.12	0	0.912	0
P18		EA-18G		FCLP at Coupeville	32FCP2	84 % NC	150	1,200	7,760	90	79	3.113	2.188	1.896	1.323	0.778	0.528	2.686	1.887	1.168	0.792
	<u>4</u> 5	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP1	84 % NC 84 % NC	150 150	800 1,200	7,712 8,929	90 87	79 78	4.914 1.557	1.094	2.991 0.948	0.661	1.216 0.389	0.264	4.24 1.343	0.944	1.824 0.584	0.396
	1	EA-18G		Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0	0.163	0.010	0.105	0.000	0.034	0	0.122	0.001	0.051
	2	EA-18G	251PD	Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0.42		0.284	0	0.095		0.328	0	0.142	0
R01	3 4	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32P 25WC32P	97 % NC 97 % NC	135 135	59 59	1,093	121 121	114 114	1.081	0.362	0.664	0.214	0.232	0.076	0.803	0.272	0.348	0.114
	5	EA-18G		Departure	07D2A	97 % NC	165	302	1,118	120	116	1.143	0.07	1.077	0.065	1.068	0.065	1.076	0.066	1.068	0.065
	1	EA-18G	250PN	Interfacility Ault Field to Coupeville	14WC32P	97 % NC	0	47	3,519	110	96	0	0.217	0	0.12	0		0	0.234	0	0.098
R02	3	EA-18G		Interfacility Ault Field to Coupeville	14WC32P 14WC14P	97 % NC 97 % NC	0	47 47	3,519 3,519	110 110	96 96	0.649	0.098	0.372	0.059	0.199		0.691	0.105	0.299	0.044
KU2	4	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC14P	97 % NC 97 % NC	0	47	3,519	110	96	0.252	0.098	0.159	0.059	0.081	0.029	0.282	0.105	0.122	0.044
	5	EA-18G		Departure	14D2A	97 % NC	0	47	3,519	109	100	2.017	0.123	1.885	0.115	2.069	0.126	2.084	0.127	2.069	0.126
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	1,787	101	93	0.098	0.004	0.098	0.004	0.098	0.004	0.098	0.004	0.098	0.004
R03	3	EA-18G EA-18G		Depart and Re-enter Pattern Depart and Re-enter Pattern	14PR 25PL	84 % NC 84 % NC	250 250	2,000 2,000	1,967 1,971	101 100	92 92	0.714 1.23	0.027 0.047	0.714 1.255	0.027 0.048	0.763 1.181	0.029 0.045	0.763 1.181	0.029 0.045	0.763 1.181	0.029 0.045
	4	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	2,000	2,001	100	92	0.418	0.016	0.394	0.015	0.418	0.016	0.418	0.016	0.418	0.016
	5	EA-18G	_	FCLP at Ault Field	32FU1	82.2 % NC	130	817	8,282	88	78	0.403	0.083	0.537	0.111	0.537	0.111	0.537	0.111	0.537	0.111
	2	EA-18G EA-18G		Departure Departure	07D2B 07D1B	95 % NC 95 % NC	300	4,035 4,007	5,492 5,530	99 98	88 88	0.8 1.866	0.049 0.114	0.754 1.759	0.046 0.107	0.748 1.744	0.046 0.106	0.753 1.757	0.046 0.107	0.748 1.744	0.046 0.106
R04		EA-18G		Departure	07D2C	95 % NC	300	4,096	5,708	98	88	0.343	0.021	0.323	0.02	0.32	0.02	0.323	0.02	0.32	0.02
	4	EA-18G		Departure	07D1C	95 % NC	300	4,096	5,708	98	88	0.8		0.754	0.046	0.748		0.753	0.046	0.748	0.046
\vdash	5	EA-18G EA-18G		Departure GCA Pattern	07D2A 07G1	95 % NC 82 % NC	300 250	3,804 3,000	6,519 3,009	96 92	86 84	1.143 1.967	0.07 0.711	1.077	0.065 0.632	1.068		1.076 1.639	0.066 0.593	1.068	0.065 0.593
	2	EA-18G		GCA Pattern	25G1	82 % NC	300	3,000	3,350	91	82	5.354	1.936	5.572	2.015	5.354	1.936	5.354	1.936	5.354	1.936
R05		EA-18G	280C	GCA Pattern	32G3	82 % NC	300	3,000	3,491	90	82	0.066	0.024	0.087	0.032	0.087	0.032	0.087	0.032	0.087	0.032
	<u>4</u> 5	EA-18G EA-18G		GCA Pattern Departure	14G3 07D2B	82 % NC 95 % NC	300	3,000 3,808	3,491 13,742	90 85	82 75	0.656	0.237 0.049	0.634 0.754	0.229 0.046	0.699 0.748	0.253 0.046	0.699 0.753	0.253 0.046	0.699	0.253 0.046
	1	EA-18G		FCLP at Coupeville	32FCP2	85 % NC	140	515	389	121	114	4.914		2.991	0.046	1.216		4.24	0.046	1.824	0.046
	2	EA-18G	276PDC	FCLP at Coupeville	32FCP3	85 % NC	140	508	405	120	113	2.457	0	1.495	0	0.608	0	2.12	0	0.912	0
R06		EA-18G		FCLP at Coupeville	32FCP1	85 % NC 84 % NC	140	524	412	120	113 113	2.457 1.081	0	1.495 0.664	0	0.608	0	2.12	0	0.912	0
	<u>4</u> 5	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32P 32WC32P	84 % NC	140	526 523	399 399	120 120	113	0.043	0	0.053	0	0.232	0	0.803 0.112	0	0.348	0
	11	EA-18G	273PDA	FCLP at Coupeville	14FCP1	84 % NC	150	799	769	115	109	0.956	0	0.641	0	0.248	0	0.866	0	0.373	0
R07	2	EA-18G		FCLP at Coupeville	14FCP1	84 % NC	150	1,199	1,167	111	104	0.605	0.425	0.406	0.283	0.159	0.108	0.549	0.385	0.238	0.162
RU/	3 4	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCP2 14FCP2	84 % NC 84 % NC	150 150	799 1,199	1,512 1,749	110 108	100	1.911 1.211	0.851	1.282 0.813	0.567	0.497 0.318	0.216	1.732 1.097	0.771	0.745	0.323
	5	EA-18G		Interfacility Ault Field to Coupeville	32WC14P	82.2 % NC	140	1,104	1,725	105	100	0.017	0.301	0.023	0.507	0.013	0.210	0.046	071	0.02	0
	1	EA-18G	273PDC	FCLP at Coupeville	14FCP3	84 % NC	150	800	3,154	101	106	0.956	0	0.641	0	0.248	0	0.866	0	0.373	0
R08	2	EA-18G EA-18G		FCLP at Coupeville Interfacility Coupeville to Ault Field	14FCP3 14CW25	84 % NC 82 % NC	150 250	1,200 2,000	3,252 2,690	100 99	93 92	0.605 0.338	0.425 0.07	0.406 0.228	0.283 0.046	0.159 0.089	0.108 0.017	0.549 0.307	0.385 0.064	0.238	0.162 0.026
	4	EA-18G		Interfacility Coupeville to Ault Field	14CW23	82 % NC	250	2,000	2,690	99	92	0.066	0.014	0.044	0.040	0.003	0.003	0.06	0.012	0.026	0.026
oxdot	5	EA-18G	273PDB	FCLP at Coupeville	14FCP2	84 % NC	150	800	4,008	98	91	1.911	0	1.282	0	0.497	0	1.732	0	0.745	0

Table A6-5 SEL-Ranked Flight Profiles for Alternative 3 for Average Year (continued)

									F-vi	imated				Ann	ual Average	e Daily Ever	ıts ⁽³⁾			
DO!	051		Des Cla			Power Spee	Altitude	Slant	ESti	imated	3	A	3	В	3	С	3	BD	3	E
POI	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID		(ft MSL) (2)	Range	SEL	Lmax	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
ID	Rank		ID			Setting (kts)	(IT WISL)	(ft)	(dBA)	(dBA) (4)	(0700-		(0700-	(2200-	(0700-		(0700-			(2200-
									(UDA)	(dbA)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G	254PD	Interfacility Ault Field to Coupeville	32WC32P	85 % NC 300	2,231	5,007	90	82	0.043	0	0.053	0	0.032	0	0.112	0	0.049	0
	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	85 % NC 300	2,236	5,091	90	82	0.649	0	0.372	0	0.199	0	0.691	0	0.299	0
R09	3	EA-18G	252PD	Interfacility Ault Field to Coupeville	25WC32P	85 % NC 300	2,180	5,083	90	81	1.081	0	0.664	0	0.232	0	0.803	0	0.348	0
	4	EA-18G	250PN	Interfacility Ault Field to Coupeville	14WC32P	85 % NC 300	2,299	5,114	90	81	0	0.217	0	0.12	0	0.065	0		0	0.098
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC 250	2,000	3,677	90	81	0.169	0.035	0.103	0.021	0.042	0.008	0.146		0.063	0.013
	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC 300	2,480	3,143	100	90	0.872	0.064	0.811	0.058	0.929	0.067	0.93	0.068	0.929	0.067
	2	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC 300	2,620	3,563	98	88	0.374	0.027	0.348	0.025	0.398	0.029	0.399	0.029	0.398	0.029
R10	3	EA-18G		GCA Pattern	32G3	82 % NC 250	3,000	2,980	93	84	0.066	0.024	0.087	0.032	0.087	0.032	0.087	0.032	0.087	0.032
	4	EA-18G		GCA Pattern	14G1	82 % NC 300	2,999	3,168	92	83	3.278	1.185	3.169	1.146	3.496	1.264	3.496	1.264	3.496	1.264
-	5	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC 300	2,347	7,186	90	77	1.246	0.091	1.158	0.082	1.327	0.096	1.329	0.097	1.327	0.096
	12	EA-18G EA-18G		Overhead Break Arrival Overhead Break Arrival	1402A	84 % NC 300 84 % NC 300	10,000	13,520	73 73	60	0.238 0.238	0.022	0.229 0.229	0.021	0.251	0.024	0.255	0.023 0.023	0.251 0.251	0.024 0.024
R11	3	EA-18G EA-18G	238C	Overhead Break Arrival	14O2B 14O2C	84 % NC 300	10,000	13,567 13,609	73	60	0.238	0.022	0.229	0.021	0.251 0.259	0.024	0.255 0.262	0.023	0.251	0.024
12.11	4	EA-18G		Overhead Break Arrival	07O2B	84 % NC 300	10,000	13,739	72	59	0.243	0.023	0.236	0.022	0.239	0.023	0.282	0.024	0.239	0.023
1 1	5	EA-18G EA-18G		Overhead Break Arrival	07O2B	84 % NC 300	10,000	13,740	72	59	0.14	0.013	0.131	0.012	0.13	0.012	0.131	0.012	0.13	0.012
	1	EA-18G		Departure	07D2B	84 % NC 300	9,000	9,677	75	65	0.14	0.013	0.131	0.012	0.748	0.012	0.753	0.012	0.748	0.012
1 1	2	EA-18G		Departure	25D2A	84 % NC 300	9,000	16,276	70	58	3.361	0.205	3.5	0.213	3.204	0.195	3.227		3.204	0.195
R12	3	EA-18G		Departure	25D2R	84 % NC 300	9,000	16,448	70	58	2.353	0.144	2.45	0.149	2.243	0.137	2.259	0.138	2.243	0.137
1	4	EA-18G		Departure	25D2C	84 % NC 300	9,000	18,999	67	55	1.008	0.062	1.05	0.064	0.961	0.059	0.968	0.059	0.961	0.059
	5	EA-18G		Departure	07D2C	84 % NC 300	9,000	24,952	66	55	0.343	0.021	0.323	0.02	0.32	0.02	0.323	0.02	0.32	0.02
	1	EA-18G	273PDA	FCLP at Coupeville	14FCP1	84 % NC 150	800	47,518	75	63	0.956	0	0.641	0	0.248	0	0.866	0	0.373	0
	2	EA-18G	273PNB	FCLP at Coupeville	14FCP2	84 % NC 150	1,200	46,886	74	62	1.211	0.851	0.813	0.567	0.318	0.216	1.097	0.771	0.477	0.323
R13	3	EA-18G	273PNA	FCLP at Coupeville	14FCP1	84 % NC 150	1,200	47,526	74	62	0.605	0.425	0.406	0.283	0.159	0.108	0.549	0.385	0.238	0.162
	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC 250	2,000	30,019	71	51	0.169	0.035	0.103	0.021	0.042	0.008	0.146	0.031	0.063	0.013
	5	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	85 % NC 140	250	52,917	71	51	1.062	0.221	0.649	0.132	0.265	0.052	0.918		0.399	0.079
	1	EA-18G		FCLP at Ault Field	14FU1	84 % NC 130	1,000	2,575	104	96	2.015	0.415	1.948	0.401	2.149	0.443	2.149	0.443	2.149	0.443
	2	EA-18G		FCLP at Ault Field	25FU1	82.2 % NC 130	693	3,116	103	96	3.291	0.678	3.425	0.706	3.224	0.664	3.224	0.664	3.224	0.664
R14	3	EA-18G		FCLP at Ault Field	25FU1	82.2 % NC 140	715	3,119	103	91	1.524	0.384	4.179	1.091	6.238	1.707	2.383	0.6	5.459	1.493
	4	EA-18G		FCLP at Ault Field	25FM1	82.2 % NC 130	702	3,119	103	91	3.291	0.678	3.425	0.706	3.224	0.664	3.224	0.664	3.224	0.664
	5	EA-18G EA-18G	265L	Depart and Re-enter Pattern	25PL 14FCP3	82.2 % NC 140 85 % NC 140	697 575	3,095 1,544	103 110	91	1.23 0.956	0.047	1.255 0.641	0.048	1.181 0.248	0.045	1.181	0.045	1.181 0.373	0.045
-	2	EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCP3	85 % NC 140	698	1,544	109	103	0.956	0.425	0.406	0.283	0.248	0.108	0.866 0.549	0.385	0.373	0.162
R15	3			FCLP at Coupeville	14FCP3	85 % NC 140	585	1,871	109	103	1.911	0.425	1.282	0.263	0.139	0.100	1.732	0.363	0.236	0.162
1013	4			FCLP at Coupeville	14FCP2	85 % NC 140	718	1,912	107	101	1.211	0.851	0.813	0.567	0.437	0.216	1.097	0.771	0.743	0.323
	5	EA-18G		Interfacility Ault Field to Coupeville	07WC14P	84 % NC 140	588	2,009	106	98	0.151	0.001	0.102	0.507	0.031	0.210	0.107	0.771	0.046	0.020
	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	32A1A	87 % NC 300	2,756	2,575	100	91	0.166	0.012	0.207	0.015	0.166	0.012	0.166	0.012	0.166	0.012
	2	EA-18G	209A	Departure	14D1C	95 % NC 300	6,951	8,107	93	85	1.412	0.086	1.319	0.08	1.448	0.088	1.459	0.089	1.448	0.088
R16	3	EA-18G	278C	GCA Pattern	14G3	82 % NC 250	3,000	3,185	91	82	0.656	0.237	0.634	0.229	0.699	0.253	0.699	0.253	0.699	0.253
	4	EA-18G	208A	Departure	14D1B	95 % NC 300	6,815	9,922	90	81	3.294	0.201	3.078	0.187	3.379	0.206	3.404	0.208	3.379	0.206
	5	EA-18G	246	TACAN Arrival	32AHT	82.2 % NC 250	2,475	6,673	89	81	0.097	0.005	0.155	0.009	0.119	0.006	0.122	0.006	0.119	0.006
	1	P-8		P3 P8 IFR and Growler VFR non breaks	32A2C	17760 LBS 250	3,047	2,963	85	N/A	0.046	0.007	0.046	0.013	0.046	0.015	0.046	0.016	0.046	0.015
	2	transient	442C	VFR non breaks	32A2C	17760 LBS 250	3,047	2,963	85	N/A	0.021	0.003	0.022	0.005	0.021	0.006	0.021	0.006	0.021	0.006
R17	3	P-8	542B	P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS 250	3,047	6,202	79	N/A	0.046	0.007	0.046	0.013	0.046	0.015	0.046	0.016	0.046	0.015
	4	transient	442B	VFR non breaks	32A2B	17760 LBS 250	3,047	6,202	79	N/A	0.021	0.003	0.022	0.005	0.021	0.006	0.021	0.006	0.021	0.006
-	5	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC 250	2,000	12,686	73	59	0.413	0.086	0.278	0.056	0.108	0.021	0.375		0.163	0.032
1 }	1	P-8	543	Low TACAN Departure	07ALT	4610 LBS 250	5,971	5,979	68	N/A	0.071	0.017	0.067	0.014	0.064	0.013	0.067	0.014	0.064	0.013
Das	2	P-8	545	Low TACAN Departure	25ALT	4610 LBS 250	6,446	6,474	67	N/A	0.13	0.027	0.118	0.02	0.124	0.023	0.13	0.024	0.124	0.023
R18	3	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC 250	2,000	24,403	64	53	0.413	0.086	0.278	0.056	0.108	0.021	0.375	0.078	0.163	0.032
	5	EA-18G EA-18G	255 252PD	Interfacility Coupeville to Ault Field	14CW07	82 % NC 250 85 % NC 250	2,000	24,403 22,831	64	53 47	0.122 1.081	0.025	0.082	0.017	0.032	0.006	0.111	0.023	0.048 0.348	0.01
\vdash	1	EA-18G EA-18G	253PD	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32P 32WC14P	85 % NC 250 84 % NC 140	2,500 438	907	63 114	108	0.017	0	0.664 0.023	0	0.232 0.013	0	0.803 0.046	0	0.348	0
1 }	2	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	32WC14P 32WC14P	84 % NC 140 84 % NC 140	438	907	114	108	0.017	0.007	0.023	0.008	0.013	0.005	0.046	0.017	0.02	0.007
R19	3			FCLP at Coupeville	14FCP1	85 % NC 140	438	1,069	114	108	0.956	0.007	0.641	0.008	0.248	0.005	0.866	0.017	0.373	0.007
14.19	4			FCLP at Coupeville	14FCP1	85 % NC 140	530	1,089	113	108	0.956	0.425	0.406	0.283	0.248	0.108	0.549	0.385	0.373	0.162
1 }	5	EA-18G		Interfacility Ault Field to Coupeville	25WC14P	84 % NC 140	444	962	113	107	0.603	0.423	0.400	0.203	0.139	0.100	0.349	0.363	0.236	0.102
	1	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC 300	2,933	3.692	95	87	0.374	0.027	0.284	0.025	0.398	0.029	0.320	0.029	0.142	0.029
	2	EA-18G	277C	GCA Pattern	07G3	82 % NC 300	3,000	3,898	89	78	0.393	0.142	0.35	0.126	0.328	0.119	0.328	0.119	0.328	0.119
R20	3	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC 300	2,769	6,744	88	78	0.872	0.064	0.811	0.058	0.929	0.067	0.93	0.068	0.929	0.067
	4	transient	423	IFR non breaks	14A2E	17760 LBS 180	3,047	3,071	86	N/A	0.064	0.006	0.062	0.006	0.069	0.007	0.071	0.007	0.069	0.007
	5	P-8		P3 P8 C40 VFR non breaks	14A2E	17760 LBS 180	3,047	3,071	86	N/A	0.071	0.015	0.071	0.013	0.074	0.015	0.078	0.016	0.074	0.015
<u> </u>	-		_												1					

Table A6-5 SEL-Ranked Flight Profiles for Alternative 3 for Average Year (concluded)

																	. D. T. E	4 - (3)			
									Slant	Esti	mated		Δ		BB Ann		e Daily Even		3D		\ <u>-</u>
POI	SEL	A	Profile	T (O)	T1 ID	Power	Speed	Altitude									3C				5E
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) (1)	(ft MSL) (2)	Range	SEL	Lmax	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
									(ft)	(dBA)	(dBA) (4)	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
												2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2 % NC		773	4009	98	90	0.098	0.004	0.098	0.004	0.098	0.004	0.098	0.004	0.098	0.004
	2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2 % NC		802	4008	96	90	0.403	0.083	0.537	0.111	0.537	0.111	0.537	0.111	0.537	0.111
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2 % NC		839	4014	96	84	0.065	0.016	0.643	0.168	0.764	0.209	0.292	0.073	0.668	0.183
	4	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2 % NC		773	4003	96	84	0.098	0.004	0.098	0.004	0.098	0.004	0.098	0.004	0.098	0.004
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2 % NC		861	3936	95	83	0.169	0.035	0.103	0.021	0.042	0.008	0.146	0.031	0.063	0.013
	1	EA-18G	212A	Departure	14D2C	95 % NC		2514	3432	104	94	0.605	0.037	0.565	0.034	0.621	0.038	0.625	0.038	0.621	0.038
	2	EA-18G	209A	Departure	14D1C	95 % NC		2514	3432	104	93	1.412	0.086	1.319	0.08	1.448	0.088	1.459	0.089	1.448	0.088
S02	3	EA-18G	207A	Departure	14D1A	95 % NC		2514	3432	104	94	4.705	0.287	4.397	0.267	4.828	0.295	4.862	0.297	4.828	0.295
	4	EA-18G	211A	Departure	14D2B	95 % NC		2514	3432	104	94	1.412	0.086	1.319	0.08	1.448	0.088	1.459	0.089	1.448	0.088
	5	EA-18G	208A	Departure	14D1B	95 % NC		2514	3432	104	94	3.294	0.201	3.078	0.187	3.379	0.206	3.404	0.208	3.379	0.206
	11	EA-18G	276PDC	FCLP at Coupeville	32FCP3	84 % NC		800	5231	94	89	2.457	00	1.495	0	0.608	0	2.12	0	0.912	0
	2	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC		1200	5297	94	89	1.557	1.094	0.948	0.661	0.389	0.264	1.343	0.944	0.584	0.396
S03	3	EA-18G	276PDB	FCLP at Coupeville	32FCP2	84 % NC		800	6105	92	89	4.914	0	2.991	0	1.216	0	4.24	0	1.824	0
	4	EA-18G	276PNB	FCLP at Coupeville	32FCP2	84 % NC		1200	6162	92	89	3.113	2.188	1.896	1.323	0.778	0.528	2.686	1.887	1.168	0.792
	5	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC		1200	7058	90	88	1.557	1.094	0.948	0.661	0.389	0.264	1.343	0.944	0.584	0.396
	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC		2882	4781	93	83	0.374	0.027	0.348	0.025	0.398	0.029	0.399	0.029	0.398	0.029
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC		3000	2903	92	84	0.656	0.237	0.634	0.229	0.699	0.253	0.699	0.253	0.699	0.253
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC		2719	7342	87	76	0.872	0.064	0.811	0.058	0.929	0.067	0.93	0.068	0.929	0.067
	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	N/A	0.372	0.043	0.333	0.038	0.378	0.037	0.372	0.038	0.378	0.037
	5	transient	448C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	76	0.035	0	0.032	0	0.035	0	0.035	0	0.035	0
	1	EA-18G	243	TACAN Arrival	07AHT	78 % NC	250	3529	3374	76	68	0.39	0.019	0.31	0.018	0.405	0.02	0.414	0.02	0.405	0.02
	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2712	19217	70	56	0.374	0.027	0.348	0.025	0.398	0.029	0.399	0.029	0.398	0.029
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2592	23773	66	51	0.872	0.064	0.811	0.058	0.929	0.067	0.93	0.068	0.929	0.067
	4	EA-18G	224A	Departure	32D2C	95 % NC	300	8249	32151	65	52	0.06	0.004	0.081	0.005	0.1	0.006	0.101	0.006	0.1	0.006
li	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760 LBS	180	3047	19344	64	N/A	0.354	0.073	0.325	0.058	0.357	0.061	0.354	0.066	0.357	0.061
	1	EA-18G	224A	Departure	32D2C	84 % NC	300	9000	61543	51	39	0.06	0.004	0.081	0.005	0.1	0.006	0.101	0.006	0.1	0.006
l i	2	EA-18G	223A	Departure	32D2B	84 % NC	300	9000	66657	50	39	0.141	0.009	0.188	0.011	0.234	0.014	0.235	0.014	0.234	0.014
S06	3	P-8	547C	GCA Pattern	07G3	17760 LBS	200	3000	40394	50	37	0.216	0.026	0.19	0.019	0.183	0.021	0.18	0.022	0.183	0.021
l i	4	transient	447C	GCA Pattern	07G3	17760 LBS	200	3000	40394	50	37	0.021	0	0.018	0	0.017	0	0.017	0	0.017	0
l	5	EA-18G	222A	Departure	32D2A	95 % NC	300	8656	71520	49	37	0.202	0.012	0.269	0.016	0.334	0.02	0.336	0.021	0.334	0.02
	1	EA-18G	277C	GCA Pattern	07G3	82 % NC		2810	88787	61	51	0.393	0.142	0.35	0.126	0.328	0.119	0.328	0.119	0.328	0.119
1 1	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0.649	0	0.372	0	0.199	0	0.691	0	0.299	0
S07	3	EA-18G	250PN	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0	0.217	0	0.12	0	0.065	0	0.234	0	0.098
	4	EA-18G	254PD	Interfacility Ault Field to Coupeville	32WC32P	82 % NC		2500	135475	59	47	0.043	0.2.7	0.053	0	0.032	0	0.112	0.20	0.049	0.000
	5	EA-18G	254PN	Interfacility Ault Field to Coupeville	32WC32P	82 % NC		2500	135475	59	47	0.0.0	0.014	0.000	0.017	0.002	0.011	0.11.2	0.038	0.0.0	0.016
\Box	1	EA-18G	280C	GCA Pattern	32G3	82 % NC		3000	2779	93	81	0.066	0.024	0.087	0.032	0.087	0.032	0.087	0.032	0.087	0.032
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC		3000	2779	93	81	0.656	0.237	0.634	0.229	0.699	0.253	0.699	0.253	0.699	0.253
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC		2851	6041	89	80	1.246	0.091	1.158	0.082	1.327	0.096	1.329	0.097	1.327	0.096
000	4	EA-18G	279C	GCA Pattern	25G3	82 % NC		3000	4183	88	79	1.071	0.387	1.114	0.403	1.071	0.387	1.071	0.387	1.071	0.387
	5	EA-18G	277C	GCA Pattern	07G3	82 % NC		3000	4183	88	79	0.393	0.142	0.35	0.126	0.328	0.119	0.328	0.119	0.328	0.119
\vdash	1	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87 % NC		3000	4033	92	86	1.017	0.075	1.055	0.120	0.995	0.072	0.996	0.073	0.995	0.113
1 1	2	EA-18G	277B	GCA Pattern	07G2	82 % NC		3000	3025	91	78	0.262	0.075	0.233	0.073	0.219	0.072	0.330	0.079	0.219	0.072
S09	3	EA-18G	279A	GCA Pattern	25G1	82 % NC		3000	5300	87	75	5.354	1.936	5.572	2.015	5.354	1.936	5.354	1.936	5.354	1.936
503	4	EA-18G	206A	Departure	07D2C	95 % NC		5403	11786	86	76	0.343	0.021	0.323	0.02	0.32	0.02	0.323	0.02	0.32	0.02
	5	EA-18G	203A	Departure	07D1C	95 % NC		5300	11968	86	76	0.343	0.021	0.754	0.02	0.748	0.02	0.323	0.02	0.32	0.02
+	1	P-8	546	Low TACAN Departure	32ALT	17760 LBS	250	3616	3501	83	N/A	0.017	0.049	0.754	0.046	0.748	0.046	0.753	0.046	0.748	0.046
1 }	2	EA-18G	280C	GCA Pattern	32AL1 32G3	82 % NC		2333	19814	71	61	0.017	0.003	0.017	0.005	0.016	0.006	0.017	0.006	0.016	0.006
S10	3	EA-18G EA-18G						2000		71			0.024	0.087	0.032	0.087	0.032	0.087	0.032	0.087	
510	4	EA-18G EA-18G	257 258	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW25 14CW32	82 % NC 82 % NC		2000	20733 20783	70	58 58	0.338	0.07	0.228	0.046	0.089	0.017	0.307	0.064	0.133	0.026
	5	EA-18G EA-18G	258	TACAN Arrival	32AHT	78 % NC		3085	23749	70	58	0.066	0.014	0.044	0.009	0.017	0.003	0.06	0.012	0.026	0.005
	Э	EA-18G	240	I ACAN AITIVAI	3ZATI	/ 6 % NC	- Z5U	3085	23/49	//	33	0.097	0.005	0.155	0.009	0.119	0.006	0.122	0.006	0.119	0.006
Notes:																					

(1) 0 it indicates the contributing profile is the beginning of takeoff roll
(2) FTI, Aut Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL
(3) not operations. Patterns counted as 1 event, vice 2 operations.
(4) n/a = not available: NOISEMAP's database does not include Lmax data for flight events for this aircraft type (B737-700).

Table A6-6 SEL-Ranked Flight Profiles for High-Tempo FCLP Year Baseline Scenario

			AU-U	JLL-Named Hight									
									Slant	Annual Av Daytime	erage Daily Nighttime	Esti	mated
POI	SEL		Profile			Power	Speed	Altitude	Range	(0700-	(2200-	SEL	Lmax
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	(ft)	2200)	0700)	(dBA)	(dBA) ⁽⁴⁾
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	4,401	0.115	0.005	93	82
P01	3	EA-18G EA-18G	264R 265L	Depart and Re-enter Pattern Depart and Re-enter Pattern	14PR 25PL	84 % NC 84 % NC	250 250	2,000 2,000	4,415 4,889	0.403 0.848	0.016 0.033	92 92	82 80
101	4	EA-18G		Depart and Re-enter Pattern	07PR	84 % NC	250	2,000	4,943	0.307	0.033	91	80
	5	EA-18G		FCLP at Ault Field	25FU1	84 % NC	130	1,000	9,077	2.636	0.505	87	76
	1	EA-18G		FCLP at Ault Field	14FM1	82.2 % NC	130	852	1,389	1.74	0.333	107	104
P02	2	EA-18G EA-18G	268B 282A	FCLP at Ault Field FCLP at Ault Field	14FU1 14FM1	82.2 % NC 82.2 % NC	130 140	859 893	1,393	1.74 3.219	0.333 0.711	107 107	103 100
PU2	4	EA-18G		FCLP at Ault Field	14FW1	82.2 % NC 82.2 % NC	140	859	1,393 1,393	3.219	0.711	107	100
	5	EA-18G	264R	Depart and Re-enter Pattern	14PR	82.2 % NC	140	859	1,393	0.403	0.016	106	100
	1	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	1,477	1,206	0.307	0.012	105	98
	2	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	1,599	0.848	0.033	103	95
P03	3 4	EA-18G	264L 266R	Depart and Re-enter Pattern Depart and Re-enter Pattern	14PL 32PR	84 % NC 84 % NC	250 250	1,999 2,000	2,306	0.403	0.016	99 99	90 90
	5	EA-18G EA-18G	245	TACAN Arrival	25AHT	84 % NC 85 % NC	150	1,023	2,401 5,395	0.115 0.77	0.005 0.051	97	87
	1	EA-18G		FCLP at Coupeville	32FCD2	84 % NC	150	800	674	1.198	0	115	106
	2	EA-18G			32FCD1	84 % NC	150	800	759	0.599	0	114	106
P04	3	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	96 % NC	150	936	1,943	0.28	0.086	111	106
	<u>4</u> 5	EA-18G EA-18G	259 261	Interfacility Coupeville to Ault Field	32CW07 32CW25	96 % NC 96 % NC	150 150	936	1,943	0.083 0.229	0.026 0.071	111 111	106 100
	1	EA-18G	275NC	Interfacility Coupeville to Ault Field FCLP at Coupeville	32FCN3	96 % NC 84 % NC	150	936 1,200	1,943 6,861	0.229	0.071	91	77
	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,200	5,714	0.108	0.277	89	77
P05	3	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,500	5,773	0	0.021	89	77
	4	EA-18G		FCLP at Coupeville	32FCD3	84 % NC	150	800	7,987	0.599	0	89	77
	5 1	EA-18G EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85 % NC 84 % NC	350 150	1,199 800	5,867 3,679	0.234	0	88 100	76 85
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCD3 32FCN3	84 % NC 84 % NC	150	1,200	3,679	0.599	0.277	100	85 84
P06	3	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	82.2 % NC	250	895	2,970	0.304	0.211	99	81
	4	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	82.2 % NC	250	893	3,062	0.353	0	99	81
	5	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	82.2 % NC	250	888	3,115	0.234	0	99	79
	1	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	12,064	0.011	0.004 0.018	82	73
P07	3	EA-18G EA-18G	257 280C	Interfacility Coupeville to Ault Field GCA Pattern	14CW25 32G3	82 % NC 82 % NC	250 230	2,000 2,208	11,825 17,859	0.059	0.018	82 80	73 68
,	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	9,777	0.032	0.020	79	71
	5	EA-18G	280B	GCA Pattern	32G2	82 % NC	230	2,332	23,457	0.061	0.017	78	66
	11	transient	442C	VFR non breaks	32A2C	17760 LBS	250	3,047	3,389	0.036	0	85	N/A
D 00	2	transient	442B	VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	0.036	0	81	N/A
P08	3 4	EA-18G EA-18G	248D 250D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 14WC32DN	82 % NC 82 % NC	250 250	2,500 2,500	10,529 10,572	0.108 0.234	0	78 78	66 66
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	82 % NC	250	2,500	10,602	0.254	0	78 78	64
	1	EA-18G	244	TACAN Arrival	14AHT	78 % NC	250	3,163	48,626	0.822	0.054	62	51
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	230	2,403	34,003	0.545	0.154	61	52
P09	3	EA-18G	215A	Departure	25D1C	95 % NC	300	4,765	109,923	1.827	0.11	55	53
	<u>4</u> 5	EA-18G EA-18G	251N 251D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC14N 25WC14D	82 % NC 82 % NC	250 250	2,500 2,500	112,051 112,051	0.09	0.022	55 55	48 43
	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A2A	87 % NC	300	2,577	4,579	1.08	0.092	95	85
	2	EA-18G		Departure	32D2B	95 % NC	300	8,291	9,255	0.243	0.015	90	80
P10	3	EA-18G	279C	GCA Pattern	25G3	82 % NC	250	3,000	4,073	0.836	0.237	89	80
	4	EA-18G		GCA Pattern	07G3	82 % NC	300	3,000	4,085	0.274	0.078	89	79
	5 1	EA-18G EA-18G	277B 277C	GCA Pattern GCA Pattern	07G2 07G3	82 % NC 82 % NC	300 230	3,000 2,926	4,387 21,053	0.183 0.274	0.052 0.078	88 64	78 50
	2	transient	447C	GCA Pattern	07G3	17760 LBS	200	3,000	21,066	0.274	0.078	63	N/A
P11	3	transient	423	IFR non breaks	14A2E	17760 LBS	250	3,047	30,649	0.073	0.007	57	N/A
	4	transient	447B	GCA Pattern	07G2	17760 LBS	200	3,000	32,405	0.018	0	56	N/A
-	5	EA-18G	277B	GCA Pattern	07G2	82 % NC	230	2,891	32,410	0.183	0.052	56	44
	2	EA-18G EA-18G		P3 P8 IFR and Growler VFR non breaks GCA Pattern	14A1C 14G3	87 % NC 82 % NC	300 300	2,941 3,000	9,040 7,718	0.324 0.545	0.028 0.154	82 80	74 72
P12	3	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,784	12,784	0.756	0.154	79	68
	4	transient	448C	GCA Pattern	14G3	17760 LBS	200	3,000	7,718	0.035	0	78	N/A
	5	transient		VFR non breaks	14A1C	17760 LBS	180	3,047	9,073	0.118	0.021	76	N/A
	1	EA-18G		Departure CCA Pottern	32D1A	95 % NC	300	7,686	7,575	0.809	0.049	94	86
P13	3	EA-18G EA-18G	278B 277C	GCA Pattern GCA Pattern	14G2 07G3	82 % NC 82 % NC	300 300	3,000 3,000	3,526 3,689	0.363 0.274	0.103 0.078	91 90	81 80
	4	EA-18G		GCA Pattern	25G3	82 % NC	300	3,000	3,689	0.836	0.078	90	81
L	5	EA-18G		GCA Pattern	32G2	82 % NC	300	3,000	3,526	0.061	0.017	90	81
	11	EA-18G	278C	GCA Pattern	14G3	82 % NC	230	1,822	20,245	0.545	0.154	76	63
D4.4	2	EA-18G		FCLP at Coupeville	32FCD3	84 % NC	150	800	129,685	0.599	0	75	59
P14	3 4	EA-18G EA-18G		FCLP at Coupeville GCA Pattern	32FCD2 14G2	84 % NC 82 % NC	150 230	800 2,166	132,707 23,933	1.198 0.363	0.103	75 72	59 61
	5	EA-18G		FCLP at Coupeville	14FCD1	85 % NC	140	597	129,635	0.363	0.103	71	59
	1	EA-18G		Departure	07D2C	95 % NC	300	5,213	8,277	0.282	0.017	92	83
<u> </u>	2	EA-18G	203A	Departure	07D1C	95 % NC	300	5,155	8,368	0.658	0.04	92	83
P15	3	EA-18G	277B	GCA Pattern	07G2	82 % NC	250	3,000	3,437	0.183	0.052	91	80
	<u>4</u> 5	EA-18G EA-18G		Departure Departure	07D2B 07D1B	95 % NC 95 % NC	300 300	4,892 4,743	9,517 10,004	0.658 1.536	0.04 0.093	90 89	79 78
	1	EA-18G	202A 248N	Interfacility Ault Field to Coupeville	07WC32DN	95 % NC 85 % NC	250	2,500	7,526	1.536	0.093	84	78
	2	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	250	2,500	7,526	0.108	0.021	84	68
P16	3	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85 % NC	250	2,500	7,612	0.234	0	84	68
	4	EA-18G		Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	250	2,500	7,587	0.353	0	84	68
	5	EA-18G		Interfacility Ault Field to Coupeville	25WC32DN	80 % NC	250	2,500	7,587	0 500	0.068	79	69
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCD1 32FCD2	84 % NC 84 % NC	150 150	800 800	878 1,257	0.599 1.198	0	114 111	109 105
P17	3	EA-18G		FCLP at Coupeville	32FCN1	84 % NC	150	1,200	2,411	0.584	0.277	106	95
	4	EA-18G		FCLP at Coupeville	32FCN2	84 % NC	150	1,200	3,071	1.169	0.555	104	92
	5	EA-18G	274DC	FCLP at Coupeville	32FCD3	84 % NC	150	800	3,649	0.599	0	102	90

Table A6-6 SEL-Ranked Flight Profiles for High-Tempo FCLP Year Baseline Scenario (continued)

						· · · · · · · · · · · · · · · · · · ·					erage Daily nts ⁽³⁾	Esti	mated
POI ID	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID	Power Setting	Speed (kts) ⁽¹⁾	Altitude (ft MSL) ⁽²⁾	Slant Range (ft)	Daytime (0700- 2200)	Nighttime (2200- 0700)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾
	1	EA-18G	275NC	FCLP at Coupeville	32FCN3	84 % NC	150	1,200	4,924	0.584	0.277	96	85
	2	EA-18G	274DC	FCLP at Coupeville	32FCD3	84 % NC	150	800	5,592	0.599	0	94	82
P18	3 4	EA-18G EA-18G	248D 248N	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 07WC32DN	85 % NC 85 % NC	350 350	1,200 1,500	3,960 4,056	0.108	0.021	93 93	81 80
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	350	1,200	4,055	0.353	0.021	93	80
	1	EA-18G	252N	Interfacility Ault Field to Coupeville	25WC32DN	97 % NC	135	59	1,093	0	0.068	121	114
Do.	2	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	97 % NC	135	59	1,093	0.353	0	121	114
R01	<u>3</u> 4	EA-18G EA-18G	251N 251D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC14N 25WC14D	97 % NC 97 % NC	135 135	59 59	1,093 1,093	0.09	0.022	121 121	114 114
	5	EA-18G	204A	Departure	07D2A	97 % NC	165	302	1,118	0.94	0.057	120	116
	1	EA-18G	250N	Interfacility Ault Field to Coupeville	14WC32DN	97 % NC	0	47	3,519	0	0.045	110	96
Doo	2	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	97 % NC	0	47	3,519	0.234	0	110	96
R02	<u>3</u> 4	EA-18G EA-18G	249N 249D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC14N 14WC14D	97 % NC 97 % NC	0	47 47	3,519 3,519	0.06	0.015 0	110 110	96 96
	5	EA-18G	210A	Departure	14D2A	97 % NC	0	47	3,519	1.707	0.103	109	100
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	1,787	0.115	0.005	101	93
D00	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84 % NC	250	2,000	1,967	0.403	0.016	101	92
R03	3 4	EA-18G EA-18G	265L 263R	Depart and Re-enter Pattern Depart and Re-enter Pattern	25PL 07PR	84 % NC 84 % NC	250 250	2,000 2,000	1,971 2,001	0.848	0.033 0.012	100 100	92 92
	5	EA-18G	270B	FCLP at Ault Field	32FU1	82.2 % NC	130	817	8,282	0.573	0.012	88	78
	1	EA-18G	205A	Departure	07D2B	95 % NC	300	4,035	5,492	0.658	0.04	99	88
DC4	2	EA-18G	202A	Departure	07D1B	95 % NC	300	4,007	5,530	1.536	0.093	98	88
R04	3 4	EA-18G EA-18G	206A 203A	Departure Departure	07D2C 07D1C	95 % NC 95 % NC	300	4,096 4,096	5,708 5,708	0.282 0.658	0.017 0.04	98 98	88 88
	5	EA-18G	204A	Departure	07D1C	95 % NC	300	3,804	6,519	0.038	0.057	96	86
	1	EA-18G	277A	GCA Pattern	07G1	82 % NC	250	3,000	3,009	1.371	0.388	92	84
Doc	2	EA-18G	279A	GCA Pattern	25G1	82 % NC	300	3,000	3,350	4.182	1.183	91	82
R05	3 4	EA-18G EA-18G	280C 278C	GCA Pattern GCA Pattern	32G3 14G3	82 % NC 82 % NC	300	3,000 3,000	3,491 3,491	0.092 0.545	0.026 0.154	90	82 82
	5	EA-18G	205A	Departure	07D2B	95 % NC	300	3,808	13,742	0.658	0.04	85	75
	1	EA-18G	274DC		32FCD3	85 % NC	140	503	567	0.599	0	118	114
R06	2	EA-18G		FCLP at Coupeville	32FCN1	85 % NC	140	610	599	0.584	0.277	118	113
RUb	3 4	EA-18G EA-18G	248D 248N	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 07WC32DN	85 % NC 85 % NC	140 140	421 421	675 675	0.108	0.021	117 117	113 113
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	140	426	713	0.353	0.021	116	113
	1	EA-18G		FCLP at Coupeville	14FCD3	84 % NC	150	800	847	0.153	0	114	109
R07	2	EA-18G		FCLP at Coupeville	14FCD2 25WC14D	84 % NC 82.2 % NC	150	799	1,359	0.306	0	110	104
KU1	<u>3</u> 4	EA-18G EA-18G	251D 247D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC14D	82.2 % NC	250 250	1,082 1,080	1,489 1,506	0.028	0	104 104	100 100
	5	EA-18G	249D	Interfacility Ault Field to Coupeville	14WC14D	82.2 % NC	250	1,078	1,600	0.06	0	103	100
	1	EA-18G		FCLP at Coupeville	14FCN3	84 % NC	150	1,200	1,128	0.149	0.071	112	106
R08	2	EA-18G EA-18G	272NB 257	FCLP at Coupeville Interfacility Coupeville to Ault Field	14FCN2 14CW25	84 % NC 82 % NC	150 250	1,200 2,000	3,099 2,690	0.298	0.142 0.018	102 99	93 92
100	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2,000	2,690	0.039	0.018	99	92
	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85 % NC	350	1,500	2,437	0	0.022	99	91
	1	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85 % NC	250	2,499	4,551	0.234	0	92	82
R09	3	EA-18G EA-18G	252D 248N	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32DN 07WC32DN	85 % NC 85 % NC	250 250	2,499 2,499	4,690 4,777	0.353	0.021	91 91	82 81
1.00	4	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	250	2,499	4,777	0.108	0.021	91	81
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	3,677	0.045	0.014	90	81
	1	EA-18G	228B	P3 P8 IFR and Growler VFR non break	14A1B	87 % NC	300	2,480	3,143	0.756	0.065	100	90
R10	3	EA-18G EA-18G	228C 280C	P3 P8 IFR and Growler VFR non break GCA Pattern	14A1C 32G3	87 % NC 82 % NC	300 250	2,620 3,000	3,563 2,980	0.324 0.092	0.028 0.026	98 93	88 84
	4	EA-18G	278A	GCA Pattern	14G1	82 % NC	300	2,999	3,168	2.723	0.77	92	83
\square	5	EA-18G		P3 P8 IFR and Growler VFR non break	14A1A	87 % NC	300	2,347	7,186	1.08	0.092	90	77
	1 2	EA-18G EA-18G		Overhead Break Arrival Overhead Break Arrival	14O2A 14O2B	84 % NC 84 % NC	300 300	10,000 10,000	13,520 13,567	0.189	0.022 0.022	73 73	60 60
R11	3	EA-18G		Overhead Break Arrival	1402B	84 % NC	300	10,000	13,567	0.189	0.022	73	60
	4	EA-18G	236B	Overhead Break Arrival	07O2B	84 % NC	300	10,000	13,739	0.111	0.013	72	59
	5	EA-18G		Overhead Break Arrival	07O2A	84 % NC	300	10,000	13,740	0.111	0.013	72	59
	1 2	EA-18G EA-18G			07D2B 25D2A	84 % NC 84 % NC	300 300	9,000 9,000	9,677 16,276	0.658 2.61	0.04 0.158	75 70	65 58
R12	3	EA-18G		Departure	25D2A 25D2B	84 % NC	300	9,000	16,448	1.827	0.136	70	58
	4	EA-18G	218A	Departure	25D2C	84 % NC	300	9,000	18,999	0.783	0.047	67	55
	5	EA-18G		Departure	07D2C	84 % NC	300	9,000	24,952	0.282	0.017	66	55 55
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCD2 14FCD3	84 % NC 84 % NC	150 150	800 800	49,661 49,257	0.306 0.153	0	75 74	55 55
R13	3	EA-18G		FCLP at Coupeville	14FCD1	84 % NC	150	800	52,723	0.153	0	74	55
	4	EA-18G		FCLP at Coupeville	14FCN2	84 % NC	150	1,200	46,508	0.298	0.142	74	53
\vdash	5 1	EA-18G EA-18G	262 268B	Interfacility Coupeville to Ault Field FCLP at Ault Field	32CW32 14FU1	82 % NC	250 130	2,000 1,000	30,019	0.045 1.74	0.014 0.333	71 104	51 96
	2	EA-18G EA-18G		FCLP at Ault Field	25FU1	84 % NC 82.2 % NC	130	693	2,575 3,116	2.636	0.505	104	96 96
R14	3	EA-18G		FCLP at Ault Field	25FU1	82.2 % NC	140	715	3,119	5.062	1.118	103	91
	4	EA-18G		FCLP at Ault Field	25FM1	82.2 % NC	130	702	3,119	2.636	0.505	103	91
ш	5	EA-18G	265L	Depart and Re-enter Pattern	25PL	82.2 % NC	140	697	3,095	0.848	0.033	103	91

Table A6-6 SEL-Ranked Flight Profiles for High-Tempo FCLP Year Baseline Scenario (concluded)

												D. 11	F-12	
										Slant	Daytime	erage Daily Nighttime	ESTI	mated
POI		Almond Ton	Profile	T		Pov		Speed	Altitude	Range	(0700-	(2200-	SEL	Lmax
ID	Rank 1	Aircraft Type EA-18G	1D 251D	Type of Operation Interfacility Ault Field to Coupeville	Track ID 25WC14D	Sett 85	ing % NC	(kts) ⁽¹⁾	(ft MSL) (2) 601	(ft) 1,353	2200) 0.09	0700) 0	(dBA) 110	(dBA) ⁽⁴⁾ 105
	2	EA-18G	247D	Interfacility Ault Field to Coupeville	07WC14D		% NC	140	621	1,423	0.028	0	110	105
R15	3	EA-18G	249D	Interfacility Ault Field to Coupeville	14WC14D	85	% NC	140	616	1,435	0.06	0	110	105
	4	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N		% NC	140	401	1,933	0	0.022	108	105
	5 1	EA-18G EA-18G	272NA 233A	FCLP at Coupeville P3 P8 IFR and Growler VFR non brea	14FCN1 32A1A		% NC % NC	140 300	744 2,756	2,197 2,575	0.149 0.207	0.071 0.018	107 100	99 91
	2	EA-18G	209A	Departure	14D1C		% NC	300	6,951	8,107	1.195	0.018	93	85
R16	3	EA-18G	278C	GCA Pattern	14G3		% NC	250	3,000	3,185	0.545	0.154	91	82
	4	EA-18G	208A	Departure	14D1B		% NC	300	6,815	9,922	2.788	0.168	90	81
	5	EA-18G	246	TACAN Arrival	32AHT		% NC	250	2,475	6,673	0.112	0.007	89	81
	1	transient transient	442C	VFR non breaks	32A2C	17760		250	3,047	2,963	0.036	0	85	N/A N/A
R17	3	P-3	442B 342C	VFR non breaks P3 P8 IFR and Growler VFR non brea	32A2B 32A2C	17760 1200	LBS	250 250	3,047 3,047	6,202 2,963	0.036 0.094	0	79 74	68
11.17	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN		% NC	250	2,500	12,679	0.004	0.021	74	61
	5	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	82	% NC	250	2,500	12,679	0.108	0	73	61
	1	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN		% NC	250	2,500	22,575	0	0.021	65	47
R18	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN		% NC	250	2,500	22,575	0.108	0	65	47 47
KIB	<u>3</u> 4	EA-18G EA-18G	250D 252D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC32DN 25WC32DN		% NC % NC	250 250	2,500 2,500	22,587 22,613	0.234 0.353	0	65 65	47
	5	EA-18G	256	Interfacility Aut Field to Coupeville Interfacility Coupeville to Ault Field	14CW14		% NC	250	2,000	24,403	0.072	0.022	64	47
	1	EA-18G	271DA	FCLP at Coupeville	14FCD1		% NC	140	513	422	0.153	0	120	118
	2	EA-18G		FCLP at Coupeville	14FCD2		% NC	140	499	461	0.306	0	119	116
R19	3	EA-18G		FCLP at Coupeville	14FCD3		% NC	140	490	534	0.153	0	119	115
	4	EA-18G		Interfacility Ault Field to Coupeville	25WC14N		% NC	140	321	1,011	0.00	0.022	113	106
	5 1	EA-18G EA-18G	251D 229C	Interfacility Ault Field to Coupeville P3 P8 IFR and Growler VFR non brea	25WC14D 14A2C		% NC % NC	140 300	361 2,933	1,150 3,692	0.09 0.324	0.028	113 95	106 87
	2	EA-18G	277C	GCA Pattern	07G3		% NC	300	3,000	3,898	0.274	0.078	89	52
R20	3	EA-18G	229B	P3 P8 IFR and Growler VFR non brea	14A2B		% NC	300	2,769	6,744	0.756	0.065	88	78
	4	transient	423	IFR non breaks	14A2E	17760		180	3,047	3,071	0.073	0.007	86	N/A
	5	transient	438C	VFR non breaks	14A2C	17760		180	3,047	3,781	0.177	0.032	84	N/A
	1 2	EA-18G EA-18G	266L 270B	Depart and Re-enter Pattern FCLP at Ault Field	32PL 32FU1		% NC % NC	140 130	773 802	4009 4008	0.115 0.573	0.005 0.11	98 96	90 90
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1		% NC	140	839	4014	0.803	0.177	96	84
	4	EA-18G	266R	Depart and Re-enter Pattern	32PR		% NC	140	773	4003	0.115	0.005	96	84
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32		% NC	140	861	3936	0.045	0.014	95	83
	1	EA-18G	212A	Departure	14D2C	95	% NC	300	2514	3432	0.512	0.031	104	94
S02	2	EA-18G	209A	Departure	14D1C		% NC	300	2514	3432	1.195	0.072	104	93
502	3 4	EA-18G EA-18G	207A 211A	Departure Departure	14D1A 14D2B		% NC % NC	300	2514 2514	3432 3432	3.983 1.195	0.241 0.072	104	94 94
	5	EA-18G	208A	Departure	14D1B		% NC	300	2514	3432	2.788	0.072	104	94
	1	EA-18G	275NC	FCLP at Coupeville	32FCN3		% NC	150	1200	3915	0.584	0.277	98	89
	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN		% NC	350	1200	2749	0.108	0	97	89
S03	3	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN		% NC	350	1200	2808	0.353	0	97	89
	<u>4</u> 5	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN		% NC	350	1500	2879	0	0.021	96	89 88
	1	EA-18G EA-18G	250D 228C	Interfacility Ault Field to Coupeville 3 P8 IFR and Growler VFR non break	14WC32DN 14A1C	85 87	% NC % NC	350 300	1200 2882	2890 4781	0.234 0.324	0.028	96 93	83
	2	EA-18G	278C	GCA Pattern	14G3		% NC	300	3000	2903	0.545	0.020	92	84
S04	3	EA-18G	228B	3 P8 IFR and Growler VFR non break	14A1B	87	% NC	300	2719	7342	0.756	0.065	87	76
	4	transient	448C	GCA Pattern	14G3	17760	LBS	200	3000	2903	0.035	0	85	N/A
	5	EA-18G	280C	GCA Pattern	32G3	82	% NC	250	3000	5064	0.092	0.026	84	76
	2	EA-18G EA-18G	243 229C	TACAN Arrival 3 P8 IFR and Growler VFR non break	07AHT 14A2C	78 87	% NC % NC	250 300	3529 2712	3374 19217	0.405 0.324	0.027 0.028	76 70	68 56
S05	3	EA-18G	229B	3 P8 IFR and Growler VFR non break	14A2C		% NC	300	2592	23773	0.324	0.028	66	51
	4	EA-18G	224A	Departure	32D2C		% NC	300	8249	32151	0.104	0.006	65	52
	5	transient	438C	VFR non breaks	14A2C	17760	LBS	180	3047	19344	0.177	0.032	64	N/A
	1	EA-18G	224A	Departure	32D2C		% NC	300	9000	61543	0.104	0.006	51	39
S06	3	EA-18G	223A	Departure CCA Pottern	32D2B	84 17760	% NC	300	9000	66657	0.243	0.015	50	39
300	4	transient EA-18G	447C 222A	GCA Pattern Departure	07G3 32D2A	95	% NC	200 300	3000 8656	40394 71520	0.018 0.347	0.021	50 49	37 37
	5	EA-18G	278C	GCA Pattern	14G3		% NC	230	1883	57832	0.545	0.154	49	37
	1	EA-18G	277C	GCA Pattern	07G3		% NC	230	2810	88787	0.274	0.078	61	51
	2	EA-18G	250N	Interfacility Ault Field to Coupeville	14WC32DN		% NC	250	2500	161086	0	0.045	60	47
S07	3	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN		% NC	250	2500	161073	0.234	0	60	47
	4	EA-18G	249N	Interfacility Ault Field to Coupeville	14WC14N		% NC	0	47	167753	0	0.015	58	42
	5 1	EA-18G EA-18G	205A 280C	Departure GCA Pattern	07D2B 32G3		% NC % NC	300 300	9000 3000	100649 2779	0.658 0.092	0.04 0.026	58 93	42 81
	2	EA-18G	278C	GCA Pattern	14G3		% NC	300	3000	2779	0.545	0.020	93	81
S08	3	EA-18G	228A	3 P8 IFR and Growler VFR non break	14A1A		% NC	300	2851	6041	1.08	0.092	89	80
	4	EA-18G	279C	GCA Pattern	25G3	82	% NC	300	3000	4183	0.836	0.237	88	79
	5	EA-18G	277C	GCA Pattern	07G3		% NC	300	3000	4183	0.274	0.078	88	79
	2	EA-18G	232A 277B	3 P8 IFR and Growler VFR non break	25A3A		% NC % NC	300	3000	4033 3025	0.777	0.067	92	86 78
S09	3	EA-18G EA-18G	277B	GCA Pattern GCA Pattern	07G2 25G1		% NC	250 300	3000 3000	5300	0.183 4.182	0.052 1.183	91 87	78 75
555	4	EA-18G	206A	Departure	07D2C		% NC	300	5403	11786	0.282	0.017	86	76
	5	EA-18G	203A	Departure	07D1C	95	% NC	300	5300	11968	0.658	0.04	86	76
	1	EA-18G	280C	GCA Pattern	32G3	82	% NC	230	2333	19814	0.092	0.026	71	59
	2	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25		% NC	250	2000	20733	0.059	0.018	70	58
S10	3	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32		% NC	250	2000	20783	0.011	0.004	70	58
	<u>4</u> 5	EA-18G EA-18G	246 212A	TACAN Arrival Departure	32AHT 14D2C		% NC % NC	250 300	3085 7389	23749 43096	0.112 0.512	0.007 0.031	70 70	53 47
Notes	_	LA-100	212H	Departure	14020	ອວ	/0 INC	300	1008	43090	0.012	0.031	10	41

Notes:
(1) 0 ft indicates the contributing profile is the beginning of takeoff roll
(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

Table A6-7 SEL-Ranked Flight Profiles for High-Tempo FCLP Year No Action Alternative

										Annual Av	erage Daily	_ Fatt	motod
POI	SEL		Profile			Power	Speed	Altitude	Slant Range	Daytime (0700-	Nighttime (2200-	SEL	Lmax
ID	Rank	Aircraft Type	ID	Type of Operation	Track ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	(ft)	2200)	0700)	(dBA)	(dBA) ⁽⁴⁾
ŀ	2	EA-18G EA-18G	266L 264R	Depart and Re-enter Pattern Depart and Re-enter Pattern	32PL 14PR	84 % NC 84 % NC	250 250	2,000 2,000	4,401 4,415	0.149 0.452	0.005 0.014	93 92	82 82
P01	3	EA-18G	265L	Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	4,889	0.897	0.028	92	80
	4	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	2,000	4,943	0.266	0.008	91	80
	5	EA-18G	269B	FCLP at Ault Field	25FU1	84 % NC	130	1,000	9,077	2.685	0.502	87	76
ŀ	2	EA-18G EA-18G	268A 268B	FCLP at Ault Field FCLP at Ault Field	14FM1 14FU1	82.2 % NC 82.2 % NC	130 130	852 859	1,389 1,393	1.614 1.614	0.302 0.302	107 107	104 103
P02	3	EA-18G	282A	FCLP at Ault Field	14FM1	82.2 % NC	140	893	1,393	2.622	0.684	107	100
	4	EA-18G	282B	FCLP at Ault Field	14FU1	82.2 % NC	140	859	1,393	2.622	0.684	106	100
	5	EA-18G		Depart and Re-enter Pattern	14PR	82.2 % NC	140	859	1,393	0.452	0.014	106	100
	1	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	1,477	1,206	0.266	0.008	105	98
P03	3	EA-18G EA-18G	265L 264L	Depart and Re-enter Pattern Depart and Re-enter Pattern	25PL 14PL	84 % NC 84 % NC	250 250	2,000 1,999	1,599 2,306	0.897 0.452	0.028 0.014	103 99	95 90
1 03	4	EA-18G		Depart and Re-enter Pattern	32PR	84 % NC	250	2,000	2,401	0.432	0.005	99	90
ľ	5	EA-18G	245	TACAN Arrival	25AHT	85 % NC	150	1,023	5,395	1.022	0.054	97	87
	1	EA-18G		FCLP at Coupeville	32FCD2	84 % NC	150	800	674	1.266	0	115	106
_	2	EA-18G		FCLP at Coupeville	32FCD1	84 % NC	150	800	759	0.633	0	114	106
P04	<u>3</u>	EA-18G EA-18G	260 259	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	32CW14 32CW07	96 % NC 96 % NC	150 150	936 936	1,943 1,943	0.333 0.098	0.096 0.028	111	106 106
ŀ	5	EA-18G	261	Interfacility Coupeville to Ault Field	32CW07	96 % NC	150	936	1,943	0.030	0.028	111	100
	1	EA-18G		FCLP at Coupeville	32FCN3	84 % NC	150	1,200	6,861	0.617	0.249	91	77
	2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,200	5,714	0.19	0	89	77
P05	3	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1,500	5,773	0	0.034	89	77
	<u>4</u> 5	EA-18G EA-18G		FCLP at Coupeville Interfacility Ault Field to Coupeville	32FCD3 14WC32DN	84 % NC 85 % NC	150 350	800 1,199	7,987 5,867	0.633 0.19	0	89 88	77 N/A
	1	EA-18G		FCLP at Coupeville	32FCD3	84 % NC	150	800	3,679	0.633	0	100	85
ľ	2	EA-18G		FCLP at Coupeville	32FCN3	84 % NC	150	1,200	3,776	0.617	0.249	100	84
P06	3	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	82.2 % NC	250	895	2,970	0.19	0	99	81
	4	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	82.2 % NC	250	900	2,979	0.05	0	99	81
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	82.2 % NC	250	893	3,062	0.396	0 000	99	79
ŀ	1 2	EA-18G EA-18G	258 257	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW32 14CW25	82 % NC 82 % NC	250 250	2,000 2,000	12,064 11,825	0.01 0.052	0.003 0.015	82 82	73 73
P07	3	EA-18G	280C	GCA Pattern	32G3	82 % NC	230	2,208	17,859	0.131	0.035	80	68
	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	9,777	0.053	0.015	79	71
	5	EA-18G		GCA Pattern	32G2	82 % NC	230	2,332	23,457	0.087	0.023	78	66
ŀ	2	P-8		P3 P8 IFR and Growler VFR non breaks	32A2C	17760 LBS	250 250	3,047	3,389	0.065 0.038	0.013	85	N/A N/A
P08	3	transient P-8	442C 542B	VFR non breaks P3 P8 IFR and Growler VFR non breaks	32A2C 32A2B	17760 LBS 17760 LBS	250	3,047 3,047	3,389 5,353	0.038	0.013	85 81	N/A N/A
	4	transient	442B	VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	0.038	0.010	81	N/A
	5	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	82 % NC	250	2,500	10,529	0.19	0	78	64
	11	EA-18G	244	TACAN Arrival	14AHT	78 % NC	250	3,163	48,626	0.353	0.019	62	51
P09	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	230	2,403	34,003	0.532	0.142	61	52
P09	<u>3</u> 4	P-8 EA-18G	544 215A	Low TACAN Departure Departure	14ALT 25D1C	4610 LBS 95 % NC	250 300	5,632 4,765	28,942 109,923	0.209 1.932	0.032 0.127	55 55	53 48
ŀ	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	82 % NC	250	2,500	112,051	0	0.012	55	43
	1	EA-18G	229A	P3 P8 IFR and Growler VFR non breaks	14A2A	87 % NC	300	2,577	4,579	0.994	0.084	95	85
	2	EA-18G	223A	Departure	32D2B	95 % NC	300	8,291	9,255	0.259	0.017	90	80
P10	3	EA-18G	279C	GCA Pattern	25G3	82 % NC	250	3,000	4,073	0.838	0.223	89	80
ŀ	<u>4</u> 5	EA-18G EA-18G	277C 277B	GCA Pattern GCA Pattern	07G3 07G2	82 % NC 82 % NC	300	3,000 3,000	4,085 4,387	0.329 0.219	0.087 0.058	89 88	79 78
	1	EA-18G	277C	GCA Pattern	07G3	82 % NC	230	2,926	21,053	0.329	0.087	64	50
l	2	P-8	547C	GCA Pattern	07G3	17760 LBS	200	3,000	21,066	0.208	0.028	63	N/A
P11	3	transient		GCA Pattern	07G3	17760 LBS	200	3,000	21,066	0.018	0	63	N/A
	4	P-8		P3 P8 C40 VFR non breaks	14A2E	17760 LBS	250	3,047	30,649	0.066	0.013	57	N/A
	5 1	transient EA-18G	423 228C	IFR non breaks P3 P8 IFR and Growler VFR non breaks	14A2E 14A1C	17760 LBS 87 % NC	250 300	3,047 2,941	30,649 9,040	0.061 0.298	0.005 0.025	57 82	N/A 74
	2	EA-18G		GCA Pattern	14G3	82 % NC	300	3,000	7,718	0.532	0.023	80	72
P12	3	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,784	12,784	0.696	0.059	79	68
[4	P-8		GCA Pattern	14G3	17760 LBS	200	3,000	7,718	0.309	0.035	78	N/A
	5	transient		GCA Pattern	14G3	17760 LBS	200	3,000	7,718	0.036	0.057	78	N/A
	2	EA-18G		Departure GCA Pattern	32D1A 14G2	95 % NC 82 % NC	300 300	7,686	7,575	0.864 0.355	0.057 0.094	94	86 81
P13	3	EA-18G EA-18G		GCA Pattern GCA Pattern	07G3	82 % NC 82 % NC	300	3,000 3,000	3,526 3,689	0.355	0.094	91 90	81 80
	4	EA-18G		GCA Pattern	25G3	82 % NC	300	3,000	3,689	0.838	0.223	90	81
	5	EA-18G	280B	GCA Pattern	32G2	82 % NC	300	3,000	3,526	0.087	0.023	90	81
	1	EA-18G		GCA Pattern	14G3	82 % NC	230	1,822	20,245	0.532	0.142	76	63
P14	2	EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCD3	84 % NC	150	800	129,685	0.633	0	75 75	59 50
F 14	<u>3</u> 4	EA-18G P-8		Low TACAN Departure	32FCD2 14ALT	84 % NC 4610 LBS	150 250	800 4,622	132,707 4,657	1.266 0.209	0.032	75 72	59 N/A
- 1	5	EA-18G		GCA Pattern	14G2	82 % NC	230	2,166	23,933	0.355	0.032	72	59
	1	EA-18G	206A	Departure	07D2C	95 % NC	300	5,213	8,277	0.279	0.018	92	83
[2	EA-18G		Departure	07D1C	95 % NC	300	5,155	8,368	0.652	0.043	92	83
P15	3	EA-18G		GCA Pattern	07G2	82 % NC	250	3,000	3,437	0.219	0.058	91	80
ŀ	<u>4</u> 5	EA-18G EA-18G		Departure Departure	07D2B 07D1B	95 % NC 95 % NC	300 300	4,892 4,743	9,517 10,004	0.652 1.521	0.043	90 89	79 78
	1	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	85 % NC	250	2,500	7,309	0.05	0.1	85	70
ı	2	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	250	2,500	7,526	0.00	0.034	84	68
P16	3	EA-18G		Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	250	2,500	7,526	0.19	0	84	68
	4	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85 % NC	250	2,500	7,612	0.19	0	84	68
	5	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	250	2,500	7,587	0.396	0	84	69

Table A6-7 SEL-Ranked Flight Profiles for High-Tempo FCLP Year No Action Alternative (continued)

												erage Daily		
										Slant	Ever Daytime	nts ⁽³⁾ Nighttime	Esti	mated
POI	SEL		Profile				wer	Speed	Altitude	Range	(0700-	(2200-	SEL	Lmax
ID	Rank 1	Aircraft Type EA-18G	274DA	Type of Operation FCLP at Coupeville	Track ID 32FCD1	Set 84	ting % NC	(kts) ⁽¹⁾	(ft MSL) (2) 800	(ft) 878	2200) 0.633	0700)	(dBA) 114	(dBA) ⁽⁴⁾
ŀ	2	EA-18G			32FCD2	84	% NC	150	800	1,257	1.266	0	111	105
P17	3	EA-18G			32FCN1	84	% NC	150	1,200	2,411	0.617	0.249	106	95
-	5	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCN2 32FCD3	84 84	% NC % NC	150 150	1,200 800	3,071 3,649	1.235 0.633	0.497	104 102	92 90
	1	EA-18G		FCLP at Coupeville	32FCD3 32FCN3	84	% NC	150	1,200	4,924	0.633	0.249	96	85
	2	EA-18G		FCLP at Coupeville	32FCD3	84	% NC	150	800	5,592	0.633	0	94	82
P18	3	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	350	1,200	3,960	0.19	0 004	93	81
-	5	EA-18G EA-18G	248N 252D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 25WC32DN	85 85	% NC % NC	350 350	1,500 1,200	4,056 4,055	0.396	0.034	93 93	80 80
	1	EA-18G	252N	Interfacility Ault Field to Coupeville	25WC32DN	97	% NC	135	59	1,093	0.530	0.072	121	114
	2	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	97	% NC	135	59	1,093	0.396	0	121	114
R01	3	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	97	% NC	135	59	1,093	0 075	0.012	121	114
ŀ	5	EA-18G EA-18G	251D 204A	Interfacility Ault Field to Coupeville Departure	25WC14D 07D2A	97 97	% NC % NC	135 165	59 302	1,093 1,118	0.075 0.931	0.061	121 120	114 116
	1	EA-18G	250N	Interfacility Ault Field to Coupeville	14WC32DN	97	% NC	0	47	3,519	0.551	0.034	110	96
[2	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	97	% NC	0	47	3,519	0.19	0	110	96
R02	3	EA-18G EA-18G	249N 249D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC14N 14WC14D	97 97	% NC % NC	0	47 47	3,519 3,519	0.036	0.006	110 110	96 96
ŀ	5	EA-18G	210A	Departure	14WC14D	97	% NC	0	47	3,519	1.526	0.1	109	100
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	84	% NC	250	2,000	1,787	0.149	0.005	101	93
D.	2	EA-18G	264R	Depart and Re-enter Pattern	14PR	84	% NC	250	2,000	1,967	0.452	0.014	101	92
R03	3	EA-18G EA-18G	265L 263R	Depart and Re-enter Pattern Depart and Re-enter Pattern	25PL 07PR	84 84	% NC % NC	250 250	2,000	1,971 2,001	0.897 0.266	0.028	100 100	92 92
ŀ	5	EA-18G	270B	FCLP at Ault Field	32FU1	82.2	% NC	130	817	8,282	0.286	0.146	88	78
	1	EA-18G	205A	Departure	07D2B	95	% NC	300	4,035	5,492	0.652	0.043	99	88
D0.4	2	EA-18G	202A	Departure	07D1B	95	% NC	300	4,007	5,530	1.521	0.1	98	88
R04	3 4	EA-18G EA-18G	206A 203A	Departure Departure	07D2C 07D1C	95 95	% NC % NC	300	4,096 4,096	5,708 5,708	0.279 0.652	0.018 0.043	98 98	88 88
	5	EA-18G	204A	Departure	07D1C	95	% NC	300	3,804	6,519	0.931	0.043	96	86
	1	EA-18G	277A	GCA Pattern	07G1	82	% NC	250	3,000	3,009	1.644	0.437	92	84
B05	2	EA-18G	279A	GCA Pattern	25G1	82	% NC	300	3,000	3,350	4.192	1.115	91	82
R05	3 4	EA-18G EA-18G	280C 278C	GCA Pattern GCA Pattern	32G3 14G3	82 82	% NC % NC	300	3,000	3,491	0.131 0.532	0.035 0.142	90	82 82
	5	EA-18G		Departure	07D2B	95	% NC	300	3,808	13,742	0.652	0.043	85	75
	1	EA-18G		FCLP at Coupeville	32FCD3	85	% NC	140	503	567	0.633	0	118	114
R06	3	EA-18G EA-18G	275NA 248D	FCLP at Coupeville	32FCN1	85 85	% NC % NC	140 140	610 421	599 675	0.617 0.19	0.249	118 117	113 113
RUb	4	EA-18G	248D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32DN 07WC32DN	85	% NC	140	421	675	0.19	0.034	117	113
	5	EA-18G	254D	Interfacility Ault Field to Coupeville	32WC32DN	85	% NC	140	412	706	0.05	0.001	116	113
-	11	EA-18G		FCLP at Coupeville	14FCD3	84	% NC	150	800	847	0.13	0	114	109
R07	2	EA-18G EA-18G	271DB 251D	FCLP at Coupeville Interfacility Ault Field to Coupeville	14FCD2 25WC14D	84 82.2	% NC % NC	150 250	799 1,082	1,359 1,489	0.259 0.075	0	110 104	104 100
107	4	EA-18G	253D	Interfacility Ault Field to Coupeville	32WC14D	82.2		250	1,082	1,493	0.075	0	104	100
	5	EA-18G	247D	Interfacility Ault Field to Coupeville	07WC14D	82.2	% NC	250	1,080	1,506	0.036	0	104	100
-	1	EA-18G	272NC	FCLP at Coupeville	14FCN3	84	% NC	150	1,200	1,128	0.126	0.051	112	106
R08	2	EA-18G EA-18G	272NB 257	FCLP at Coupeville Interfacility Coupeville to Ault Field	14FCN2 14CW25	84 82	% NC % NC	150 250	1,200 2,000	3,099 2,690	0.253 0.052	0.102 0.015	102 99	93 92
	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82	% NC	250	2,000	2,690	0.032	0.003	99	92
	5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85	% NC	350	1,500	2,437	0	0.012	99	91
-	1 2	EA-18G	250D	Interfacility Ault Field to Coupeville	14WC32DN	85	% NC	250	2,499	4,551	0.19	0	92	82
R09	3	EA-18G EA-18G	252D 254D	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32DN 32WC32DN	85 85	% NC % NC	250 250	2,499 2,499	4,690 4,762	0.396 0.05	0	91 91	82 81
	4	EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,499	4,777	0.00	0.034	91	81
	5	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85	% NC	250	2,499	4,777	0.19	0		81
-	2	EA-18G EA-18G		P3 P8 IFR and Growler VFR non breaks P3 P8 IFR and Growler VFR non breaks	14A1B 14A1C	87 87	% NC % NC	300	2,480 2,620	3,143 3,563	0.696 0.298	0.059 0.025	100 98	90 88
R10	3	EA-18G		GCA Pattern	32G3	82	% NC	250	3,000	2,980	0.131	0.025	93	84
[4	EA-18G		GCA Pattern	14G1	82	% NC	300	2,999	3,168	2.661	0.708	92	83
	5	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1A	87	% NC	300	2,347	7,186	0.994	0.084	90	77
-	1 2	EA-18G		Overhead Break Arrival	14O2A	84	% NC	300	10,000	13,520	0.178	0.019	73	60
R11	3	EA-18G EA-18G		Overhead Break Arrival Overhead Break Arrival	14O2B 14O2C	84 84	% NC % NC	300	10,000 10,000	13,567 13,609	0.178 0.183	0.019 0.02	73 73	60 60
Ė	4	EA-18G		Overhead Break Arrival	07O2B	84	% NC	300	10,000	13,739	0.11	0.012	72	59
	5	EA-18G		Overhead Break Arrival	07O2A	84	% NC	300	10,000	13,740	0.11	0.012	72	59
- }	1 2	EA-18G EA-18G		Departure Departure	07D2B 25D2A	84	% NC % NC	300	9,000	9,677 16,276	0.652 2.76	0.043	75 70	65 58
R12	3	EA-18G EA-18G		Departure Departure	25D2A 25D2B	84	% NC	300	9,000	16,276	1.932	0.181	70	58 58
- [4	EA-18G		Departure	25D2C	84	% NC	300	9,000	18,999	0.828	0.054	67	55
[5	EA-18G		Departure	07D2C	84	% NC	300	9,000	24,952	0.279	0.018	66	55
	1	EA-18G		FCLP at Coupoville	14FCD2	84	% NC	150	800	49,661	0.259	0	75	55 55
R13	3	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCD3 14FCD1	84 84	% NC % NC	150 150	800 800	49,257 52,723	0.13 0.13	0	74 74	55 55
	4	EA-18G		FCLP at Coupeville	14FCN2	84	% NC	150	1,200	46,508	0.253	0.102	74	53
[5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82	% NC	250	2,000	30,019	0.053	0.015	71	51
ŀ	2	EA-18G EA-18G		FCLP at Ault Field FCLP at Ault Field	14FU1 25FU1	84 82.2	% NC % NC	130	1,000	2,575	1.614 2.685	0.302 0.502	104	96 96
R14	3	EA-18G EA-18G		FCLP at Ault Field FCLP at Ault Field	25FU1 25FU1	82.2		130 140	693 715	3,116 3,119	2.685	0.502	103 103	96 91
	4	EA-18G		FCLP at Ault Field	25FM1	82.2	% NC	130	702	3,119	2.685	0.502	103	91
- 1	5	EA-18G	265L	Depart and Re-enter Pattern	25PL		% NC	140	697	3,095	0.897	0.028	103	91

Table A6-7 SEL-Ranked Flight Profiles for High-Tempo FCLP Year No Action Alternative (concluded)

Part											Annual Av	erage Daily	Feti	mated
Power Powe										Slant			Lou	mateu
1	POI	SEL		Profile			Power	Speed	Altitude			<u> </u>	SEL	Lmax
1		Rank	Aircraft Type		Type of Operation	Track ID		(kts) ⁽¹⁾	(ft MSL) (2)				(dBA)	(dBA) ⁽⁴⁾
RED 3		1							601		0.075	0	110	
## EA-180		2	EA-18G	253D	Interfacility Ault Field to Coupeville	32WC14D	85 % NC	140	609	1,370	0.009	0	110	105
S. EA-180 ZSIN Interferent And Post of Coupone May Sept No. 440 461 1,853 0 0,002 108 99	R15	3	EA-18G	247D	Interfacility Ault Field to Coupeville	07WC14D	85 % NC	140	621	1,423	0.036	0	110	105
The EA-Hill 2004 PS PS Rand Grower VFR rom breaks 2004 2005 2		4	EA-18G	249D	Interfacility Ault Field to Coupeville	14WC14D	85 % NC	140	616	1,435	0.036	0	110	105
Re		5	EA-18G	251N	Interfacility Ault Field to Coupeville	25WC14N	85 % NC	140	401	1,933		0.012	108	99
REG 4 Feb. 160 2005 [Contraction 1403 62 No. 250 3.000 3.185 0.532 0.142 91 92 4 Feb. 160 2005 [Contraction 1405 63 No. 0.00 6.315 0.022 2.426 0.005 0.015 1 Feb. 2		1	EA-18G	233A	P3 P8 IFR and Growler VFR non breaks	32A1A	87 % NC	300	2,756	2,575	0.222	0.019	100	91
Exhibit Color Co		2	EA-18G	209A	Departure	14D1C	95 % NC	300	6,951	8,107	1.068	0.07	93	85
S	R16	3		278C	GCA Pattern				3,000				91	
1														
No. of Control Price Pri		5												-
RIT 2			P-8									0.013		
4														
S	R17													
1 P-8														
Page		5												
R16 4 4 E-R-180 2500 Interfacility Ask Field to Coapeville 39WC32DN 85 N.N. 250 2,250 22,311 0.06 0.05 65 47 4														
## EA-180		2	P-8	545	Low TACAN Departure	25ALT	4610 LBS	250	6,446	6,474	0.109	0.019	67	N/A
Fig. Fig.	R18	3												
1 EA-180 ZPIDA FICUP at Couperfile														
Page		5	EA-18G	248D	Interfacility Ault Field to Coupeville			250	2,500	22,575	0.19	0		
R19 3														
## RATING ## SENN Interfacility All Field to Couponile														
Section Sect	R19													
The Field Section Property														
Reserved Part Part Reserved Part	5	EA-18G	251D	Interfacility Ault Field to Coupeville		85 % NC			1,150	0.075			106	
Reserved Reserved														
4														
Fig. 6	R20	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2,769	6,744	0.696	0.059	88	78
F. P. P. S. P. P. S. P. P. B. C. OVFR non breaks		4		423		14A2E		180	3,047	3,071	0.061	0.005	86	N/A
2 EA-18G O 270B Interfacility As Price of As As Field 32FU1 In S22 M/L (140) 830 Aug. 400 Aug. 0.761 O.146 96 B 90 4 EA-18G O 286R Depart and Re-enter Pattern 32FVL Interfacility Cooperation (Aug.) 32FVL Interfacility Cooperation (Aug.) 40 Aug. 40 A		5	P-8	527	P3 P8 C40 VFR non breaks	14A2E	17760 LBS	180	3,047	3,071	0.066	0.013	86	N/A
Section Sect		1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2 % NC	140	773	4009	0.149	0.005	98	90
4 EA-18G 286R Depart and Re-enter Pattern 32PR 82.2 % MC 140 773 4003 0.149 0.005 98 84 5 EA-18G 202 Interfacility Coupeville to Aut Field 32CW32 82.2 % MC 140 861 83936 0.053 0.015 99 83 1 EA-18G 212A Departure 14D1C 95 % MC 300 2514 3432 0.689 0.03 104 94 2 EA-18G 207A Departure 14D1C 95 % MC 300 2514 3432 0.689 0.07 104 94 4 EA-18G 207A Departure 14D1A 95 % MC 300 2514 3432 1.089 0.07 104 94 5 EA-18G 208A Departure 14D1A 95 % MC 300 2514 3432 1.089 0.07 104 94 6 EA-18G 275N FCLP at Coupeville 32FCN3 84 % MC 300 2514 3432 2.493 0.680 0.07 104 94 7 EA-18G 275N FCLP at Coupeville 32FCN3 84 % MC 300 2514 3432 2.493 0.680 0.07 104 94 8 EA-18G 248D Departure 32FCN3 84 % MC 300 2514 3432 2.493 0.680 0.07 0.64 104 94 9 EA-18G 248D Departure 32FCN3 84 % MC 300 2514 3432 2.493 0.164 104 94 9 EA-18G 248D Departure 32FCN3 85 % MC 350 1200 2749 0.19 0 0 97 89 9 EA-18G 248D Departure 32FCN3 85 % MC 350 1200 2749 0.19 0 0 97 89 1 EA-18G 248D Departure 34FCN3 85 % MC 350 1200 2749 0.19 0 0 97 89 1 EA-18G 228D Departure 1401B 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000		2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2 % NC	130	802	4008	0.781	0.146	96	90
For the component of	S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2 % NC	140	839	4014	0.96	0.25	96	84
1 EA-18G 212A Departure 14D2C 95 % NC 300 2514 3432 0.488 0.03 104 94		4	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2 % NC	140	773	4003	0.149	0.005	96	84
SQ 2 EA-18G 209A Departure 14D1C 95 % NC 300 2514 3432 1.088 0.07 104 93 4 EA-18G 217A Departure 14D1A 95 % NC 300 2514 3432 1.088 0.07 104 94 5 EA-18G 208A Departure 14D1B 95 % NC 300 2514 3432 1.088 0.07 104 94 4 EA-18G 228B Instractivity Auf Field to Coupeville 3FCN3 84 % NC 150 1200 2915 0.617 0.249 98 89 803 3 EA-18G 252D Interfacility Auf Field to Coupeville 27WC32DN 85 % NC 350 1200 2979 0.034 96 89 503 1 2 EA-18G 228D 250 14MC32DN 85 % NC 350 1200 2908 0.025 93 83		5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2 % NC	140	861	3936	0.053	0.015	95	83
Section Sect		1	EA-18G	212A	Departure	14D2C	95 % NC	300	2514	3432	0.458	0.03	104	94
4 EA-18G 211A Departure 14D2B 95 %NC 300 2514 3432 1.068 0.07 104 94 5 5 EA-18G 229A Departure 14D1B 95 %NC 300 2514 3432 2.083 0.014 104 94 4 EA-18G 22B Lack 18G 22BD Instractival Public Vall Field to Coupeville 20VC32DN 85 %NC 330 1200 237 0.99 89 89 503 3 EA-18G 22BM Interfacility Auf Field to Coupeville 25WC32DN 85 %NC 330 1200 2299 0.90 0.97 89 504 EA-18G 25BM Interfacility Auf Field to Coupeville 14WC32DN 85 %NC 330 1500 2297 0 0.034 96 89 504 EA-18G 25BC 23B FiR and Growler VFR non breaks 14A1C 87 NNC 300 2893 .031 0.035<		2	EA-18G	209A	Departure	14D1C	95 % NC	300	2514	3432	1.068	0.07	104	93
5 EA-18G 209A Departure	S02	3	EA-18G	207A	Departure	14D1A	95 % NC	300	2514	3432	3.561	0.234	104	94
1 EA-18G 275NC FCLP at Coupeville 32FCN3 84 % NC 150 1200 2719 0.19 0 0 97 89			EA-18G	211A	Departure	14D2B			2514		1.068	0.07		94
2 2 EA-186 248D Interfacility Aulf-field to Coupeville OTWOSZDN 85 % NO 350 1200 2749 0.19 0 97 89 33 3.6.186 252D Interfacility Aulf-field to Coupeville OTWOSZDN 85 % NO 350 1500 2879 0 0.034 96 89 5.5 EA-18G 250D Interfacility Aulf-field to Coupeville 14WC32DN 85 % NO 350 1500 2879 0 0.034 96 89 4 EA-18G 228C P3 P8 IFR and Growler VFR non breaks 14AIC 87 % NO 300 2882 4781 0.298 0.025 93 83 504 4 P-8 548C GCA Pattern 14G3 13770 LBS 200 3000 2903 0.036 0.059 87 76 505 3 EA-18G 228C P3 P8 IFR and Growler VFR non breaks 14AIC 187 % NO 300 2903 <td></td> <td>5</td> <td>EA-18G</td> <td>208A</td> <td>Departure</td> <td></td> <td></td> <td>300</td> <td></td> <td>3432</td> <td>2.493</td> <td></td> <td>104</td> <td></td>		5	EA-18G	208A	Departure			300		3432	2.493		104	
SAPERT S			EA-18G	275NC	FCLP at Coupeville	32FCN3	84 % NC	150	1200	3915	0.617	0.249	98	89
4		2	EA-18G	248D	Interfacility Ault Field to Coupeville	07WC32DN	85 % NC	350	1200	2749	0.19	0	97	89
S	S03	3	EA-18G	252D	Interfacility Ault Field to Coupeville	25WC32DN	85 % NC	350	1200	2808	0.396		97	89
1 EA-18G 228C 23 P8 FR and Growler VFR non breaks 14A1C 87 % NC 300 2882 4781 0.288 0.025 93 83			EA-18G	248N	Interfacility Ault Field to Coupeville	07WC32DN					0	0.034		
2		5	EA-18G	250D		14WC32DN		350		2890			96	88
SAMPAIR SAMP														
4		2												
5	S04													
1														
2														
Solid Soli														
4														
5 P-8 538C P3 P8 IFR and Growler VFR non breaks 14A2C 17760 LBS 180 3047 19344 0.302 0.052 64 N/A	S05													
1														
2 EA-18G 223A Departure 32D2B 84 % NC 300 9000 66657 0.259 0.017 50 39 3 P-8 547C GCA Pattern 0.763 1.7760 LBS 200 3000 40.394 0.208 0.028 50 37 4 transient 447C GCA Pattern 0.763 1.7760 LBS 200 3000 40.394 0.018 0 50 37 5 EA-18G 222A Departure 32D2A 95 % NC 300 8656 7.1520 0.37 0.024 49 37 1 EA-18G 2.77C GCA Pattern 0.763 82 % NC 230 2810 88787 0.329 0.087 61 51 2 EA-18G 250N Interfacility Ault Field to Coupeville 14WC32DN 82 % NC 250 2500 161073 0.19 0 60 47 4 EA-18G 253N Interfacility Ault Field to Coupeville 32WC14N 82 % NC 250 2500 135294 0 0.001 59 45 5 EA-18G 253N Interfacility Ault Field to Coupeville 32WC14D 82 % NC 250 2500 135294 0 0.001 59 45 6 EA-18G 253N Interfacility Ault Field to Coupeville 32WC14D 82 % NC 250 2500 135294 0 0.001 59 45 7 EA-18G 253D Interfacility Ault Field to Coupeville 32WC14D 82 % NC 250 2500 135294 0 0.001 59 45 8 EA-18G 250D														
Solid Soli														
4 transient 447C GCA Pattern 07G3 17760 LBS 200 3000 40394 0.018 0 50 37 5 EA-18G 222A Departure 32D2A 95 %NC 300 8656 71520 0.37 0.024 49 37 2 EA-18G 27CC GCA Pattern 07G3 82 %NC 230 2810 88787 0.329 0.087 61 51 2 EA-18G 250N Interfacility Ault Field to Coupeville 14WC32DN 82 %NC 250 2500 161073 0.19 0 60 47 4 EA-18G 253N Interfacility Ault Field to Coupeville 32WC14N 82 %NC 250 2500 161073 0.19 0 60 47 4 EA-18G 253N Interfacility Ault Field to Coupeville 32WC14N 82 %NC 250 2500 135294 0 0.001 59 45 </td <td>000</td> <td></td>	000													
S	S06													
1 EA-18G 277C GCA Pattern 07G3 82 % NC 230 2810 88787 0.329 0.087 61 51														
2														
SOP SOP SOP SOP Interfacility Ault Field to Coupeville 14WC32DN 82 %NC 250 2500 161073 0.19 0 60 47														
4														
Second Part	S07													
1														
2														
SOB 3 EA-18G 228A P3 P8 IFR and Growler VFR non breaks 14A1A 87 % NC 300 2851 6041 0.994 0.084 89 80 4 EA-18G 279C GCA Pattern 25G3 82 % NC 300 3000 4183 0.329 0.087 88 79 5 EA-18G 277C GCA Pattern 07G3 82 % NC 300 3000 4183 0.329 0.087 88 79 1 EA-18G 232A P3 P8 IFR and Growler VFR non breaks 25A3A 87 % NC 300 3000 4183 0.329 0.087 88 79 2 EA-18G 232A P3 P8 IFR and Growler VFR non breaks 25A3A 87 % NC 300 3000 4183 0.329 0.087 88 79 2 EA-18G 277B GCA Pattern 07G2 82 % NC 300 3000 3002 0.219 0.058 91														
4 EA-18G 279C GCA Pattern 25G3 82 % NC 300 3000 4183 0.838 0.223 88 79 5 EA-18G 277C GCA Pattern 07G3 82 % NC 300 3000 4183 0.329 0.087 88 79 1 EA-18G 232A P3 P8 IFR and Growler VFR non breaks 25A3A 87 % NC 300 3000 4033 0.842 0.071 92 86 2 EA-18G 277B GCA Pattern 07G2 82 % NC 300 3000 4033 0.842 0.071 92 86 509 3 EA-18G 279A GCA Pattern 25G1 82 % NC 300 3000 5300 4.192 1.115 87 75 4 EA-18G 290A Departure 07D2C 95 % NC 300 5403 11786 0.279 0.018 86 76 5														
Second Column	S08													
1														
2 EA-18G 277B GCA Pattern 07G2 82 % NC 250 3000 3025 0.219 0.058 91 78 3 EA-18G 279A GCA Pattern 25G1 82 % NC 300 3000 5300 4.192 1.115 87 75 4 EA-18G 206A Departure 07D2C 95 % NC 300 5403 11786 0.279 0.018 86 76 5 EA-18G 203A Departure 07D1C 95 % NC 300 5300 11968 0.652 0.043 86 76 7 FA-18G 203A Departure 32ALT 17760 LBS 250 3616 3501 0.023 0.005 83 N/A 8 FA-18G 280C GCA Pattern 32G3 82 % NC 230 2333 19814 0.131 0.035 71 61 8 FA-18G 257 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.051 0.003 70 58 9 FA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58 1 FA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58 1 FA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58 2 FA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58 3 FA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58 4 FA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58														
S09 3 EA-18G 279A GCA Pattern 25G1 82 % NC 300 3000 5300 4.192 1.115 87 75 4 EA-18G 206A Departure 07D1C 95 % NC 300 5403 11786 0.279 0.018 86 76 5 EA-18G 203A Departure 07D1C 95 % NC 300 5300 11968 0.652 0.043 86 76 7 P-8 546 LowTACAN Departure 32ALT 17760 LBS 250 3616 3501 0.023 0.005 83 N/A 2 EA-18G 280C GCA Pattern 32G3 82 % NC 230 2333 19814 0.131 0.035 71 61 3 EA-18G 257 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20733 0.052 0.015 70 58														
4 EA-18G 206A Departure 07D2C 95 % NC 300 5403 11786 0.279 0.018 86 76 5 EA-18G 203A Departure 07D1C 95 % NC 300 5300 11968 0.652 0.043 86 76 1 P-8 546 LowTACAN Departure 32ALT 17760 LBS 250 3616 3501 0.023 0.005 83 N/A 2 EA-18G 280C GCA Pattern 32G3 82 % NC 230 2333 19814 0.131 0.035 71 61 S10 3 EA-18G 257 Interfacility Coupeville to Ault Field 14CW25 82 % NC 250 2000 20733 0.052 0.015 70 58 4 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58														
5 EA-18G 203A Departure 07D1C 95 % NC 300 5300 11968 0.652 0.043 86 76 1 P-8 546 Low TACAN Departure 32ALT 17760 LBS 250 3616 3501 0.023 0.005 83 N/A 2 EA-18G 280C GCA Pattern 32G3 82 % NC 230 2333 19814 0.131 0.035 71 61 5 EA-18G 257 Interfacility Coupeville to Ault Field 14CW25 82 % NC 250 2000 20733 0.052 0.015 70 58 4 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58	S09													
1 P-8 546 LowTACAN Departure 32ALT 17760 LBS 250 3616 3501 0.023 0.005 83 N/A 2 EA-18G 280C GCA Pattern 32G3 82 %NC 230 2333 19814 0.131 0.035 71 61 510 3 EA-18G 257 Interfacility Coupeville to Ault Field 14CW25 82 %NC 250 2000 20733 0.052 0.015 70 58 4 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 %NC 250 2000 20783 0.01 0.003 70 58														
2 EA-18G 280C GCA Pattern 32G3 82 % NC 230 2333 19814 0.131 0.035 71 61 S10 3 EA-18G 257 Interfacility Coupeville to Ault Field 14CW25 82 % NC 250 2000 20733 0.052 0.015 70 58 4 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58														
S10 3 EA-18G 257 Interfacility Coupeville to Ault Field 14CW25 82 % NC 250 2000 20733 0.052 0.015 70 58 4 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58														
4 EA-18G 258 Interfacility Coupeville to Ault Field 14CW32 82 % NC 250 2000 20783 0.01 0.003 70 58														
	S10													
5 EA-18G 246 TACAN Arrival 32AHT 78 % NC 250 3085 23749 0.112 0.006 70 53														
Notes:			EA-18G	246	TACAN Arrival	32AHT	78 % NC	250	3085	23749	0.112	0.006	70	53

(1) 0 ft indicates the contributing profile is the beginning of takeoff roll (2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

(3) not operations. Patterns counted as 1 event, vice 2 operations.

Table A6-8 SEL-Ranked Flight Profiles for Alternative 1 for High-Tempo FCLP Year

															Ann	ual Average	Daily Ever	te (3)			
201	051						Speed	Altitude	Slant	Esti	imated		1A	1	IB	uai Average	C C		ID	1	E
POI	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID	Power Setting	(kts) (1)	(ft MSL) (2)	Range (ft)	SEL	Lmax	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-
									(,	(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G		Depart and Re-enter Pattern	32PL	84 % NC		2,000	4,401	93	82	0.094		0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003
P01	2	EA-18G EA-18G	264R 265L	Depart and Re-enter Pattern Depart and Re-enter Pattern	14PR 25PL	84 % NC 84 % NC	250 250	2,000 2,000	4,415 4,889	92 92	82 80	0.68 1.172	0.022	0.68 1.195	0.022 0.039	0.727 1.125	0.024	0.727	0.024	0.727 1.125	0.024
101	4	EA-18G		Depart and Re-enter Pattern	07PR	84 % NC		2,000	4,009	91	80	0.398	0.036	0.375	0.039	0.398	0.037	0.398	0.037	0.398	0.037
	5	EA-18G		FCLP at Ault Field	25FU1	84 % NC		1,000	9,077	87	76	3.315		3.45	0.793	3.247	0.746		0.746	3.247	0.746
	1	EA-18G		FCLP at Ault Field	14FM1	82.2 % NC		852	1,389	107	104	2.029	0.466	1.962	0.451	2.165	0.497		0.497	2.165	0.497
P02	3	EA-18G EA-18G	268B 282A	FCLP at Ault Field FCLP at Ault Field	14FU1 14FM1	82.2 % NC 82.2 % NC	130 140	859 893	1,393	107 107	103 100	2.029 1.116	0.466	1.962 2.572	0.451 0.703	2.165 4.64	0.497	2.165 1.841	0.497 0.478	2.165 4.06	0.497 1.341
1 02	4	EA-18G		FCLP at Ault Field	14FU1	82.2 % NC	140	859	1,393	106	100	1.116	0.29	2.572	0.703	4.64	1.533	1.841	0.478	4.06	1.341
	5	EA-18G		Depart and Re-enter Pattern	14PR	82.2 % NC		859	1,393	106	100	0.68	0.022	0.68	0.022	0.727	0.024	0.727	0.024	0.727	0.024
	1	EA-18G	263R	Depart and Re-enter Pattern	07PR	84 % NC	250	1,477	1,206	105	98	0.398	0.013	0.375	0.012	0.398	0.013	0.398	0.013	0.398	0.013
P03	2	EA-18G EA-18G	265L 264L	Depart and Re-enter Pattern Depart and Re-enter Pattern	25PL 14PL	84 % NC 84 % NC	250 250	2,000 1,999	1,599 2,306	103 99	95 90	1.172 0.68	0.038	1.195 0.68	0.039 0.022	1.125 0.727	0.037	1.125 0.727	0.037 0.024	1.125 0.727	0.037 0.024
1. 00	4	EA-18G		Depart and Re-enter Pattern	32PR	84 % NC	250	2,000	2,401	99	90	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003
	5	EA-18G		TACAN Arrival	25AHT	85 % NC	150	1,023	5,395	97	87	1.207	0.046	1.438	0.106	1.285	0.056		0.044	1.285	0.056
	1 2	EA-18G EA-18G	260	Interfacility Coupeville to Ault Field	32CW14 32CW07	96 % NC	150 150	936	1,943 1,943	111	106 106	1.22 0.361	0.262 0.077	0.761 0.225	0.139 0.041	0.315	0.051	1.053 0.311	0.226 0.067	0.472 0.14	0.077
P04	3	EA-18G EA-18G	259 261	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	32CW07 32CW25	96 % NC 96 % NC	150	936 936	1,943	111	106	0.361	0.077	0.623	0.041	0.093	0.015	0.862	0.067	0.14	0.023
1	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	96 % NC	150	936	1,943	111	106	0.194	0.042	0.121	0.022	0.05	0.008	0.168	0.036	0.075	0.012
	5			FCLP at Coupeville	14FCP1	85 % NC	140	337	1,801	108	100	1.11	0	0.734	0	0.287	0	1.006	0	0.431	0
	1 2			FCLP at Coupeville FCLP at Coupeville	32FCP3 32FCP3	84 % NC 84 % NC	150 150	1,200 800	8,512 8,475	88 88	77	1.738 2.854	1.302	1.161 1.713	0.71	0.495 0.703	0.258	1.5 2.462	1.124	0.743 1.054	0.387
P05	3			FCLP at Coupeville	32FCP3 32FCP2	84 % NC	150	1,200	9,601	87	77	3.476	2.604	2.322	1.421	0.703	0.516		2.247	1.486	0.775
	4			FCLP at Coupeville	32FCP2	84 % NC	150	800	9,568	87	77	5.708	0	3.426	0	1.405	0	4.925	0	2.108	0
	5	transient		IFR non breaks	32A2E	17760 LBS	180	3,047	3,122	85	N/A	0.009	0	0.011	0.001	0.011	0.001		0	0.011	0.001
	1 2			FCLP at Coupeville FCLP at Coupeville	32FCP3 32FCP3	84 % NC 84 % NC		799 1,199	5,329 5,397	96 96	85 84	2.854 1.738	1,302	1.713	0.71	0.703	0.258	2.462	1.124	1.054 0.743	0.387
P06	3			FCLP at Coupeville	32FCP3	84 % NC		799	6,534	93	81	5.708	1.302	3.426	0.71	1.405	0.230	4.925	1.124	2.108	0.367
	4			FCLP at Coupeville	32FCP2	84 % NC	150	1,199	6,590	93	81	3.476	2.604	2.322	1.421	0.991	0.516	2.999	2.247	1.486	0.775
	5			FCLP at Coupeville	32FCP1	84 % NC	150	1,199	7,791	91	79	1.738	1.302	1.161	0.71	0.495	0.258		1.124	0.743	0.387
	1 2	EA-18G EA-18G	258 257	Interfacility Coupeville to Ault Field Interfacility Coupeville to Ault Field	14CW32 14CW25	82 % NC 82 % NC		2,000	12,064 11.825	82 82	73 73	0.075	0.016	0.052	0.009	0.02	0.003		0.015 0.076	0.031 0.158	0.005
P07	3			FCLP at Coupeville	14CW25	82 % NC 84 % NC		2,000	23,102	80	68	2.22	0.083	1.468	0.049	0.105	0.017	2.012	0.076	0.158	0.026
	4	EA-18G	280C	GCA Pattern	32G3	82 % NC		2,208	17,859	80	71	0.066	0.028	0.088	0.037	0.088	0.037		0.037	0.088	0.037
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	9,777	79	66	0.194	0.042	0.121	0.022	0.05	0.008		0.036	0.075	0.012
	1 2	P-8 transient	542C 442C	P3 P8 IFR and Growler VFR non breaks VFR non breaks	32A2C 32A2C	17760 LBS 17760 LBS	250 250	3,047 3,047	3,389	85 85	N/A N/A	0.045 0.022	0.007	0.045 0.022	0.013 0.005	0.045 0.021	0.015	0.045 0.022	0.016 0.006	0.045 0.021	0.015
P08	3	P-8	542B	P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	81	N/A	0.022	0.002	0.022	0.003	0.021	0.000	0.022	0.000	0.021	0.000
	4	transient	442B	VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	81	N/A	0.022	0.002	0.022	0.005	0.021	0.006	0.022	0.006	0.021	0.006
	5	EA-18G	255	Interfacility Coupeville to Ault Field	14CW07	82 % NC	250	2,000	10,604	76	64	0.14		0.096	0.018	0.038	0.006	0.127	0.027	0.057	0.009
	2	EA-18G EA-18G	244 278C	TACAN Arrival GCA Pattern	14AHT 14G3	78 % NC 82 % NC	250 230	3,163 2,403	48,626 34,003	62 61	51 52	0.615 0.66	0.024 0.276	0.667 0.638	0.049 0.267	0.72 0.704	0.031	0.637	0.025 0.294	0.72 0.704	0.031
P09	3	P-8	544	Low TACAN Departure	14G3	4610 LBS	250	5,632	28,942	55	53	0.00	0.276	0.036	0.044	0.704	0.294	0.704	0.294	0.704	0.294
	4	EA-18G	215A	Departure	25D1C	95 % NC	300	4,765	109,923	55	48	2.256	0.136	2.325	0.149	2.154	0.139	2.166	0.131	2.154	0.139
	5	EA-18G	217A	Departure	25D2B	95 % NC		3,835	110,307	54	43	2.256	0.136	2.325	0.149	2.154	0.139		0.131	2.154	0.139
	2	EA-18G EA-18G	229A 223A	P3 P8 IFR and Growler VFR non breaks Departure	14A2A 32D2B	87 % NC 95 % NC	300	2,577 8,291	4,579 9,255	95 90	85 80	1.189 0.135	0.091	1.101 0.179	0.084 0.011	1.267 0.224	0.095	1.269 0.226	0.097 0.014	1.267 0.224	0.095 0.014
P10	3	EA-18G	279C	GCA Pattern	25G3	82 % NC	250	3,000	4,073	89	80	1.077	0.008	1.121	0.469	1.077	0.014	1.077	0.014	1.077	0.014
	4	EA-18G	277C	GCA Pattern	07G3	82 % NC	300	3,000	4,085	89	79	0.396	0.165	0.352	0.147	0.33	0.138	0.33	0.138	0.33	0.138
	5	EA-18G	277B	GCA Pattern	07G2	82 % NC		3,000	4,387	88	78	0.264	0.11	0.235	0.098	0.22	0.092		0.092	0.22	0.092
	1 2	EA-18G P-8	277C 547C	GCA Pattern	07G3 07G3	82 % NC 17760 LBS	230 200	2,926 3,000	21,053 21,066	64 63	50 N/A	0.396 0.219	0.165 0.026	0.352 0.199	0.147 0.018	0.33 0.181	0.138		0.138 0.022	0.33 0.181	0.138 0.018
P11	3	transient	447C	GCA Pattern GCA Pattern	07G3	17760 LBS	200	3,000	21,066	63	N/A	0.219	0.026	0.199	0.018	0.181	0.010	0.163	0.022	0.161	0.018
	4	P-8	527	P3 P8 C40 VFR non breaks	14A2E	17760 LBS	250	3,047	30,649	57	N/A	0.067	0.016	0.068	0.014	0.084	0.015	0.074	0.017	0.084	0.015
\perp	5	transient	423	IFR non breaks	14A2E	17760 LBS	250	3,047	30,649	57	N/A	0.062	0.001	0.063	0.005	0.068	0.008	0.068	0.002	0.068	0.008
	1 2	EA-18G EA-18G	228C 278C	P3 P8 IFR and Growler VFR non breaks GCA Pattern	14A1C 14G3	87 % NC 82 % NC	300	2,941 3,000	9,040 7,718	82 80	74 72	0.357	0.027 0.276	0.33	0.025 0.267	0.38	0.029	0.381	0.029 0.294	0.38	0.029
P12	3	EA-18G EA-18G		P3 P8 IFR and Growler VFR non breaks	14G3 14A1B	82 % NC 87 % NC	300	2,784	12,784	79	68	0.833	0.276	0.638	0.267	0.704	0.294	0.704	0.294	0.704	0.294
"-	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3,000	7,718	78	N/A	0.378	0.044	0.348	0.034	0.373	0.031	0.378	0.038	0.373	0.031
	5	transient	448C	GCA Pattern	14G3	17760 LBS	200	3,000	7,718	78	N/A	0.034	0	0.031	0	0.034	0	0.034	0	0.034	0
	1	EA-18G	219A	Departure	32D1A	95 % NC	300	7,686	7,575	94	86	0.451	0.027	0.596	0.038	0.748	0.048		0.045	0.748	0.048
P13	2	EA-18G EA-18G	278B 277C	GCA Pattern GCA Pattern	14G2 07G3	82 % NC 82 % NC	300 300	3,000 3,000	3,526 3,689	91	81 80	0.44	0.184 0.165	0.425 0.352	0.178 0.147	0.469	0.196	0.469	0.196 0.138	0.469 0.33	0.196 0.138
	4	EA-18G		GCA Pattern	25G3	82 % NC		3,000	3,689	90	81	1.077	0.105	1.121	0.469	1.077	0.130		0.130	1.077	0.136
	5	EA-18G	280B	GCA Pattern	32G2	82 % NC	300	3,000	3,526	90	81	0.044	0.018	0.059	0.025	0.059	0.025	0.059	0.025	0.059	0.025

Table A6-8 SEL-Ranked Flight Profiles for Alternative 1 for High-Tempo FCLP Year (continued)

						,									Ann	ual Average	e Daily Even	ts ⁽³⁾			
POI	SEL		Brofile			Power S	oeed	Altitude	Slant	Est	imated	1/	A	1		1		1	D	1	E
ID	Rank	Aircraft Type	Profile ID	Type of Operation	Track ID		ts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700- 2200)	Nighttime (2200-	Daytime (0700- 2200)	Nighttime (2200-
	1	EA-18G	278C	GCA Pattern	14G3	82 % NC	230	1,822	20,245	76	63	2200) 0.66	0.276	0.638	0700) 0.267	2200) 0.704	0700) 0.294	0.704	0.294	0.704	0700) 0.294
	2	P-8	544	Low TACAN Departure	14ALT		250	4,622	4,657	72	N/A	0.19	0.043	0.212	0.044	0.22	0.04	0.194	0.046	0.22	0.04
P14	3	EA-18G	278B	GCA Pattern	14G2		230	2,166	23,933	72	58	0.44	0.184	0.425	0.178	0.469	0.196	0.469	0.196	0.469	0.196
	4 5	EA-18G EA-18G	221A 229C	Departure P3 P8 IFR and Growler VFR non breaks	32D1C 14A2C		300 300	6,560 2,569	43,942 25,383	69 67	49 55	0.135 0.357	0.008	0.179 0.33	0.011	0.224	0.014 0.029	0.226 0.381	0.014 0.029	0.224 0.38	0.014 0.029
	1	EA-18G	206A	Departure	07D2C		300	5,213	8,277	92	83	0.329	0.027	0.307	0.023	0.308	0.029	0.309	0.029	0.308	0.029
	2	EA-18G	203A	Departure	07D1C		300	5,155	8,368	92	83	0.767	0.046	0.715	0.046	0.718	0.046	0.722	0.044	0.718	0.046
P15	3	EA-18G	277B		07G2		250	3,000	3,437	91	80	0.264	0.11	0.235	0.098	0.22	0.092	0.22	0.092	0.22	0.092
	<u>4</u>	EA-18G EA-18G	205A 202A	Departure Departure	07D2B 07D1B		300 300	4,892 4,743	9,517 10.004	90 89	79 78	0.767 1.79	0.046	0.715 1.669	0.046	0.718 1.675	0.046	0.722 1.685	0.044	0.718 1.675	0.046
	1	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	70	250	2,000	8,724	79	67	0.475	0.102	0.326	0.06	0.129	0.021	0.43	0.092	0.193	0.031
	2	EA-18G	255	Interfacility Coupeville to Ault Field	14CW07		250	2,000	8,724	79	67	0.14	0.03	0.096	0.018	0.038	0.006	0.127	0.027	0.057	0.009
P16	3 4	EA-18G		Interfacility Ault Field to Coupeville	25WC32P		250	2,500	10,146 10,318	78	64	1.232	0.457	0.788	0 004	0.281	0.025	0.914	0.107	0.422	0.037
	5	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	07WC32P 14WC32P		250 250	2,500 2,500	10,318	78 78	64 64	0	0.157 0.261	0	0.081	0	0.025	0	0.107	0	0.037
	1			FCLP at Coupeville	32FCP1		150	799	742	115	110	2.854	0	1.713	0	0.703	0	2.462	0	1.054	0
	2			FCLP at Coupeville	32FCP1		150	1,199	1,129	111	106	1.738	1.302	1.161	0.71	0.495	0.258	1.5	1.124	0.743	0.387
P17	3 4	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP2		150 150	799 1,199	1,206 1,476	111 109	105 103	5.708 3.476	2.604	3.426 2.322	1.421	1.405 0.991	0.516	4.925 2.999	2.247	2.108 1.486	0.775
	5	EA-18G		FCLP at Coupeville	32FCP3		150	799	2,304	109	97	2.854	2.004	1.713	1.421	0.703	0.516	2.462	2.247	1.054	0.775
	1	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC	150	1,200	6,600	92	82	1.738	1.302	1.161	0.71	0.495	0.258	1.5	1.124	0.743	0.387
	2	EA-18G		FCLP at Coupeville	32FCP3		150	800	6,544	91	82	2.854	0	1.713	0	0.703	0	2.462	0	1.054	0
P18	3 4	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP2		150 150	1,200 800	7,760 7,712	90	79 79	3.476 5.708	2.604	2.322 3.426	1.421	0.991 1.405	0.516	2.999 4.925	2.247	1.486 2.108	0.775
	5			FCLP at Coupeville	32FCP1		150	1,200	8,929	87	78	1.738	1.302	1.161	0.71	0.495	0.258	1.5	1.124	0.743	0.387
	1	EA-18G		Interfacility Ault Field to Coupeville	25WC14P		135	59	1,093	121	114	0	0.195	0	0.111	0	0.034	0	0.147	0	0.051
R01	2	EA-18G		Interfacility Ault Field to Coupeville	25WC14P		135	59	1,093	121	114	0.479	0 405	0.338	0 005	0.115	0 0 0 7 0	0.373	0.327	0.172	0
RUI	3 4	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	25WC32P 25WC32P		135 135	59 59	1,093	121 121	114 114	1.232	0.435	0.788	0.225	0.281	0.076	0.914	0.327	0.422	0.113
	5	EA-18G	204A	Departure	07D2A		165	302	1,118	120	116	1.096	0.066	1.022	0.066	1.026	0.066	1.032	0.062	1.026	0.066
	1	EA-18G		Interfacility Ault Field to Coupeville	14WC32P	97 % NC	0	47	3,519	110	96	0	0.261	0	0.126	0	0.065	0	0.282	0	0.098
R02	3	EA-18G	250PD		14WC32P 14WC14P	97 % NC 97 % NC	0	47 47	3,519	110 110	96	0.739	0.117	0.441	0 000	0.242	0 000	0.787	0.126	0.363	0 0 0 4 4
KU2	4	EA-18G EA-18G		Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC14P	97 % NC	0	47	3,519 3,519	110	96 96	0.287	0.117	0.189	0.062	0.099	0.029	0.321	0.126	0.148	0.044
	5	EA-18G	210A		14D2A	97 % NC	0	47	3,519	109	100	1.934	0.117	1.788	0.115	1.987	0.128	1.999	0.121	1.987	0.128
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL		250	2,000	1,787	101	93	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003
R03	3	EA-18G EA-18G	264R 265L	Depart and Re-enter Pattern Depart and Re-enter Pattern	14PR 25PL		250 250	2,000 2,000	1,967 1,971	101 100	92 92	0.68 1.172	0.022	0.68 1.195	0.022	0.727 1.125	0.024 0.037	0.727 1.125	0.024 0.037	0.727 1.125	0.024
1100	4	EA-18G		Depart and Re-enter Pattern	07PR		250	2,000	2,001	100	92	0.398	0.038	0.375	0.033	0.398	0.013	0.398	0.013	0.398	0.013
	5	EA-18G		FCLP at Ault Field	32FU1		130	817	8,282	88	78	0.406	0.093	0.541	0.124	0.541	0.124	0.541	0.124	0.541	0.124
	1 2	EA-18G	205A	Departure	07D2B		300	4,035	5,492 5,530	99 98	88 88	0.767 1.79	0.046	0.715 1.669	0.046	0.718 1.675	0.046 0.108	0.722 1.685	0.044	0.718	0.046 0.108
R04	3	EA-18G EA-18G	202A 206A	Departure Departure	07D1B 07D2C		300 300	4,007 4,096	5,708	98	88	0.329	0.108	0.307	0.107	0.308	0.108	0.309	0.102	1.675 0.308	0.108
	4	EA-18G	203A	Departure	07D1C		300	4,096	5,708	98	88	0.767	0.046	0.715	0.046	0.718	0.046	0.722	0.044	0.718	0.046
	5	EA-18G	204A	Departure	07D2A		300	3,804	6,519	96	86	1.096	0.066	1.022	0.066	1.026	0.066	1.032	0.062	1.026	0.066
	1 2	EA-18G EA-18G	277A 279A	GCA Pattern GCA Pattern	07G1 25G1	700	250 300	3,000 3,000	3,009 3,350	92 91	84 82	1.979 5.387	0.827 2.252	1.759 5.607	0.735 2.344	1.649 5.387	0.689 2.252	1.649 5.387	0.689 2.252	1.649 5.387	0.689 2.252
R05	3	EA-18G		GCA Pattern	32G3		300	3,000	3,350	90	82	0.066	0.028	0.088	0.037	0.088	0.037	0.088	0.037	0.088	0.037
	4	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3,000	3,491	90	82	0.66	0.276	0.638	0.267	0.704	0.294	0.704	0.294	0.704	0.294
	5	EA-18G	205A		07D2B		300	3,808	13,742	85	75	0.767	0.046	0.715	0.046	0.718	0.046	0.722	0.044	0.718	0.046
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	32FCP2 32FCP3		140 140	515 508	389 405	121 120	114 113	5.708 2.854	0	3.426 1.713	0	1.405 0.703	0	4.925 2.462	0	2.108 1.054	0
R06	3	EA-18G		FCLP at Coupeville	32FCP3		140	524	412	120	113	2.854	0	1.713	0	0.703	0	2.462	0	1.054	0
	4	EA-18G	252PD	Interfacility Ault Field to Coupeville	25WC32P	84 % NC	140	526	399	120	113	1.232	0	0.788	0	0.281	0	0.914	0	0.422	0
	5	EA-18G	254PD		32WC32P		140	523	399	120	113	0.049	0	0.063	0	0.039	0	0.128	0	0.059	0
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCP1 14FCP1		150 150	799 1,199	769 1,167	115 111	109 104	1.11 0.676	0.506	0.734 0.498	0.304	0.287 0.202	0.105	1.006 0.612	0.459	0.431 0.303	0.158
R07	3	EA-18G	273PDE	FCLP at Coupeville	14FCP2		150	799	1,512	110	100	2.22	0.000	1.468	0.554	0.574	0.100	2.012	0.433	0.861	0
	4	EA-18G	273PNE	FCLP at Coupeville	14FCP2		150	1,199	1,749	108	100	1.352	1.013	0.995	0.609	0.405	0.211	1.225	0.918	0.607	0.316
\vdash	5	EA-18G		Interfacility Ault Field to Coupeville	32WC14P		140	1,104	1,725	105	100	0.019	0	0.027	0	0.016	0	0.052	0	0.024	0
	2	EA-18G EA-18G		FCLP at Coupeville FCLP at Coupeville	14FCP3 14FCP3		150 150	800 1,200	3,154 3,252	101 100	106 93	0.676	0.506	0.734 0.498	0.304	0.287 0.202	0.105	1.006 0.612	0.459	0.431 0.303	0.158
R08	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2,000	2,690	99	92	0.388	0.083	0.267	0.049	0.105	0.017	0.352	0.076	0.158	0.026
	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	2,690	99	92	0.075	0.016	0.052	0.009	0.02	0.003	0.068	0.015	0.031	0.005
Ш	5	EA-18G	273PDE	FCLP at Coupeville	14FCP2	84 % NC	150	800	4,008	98	91	2.22	0	1.468	0	0.574	0	2.012	0	0.861	0

Table A6-8 SEL-Ranked Flight Profiles for Alternative 1 for High-Tempo FCLP Year(continued)

															Annı	ual Averag	e Daily Ever	its ⁽³⁾			
									Slant	Esti	imated		1A		1B	,	1C		ID	1	E
POI ID	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID	Power Setting	Speed (kts) ⁽¹⁾	Altitude (ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1			Interfacility Ault Field to Coupeville	32WC32P	85 % NC		2,231	5,007	90	82	0.049	0	0.063	0	0.039	0	0.128	0	0.059	0
	2		250PD		14WC32P	85 % NC	300	2,236	5,091	90	82	0.739	0	0.441	0	0.242	0	0.787	0	0.363	0
R09	3		252PD		25WC32P	85 % NC	300	2,180	5,083	90	81	1.232		0.788		0.281	0	0.914	0	0.422	0
	4			Interfacility Ault Field to Coupeville	14WC32P	85 % NC	300	2,299	5,114	90	81	0	0.261	0	0.126	0	0.065	0	0.282	0	0.098
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC		2,000	3,677	90	81	0.194		0.121	0.022	0.05		0.168	0.036	0.075	0.012
		EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,480	3,143	100	90	0.833		0.771	0.059	0.887	0.067	0.888	0.068	0.887	0.067
R10	2	EA-18G EA-18G	228C 280C	P3 P8 IFR and Growler VFR non breaks GCA Pattern	14A1C 32G3	87 % NC 82 % NC	300 250	2,620 3.000	3,563 2,980	98 93	88 84	0.357	0.027	0.33	0.025	0.38	0.029	0.381	0.029	0.38	0.029
KIU	4	EA-18G	278A	GCA Pattern	14G1	82 % NC	300	2,999	3,168	92	83	3,298	1.379	3.188	1.333	3.518	1.471	3.518	1.471	3.518	1.471
	5	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC	300	2,347	7.186	90	77	1.189		1.101	0.084	1.267	0.095	1.269	0.097	1.267	0.095
	1	EA-18G	238A	Overhead Break Arrival	1402A	84 % NC	300	10,000	13,520	73	60	0.228	0.023	0.216		0.241	0.023	0.243	0.024	0.241	0.023
	2	EA-18G	238B	Overhead Break Arrival	14O2B	84 % NC	300	10,000	13,567	73	60	0.228	0.023	0.216	0.02	0.241	0.023	0.243	0.024	0.241	0.023
R11	3	EA-18G	238C	Overhead Break Arrival	14O2C	84 % NC	300	10,000	13,609	73	60	0.234		0.223	0.021	0.248	0.024	0.251	0.025	0.248	0.024
	4	EA-18G	236B	Overhead Break Arrival	07O2B	84 % NC	300	10,000	13,739	72	59	0.133		0.124	0.012	0.124	0.012	0.126	0.013	0.124	0.012
	5	EA-18G	236A	Overhead Break Arrival	07O2A	84 % NC	300	10,000	13,740	72	59	0.133	0.013	0.124	0.012	0.124	0.012	0.126	0.013	0.124	0.012
	11	EA-18G	205A	Departure	07D2B	84 % NC	300	9,000	9,677	75	65	0.767	0.046	0.715		0.718	0.046	0.722	0.044	0.718	0.046
	2	EA-18G	216A	Departure	25D2A	84 % NC	300	9,000	16,276	70	58	3.224	0.195	3.321	0.213	3.077	0.198	3.095	0.187	3.077	0.198
R12	3	EA-18G	217A	Departure	25D2B	84 % NC	300	9,000	16,448	70	58	2.256		2.325	0.149	2.154	0.139	2.166	0.131	2.154	0.139
	4	EA-18G	218A	Departure	25D2C	84 % NC	300	9,000	18,999	67	55	0.967	0.058	0.996	0.064	0.923	0.059	0.928	0.056	0.923	0.059
-	5 1	EA-18G EA-18G	206A	Departure	07D2C 14FCP1	84 % NC 84 % NC	300 150	9,000	24,952 47,518	66 75	55 63	0.329		0.307 0.734	0.02	0.308	0.02	0.309	0.019	0.308 0.431	0.02
	2			FCLP at Coupeville	14FCP1 14FCP2	84 % NC	150	1,200	46,886	74	62	1.352		0.734	0.609	0.287	0.211	1.006	0.918	0.431	0.316
R13	3			FCLP at Coupeville	14FCF2 14FCP1	84 % NC	150	1,200	47,526	74	62	0.676		0.498	0.809	0.403	0.105	0.612	0.459	0.303	0.316
1113	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2.000	30.019	71	51	0.070		0.121	0.022	0.202		0.168	0.435	0.075	0.130
	- 5	EA-18G	260	Interfacility Coupeville to Ault Field	32CW14	85 % NC		250	52,917	71	51	1.22		0.761	0.139	0.315		1.053	0.226	0.472	0.077
	1	EA-18G	268B	FCLP at Ault Field	14FU1	84 % NC	130	1,000	2,575	104	96	2.029		1.962		2.165		2.165		2.165	0.497
	2	EA-18G	269B	FCLP at Ault Field	25FU1	82.2 % NC	130	693	3,116	103	96	3.315		3.45		3.247	0.746	3.247	0.746	3.247	0.746
R14	3	EA-18G	283B	FCLP at Ault Field	25FU1	82.2 % NC	140	715	3,119	103	91	1.748		4.776		6.89	2.276	2.733	0.709	6.029	1.992
	4	EA-18G	269A	FCLP at Ault Field	25FM1	82.2 % NC	130	702	3,119	103	91	3.315	0.762	3.45		3.247	0.746	3.247		3.247	0.746
	5	EA-18G	265L	Depart and Re-enter Pattern	25PL	82.2 % NC	140	697	3,095	103	91	1.172		1.195		1.125		1.125	0.037	1.125	0.037
	11			FCLP at Coupeville	14FCP3	85 % NC	140	575	1,544	110	103	1.11		0.734		0.287		1.006	0	0.431	0
	2			FCLP at Coupeville	14FCP3	85 % NC	140	698	1,589	109	103	0.676		0.498	0.304	0.202	0.105	0.612	0.459	0.303	0.158
R15	3			FCLP at Coupeville	14FCP2	85 % NC	140	585	1,871	107	101	2.22		1.468		0.574		2.012	0	0.861	0
	<u>4</u> 5			FCLP at Coupeville	14FCP2 07WC14P	85 % NC 84 % NC	140	718 588	1,912 2.009	107	101 98	1.352 0.172		0.995 0.122		0.405		1.225 0.122	0.918	0.607 0.056	0.316
_	1	EA-18G	233A	Interfacility Ault Field to Coupeville P3 P8 IFR and Growler VFR non breaks	32A1A	87 % NC	300	2,756	2,009	106 100	98	0.172		0.122		0.037		0.122	0.012	0.056	0.012
	2	EA-18G	209A	Departure	14D1C	95 % NC	300	6,951	8,107	93	85	1.354		1.252	0.013	1.391	0.012	1.399	0.012	1.391	0.012
R16	3	EA-18G	278C	GCA Pattern	14G3	82 % NC	250	3,000	3,185	91	82	0.66		0.638	0.267	0.704		0.704	0.294	0.704	0.294
	4	EA-18G	208A	Departure	14D1B	95 % NC		6,815	9,922	90	81	3.159		2.921	0.188	3.246		3.264	0.197	3.246	0.209
	5	EA-18G	246	TACAN Arrival	32AHT	82.2 % NC	250	2,475	6,673	89	81	0.091	0.004	0.154		0.128	0.006	0.114	0.004	0.128	0.006
	1	P-8	542C	P3 P8 IFR and Growler VFR non breaks	32A2C	17760 LBS	250	3,047	2,963	85	N/A	0.045		0.045	0.013	0.045	0.015	0.045	0.016	0.045	0.015
	2	transient	442C	VFR non breaks	32A2C	17760 LBS	250	3,047	2,963	85	N/A	0.022	0.002	0.022	0.005	0.021	0.006	0.022	0.006	0.021	0.006
R17	3	P-8	542B	P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS	250	3,047	6,202	79	N/A	0.045		0.045		0.045		0.045	0.016	0.045	0.015
	4	transient	442B	VFR non breaks	32A2B	17760 LBS	250	3,047	6,202	79	N/A	0.022		0.022		0.021	0.006	0.022	0.006	0.021	0.006
	5	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC	250	2,000	12,686	73	59	0.475		0.326		0.129		0.43		0.193	0.031
	1	P-8	543	Low TACAN Departure	07ALT	4610 LBS	250	5,971	5,979	68	N/A	0.067	0.019	0.065	0.016	0.072		0.063	0.015	0.072	0.013
R18	2	P-8	545	Low TACAN Departure	25ALT	4610 LBS	250	6,446	6,474	67	N/A	0.123 0.475		0.114	0.023	0.139		0.123	0.026	0.139	0.023
KIB	<u>3</u>	EA-18G EA-18G	256 255	Interfacility Coupeville to Ault Field	14CW14 14CW07	82 % NC 82 % NC	250 250	2,000	24,403 24,403	64	53 53	0.475		0.326		0.129	0.021	0.43		0.193 0.057	0.031
	5		252PD	Interfacility Coupeville to Ault Field Interfacility Ault Field to Coupeville	25WC32P	82 % NC 85 % NC	250	2,000	22,831	63	47	1.232	0.03	0.096		0.038	0.006	0.127		0.057	0.009
	1		253PD		32WC14P	84 % NC	140	438	907	114	108	0.019	n	0.788	0	0.281	0	0.914	0	0.422	n
	2		253PN		32WC14P	84 % NC	140	438	907	114	108	0.013		0.027	0.009	0.010		0.032	0.021	0.024	0.007
R19	3			FCLP at Coupeville	14FCP1	85 % NC	140	492	1,069	114	108	1.11		0.734		0.287		1.006		0.431	0.007
	4			FCLP at Coupeville	14FCP1	85 % NC	140	530	1,080	113	107	0.676		0.498		0.202		0.612	0.459	0.303	0.158
L	5			Interfacility Ault Field to Coupeville	25WC14P	84 % NC	140	444	962	113	107	0.479		0.338		0.115		0.373	0	0.172	0
	1	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,933	3,692	95	87	0.357	0.027	0.33	0.025	0.38	0.029	0.381	0.029	0.38	0.029
	2	EA-18G	277C	GCA Pattern	07G3	82 % NC	300	3,000	3,898	89	78	0.396		0.352		0.33		0.33	0.138	0.33	0.138
R20	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2,769	6,744	88	78	0.833	0.063	0.771		0.887	0.067	0.888	0.068	0.887	0.067
	4	transient	423	IFR non breaks	14A2E	17760 LBS	180	3,047	3,071	86	N/A	0.062		0.063	0.005	0.068	0.008	0.068	0.002	0.068	0.008
	5	P-8	527	P3 P8 C40 VFR non breaks	14A2E	17760 LBS	180	3,047	3,071	86	N/A	0.067	0.016	0.068	0.014	0.084	0.015	0.074	0.017	0.084	0.015

Table A6-8 SEL-Ranked Flight Profiles for Alternative 1 for High-Tempo FCLP Year(concluded)

																Ann	ual Averac	e Daily Ever	ate (3)	-	•	
1										Slant	Esti	mated		1 Δ		IB AIII		ie Daily Ever		1D		1F
	SEL Rank	Aircraft Type	Profile ID	Type of Operation	Track ID		wer ting	Speed (kts) (1)	Altitude (ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-
											(dbA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
L	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2			773	4009	98	90	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003
L	2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2	% NC	130	802	4008	96	90	0.406	0.093	0.541	0.124	0.541	0.124	0.541	0.124	0.541	0.124
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2			839	4014	96	84	0.074	0.019	0.735	0.201	0.844	0.279	0.335	0.087	0.738	0.244
L	4	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2			773	4003	96	84	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003	0.094	0.003
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2	70		861	3936	95	83	0.194	0.042	0.121	0.022	0.05	0.008	0.168	0.036	0.075	0.012
	1	EA-18G	212A	Departure	14D2C	95	% NC		2514	3432	104	94	0.58	0.035	0.536	0.034	0.596	0.038	0.6	0.036	0.596	0.038
L	2	EA-18G	209A	Departure	14D1C	95	% NC		2514	3432	104	93	1.354	0.082	1.252	0.08	1.391	0.09	1.399	0.084	1.391	0.09
S02	3	EA-18G	207A	Departure	14D1A	95	% NC		2514	3432	104	94	4.513	0.272	4.172	0.268	4.637	0.299	4.663	0.282	4.637	0.299
	4	EA-18G	211A	Departure	14D2B	95	% NC		2514	3432	104	94	1.354	0.082	1.252	0.08	1.391	0.09	1.399	0.084	1.391	0.09
\perp	5	EA-18G	208A	Departure	14D1B	95	% NC		2514	3432	104	94	3.159	0.191	2.921	0.188	3.246	0.209	3.264	0.197	3.246	0.209
L .	1		276PDC	FCLP at Coupeville	32FCP3	84	% NC		800	5231	94	89	2.854	0	1.713	0	0.703	0	2.462	0	1.054	0
	2		276PNC	FCLP at Coupeville	32FCP3	84	% NC		1200	5297	94	89	1.738	1.302	1.161	0.71	0.495	0.258	1.5	1.124	0.743	0.387
S03	3		276PDB	FCLP at Coupeville	32FCP2	84	% NC		800	6105	92	89	5.708	0	3.426	0	1.405	0	4.925	0	2.108	0
	4	EA-18G	276PNB	FCLP at Coupeville	32FCP2	84	% NC		1200	6162	92	89	3.476	2.604	2.322	1.421	0.991	0.516	2.999	2.247	1.486	0.775
\perp	5		276PNA	FCLP at Coupeville	32FCP1	84	% NC		1200	7058	90	88	1.738	1.302	1.161	0.71	0.495	0.258	1.5	1.124	0.743	0.387
-	11	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87	% NC		2882	4781	93	83	0.357	0.027	0.33	0.025	0.38	0.029	0.381	0.029	0.38	0.029
-	2	EA-18G	278C	GCA Pattern	14G3	82	% NC		3000	2903	92	84	0.66	0.276	0.638	0.267	0.704	0.294	0.704	0.294	0.704	0.294
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87	% NC		2719	7342	87	76	0.833	0.063	0.771	0.059	0.887	0.067	0.888	0.068	0.887	0.067
-	4	P-8	548C	GCA Pattern	14G3	17760		200	3000	2903	85	N/A	0.378	0.044	0.348	0.034	0.373	0.031	0.378	0.038	0.373	0.031
\sqcup	5	transient	448C	GCA Pattern	14G3	17760		200	3000	2903	85	76	0.034	0	0.031	0	0.034	0	0.034	0	0.034	0
-	1	EA-18G	243	TACAN Arrival	07AHT	78	% NC		3529	3374	76	68	0.364	0.014	0.308	0.023	0.437	0.019	0.387	0.015	0.437	0.019
I	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87	% NC		2712	19217	70	56	0.357	0.027	0.33	0.025	0.38	0.029	0.381	0.029	0.38	0.029
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87	% NC		2592	23773	66	51	0.833	0.063	0.771	0.059	0.887	0.067	0.888	0.068	0.887	0.067
-	4	EA-18G	224A	Departure	32D2C	95	% NC		8249	32151	65	52	0.058	0.004	0.077	0.005	0.096	0.006	0.097	0.006	0.096	0.006
\perp	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760		180	3047	19344	64	N/A	0.35	0.073	0.316	0.057	0.347	0.061	0.35	0.066	0.347	0.061
-	1	EA-18G	224A	Departure	32D2C	84	% NC		9000	61543	51	39	0.058	0.004	0.077	0.005	0.096	0.006	0.097	0.006	0.096	0.006
l	2	EA-18G	223A	Departure	32D2B	84	% NC		9000	66657	50	39	0.135	0.008	0.179	0.011	0.224	0.014	0.226	0.014	0.224	0.014
S06	3	P-8	547C	GCA Pattern	07G3	17760		200	3000	40394	50	37	0.219	0.026	0.199	0.018	0.181	0.018	0.183	0.022	0.181	0.018
L	4	transient	447C	GCA Pattern	07G3	17760		200	3000	40394	50	37	0.02	0	0.018	0	0.017	0	0.017	0	0.017	0
\perp	5	EA-18G	222A	Departure	32D2A	95	% NC		8656	71520	49	37	0.193	0.012	0.255	0.016	0.321	0.021	0.322	0.019	0.321	0.021
-	1	EA-18G	277C	GCA Pattern	07G3	82	% NC		2810	88787	61	51	0.396	0.165	0.352	0.147	0.33	0.138	0.33	0.138	0.33	0.138
I	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82	% NC		2500	165180	59	47	0.739	0	0.441	0	0.242	0	0.787	0	0.363	0
S07	3	EA-18G	250PN	Interfacility Ault Field to Coupeville	14WC32P	82	% NC		2500	165180	59	47	0	0.261	0	0.126	0	0.065	0	0.282	0	0.098
-	4	EA-18G	254PD	Interfacility Ault Field to Coupeville	32WC32P	82	% NC		2500	135475	59	47	0.049	0	0.063	0	0.039	0	0.128	0	0.059	0
\vdash	5	EA-18G	254PN	Interfacility Ault Field to Coupeville	32WC32P	82	% NC		2500	135475	59	47	0	0.017	0	0.018	0	0.011	0	0.046	0	0.016
-	1	EA-18G	280C	GCA Pattern	32G3	82	% NC		3000	2779	93	81	0.066	0.028	0.088	0.037	0.088	0.037	0.088	0.037	0.088	0.037
1000	2	EA-18G	278C	GCA Pattern	14G3	82	% NC		3000	2779	93	81	0.66	0.276	0.638	0.267	0.704	0.294	0.704	0.294	0.704	0.294
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87	% NC		2851	6041	89	80	1.189	0.091	1.101	0.084	1.267	0.095	1.269	0.097	1.267	0.095
1 -	4	EA-18G	279C	GCA Pattern	25G3	82	% NC		3000	4183	88	79	1.077	0.45	1.121	0.469	1.077	0.45	1.077	0.45	1.077	0.45
\vdash	5	EA-18G	277C	GCA Pattern	07G3	82	% NC		3000	4183	88	79	0.396	0.165	0.352	0.147	0.33	0.138	0.33	0.138	0.33	0.138
-	1	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87	% NC		3000	4033	92	86	0.971	0.074	1.003	0.077	0.95	0.072	0.951	0.072	0.95	0.072
1000	2	EA-18G	277B	GCA Pattern	07G2	82	% NC		3000	3025	91	78	0.264	0.11	0.235	0.098	0.22	0.092	0.22	0.092	0.22	0.092
S09	3	EA-18G	279A	GCA Pattern	25G1	82	% NC		3000	5300	87	75	5.387	2.252	5.607	2.344	5.387	2.252	5.387	2.252	5.387	2.252
-	4	EA-18G	206A	Departure	07D2C	95	% NC		5403	11786	86	76	0.329	0.02	0.307	0.02	0.308	0.02	0.309	0.019	0.308	0.02
\vdash	5	EA-18G	203A	Departure	07D1C	95	% NC	300	5300	11968	86	76	0.767	0.046	0.715	0.046	0.718	0.046	0.722	0.044	0.718	0.046
-	1	P-8	546	Low TACAN Departure	32ALT	17760		250	3616	3501	83	N/A	0.016	0.003	0.016	0.005	0.018	0.006	0.016	0.007	0.018	0.006
1	2	EA-18G	280C	GCA Pattern	32G3	82	% NC		2333	19814	71	61	0.066	0.028	0.088	0.037	0.088	0.037	0.088	0.037	0.088	0.037
S10	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82	% NC	250	2000	20733	70	58	0.388	0.083	0.267	0.049	0.105	0.017	0.352	0.076	0.158	0.026
-	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82	% NC		2000	20783	70	58	0.075	0.016	0.052	0.009	0.02	0.003	0.068	0.015	0.031	0.005
1 1	5	EA-18G	246	TACAN Arrival	32AHT	78	% NC	250	3085	23749	70	53	0.091	0.004	0.154	0.011	0.128	0.006	0.114	0.004	0.128	0.006

(1) 0 ft indicates the contributing profile is the beginning of takeoff roll

(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

(3) not operations. Patterns counted as 1 event, vice 2 operations.

(4) n/a = not available: NOISEMAP's database does not include Lmax data for flight events for this aircraft type (B737-700).

(5) Estimated from the average difference of SEL and Lmax of similar events at this POI

Table A6-9 SEL-Ranked Flight Profiles for Alternative 2 for High-Tempo FCLP Year

							_							-			. (3)			
							Altitude	Slant	Esti	mated	2	A.		Anni 2B	ıal Averag	je Daily Ever 2C		2 D	2	E
POI	SEL Rank	Aircraft Type	Profile Type of Operation	Track ID		Speed kts) ⁽¹⁾	(ft MSL) (2)	Range	SEL	Lmax	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
							(10 11102)	(ft)	(dBA)	(dBA) ⁽⁴⁾	(0700-	(2200- 0700)	(0700-	(2200-	(0700-	(2200- 0700)	(0700-	(2200- 0700)	(0700-	(2200-
	1	EA-18G	266L Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	4,401	93	82	0.101	0.004	0.101	0.004	0.101	0.004	0.101	0.004	0.101	0.004
	2	EA-18G	264R Depart and Re-enter Pattern	14PR	84 % NC	250	2,000	4,415	92	82	0.732	0.032	0.732	0.032	0.783	0.035	0.783	0.035	0.783	0.035
P01	3 4	EA-18G EA-18G	265L Depart and Re-enter Pattern	25PL 07PR	84 % NC 84 % NC	250 250	2,000 2,000	4,889 4,943	92 91	80 80	1.262 0.429	0.056	1.288 0.404	0.057	1.212 0.429	0.054	1.212	0.054	1.212 0.429	0.054 0.019
	5	EA-18G	263R Depart and Re-enter Pattern 269B FCLP at Ault Field	25FU1	84 % NC	130	1,000	9.077	87	76	3.411	0.019 0.669	3.55	0.697	3.341	0.656	3.341	0.656	3.341	0.656
	1	EA-18G	268A FCLP at Ault Field	14FM1	82.2 % NC	130	852	1,389	107	104	2.088	0.41	2.019		2.228	0.437	2.228	0.437	2.228	0.437
Boo	2	EA-18G	268B FCLP at Ault Field	14FU1	82.2 % NC	130	859	1,393	107	103	2.088	0.41	2.019	0.396	2.228	0.437	2.228	0.437	2.228	0.437
P02	3 4	EA-18G EA-18G	282A FCLP at Ault Field 282B FCLP at Ault Field	14FM1 14FU1	82.2 % NC 82.2 % NC	140	893 859	1,393 1,393	107 106	100 100	1.075 1.075	0.242 0.242	2.425 2.425	0.707	4.657 4.657	1.252 1.252	1.774	0.4	4.075 4.075	1.095 1.095
	5	EA-18G	264R Depart and Re-enter Pattern	14PR	82.2 % NC	140	859	1,393	106	100	0.732	0.032	0.732	0.032	0.783	0.035	0.783	0.035	0.783	0.035
	11	EA-18G	263R Depart and Re-enter Pattern	07PR	84 % NC	250	1,477	1,206	105	98	0.429	0.019	0.404		0.429		0.429	0.019	0.429	0.019
P03	3	EA-18G EA-18G	265L Depart and Re-enter Pattern 264L Depart and Re-enter Pattern	25PL 14PL	84 % NC 84 % NC	250 250	2,000	1,599 2,306	103 99	95 90	1.262 0.732	0.056	1.288 0.732	0.057	1.212 0.783	0.054	1.212	0.054 0.035	1.212 0.783	0.054 0.035
103	4	EA-18G	264L Depart and Re-enter Pattern 266R Depart and Re-enter Pattern	32PR	84 % NC	250	1,999 2,000	2,401	99	90	0.732	0.032 0.004	0.732		0.101				0.101	0.033
	5	EA-18G	245 TACAN Arrival	25AHT	85 % NC	150	1,023	5,395	97	87	1.227	0.1	1.51	0.06	1.301	0.077	1.158	0.095	1.301	0.077
	1 2	EA-18G	260 Interfacility Coupeville to Ault Field	32CW14	96 % NC	150	936	1,943	111	106	1.199	0.218	0.735		0.294		1.034		0.44	0.086
P04	3	EA-18G EA-18G	259 Interfacility Coupeville to Ault Field 261 Interfacility Coupeville to Ault Field	32CW07 32CW25	96 % NC 96 % NC	150 150	936 936	1,943 1,943	111	106 106	0.354 0.981	0.064 0.178	0.217 0.601	0.037	0.087	0.017	0.306	0.056 0.154	0.13	0.025
1.07	4	EA-18G	262 Interfacility Coupeville to Ault Field	32CW32	96 % NC	150	936	1,943	111	106	0.191	0.035	0.117	0.104	0.047	0.009	0.165		0.07	0.014
	5		273PDA FCLP at Coupeville	14FCP1	85 % NC	140	337	1,801	108	100	1.057	0	0.713	0	0.273	0	0.958	0	0.41	0
	1 2		276PNC FCLP at Coupeville 276PDC FCLP at Coupeville	32FCP3 32FCP3	84 % NC 84 % NC	150 150	1,200 800	8,512 8,475	88 88	77 77	1.84 2.718	1.08	1.145 1.664	0.618	0.438	0.284	1.588	0.931	0.657 1.003	0.427
P05	3		276PNB FCLP at Coupeville	32FCP3	84 % NC	150	1,200	9,601	87	77	3.68	2.159	2.289	1.237	0.876	0.569		1.863	1.314	0.853
	4	EA-18G	276PDB FCLP at Coupeville	32FCP2	84 % NC	150	800	9,568	87	77	5.437	0	3.328	0	1.338	0	4.691	0	2.007	0
	5	transient	430 IFR non breaks	32A2E	17760 LBS	180	3,047	3,122	85	N/A	0.009	0.001	0.011	0.001	0.01	0.001	0.011	0.001	0.01	0.001
	1 2	EA-18G 2	276PDC FCLP at Coupeville 276PNC FCLP at Coupeville	32FCP3 32FCP3	84 % NC 84 % NC	150 150	799 1,199	5,329 5,397	96 96	85 84	2.718 1.84	1.08	1.664	0.618	0.669	0.284	2.346	0.931	1.003 0.657	0.427
P06	3		276PDB FCLP at Coupeville	32FCP2	84 % NC	150	799	6,534	93	81	5.437	0	3.328	0.010	1.338	0.204	4.691	0.551	2.007	0.427
	4		276PNB FCLP at Coupeville	32FCP2	84 % NC	150	1,199	6,590	93	81	3.68	2.159	2.289	1.237	0.876	0.569	3.175	1.863	1.314	0.853
-	5 1	EA-18G 2	276PNA FCLP at Coupeville 258 Interfacility Coupeville to Ault Field	32FCP1	84 % NC 82 % NC	150 250	1,199 2,000	7,791 12,064	91 82	79 73	1.84 0.074	1.08 0.013	1.145 0.05	0.618	0.438	0.284	1.588	0.931 0.012	0.657	0.427 0.006
	2	EA-18G	258 Interfacility Coupeville to Ault Field 257 Interfacility Coupeville to Ault Field	14CW32 14CW25	82 % NC	250	2,000	11,825	82	73	0.074	0.069	0.05	0.009	0.019	0.004	0.067	0.012	0.029	0.000
P07	3	EA-18G	273PDB FCLP at Coupeville	14FCP2	84 % NC	150	800	23,102	80	68	2.114	0	1.426	0	0.546	0	1.916	0	0.82	0
	4	EA-18G	280C GCA Pattern	32G3	82 % NC	230	2,208	17,859	80	71	0.066	0.026	0.088	0.034	0.088	0.034		0.034	0.088	0.034
	5 1	EA-18G P-8	262 Interfacility Coupeville to Ault Field 542C P3 P8 IFR and Growler VFR non breaks	32CW32 32A2C	82 % NC 17760 LBS	250 250	2,000 3,047	9,777 3,389	79 85	66 N/A	0.191	0.035 0.006	0.117 0.045	0.02	0.047	0.009	0.165	0.03 0.014	0.07	0.014 0.013
	2	transient	442C VFR non breaks	32A2C	17760 LBS	250	3,047	3,389	85	N/A	0.022	0.002	0.022	0.005	0.022	0.005	0.022	0.005	0.022	0.005
P08	3	P-8	542B P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS	250	3,047	5,353	81	N/A	0.047	0.006	0.045	0.014	0.045	0.013	0.047	0.014	0.045	0.013
	<u>4</u> 5	transient EA-18G	442B VFR non breaks 255 Interfacility Coupeville to Ault Field	32A2B 14CW07	17760 LBS 82 % NC	250 250	3,047 2,000	5,353 10,604	81 76	N/A 64	0.022 0.138	0.002 0.025	0.022	0.005	0.022	0.005	0.022	0.005	0.022	0.005
	1	EA-18G	244 TACAN Arrival	14AHT	78 % NC	250	3,163	48,626	62	51	0.625	0.023	0.701	0.028	0.729		0.123	0.023	0.729	0.043
	2	EA-18G	278C GCA Pattern	14G3	82 % NC	230	2,403	34,003	61	52	0.662	0.257	0.64	0.249	0.706	0.274	0.706	0.274	0.706	0.274
P09	3	P-8 EA-18G	544 Low TACAN Departure 215A Departure	14ALT 25D1C	4610 LBS 95 % NC	250 300	5,632 4,765	28,942 109,923	55 55	53 48	0.193 2.358	0.035	0.206 2.441	0.032 0.143	0.224 2.263	0.047	0.197	0.038 0.147	0.224 2.263	0.047 0.129
	5	EA-18G	215A Departure 217A Departure	25D1C 25D2B	95 % NC	300	3,835	110,307	54	48	2.358	0.153	2.441	0.143	2.263	0.129	2.264	0.147	2.263	0.129
	1	EA-18G	229A P3 P8 IFR and Growler VFR non breaks	14A2A	87 % NC	300	2,577	4,579	95	85	1.253	0.089	1.154		1.312		1.337	0.095	1.312	0.105
	2	EA-18G	223A Departure	32D2B	95 % NC	300	8,291	9,255	90	80	0.141	0.009	0.188		0.236	0.013	0.236	0.015	0.236	0.013
P10	3	EA-18G EA-18G	279C GCA Pattern 277C GCA Pattern	25G3 07G3	82 % NC 82 % NC	250 300	3,000	4,073 4,085	89 89	80 79	1.081 0.397	0.42 0.154	1.125 0.353	0.437	1.081	0.42	1.081	0.42 0.129	1.081 0.331	0.42 0.129
	5	EA-18G	277B GCA Pattern	07G2	82 % NC	300	3,000	4,387	88	78	0.265	0.103	0.235		0.331	0.086	0.331	0.086	0.331	0.086
	1	EA-18G	277C GCA Pattern	07G3	82 % NC	230	2,926	21,053	64	50	0.397	0.154	0.353	0.137	0.331	0.129	0.331	0.129	0.331	0.129
P11	2	P-8 transient	547C GCA Pattern 447C GCA Pattern	07G3 07G3	17760 LBS 17760 LBS	200	3,000 3,000	21,066 21,066	63 63	N/A N/A	0.214	0.027	0.019		0.188	0.017	0.179	0.023	0.188	0.017
FIL	4	P-8	527 P3 P8 C40 VFR non breaks	14A2E	17760 LBS	250	3,000	30,649	57	N/A N/A	0.02	0.013	0.019	0.01	0.017	0.018	0.017	0.014	0.017	0.018
	5	transient	423 IFR non breaks	14A2E	17760 LBS	250	3,047	30,649	57	N/A	0.061	0.008	0.06	0.006	0.064	0.006	0.068	0.008	0.064	0.006
	1	EA-18G	228C P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2,941	9,040	82	74	0.376	0.027	0.346	0.025	0.394	0.031	0.401	0.028	0.394	0.031
P12	3	EA-18G EA-18G	278C GCA Pattern 228B P3 P8 IFR and Growler VFR non breaks	14G3 14A1B	82 % NC 87 % NC	300	3,000 2,784	7,718 12,784	80 79	72 68	0.662 0.877	0.257 0.062	0.64	0.249	0.706 0.918	0.274 0.073	0.706	0.274 0.066	0.706 0.918	0.274 0.073
	4	P-8	548C GCA Pattern	14G3	17760 LBS	200	3,000	7,718	78	N/A	0.369	0.062	0.808	0.037	0.389	0.073	0.369	0.066	0.389	0.073
	5	transient	448C GCA Pattern	14G3	17760 LBS	200	3,000	7,718	78	N/A	0.035	0	0.033	0	0.034	0	0.035	0	0.034	0
	2	EA-18G	219A Departure	32D1A	95 % NC 82 % NC	300	7,686	7,575	94	86	0.472 0.441	0.031	0.626	0.037	0.786 0.471		0.786	0.051 0.183	0.786 0.471	0.045 0.183
P13	3	EA-18G EA-18G	278B GCA Pattern 277C GCA Pattern	14G2 07G3	82 % NC 82 % NC	300	3,000	3,526 3,689	91	81 80	0.441	0.171 0.154	0.427 0.353	0.166 0.137	0.471	0.183 0.129	0.471	0.183	0.471	0.183
13	4	EA-18G	279C GCA Pattern	25G3	82 % NC	300	3,000	3,689	90	81	1.081	0.134	1.125	0.137	1.081	0.123	1.081	0.123	1.081	0.123
	5	EA-18G	280B GCA Pattern	32G2	82 % NC	300	3,000	3,526	90	81	0.044	0.017	0.059	0.023	0.059	0.023	0.059	0.023	0.059	0.023
	1 2	EA-18G P-8	278C GCA Pattern 544 Low TACAN Departure	14G3 14ALT	82 % NC 4610 LBS	230 250	1,822	20,245 4,657	76 72	63 N/A	0.662 0.193	0.257 0.035	0.64	0.249	0.706	0.274	0.706	0.274 0.038	0.706	0.274 0.047
P14	3	P-8 EA-18G	544 Low TACAN Departure 278B GCA Pattern	14AL1 14G2	82 % NC	230	4,622 2,166	23,933	72	58	0.193	0.035	0.206		0.224	0.047	0.197	0.038	0.224	0.047
	4	EA-18G	221A Departure	32D1C	95 % NC	300	6,560	43,942	69	49	0.141	0.009	0.188	0.011	0.236	0.013	0.236	0.015	0.236	0.013
	5	EA-18G	229C P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,569	25,383	67	55	0.376	0.027	0.346	0.025	0.394	0.031	0.401	0.028	0.394	0.031

Table A6-9 SEL-Ranked Flight Profiles for Alternative 2 for High-Tempo FCLP Year (continued)

					·				Eoti	mated				Ann	ıal Averag	e Daily Even	nts ⁽³⁾			
POI	SEL		Profile Town of Constitution		Power	Speed	Altitude	Slant	ESII	mateu		A		В	2	2C		D	2	_
ID	Rank	Aircraft Type	ID Type of Operation	Track ID		kts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1	EA-18G	206A Departure	07D2C	95 % NC	300	5,213	8,277	92	83	0.344	0.022	0.322	0.019	0.323	0.018	0.323	0.021	0.323	0.018
	2	EA-18G	203A Departure	07D1C	95 % NC	300	5,155	8,368	92	83	0.802	0.052	0.751	0.044	0.754	0.043	0.755	0.049	0.754	0.043
P15	3	EA-18G	277B GCA Pattern	07G2	82 % NC	250	3,000	3,437	91	80	0.265	0.103	0.235	0.091	0.221	0.086	0.221	0.086	0.221	0.086
	4	EA-18G	205A Departure	07D2B	95 % NC	300	4,892	9,517	90	79	0.802	0.052	0.751	0.044	0.754	0.043	0.755	0.049	0.754	0.043
-	5	EA-18G EA-18G	202A Departure 256 Interfacility Coupeville to Ault Field	07D1B 14CW14	95 % NC 82 % NC	300 250	4,743 2,000	10,004 8,724	89 79	78 67	1.871 0.466	0.121 0.085	1.753 0.315	0.103 0.054	1.76 0.12	0.023	1.761 0.422	0.114 0.077	1.76 0.18	0.1 0.035
	2	EA-18G	255 Interfacility Coupeville to Ault Field 255 Interfacility Coupeville to Ault Field	14CW14	82 % NC	250	2,000	8,724	79	67	0.466	0.005	0.093	0.034	0.035	0.023	0.422	0.077	0.053	0.033
P16	3	EA-18G	252PD Interfacility Ault Field to Coupeville	25WC32P	82 % NC	250	2,500	10,146	78	64	1.221	0.020	0.757	0.0.0	0.256	0.007	0.906	0.020	0.384	0.01
	4	EA-18G	248PN Interfacility Ault Field to Coupeville	07WC32P	82 % NC	250	2,500	10,318	78	64	0	0.134	0	0.076	0	0.027	0	0.091	0	0.041
	5	EA-18G	250PN Interfacility Ault Field to Coupeville	14WC32P	82 % NC	250	2,500	10,355	78	64	0	0.223	0	0.119	0	0.072	0	0.241	0	0.108
	2		276PDA FCLP at Coupeville 276PNA FCLP at Coupeville	32FCP1 32FCP1	84 % NC 84 % NC	150 150	799 1,199	742 1,129	115 111	110 106	2.718 1.84	1.08	1.664 1.145	0.618	0.669	0.284	2.346	0.931	1.003 0.657	0.427
P17	3		276PDB FCLP at Coupeville	32FCP1	84 % NC	150	799	1,129	111	105	5.437	1.00	3.328	0.010	1.338	0.204	4.691	0.931	2.007	0.427
1	4		276PNB FCLP at Coupeville	32FCP2	84 % NC	150	1,199	1,476	109	103	3.68	2.159	2.289	1.237	0.876	0.569		1.863	1.314	0.853
	5	EA-18G	276PDC FCLP at Coupeville	32FCP3	84 % NC	150	799	2,304	106	97	2.718	0	1.664	0	0.669	0	2.346	0	1.003	0
	1		276PNC FCLP at Coupeville	32FCP3	84 % NC	150	1,200	6,600	92	82	1.84	1.08	1.145	0.618	0.438	0.284		0.931	0.657	0.427
P18	3		276PDC FCLP at Coupeville	32FCP3 32FCP2	84 % NC 84 % NC	150 150	800 1,200	6,544 7,760	91 90	82 79	2.718 3.68	2.159	1.664 2.289	1.237	0.669	0.569	2.346 3.175	1.863	1.003	0.853
F10	4		276PNB FCLP at Coupeville 276PDB FCLP at Coupeville	32FCP2	84 % NC	150	800	7,712	90	79	5.437	2.139	3.328	1.237	1.338	0.569	4.691	1.003	2.007	0.653
	5		276PNA FCLP at Coupeville	32FCP1	84 % NC	150	1,200	8,929	87	78	1.84	1.08	1.145	0.618	0.438	0.284	1.588	0.931	0.657	0.427
	1	EA-18G	251PN Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0	0.167	0	0.104	0	0.038	0	0.126	0	0.056
	2	EA-18G	251PD Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0.475	0	0.324	0	0.105	0	0.37	0	0.157	0
R01	3	EA-18G	252PN Interfacility Ault Field to Coupeville	25WC32P	97 % NC	135	59	1,093	121	114	4.004	0.371	0.757	0.212	0 050	0.084		0.28	0 204	0.126
	5	EA-18G EA-18G	252PD Interfacility Ault Field to Coupeville 204A Departure	25WC32P 07D2A	97 % NC 97 % NC	135 165	59 302	1,093	121 120	114 116	1.221 1.145	0.074	0.757 1.073	0.063	0.256 1.078	0.061	0.906 1.078	0.07	0.384 1.078	0.061
	1	EA-18G	250PN Interfacility Ault Field to Coupeville	14WC32P	97 % NC	0	47	3,519	110	96	1.143	0.074	1.073	0.119	1.070	0.001	1.070	0.241	1.076	0.108
	2	EA-18G	250PD Interfacility Ault Field to Coupeville	14WC32P	97 % NC	0	47	3,519	110	96	0.733	0	0.424	0	0.22	0	0.78	0	0.33	0
R02	3	EA-18G	249PN Interfacility Ault Field to Coupeville	14WC14P	97 % NC	0	47	3,519	110	96	0	0.1	0	0.058	0	0.032	0	0.108	0	0.049
	4	EA-18G	249PD Interfacility Ault Field to Coupeville	14WC14P	97 % NC	0	47	3,519	110	96	0.285	0	0.182	0	0.09	0	0.318	0 105	0.135	0
-	5 1	EA-18G EA-18G	210A Departure 266L Depart and Re-enter Pattern	14D2A 32PL	97 % NC 84 % NC	250	47 2,000	3,519 1,787	109 101	100 93	2.021 0.101	0.131 0.004	1.878 0.101	0.11 0.004	2.088 0.101	0.119 0.004	2.088	0.135 0.004	2.088 0.101	0.119 0.004
	2	EA-18G	264R Depart and Re-enter Pattern	14PR	84 % NC	250	2,000	1,767	101	92	0.732	0.004	0.732	0.004	0.783	0.004	0.783	0.004	0.783	0.004
R03	3	EA-18G	265L Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	1,971	100	92	1.262	0.056	1.288	0.057	1.212	0.054		0.054	1.212	0.054
	4	EA-18G	263R Depart and Re-enter Pattern	07PR	84 % NC	250	2,000	2,001	100	92	0.429	0.019	0.404	0.018	0.429	0.019	0.429	0.019	0.429	0.019
	5	EA-18G	270B FCLP at Ault Field	32FU1	82.2 % NC	130	817	8,282	88	78	0.418	0.082	0.557	0.109	0.557	0.109	0.557	0.109	0.557	0.109
	2	EA-18G EA-18G	205A Departure 202A Departure	07D2B 07D1B	95 % NC 95 % NC	300	4,035 4,007	5,492 5,530	99 98	88 88	0.802 1.871	0.052 0.121	0.751 1.753	0.044	0.754 1.76	0.043	0.755 1.761	0.049 0.114	0.754 1.76	0.043
R04	3	EA-18G	206A Departure	07D1B	95 % NC	300	4,007	5,708	98	88	0.344	0.022	0.322	0.019	0.323	0.018	0.323	0.021	0.323	0.018
1	4	EA-18G	203A Departure	07D1C	95 % NC	300	4,096	5,708	98	88	0.802	0.052	0.751	0.044	0.754	0.043	0.755	0.049	0.754	0.043
	5	EA-18G	204A Departure	07D2A	95 % NC	300	3,804	6,519	96	86	1.145	0.074	1.073	0.063	1.078	0.061	1.078	0.07	1.078	0.061
	1	EA-18G	277A GCA Pattern	07G1	82 % NC	250	3,000	3,009	92	84	1.986	0.771	1.765	0.686	1.655	0.643	1.655	0.643	1.655	0.643
R05	3	EA-18G EA-18G	279A GCA Pattern 280C GCA Pattern	25G1 32G3	82 % NC 82 % NC	300	3,000	3,350 3,491	91	82 82	5.407 0.066	2.1 0.026	5.627 0.088	2.185 0.034	5.407 0.088	2.1 0.034	5.407 0.088	2.1 0.034	5.407 0.088	2.1 0.034
CUN	4	EA-18G	278C GCA Pattern	14G3	82 % NC	300	3,000	3,491	90	82	0.662	0.026	0.088	0.034	0.088	0.034	0.088	0.034	0.088	0.034
	5	EA-18G	205A Departure	07D2B	95 % NC	300	3,808	13,742	85	75	0.802	0.052	0.751	0.044	0.754	0.043		0.049	0.754	0.043
	1		276PDB FCLP at Coupeville	32FCP2	85 % NC	140	515	389	121	114	5.437	0	3.328	0	1.338	0	4.691	0	2.007	0
Doo	2		276PDC FCLP at Coupeville	32FCP3	85 % NC	140	508	405	120	113	2.718	0	1.664	0	0.669	0	2.346	0	1.003	0
R06	3 4	EA-18G EA-18G	276PDA FCLP at Coupeville	32FCP1 25WC32P	85 % NC 84 % NC	140	524 526	412 399	120 120	113 113	2.718 1.221	0	1.664 0.757	0	0.669	0	2.346 0.906	0	1.003 0.384	0
	5	EA-18G EA-18G	252PD Interfacility Ault Field to Coupeville 254PD Interfacility Ault Field to Coupeville	32WC32P	84 % NC	140	526	399	120	113	0.049	<u>U</u>	0.757	0	0.256	0	0.906	0	0.384	0
	1		273PDA FCLP at Coupeville	14FCP1	84 % NC	150	799	769	115	109	1.057	0	0.713	0	0.273	0	0.120	0	0.034	0
	2		273PNA FCLP at Coupeville	14FCP1	84 % NC	150	1,199	1,167	111	104	0.716	0.42	0.491	0.265	0.179	0.116	0.648	0.38	0.268	0.174
R07	3	EA-18G	273PDB FCLP at Coupeville	14FCP2	84 % NC	150	799	1,512	110	100	2.114	0	1.426	0	0.546	0	1.916	0	0.82	0
	5		273PNB FCLP at Coupeville	14FCP2	84 % NC	150	1,199	1,749	108	100	1.431	0.84	0.981	0.53	0.358	0.232		0.761	0.537	0.349
	1	EA-18G EA-18G	253PD Interfacility Ault Field to Coupeville 273PDC FCLP at Coupeville	32WC14P 14FCP3	82.2 % NC 84 % NC	150	1,104 800	1,725 3,154	105 101	100 106	0.019 1.057	0	0.026 0.713	0	0.015 0.273	0	0.052 0.958	0	0.022	- 0
	2		273PNC FCLP at Coupeville	14FCP3	84 % NC	150	1,200	3,252	100	93	0.716	0.42	0.491	0.265	0.179	0.116		0.38	0.268	0.174
R08	3	EA-18G	257 Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2,000	2,690	99	92	0.381	0.069	0.258	0.044	0.098	0.019	0.346	0.063	0.147	0.029
	4	EA-18G	258 Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	2,690	99	92	0.074	0.013	0.05	0.009	0.019	0.004	0.067	0.012	0.029	0.006
	5		273PDB FCLP at Coupeville	14FCP2	84 % NC	150	800	4,008	98	91	2.114	0	1.426	0	0.546	0	1.916	0	0.82	0
	1 2	EA-18G EA-18G	254PD Interfacility Ault Field to Coupeville 250PD Interfacility Ault Field to Coupeville	32WC32P 14WC32P	85 % NC 85 % NC	300	2,231 2,236	5,007 5,091	90	82 82	0.049 0.733	0	0.061 0.424	0	0.036	0	0.126 0.78	0	0.054	0
R09	3	EA-18G EA-18G	252PD Interfacility Ault Field to Coupeville 252PD Interfacility Ault Field to Coupeville	25WC32P	85 % NC	300	2,236	5,083	90	81	1.221	<u>U</u>	0.424	0	0.256	n	0.78	0	0.384	0
	4	EA-18G	250PN Interfacility Ault Field to Coupeville	14WC32P	85 % NC	300	2,299	5,114	90	81	0	0.223	007	0.119	0.200	0.072	0.500	0.241	0	0.108
	5	EA-18G	262 Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	3,677	90	81	0.191	0.035	0.117	0.02	0.047	0.009	0.165	0.03	0.07	0.014

Table A6-9 SEL-Ranked Flight Profiles for Alternative 2 for High-Tempo FCLP Year (continued)

										Foti	mated				Ann	ual Averag	e Daily Even	its ⁽³⁾			
POI	SEL		Profile			Power	Speed	Altitude	Slant	Lati	mateu	2.	A	2	2B	:	2C	:	2D	2	2E
ID		Aircraft Type	ID	Type of Operation	Track ID			(ft MSL) (2)	Range	SEL	Lmax	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
ID	Rank		ID I			Setting	(kts) ⁽¹⁾	(IT WISL)	(ft)			(0700-	(2200-	(0700-	(2200-	(0700-		(0700-		(0700-	(2200-
									` '	(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	-1	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,480	3,143	100	90	0.877	0.062	0.808	0.057	0.918	0.073	0.936	0.066	0.918	0.073
	2	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2,620	3,563	98	88	0.376	0.027	0.346	0.025	0.394	0.073	0.401	0.000	0.394	0.073
R10	3	EA-18G		GCA Pattern	32G3	82 % NC	250	3,000	2,980	93	84	0.066	0.027	0.088	0.023	0.088		0.401		0.088	0.031
IX IO	4	EA-18G		GCA Pattern	14G1	82 % NC	300	2,999	3,168	92	83	3.31	1,286	3.2		3.531	1.371	3.531	1.371	3.531	1.371
											77										
-	5	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC	300	2,347	7,186	90		1.253	0.089	1.154	0.082	1.312		1.337		1.312	
	1	EA-18G	238A	Overhead Break Arrival	1402A	84 % NC	300	10,000	13,520	73	60	0.239	0.023	0.226	0.022	0.253		0.256		0.253	0.023
	2	EA-18G		Overhead Break Arrival	1402B	84 % NC	300	10,000	13,567	73	60	0.239	0.023	0.226	0.022	0.253		0.256		0.253	0.023
R11	3	EA-18G		Overhead Break Arrival	1402C	84 % NC	300	10,000	13,609	73	60	0.247	0.024	0.233	0.023	0.261	0.024	0.264		0.261	0.024
	4	EA-18G		Overhead Break Arrival	07O2B	84 % NC	300	10,000	13,739	72	59	0.14	0.013	0.129	0.013	0.131	0.012	0.132		0.131	0.012
	5	EA-18G		Overhead Break Arrival	07O2A	84 % NC	300	10,000	13,740	72	59	0.14	0.013	0.129	0.013	0.131		0.132		0.131	0.012
	1	EA-18G		Departure	07D2B	84 % NC	300	9,000	9,677	75	65	0.802	0.052	0.751	0.044	0.754		0.755		0.754	0.043
	2	EA-18G		Departure	25D2A	84 % NC	300	9,000	16,276	70	58	3.368	0.218	3.488	0.205	3.233		3.234		3.233	0.184
R12	3	EA-18G	217A	Departure	25D2B	84 % NC	300	9,000	16,448	70	58	2.358	0.153	2.441	0.143	2.263		2.264		2.263	0.129
	4	EA-18G		Departure	25D2C	84 % NC	300	9,000	18,999	67	55	1.011	0.065	1.046	0.061	0.97		0.97	0.063	0.97	0.055
	5	EA-18G	206A	Departure	07D2C	84 % NC	300	9,000	24,952	66	55	0.344	0.022	0.322	0.019	0.323		0.323	0.021	0.323	0.018
	1	EA-18G	273PDA	FCLP at Coupeville	14FCP1	84 % NC	150	800	47,518	75	63	1.057	0	0.713	0	0.273		0.958	0	0.41	0
	2	EA-18G		FCLP at Coupeville	14FCP2	84 % NC	150	1,200	46,886	74	62	1.431	0.84	0.981	0.53	0.358	0.232	1.297	0.761	0.537	0.349
R13	3	EA-18G	273PNA	FCLP at Coupeville	14FCP1	84 % NC	150	1,200	47,526	74	62	0.716	0.42	0.491	0.265	0.179	0.116	0.648	0.38	0.268	0.174
	4	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	30.019	71	51	0.191	0.035	0.117	0.02	0.047	0.009	0.165	0.03	0.07	0.014
	5	EA-18G		Interfacility Coupeville to Ault Field	32CW14	85 % NC	140	250	52,917	71	51	1.199	0.218	0.735	0.127	0.294		1.034		0.44	0.086
	1	EA-18G		FCLP at Ault Field	14FU1	84 % NC	130	1,000	2,575	104	96	2.088	0.41	2.019	0.396	2.228		2.228		2.228	0.437
	2	EA-18G		FCLP at Ault Field	25FU1	82.2 % NC	130	693	3,116	103	96	3.411	0.669	3.55	0.697	3.341	0.656	3.341	0.656	3,341	0.656
R14	3	EA-18G		FCLP at Ault Field	25FU1	82.2 % NC	140	715	3,119	103	91	1.685	0.38	4.504	1.314	6.914		2.634		6.05	1.626
1114	4	EA-18G		FCLP at Ault Field	25FM1	82.2 % NC	130	702	3,119	103	91	3.411	0.669	3.55	0.697	3.341	0.656	3.341	0.656	3.341	0.656
	5	EA-18G		Depart and Re-enter Pattern	25PL	82.2 % NC	140	697	3,095	103	91	1.262	0.056	1.288	0.057	1.212		1.212		1.212	0.054
-	1			FCLP at Coupeville	14FCP3	85 % NC	140	575	1,544	110	103	1.057	0.030	0.713	0.037	0.273		0.958		0.41	0.034
	2			FCLP at Coupeville	14FCP3	85 % NC	140	698	1,544	109	103	0.716	0.42	0.491	0.265	0.179		0.648		0.268	0.174
R15	3			FCLP at Coupeville	14FCP3	85 % NC	140	585	1,871	109	103	2,114	0.42	1.426	0.265	0.179		1.916		0.200	0.174
KIS	4	EA-18G		FCLP at Coupeville	14FCP2		140	718	1,912	107	101	1.431	0.84	0.981	0.50	0.358			0.761	0.537	0.349
	5	EA-18G EA-18G			07WC14P	85 % NC 84 % NC	140	588	2,009	107	98	0.171	0.84	0.981	0.53	0.034		1.297 0.12		0.537	0.349
_	-	EA-18G EA-18G		Interfacility Ault Field to Coupeville P3 P8 IFR and Growler VFR non breaks	32A1A	84 % NC	300	2,756	2,009	100	98	0.171	0.012	0.117	0.015	0.034		0.12		0.051	0.013
	1																				
D.40	2	EA-18G		Departure	14D1C	95 % NC	300	6,951	8,107	93	85	1.415	0.092	1.315	0.077	1.462		1.462		1.462	0.083
R16	3	EA-18G		GCA Pattern	14G3	82 % NC	250	3,000	3,185	91	82	0.662	0.257	0.64	0.249	0.706		0.706		0.706	0.274
	4	EA-18G		Departure	14D1B	95 % NC	300	6,815	9,922	90	81	3.301	0.214	3.067	0.18	3.41		3.411		3.41	0.194
	5	EA-18G		TACAN Arrival	32AHT	82.2 % NC	250	2,475	6,673	89	81	0.093	0.008	0.162	0.006	0.13		0.116		0.13	0.008
	111	P-8		P3 P8 IFR and Growler VFR non breaks	32A2C	17760 LBS	250	3,047	2,963	85	N/A	0.047	0.006	0.045	0.014	0.045		0.047		0.045	0.013
L	2	transient		VFR non breaks	32A2C	17760 LBS	250	3,047	2,963	85	N/A	0.022	0.002	0.022	0.005	0.022		0.022	0.005	0.022	0.005
R17	3	P-8		P3 P8 IFR and Growler VFR non breaks	32A2B	17760 LBS	250	3,047	6,202	79	N/A	0.047	0.006	0.045	0.014	0.045		0.047		0.045	0.013
	4	transient		VFR non breaks	32A2B	17760 LBS	250	3,047	6,202	79	N/A	0.022	0.002	0.022	0.005	0.022		0.022		0.022	0.005
	5	EA-18G		Interfacility Coupeville to Ault Field	14CW14	82 % NC	250	2,000	12,686	73	59	0.466	0.085	0.315		0.12		0.422		0.18	
	1	P-8	543	Low TACAN Departure	07ALT	4610 LBS	250	5,971	5,979	68	N/A	0.068	0.015	0.063	0.012	0.073		0.064		0.073	0.015
	2	P-8	545	Low TACAN Departure	25ALT	4610 LBS	250	6,446	6,474	67	N/A	0.124	0.024	0.111	0.017	0.141	0.027	0.124	0.021	0.141	0.027
R18	3	EA-18G	256	Interfacility Coupeville to Ault Field	14CW14	82 % NC	250	2,000	24,403	64	53	0.466	0.085	0.315	0.054	0.12	0.023	0.422	0.077	0.18	0.035
	4	EA-18G		Interfacility Coupeville to Ault Field	14CW07	82 % NC	250	2,000	24,403	64	53	0.138	0.025	0.093	0.016	0.035		0.125		0.053	0.01
	5	EA-18G		Interfacility Ault Field to Coupeville	25WC32P	85 % NC	250	2,500	22,831	63	47	1,221	0	0.757	0	0.256		0.906		0.384	0
	1	EA-18G		Interfacility Ault Field to Coupeville	32WC14P	84 % NC	140	438	907	114	108	0.019	0	0.026	n	0.015		0.052		0.022	0
	2	EA-18G		Interfacility Ault Field to Coupeville	32WC14P	84 % NC	140	438	907	114	108	0.010	0.007	0.020	0.008	0.0.0	·	0.002	·	0.022	
R19	3	EA-18G		FCLP at Coupeville	14FCP1	85 % NC	140	492	1,069	114	108	1.057	0.507	0.713	0	0.273		0.958		0.41	0
	4			FCLP at Coupeville	14FCP1	85 % NC	140	530	1.080	113	107	0.716	0.42	0.491	0.265	0.179		0.648		0.268	0.174
	5	EA-18G		Interfacility Ault Field to Coupeville	25WC14P	84 % NC	140	444	962	113	107	0.475	0.42	0.324		0.105		0.048		0.200	0.174
\vdash	1	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,933	3,692	95	87	0.473	0.027	0.346	0.025	0.103		0.401	0.028	0.137	0.031
	2	EA-18G		GCA Pattern	07G3	82 % NC	300	3,000	3,898	89	78	0.376	0.027	0.353	0.025	0.331	0.031	0.401	0.028	0.331	0.031
R20	3	EA-18G		P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2,769	6,744	88	78	0.397	0.154	0.808	0.137	0.918		0.936		0.331	0.129
K20	4	transient		IFR non breaks	14A2B	17760 LBS	180	3,047	3.071	86	N/A	0.877	0.062	0.808	0.057	0.918		0.936	0.008	0.918	0.073
	5																				
	5	P-8	527	P3 P8 C40 VFR non breaks	14A2E	17760 LBS	180	3,047	3,071	86	N/A	0.067	0.013	0.067	0.01	0.085	0.018	0.075	0.014	0.085	0.018

Table A6-9 SEL-Ranked Flight Profiles for Alternative 2 for High-Tempo FCLP Year (concluded)

															Δnı	al Averag	e Daily Ever	ts (3)			
-	051		B (1)					Aleiend	Slant	Esti	mated		2A		2B		2C		2D		2E
POI	SEL	Aircraft Type	Profile	Type of Operation	Track ID	Power	Speed	Altitude	Range			Davtime	Nighttime	Davtime	Nighttime	Davtime	Nighttime	Davtime	Nighttime	Davtime	Nighttime
ID	Rank	,	ID			Setting	(kts) (1)	(ft MSL) (2)	(ft)	SEL	Lmax	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
										(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G	266L	Depart and Re-enter Pattern	32PL	82.2 % NC	140	773	4009	98	90	0.101	0.004	0.101	0.004	0.101	0.004	0.101	0.004	0.101	0.004
	2	EA-18G	270B	FCLP at Ault Field	32FU1	82.2 % NC	130	802	4008	96	90	0.418	0.082	0.557	0.109	0.557	0.109	0.557	0.109	0.557	0.109
S01	3	EA-18G	284B	FCLP at Ault Field	32FU1	82.2 % NC	140	839	4014	96	84	0.072	0.016	0.693	0.202	0.847	0.228	0.323	0.073	0.741	0.199
	4	EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2 % NC	140	773	4003	96	84	0.101	0.004	0.101	0.004	0.101	0.004	0.101	0.004	0.101	0.004
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2 % NC	140	861	3936	95	83	0.191	0.035	0.117	0.02	0.047	0.009	0.165	0.03	0.07	0.014
	1	EA-18G	212A	Departure	14D2C	95 % NC	300	2514	3432	104	94	0.606	0.039	0.563	0.033	0.626	0.036	0.627	0.041	0.626	0.036
	2	EA-18G	209A	Departure	14D1C	95 % NC	300	2514	3432	104	93	1.415	0.092	1.315	0.077	1.462	0.083	1.462	0.095	1.462	0.083
S02	3	EA-18G	207A	Departure	14D1A	95 % NC	300	2514	3432	104	94	4.716	0.305	4.382	0.257	4.872	0.278	4.873	0.315	4.872	0.278
	4	EA-18G	211A	Departure	14D2B	95 % NC	300	2514	3432	104	94	1.415	0.092	1.315	0.077	1.462	0.083	1.462	0.095	1.462	0.083
	5	EA-18G	208A	Departure	14D1B	95 % NC	300	2514	3432	104	94	3.301	0.214	3.067	0.18	3.41	0.194	3.411	0.221	3.41	0.194
	1	EA-18G	276PDC	FCLP at Coupeville	32FCP3	84 % NC	150	800	5231	94	89	2.718	0	1.664	0	0.669	0	2.346	0	1.003	0
	2	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC	150	1200	5297	94	89	1.84	1.08	1.145	0.618	0.438	0.284	1.588	0.931	0.657	0.427
S03	3	EA-18G	276PDB	FCLP at Coupeville	32FCP2	84 % NC	150	800	6105	92	89	5.437	0	3.328	0	1.338	0	4.691	0	2.007	0
	4	EA-18G	276PNB	FCLP at Coupeville	32FCP2	84 % NC	150	1200	6162	92	89	3.68	2.159	2.289	1.237	0.876	0.569	3,175	1.863	1.314	0.853
	5	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC	150	1200	7058	90	88	1.84	1.08	1.145	0.618	0.438	0.284	1.588	0.931	0.657	0.427
	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2882	4781	93	83	0.376	0.027	0.346	0.025	0.394	0.031	0.401	0.028	0.394	0.031
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3000	2903	92	84	0.662	0.257	0.64	0.249	0.706	0.274	0.706	0.274	0.706	0.274
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2719	7342	87	76	0.877	0.062	0.808	0.057	0.918	0.073	0.936	0.066	0.918	0.073
1	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	N/A	0.369	0.045	0.35	0.039	0.389	0.03	0.369	0.04	0.389	0.03
	5	transient	448C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	76	0.035	0.0.0	0.033	0.000	0.034	0.00	0.035	0.01	0.034	0.00
	1	EA-18G	243	TACAN Arrival	07AHT	78 % NC	250	3529	3374	76	68	0.37	0.03	0.324	0.013	0.442	0.026	0.394	0.032	0.442	0.026
ŀ	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2712	19217	70	56	0.376	0.027	0.346	0.025	0.394	0.020	0.401	0.032	0.394	0.020
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC	300	2592	23773	66	51	0.877	0.062	0.808	0.023	0.918	0.031	0.936	0.028	0.918	0.031
1000	4	EA-18G	224A	Departure Departure	32D2C	95 % NC	300	8249	32151	65	52	0.061	0.002	0.08	0.005	0.101	0.006	0.101	0.007	0.101	0.006
ŀ	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760 LBS	180	3047	19344	64	N/A	0.367	0.063	0.317	0.059	0.35	0.053	0.367	0.057	0.35	0.053
	1	EA-18G	224A	Departure	32D2C	84 % NC	300	9000	61543	51	39	0.061	0.003	0.08	0.005	0.101	0.006	0.101	0.007	0.101	0.006
F	2	EA-18G	223A	Departure	32D2B	84 % NC	300	9000	66657	50	39	0.001	0.004	0.188	0.003	0.236	0.000	0.101	0.007	0.236	0.000
S06	3	P-8	547C	GCA Pattern	07G3	17760 LBS	200	3000	40394	50	37	0.141	0.003	0.100	0.011	0.230	0.013	0.230	0.013	0.188	0.013
300	4	transient	447C	GCA Pattern	07G3	17760 LBS	200	3000	40394	50	37	0.02	0.027	0.019	0.02	0.100	0.017	0.179	0.023	0.100	0.017
-	5	EA-18G	222A	Departure	32D2A	95 % NC	300	8656	71520	49	37	0.02	0.013	0.019	0.016	0.337	0.019	0.017	0.022	0.337	0.019
	1	EA-18G	277C	GCA Pattern	07G3	82 % NC	230	2810	88787	61	51	0.202	0.013	0.268	0.016	0.331	0.019	0.331	0.022	0.331	0.019
-	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82 % NC	250	2500	165180	59	47	0.397	0.154	0.353	0.137	0.331	0.129	0.331	0.129	0.331	0.129
S07	3	EA-18G	250PD	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	14WC32P	82 % NC	250	2500	165180	59	47	0.733	0.223	0.424	0.119	0.22	0.072	0.78	0.241	0.33	0.108
507	4													-							
1 1	5	EA-18G EA-18G	254PD 254PN	Interfacility Ault Field to Coupeville Interfacility Ault Field to Coupeville	32WC32P	82 % NC 82 % NC	250 250	2500 2500	135475 135475	59 59	47 47	0.049	0.015	0.061	0.017	0.036	0.012	0.126	0.039	0.054	0.018
\vdash	3	EA-18G EA-18G	254PN 280C		32WC32P 32G3	82 % NC 82 % NC	300	3000	2779	93	47 81	0.066	0.015	0.088	0.017	0.088	0.012	0.088	0.039	0.088	0.018
1 +	1			GCA Pattern																	
S08	2 3	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3000	2779 6041	93	81	0.662	0.257	0.64	0.249	0.706	0.274	0.706	0.274	0.706	0.274
508		EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC	300	2851		89	80	1.253	0.089	1.154	0.082	1.312	0.105	1.337	0.095	1.312	0.105
-	5	EA-18G	279C	GCA Pattern	25G3	82 % NC	300	3000	4183	88	79	1.081	0.42	1.125	0.437	1.081	0.42	1.081	0.42	1.081	0.42
1		EA-18G	277C	GCA Pattern	07G3	82 % NC	300	3000	4183	88	79	0.397	0.154	0.353	0.137	0.331	0.129	0.331	0.129	0.331	0.129
	1	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87 % NC	300	3000	4033	92	86	1.023	0.073	1.051	0.074	0.984	0.079	1.003	0.071	0.984	0.079
000	2	EA-18G	277B	GCA Pattern	07G2	82 % NC	250	3000	3025	91	78	0.265	0.103	0.235	0.091	0.221	0.086	0.221	0.086	0.221	0.086
S09	3	EA-18G	279A	GCA Pattern	25G1	82 % NC	300	3000	5300	87	75	5.407	2.1	5.627	2.185	5.407	2.1	5.407	2.1	5.407	2.1
	4	EA-18G	206A	Departure	07D2C	95 % NC	300	5403	11786	86	76	0.344	0.022	0.322	0.019	0.323	0.018	0.323	0.021	0.323	0.018
\vdash	5	EA-18G	203A	Departure	07D1C	95 % NC	300	5300	11968	86	76	0.802	0.052	0.751	0.044	0.754	0.043	0.755	0.049	0.754	0.043
	1	P-8	546	Low TACAN Departure	32ALT	17760 LBS	250	3616	3501	83	N/A	0.016	0.002	0.016	0.004	0.018	0.007	0.016	0.005	0.018	0.007
1	2	EA-18G	280C	GCA Pattern	32G3	82 % NC	230	2333	19814	71	61	0.066	0.026	0.088	0.034	0.088	0.034	0.088	0.034	0.088	0.034
S10	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2000	20733	70	58	0.381	0.069	0.258	0.044	0.098	0.019	0.346	0.063	0.147	0.029
	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2000	20783	70	58	0.074	0.013	0.05	0.009	0.019	0.004	0.067	0.012	0.029	0.006
	5	EA-18G	246	TACAN Arrival	32AHT	78 % NC	250	3085	23749	70	53	0.093	0.008	0.162	0.006	0.13	0.008	0.116	0.009	0.13	0.008
Notes:																					

(1) 0 ft indicates the contributing profile is the beginning of takeoff roll

(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

(3) not operations. Patterns counted as 1 event, vice 2 operations.

(4) ria = not available: (NOISEMAP's database does not include Lmax data for flight events for this aircraft type (B737-700).

(5) Estimated from the average difference of SEL and Lmax of similar events at this POI

Table A6-10 SEL-Ranked Flight Profiles for Alternative 3 for High-Tempo FCLP Year

							_									- D-il- F	(3)			
								Slant	Esti	mated	3.4	<u> </u>		Ann BB	uai Averag	je Daily Even 3C	its (*)	BD	3	E
POI ID	SEL Rank	Aircraft Type	Profile Type of Operation	Track ID		ipeed cts) ⁽¹⁾	Altitude (ft MSL) (2)	Range (ft)	SEL (dBA)	Lmax (dBA) ⁽⁴⁾	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)	Daytime (0700- 2200)	Nighttime (2200- 0700)
	1	EA-18G	266L Depart and Re-enter Pattern	32PL		250	2,000	4,401	93	82	0.1	0.004	0.1	0.004	0.1		0.1	0.004	0.1	0.004
P01	2	EA-18G	264R Depart and Re-enter Pattern	14PR		250	2,000	4,415	92	82	0.724	0.026	0.724	0.026	0.774		0.724		0.724	0.026
PUT	3	EA-18G EA-18G	265L Depart and Re-enter Pattern 263R Depart and Re-enter Pattern	25PL 07PR		250 250	2,000	4,889 4,943	92 91	80 80	1.248 0.424	0.045	1.273 0.399	0.046 0.014	1.198 0.424		1.273 0.399	0.046 0.014	1.273 0.399	0.046 0.014
	5	EA-18G	269B FCLP at Ault Field	25FU1		130	1,000	9,077	87	76	3.312	0.693	3.447	0.722	3.244		3.447		3.447	0.722
	1	EA-18G	268A FCLP at Ault Field	14FM1	82.2 % NC	130	852	1,389	107	104	2.028	0.425	1.96	0.41	2.163	0.453	1.96	0.41	1.96	0.41
D00	2	EA-18G	268B FCLP at Ault Field	14FU1		130	859	1,393	107	103	2.028	0.425	1.96	0.41	2.163		1.96		1.96	0.41
P02	3_4	EA-18G EA-18G	282A FCLP at Ault Field 282B FCLP at Ault Field	14FM1 14FU1		140 140	893 859	1,393	107	100	1.07	0.259 0.259	2.487 2.487	0.652	4.719 4.719		1.498 1.498	0.363 0.363	3.503	0.892 0.892
	- 5	FA-18G	264R Depart and Re-enter Pattern	14PR		140	859	1,393	106	100	0.724	0.026	0.724	0.032	0.774		0.724		0.724	0.032
	1	EA-18G	263R Depart and Re-enter Pattern	07PR		250	1,477	1,206	105	98	0.424	0.015	0.399	0.014	0.424		0.399	0.014	0.399	0.014
D00	2	EA-18G	265L Depart and Re-enter Pattern	25PL		250	2,000	1,599	103	95	1.248	0.045	1.273	0.046	1.198		1.273	0.046	1.273	0.046
P03	<u>3</u>	EA-18G EA-18G	264L Depart and Re-enter Pattern 266R Depart and Re-enter Pattern	14PL 32PR		250 250	1,999 2,000	2,306 2,401	99	90 90	0.724	0.026	0.724	0.026	0.774		0.724 0.1		0.724	0.026 0.004
	5	EA-18G	245 TACAN Arrival	25AHT		150	1,023	5,395	97	87	1.661	0.004	1.68	0.106	1.364		1.755		1.528	0.066
	1	EA-18G	260 Interfacility Coupeville to Ault Field	32CW14	96 % NC	150	936	1,943	111	106	1.158	0.263	0.716	0.147	0.295	0.056	0.985	0.224	0.437	0.084
Do 4	2	EA-18G	259 Interfacility Coupeville to Ault Field	32CW07		150	936	1,943	111	106	0.342	0.078	0.211	0.043	0.087		0.291	0.066	0.129	0.025
P04	3 4	EA-18G EA-18G	261 Interfacility Coupeville to Ault Field 262 Interfacility Coupeville to Ault Field	32CW25 32CW32		150 150	936 936	1,943 1,943	111	106 106	0.947	0.215 0.042	0.585 0.114	0.12 0.023	0.242		0.806 0.157	0.183 0.036	0.357	0.068
	5	EA-18G	273PDA FCLP at Coupeville	14FCP1		140	337	1,801	108	100	1.058	0.042	0.705	0.023	0.266		0.137	0.030	0.413	0.013
	1	EA-18G	276PNC FCLP at Coupeville	32FCP3	84 % NC	150	1,200	8,512	88	77	1.682	1.247	1.053	0.738	0.462	0.281	1.431		0.684	0.415
Doc	2		276PDC FCLP at Coupeville	32FCP3		150	800	8,475	88	77	2.721	0 404	1.645	0	0.652		2.315		0.964	0 00
P05	3	EA-18G EA-18G	276PNB FCLP at Coupeville 276PDB FCLP at Coupeville	32FCP2 32FCP2		150 150	1,200 800	9,601 9,568	87 87	77 77	3.364 5.443	2.494	2.105 3.289	1.476	0.925 1.303		2.862 4.63	2.122	1.368 1.927	0.83
	5	transient	430 IFR non breaks	32A2E		180	3,047	3,122	85	N/A	0.009	0.001	0.011	0.001	0.011		0.012	0.001	0.011	0.001
	11	EA-18G	276PDC FCLP at Coupeville	32FCP3	0. 700	150	799	5,329	96	85	2.721	0	1.645	0	0.652		2.315		0.964	0
Doc	2	EA-18G	276PNC FCLP at Coupeville	32FCP3		150	1,199	5,397	96	84	1.682	1.247	1.053	0.738	0.462		1.431	1.061	0.684	0.415
P06	3 4		276PDB FCLP at Coupeville 276PNB FCLP at Coupeville	32FCP2 32FCP2		150 150	799 1,199	6,534 6,590	93	81 81	5.443 3.364	2.494	3.289 2.105	1.476	1.303 0.925		4.63 2.862	2.122	1.927 1.368	0.83
	5		276PNA FCLP at Coupeville	32FCP1		150	1,199	7,791	91	79	1.682	1.247	1.053	0.738	0.462		1.431	1.061	0.684	0.415
	1	EA-18G	258 Interfacility Coupeville to Ault Field	14CW32	82 % NC	250	2,000	12,064	82	73	0.072	0.016	0.049	0.01	0.019		0.067		0.03	0.006
P07	3	EA-18G EA-18G	257 Interfacility Coupeville to Ault Field	14CW25 14FCP2		250 150	2,000	11,825 23,102	82 80	73 68	0.368 2.117	0.084	0.251	0.051	0.099		0.345 1.984	0.078	0.153	0.029
P07	4	EA-18G	273PDB FCLP at Coupeville 280C GCA Pattern	32G3		230	2,208	17,859	80	71	0.067	0.025	0.089	0.033	0.089		0.089	0.033	0.826	0.033
	5	EA-18G	262 Interfacility Coupeville to Ault Field	32CW32		250	2,000	9,777	79	66	0.184	0.042	0.114	0.023	0.047		0.157		0.069	0.013
	11	P-8	542C P3 P8 IFR and Growler VFR non breaks	32A2C		250	3,047	3,389	85	N/A	0.044	0.008	0.044	0.014	0.045		0.044		0.045	0.013
P08	3	transient P-8	442C VFR non breaks 542B P3 P8 IFR and Growler VFR non breaks	32A2C 32A2B		250 250	3,047 3,047	3,389 5,353	85 81	N/A N/A	0.021	0.003	0.021 0.044	0.005 0.014	0.021		0.021 0.044	0.006 0.015	0.021 0.045	0.005 0.013
100	4	transient	442B VFR non breaks	32A2B		250	3,047	5,353	81	N/A	0.044	0.008	0.044	0.014	0.043	0.006	0.044	0.015	0.045	0.013
	5	EA-18G	255 Interfacility Coupeville to Ault Field	14CW07		250	2,000	10,604	76	64	0.133	0.03	0.091	0.019	0.036		0.125	0.028	0.055	0.011
	1	EA-18G	244 TACAN Arrival	14AHT		250	3,163	48,626	62	51	0.846	0.024	0.78		0.764		0.815		0.709	0.031
P09	3	EA-18G P-8	278C GCA Pattern 544 Low TACAN Departure	14G3 14ALT		230 250	2,403 5,632	34,003 28,942	61 55	52 53	0.67	0.249	0.648	0.241	0.715		0.648 0.215		0.648	0.241
1.00	4	EA-18G	215A Departure	25D1C		300	4,765	109,923	55	48	2.282	0.039	2.432	0.143	2.23		2.374	0.042	2.416	0.145
	5	EA-18G	217A Departure	25D2B	95 % NC	300	3,835	110,307	54	43	2.282	0.139	2.432	0.143	2.23	0.134	2.374		2.416	0.145
	1 2	EA-18G	229A P3 P8 IFR and Growler VFR non breaks	14A2A		300	2,577	4,579	95	85	1.196	0.09	1.16		1.323		1.116		1.158	0.086
P10	3	EA-18G EA-18G	223A Departure 279C GCA Pattern	32D2B 25G3		300 250	8,291 3,000	9,255 4,073	90 89	80 80	0.137 1.095	0.008	0.187	0.011 0.423	0.232 1.095		0.183 1.139		0.186 1.139	0.011 0.423
	4	EA-18G	277C GCA Pattern	07G3		300	3,000	4,085	89	79	0.402	0.149	0.357	0.133	0.335		0.357		0.357	0.133
	5	EA-18G	277B GCA Pattern	07G2		300	3,000	4,387	88	78	0.268	0.1	0.238	0.089	0.223		0.238		0.238	0.089
	2	EA-18G P-8	277C GCA Pattern 547C GCA Pattern	07G3 07G3		230	2,926 3.000	21,053 21,066	64	50 N/A	0.402	0.149	0.357 0.187	0.133	0.335 0.178		0.357 0.183	0.133 0.024	0.357	0.133 0.02
P11	3	transient	447C GCA Pattern	07G3		200	3,000	21,066	63	N/A	0.206	0.029	0.167	0.019	0.176		0.163	0.024	0.19	0.02
	4	P-8	527 P3 P8 C40 VFR non breaks	14A2E	17760 LBS	250	3,047	30,649	57	N/A	0.07	0.015	0.076	0.014	0.079	0.015	0.07		0.071	0.013
<u> </u>	5	transient	423 IFR non breaks	14A2E		250	3,047	30,649	57	N/A	0.064	0.005	0.061	0.006	0.069		0.064		0.063	0.006
	1 2	EA-18G EA-18G	228C P3 P8 IFR and Growler VFR non breaks	14A1C 14G3		300 300	2,941 3.000	9,040 7,718	82 80	74 72	0.359	0.027	0.348	0.024	0.397		0.335		0.347	0.026 0.241
P12	3	EA-18G	228B P3 P8 IFR and Growler VFR non breaks	14A1B		300	2,784	12,784	79	68	0.837	0.063	0.812	0.056	0.926		0.781	0.059	0.81	0.06
	4	P-8	548C GCA Pattern	14G3		200	3,000	7,718	78	N/A	0.355	0.049	0.327	0.037	0.369		0.32		0.333	0.038
<u> </u>	5 1	transient	448C GCA Pattern	14G3 32D1A		200 300	3,000	7,718	78 94	N/A	0.035 0.456	0.000	0.031	0.037	0.034		0.031		0.03	0.037
	2	EA-18G EA-18G	219A Departure 278B GCA Pattern	14G2		300	7,686 3,000	7,575 3,526	94	86 81	0.456	0.028	0.624 0.432	0.037	0.774		0.609		0.619	0.037
P13	3	EA-18G	277C GCA Pattern	07G3		300	3,000	3,689	90	80	0.402	0.149	0.357	0.133	0.335		0.357		0.357	0.133
	4	EA-18G	279C GCA Pattern	25G3		300	3,000	3,689	90	81	1.095	0.407	1.139	0.423	1.095		1.139		1.139	0.423
\vdash	5	EA-18G EA-18G	280B GCA Pattern 278C GCA Pattern	32G2 14G3		300 230	3,000 1,822	3,526 20,245	90 76	81 63	0.045	0.017	0.06	0.022 0.241	0.06 0.715		0.06 0.648	0.022 0.241	0.06	0.022 0.241
	2	P-8	544 Low TACAN Departure	14G3 14ALT		250	4,622	4,657	72	N/A	0.199	0.249	0.048	0.241	0.715	0.266	0.648	0.241	0.648	0.241
P14	3	EA-18G	278B GCA Pattern	14G2	82 % NC	230	2,166	23,933	72	58	0.447	0.166	0.432	0.16	0.477	0.177	0.432	0.16	0.432	0.16
	4	EA-18G	221A Departure	32D1C		300	6,560	43,942	69	49	0.137	0.008	0.187	0.011	0.232		0.183	0.011	0.186	0.011
	5	EA-18G	229C P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,569	25,383	67	55	0.359	0.027	0.348	0.024	0.397	0.029	0.335	0.025	0.347	0.026

Table A6-10 SEL-Ranked Flight Profiles for Alternative 3 for High-Tempo FCLP Year (continued)

									Feti	imated					ual Averag	e Daily Ever				
POI	SEL		Profile		Power	Speed	Altitude	Slant	Lati	mateu	3	Α		В	3	BC		D	31	
ID	Rank	Aircraft Type	ID Type of Operation	Track ID	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	Range (ft)	SEL	Lmax	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-	Daytime (0700-	Nighttime (2200-
								(11)	(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G	206A Departure	07D2C	95 % NC	300	5,213	8,277	92	83	0.333	0.02	0.321	0.019	0.319	0.019	0.313	0.019	0.319	0.019
	2	EA-18G	203A Departure	07D1C	95 % NC	300	5,155	8,368	92	83	0.776	0.047	0.748	0.044	0.743	0.045	0.73	0.044	0.743	0.045
P15	3	EA-18G	277B GCA Pattern	07G2	82 % NC	250	3,000	3,437	91	80	0.268	0.1	0.238	0.089	0.223	0.083	0.238	0.089	0.238	0.089
	5	EA-18G EA-18G	205A Departure	07D2B 07D1B	95 % NC 95 % NC	300	4,892 4,743	9,517 10,004	90	79 78	0.776 1.811	0.047	0.748 1.746	0.044 0.103	0.743 1.735	0.045 0.104	0.73 1.704	0.044 0.104	0.743	0.045 0.104
	1	EA-18G EA-18G	202A Departure 256 Interfacility Coupeville to Ault Field	14CW14	82 % NC	250	2,000	8,724	89 79	67	0.45	0.112	0.307	0.103	0.121	0.104	0.422	0.104	1.735 0.187	0.104
	2	EA-18G	255 Interfacility Coupeville to Ault Field	14CW07	82 % NC	250	2,000	8,724	79	67	0.133	0.03	0.091	0.019	0.036	0.007	0.125	0.028	0.055	0.011
P16	3	EA-18G	252PD Interfacility Ault Field to Coupeville	25WC32P	82 % NC	250	2,500	10,146	78	64	1.177	0	0.734	0	0.26	0	1.001	0	0.447	0
	4	EA-18G	248PN Interfacility Ault Field to Coupeville	07WC32P	82 % NC	250	2,500	10,318	78	64	0	0.151	0	0.085	0	0.026	0	0.128	0	0.049
	5	EA-18G EA-18G	250PN Interfacility Ault Field to Coupeville 276PDA FCLP at Coupeville	14WC32P 32FCP1	82 % NC 84 % NC	250 150	2,500 799	10,355 742	78 115	64 110	2.721	0.251	1.645	0.133	0.652	0.069	2.315	0.199	0.964	0.076
	2	EA-18G	276PNA FCLP at Coupeville	32FCP1	84 % NC	150	1,199	1,129	111	106	1.682	1.247	1.053	0.738	0.652	0.281	1.431	1.061	0.684	0.415
P17	3		276PDB FCLP at Coupeville	32FCP2	84 % NC	150	799	1,206	111	105	5.443	0	3.289	0	1.303	0	4.63	0	1.927	0
	4	EA-18G	276PNB FCLP at Coupeville	32FCP2	84 % NC	150	1,199	1,476	109	103	3.364	2.494	2.105	1.476	0.925	0.561	2.862	2.122	1.368	0.83
	5		276PDC FCLP at Coupeville	32FCP3	84 % NC	150	799	2,304	106	97	2.721	0	1.645	0	0.652	0	2.315	0	0.964	0
	1 2		276PNC FCLP at Coupeville	32FCP3 32FCP3	84 % NC 84 % NC	150 150	1,200 800	6,600	92	82	1.682	1.247	1.053 1.645	0.738	0.462	0.281	1.431 2.315	1.061	0.684 0.964	0.415
P18	3	EA-18G EA-18G	276PDC FCLP at Coupeville 276PNB FCLP at Coupeville	32FCP3 32FCP2	84 % NC	150	1,200	6,544 7,760	91	82 79	2.721 3.364	2.494	2.105	1.476	0.652 0.925	0.561	2.862	2.122	1.368	0.83
	4		276PDB FCLP at Coupeville	32FCP2	84 % NC	150	800	7,712	90	79	5.443	0	3.289	0	1.303	0.501	4.63	0	1.927	0
	5	EA-18G	276PNA FCLP at Coupeville	32FCP1	84 % NC	150	1,200	8,929	87	78	1.682	1.247	1.053	0.738	0.462	0.281	1.431	1.061	0.684	0.415
	1		251PN Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0	0.188	0	0.117	0	0.036	0	0.175	0	0.067
R01	2	EA-18G	251PD Interfacility Ault Field to Coupeville	25WC14P	97 % NC	135	59	1,093	121	114	0.458	0	0.314	0	0.106	0	0.429	0	0.192	0 100
RUI	3 4		252PN Interfacility Ault Field to Coupeville 252PD Interfacility Ault Field to Coupeville	25WC32P 25WC32P	97 % NC 97 % NC	135 135	59 59	1,093	121 121	114 114	1.177	0.419	0.734	0.237	0.26	0.08	1.001	0.356	0.447	0.136
	5	EA-18G	204A Departure	07D2A	97 % NC	165	302	1,118	120	116	1.109	0.067	1.069	0.063	1.062	0.064	1.043	0.064	1.062	0.064
	1	EA-18G	250PN Interfacility Ault Field to Coupeville	14WC32P	97 % NC	0	47	3,519	110	96	0	0.251	0	0.133	0	0.069	0	0.199	0	0.076
	2		250PD Interfacility Ault Field to Coupeville	14WC32P	97 % NC	0	47	3,519	110	96	0.706	0	0.411	0	0.224	0	0.561	0	0.251	0
R02	3	EA-18G	249PN Interfacility Ault Field to Coupeville	14WC14P	97 % NC	0	47	3,519	110	96	0	0.113	0 470	0.065	0 0004	0.031	0	0.098	0	0.038
1	5	EA-18G EA-18G	249PD Interfacility Ault Field to Coupeville 210A Departure	14WC14P 14D2A	97 % NC 97 % NC	0	47 47	3,519 3,519	110	96 100	0.275 1.956	0.119	0.176 1.871	0.11	0.091 2.058	0.124	0.24 1.826	0.111	0.107 1.858	0.112
	1	EA-18G	266L Depart and Re-enter Pattern	32PL	84 % NC	250	2,000	1,787	101	93	0.1	0.004	0.1	0.004	0.1	0.004	0.1	0.004	0.1	0.004
li	2	EA-18G	264R Depart and Re-enter Pattern	14PR	84 % NC	250	2,000	1,967	101	92	0.724	0.026	0.724	0.026	0.774	0.028	0.724	0.026	0.724	0.026
R03	3	EA-18G	265L Depart and Re-enter Pattern	25PL	84 % NC	250	2,000	1,971	100	92	1.248	0.045	1.273	0.046	1.198	0.043	1.273	0.046	1.273	0.046
	<u>4</u> 5	EA-18G	263R Depart and Re-enter Pattern	07PR	84 % NC	250	2,000	2,001 8,282	100	92	0.424	0.015	0.399 0.541	0.014	0.424 0.541	0.015	0.399	0.014	0.399	0.014
	1	EA-18G EA-18G	270B FCLP at Ault Field 205A Departure	32FU1 07D2B	82.2 % NC 95 % NC	130 300	817 4,035	5,492	88 99	78 88	0.406 0.776	0.085	0.748	0.113 0.044	0.743	0.113 0.045	0.541 0.73	0.113 0.044	0.541 0.743	0.113 0.045
	2	EA-18G	202A Departure	07D1B	95 % NC	300	4,007	5,530	98	88	1.811	0.047	1.746	0.103	1.735	0.104	1.704	0.104	1.735	0.104
R04	3	EA-18G	206A Departure	07D2C	95 % NC	300	4,096	5,708	98	88	0.333	0.02	0.321	0.019	0.319	0.019	0.313	0.019	0.319	0.019
	4	EA-18G	203A Departure	07D1C	95 % NC	300	4,096	5,708	98	88	0.776	0.047	0.748	0.044	0.743	0.045	0.73	0.044	0.743	0.045
	5	EA-18G	204A Departure	07D2A	95 % NC	300	3,804	6,519	96	86	1.109	0.067	1.069	0.063	1.062	0.064	1.043	0.064	1.062	0.064
1	1 2	EA-18G EA-18G	277A GCA Pattern 279A GCA Pattern	07G1 25G1	82 % NC 82 % NC	250 300	3,000 3,000	3,009 3,350	92 91	84 82	2.01 5.473	0.747 2.033	1.787 5.696	0.664 2.116	1.675 5.473	0.622 2.033	1.787 5.696	0.664 2.116	1.787 5.696	0.664 2.116
R05	3	EA-18G	280C GCA Pattern	32G3	82 % NC	300	3,000	3,491	90	82	0.067	0.025	0.089	0.033	0.089	0.033	0.089	0.033	0.089	0.033
	4	EA-18G	278C GCA Pattern	14G3	82 % NC	300	3,000	3,491	90	82	0.67	0.249	0.648	0.241	0.715	0.266	0.648	0.241	0.648	0.241
Ш	5	EA-18G	205A Departure	07D2B	95 % NC	300	3,808	13,742	85	75	0.776	0.047	0.748	0.044	0.743	0.045	0.73	0.044	0.743	0.045
	1		276PDB FCLP at Coupeville	32FCP2	85 % NC	140	515	389	121	114	5.443	0	3.289	0	1.303	0	4.63	0	1.927	0
R06	2	EA-18G EA-18G	276PDC FCLP at Coupeville 276PDA FCLP at Coupeville	32FCP3 32FCP1	85 % NC 85 % NC	140 140	508 524	405 412	120 120	113 113	2.721 2.721	0	1.645 1.645	0	0.652 0.652	0	2.315 2.315	0	0.964	0
	4	EA-18G	252PD Interfacility Ault Field to Coupeville	25WC32P	84 % NC	140	526	399	120	113	1.177	0	0.734	0	0.26	0	1.001	0	0.447	0
	5	EA-18G	254PD Interfacility Ault Field to Coupeville	32WC32P	84 % NC	140	523	399	120	113	0.047	0	0.059	0	0.036	0	0.08	0	0.036	0
	1		273PDA FCLP at Coupeville	14FCP1	84 % NC	150	799	769	115	109	1.058	0	0.705	0	0.266	0	0.992	0	0.413	0
R07	2		273PNA FCLP at Coupeville	14FCP1	84 % NC	150	1,199	1,167	111	104	0.654	0.485	0.451	0.316	0.189	0.115	0.613	0.455	0.293	0.178
RU/	3 4		273PDB FCLP at Coupeville 273PNB FCLP at Coupeville	14FCP2 14FCP2	84 % NC 84 % NC	150 150	799 1,199	1,512 1,749	110	100	2.117 1.308	0.97	1.41 0.902	0.633	0.532	0.229	1.984 1.227	0.909	0.826 0.586	0.356
	5	EA-18G	253PD Interfacility Ault Field to Coupeville	32WC14P	82.2 % NC	140	1,104	1,749	105	100	0.018	0.97	0.902	0.033	0.015	0.229	0.034	0.909	0.015	0.536
	1		273PDC FCLP at Coupeville	14FCP3	84 % NC	150	800	3,154	101	106	1.058	0	0.705	0	0.266	0	0.992	0	0.413	0
	2	EA-18G	273PNC FCLP at Coupeville	14FCP3	84 % NC	150	1,200	3,252	100	93	0.654	0.485	0.451	0.316	0.189	0.115	0.613	0.455	0.293	0.178
R08	3	EA-18G	257 Interfacility Coupeville to Ault Field	14CW25	82 % NC	250	2,000	2,690	99	92	0.368	0.084	0.251	0.051	0.099	0.019	0.345	0.078	0.153	0.029
	5	EA-18G EA-18G	258 Interfacility Coupeville to Ault Field 273PDB FCLP at Coupeville	14CW32 14FCP2	82 % NC 84 % NC	250 150	2,000 800	2,690 4.008	99	92 91	0.072 2.117	0.016	0.049	0.01	0.019	0.004	0.067 1.984	0.015	0.03	0.006
H	1	EA-18G	254PD Interfacility Ault Field to Coupeville	32WC32P	85 % NC	300	2,231	5.007	90	82	0.047	0	0.059	0	0.036	1 0	0.08	0	0.026	0
	2	EA-18G	250PD Interfacility Ault Field to Coupeville	14WC32P	85 % NC	300	2,236	5,091	90	82	0.706	0	0.411	0	0.224	0	0.561	0	0.251	0
R09	3	EA-18G	252PD Interfacility Ault Field to Coupeville	25WC32P	85 % NC	300	2,180	5,083	90	81	1.177	0	0.734	0	0.26	0	1.001	0	0.447	0
	4	EA-18G	250PN Interfacility Ault Field to Coupeville	14WC32P	85 % NC	300	2,299	5,114	90	81	0	0.251	0	0.133	0	0.069	0	0.199	0	0.076
Ш	5	EA-18G	262 Interfacility Coupeville to Ault Field	32CW32	82 % NC	250	2,000	3,677	90	81	0.184	0.042	0.114	0.023	0.047	0.009	0.157	0.036	0.069	0.013

Table A6-10 SEL-Ranked Flight Profiles for Alternative 3 for High-Tempo FCLP Year (continued)

														Ann	ual Averag	e Daily Even	ts ⁽³⁾			
201	0=1		B (0)				Atsisonda	Slant	Esti	mated	3/	A	3	3B	3	BC .	3	BD	3	3E
POI	SEL	Aircraft Type	Profile Type of Operation	Track ID		peed	Altitude	Range	051	1	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
ID	Rank		ID Type of operation		Setting (F	ts) (1)	(ft MSL) (2)	(ft)	SEL (dBA)	Lmax	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
								` ′	(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	1	EA-18G	228B P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2,480	3,143	100	90	0.837	0.063	0.812	0.056	0.926	0.069	0.781	0.059	0.81	0.06
1 [2	EA-18G	228C P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC	300	2,620	3,563	98	88	0.359	0.027	0.348	0.024	0.397	0.029	0.335	0.025	0.347	0.026
R10	3	EA-18G	280C GCA Pattern	32G3	82 % NC	250	3,000	2,980	93	84	0.067	0.025	0.089	0.033	0.089	0.033	0.089	0.033	0.089	0.033
1 [4	EA-18G	278A GCA Pattern	14G1	82 % NC	300	2,999	3,168	92	83	3.351	1.245	3.239	1.203	3.574	1.328	3.239	1.203	3.239	1.203
	5	EA-18G	228A P3 P8 IFR and Growler VFR non breaks	14A1A	87 % NC	300	2,347	7,186	90	77	1.196	0.09	1.16	0.08	1.323	0.098	1.116	0.084	1.158	0.086
	1	EA-18G	238A Overhead Break Arrival	14O2A	84 % NC	300	10,000	13,520	73	60	0.231	0.022	0.222	0.021	0.245	0.024	0.223	0.021	0.222	0.021
	2	EA-18G	238B Overhead Break Arrival	14O2B	84 % NC	300	10,000	13,567	73	60	0.231	0.022	0.222	0.021	0.245	0.024	0.223	0.021	0.222	0.021
R11	3	EA-18G	238C Overhead Break Arrival	14O2C	84 % NC	300	10,000	13,609	73	60	0.238	0.023	0.229	0.022	0.253	0.024	0.23	0.022	0.228	0.022
	4	EA-18G	236B Overhead Break Arrival	07O2B		300	10,000	13,739	72	59	0.136	0.013	0.127	0.012	0.127	0.012	0.128	0.012	0.127	0.012
	5	EA-18G	236A Overhead Break Arrival	07O2A		300	10,000	13,740	72	59	0.136	0.013	0.127	0.012	0.127	0.012	0.128	0.012	0.127	0.012
L	1	EA-18G	205A Departure	07D2B		300	9,000	9,677	75	65	0.776	0.047	0.748	0.044	0.743		0.73		0.743	0.045
	2	EA-18G	216A Departure	25D2A		300	9,000	16,276	70	58	3.261	0.198	3.475	0.205	3.186	0.192	3.391	0.206	3.451	0.208
R12	3	EA-18G	217A Departure	25D2B	84 % NC	300	9,000	16,448	70	58	2.282	0.139	2.432	0.143	2.23	0.134	2.374	0.145	2.416	0.145
1 1	4	EA-18G	218A Departure	25D2C		300	9,000	18,999	67	55	0.978	0.06	1.042	0.061	0.956	0.057	1.017	0.062	1.035	0.062
\sqcup	5	EA-18G	206A Departure	07D2C		300	9,000	24,952	66	55	0.333	0.02	0.321	0.019	0.319	0.019	0.313	0.019	0.319	0.019
	1	EA-18G	273PDA FCLP at Coupeville	14FCP1		150	800	47,518	75	63	1.058	0	0.705	0	0.266	0	0.992	0	0.413	0
L	2	EA-18G	273PNB FCLP at Coupeville	14FCP2		150	1,200	46,886	74	62	1.308	0.97	0.902	0.633	0.378	0.229	1.227	0.909	0.586	0.356
R13	3	EA-18G	273PNA FCLP at Coupeville	14FCP1		150	1,200	47,526	74	62	0.654	0.485	0.451	0.316	0.189	0.115	0.613	0.455	0.293	0.178
1 1	4	EA-18G	262 Interfacility Coupeville to Ault Field	32CW32		250	2,000	30,019	71	51	0.184	0.042	0.114	0.023	0.047	0.009	0.157	0.036	0.069	0.013
\vdash	5	EA-18G	260 Interfacility Coupeville to Ault Field	32CW14		140	250	52,917	71	51	1.158	0.263	0.716	0.147	0.295	0.056	0.985	0.224	0.437	0.084
L	1	EA-18G	268B FCLP at Ault Field	14FU1		130	1,000	2,575	104	96	2.028	0.425	1.96	0.41	2.163	0.453	1.96	0.41	1.96	0.41
l	2	EA-18G	269B FCLP at Ault Field	25FU1		130	693	3,116	103	96	3.312	0.693	3.447	0.722	3.244	0.679	3.447	0.722	3.447	0.722
R14	3	EA-18G	283B FCLP at Ault Field	25FU1		140	715	3,119	103	91	1.676	0.406	4.619	1.211	7.007	1.783	2.781	0.674	6.506	1.656
-	4	EA-18G	269A FCLP at Ault Field	25FM1		130	702	3,119	103	91	3.312	0.693	3.447	0.722	3.244	0.679	3.447	0.722	3.447	0.722
\vdash	5	EA-18G	265L Depart and Re-enter Pattern	25PL		140	697	3,095	103	91	1.248	0.045	1.273	0.046	1.198	0.043	1.273	0.046	1.273	0.046
F	1		273PDC FCLP at Coupeville	14FCP3		140	575	1,544	110	103	1.058	0 105	0.705	0 0 0 1 0	0.266	0	0.992	0 155	0.413	0 170
R15	3		273PNC FCLP at Coupeville	14FCP3 14FCP2		140 140	698	1,589 1,871	109	103 101	0.654 2.117	0.485	0.451 1.41	0.316	0.189 0.532	0.115	0.613 1.984	0.455	0.293 0.826	0.178
KIS	4		273PDB FCLP at Coupeville	14FCP2 14FCP2		140	585 718	1,912	107	101	1.308	0.97	0.902	0.633	0.532	0.229		0.909	0.826	0.356
H	5	EA-18G EA-18G	273PNB FCLP at Coupeville 247PD Interfacility Ault Field to Coupeville	07WC14P		140	588	2,009	107	98	0.165	0.97	0.902	0.633	0.035	0.229	1.227 0.154	0.909	0.069	0.356
	1	EA-18G	233A P3 P8 IFR and Growler VFR non breaks	32A1A		300	2,756	2,009	100	91	0.163	0.012	0.113	0.014	0.035	0.012	0.199	0.015	0.009	0.015
H	2	EA-18G	209A Departure	14D1C		300	6,951	8,107	93	85	1.369	0.012	1.31	0.014	1.44		1.278	0.013	1,301	0.013
R16	3	EA-18G	278C GCA Pattern	14G3		250	3,000	3,185	91	82	0.67	0.249	0.648	0.077	0.715	0.266	0.648	0.076	0.648	0.076
1	4	EA-18G	208A Departure	14D1B		300	6,815	9,922	90	81	3,195	0.195	3.056	0.18	3.361	0.202	2.982	0.182	3.036	0.182
t	5	EA-18G	246 TACAN Arrival	32AHT		250	2,475	6,673	89	81	0.125	0.004	0.18	0.011	0.136	0.006	0.188	0.005	0.164	0.007
+	1	P-8	542C P3 P8 IFR and Growler VFR non breaks	32AC		250	3,047	2,963	85	N/A	0.123	0.004	0.18	0.011	0.136	0.006	0.166	0.005	0.164	0.007
1 1	2	transient	442C VFR non breaks	32A2C		250	3,047	2,963	85	N/A	0.044	0.003	0.044	0.014	0.043	0.006	0.044	0.006	0.043	0.015
R17	3	P-8	542B P3 P8 IFR and Growler VFR non breaks	32A2B		250	3,047	6,202	79	N/A	0.021	0.003	0.021	0.003	0.021	0.000	0.021	0.000	0.021	0.003
1	4	transient	442B VFR non breaks	32A2B		250	3,047	6,202	79	N/A	0.021	0.003	0.021	0.005	0.043	0.006	0.021	0.006	0.021	0.005
1 1	5	EA-18G	256 Interfacility Coupeville to Ault Field	14CW14		250	2,000	12.686	73	59	0.45	0.102	0.307	0.063	0.121	0.023	0.422	0.096	0.187	0.036
\Box	1	P-8	543 Low TACAN Departure	07ALT		250	5,971	5,979	68	N/A	0.07	0.017	0.073	0.016	0.068	0.013	0.066	0.015	0.068	0.015
1 1	2	P-8	545 Low TACAN Departure	25ALT		250	6,446	6,474	67	N/A	0.128	0.026	0.127	0.023	0.131	0.023	0.116	0.022	0.119	0.021
R18	3	EA-18G	256 Interfacility Coupeville to Ault Field	14CW14		250	2,000	24,403	64	53	0.45	0.102	0.307	0.063	0.121	0.023	0.422	0.096	0.187	0.036
1 1	4	EA-18G	255 Interfacility Coupeville to Ault Field	14CW07		250	2,000	24,403	64	53	0.133	0.03	0.091	0.019	0.036	0.007	0.125	0.028	0.055	0.011
1 1	5	EA-18G	252PD Interfacility Ault Field to Coupeville	25WC32P		250	2,500	22,831	63	47	1,177	0	0.734	0	0.26	0	1.001	0	0.447	0
\Box	1	EA-18G	253PD Interfacility Ault Field to Coupeville	32WC14P		140	438	907	114	108	0.018	0	0.025	Ö	0.015	Ö	0.034	0	0.015	0
1 1	2	EA-18G	253PN Interfacility Ault Field to Coupeville	32WC14P		140	438	907	114	108	0	0.008	0	0.009	0.0.0	0.005	0	0.014	0.010	0.005
R19	3		273PDA FCLP at Coupeville	14FCP1		140	492	1,069	114	108	1.058	0	0.705	0	0.266		0.992	0	0.413	0
	4		273PNA FCLP at Coupeville	14FCP1		140	530	1,080	113	107	0.654	0.485	0.451	0.316	0.189		0.613	0.455	0.293	0.178
1 1	5	EA-18G	251PD Interfacility Ault Field to Coupeville	25WC14P	84 % NC	140	444	962	113	107	0.458	0	0.314	0	0.106	0	0.429	0	0.192	0
	1	EA-18G	229C P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2,933	3,692	95	87	0.359	0.027	0.348	0.024	0.397	0.029	0.335	0.025	0.347	0.026
	2	EA-18G	277C GCA Pattern	07G3		300	3,000	3,898	89	78	0.402	0.149	0.357	0.133	0.335	0.124	0.357	0.133	0.357	0.133
R20	3	EA-18G	229B P3 P8 IFR and Growler VFR non breaks	14A2B		300	2,769	6,744	88	78	0.837	0.063	0.812	0.056	0.926	0.069	0.781	0.059	0.81	0.06
	4	transient	423 IFR non breaks	14A2E		180	3,047	3,071	86	N/A	0.064	0.005	0.061	0.006	0.069	0.007	0.064	0.005	0.063	0.006
1 [5	P-8	527 P3 P8 C40 VFR non breaks	14A2E	17760 LBS	180	3,047	3,071	86	N/A	0.07	0.015	0.076	0.014	0.079	0.015	0.07	0.014	0.071	0.013

Table A6-10 SEL-Ranked Flight Profiles for Alternative 3 for High-Tempo FCLP Year (concluded)

															Ann	ual Averac	e Daily Even	ts ⁽³⁾			
									Slant	Esti	mated		3Δ	Ι .	RR AIII		RC		RD		3 E
POI	SEL	Aircraft Type	Profile	Type of Operation	Track ID	Power	Speed	Altitude	Range			Daytime	Nighttime	Daytime	Nighttime	Davtime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
ID	Rank	All clair Type	ID	Type of operation	Track ib	Setting	(kts) ⁽¹⁾	(ft MSL) (2)	(ft)	SEL	Lmax	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-	(0700-	(2200-
									(,	(dBA)	(dBA) ⁽⁴⁾	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)	2200)	0700)
	4	EA-18G	266L	December of December 1984	32PL	82.2 % NC	140	773	4009	98	90		0.004	0.1	0.004	0.1	0.004	0.1	0.004		0.004
	2	EA-18G	270B	Depart and Re-enter Pattern FCLP at Ault Field	32FU1	82.2 % NC		802	4009	98	90	0.1	0.004	0.541	0.004	0.541	0.004	0.541	0.004	0.1	0.004
S01		EA-18G	270B 284B	FCLP at Ault Field	32FU1 32FU1				4008		84	0.406	0.085	0.711	0.113	0.858	0.113	0.541	0.113	1.001	0.113
501	3							839		96											
		EA-18G	266R	Depart and Re-enter Pattern	32PR	82.2 % NC		773	4003	96	84	0.1	0.004	0.1	0.004	0.1	0.004	0.1	0.004	0.1	0.004
	5	EA-18G	262	Interfacility Coupeville to Ault Field	32CW32	82.2 % NC		861	3936	95	83	0.184	0.042	0.114	0.023	0.047	0.009	0.157	0.036	0.069	0.013
	1	EA-18G	212A	Departure	14D2C	95 % NC		2514	3432	104	94	0.587	0.036	0.561	0.033	0.617	0.037	0.548	0.033	0.558	0.034
	2	EA-18G	209A	Departure	14D1C	95 % NC		2514	3432	104	93	1.369	0.083	1.31	0.077	1.44	0.087	1.278	0.078	1.301	0.078
S02	3	EA-18G	207A	Departure	14D1A	95 % NC		2514	3432	104	94	4.565	0.278	4.366	0.257	4.801	0.289	4.26	0.259	4.336	0.261
	4	EA-18G	211A	Departure	14D2B	95 % NC		2514	3432	104	94	1.369	0.083	1.31	0.077	1.44	0.087	1.278	0.078	1.301	0.078
	5	EA-18G	208A	Departure	14D1B	95 % NC		2514	3432	104	94	3.195	0.195	3.056	0.18	3.361	0.202	2.982	0.182	3.036	0.182
	1		276PDC	FCLP at Coupeville	32FCP3	84 % NC		800	5231	94	89	2.721	0	1.645	0	0.652	0	2.315	0	0.964	0
	2	EA-18G	276PNC	FCLP at Coupeville	32FCP3	84 % NC		1200	5297	94	89	1.682	1.247	1.053	0.738	0.462	0.281	1.431	1.061	0.684	0.415
S03	3		276PDB	FCLP at Coupeville	32FCP2	84 % NC		800	6105	92	89	5.443	0	3.289	0	1.303	0	4.63	0	1.927	0
	4	EA-18G	276PNB	FCLP at Coupeville	32FCP2	84 % NC		1200	6162	92	89	3.364	2.494	2.105	1.476	0.925	0.561	2.862	2.122	1.368	0.83
	5	EA-18G	276PNA	FCLP at Coupeville	32FCP1	84 % NC		1200	7058	90	88	1.682	1.247	1.053	0.738	0.462	0.281	1.431	1.061	0.684	0.415
	1	EA-18G	228C	P3 P8 IFR and Growler VFR non breaks	14A1C	87 % NC		2882	4781	93	83	0.359	0.027	0.348	0.024	0.397	0.029	0.335	0.025	0.347	0.026
	2	EA-18G	278C	GCA Pattern	14G3	82 % NC	300	3000	2903	92	84	0.67	0.249	0.648	0.241	0.715	0.266	0.648	0.241	0.648	0.241
S04	3	EA-18G	228B	P3 P8 IFR and Growler VFR non breaks	14A1B	87 % NC	300	2719	7342	87	76	0.837	0.063	0.812	0.056	0.926	0.069	0.781	0.059	0.81	0.06
	4	P-8	548C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	N/A	0.355	0.049	0.327	0.037	0.369	0.035	0.32	0.047	0.333	0.038
	5	transient	448C	GCA Pattern	14G3	17760 LBS	200	3000	2903	85	76	0.035	0	0.031	0	0.034	0	0.031	0	0.03	0
	1	EA-18G	243	TACAN Arrival	07AHT	78 % NC	250	3529	3374	76	68	0.501	0.014	0.36	0.023	0.464	0.02	0.376	0.011	0.327	0.014
	2	EA-18G	229C	P3 P8 IFR and Growler VFR non breaks	14A2C	87 % NC	300	2712	19217	70	56	0.359	0.027	0.348	0.024	0.397	0.029	0.335	0.025	0.347	0.026
S05	3	EA-18G	229B	P3 P8 IFR and Growler VFR non breaks	14A2B	87 % NC		2592	23773	66	51	0.837	0.063	0.812	0.056	0.926	0.069	0.781	0.059	0.81	0.06
	4	EA-18G	224A	Departure	32D2C	95 % NC		8249	32151	65	52	0.059	0.004	0.08	0.005	0.1	0.006	0.078	0.005	0.08	0.005
	5	P-8	538C	P3 P8 IFR and Growler VFR non breaks	14A2C	17760 LBS		3047	19344	64	N/A	0.342	0.08	0.307	0.062	0.348	0.059	0.309	0.067	0.315	0.055
	1	EA-18G	224A	Departure	32D2C	84 % NC		9000	61543	51	39	0.059	0.004	0.08	0.005	0.1	0.006	0.078	0.005	0.08	0.005
	2	EA-18G	223A	Departure	32D2B	84 % NC		9000	66657	50	39	0.137	0.004	0.187	0.003	0.232	0.014	0.183	0.003	0.186	0.003
S06	3	P-8	547C	GCA Pattern	07G3	17760 LBS		3000	40394	50	37	0.206	0.029	0.187	0.019	0.178	0.02	0.183	0.024	0.100	0.02
000	4	transient	447C	GCA Pattern	07G3	17760 LBS		3000	40394	50	37	0.02	0.025	0.018	0.013	0.016	0.02	0.018	0.024	0.017	0.02
	5	EA-18G	222A	Departure	32D2A	95 % NC		8656	71520	49	37	0.196	0.012	0.267	0.016	0.332	0.02	0.261	0.016	0.265	0.016
	1	EA-18G	277C	GCA Pattern	07G3	82 % NC		2810	88787	61	51	0.190	0.149	0.357	0.010	0.335	0.124	0.357	0.010	0.203	0.010
	2	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0.402	0.149	0.337	0.133	0.333	0.124	0.561	0.133	0.357	0.133
S07	3	EA-18G	250PD	Interfacility Ault Field to Coupeville	14WC32P	82 % NC		2500	165180	59	47	0.706	0.251	0.411	0.133	0.224	0.069	0.561	0.199	0.231	0.076
307	4	EA-18G	254PD	Interfacility Ault Field to Coupeville	32WC32P	82 % NC		2500	135475	59	47	0.047	0.251	0.059	0.133	0.036	0.069	0.08	0.199	0.036	0.076
	5		254PD 254PN		32WC32P	82 % NC		2500	135475	59	47				0.019		0.011		0.028	0.036	0.011
\vdash	1	EA-18G	254PN 280C	Interfacility Ault Field to Coupeville							81	0	0.017	0.089		0.089		0.089	0.028	0.089	0.011
		EA-18G		GCA Pattern	32G3			3000	2779	93		0.067	0.025		0.033		0.033				
000	2	EA-18G	278C	GCA Pattern	14G3	82 % NC 87 % NC		3000	2779	93	81 80	0.67	0.249	0.648	0.241	0.715	0.266	0.648	0.241	0.648	0.241
S08	3	EA-18G	228A	P3 P8 IFR and Growler VFR non breaks	14A1A			2851	6041	89		1.196	0.09	1.16	0.08	1.323	0.098	1.116	0.084	1.158	0.086
	4	EA-18G	279C	GCA Pattern	25G3	82 % NC		3000	4183	88	79	1.095	0.407	1.139	0.423	1.095	0.407	1.139	0.423	1.139	0.423
	5	EA-18G	277C	GCA Pattern	07G3	82 % NC		3000	4183	88	79	0.402	0.149	0.357	0.133	0.335	0.124	0.357	0.133	0.357	0.133
	1	EA-18G	232A	P3 P8 IFR and Growler VFR non breaks	25A3A	87 % NC		3000	4033	92	86	0.977	0.074	1.056	0.073	0.992	0.074	1.017	0.077	1.054	0.078
1.	2	EA-18G	277B	GCA Pattern	07G2	82 % NC		3000	3025	91	78	0.268	0.1	0.238	0.089	0.223	0.083	0.238	0.089	0.238	0.089
S09	3	EA-18G	279A	GCA Pattern	25G1	82 % NC		3000	5300	87	75	5.473	2.033	5.696	2.116	5.473	2.033	5.696	2.116	5.696	2.116
	4	EA-18G	206A	Departure	07D2C	95 % NC		5403	11786	86	76	0.333	0.02	0.321	0.019	0.319	0.019	0.313	0.019	0.319	0.019
	5	EA-18G	203A	Departure	07D1C	95 % NC		5300	11968	86	76	0.776	0.047	0.748	0.044	0.743	0.045	0.73	0.044	0.743	0.045
	11	P-8	546	Low TACAN Departure	32ALT	17760 LBS		3616	3501	83	N/A	0.017	0.003	0.018	0.005	0.017	0.006	0.017	0.005	0.017	0.005
	2	EA-18G	280C	GCA Pattern	32G3	82 % NC		2333	19814	71	61	0.067	0.025	0.089	0.033	0.089	0.033	0.089	0.033	0.089	0.033
S10	3	EA-18G	257	Interfacility Coupeville to Ault Field	14CW25	82 % NC		2000	20733	70	58	0.368	0.084	0.251	0.051	0.099	0.019	0.345	0.078	0.153	0.029
	4	EA-18G	258	Interfacility Coupeville to Ault Field	14CW32	82 % NC		2000	20783	70	58	0.072	0.016	0.049	0.01	0.019	0.004	0.067	0.015	0.03	0.006
	5	EA-18G	246	TACAN Arrival	32AHT	78 % NC	250	3085	23749	70	53	0.125	0.004	0.18	0.011	0.136	0.006	0.188	0.005	0.164	0.007
Notes																					

(1) 0 ft indicates the contributing profile is the beginning of takeoff roll

(2) FYI, Ault Field's elevation is 47 ft MSL, OLF Coupeville's elevation is 200 ft MSL

(3) not operations. Patterns counted as 1 event, vice 2 operations.

(4) n/a = not available: NOISEMAP's database does not include Lmax data for flight events for this aircraft type (B737-700).

(5) Estimated from the average difference of SEL and Lmax of similar events at this POI

Table A6-11 Maximum SEL and Maximum L_{max} of Top Noise Contributor for All Alternatives and No Action Alternative

		Point of Interest	Maximum \$	Sound Expos	ure Level (SE	L) and Maxim	um Sound L	evel (Lmax)
			Max	ximum SEL (d	BA)	Max	imum Lmax (dBA)
			All		Increase re	All		Increase re
Type	ID	Description	Alternatives	No Action	No Action	Alternatives		No Action
	P01	Joseph Whidbey State Park	93	93		60		-
		Deception Pass State Park	107	107		104		-
	P03	Dugualla State Park	105	105		88		
		Baseball Field (Ebey's Landing National Historical Reserve)	111	114		105		-6
		Ebey's Landing State Park	88	91	-3	76		
	P06	Fort Casey State Park	96	102		86		-5
	P07	Cama Beach State Park	82	82		73		-
		Port Townsend	85	85		N/A	N/A	-
Park	P09	Moran State Park	62	62		51	51	-
ď	P10	San Juan Islands National Monument	95	95		85		-
	P11	San Juan Island Visitors Center	64	64		50		-
	P12	Cap Sante Park	82	82		74		-
	P13	Lake Campbell	94	94		86		-
	P14	Spencer Spit State Park	76	76		63		-
		Pioneer Park	92	92		83		-
	P16	Marrowstone Island (Fort Flagler)	79	85	-6	67	70	-3
		Reuble Farm	115	115		110		
	EBLA002	Ferry House	91	96	-5	82	85	-3
	R01	Sullivan Rd	121	121	-	114	114	-
	R02	Salal St. and N. Northgate Dr	110	110	-	101	101	-
	R03	Central Whidbey	101	101	-	49	49	-
	R04	Pull and Be Damned Point	99	99	-	91	91	-
	R05	Snee-Oosh Point	92	92	-	84	84	-
	R06	Admirals Dr and Byrd Dr	120	118	+2	117	115	+2
	R07	Race Lagoon	115	114		110	109	+1
	R08	Pratts Bluff	101	112	-11	93	106	
tial	R09	Cox Rd and Island Ridge Way	90	92	-2	51	46	+5
Residential	R10	Skyline	100	100		90		
esic	R11	Sequim	73	73	-	60	60	-
& S		Port Angeles	75	75		65	65	-
	R13	Beverly Beach, Freeland	75	75		63		
	R14	E Sleeper Rd & Slumber Ln	104	104	-	96	96	
	R15	Long Point Manor	109	110		103		-2
	R16	Rocky Point Heights	100	100		91		-
	R17	Port Townsend	85	85		N/A	N/A	-
	R18	Marrowstone Island (Nordland)	68	68		N/A	N/A	-
	R19	Island Transit Offices, Coupeville	115	120		108		-9
	R20	South Lopez Island (Agate Beach)	95	95		87		-
	S01	Oak Harbor High School	98	98		90		
	S02	Crescent Harbor Elementary School	104	104		94	94	
	S03	Coupeville Elementary School	94	98		86		
_	S04	Anacortes High School	93	93		83		
School	S05	Lopez Island School	76	76	-	68	68	-
Scl	S06	Friday Harbor Elementary School	51	51	-	39		-
		Sir James Douglas Elementary School	61	61	-	51	51	-
	S08	Fidalgo Elementary School	93	93		59	59	-
	S09	La Conner Elementary School	92	92	-	86	86	-
	S10	Elger Bay Elementary School	83	83	-	N/A	N/A	-

Table A6-12 Annual Average Daily NA 80 L_{max} for Alternative 1 for Average Year

		Point of Interest		A	nnual Averag	ae Number	of Daily E	vents abo	ve Maximur	n Sound L	evel 80 dE	SA SA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 1A	No Action	Alt 1B	Action	Alt 1C	Action	Alt 1D	Action	Alt 1E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	24.5	26.7	2.2	29.8	5.3	36.7	12.2	29.5	5.0	35.3	10.8
	P03	Dugualla State Park	44.6	50.2	5.6	57.4	12.8	61.1	16.5	51.5	6.9	59.1	14.5
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.7	35.2	26.5	22.1	13.4	9.0	0.3	30.9	22.2	13.4	4.7
	P05	Ebey's Landing State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	6.0	21.5	15.5	13.0		5.3	-0.7	18.5	12.5	7.9	
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
Park	P09	Moran State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
ď	P10	San Juan Islands National Monument	1.3	1.5	0.2	1.5		1.7	0.4	1.7	0.4	1.7	
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P13	Lake Campbell	0.7	0.5	-0.2	0.6		0.8	0.1	0.8	0.1	0.8	
	P14	Spencer Spit State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
		Reuble Farm	8.4	34.1	25.7	21.3		8.5	0.1	29.8	21.4	12.8	
	EBLA002	Ferry House	3.2	5.4	2.2	3.3	0.1	1.3	-1.9	4.6	1.4	2.0	-1.2
	R01	Sullivan Rd	132.4	154.5	22.1	163.6	31.2	173.5	41.1	157.7	25.3	170.3	37.9
	R02	Salal St. and N. Northgate Dr	106.6	124.7	18.1	133.4	26.8	145.3	38.7	128.7	22.1	141.9	35.3
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	13.7	17.3	3.6	17.0	3.3	16.3	2.6	16.5	2.8	16.3	2.6
	R05	Snee-Oosh Point	7.6	10.0	2.4	10.0	2.4	9.6	2.0	9.6	2.0	9.6	2.0
	R06	Admirals Dr and Byrd Dr	8.5	35.0	26.5	21.9	13.4	8.8	0.3	30.7	22.2	13.2	4.7
	R07	Race Lagoon	2.6	13.5	10.9	8.9	6.3	3.6	1.0	12.1	9.5	5.3	2.7
	R08	Pratts Bluff	1.0	10.5	9.5	7.0	6.0	2.7	1.7	9.5	8.5	4.1	3.1
tial	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residential	R10	Skyline	4.2	5.9		5.7	1.5	6.4	2.2	6.4	2.2	6.4	
SSic	R11	Sequim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	R12	Port Angeles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	111.0	127.5	16.5	139.0	28.0	148.1	37.1	130.9	19.9	144.6	33.6
	R15	Long Point Manor	6.9	13.8		9.4		4.7	-2.2	12.6	5.7	6.3	
	R16	Rocky Point Heights	4.2	5.3	1.1	5.0		5.4	1.2	5.5	1.3	5.4	
	R17	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	8.7	35.2	26.5	22.1		9.0	0.3	30.9	22.2	13.4	
	R20	South Lopez Island (Agate Beach)	0.3	0.4	0.1	0.4		0.4	0.1	0.4	0.1	0.4	0.1
	S01	Oak Harbor High School	2.7	1.7		2.6		2.7	0.0	2.2	-0.5	2.6	
	S02	Crescent Harbor Elementary School	12.2	15.1	2.9	14.5		15.6	3.4	15.8	3.6	15.6	
	S03	Coupeville Elementary School	5.1	8.4		5.1		2.1	-3.0	7.3	2.2	3.1	-2.0
_	S04	Anacortes High School	0.3	0.4	0.1	0.4		0.4	0.1	0.4	0.1	0.4	0.1
School	S05	Lopez Island School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sch	S06	Friday Harbor Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
"	S07	Sir James Douglas Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	1.0	1.1	0.1	1.1		1.0	0.0	1.0	0.0	1.0	0.0
1	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-13 Annual Average Daily NA 90 L_{max} for Alternative 1 for Average Year

		Point of Interest		A	nnual Averag	je Number		vents abo		n Sound L		BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 1A	No Action	Alt 1B	Action	Alt 1C	Action	Alt 1D	Action	Alt 1E	Action
	P01	Joseph Whidbey State Park	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	15.0	15.6		18.4	3.4	24.7	9.7	18.0	3.0	23.4	8.4
	P03	Dugualla State Park	0.0			0.0		0.0		0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.5			21.9	13.4	8.8		30.7	22.2	13.2	4.7
	P05	Ebey's Landing State Park	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	1.5		-	0.0		0.0		0.0	-1.5	0.0	-1.5
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0		0.0	0.0	0.0	0.0
	P08	Port Townsend	0.0			0.0		0.0		0.0	0.0	0.0	
Park	P09	Moran State Park	0.0			0.0	0.0	0.0		0.0	0.0	0.0	0.0
ď	P10	San Juan Islands National Monument	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	P11	San Juan Island Visitors Center	0.0			0.0		0.0		0.0	0.0	0.0	
	P12	Cap Sante Park	0.0	0.0		0.0		0.0		0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.0			0.0		0.0		0.0	0.0	0.0	0.0
	P14	Spencer Spit State Park	0.0			0.0	0.0	0.0		0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0			0.0		0.0		0.0	0.0	0.0	0.0
		Reuble Farm	4.5	21.5		13.0	8.5	5.3		18.5	14.0	7.9	3.4
		Ferry House	0.0			0.0		0.0		0.0	0.0	0.0	0.0
	R01	Sullivan Rd	119.5			148.4	28.9	158.3		142.0	22.5	155.0	35.5
	R02	Salal St. and N. Northgate Dr	98.8	114.2		124.2	25.4	136.7	37.9	118.8	20.0	133.1	34.3
	R03	Central Whidbey	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	1.0			1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	R05	Snee-Oosh Point	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
	R06	Admirals Dr and Byrd Dr	6.7	31.0		19.4	12.7	7.8		27.2	20.5	11.7	5.0
	R07	Race Lagoon	0.6			6.2	5.6	2.4	1.8	8.4	7.8	3.6	3.0
	R08	Pratts Bluff	0.6	2.6	2.0	1.7	1.1	0.7	0.1	2.4	1.8	1.0	0.4
ıtia	R09	Cox Rd and Island Ridge Way	0.0			0.0		0.0		0.0	0.0	0.0	0.0
Residential	R10	Skyline	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
iSe.	R11	Sequim	0.0			0.0		0.0		0.0	0.0	0.0	
ď	R12	Port Angeles	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	28.0	30.2		37.7	9.7	44.7	16.7	31.8	3.8	42.1	14.1
	R15	Long Point Manor	2.3	12.4		8.1	5.8	3.2	0.9	11.1	8.8	4.8	2.5
	R16	Rocky Point Heights	0.2			0.2	0.0	0.2		0.2	0.0	0.2	0.0
	R17	Port Townsend	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	6.6			21.3	14.7	8.6		29.8	23.2	12.9	6.3
	R20	South Lopez Island (Agate Beach)	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
	S01	Oak Harbor High School	0.0			0.0		0.0		0.0	0.0	0.0	0.0
	S02	Crescent Harbor Elementary School	10.8			13.0	2.2	14.4	3.6	14.5	3.7	14.4	3.6
	S03	Coupeville Elementary School	0.9			0.0		0.0		0.0	-0.9	0.0	-0.9
l =	S04	Anacortes High School	0.0			0.0		0.0		0.0	0.0	0.0	
School	S05	Lopez Island School	0.0	0.0		0.0		0.0		0.0	0.0	0.0	0.0
Sci	S06	Friday Harbor Elementary School	0.0			0.0		0.0		0.0	0.0		
	S07	Sir James Douglas Elementary School	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0			0.0	0.0	0.0		0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	0.0			0.0		0.0		0.0	0.0	0.0	
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-14 Annual Average Daily NA 100 L_{max} for Alternative 1 for Average Year

		Point of Interest		An	nual Averag	e Number	of Daily Ev	ents abov	e Maximum	n Sound L	evel 100 dE	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 1A	No Action	Alt 1B	Action	Alt 1C	Action	Alt 1D	Action	Alt 1E	Action
	P01	Joseph Whidbey State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	14.9	15.0		18.0		24.6	9.7	17.5	2.6	23.2	8.3
	P03	Dugualla State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
		Baseball Field (Ebey's Landing National Historical Reserve)	7.5			8.1	0.6	3.2	-4.3	11.1	3.6	4.8	-2.7
	P05	Ebey's Landing State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Park	P09	Moran State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	P10	San Juan Islands National Monument	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P11	San Juan Island Visitors Center	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	EBLA001	Reuble Farm	1.9	16.1	14.2	9.8	7.9	4.0	2.1	13.9	12.0	6.0	4.1
	EBLA002	Ferry House	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R01	Sullivan Rd	82.7	93.2	10.5	104.1	21.4	114.7	32.0	96.3	13.6	111.0	28.3
	R02	Salal St. and N. Northgate Dr	13.1	16.6	3.5	15.5	2.4	17.0	3.9	18.3	5.2	17.2	4.1
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R05	Snee-Oosh Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.1	22.1	16.0	13.5	7.4	5.5	-0.6	19.1	13.0	8.2	2.1
	R07	Race Lagoon	0.5	7.2	6.7	4.8		1.9	1.4	6.5	6.0	2.8	2.3
	R08	Pratts Bluff	0.2	0.0		0.0	-0.2	0.0	-0.2	0.0	-0.2	0.0	-0.2
Residential	R09	Cox Rd and Island Ridge Way	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jen Jen	R10	Skyline	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
esic	R11	Sequim	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
ž	R12	Port Angeles	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R15	Long Point Manor	0.1	6.3		4.2	4.1	1.6	1.5	5.7	5.6	2.4	2.3
	R16	Rocky Point Heights	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R17	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	2.3	12.4		8.1	5.8	3.2	0.9	11.1	8.8	4.8	2.5
	R20	South Lopez Island (Agate Beach)	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S01	Oak Harbor High School	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S02	Crescent Harbor Elementary School	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S03	Coupeville Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
<u>0</u>	S04	Anacortes High School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
School	S05	Lopez Island School	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
တိ	S06	Friday Harbor Elementary School	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S07	Sir James Douglas Elementary School	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-15 Annual Average Daily NA 80 L_{max} for Alternative 2 for Average Year

		Point of Interest		A	nnual Averag	ge Number	of Daily Ev	ents abo	ve Maximur	m Sound L	evel 80 dE	SA .	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 2A	No Action	Alt 2B	Action	Alt 2C	Action	Alt 2D	Action	Alt 2E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	24.5	26.7	2.2	29.6	5.1	36.2	11.7	29.4	4.9	34.8	10.3
	P03	Dugualla State Park	44.6	50.9	6.3	57.8		61.2	16.6	52.1	7.5	59.3	14.7
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.7	33.6		21.2		8.6		29.5	20.8	12.8	4.1
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	6.0	20.5	14.5	12.4	6.4	5.1	-0.9	17.7	11.7	7.6	1.6
	P07	Cama Beach State Park	0.0			0.0		0.0		0.0	0.0	0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
Park	P09	Moran State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
<u>a</u>	P10	San Juan Islands National Monument	1.3	1.6		1.5		1.8		1.8	0.5	1.8	0.5
	P11	San Juan Island Visitors Center	0.0			0.0		0.0		0.0	0.0	0.0	
	P12	Cap Sante Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	P13	Lake Campbell	0.7			0.7	0.0	0.8		0.8	0.1	0.8	
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Reuble Farm	8.4	32.5		20.3		8.1	-0.3	28.4	20.0	12.2	3.8
	EBLA002	Ferry House	3.2	5.1	1.9	3.1	-0.1	1.3	-1.9	4.4	1.2	1.9	-1.3
	R01	Sullivan Rd	132.4	156.7	24.3	165.2	32.8	174.7	42.3	159.8	27.4	171.5	39.1
	R02	Salal St. and N. Northgate Dr	106.6	126.2	19.6	134.2	27.6	145.7	39.1	130.0	23.4	142.5	35.9
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	13.7	17.3	3.6	16.8	3.1	16.2	2.5	16.4	2.7	16.2	2.5
	R05	Snee-Oosh Point	7.6	9.9	2.3	9.9	2.3	9.5	1.9	9.5	1.9	9.5	
	R06	Admirals Dr and Byrd Dr	8.5	33.4	24.9	20.9	12.4	8.4	-0.1	29.3	20.8	12.6	4.1
	R07	Race Lagoon	2.6	12.9	10.3	8.5	5.9	3.4	0.8	11.6	9.0	5.0	2.4
	R08	Pratts Bluff	1.0	10.0	9.0	6.7	5.7	2.6	1.6	9.1	8.1	3.9	2.9
<u>ia</u>	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residential	R10	Skyline	4.2	5.9	1.7	5.7	1.5	6.4	2.2	6.4	2.2	6.4	2.2
SSi	R11	Sequim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A A	R12	Port Angeles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	111.0	129.1	18.1	140.0	29.0	148.6	37.6	132.4	21.4	145.2	34.2
	R15	Long Point Manor	6.9	13.3	6.4	9.1	2.2	4.6	-2.3	12.1	5.2	6.1	-0.8
	R16	Rocky Point Heights	4.2			5.1	0.9	5.6		5.6	1.4	5.6	
	R17	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	8.7	33.6	24.9	21.2	12.5	8.6	-0.1	29.5	20.8	12.8	4.1
	R20	South Lopez Island (Agate Beach)	0.3	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1
	S01	Oak Harbor High School	2.7	1.7	-1.0	2.6		2.7	0.0	2.2	-0.5	2.6	-0.1
	S02	Crescent Harbor Elementary School	12.2	15.6	3.4	14.9		16.1	3.9	16.2	4.0	16.1	3.9
	S03	Coupeville Elementary School	5.1	8.0	2.9	4.9	-0.2	2.0	-3.1	6.9	1.8	3.0	-2.1
l _	S04	Anacortes High School	0.3	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1
School	S05	Lopez Island School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sch	S06	Friday Harbor Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
"	S07	Sir James Douglas Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	1.0	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
1	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-16 Annual Average Daily NA 90 L_{max} for Alternative 2 for Average Year

		Point of Interest		Aı	nnual Averag	je Number	of Daily E	vents abov	ve Maximu	n Sound L	evel 90 dB	A	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 2A	No Action	Alt 2B	Action	Alt 2C	Action	Alt 2D	Action	Alt 2E	Action
	P01	Joseph Whidbey State Park	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	P02	Deception Pass State Park	15.0		0.7	18.4		24.5	9.5	18.1	3.1	23.2	8.2
	P03	Dugualla State Park	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.5			20.9	12.4	8.4	-0.1	29.3	20.8	12.6	4.1
	P05	Ebey's Landing State Park	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	1.5			0.0	-1.5	0.0	-1.5	0.0		0.0	-1.5
	P07	Cama Beach State Park	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P08	Port Townsend	0.0			0.0		0.0	0.0	0.0		0.0	0.0
Park	P09	Moran State Park	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P10	San Juan Islands National Monument	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P11	San Juan Island Visitors Center	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	P12	Cap Sante Park	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P13	Lake Campbell	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P14	Spencer Spit State Park	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P15	Pioneer Park	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	EBLA001	Reuble Farm	4.5			12.4	7.9	5.1	0.6	17.7	13.2	7.6	3.1
		Ferry House	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	R01	Sullivan Rd	119.5		21.1	149.8	30.3	159.2	39.7	143.8	24.3	156.0	36.5
	R02	Salal St. and N. Northgate Dr	98.8		16.7	124.9	26.1	136.9	38.1	119.9	21.1	133.4	34.6
	R03	Central Whidbey	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	R04	Pull and Be Damned Point	1.0			1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	R05	Snee-Oosh Point	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.7			18.5	11.8	7.4	0.7	25.9		11.1	4.4
	R07	Race Lagoon	0.6			5.9		2.3	1.7	8.1	7.5	3.5	2.9
_	R08	Pratts Bluff	0.6			1.7	1.1	0.6	0.0	2.2	1.6	1.0	0.4
Itia	R09	Cox Rd and Island Ridge Way	0.0			0.0		0.0	0.0	0.0		0.0	0.0
ge.	R10	Skyline	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
Residential	R11	Sequim	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
22	R12	Port Angeles	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	R13	Beverly Beach, Freeland	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	28.0		2.2	37.2	9.2	43.9	15.9	31.7	3.7	41.4	13.4
	R15	Long Point Manor	2.3			7.7	5.4	3.0	0.7	10.6		4.6	2.3
	R16	Rocky Point Heights	0.2		0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.2	0.0
	R17	Port Townsend	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	R19	Island Transit Offices, Coupeville	6.6			20.4	13.8	8.3	1.7	28.4	21.8	12.3	5.7
	R20	South Lopez Island (Agate Beach)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	S01	Oak Harbor High School	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	S02	Crescent Harbor Elementary School	10.8		3.6	13.4	2.6	14.8	4.0	14.9		14.8	4.0
	S03	Coupeville Elementary School	0.9			0.0	-0.9	0.0	-0.9	0.0		0.0	-0.9
0	S04	Anacortes High School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
School	S05	Lopez Island School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
S	S06	Friday Harbor Elementary School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	S07	Sir James Douglas Elementary School	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	S08	Fidalgo Elementary School	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	S09	La Conner Elementary School	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-17 Annual Average Daily NA 100 L_{max} for Alternative 2 for Average Year

		Point of Interest		An	nual Average	e Number	of Daily Ev	ents abov	e Maximum	Sound L	evel 100 dE	3A	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Туре	ID	Description	Action	Alt 2A	No Action	Alt 2B	Action	Alt 2C	Action	Alt 2D	Action	Alt 2E	Action
	P01	Joseph Whidbey State Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	14.9	15.2	0.3	18.0	3.1	24.4	9.5	17.7	2.8	23.0	8.1
	P03	Dugualla State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	7.5	11.8	4.3	7.7		3.0		10.6	3.1	4.6	-2.9
	P05	Ebey's Landing State Park	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
	P07	Cama Beach State Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P08	Port Townsend	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
Park	P09	Moran State Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
ď.	P10	San Juan Islands National Monument	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P11	San Juan Island Visitors Center	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P12	Cap Sante Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P14	Spencer Spit State Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
		Reuble Farm	1.9		13.5	9.3		3.8		13.3	11.4	5.7	3.8
		Ferry House	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R01	Sullivan Rd	82.7	94.0	11.3	104.3		114.4	31.7	97.0	14.3	110.8	28.1
	R02	Salal St. and N. Northgate Dr	13.1		3.9	15.9		17.5	4.4	18.7	5.6	17.7	4.6
	R03	Central Whidbey	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R05	Snee-Oosh Point	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.1		15.0	12.9		5.2		18.3	12.2	7.8	1.7
	R07	Race Lagoon	0.5		6.4	4.6		1.8		6.3	5.8	2.7	2.2
_	R08	Pratts Bluff	0.2		-0.2	0.0		0.0		0.0	-0.2	0.0	-0.2
ıţia	R09	Cox Rd and Island Ridge Way	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
Residential	R10	Skyline	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
esi	R11	Sequim	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
œ	R12	Port Angeles	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R15	Long Point Manor	0.1		5.9	4.0		1.6		5.4	5.3	2.3	2.2
	R16	Rocky Point Heights	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R17	Port Townsend	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
	R18	Marrowstone Island (Nordland)	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	2.3		9.5	7.7		3.0		10.6	8.3	4.6	2.3
	R20	South Lopez Island (Agate Beach)	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	S01	Oak Harbor High School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	S02	Crescent Harbor Elementary School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	S03	Coupeville Elementary School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
<u>_</u>	S04	Anacortes High School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
School	S05	Lopez Island School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
တိ	S06	Friday Harbor Elementary School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	S07	Sir James Douglas Elementary School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
	S09	La Conner Elementary School	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
L	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-18 Annual Average Daily NA 80 L_{max} for Alternative 3 for Average Year

		Point of Interest		Α	nnual Averaç	je Number		vents abov		n Sound L		BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 3A	No Action	Alt 3B	Action	Alt 3C	Action	Alt 3D	Action	Alt 3E	Action
	P01	Joseph Whidbey State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	24.5	26.6	2.1	29.5	5.0	36.0	11.5	29.4	4.9	34.7	10.2
	P03	Dugualla State Park	44.6	50.7	6.1	58.0	13.4	61.0	16.4	52.0	7.4	59.2	14.6
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.7	33.5	24.8	21.1	12.4	8.5	-0.2	29.4	20.7	12.7	4.0
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	6.0	20.4	14.4	12.4	6.4	5.0	-1.0	17.6	11.6	7.6	1.6
	P07	Cama Beach State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P08	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Park	P09	Moran State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ъа	P10	San Juan Islands National Monument	1.3	1.6	0.3	1.5	0.2	1.8	0.5	1.8	0.5	1.8	0.5
	P11	San Juan Island Visitors Center	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P12	Cap Sante Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.7	0.5	-0.2	0.7	0.0	0.8	0.1	0.8	0.1	0.8	0.1
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	1.0			1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Reuble Farm	8.4	32.4		20.3	11.9	8.1	-0.3	28.4	20.0	12.2	3.8
		Ferry House	3.2	5.1	1.9	3.1	-0.1	1.3	-1.9	4.4	1.2	1.9	-1.3
	R01	Sullivan Rd	132.4	156.3		165.7	33.3	174.3	41.9	159.4	27.0	171.2	38.8
	R02	Salal St. and N. Northgate Dr	106.6	125.8		134.5	27.9	145.4	38.8	129.7	23.1	142.1	35.5
	R03	Central Whidbey	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	13.7	17.3		17.2	3.5	16.4	2.7	16.5	2.8	16.4	2.7
	R05	Snee-Oosh Point	7.6	10.0		10.0	2.4	9.5	1.9	9.5	1.9	9.5	1.9
	R06	Admirals Dr and Byrd Dr	8.5			20.9		8.4	-0.1	29.2	20.7	12.5	4.0
	R07	Race Lagoon	2.6			8.5	5.9	3.4	0.8	11.5	8.9	5.0	2.4
	R08	Pratts Bluff	1.0			6.7	5.7	2.6	1.6	9.1	8.1	3.9	2.9
<u>8</u>	R09	Cox Rd and Island Ridge Way	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
i <u>f</u>	R10	Skyline	4.2	6.0		5.8	1.6	6.4	2.2	6.4	2.2	6.4	2.2
Residential	R11	Seguim	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Še	R12	Port Angeles	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
_	R13	Beverly Beach, Freeland	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	111.0	128.8		140.4	29.4	148.3	37.3	132.1	21.1	144.9	33.9
	R15	Long Point Manor	6.9	13.3		9.1	2.2	4.6	-2.3	12.1	5.2	6.1	-0.8
	R16	Rocky Point Heights	4.2	5.4		5.2	1.0	5.5	1.3	5.6	1.4	5.5	1.3
	R17	Port Townsend	0.0	0.0		0.0	-	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	8.7	33.5		21.1	12.4	8.5	-0.2	29.4	20.7	12.7	4.0
	R20	South Lopez Island (Agate Beach)	0.7			0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1
	S01		2.7	1.7		2.6	-0.1	2.7	0.0	2.2	-0.5	2.6	-0.1
	S02	Oak Harbor High School Crescent Harbor Elementary School	12.2		-	15.0	2.8	16.1	3.9	16.2	-0.5 4.0	∠.6 16.1	3.9
				15.5 8.0									
	S03 S04	Coupeville Elementary School	5.1			4.9		2.0	-3.1	6.9	1.8	3.0	-2.1
ō		Anacortes High School	0.3	0.4		0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1
School	S05	Lopez Island School	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
တိ	S06	Friday Harbor Elementary School	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S07	Sir James Douglas Elementary School	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	1.0			1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-19 Annual Average Daily NA 90 L_{max} for Alternative 3 for Average Year

		Point of Interest		Aı	nnual Averag	e Number	of Daily Ev	ents abov	ve Maximur	m Sound I	evel 90 dB	A	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 3A	No Action	Alt 3B	Action	Alt 3C	Action	Alt 3D	Action	Alt 3E	Action
7.	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	15.0	15.7	0.7	18.3	3.3	24.4	9.4	18.1	3.1	23.1	8.1
	P03	Dugualla State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.5	33.4	24.9	20.9	12.4	8.4	-0.1	29.2	20.7	12.5	4.0
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	1.5	0.0	-1.5	0.0		0.0	-1.5	0.0		0.0	-1.5
	P07	Cama Beach State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P08	Port Townsend	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Park	P09	Moran State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90	P10	San Juan Islands National Monument	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	P11	San Juan Island Visitors Center	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	P12	Cap Sante Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	P15	Pioneer Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
		Reuble Farm	4.5	20.4	15.9	12.4	7.9	5.0	0.5	17.6		7.6	3.1
	EBLA002	Ferry House	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R01	Sullivan Rd	119.5	140.1	20.6	150.1	30.6	158.8	39.3	143.4	23.9	155.6	36.1
	R02	Salal St. and N. Northgate Dr	98.8	115.2	16.4	125.1	26.3	136.6	37.8	119.6	20.8	133.1	34.3
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	R05	Snee-Oosh Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.7	29.5	22.8	18.5	11.8	7.4	0.7	25.9	19.2	11.1	4.4
	R07	Race Lagoon	0.6	8.9	8.3	5.9		2.3		8.0	7.4	3.5	2.9
	R08	Pratts Bluff	0.6	2.5	1.9	1.7		0.6	0.0	2.2	1.6	1.0	0.4
Residential	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
gen	R10	Skyline	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
esic	R11	Sequim	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
~	R12	Port Angeles	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	28.0	30.1	2.1	37.2	9.2	43.8	15.8	31.6		41.3	13.3
	R15	Long Point Manor	2.3	11.8	9.5	7.7	5.4	3.0	0.7	10.6		4.5	2.2
	R16	Rocky Point Heights	0.2	0.2	0.0	0.2		0.2	0.0	0.2		0.2	0.0
	R17	Port Townsend	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	R19	Island Transit Offices, Coupeville	6.6	32.4		20.3		8.2	1.6	28.4		12.3	5.7
	R20	South Lopez Island (Agate Beach)	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	S01	Oak Harbor High School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	S02	Crescent Harbor Elementary School	10.8	14.4	3.6	13.5	2.7	14.8	4.0	14.9		14.8	4.0
	S03	Coupeville Elementary School	0.9	0.0	-0.9	0.0		0.0	-0.9	0.0		0.0	-0.9
_	S04	Anacortes High School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
School	S05	Lopez Island School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Sci	S06	Friday Harbor Elementary School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	S07	Sir James Douglas Elementary School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
	S09	La Conner Elementary School	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
1	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-20 Annual Average Daily NA 100 L_{max} for Alternative 3 for Average Year

P02 Deception Pass State Park			Point of Interest		An	nual Averag	e Number	ents abov		n Sound L		ВА	
Type 10 Description Action Alt 3A No Action Alt 3C Action Alt 3D Action Action Alt 3D Action Action Alt 3D Action Action Alt 3D Action Action Alt 3D Action													
PO1 Joseph Whiteley State Park													
F02 Deseption Plans State Park 14,9 15,2 0.3 116, 0.3 14,2 9.3 17,6 2.7 22,9 8.0	Type	ID		Action					Action	Alt 3D	Action		Action
P33 Duguala State Park										_			0.0
PO4 Baseba Fried (Elbey's Landing National Historical Reserve) 7.5 11.8 4.3 7.7 0.2 3.0 -4.5 10.6 3.1 4.5 -3.0 PO5 Fort Casey State Park 0.0													8.0
POS Ebeys Landing State Park													
P06 Fort Casey State Park										_			
P07 Came Beech State Park													
P08										_			
P03 Moran State Park 0.0													
P10 San Juan Islands National Monument 0.0													
P11 San Juan Island Visioiro Center 0.0	x												
P12 Cap Sante Park	_												
P13 Lake Campbell													
P14 Spencer Spit State Park													
P15 Pioneer Park 0.0 0										_			
P16 Marrowstone Island (Fort Figgler)										_			
EBLA001 Reuble Farm													
EBLAQOZ Ferry House			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							_			
R01 Sullivan Rd R2.7 93.8 11.1 104.5 21.8 114.2 31.5 96.8 14.1 110.6 27.9										_			
R02 Salal St. and N. Northgate Dr 13.1 17.0 3.9 16.0 2.9 17.4 4.3 18.6 5.5 17.7 4.6										_			
R03 Central Whidbey													
R04 Pull and Be Damned Point 0.0 0													
R05 Snee-Cosh Point			,							_			
R06 Admirals Dr and Byrd Dr 6.1 21.1 15.0 12.9 6.8 5.2 -0.9 18.2 12.1 7.8 1.7 R07 Race Lagoon 0.5 6.9 6.4 4.6 4.1 1.8 1.3 6.2 5.7 2.7 2.2 2.2 2.2 2.2 2.3 2.2 2.3										_			
R07 Race Lagoon													
R08 Pratts Bluff R09 Cox Rd and Island Ridge Way R09 Cox Rd and Ridge Way R00													
R09 Cox Rd and Island Ridge Way 0.0													
R13 Beverly Beach, Freeland	<u></u>												
R13 Beverly Beach, Freeland	ı <u>fi</u>		· ,										
R13 Beverly Beach, Freeland	ide												
R13 Beverly Beach, Freeland	Ses		•										
R14 E Sleeper Rd & Slumber Ln 0.0	L L												
R15 Long Point Manor 0.1 6.0 5.9 4.0 3.9 1.5 1.4 5.4 5.3 2.3 2.2 R16 Rocky Point Heights 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 R17 Port Townsend 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 R18 Marrowstone Island (Nordland) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 R19 Island Transit Offices, Coupeville 2.3 11.8 9.5 7.7 5.4 3.0 0.7 10.6 8.3 4.5 2.2 R20 South Lopez Island (Agate Beach) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S01 Cak Harbor High School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S02 Crescent Harbor Elementary School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S03 Coupeville Elementary School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S04 Anacortes High School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S05 Lopez Island School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S06 Friday Harbor Elementary School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S07 Sir James Douglas Elementary School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S08 Fridage Elementary School 0.0													
R16 Rocky Point Heights 0.0													
R17 Port Townsend 0.0													
R18 Marrowstone Island (Nordland) 0.0 0.													
R19 Island Transit Offices, Coupeville 2.3 11.8 9.5 7.7 5.4 3.0 0.7 10.6 8.3 4.5 2.2 R20 South Lopez Island (Agate Beach) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S01 Oak Harbor High School 0.0													
R20 South Lopez Island (Ágate Beach) 0.0													
S01 Oak Harbor High School 0.0												_	
S02 Crescent Harbor Elementary School 0.0													
S03 Coupeville Elementary School 0.0													
S04 Anacortes High School 0.0													
S05 Lopez Island School 0.0													
S07 Sir James Douglas Elementary School 0.0 0.	8												
S07 Sir James Douglas Elementary School 0.0 0.	S S												
S08 Fidalgo Elementary School 0.0 <td>S</td> <td></td>	S												
S09 La Conner Elementary School 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
													0.0
TO THE DAY EIGHT PAY EIGHT AND THE TOTAL		S10	Elger Bay Elementary School	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-21 Annual Average Daily NA 80 L_{max} for Alternative 1 for High-Tempo FCLP Year

		Point of Interest		A	nnual Averag	e Number	of Daily E	vents abo	ve Maximu	m Sound I	_evel 80 dE	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 1A	No Action	Alt 1B	Action	Alt 1C	Action	Alt 1D	Action	Alt 1E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	27.7	27.9	0.2	29.8	2.1	36.7	9.0	29.5	1.8	35.3	7.6
	P03	Dugualla State Park	45.6	50.6		57.4		61.1	15.5	51.5	5.9	59.1	13.5
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.7	38.7	30.0	22.1	13.4	9.0	0.3		22.2	13.4	4.7
	P05	Ebey's Landing State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	6.0	23.6		13.0		5.3	-0.7		12.5	7.9	1.9
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Park	P09	Moran State Park	0.0	0.0		0.0		0.0	0.0	_		0.0	0.0
ď	P10	San Juan Islands National Monument	1.5		0.0	1.5		1.7	0.2	1.7	0.2	1.7	0.2
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0			0.0	0.0
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0			0.0	0.0
	P13	Lake Campbell	0.9	0.5	-0.4	0.6		0.8	-0.1	0.8	-0.1	0.8	-0.1
	P14	Spencer Spit State Park	0.0	0.0		0.0		0.0	0.0			0.0	
	P15	Pioneer Park	1.0	1.2	0.2	1.1		1.1	0.1	1.1	0.1	1.1	0.1
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
		Reuble Farm	8.4	37.4	29.0	21.3		8.5	0.1	29.8	21.4	12.8	4.4
		Ferry House	3.2	5.9		3.3		1.3	-1.9		1.4	2.0	-1.2
	R01	Sullivan Rd	136.8	151.4	14.6	163.6		173.5	36.7	157.7	20.9	170.3	33.5
	R02	Salal St. and N. Northgate Dr	111.2			133.4		145.3	34.1	128.7	17.5	141.9	30.7
	R03	Central Whidbey	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
	R04	Pull and Be Damned Point	13.4	17.5	4.1	17.0		16.3	2.9		3.1	16.3	2.9
	R05	Snee-Oosh Point	7.4	10.4	3.0	10.0		9.6	2.2		2.2	9.6	2.2
	R06	Admirals Dr and Byrd Dr	8.5	38.5	30.0	21.9		8.8	0.3		22.2	13.2	4.7
	R07	Race Lagoon	2.6			8.9		3.6	1.0		9.5	5.3	2.7
_	R08	Pratts Bluff	1.0	11.6		7.0		2.7	1.7		8.5	4.1	3.1
Iti.	R09	Cox Rd and Island Ridge Way	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Residential	R10	Skyline	4.7	6.1	1.4	5.7		6.4	1.7		1.7	6.4	1.7
esi	R11	Sequim	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
œ	R12	Port Angeles	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	115.2	125.3	10.1	139.0		148.1	32.9		15.7	144.6	29.4
	R15	Long Point Manor	6.9	15.1	8.2	9.4		4.7	-2.2	12.6	5.7	6.3	-0.6
	R16	Rocky Point Heights	4.3	5.2	0.9	5.0		5.4	1.1	5.5	1.2	5.4	1.1
	R17	Port Townsend	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	8.7	38.7	30.0	22.1	-	9.0	0.3		22.2	13.4	4.7
<u> </u>	R20	South Lopez Island (Agate Beach)	0.3	0.4		0.4		0.4	0.1	0.4	0.1	0.4	0.1
	S01	Oak Harbor High School	3.7	1.7	-2.0	2.6		2.7	-1.0		-1.5	2.6	-1.1
	S02	Crescent Harbor Elementary School	12.8	14.9	2.1	14.5		15.6	2.8		3.0	15.6	2.8
	S03	Coupeville Elementary School	5.1	9.3		5.1		2.1	-3.0		2.2	3.1	-2.0
_	S04	Anacortes High School	0.3	0.4	0.1	0.4		0.4	0.1	0.4	0.1	0.4	0.1
School	S05	Lopez Island School	0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
S	S06	Friday Harbor Elementary School	0.0	0.0		0.0		0.0	0.0			0.0	0.0
	S07	Sir James Douglas Elementary School	0.0	0.0		0.0		0.0	0.0			0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0		0.0		0.0	0.0			0.0	0.0
	S09	La Conner Elementary School	0.9			1.1		1.0	0.1	1.0		1.0	
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-22 Annual Average Daily NA 90 L_{max} for Alternative 1 for High-Tempo FCLP Year

		Point of Interest		A	nnual Averag	e Number	of Daily E	vents abov	e Maximur	n Sound L	evel 90 dE	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 1A	No Action	Alt 1B	Action	Alt 1C	Action	Alt 1D	Action	Alt 1E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	16.5	16.0	-0.5	18.4	1.9	24.7	8.2	18.0	1.5	23.4	6.9
	P03	Dugualla State Park	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.5			21.9		8.8	0.3	30.7	22.2	13.2	4.7
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	1.5			0.0		0.0	-1.5	0.0		0.0	-1.5
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
Park	P09	Moran State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
ď	P10	San Juan Islands National Monument	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
		Reuble Farm	4.5			13.0		5.3	0.8	18.5	14.0	7.9	3.4
	EBLA002	Ferry House	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R01	Sullivan Rd	123.6	140.1	16.5	148.4	24.8	158.3	34.7	142.0	18.4	155.0	31.4
	R02	Salal St. and N. Northgate Dr	103.3	115.0	11.7	124.2	20.9	136.7	33.4	118.8	15.5	133.1	29.8
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	R05	Snee-Oosh Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.7	34.1	27.4	19.4	12.7	7.8	1.1	27.2	20.5	11.7	5.0
	R07	Race Lagoon	0.6	10.2	9.6	6.2	5.6	2.4	1.8	8.4	7.8	3.6	3.0
	R08	Pratts Bluff	0.6	2.9	2.3	1.7	1.1	0.7	0.1	2.4	1.8	1.0	0.4
tial	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residential	R10	Skyline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sic	R11	Sequim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ag.	R12	Port Angeles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	29.9	31.2	1.3	37.7	7.8	44.7	14.8	31.8	1.9	42.1	12.2
	R15	Long Point Manor	2.3	13.6	11.3	8.1	5.8	3.2	0.9	11.1	8.8	4.8	2.5
	R16	Rocky Point Heights	0.2	0.2	0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.2	0.0
	R17	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	6.7	37.4	30.7	21.3	14.6	8.6	1.9	29.8	23.1	12.9	6.2
	R20	South Lopez Island (Agate Beach)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S01	Oak Harbor High School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	S02	Crescent Harbor Elementary School	11.0	13.8	2.8	13.0	2.0	14.4	3.4	14.5	3.5	14.4	3.4
	S03	Coupeville Elementary School	0.9	0.0	-0.9	0.0	-0.9	0.0	-0.9	0.0	-0.9	0.0	-0.9
l _ '	S04	Anacortes High School	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0
School	S05	Lopez Island School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
Sch	S06	Friday Harbor Elementary School	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0
,	S07	Sir James Douglas Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	S09	La Conner Elementary School	0.0			0.0		0.0	0.0	0.0		0.0	
		Elger Bay Elementary School	0.0				0.0						

Table A6-23 Annual Average Daily NA 100 L_{max} for Alternative 1 for High-Tempo FCLP Year

		Point of Interest		Ar	nual Average	e Number	of Daily Ev	ents abov	e Maximum	n Sound L	evel 100 di	3A	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Туре	ID	Description	Action	Alt 1A	No Action	Alt 1B	Action	Alt 1C	Action	Alt 1D	Action	Alt 1E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	16.4	15.4	-1.0	18.0	1.6	24.6	8.2	17.5	1.1	23.2	6.8
	P03	Dugualla State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	7.5			8.1	0.6	3.2	-4.3	11.1	3.6	4.8	
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
Park	P09	Moran State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
ď	P10	San Juan Islands National Monument	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P13	Lake Campbell	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
		Reuble Farm	1.9		15.8	9.8		4.0	2.1	13.9	12.0	6.0	
	EBLA002	Ferry House	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R01	Sullivan Rd	86.6	94.8	8.2	104.1	17.5	114.7	28.1	96.3	9.7	111.0	24.4
	R02	Salal St. and N. Northgate Dr	13.8	16.5	2.7	15.5	1.7	17.0	3.2	18.3	4.5	17.2	3.4
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R05	Snee-Oosh Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	R06	Admirals Dr and Byrd Dr	6.1	24.3	18.2	13.5	7.4	5.5	-0.6	19.1	13.0	8.2	2.1
	R07	Race Lagoon	0.5	8.0	7.5	4.8	4.3	1.9	1.4	6.5	6.0	2.8	2.3
	R08	Pratts Bluff	0.2	0.0	-0.2	0.0	-0.2	0.0	-0.2	0.0	-0.2	0.0	-0.2
tial	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residential	R10	Skyline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SSi	R11	Sequim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	R12	Port Angeles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R15	Long Point Manor	0.1	6.9	6.8	4.2	4.1	1.6	1.5	5.7	5.6	2.4	2.3
	R16	Rocky Point Heights	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R17	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	2.3	13.6	11.3	8.1	5.8	3.2	0.9	11.1	8.8	4.8	2.5
	R20	South Lopez Island (Agate Beach)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S01	Oak Harbor High School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S02	Crescent Harbor Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S03	Coupeville Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
l _	S04	Anacortes High School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
School	S05	Lopez Island School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
Sch	S06	Friday Harbor Elementary School	0.0			0.0	0.0	0.0	0.0	0.0		0.0	
3,	S07	Sir James Douglas Elementary School	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	S08	Fidalgo Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	0.0			0.0		0.0		0.0		0.0	
1	S10	Elger Bay Elementary School	0.0	0.0		0.0		0.0		0.0		0.0	

Table A6-24 Annual Average Daily NA 80 L_{max} for Alternative 2 for High-Tempo FCLP Year

		Point of Interest		A	nnual Averag	e Number	of Daily E	vents abov	ve Maximur	n Sound L	evel 80 dE	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 2A	No Action	Alt 2B	Action	Alt 2C	Action	Alt 2D	Action	Alt 2E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	27.7	27.7	0.0	30.9	3.2	38.0	10.3	30.6	2.9	36.6	8.9
	P03	Dugualla State Park	45.6	51.8		59.4	13.8	63.3	17.7	53.2	7.6	61.3	15.7
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.7	37.0		23.3	14.6	9.4	0.7	32.4	23.7	14.0	5.3
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	6.0	22.6		13.7	7.7	5.6	-0.4	19.5	13.5	8.3	2.3
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
Park	P09	Moran State Park	0.0			0.0		0.0	0.0	0.0		0.0	
ď.	P10	San Juan Islands National Monument	1.5	1.6		1.5		1.8	0.3	1.8	0.3	1.8	0.3
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P13	Lake Campbell	0.9	0.5	-0.4	0.7	-0.2	0.8	-0.1	0.8	-0.1	0.8	-0.1
	P14	Spencer Spit State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P15	Pioneer Park	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
		Reuble Farm	8.4			22.4		9.0	0.6	31.3	22.9	13.4	5.0
		Ferry House	3.2	5.6		3.4	0.2	1.4	-1.8	4.9	1.7	2.1	-1.1
	R01	Sullivan Rd	136.8	159.4	22.6	169.0		179.6	42.8	162.8	26.0	176.1	39.3
	R02	Salal St. and N. Northgate Dr	111.2		17.5	137.8		150.5	39.3	132.8	21.6	146.9	35.7
	R03	Central Whidbey	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R04	Pull and Be Damned Point	13.4	17.6		17.5	4.1	16.8	3.4	16.8	3.4	16.8	3.4
	R05	Snee-Oosh Point	7.4		2.9	10.3	2.9	9.8	2.4	9.8	2.4	9.8	2.4
	R06	Admirals Dr and Byrd Dr	8.5	36.8		23.1	14.6	9.2	0.7	32.2	23.7	13.8	5.3
	R07	Race Lagoon	2.6			9.4		3.7	1.1	12.7	10.1	5.5	
_	R08	Pratts Bluff	1.0	11.0		7.4	6.4	2.9	1.9	10.0	9.0	4.3	3.3
Hia.	R09	Cox Rd and Island Ridge Way	0.0			0.0		0.0	0.0	0.0		0.0	
Residential	R10	Skyline	4.7	6.1	1.4	5.9		6.6	1.9	6.6		6.6	1.9
esi	R11	Sequim	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
~	R12	Port Angeles	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	115.2	131.6		143.5		153.3	38.1	135.1	19.9	149.6	34.4
	R15	Long Point Manor	6.9	14.5	7.6	9.9		4.9	-2.0	13.2	6.3	6.5	-0.4
	R16	Rocky Point Heights	4.3	5.4	1.1	5.2	0.9	5.6	1.3	5.6	1.3	5.6	1.3
	R17	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0			0.0		0.0	0.0	0.0		0.0	
	R19 R20	Island Transit Offices, Coupeville	8.7 0.3	37.0 0.4		23.3		9.4 0.4	0.7 0.1	32.4 0.4	23.7 0.1	14.0 0.4	5.3
		South Lopez Island (Agate Beach)		-								_	0.1
	S01	Oak Harbor High School	3.7	1.8 15.6		2.7	-1.0 2.1	2.8 16.2	-0.9	2.2	-1.5	2.7	-1.0 3.4
	S02	Crescent Harbor Elementary School	12.8	15.6 8.9		14.9 5.4	0.3		3.4	16.3	3.5	16.2	
	S03	Coupeville Elementary School	5.1					2.2	-2.9	7.6		3.3	-1.8
ō	S04	Anacortes High School	0.3	0.4		0.4	0.1 0.0	0.4	0.1 0.0	0.4	0.1	0.4	0.1
School	S05	Lopez Island School	0.0			0.0		0.0	0.0	0.0		0.0	
ŏ	S06 S07	Friday Harbor Elementary School Sir James Douglas Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
		· · · · · · · · · · · · · · · · · · ·				0.0							
	S08 S09	Fidalgo Elementary School La Conner Elementary School	0.0	0.0		1.1		0.0 1.1	0.0 0.2	0.0	0.0	0.0 1.1	0.0 0.2
	S10	Elger Bay Elementary School	0.9	0.0		0.0		0.0		0.0		0.0	
	210	Eiger Day Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-25 Annual Average Daily NA 90 L_{max} for Alternative 2 for High-Tempo FCLP Year

		Point of Interest		A	nnual Averag	e Number	of Daily E	vents abov	ve Maximur	n Sound L	evel 90 dB	A	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 2A	No Action	Alt 2B	Action	Alt 2C	Action	Alt 2D	Action	Alt 2E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	16.5	16.1	-0.4	19.0	2.5	25.7	9.2	18.7	2.2	24.3	7.8
	P03	Dugualla State Park	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.5			23.1	14.6	9.2	0.7	32.2	23.7	13.8	5.3
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	1.5			0.0		0.0	-1.5	0.0	-1.5	0.0	
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
Park	P09	Moran State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
2	P10	San Juan Islands National Monument	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P12	Cap Sante Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P13	Lake Campbell	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
		Reuble Farm	4.5			13.7	9.2	5.6	1.1	19.5	15.0	8.3	
	EBLA002	Ferry House	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	R01	Sullivan Rd	123.6	143.2	19.6	153.3	29.7	163.9	40.3	146.7	23.1	160.4	36.8
	R02	Salal St. and N. Northgate Dr	103.3	117.9	14.6	128.4	25.1	141.6	38.3	122.6	19.3	137.7	34.4
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	R05	Snee-Oosh Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.7	32.6	25.9	20.4	13.7	8.2	1.5	28.5	21.8	12.2	
	R07	Race Lagoon	0.6	9.8	9.2	6.5	5.9	2.5	1.9	8.9	8.3	3.8	3.2
	R08	Pratts Bluff	0.6	2.7	2.1	1.8	1.2	0.7	0.1	2.5	1.9	1.1	0.5
tia	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residential	R10	Skyline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sic	R11	Sequim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ag.	R12	Port Angeles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	29.9	31.2	1.3	39.1	9.2	46.5	16.6	32.8	2.9	43.8	13.9
	R15	Long Point Manor	2.3	13.0	10.7	8.5	6.2	3.3	1.0	11.6	9.3	5.0	2.7
	R16	Rocky Point Heights	0.2	0.2	0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.2	0.0
	R17	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	6.7	35.7	29.0	22.4	15.7	9.1	2.4	31.3	24.6	13.5	
	R20	South Lopez Island (Agate Beach)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S01	Oak Harbor High School	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
	S02	Crescent Harbor Elementary School	11.0	14.4	3.4	13.4	2.4	14.9	3.9	14.9	3.9	14.9	
	S03	Coupeville Elementary School	0.9	0.0	-0.9	0.0	-0.9	0.0	-0.9	0.0	-0.9	0.0	-0.9
_	S04	Anacortes High School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
School	S05	Lopez Island School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sch	S06	Friday Harbor Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
"	S07	Sir James Douglas Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S09	La Conner Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-26 Annual Average Daily NA 100 L_{max} for Alternative 2 for High-Tempo FCLP Year

		Point of Interest		Ar	nual Averag	e Number	of Daily Ev	ents abov	e Maximum	Sound L	evel 100 di	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Туре	ID	Description	Action	Alt 2A	No Action	Alt 2B	Action	Alt 2C	Action	Alt 2D	Action	Alt 2E	Action
	P01	Joseph Whidbey State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	16.4	15.6	-0.8	18.6	2.2	25.5	9.1	18.2	1.8	24.0	7.6
	P03	Dugualla State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	7.5	13.0	5.5	8.5	1.0	3.3	-4.2	11.6	4.1	5.0	-2.5
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P07	Cama Beach State Park	0.0			0.0		0.0		0.0		0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
Park	P09	Moran State Park	0.0			0.0		0.0	0.0	0.0		0.0	
9,	P10	San Juan Islands National Monument	0.0			0.0		0.0		0.0		0.0	0.0
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P12	Cap Sante Park	0.0			0.0		0.0		0.0		0.0	0.0
	P13	Lake Campbell	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P14	Spencer Spit State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	P15	Pioneer Park	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
		Reuble Farm	1.9			10.3		4.2	2.3	14.6		6.3	4.4
		Ferry House	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R01	Sullivan Rd	86.6	96.2	9.6	107.6		118.9	32.3	99.4	12.8	115.0	28.4
	R02	Salal St. and N. Northgate Dr	13.8		3.4	16.0		17.6	3.8	18.9	5.1	17.8	4.0
	R03	Central Whidbey	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R04	Pull and Be Damned Point	0.0			0.0		0.0	0.0	0.0		0.0	
	R05	Snee-Oosh Point	0.0			0.0		0.0	0.0	0.0		0.0	
	R06	Admirals Dr and Byrd Dr	6.1	23.3		14.2	8.1	5.8	-0.3	20.1	14.0	8.6	
	R07	Race Lagoon	0.5			5.1				6.9		3.0	
_	R08	Pratts Bluff	0.2	0.0		0.0		0.0	-0.2	0.0		0.0	-0.2
ntis	R09	Cox Rd and Island Ridge Way	0.0			0.0		0.0	0.0	0.0		0.0	0.0
Residential	R10	Skyline	0.0			0.0		0.0	0.0	0.0		0.0	0.0
es	R11	Sequim	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
<u>~</u>	R12	Port Angeles	0.0			0.0		0.0		0.0		0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R15	Long Point Manor	0.1	6.6		4.4 0.0		1.7 0.0	1.6 0.0	6.0 0.0		2.6	
	R16 R17	Rocky Point Heights				0.0		0.0					0.0
	R18	Port Townsend Marrowstone Island (Nordland)	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	R19		2.3			8.5							
	R19 R20	Island Transit Offices, Coupeville South Lopez Island (Agate Beach)	0.0	13.0		0.0		3.3 0.0	1.0 0.0	11.6 0.0		5.0 0.0	2.7 0.0
-	S01	Oak Harbor High School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S02	Crescent Harbor Elementary School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	S02	Coupeville Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S03	Anacortes High School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
<u>0</u>	S05	Lopez Island School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
School	S06	Friday Harbor Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
Ō	S07	Sir James Douglas Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S08	Fidalgo Elementary School	0.0	0.0		0.0			0.0	0.0		0.0	
	S09	La Conner Elementary School	0.0			0.0				0.0		0.0	
	S10	Elger Bay Elementary School	0.0			0.0				0.0		0.0	
L	310	Liger Day Lierneritary Scribbi	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A6-27 Annual Average Daily NA 80 L_{max} for Alternative 3 for High-Tempo FCLP Year

		Point of Interest		A	nnual Averag	e Number	of Daily E	vents abov	ve Maximur	n Sound L	evel 80 dE	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Туре	ID	Description	Action	Alt 3A	No Action	Alt 3B	Action	Alt 3C	Action	Alt 3D	Action	Alt 3E	Action
	P01	Joseph Whidbey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	27.7	27.3		30.6	2.9	37.7	10.0	27.9	0.2	33.2	
	P03	Dugualla State Park	45.6	50.9		59.1	13.5	62.8	17.2	54.3	8.7	63.3	17.7
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.7	37.1	28.4	23.3	14.6	9.4	0.7	32.5	23.8	14.1	
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	6.0	22.6		13.7	7.7	5.6	-0.4	19.2	13.2	8.3	
	P07	Cama Beach State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
Park	P09	Moran State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
ď	P10	San Juan Islands National Monument	1.5	1.5		1.5		1.8	0.3	1.5	0.0	1.5	0.0
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P12	Cap Sante Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	P13	Lake Campbell	0.9	0.5	-0.4	0.7	-0.2	0.8	-0.1	0.6	-0.3	0.7	
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
		Reuble Farm	8.4			22.4		9.0	0.6	31.4	23.0	13.5	
	EBLA002	Ferry House	3.2	5.7	2.5	3.4	0.2	1.4	-1.8	4.8	1.6	2.1	
	R01	Sullivan Rd	136.8	156.5	19.7	168.3	31.5	178.1	41.3	159.9	23.1	174.7	37.9
	R02	Salal St. and N. Northgate Dr	111.2	126.3	15.1	137.2	26.0	149.4	38.2	128.7	17.5	144.1	32.9
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	13.4	17.8	4.4	17.7	4.3	16.8	3.4	17.6	4.2	17.4	4.0
	R05	Snee-Oosh Point	7.4	10.3	2.9	10.3	2.9	9.8	2.4	10.3	2.9	10.3	2.9
	R06	Admirals Dr and Byrd Dr	8.5	36.9	28.4	23.1	14.6	9.2	0.7	32.3	23.8	13.9	5.4
	R07	Race Lagoon	2.6	14.2	11.6	9.4	6.8	3.7	1.1	13.1	10.5	5.7	3.1
	R08	Pratts Bluff	1.0	11.1	10.1	7.4	6.4	2.9	1.9	10.4	9.4	4.4	3.4
tial	R09	Cox Rd and Island Ridge Way	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residential	R10	Skyline	4.7	6.0	1.3	5.9	1.2	6.6	1.9	5.8	1.1	5.9	1.2
Sic	R11	Sequim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
æ	R12	Port Angeles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	115.2	129.1	13.9	143.0	27.8	152.1	36.9	134.2	19.0	150.0	34.8
	R15	Long Point Manor	6.9	14.5	7.6	9.9	3.0	4.9	-2.0	13.3	6.4	6.5	-0.4
	R16	Rocky Point Heights	4.3	5.3	1.0	5.2	0.9	5.5	1.2	5.1	0.8	5.1	0.8
	R17	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	R19	Island Transit Offices, Coupeville	8.7	37.1	28.4	23.3	14.6	9.4	0.7	32.5	23.8	14.1	5.4
	R20	South Lopez Island (Agate Beach)	0.3	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.1
	S01	Oak Harbor High School	3.7	1.7	-2.0	2.7	-1.0	2.8	-0.9	2.3	-1.4	3.0	-0.7
	S02	Crescent Harbor Elementary School	12.8	15.1	2.3	14.9		16.0	3.2	14.6	1.8	14.8	
	S03	Coupeville Elementary School	5.1	8.9		5.4	0.3	2.2	-2.9	7.6	2.5	3.2	
1	S04	Anacortes High School	0.3	0.4		0.4	0.1	0.4	0.1	0.4	0.1	0.4	
8	S05	Lopez Island School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
School	S06	Friday Harbor Elementary School	0.0			0.0		0.0	0.0	0.0		0.0	
0)	S07	Sir James Douglas Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S08	Fidalgo Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S09	La Conner Elementary School	0.9			1.1		1.1	0.2	1.1	0.2	1.1	
1	S10	Elger Bay Elementary School	0.0	0.0		0.0		0.0		0.0		0.0	

Table A6-28 Annual Average Daily NA 90 L_{max} for Alternative 3 for High-Tempo FCLP Year

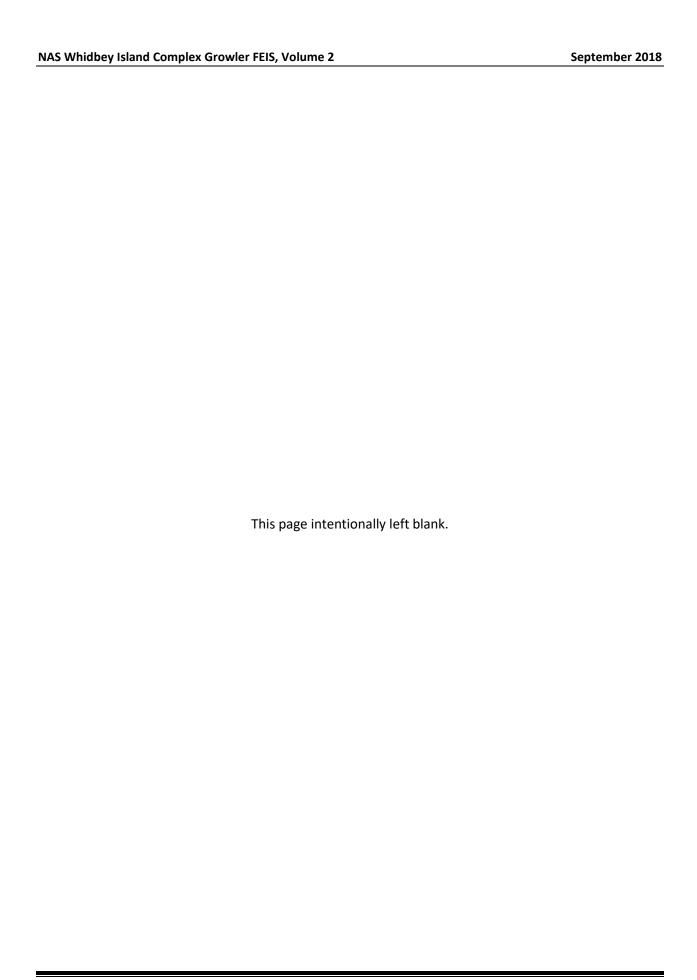
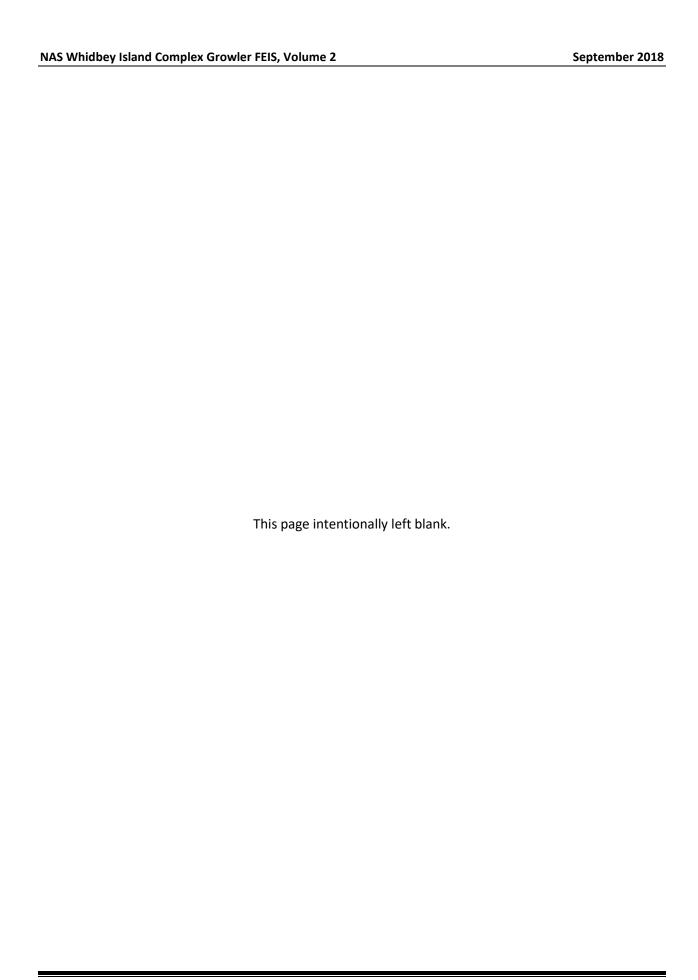

		Point of Interest		A	nnual Averac	e Number	of Daily E	vents abov	ve Maximur	n Sound L	evel 90 dE	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Туре	ID	Description	Action	Alt 3A	No Action	Alt 3B	Action	Alt 3C	Action	Alt 3D	Action	Alt 3E	Action
7.	P01	Joseph Whidbey State Park	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	16.5	15.8	-0.7	18.7	2.2	25.4	8.9	16.4	-0.1	21.1	4.6
	P03	Dugualla State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	8.5	36.9	28.4	23.1	14.6	9.2	0.7	32.3	23.8	13.9	5.4
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	P06	Fort Casey State Park	1.5			0.0		0.0	-1.5	0.0		0.0	
	P07	Cama Beach State Park	0.0			0.0		0.0		0.0		0.0	
	P08	Port Townsend	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
Park	P09	Moran State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
ď	P10	San Juan Islands National Monument	0.0			0.0		0.0	0.0	0.0		0.0	
	P11	San Juan Island Visitors Center	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P12	Cap Sante Park	0.0			0.0		0.0	0.0	0.0		0.0	
	P13	Lake Campbell	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P14	Spencer Spit State Park	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	P15	Pioneer Park	0.0			0.0		0.0	0.0	0.0		0.0	
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
		Reuble Farm	4.5			13.7	9.2	5.6	1.1	19.2	14.7	8.3	
		Ferry House	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	R01	Sullivan Rd	123.6	140.3	16.7	152.6		162.6	39.0	144.1	20.5	159.3	35.7
	R02	Salal St. and N. Northgate Dr	103.3	115.6		127.8		140.5	37.2	118.8	15.5	135.2	31.9
	R03	Central Whidbey	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	R04	Pull and Be Damned Point	1.0	1.2	0.2	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1
	R05	Snee-Oosh Point	0.0			0.0		0.0	0.0	0.0		0.0	
	R06	Admirals Dr and Byrd Dr	6.7	32.6		20.5		8.2	1.5	28.6	21.9	12.3	
	R07	Race Lagoon	0.6			6.6		2.5	1.9	9.2		3.9	
-	R08	Pratts Bluff	0.6	2.7	2.1	1.8		0.7	0.1	2.6		1.1	
lg:	R09	Cox Rd and Island Ridge Way	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
<u>ig</u>	R10	Skyline	0.0	0.0		0.0		0.0	0.0 0.0	0.0		0.0	
Residential	R11	Sequim Rest Appeles				0.0							
<u> </u>	R12 R13	Port Angeles Beverly Beach, Freeland	0.0	0.0		0.0		0.0 0.0	0.0 0.0	0.0		0.0	
	R14		29.9	30.7	0.0	38.9		46.2				44.2	
	R15	E Sleeper Rd & Slumber Ln Long Point Manor	29.9	13.1	10.8	38.9 8.5		3.3	16.3 1.0	33.1 11.9	3.2 9.6	5.1	14.3 2.8
	R16	Rocky Point Heights	0.2	0.2	0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.2	
	R17	Port Townsend	0.2			0.2		0.2	0.0	0.2		0.2	
	R18	Marrowstone Island (Nordland)	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	R19	Island Transit Offices, Coupeville	6.7	35.8	29.1	22.5	15.8	9.1	2.4	31.4	24.7	13.6	
	R20	South Lopez Island (Agate Beach)	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S01	Oak Harbor High School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S02	Crescent Harbor Elementary School	11.0	14.0		13.4	2.4	14.7	3.7	13.1	2.1	13.3	
	S03	Coupeville Elementary School	0.9	0.0		0.0		0.0	-0.9	0.0		0.0	
	S04	Anacortes High School	0.9	0.0		0.0		0.0	0.0	0.0		0.0	
00	S05	Lopez Island School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
School	S06	Friday Harbor Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
S	S07	Sir James Douglas Elementary School	0.0			0.0		0.0	0.0	0.0		0.0	
	S08	Fidalgo Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
	S09	La Conner Elementary School	0.0			0.0		0.0		0.0		0.0	
1	S10	Elger Bay Elementary School	0.0			0.0		0.0		0.0		0.0	

Table A6-29 Annual Average Daily NA 100 L_{max} for Alternative 3 for High-Tempo FCLP Year

		Point of Interest		Ar	nual Averag	e Number	of Daily Ev	ents abov	e Maximum	Sound L	evel 100 di	BA	
							Increase		Increase		Increase		Increase
			No		Increase re		re No		re No		re No		re No
Type	ID	Description	Action	Alt 3A	No Action	Alt 3B	Action	Alt 3C	Action	Alt 3D	Action	Alt 3E	Action
	P01	Joseph Whidbey State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P02	Deception Pass State Park	16.4	15.2	-1.2	18.4	2.0	25.2	8.8	15.9	-0.5	20.9	4.5
	P03	Dugualla State Park	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	7.5	13.1	5.6	8.5	1.0	3.3	-4.2	11.9	4.4	5.1	-2.4
	P05	Ebey's Landing State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P06	Fort Casey State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P07	Cama Beach State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P08	Port Townsend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Park	P09	Moran State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pa	P10	San Juan Islands National Monument	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P11	San Juan Island Visitors Center	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P12	Cap Sante Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P13	Lake Campbell	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P14	Spencer Spit State Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P15	Pioneer Park	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P16	Marrowstone Island (Fort Flagler)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	EBLA001	Reuble Farm	1.9	17.0	15.1	10.3	8.4	4.2	2.3	14.4	12.5	6.2	4.3
	EBLA002	Ferry House	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R01	Sullivan Rd	86.6	94.3	7.7	107.2	20.6	118.2	31.6	98.2	11.6	114.8	28.2
	R02	Salal St. and N. Northgate Dr	13.8	16.7	2.9	16.0	2.2	17.4	3.6	16.0	2.2	15.6	1.8
	R03	Central Whidbey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R04	Pull and Be Damned Point	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	R05	Snee-Oosh Point	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R06	Admirals Dr and Byrd Dr	6.1	23.3		14.2	8.1	5.8	-0.3	19.9	13.8	8.5	2.4
	R07	Race Lagoon	0.5			5.1				7.1	6.6	3.1	2.6
	R08	Pratts Bluff	0.2	0.0		0.0		0.0	-0.2	0.0	-0.2	0.0	-0.2
Residential	R09	Cox Rd and Island Ridge Way	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
Je Je	R10	Skyline	0.0			0.0		0.0	0.0	0.0		0.0	0.0
98.	R11	Sequim	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
ď	R12	Port Angeles	0.0			0.0		0.0		0.0	0.0	0.0	0.0
	R13	Beverly Beach, Freeland	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R14	E Sleeper Rd & Slumber Ln	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R15	Long Point Manor	0.1	6.6		4.4		1.7	1.6	6.2	6.1	2.7	2.6
	R16	Rocky Point Heights	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R17	Port Townsend	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R18	Marrowstone Island (Nordland)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	R19	Island Transit Offices, Coupeville	2.3	13.1	10.8	8.5	6.2	3.3	1.0	11.9	9.6	5.1	2.8
	R20	South Lopez Island (Agate Beach)	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S01	Oak Harbor High School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S02	Crescent Harbor Elementary School	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S03	Coupeville Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
0	S04	Anacortes High School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
School	S05	Lopez Island School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
တိ	S06	Friday Harbor Elementary School	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
	S07	Sir James Douglas Elementary School	0.0			0.0		0.0	0.0	0.0		0.0	0.0
	S08	Fidalgo Elementary School	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0
	S09	La Conner Elementary School	0.0			0.0				0.0		0.0	0.0
	S10	Elger Bay Elementary School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0


This page intentionally left blank.	NAS Whidbey Island Complex Growler FEIS, Volume 2	September 2018
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
This page intentionally left blank.		
	This page intentionally left blank.	

Appendix A7 Other Modeling Output for High-Tempo FCLP Year Scenarios

List of Figures

Figure A7.2-1	DNL Contours for AAD Aircraft Events for the Average Year and High-Tempo	
	FCLP Year No Action Alternative	. A7-15
Figure A7.3-1	Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 1	. A7-25
Figure A7.4-1	Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 2	. A7-39
Figure A7.5-1	Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 3	. A7-54

List of Tables

Table A7.0-1	Summary of Noise Exposure Results for the High-Tempo FCLP Year	A7-7
Table A7.1-1	Estimated Acreage and Population within the DNL Contour Ranges ¹ for the High- Tempo FCLP Year for Baseline Conditions at the NAS Whidbey Island Complex	A7-8
Table A7.1-2	Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year Baseline Scenario	A7-9
Table A7.1-3	Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level at the NAS Whidbey Island Complex for Max Year Baseline Conditions	. A7-10
Table A7.1-4	Average Indoor Nightly Probability of Awakening at Applicable POIs for the High- Tempo FCLP Year Baseline Scenario	. A7-11
Table A7.1-5	Indoor Speech Interference for the High-Tempo FCLP Year Baseline Scenario	. A7-12
Table A7.1-6	Classroom Learning Interference for the High-Tempo FCLP Year Baseline Scenario	. A7-13
Table A7.1-7	Recreational Speech Interference for the High-Tempo FCLP Year Baseline Scenario	. A7-14
Table A7.2-1	Estimated Acreage and Population within the DNL Contour Ranges ¹ for the High- Tempo FCLP Year No Action Alternative at the NAS Whidbey Island Complex	. A7-16
Table A7.2-2	Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year No Action Alternative	. A7-17
Table A7.2-3	Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level at the NAS Whidbey Island Complex for Max Year No Action Alternative	. A7-18
Table A7.2-4	Average Indoor Nightly Probability of Awakening at Applicable POIs for the High- Tempo FCLP Year No Action Alternative	. A7-19
Table A7.2-5	Indoor Speech Interference for the High-Tempo FCLP Year No Action Alternative	
Table A7.2-6	Classroom Learning Interference for the High-Tempo FCLP Year No Action Alternative	. A7-21
Table A7.2-7	Recreational Speech Interference for the High-Tempo FCLP Year No Action Alternative	. A7-22
Table A7.3-1	Estimated Acreage and Population within the DNL Contour Ranges ¹ for the NAS Whidbey Island Complex, Alternative 1 (High-Tempo FCLP Year) ^{2,3}	. A7-23
Table A7.3-2	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1A	. A7-29
Table A7.3-3	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1B	. A7-29
Table A7.3-4	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1C	. A7-30
Table A7.3-5	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1D	. A7-30
Table A7.3-6	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1E	. A7-31
Table A7.3-7	Average Indoor Nightly Probability of Awakening at Applicable POIs for the High- Tempo FCLP Year, Alternative 1	. A7-32

Table A7.3-8	Indoor Speech Interference for the High-Tempo FCLP Year, Alternative 1 A7-33
Table A7.3-9	Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 1 A7-34
Table A7.3-10	Recreational Speech Interference for High-Tempo FCLP Year, Alternative 1 A7-36
Table A7.4-1	Estimated Acreage and Population within the DNL Contour Ranges ¹ for the NAS Whidbey Island Complex, Alternative 2 (High-Tempo FCLP Year) ^{2,3}
Table A7.4-2	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2A A7-43
Table A7.4-3	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2B A7-44
Table A7.4-4	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2C A7-45
Table A7.4-5	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2D A7-45
Table A7.4-6	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2E A7-46
Table A7.4-7	Average Indoor Nightly Probability of Awakening at Applicable POIs for the High- Tempo FCLP Year, Alternative 2
Table A7.4-8	Indoor Speech Interference for the High-Tempo FCLP Year, Alternative 2
Table A7.4-9	Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 2 A7-49
Table A7.4-10	Recreational Speech Interference for the High-Tempo FCLP Year, Alternative 2 A7-51
Table A7.5-1	Estimated Acreage and Population within the DNL Contour Ranges ¹ for the NAS Whidbey Island Complex, Alternative 3 (High-Tempo FCLP Year) ^{2,3}
Table A7.5-2	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3A A7-58
Table A7.5-3	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3B A7-59
Table A7.5-4	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3C A7-60
Table A7.5-5	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3D A7-60
Table A7.5-6	Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3E A7-61
Table A7.5-7	Average Indoor Nightly Probability of Awakening at Applicable POIs for the High- Tempo FCLP Year, Alternative 3
Table A7.5-8	Indoor Speech Interference for the High-Tempo FCLP Year, Alternative 3
Table A7.5-9	Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 3 A7-64
Table A7.5-10	Recreational Speech Interference for the High-Tempo FCLP Year, Alternative 3 A7-66

Table A7.0-1 Summary of Noise Exposure Results for the High-Tempo FCLP Year

				Alt	ternativ	e 1			Alt	ternativ	e 2			Al	ternativ	e 3	
			Α	В	С	D	Е	Α	В	С	D	Е	Α	В	С	D	Е
Population Exposed	Pop	ulation	11,863	12,227	12,267	12,208	12,326	11,754	12,153	12,070	12,052	12,143	11,751	12,129	12,007	12,065	12,187
to ≥65 dB DNL,	Chan	ge from	+1519	+2150	+2386	+2150	+2386	+1567	+2035	+2180	+2035	+2180	+1597	+2081	+2175	+2081	+2175
Both Airfields		n (10,916)	15%	18%	19%	18%	19%	14%	17%	17%	17%	17%	14%	17%	16%	17%	18%
			1070	1070	1070	1070	.070	. 170	11 70	11 70	17 70	11 70	1.70	11 70	1070	11 70	
		5 dB or more	-	-	2	-	5	-	-	-	-	-	-	-	1	-	-
	Decrease of	3-4 dB	-	3	10	-	7	-	4	12	-	12	-	1	11	-	12
		1-2 dB	-	10	1	6	-	1	11	1	4	-	2	14	-	9	-
	No Change		20	32	30	30	31	18	28	32	32	32	18	28	30	27	30
DNL at POI		1 dB	9	3	4	-	4	11	5	3	-	4	12	5	6	-	
(Change from No		2-3 dB	10	-	1	-	1	9	-	-		-	7	-	-		
Action)	Increase of	4-5 dB	4	-	-	-	-	4	-	-	10	-	4	-	-	5	
		6-10 dB 11-15 dB	1	-	-	12	-	4	-	-	2	-	4	-	-	7	
		>15 dB	'	-	-	-	-	- '	-	-	-	-	- 1	-	-	-	
	Newly >	65 dB DNL	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
	110Wiy E	OC SE EILE					_										
Demulation of	Pop	ulation	113	67	74	69	72	104	68	76	62	74	101	67	75	61	73
Population of Average NIPTS ≥5 dB	Chan	ge from	+75	+29	+36	+31	+34	+66	+30	+38	+24	+36	+63	+29	+37	+23	+35
Average NIF 13 23 UB	No Ac	tion (40)	208%	81%	100%	86%	94%	183%	83%	106%	67%	100%	175%	81%	103%	64%	97%
	Decrease of	1-10%	-		-	-		-		-		-		-	-		
	No Change	4.400/	6	7	12	8	8	6	8	11	7	9	7	8	10	7	
Annual Avg Nightly		1-10% 11-20%	17 5	18 5	13 5	16 4	19 3	19 3	19 3	16 3	19 3	18	17 4	19 3	17 3	17 4	
PA at Residential POI		21-30%	1	-	-	1		2	-	-	1	-	1	-	-	2	_
(Change from No Action	Increase of	31-40%	1	_	_	1	-	-	-	_	- '	_	1	-		-	
in %PA)		41-50%	- '	-	-	- 1	-	-	-	-	-	-		-	-	-	-
		51-60%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		61% or more	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Daytime Indoor	Decrease of	1-2 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Speech Interference	No Change		19	16	19	16	17	17	15	19	16	18	18	16	19	16	18
at Residential POI (Change from No	. ,	1-2 events/hr	11	14	11	14	13	13	15	11	14	12	12	14	11	14	12
Action)	Increase of	3-4 events/hr															
		0 1 0101110/111															
Classroom Learning	Decrease of	1-2 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Interference at School	No Change		9	8	8	9	8	7	7	7	8	8	7	7	8	7	
POI		1-2 events/hr	3	4	4	3	4	5	5	5	4	4	5	5	4	5	4
` •	Increase of	3-4 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Action)		5-6 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Decrease of	1 events/hr	_	_	1	_	_	_	_	1	_	_	_	_	1	_	
Recreational Speech	No Change	i events/III	15	14	25	13	17	11	13	23	12	17	12	13	25	13	
Interference at Outdoor/Park POI	rvo Criange	1.2 0\/0nto/b=	33	34	22	35	31	37	35	23	36	31	36	35	23	35	
(Change from No	la	1-2 events/hr		_													
Action)	Increase of	3-4 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
=,		5-6 events/hr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A7.1-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the High-Tempo FCLP Year for Baseline Conditions at the NAS Whidbey Island Complex

	DNL Contou	ır Ranges									
					Greater tha	n or		<i>Pop</i> ² 9,568			
	65 to <70 d	B DNL	70 to <75 c	IB DNL	equal to 75	dB DNL	Total ³				
	Area		Area		Area		Area				
DNL Contours	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²			
Ault Field	3,545	3,534	3,166	2,445	5,955	3,589	12,666	9,568			
OLF Coupeville	4,003	979	3,178	841	742	607	7,923	2,427			
Total ³	7,548	4,513	6,345	3,286	6,697	4,196	20,590	11,995			

- ¹ Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contours (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall under the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ³ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level

Table A7.1-2 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year Baseline Scenario

	Point of Interest		
		Related	DNL
ID	Description	Field	(dB)
P01	Joseph Whidbey State Park	Ault	57
	Deception Pass State Park	Ault	74
P03	Dugualla State Park	Ault	65
P04	Baseball Field (Ebey's Landing National		74
P04	Historical Reserve)	OLF	74
P05	Ebey's Landing State Park	OLF	52
	Fort Casey State Park	OLF	62
P07	Cama Beach State Park	OLF	<45
P08	Port Townsend	None	<45
	Moran State Park	None	<45
P10	San Juan Islands National Monument	None	54
	San Juan Island Visitors Center	None	<45
	Cap Sante Park	Ault	<45
	Lake Campbell	Ault	54
	Spencer Spit State Park	None	<45
***************************************	Pioneer Park	Ault	55
	Marrowstone Island (Fort Flagler)	OLF	<45
	Reuble Farm	OLF	69
~~~~~	Ferry House	OLF	56
	Sullivan Rd	Ault	90
	Salal St. and N. Northgate Dr	Ault	78
	Central Whidbey	Ault	57
	Pull and Be Damned Point	Ault	62
	Snee-Oosh Point	Ault	57
	Admirals Dr and Byrd Dr	OLF	79
	Race Lagoon	OLF	61
***************************************	Pratts Bluff	OLF	63
***************************************	Cox Rd and Island Ridge Way	OLF	50
	Skyline	None	57
~~~~~	Sequim	None	<45
~~~~~~~~	Port Angeles	None	<45
	Beverly Beach, Freeland	OLF	<45
	E Sleeper Rd & Slumber Ln	Ault	75
~~~~~	Long Point Manor	OLF	65
		OLF	55
~~~~~~	Rocky Point Heights Port Townsend		
		None None	<45 <45
~~~~~~	Marrowstone Island (Nordland)	•	
	Island Transit Offices, Coupeville	OLF	73
	South Lopez Island (Agate Beach)	None	48
***************************************	Oak Harbor High School	Ault	60
	Crescent Harbor Elementary School	Ault	68
	Coupeville Elementary School	OLF	58
*****	Anacortes High School	Ault	48
	Lopez Island School	None	<45
~~~~~~	Friday Harbor Elementary School	None	<45
	Sir James Douglas Elementary School	None	<45
***********	Fidalgo Elementary School	Ault	52
	La Conner Elementary School	Ault	53
S10	Elger Bay Elementary School	OLF	<45

Table A7.1-3 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level at the NAS Whidbey Island Complex for Max Year Baseline Conditions

			Estimated Po	pulation ^{2, 3,4}		
Band of Leq ₍₂₄₎ (dB)	Average NIPTS (dB) ¹	10th Percentile NIPTS (dB) ¹	Ault Field (on-station)	Ault Field (off-station)	OLF Coupeville (off-station)	Total
74-75	0.5	3.5	-	-	-	_
75-76	1.0	4.0	-	-	51	51
76-77	1.0	4.5	-	140	48	189
77-78	1.5	5.0	-	299	43	342
78-79	2.0	5.5	-	205	21	226
79-80	2.5	6.0	-	130	6	135
80-81	3.0	7.0	-	79	-	80
81-82	3.5	8.0	-	62	-	62
82-83	4.0	9.0	-	39	-	39
83-84	4.5	10.0	-	29	-	29
84-85	5.5	11.0	-	26	-	26
85-86	6.0	12.0	-	10	-	10
86-87	7.0	13.5	-	7	-	7
87-88	7.5	15.0	-	5	-	5
88-89	8.5	16.5	-	2	-	2
89-90	9.5	18.0	-	-	-	-
90-91	10.5	19.5	-	-	-	-
91-92	11.5	21.0	-	-	-	-

- NIPTS values rounded to nearest 0.5 dB.
- ² This analysis assumes the population is outdoors and exposed to all aircraft noise events for 40 years. Given the amount of time spent indoors and the intermittent occurrence of aircraft noise events, it is highly unlikely that individuals would meet all the criteria, and the actual potential for hearing loss would be less than the values reported here.
- Estimated Population was determined by those living within the 80 dB DNL noise contour around each airfield, including those living on-base at Ault Field (there is no on-base population at OLF Coupeville).
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block. All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). In addition, per guidance on potential hearing loss, on-base populations at Ault Field have been included in the analysis. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.

Key:

dB = decibel

L_{eq(24)} = 24-hour Equivalent Sound Level

NIPTS = Noise Induced Permanent Threshold Shift

OLF = outlying landing field

Table A7.1-4 Average Indoor Nightly Probability of Awakening at Applicable POIs for the High-Tempo FCLP Year Baseline Scenario

	Repre	sentative Residential Receptor		Annual Average Nightly (2200-0700) Probability of Awakening (%) (1)		
				Base	eline	
			Related	Windows	Windows	
Type	ID	Description	Field	Open	Closed	
	R01	Sullivan Rd	Ault	62%	46%	
	R02	Salal St. and N. Northgate Dr	Ault	44%	31%	
	R03	Central Whidbey	Ault	17%	9%	
	R04	Pull and Be Damned Point	Ault	20%	9%	
	R05	Snee-Oosh Point	Ault	16%	5%	
	R06	Admirals Dr and Byrd Dr	OLF	10%	6%	
	R07	Race Lagoon	OLF	5%	2%	
	R08	Pratts Bluff	OLF	5%	3%	
(2)	R09	Cox Rd and Island Ridge Way	OLF	3%	2%	
Residentia ⁽²⁾	R10	Skyline	None	7%	2%	
der	R11	Sequim	None	0%	0%	
esi	R12	Port Angeles	None	0%	0%	
<u>~</u>	R13	Beverly Beach, Freeland	OLF	2%	0%	
	R14	E Sleeper Rd & Slumber Ln	Ault	40%	28%	
	R15	Long Point Manor	OLF	12%	4%	
	R16	Rocky Point Heights	OLF	10%	3%	
	R17	Port Townsend	None	1%	0%	
	R18	Marrowstone Island (Nordland)	None	0%	0%	
	R19	Island Transit Offices, Coupeville	OLF	10%	5%	
	R20	South Lopez Island (Agate Beach)	None	2%	1%	
	S01	Oak Harbor High School	Ault	22%	13%	
a	S02	Crescent Harbor Elementary School	Ault	23%	14%	
inti	S03	Coupeville Elementary School	OLF	6%	3%	
ide	S04	Anacortes High School	Ault	2%	1%	
res	S05	Lopez Island School	None	0%	0%	
ä	S06	Friday Harbor Elementary School	None	0%	0%	
School (near residential)	S07	Sir James Douglas Elementary School	None	0%	0%	
<u>کن</u>	S08	Fidalgo Elementary School	Ault	7%	2%	
й	S09	La Conner Elementary School	Ault	8%	3%	
	S10	Elger Bay Elementary School	OLF	0%	0%	

Table A7.1-5 Indoor Speech Interference for the High-Tempo FCLP Year Baseline Scenario

		Point of Interest		(0700-220 per H	Daytime 00) Events our (1)
			Related	Windows	
Type	ID	Description	Field	Open	Closed
	R01	Sullivan Rd	Ault	10	10
	R02	Salal St. and N. Northgate Dr	Ault	10	8
	R03	Central Whidbey	Ault	5	-
	R04	Pull and Be Damned Point	Ault	2	1
	R05	Snee-Oosh Point	Ault	2	1
	R06	Admirals Dr and Byrd Dr	OLF	-	-
	R07	Race Lagoon	OLF	1	-
	R08	Pratts Bluff	OLF	-	-
ਲ	R09	Cox Rd and Island Ridge Way	OLF	-	-
Residential	R10	Skyline	None	1	-
ige	R11	Sequim	None	-	-
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R12	Port Angeles	None	-	-
	R13	Beverly Beach, Freeland	OLF	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	8	7
	R15	Long Point Manor	OLF	1	1
	R16	Rocky Point Heights	OLF	2	1
	R17	Port Townsend	None	_	_
	R18	Marrowstone Island (Nordland)	None	_	_
	R19	Island Transit Offices, Coupeville	OLF	1	1
	R20	South Lopez Island (Agate Beach)	None	-	-
	S01	Oak Harbor High School	Ault	6	2
<u>=</u>	S02	Crescent Harbor Elementary School	Ault	5	2
ij	S03	Coupeville Elementary School	OLF	1	-
<u>ë</u>	S04	Anacortes High School	Ault	-	-
res	S05	Lopez Island School	None	-	-
ä	S06	Friday Harbor Elementary School	None	-	-
School (near residential)	S07	Sir James Douglas Elementary School	None	_	_
Ķ	S08	Fidalgo Elementary School	Ault	_	_
ഗ്	S09	La Conner Elementary School	Ault	1	-
	S10	Elger Bay Elementary School	OLF	-	-

Table A7.1-6 Classroom Learning Interference for the High-Tempo FCLP Year Baseline Scenario

						Baseline		
		Representative School Location			Indoor ⁽¹⁾			
					Windo	ws Open	Window	
Туре	ID	Description	Related Field	Outdoor L _{eq(8h)} (dB)	L _{eq(8h)} (dB)	Events per Hour ⁽²⁾	L _{eq(8h)} (dB)	Events per Hour ⁽²⁾
School Surrogate	R03	Central Whidbey	Ault	57	<45	5	<45	-
Sch	R11	Sequim	None	<45	<45	-	<45	-
	S01	Oak Harbor High School	Ault	58	<45	6	<45	2
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2
	S03	Coupeville Elementary School	OLF	52	<45	1	<45	-
_	S04	Anacortes High School	Ault	47	<45	-	<45	-
<u> </u>	S05	Lopez Island School	None	<45	<45	-	<45	-
School	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-
	S08	Fidalgo Elementary School	Ault	49	<45	-	<45	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-
		Number of Sites Exceeding 1 Intrusive Event per Hour				3		2
		Minimum Number of Intrusive Events per Hour if Exceeding 1				5		2
		Maximum Number of Intrusive Events per Hour if Exceeding 1				6		2

Notes.

⁽¹⁾ assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

⁽²⁾ Number of Average School-Day Events per hour during 8-hour school day (0800-1600) At or Above an Indoor Maximum (single-event) Sound Level ( $L_{max}$ ) of 50 dB;

Table A7.1-7 Recreational Speech Interference for the High-Tempo FCLP Year Baseline Scenario

	Ro	epresentative Park Receptor		Annual Avera Daily Daytime Ho NA50	Events per ur
Type	ID	Description	Related Field	Daytime	Nighttime
	P01	Joseph Whidbey State Park	Ault	9	2
	P02	Deception Pass State Park	Ault	9	2
	P03	Dugualla State Park	Ault	9	2
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	OLF	3	1
	P05	Ebey's Landing State Park	OLF	2	_
	P06	Fort Casey State Park	OLF	1	-
	P07	Cama Beach State Park	OLF	3	_
~	P08	Port Townsend	None	1	-
Park	P09	Moran State Park	None	-	-
"	P10	San Juan Islands National Monument	None	8	2
	P11	San Juan Island Visitors Center	None	_	_
	P12	Cap Sante Park	Ault	1	-
	P13	Lake Campbell	Ault	5	1
	P14	Spencer Spit State Park	None	-	-
	P15	Pioneer Park	Ault	4	1
	P16	Marrowstone Island (Fort Flagler)	OLF	-	-
	EBLA001	Reuble Farm	OLF	2	-
		Ferry House	OLF	2	-
	R01	Sullivan Rd	Ault	10	2
	R02	Salal St. and N. Northgate Dr	Ault	10	2
	R03	Central Whidbey	Ault	8	2
	R04	Pull and Be Damned Point	Ault	8	2
	R05	Snee-Oosh Point	Ault	7	2
	R06	Admirals Dr and Byrd Dr	OLF	1	-
	R07	Race Lagoon	OLF	3	1
	R08	Pratts Bluff	OLF	1	_
tia	R09	Cox Rd and Island Ridge Way	OLF	1	_
Residential	R10	Skyline	None	4	1
sid	R11	Sequim	None	1	-
Re	R12	Port Angeles	None	1	-
	R13	Beverly Beach, Freeland	OLF	-	_
	R14	E Sleeper Rd & Slumber Ln	Ault	10	2
	R15	Long Point Manor	OLF	7	2
	R16	Rocky Point Heights	OLF	5	1
	R17	Port Townsend	None	-	-
	R18	Marrowstone Island (Nordland)	None	-	-
	R19	Island Transit Offices, Coupeville	OLF	3	1
	R20	South Lopez Island (Agate Beach)	None	4	1
	S01	Oak Harbor High School	Ault	9	2
	S02	Crescent Harbor Elementary School	Ault	8	2
	S03	Coupeville Elementary School	OLF	3	1
	S04	Anacortes High School	Ault	1	-
School	S05	Lopez Island School	None	_	_
Ę	S06	Friday Harbor Elementary School	None	_	_
တ	S07	Sir James Douglas Elementary School	None	_	
	S08	Fidalgo Elementary School	Ault	4	- 1
	S09	La Conner Elementary School	Ault	3	<u>'</u> 1
					I
	S10	Elger Bay Elementary School	OLF	1	-

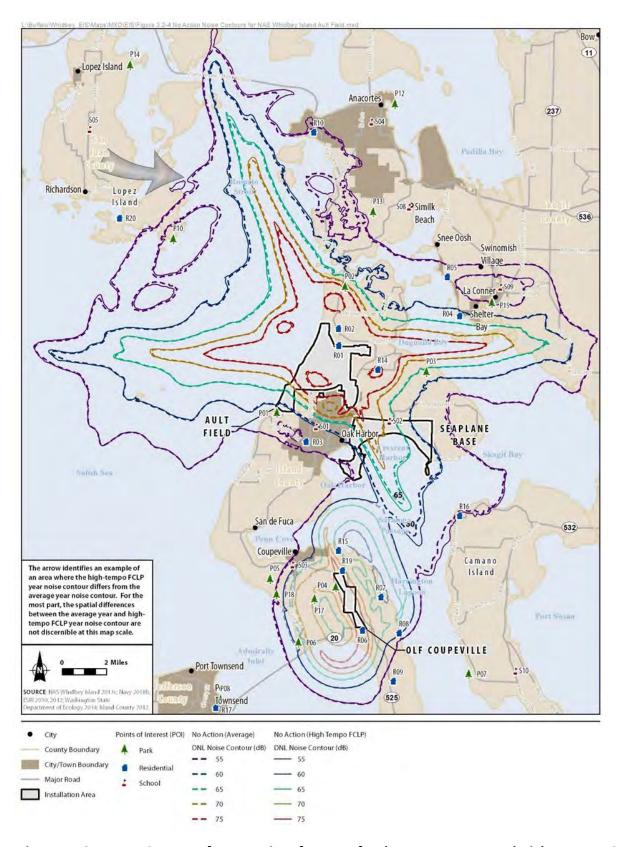



Figure A7.2-1 DNL Contours for AAD Aircraft Events for the Average Year and High-Tempo FCLP Year No Action Alternative

Table A7.2-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the High-Tempo FCLP Year No Action Alternative at the NAS Whidbey Island Complex

	DNL Conto	ur Ranges						
						n or		
	65 to <70 c	IB DNL	70 to <75 c	IB DNL	equal to 75	dB DNL	Total³	
	Area		Area		Area		Area	
DNL Contours	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²	(acres)	Pop ²
Ault Field	3,503	3,347	3,260	2,677	5,864	3,530	12,628	9,554
OLF Coupeville	3,718	881	3,054	786	637	583	7,409	2,250
Total ³	7,221	4,228	6,315	3,463	6,502	4,113	20,037	11,804

- Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contours (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall under the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ³ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level

Table A7.2-2 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year No Action Alternative

		Point of Interest		DNI	L (dB)
			Related	No	Increase re
Type	D	Description	Field	Action	Baseline
		Joseph Whidbey State Park	Ault	57	-
		Deception Pass State Park	Ault	74	_
	P03	Dugualla State Park	Ault	65	-
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	OLF	74	-
	P05	Ebey's Landing State Park	OLF	52	-
	P06	Fort Casey State Park	OLF	61	-1
	P07	Cama Beach State Park	OLF	<45	-
~	P08	Port Townsend	None	<45	-
Park	P09	Moran State Park	None	<45	-
ш.	P10	San Juan Islands National Monument	None	54	-
	P11	San Juan Island Visitors Center	None	<45	-
		Cap Sante Park	Ault	<45	_
		Lake Campbell	Ault	54	-
	P14	Spencer Spit State Park	None	<45	_
		Pioneer Park	Ault	55	-
		Marrowstone Island (Fort Flagler)	OLF	<45	-
		Reuble Farm	OLF	69	_
	BLA00	Ferry House	OLF	56	-
	R01	Sullivan Rd	Ault	90	-
	R02	Salal St. and N. Northgate Dr	Ault	78	-
		Central Whidbey	Ault	57	-
	R04	Pull and Be Damned Point	Ault	62	_
	***************************************	Snee-Oosh Point	Ault	57	-
		Admirals Dr and Byrd Dr	OLF	79	-
	************	Race Lagoon	OLF	61	-
_	***************************************	Pratts Bluff	OLF	62	-1
Residential		Cox Rd and Island Ridge Way	OLF	50	-
der		Skyline	None	56	-1
esi	**********	Sequim	None	<45	_
ď		Port Angeles	None	<45	-
	****	Beverly Beach, Freeland	OLF	<45	-
		E Sleeper Rd & Slumber Ln	Ault	74	-1
		Long Point Manor	OLF	64	-1
	***************************************	Rocky Point Heights	OLF	55	-
		Port Townsend	None	<45	
		Marrowstone Island (Nordland)	None	<45	-
	~~~~~~	Island Transit Offices, Coupeville	OLF	73	-
		South Lopez Island (Agate Beach)	None	48	-
	***********	Oak Harbor High School	Ault	60	-
		Crescent Harbor Elementary School	Ault	68	-
		Coupeville Elementary School	OLF	58	-
<u>_</u>	***********	Anacortes High School	Ault	48	-
School	***********	Lopez Island School	None	<45	-
Sc		Friday Harbor Elementary School	None	<45	_
		Sir James Douglas Elementary School	None	<45	_
	***************************************	Fidalgo Elementary School	Ault	52	-
	***************************************	La Conner Elementary School	Ault	53	-
	S10	Elger Bay Elementary School	OLF	<45	-

Table A7.2-3 Average and 10th Percentile Noise Induced Permanent Threshold Shifts as a Function of Equivalent Sound Level at the NAS Whidbey Island Complex for Max Year No Action Alternative

			Estimated I	Population ^{2, 3,4}	1	
			Ault Field	Ault Field	OLF	
Band of	Average NIPTS	10th Percentile	(on-	(off-	Coupeville	
Leq ₍₂₄₎ (dB)	(dB) ¹	NIPTS (dB) ¹	station)	station)	(off-station)	Total
74-75	0.5	3.5	-	-	-	-
75-76	1.0	4.0	-	-	32	32
76-77	1.0	4.5	-	155	46	201
77-78	1.5	5.0	-	277	46	322
78-79	2.0	5.5	-	169	24	193
79-80	2.5	6.0	-	102	7	109
80-81	3.0	7.0	-	75	1	77
81-82	3.5	8.0	-	51	-	51
82-83	4.0	9.0	-	38	-	38
83-84	4.5	10.0	-	36	-	36
84-85	5.5	11.0	-	12	-	12
85-86	6.0	12.0	-	9	-	9
86-87	7.0	13.5	-	7	-	7
87-88	7.5	15.0	-	4	-	4
88-89	8.5	16.5	-	2	-	2
89-90	9.5	18.0	-	-	-	-
90-91	10.5	19.5	-	-	-	-
91-92	11.5	21.0	-	-	-	-

- NIPTS values rounded to nearest 0.5 dB.
- This analysis assumes the population is outdoors and exposed to all aircraft noise events for 40 years. Given the amount of time spent indoors and the intermittent occurrence of aircraft noise events, it is highly unlikely that individuals would meet all the criteria, and the actual potential for hearing loss would be less than the values reported here.
- Estimated Population was determined by those living within the 80 dB DNL noise contour around each airfield, including those living on-base at Ault Field (there is no on-base population at OLF Coupeville).
- Population counts of people within the DNL contours were computed using 2010 census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block. All population estimates for areas under the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). In addition, per guidance on potential hearing loss, on-base populations at Ault Field have been included in the analysis. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.

Key:

dB = decibel

L_{eq(24)} = 24-hour Equivalent Sound Level

NIPTS = Noise Induced Permanent Threshold Shift

OLF = outlying landing field

Table A7.2-4 Average Indoor Nightly Probability of Awakening at Applicable POIs for the High-Tempo FCLP Year No Action Alternative

	Repres	sentative Residential Receptor				lightly (220 wakening (
					ction		e from eline
_			Related		Windows		Windows
Type		Description	Field	Open	Closed	Open	Closed
	R01	Sullivan Rd	Ault	62%	46%	-	-
	R02	Salal St. and N. Northgate Dr	Ault	44%	31%	-	-
	R03	Central Whidbey	Ault	17%	9%	-	-
	R04	Pull and Be Damned Point	Ault	21%	9%	1%	-
	R05	Snee-Oosh Point	Ault	16%	5%	-	-
	R06	Admirals Dr and Byrd Dr	OLF	9%	6%	-1%	-
	R07	Race Lagoon	OLF	5%	2%	-	-
	R08	Pratts Bluff	OLF	4%	2%	-1%	-1%
<u>ia</u>	R09	Cox Rd and Island Ridge Way	OLF	3%	2%	-	-
lent	R10	Skyline	None	6%	2%	-1%	-
Residential	R11	Sequim	None	0%	0%	-	-
Re	R12	Port Angeles	None	0%	0%	-	-
	R13	Beverly Beach, Freeland	OLF	2%	0%	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	40%	28%	-	-
	R15	Long Point Manor	OLF	11%	4%	-1%	-
	R16	Rocky Point Heights	OLF	10%	3%	-	-
	R17	Port Townsend	None	1%	0%	-	-
	R18	Marrowstone Island (Nordland)	None	0%	0%	-	-
	R19	Island Transit Offices, Coupeville	OLF	10%	5%	-	-
	R20	South Lopez Island (Agate Beach)	None	3%	1%	1%	-
	S01	Oak Harbor High School	Ault	22%	13%	-	-
ial)	S02	Crescent Harbor Elementary School	Ault	23%	13%	-	-1%
ent	S03	Coupeville Elementary School	OLF	5%	3%	-1%	-
Sid	S04	Anacortes High School	Ault	2%	1%	-	-
<u>e</u>	S05	Lopez Island School	None	0%	0%	-	-
eal	S06	Friday Harbor Elementary School	None	0%	0%	-	-
School (near residential)	S07	Sir James Douglas Elementary School	None	0%	0%	-	-
Scl	S08	Fidalgo Elementary School	Ault	7%	2%	-	-
	S09	La Conner Elementary School	Ault	8%	3%	-	-
	S10	Elger Bay Elementary School	OLF	0%	0%	-	-

⁽¹⁾ assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

⁽²⁾ R01 and R06 include interior SELs greater than 100 dB with windows open

Table A7.2-5 Indoor Speech Interference for the High-Tempo FCLP Year No Action Alternative

Indoor Speech Interference for Max Year No Action

		Point of Interest		Annual Average Daily Indoor Daytime (0700-2200) Events per Hour (1)				
				No A		Change from Baseline		
			Related		Windows		Windows	
Type	ID	Description	Field	Open	Closed	Open	Closed	
	R01	Sullivan Rd	Ault	8	8	-2	-2	
	R02	Salal St. and N. Northgate Dr	Ault	8	8	-2	-	
		Central Whidbey	Ault	5	-	-	-	
	R04	Pull and Be Damned Point	Ault	2	1	-	-	
	R05	Snee-Oosh Point	Ault	2	1	-	-	
		Admirals Dr and Byrd Dr	OLF	-	-	-	-	
	R07	Race Lagoon	OLF	1	-	-	-	
	R08	Pratts Bluff	OLF	-	-	-	-	
ল	R09	Cox Rd and Island Ridge Way	OLF	-	-	-	-	
anti:	R10	Skyline	None	_	-	-1	_	
ide	R11	Sequim	None	-	-	_	-	
Residential	R12	Port Angeles	None	_	-	_	_	
	R13	Beverly Beach, Freeland	OLF	-	-	-	-	
	R14	E Sleeper Rd & Slumber Ln	Ault	8	7	-	-	
	R15	Long Point Manor	OLF	1	1	-	-	
	R16	Rocky Point Heights	OLF	2	1	_	-	
	R17	Port Townsend	None	_	-	-	-	
	R18	Marrowstone Island (Nordland)	None	-	-	-	-	
	R19	Island Transit Offices, Coupeville	OLF	1	1	-	-	
	R20	South Lopez Island (Agate Beach)	None	_	-	-	-	
	S01	Oak Harbor High School	Ault	6	2	-	-	
	S02	Crescent Harbor Elementary School	Ault	5	2	_	-	
	S03	Coupeville Elementary School	OLF	1	-	-	-	
	S04	Anacortes High School	Ault	-	-	-	-	
0	S05	Lopez Island School	None	-	-	-	-	
School	S06	Friday Harbor Elementary School	None	-	-	-	-	
SS	S07	Sir James Douglas Elementary School	None	-	-	-	-	
	S08	Fidalgo Elementary School	Ault	-	-	-	-	
	S09	La Conner Elementary School	Ault	1	-	-	-	
	S10	Elger Bay Elementary School	OLF	-	-	-		

⁽¹⁾ with an indoor Maximum Sound Level of at Least 50 dB; assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

⁽²⁾ The Whidbey General Hospital is located within approximately 1,000 feet of the Coupeville Elementary School; therefore, this location was not modeled individually, but similar result for indoor speech interference for POI S03 would apply.

Table A7.2-6 Classroom Learning Interference for the High-Tempo FCLP Year No Action Alternative

				N	o Actio	า		C	hange	from B	aseline	•
Por	aracan	tative School Location			Indo	or ⁽¹⁾				Indo	or ⁽¹⁾	
Kel	Ji eseii	itative School Location		Win	dows	Win	dows		Wir	ndows	Win	dows
				O	pen	Ck	osed		0	pen	Ck	osed
			Outdoor		Events		Events	Outdoor		Events		Events
_			Leq(8h)	L _{eq(8h)}	per	L _{eq(8h)}	per (2)	Leq(8h)	L _{eq(8h)}	per	L _{eq(8h)}	per (2)
Туре	ID	Description	(dB)	(dB)	Hour ⁽²⁾	(dB)	Hour ⁽²⁾	(dB)	(dB)	Hour ⁽²⁾	(dB)	Hour ⁽²⁾
School Surrogate	R03	Central Whidbey	57	<45	4	<45	-	-	-	-1	-	-
Surr	R11	Sequim	<45	<45	-	<45	-	-	-	-	-	-
	S01	Oak Harbor High School	57	<45	5	<45	2	-1	-1	-1	-1	-
	S02	Crescent Harbor Elementary School	67	52	4	<45	2	-1	-1	-1	-1	-
	S03	Coupeville Elementary School	52	<45	-	<45	-	-	-	-1	-	-
	S04	Anacortes High School	46	<45	-	<45	-	-1	-1	-	-1	-
	S05	Lopez Island School	<45	<45	-	<45	-	-1	-1	-	-1	-
School	S06	Friday Harbor Elementary School	<45	<45	-	<45	-	-	-	-	-	-
ŭ	S07	Sir James Douglas Elementary School	<45	<45	-	<45	-	-	-	-	-	-
	S08	Fidalgo Elementary School	49	<45	-	<45	-	-	-	-	-	-
	S09	La Conner Elementary School	50	<45	1	<45	-	-1	-1	-	-1	-
	S10	Elger Bay Elementary School	<45	<45	-	<45	-	-	-	_	-	-
	Number of Sites Exceeding				3		2			-		-
Mi	nimum	1 Intrusive Event per Hour Number of Intrusive Events										
		per Hour if Exceeding 1			4		2			-		-
Ma	ximum	Number of Intrusive Events			5		2					
		per Hour if Exceeding 1			ာ					_		-

⁽¹⁾ assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

⁽²⁾ Number of Average School-Day Events per hour during 8-hour school day (0800-1600) At or Above an Indoor Maximum (single-event) Sound Level (L_{max}) of 50 dB;

Table A7.2-7 Recreational Speech Interference for the High-Tempo FCLP Year No Action Alternative

	R	epresentative Park Receptor		Average Out vents per Ho		
			No A	action	Increase Act	
Туре	ID	Description	Daytime	Nighttime	Daytime	Daytime
	P01	Joseph Whidbey State Park	8	2	-1	-
	P02	Deception Pass State Park	8	2	-1	-
	P03	Dugualla State Park	8	2	-1	-
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	3	1	-	-
	P05	Ebey's Landing State Park	2		-	-
	P06	Fort Casey State Park	1		-	-
	P07	Cama Beach State Park	3		-	-
Park	P08	Port Townsend	1		-	-
ď	P09	Moran State Park			-	-
	P10	San Juan Islands National Monument	7	2	-1	-
	P11	San Juan Island Visitors Center			-	-
	P12	Cap Sante Park			-1	-
	P13	Lake Campbell	4	1	-1	-
	P14	Spencer Spit State Park			-	-
	P15	Pioneer Park	4	1	-	-
	P16	Marrowstone Island (Fort Flagler)			-	-
	EBLA001	Reuble Farm	2		-	-
	EBLA002	Ferry House	2		-	-
	R01	Sullivan Rd	8	2	-2	-
	R02	Salal St. and N. Northgate Dr	8	2	-2	-
	R03	Central Whidbey	7	2	-1	-
	R04	Pull and Be Damned Point	7	2	-1	-
	R05	Snee-Oosh Point	7	2	-	-
	R06	Admirals Dr and Byrd Dr	1		-	-
	R07	Race Lagoon	3	1	-	-
	R08	Pratts Bluff	1		-	-
<u>.a</u>	R09	Cox Rd and Island Ridge Way	1		-	-
ent	R10	Skyline	4	1	-	-
Residentia	R11	Sequim			-1	-
Re	R12	Port Angeles	1		-	-
	R13	Beverly Beach, Freeland			-	-
	R14	E Sleeper Rd & Slumber Ln	8	2	-2	-
	R15	Long Point Manor	7	2	-	-
	R16	Rocky Point Heights	4	1	-1	-
	R17	Port Townsend	1		1	-
	R18	Marrowstone Island (Nordland)	·····	*	-	-
	R19	Island Transit Offices, Coupeville	3	1	-	-
	R20	South Lopez Island (Agate Beach)	3	1	-1	-
	S01	Oak Harbor High School	8	2	-1	-
	S02	Crescent Harbor Elementary School	7	2	-1	-
	S03	Coupeville Elementary School	3	1	-	-
	S04	Anacortes High School	1	<u> </u>	-	
0	S05	Lopez Island School	1		-	
School	S06	Friday Harbor Elementary School				
ű		Sir James Douglas Elementary School			-	-
	S07		4	4	-	-
	S08	Fidalgo Elementary School	4	1	-	-
	S09	La Conner Elementary School	3	1	-	-
	S10	Elger Bay Elementary School	1		-	-

Table A7.3-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 1 (High-Tempo FCLP Year)²,³

	DNL Conto	our Ranges							
					Greater th	an or			
	65 to <70	dB DNL	70 to <75	dB DNL	equal to 7		Total		
	Area		Area		Area		Area		
	(acres)	Pop⁴	(acres)	Pop ⁴	(acres)	Pop ⁴	(acres)	Pop⁴	
Ault Field									
No Action Alternativ	<i>ie</i>								
High-Tempo FCLP	3,503	3,347	3,260	2,677	5,864	3,530	12,628	9,554	
Year .							'		
Alternative 1		•		•			•	•	
Scenario A (20/80	4,065	3,690	3,278	1,973	6,004	3,548	13,346	9,212	
FCLP split)	(+562)	(+343)	(+18)	(-704)	(+140)	(+18)	(+718)	(-342)	
Scenario B (50/50	3,974	3,667	3,273	2,503	6,528	3,828	13,775	9,997	
FCLP split)	(+471)	(+320)	(+13)	(-174)	(+664)	(+298)	(+1,147)	(+443)	
Scenario C (80/20	3,998	3,853	3,115	2,566	7,009	4,064	14,122	10,483	
FCLP split)	(+495)	(+506)	(-145)	(-111)	(+1,145)	(+534)	(+1,494)	(+929)	
Scenario D (30/70	3,997	3,735	3,203	2,228	6,312	3,714	13,513	9,677	
FCLP split)	(+494)	(+388)	(-57)	(-449)	(+448)	(+184)	(+885)	(+123)	
Scenario E (70/30	3,985	3,791	3,135	2,564	6,898	3,990	14,019	10,327	
FCLP split)	(+482)	(+444)	(-125)	(-113)	(+1,034)	(+460)	(+1,391)	(+773)	
OLF Coupeville									
No Action Alternativ	<i>ie</i>								
High-Tempo FCLP	3,718	881	3,054	786	637	583	7,409	2,250	
Year									
Alternative 1				T			1	1	
Scenario A (20/80	1,897	612	3,064	871	5,707	2,053	10,354	3,536	
FCLP split)	(-1,821)	(-269)	(+10)	(+150)	(+5,070)	(+1,470)	(+2,945)	(+1,286	
Scenario B (50/50	1,897	492	3,467	1,085	4,215	1,592	9,579	3,169	
FCLP split)	(-1,821)	(-389)	(+413)	(+275)	(+3,578)	(+1,009)	(+2,170)	(+919)	
Scenario C (80/20	3,454	1,040	3,183	1,038	1,497	700	8,134	2,778	
FCLP split)	(-264)	(+159)	(+129)	(+250)	(+860)	(+117)	(+725)	(+528)	
Scenario D (30/70	1,556	556	3,265	943	5,341	1,946	10,162	3,445	
FCLP split)	(-2,162)	(-325)	(+211)	(+206)	(+4,704)	(+1,363)	(+2,753)	(+1,195	
Scenario E (70/30	2,996	849	3,195	1,047	2,615	1,039	8,606	5,029	
FCLP split)	(-722)	(-32)	(+141)	(+272)	(+1,978)	(+456)	(+1,197)	(+2,779	
NAS Whidbey Island	-								
No Action Alternativ		4.000	C 245	2.452	6 563	1.463	20.027	44.00	
High-Tempo FCLP	7,221	4,228	6,315	3,463	6,502	4,113	20,037	11,804	
Year Altarmatica 1									
Alternative 1	F 647	4 202	C 242	2.044	44 744	F 603	22.700	42.740	
Scenario A (20/80	5,647	4,303	6,342	2,844	11,711	5,602	23,700	12,749	
FCLP split)	(-1,574)	(+75)	(+27)	(-619)	(+5,209)	(+1,489)	(+3,663)	(+945)	
Scenario B (50/50	5,872	4,159	6,740	3,587	10,742	5,420	23,354	13,166	
FCLP split)	(-1,349)	(-69)	(+425)	(+125)	(+4,240)	(+1,307)	(+3,317)	(+1,362	
Scenario C (80/20	7,452	4,893	6,298	3,604	8,506	4,764	22,256	13,261	
FCLP split)	(+231)	(+665)	(-17)	(+141)	(+2,004)	(+651)	(+2,219)	(+1,457	
Scenario D (30/70	5,554	4,291	6,468	3,171	11,653	5,660	23,675	13,122	
FCLP split)	(-1,667)	(+63)	(+153)	(-292)	(+5,151)	(+1,547)	(+3,638)	(+1,318	

Table A7.3-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 1 (High-Tempo FCLP Year)^{2,3}

	DNL Cont	DNL Contour Ranges									
					Greater th	Greater than or					
	65 to <70	65 to <70 dB DNL		70 to <75 dB DNL (equal to 75 dB DNL		Total			
	Area	Area			Area		Area				
	(acres)	Pop ⁴	(acres)	Pop ⁴	(acres)	Pop ⁴	(acres)	Pop ⁴			
Scenario E (70/30	6,981	4,640	6,330	3,593	9,514	5,029	22,825	13,262			
FCLP split)	(-240)	(+412)	(+15)	(+130)	(+3,012)	(+916)	(+2,788)	(+1,458)			

- ¹ All five scenarios are outlined in Section 2.3.3, where the split represents the percent of FCLPs conducted at Ault Field and OLF Coupeville, respectively (i.e., 20/80 FCLP split = 20 percent of FCLPs at Ault Field and 80 percent of FCLPs at OLF Coupeville).
- ² Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- The difference between the No Action Alternative and Alternative 1 is noted in parentheses.
- ⁴ Population counts of people within the DNL contour ranges were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour range, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contour ranges (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas within the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall within the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁵ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level FCLP = Field Carrier Landing Practice

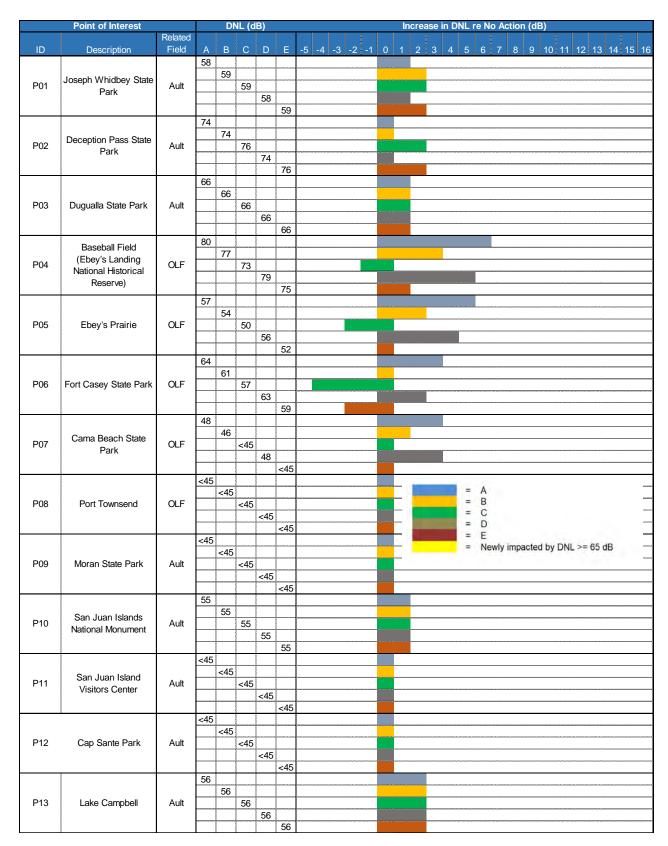


Figure A7.3-1 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 1

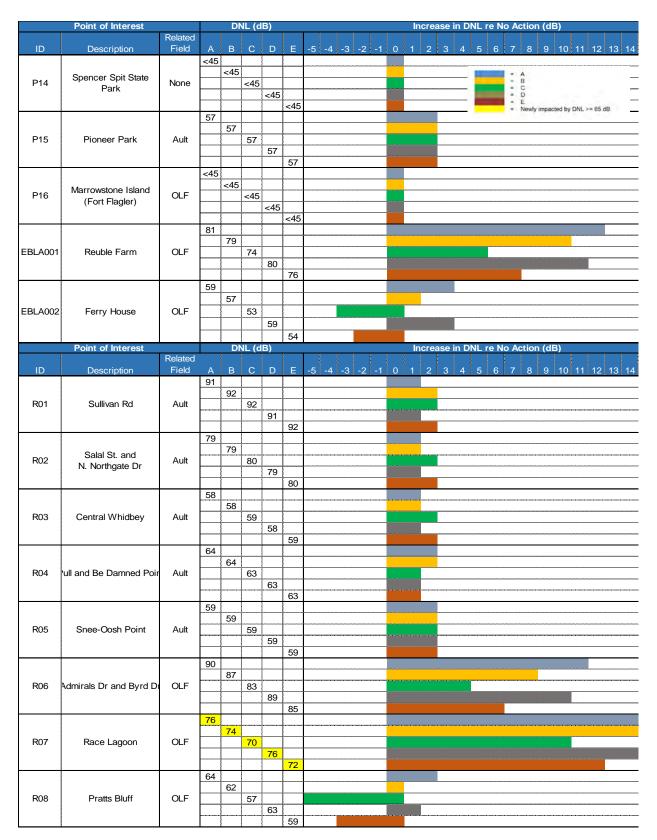


Figure A7.3-1 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 1 (continued)

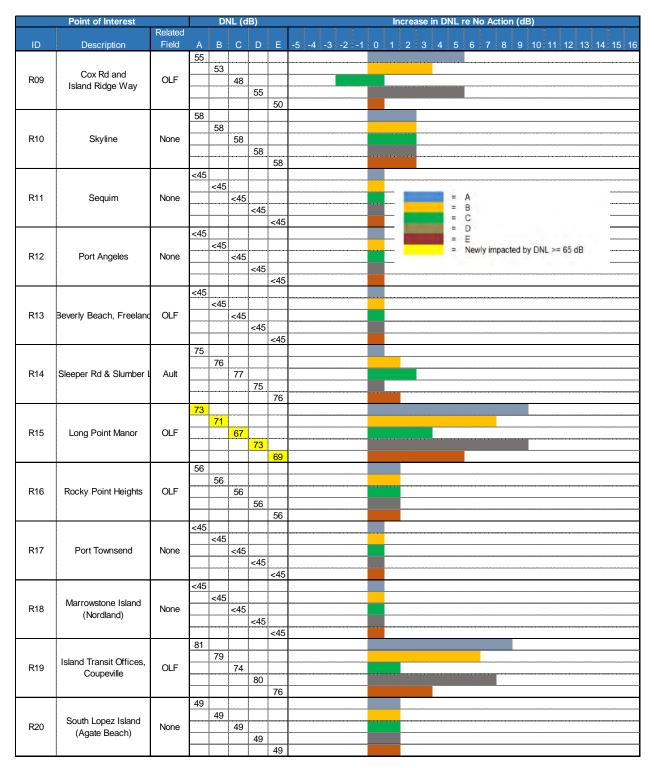


Figure A7.3-1 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 1 (continued)

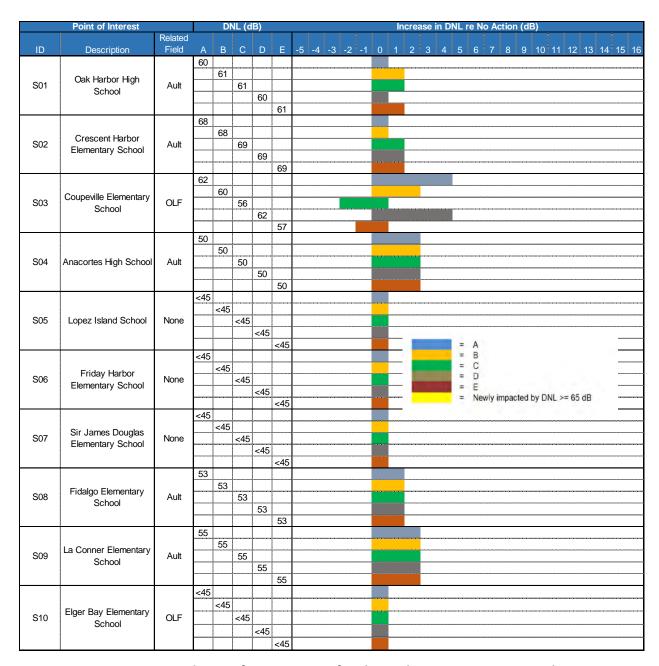


Figure A7.3-1 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 1 (concluded)

Table A7.3-2 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1A

Band		10 th								
of	Average	Percentile		Estimated	d Population		Change in population re No Action			
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-			
75-76	1.0	4.0	-	1	137	138	-	-	105	105
76-77	1.0	4.5	-	195	189	384	-	41	143	184
77-78	1.5	5.0	-	275	166	441	-	(1)	120	119
78-79	2.0	5.5	-	150	100	250	-	(19)	76	56
79-80	2.5	6.0	-	133	85	218	-	31	78	108
80-81	3.0	7.0	-	77	73	150	-	2	71	73
81-82	3.5	8.0	-	64	64	127	-	12	64	76
82-83	4.0	9.0	_	48	53	101	_	10	53	63
83-84	4.5	10.0	-	34	62	95	-	(2)	62	59
84-85	5.5	11.0	-	27	71	98	-	15	71	85
85-86	6.0	12.0	-	10	2	11	-	-	2	2
86-87	7.0	13.5	_	9	_	9	_	2	_	2
87-88	7.5	15.0	-	6	_	6	-	1	-	1
88-89	8.5	16.5	-	4	_	4	_	2	_	2
89-90	9.5	18.0	-	1	-	1	_	1	-	1
90-91	10.5	19.5	_	_	_	_	_	******************************	***************************************	
91-92	11.5	21.0	-	-	-	-	-			

(1) rounded to nearest 0.5 dB

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB are estimated based on extrapolating available data from EPA guidance (EPA 1982).

Table A7.3-3 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1B

Band		10 th								
of	Average	Percentile		Estimated	d Population		Change in population re No Action			
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-				-	-	-	-
75-76	1.0	4.0	-	6	63	69	-	6	30	36
76-77	1.0	4.5	195	370	104	669	195	215	58	468
77-78	1.5	5.0	-	350	83	433	-	73	37	111
78-79	2.0	5.5	-	261	72	333	_	92	48	140
79-80	2.5	6.0	-	174	61	235	-	72	54	126
80-81	3.0	7.0	-	99	56	155	-	23	55	78
81-82	3.5	8.0	_	73	63	136	-	21	63	85
82-83	4.0	9.0	_	61	62	123	_	23	62	85
83-84	4.5	10.0	_	36	1	37	_	=	1	1
84-85	5.5	11.0	-	27	-	27	-	14	-	14
85-86	6.0	12.0	-	23	-	23	-	14	-	14
86-87	7.0	13.5	-	9	-	9	-	2	-	2
87-88	7.5	15.0	-	7	-	7	-	3	-	3
88-89	8.5	16.5	-	4	-	4	-	2	-	2
89-90	9.5	18.0	_	2	-	2	_	2	-	2
90-91	10.5	19.5	-				-	-	-	-
91-92	11.5	21.0	-				-	-	-	-

(1) rounded to nearest 0.5 dB

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB are estimated based on extrapolating available data from EPA guidance (EPA 1982).

Table A7.3-4 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1C

Band		10 th								
of	Average	Percentile		Estimated	Population		Ch	ange in popula	ation re No Action	1
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	76	14	90	-	76	(19)	57
76-77	1.0	4.5	607	382	54	1,043	607	228	7	842
77-78	1.5	5.0	-	453	62	515	_	176	17	193
78-79	2.0	5.5	-	305	68	372	_	136	43	179
79-80	2.5	6.0	-	280	2	281	-	178	(6)	172
80-81	3.0	7.0	-	144	-	145	_	69	(1)	68
81-82	3.5	8.0	-	82	0	82	-	31	(0)	31
82-83	4.0	9.0	-	65	-	65	-	27	-	27
83-84	4.5	10.0	-	41	-	41	-	5	-	5
84-85	5.5	11.0	-	29	-	29	-	17	-	17
85-86	6.0	12.0	-	29	-	29	-	19	-	19
86-87	7.0	13.5	-	10	-	10	-	3	-	3
87-88	7.5	15.0	-	8	-	8	-	4	-	4
88-89	8.5	16.5	-	5	-	5	-	3	-	3
89-90	9.5	18.0	-	2	-	2	-	2	-	2
90-91	10.5	19.5	-	-	-	_	_	_	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

(1) rounded to nearest 0.5 dB

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB are estimated based on extrapolating available data from EPA guidance (EPA 1982).

Table A7.3-5 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1D

Band		10 th								
of	Average	Percentile		Estimated	l Population		Change in population re No Action			
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	1	159	160	-	1	126	127
76-77	1.0	4.5	-	240	169	408	-	85	122	207
77-78	1.5	5.0	-	321	133	454	-	44	88	132
78-79	2.0	5.5	-	191	92	284	-	22	68	90
79-80	2.5	6.0	-	144	75	220	-	42	68	110
80-81	3.0	7.0	-	83	66	149	-	7	65	72
81-82	3.5	8.0	-	69	59	128	-	18	59	76
82-83	4.0	9.0	-	49	58	107	-	10	58	68
83-84	4.5	10.0	-	35	69	104	-	(1)	69	68
84-85	5.5	11.0	-	30	26	55	-	17	26	43
85-86	6.0	12.0	-	10	1	11	-	1	1	1
86-87	7.0	13.5	-	9	-	9	-	2	-	2
87-88	7.5	15.0	-	6	-	6	-	2	-	2
88-89	8.5	16.5	-	4	-	4	-	2	-	2
89-90	9.5	18.0	-	1	-	1	-	1	-	1
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

(1) rounded to nearest 0.5 dB

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB are estimated based on extrapolating available data from EPA guidance (EPA 1982).

Table A7.3-6 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 1E

Band		10 th		Estimatos	l Population		Ch	ango in nonul	ation re No Actior	
of L _{eq(24)}	Average NIPTS	Percentile NIPTS	Ault Field		OLF Coupeville		Ault Field		OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)		(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	57	14	70	-	57	(19)	38
76-77	1.0	4.5	415	407	69	892	415	253	23	691
77-78	1.5	5.0	-	407	62	468	-	130	16	146
78-79	2.0	5.5	-	295	55	350	_	126	31	157
79-80	2.5	6.0	-	245	64	309	-	143	57	199
80-81	3.0	7.0	-	126	52	178	-	51	51	102
81-82	3.5	8.0	-	79	1	80	-	28	1	28
82-83	4.0	9.0	_	64	-	64	_	26	0	26
83-84	4.5	10.0	-	38	0	38	-	2	0	2
84-85	5.5	11.0	-	29	-	29	-	16	-	16
85-86	6.0	12.0	-	26	-	26	_	17	-	17
86-87	7.0	13.5	-	10	-	10	_	3	-	3
87-88	7.5	15.0	-	8	-	8	-	3	-	3
88-89	8.5	16.5	-	5	-	5	_	3	-	3
89-90	9.5	18.0	-	2	-	2	_	2	-	2
90-91	10.5	19.5	-	-	-	-	_	_	-	_
91-92	11.5	21.0	-	-	-	-	-	-	-	-

⁽¹⁾ rounded to nearest 0.5 dB

Table A7.3-7 Average Indoor Nightly Probability of Awakening at Applicable POIs for the High-Tempo FCLP Year, Alternative 1

	F	oint of Interest								Ar	nnual Aver	age Nightly	(2200-070	0) Probabi	lity of Awa	kening (%)	(1)						
				All	:1A	Change No A		Alt	-1D	_	e from	Ale	1C	_	e from	Ale	1D	Change No A		Alt	.1E	Change	e from
			Related		Windows	Windows	Windows		Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows		Windows	Windows		Windows	Windows	Windows
Туре	ID	Description	Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
	R01	Sullivan Rd	Ault	70%	54%	8%	8%	74%	58%	12%	12%	79%	64%	17%	18%	71%	55%	9%	9%	78%	62%	16%	16%
	R02	Salal St. and N. Northgate Dr	Ault	52%	37%	8%	6%	55%	40%	11%	9%	61%	45%	17%	14%	53%	38%	9%	7%	60%	44%	16%	13%
	R03	Central Whidbey	Ault	21%	11%	4%	2%	23%	12%	6%	3%	26%	14%	9%	5%	22%	12%	5%	3%	26%	14%	9%	5%
	R04	Pull and Be Damned Point	Ault	27%	13%	6%	4%	28%	13%	7%	4%	31%	14%	10%	5%	27%	13%	6%	4%	30%	13%	9%	4%
	R05	Snee-Oosh Point	Ault	22%	8%	6%	3%	23%	8%	7%	3%	25%	8%	9%	3%	22%	8%	6%	3%	25%	8%	9%	3%
	R06	Admirals Dr and Byrd Dr	OLF	45%	32%	36%	26%	28%	19%	19%	13%	12%	8%	3%	2%	41%	29%	32%	23%	17%	11%	8%	5%
	R07	Race Lagoon	OLF	22%	10%	17%	8%	14%	6%	9%	4%	7%	2%	2%	-	20%	9%	15%	7%	9%	3%	4%	1%
	R08	Pratts Bluff	OLF	16%	11%	12%	9%	10%	6%	6%	4%	4%	2%	-	-	15%	9%	11%	7%	6%	3%	2%	1%
	R09	Cox Rd and Island Ridge Way	OLF	14%	9%	11%	7%	8%	5%	5%	3%	3%	2%	-	-	12%	8%	9%	6%	4%	3%	1%	1%
l ig	R10	Skyline	None	8%	3%	2%	1%	9%	3%	3%	1%	11%	3%	5%	1%	9%	3%	3%	1%	10%	3%	4%	1%
<u>ē</u>	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Residentia ^[2]	R12 R13	Port Angeles Beverly Beach, Freeland	None OLF	1% 7%	- 0%	1% 5%	-	1% 4%		1% 2%	-	1% 2%	0% -	1% -	-	0% 6%	0% -	- 4%	-	1% 2%	0% -	1% -	-
	R14	E Sleeper Rd & Slumber	Ault	46%	33%	6%	5%	50%	36%	10%	8%	56%	41%	16%	13%	47%	34%	7%	6%	54%	40%	14%	12%
	D.1.5	Ln Distant	0.5	000/	4.40/	450/	400/	000/	00/	00/	F0/	450/	40/	407		0.407	400/	400/	00/	400/	5 0/	F0/	40/
	R15	Long Point Manor	OLF OLF	26%	14%	15%	10%	20%	9%	9%	5%	15%	4%	4%	- 1%	24%	13%	13%	9%	16% 14%	5%	5%	1%
I - 1	R16 R17	Rocky Point Heights Port Townsend	None	12% 1%	4%	2%	1%	13% 1%	4%	3%	1%	14% 0%	4%	4% -1%	1%	12% 1%	4%	2%	1%	14%	4%	4%	1%
	R18	Marrowstone Island	None	-	-	-	-	- 170	-	-	-	0%	-	-170	-	- 176	-	-	-	0%	-	-	-
	R19	(Nordland) Island Transit Offices, Coupeville	OLF	37%	24%	27%	19%	24%	14%	14%	9%	12%	6%	2%	1%	34%	22%	24%	17%	16%	8%	6%	3%
	R20	South Lopez Island (Agate Beach)	None	4%	1%	1%	-	4%	1%	1%	-	3%	1%	_	-	3%	1%	-	-	3%	1%	-	-
	S01	Oak Harbor High School	Ault	27%	16%	5%	3%	29%	18%	7%	5%	33%	21%	11%	8%	28%	17%	6%	4%	32%	20%	10%	7%
	S02	Crescent Harbor Elementary School	Ault	28%	17%	5%	4%	30%	18%	7%	5%	34%	21%	11%	8%	29%	18%	6%	5%	33%	21%	10%	8%
a)	S03	Coupeville Elementary School	OLF	19%	12%	14%	9%	12%	7%	7%	4%	5%	3%	-	-	17%	11%	12%	8%	7%	4%	2%	1%
enti	S04	Anacortes High School	Ault	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-
residential)	S05	Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(near re	S06	Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S07	Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
လွ	S08	Fidalgo Elementary School	Ault	10%	3%	3%	1%	10%	3%	3%	1%	11%	3%	4%	1%	10%	3%	3%	1%	11%	3%	4%	1%
	S09	La Conner Elementary School	Ault	11%	5%	3%	2%	11%	6%	3%	3%	11%	5%	3%	2%	11%	5%	3%	2%	11%	5%	3%	2%
	S10	Elger Bay Elementary School	OLF	0%	0%	-	-	0%	0%	-	-	0%	0%	-	-	0%	0%	-	-	0%	0%	-	-

(2) R01 and R06 include interior SELs greater than 100 dB with windows open

Table A7.3-8 Indoor Speech Interference for the High-Tempo FCLP Year, Alternative 1

		Point of Interest												aily Indoor ents per Ho									
				Alt	1A	<u> </u>	e from ction	Alt	:1B		e from ction	Alt	1C	_	e from ction	Alt	1D		ge from action	Alt1E	:		ge from Action
			Related		Windows				Windows	Windows		Windows		Windows		Windows		Windows	Windows		Vindows	Windows	Windows
Type	ID	Description	Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed		Closed	Open	Closed
	R01 R02	Sullivan Rd Salal St. and N.	Ault Ault	9	9	+1 +1	+1 +1	10 9	10 9	+2 +1	+2 +1	10 10	10 10	+2 +2	+2 +2	9	9	+1 +1	+1 +1	10 10	10 10	+2 +2	+2 +2
	R03	Northgate Dr Central Whidbey	Ault	5	_	-	-	6	-	+1	-	6	-	+1	-	5	-	-	-	6		+1	-
	R04	Pull and Be Damned Point	Ault	3	1	+1	-	3	1	+1	-	3	1	+1	-	3	1	+1	-	3	1	+1	-
	R05	Snee-Oosh Point	Ault	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
	R06	Admirals Dr and Byrd Dr	OLF	2	2	+2	+2	1	1	+1	+1	1	1	+1	+1	2	2	+2	+2	1	1	+1	+1
	R07	Race Lagoon	OLF	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
	R08	Pratts Bluff Cox Rd and Island Ridge	OLF	2	1	+2	+1	1	1	+1	+1	1	-	+1	-	2	1	+2	+1	1	-	+1	-
ज	R09	Way	OLF	1	-	+1	-	1	-	+1	-	-	-	-	-	1	-	+1	-	1	-	+1	-
enti	R10	Skyline	None	-	-	-	-	-	-	-	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
Residential	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ĕ	R12 R13	Port Angeles Beverly Beach, Freeland	None OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	9	8	+1	+1	9	8	+1	+1	10	9	+2	+2	9	8	+1	+1	10	9	+2	+2
	R15	Long Point Manor	OLF	3	2	+2	+1	2	1	+1	-	1	1	-	-	3	2	+2	+1	2	1	+1	-
	R16	Rocky Point Heights	OLF	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
	R17	Port Townsend	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R18	Marrowstone Island (Nordland)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	2	2	+1	+1	2	1	+1	-	1	1	-	-	2	2	+1	+1	1	1	-	-
	R20	South Lopez Island (Agate Beach)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S01	Oak Harbor High School	Ault	6_	2	-	-	7	3	+1	+1	7	3	+1	+1	7	3	+1	+1	7	3	+1	+1
	S02	Crescent Harbor Elementary School	Ault	5	2	-	-	6	2	+1	-	7	3	+2	+1	6	2	+1	-	6	3	+1	+1
residential)	S03	Coupeville Elementary School	OLF	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1	1	-	+1
ige	S04	Anacortes High School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
res	S05	Lopez Island School Friday Harbor	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(near	S06	Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
School	S07	Sir James Douglas Elementary School	None	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-
й	S08	Fidalgo Elementary School	Ault	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	S09	La Conner Elementary School	Ault	1	-	-	-	1	1	-	+1	1	-	-	-	1	-	-	-	1	-	-	-
	S10	Elger Bay Elementary School	OLF	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-

Table A7.3-9 Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 1

						Alt1A			C	hange	from No		n
		Representative School Location			24.0	Indo				100	Indo		
						dows		idows osed			ndows		ndows
				Outdoor	U	oen Events	Cid	Events	Outdoor	O	pen Events	Cit	osed Events
			Related	L _{eq(8h)}	L _{eq(8h)}	per	L _{eq(8h)}	per	L _{eq(8h)}	L _{eq(8h)}	per	L _{eq(8h)}	per
Туре	ID	Description	Field	(dB)	(dB)	Hour ⁽²⁾	(dB)	Hour ⁽²⁾	(dB)	(dB)	Hour ⁽²⁾	(dB)	Hour ⁽²⁾
loor ogal	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
School Surrogate	R11	Sequim	None	<45	<45	-	<45	_	+1	+1	_	+1	-
S		'											ļ
	S01 S02	Oak Harbor High School Crescent Harbor Elementary School	Ault Ault	57 68	<45 53	6 5	<45 <45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	57	<45	2	<45	1	+5	+5	+2	+5	+1
	S04	Anacortes High School	Ault	47	<45		<45		+1	+1	<u>'-</u>	+1	
_	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
Sc	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-3	-3	-	-3	-
	S08	Fidalgo Elementary School	Ault	49	<45	_	<45			_	-	_	_
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	+1	+1	 	+1	_
		Elger Bay Elementary School	OLF	<45	<45	- '	<45	-	+1	+1	-	+1	-
	010	Number of Sites Exceeding		170	\TU		170						
		1 Intrusive Event per Hour				4		2			1		-
		Minimum Number of Intrusive Events per Hour if Exceeding 1				2		2			+2		-
		Maximum Number of Intrusive Events per Hour if Exceeding 1				6		2			+2		-
		Point of Interest				Alt1B			С	hange	from No	Actio	n
ool gate	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
School Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S01	Oak Harbor High School	Ault	58	<45	7	<45	2	+1	+1	+2	+1	-
	S02	Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	-
	S03	Coupeville Elementary School	OLF	55	<45	1	<45	1	+3	+3	+1	+3	+1
0	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
School		Lopez Island School	None	<45	<45	-	<45	-	-	-	-	-	-
Ñ	S06 S07	Friday Harbor Elementary School Sir James Douglas Elementary School	None None	<45 <45	<45 <45	-	<45 <45	-	-3	-3	 -	-3	
	~~~~~~		Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding 1 Intrusive Event per Hour				3		2			2		-
		Minimum Number of Intrusive Events  per Hour if Exceeding 1				5		2			+2		-
		Maximum Number of Intrusive Events				7		2			+2		-
		per Hour if Exceeding 1  Point of Interest				Alt1C			C	hange	from No	Actio	n
School urrogate	R03	Central Whidbey	Ault	58	<45	6	<45	-	+1	+1	+2	+1	-
School Surrogat	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
		Crescent Harbor Elementary School	Ault	68	53	6	<45	3	+1	+1	+2	+1	+1
	~~~~~~	Coupeville Elementary School	OLF	52	<45	1	<45	-	-	-	+1	-	-
_		Anacortes High School Lopez Island School	Ault	47 <45	<45	-	<45	-	+1	+1	-	+1	-
School	S05 S06	Friday Harbor Elementary School	None None	<45 <45	<45 <45	-	<45 <45	-	+1	+1	-	+1	-
S		Sir James Douglas Elementary School	None	<45 <45	<45	-	<45		-3	-3	 -	-3	-
	000000000000000000000000000000000000000	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	+1	+1	-	+1	-
		Elger Bay Elementary School	OLF	<45	<45	- '	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding				3		2			3		-
		1 Intrusive Event per Hour Minimum Number of Intrusive Events				6		3			+2		_
		per Hour if Exceeding 1 Maximum Number of Intrusive Events											
Notes:		per Hour if Exceeding 1				7		3			+2		-

(1) assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

(2) Number of Average School-Day Events per hour during 8-hour school day (0800-1600) At or Above an Indoor Maximum (single-event) Sound Level (L_{max}) of 50 dB;

Table A7.3-9 Classroom Learning Interference for High-Tempo FCLP Year, Alternative 1 (concluded)

						Alt1D			С	hange	from No	Actio	n
						Indo	or ⁽¹⁾				Indo		
		Representative School Location			Wir	idows	Wir	idows		Wir	dows	Wir	dows
					0	pen	Clo	osed		0	oen	Clo	sed
				Outdoor		Events		Events	Outdoor		Events		Events
			Related	L _{eq(8h)}	L _{eq(8h)}	per	L _{eq(8h)}	per	L _{eq(8h)}	L _{eq(8h)}	per	L _{eq(8h)}	per
Type	ID	Description	Field	(dB)		Hour ⁽²⁾	(dB)	Hour ⁽²⁾	(dB)	(dB)	Hour ⁽²⁾		Hour ⁽²⁾
							()	rioui					i loui
School Surrogate	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
ch To													
Sul	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
		Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	_
		Coupeville Elementary School	OLF	57	<45	2	<45	1	+5	+5	+2	+5	+1
	S04	Anacortes High School	Ault	47	<45		<45	l -	+1	+1	-	+1	-
_	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
8	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	- '-'	-		-
School								-					
"	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S08	Fidalgo Elementary School	Ault	49	<45	-	<45	-	-	-	-	-	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	+1	+1	-	+1	_
İ		Elger Bay Elementary School	OLF	<45	<45	·	<45	-	+1	+1	-	+1	
	310	Number of Sites Exceeding	OLF	<4 0	<4 0	-	<4 0	-	TI	ŦI	-	Ŧ1	-
		1 Intrusive Event per Hour				4		2			1		-
		Minimum Number of Intrusive Events											
		per Hour if Exceeding 1				5		2			+2		-
		Maximum Number of Intrusive Events											
		per Hour if Exceeding 1				6		2			+2		-
		Point of Interest				Alt1E			C	hango	from No	Actio	2
an.		Foint of interest	1		ı	AILIL	1	1		nange	II OIII INC	ACTIO	
School Surrogate	R03	Central Whidbey	Ault	58	<45	6	<45	-	+1	+1	+2	+1	-
ch S													
Sul	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
	***************************************	Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	-
		Coupeville Elementary School	OLF	53	<45	1	<45	-	+1	+1	+1	+1	-
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
School	S05		None	<45	<45	-	<45	-	+2	+2	-	+2	-
ည်		Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1		-		-
0)		Sir James Douglas Elementary School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
		Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	+1	+1	-	+1	-
	S10		OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding				_		_			2		
		1 Intrusive Event per Hour				3		2			3		-
		Minimum Number of Intrusive Events				6		2			+2		
		per Hour if Exceeding 1				J					74		_
		Maximum Number of Intrusive Events				7		3			+2		_]
		per Hour if Exceeding 1									12		
Notes:													

Table A7.3-10 Recreational Speech Interference for High-Tempo FCLP Year, Alternative 1

								Ar	nnual A	Average	Outd		ily Day	time E	vents	per Ho	ur,			
		ntative Park Receptor		t1A	No A	ase re Action		t1B	No A	ase re		t1C	No A	ase re		t1D	No A	ase re Action		:1E
Type	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	P01	Joseph Whidbey State Park	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	10	3
	P02	Deception Pass State Park	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	10	3
	P03	Dugualla State Park	8	2	-	-	9	2	+1	-	9	3	+1	+1	9	2	+1	-	9	3
								· · · · · · · · · · · · · · · · · · ·												
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	5	1	+2	-	4	1	+1	-	3	1	-	-	5	1	+2	-	4	1
	P05	Ebey's Landing State Park	4	1	+2	+1	3	1	+1	+1	3	1	+1	+1	4	1	+2	+1	3	1
	P06	Fort Casey State Park	3	1	+2	+1	2	1	+1	+1	1		-	-	3	1	+2	+1	2	
	P07	Cama Beach State Park	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	5	1	+2	+1	4	1
	P08	Port Townsend	2	1	+1	+1	2	1	+1	+1	1		-	-	2	1	+1	+1	1	
	P09	Moran State Park		-	-	-	-	 -	-	-	-	_	-	-		-	-	-		-
Park	1 03																			
Pa	P10	San Juan Islands National Monument	8	2	+1	-	9	2	+2	-	9	3	+2	+1	8	2	+1	-	9	3
	P11	San Juan Island Visitors Center	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
	P12	Cap Sante Park				-	<u> </u>	 -			1	-	+1		1	<u> </u>	+1	-		
	P13	Lake Campbell	5	1	+1	-	5	1	+1	-	5	2	+1	+1	5	1	+1	-	5	2
	P14	Spencer Spit State Park	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-
	P15	Pioneer Park	4	1	-	-	4	1	-	-	4	1	-	-	4	1	-	-	4	1
	P16	Marrowstone Island (Fort Flagler)	2	1	+2	+1	1	-	+1	-	-	-	-	-	1	1	+1	+1	1	-
	EBLA001	Reuble Farm	4	1	+2	+1	3	1	+1	+1	2	-	-	-	4	1	+2	+1	3	1
	EBLA002	Ferry House	4	1	+2	+1	3	1	+1	+1	2	-	-	-	4	1	+2	+1	3	1
	R01	Sullivan Rd	9	2	+1		10	3	+2	+1	10	3	+2	+1	9	2	+1		10	3
	R02	Salal St. and N. Northgate Dr	9	2	+1	-	10	3	+2	+1	10	3	+2	+1	9	2	+1	-	10	3
	R03	Central Whidbey	8	2	+1	-	9	2	+2	-	9	3	+2	+1	8	2	+1	-	9	3
	R04	Pull and Be Damned Point	8	2	+1	-	9	2	+2	-	9	3	+2	+1	9	2	+2	-	9	3
	R05	Snee-Oosh Point	8	2	+1	-	8	2	+1	-	9	3	+2	+1	8	2	+1	-	9	3
	R06	Admirals Dr and Byrd Dr	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	-
	R07	Race Lagoon	5	1	+2		4	1	+1		3	1		-	4	1	+1	<u> </u>	3	1
	R08	Pratts Bluff		1	+2		2	1	+1		1		·····		3	1		+1	2	
	R09	Cox Rd and Island Ridge Way	3 2	1	+1	+1 +1	2	1	+1	+1 +1	1	-	-	-	2	1	+2 +1	+1	1	-
_														y						
Residential	R10	Skyline	4	1	_	-	4	1	-	-	5	2	+1	+1	4	1	-	-	5	2
je je	R11	Sequim	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-
.5	R12	Port Angeles	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-	1	-
8	R13	Beverly Beach, Freeland	1		+1	-	1	-	+1	-	-	-	-	-	1	-	+1	-	-	-
	R14	E Sleeper Rd & Slumber Ln	9	2	+1	-	10	2	+2	-	10	3	+2	+1	9	2	+1	-	10	3
	R15	Long Point Manor	8	3	+1	+1	9	3	+2	+1	8	3	+1	+1	9	3	+2	+1	8	3
									***********			2								
1	R16	Rocky Point Heights	5	2	+1	+1	5	2	+1	+1	5		+1	+1	5	2	+1	+1	5	2
1	R17	Port Townsend	2	1	+1	+1	1	ļ	-		-		-1		1	1	-	+1	1	-
	R18	Marrowstone Island (Nordland)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	5	2	+2	+1	4	1	+1	-	3	1	-	-	5	1	+2	-	4	1
	R20	South Lopez Island (Agate Beach)	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1
	S01	Oak Harbor High School	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	10	3
1		Crescent Harbor Elementary					I	1 -	r .				r			I .	r .			
	S02 S03	School Coupeville Elementary School	8 5	2	+1	-	9	2	+2 +1	-	9	3 1	+2	+1	9	2	+2 +1	-	9	3
	S04					ļ	************			ļ <u>.</u>								 	ა 1	
		Anacortes High School	11	-	-	-	11	-	-	-	11	-	-	-	11	-	-	-		-
School	S05 S06	Lopez Island School Friday Harbor Elementary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ő	S07	School Sir James Douglas	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S08	Elementary School Fidalgo Elementary School	4	1	-	-	5	1	+1	-	5	2	+1	+1	5	1	+1	-	5	1
	S09	La Conner Elementary School	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1
	S10	Elger Bay Elementary School	1	-		-	1		-		1	-	-	-	1	-	-	-	1	-
	0.10	1 - 3 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			L	ı	<u>'</u>	1	L		<u>'</u>	L	L			L				

Table A7.4-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 2 (High-Tempo FCLP Year)²,³

				DNL Con	tour Ranges			
						an or equal		
	65 to <70 d	B DNL	70 to <75	dB DNL	to 75 dB D	NL .	Total	
	Area		Area		Area		Area	
	(acres)	Pop⁴	(acres)	Pop⁴	(acres)	Pop⁴	(acres)	Pop⁴
Ault Field								
No Action Alternative							_	
High-Tempo FCLP Year	3,503	3,347	3,260	2,677	5,864	3,530	12,628	9,554
Alternative 2								
Scenario A (20/80 FCLP	4,085	3,738	3,272	1,929	5,950	3,516	13,306	9,183
split)	(+582)	(+391)	(+12)	(-748)	(+86)	(-14)	(+678)	(-371)
Scenario B (50/50 FCLP	3,952	3,661	3,267	2,491	6,492	3,814	13,712	9,966
split)	(+449)	(+314)	(+7)	(-186)	(+628)	(+284)	(+1,084)	(+412)
Scenario C (80/20 FCLP	3,992	3,766	3,139	2,517	6,845	3,962	13,975	10,245
split)	(+489)	(+419)	(-121)	(-160)	(+981)	(+432)	(+1,347)	(+691)
Scenario D (30/70	4,025	3,753	3,244	2,225	6,192	3,630	13,461	9,608
FCLP split)	(+522)	(+406)	(-16)	(-452)	(+328)	(+100)	(+833)	(+54)
Scenario E (70/30 FCLP	3,968	3,721	3,162	2,486	6,743	3,909	13,873	10,116
split)	(+465)	(+374)	(-98)	(-191)	(+879)	(+379)	(+1,245)	(+562)
OLF Coupeville								
No Action Alternative								
High-Tempo FCLP Year	3,718	881	3,054	786	637	583	7,409	2,250
Alternative 2	T					1	1	
Scenario A (20/80 FCLP		562	3,282	949	5,324	1,938	10,168	3,449
split)	(-2,156)	(-319)	(+228)	(+163)	(+4,687)	(+1,355)	(+2,759)	(+1,199)
Scenario B (50/50 FCLP	2,062	561	3,461	1,060	3,920	1,496	9,443	3,117
split)	(-1,656)	(-320)	(+407)	(+274)	(+3,283)	(+913)	(+2,034)	(+867)
Scenario C (80/20 FCLP	3,447	1,027	3,176	1,042	1,629	736	8,252	2,805
split)	(-271)	(+146)	(+122)	(+256)	(+992)	(+153)	(+843)	(+555)
Scenario D (30/70	1,586	527	3,426	1,006	4,968	1,830	9,980	3,363
FCLP split)	(-2,132)	(-354)	(+372)	(+220)	(+4,331)	(+1,247)	(+2,571)	(+1,113)
Scenario E (70/30 FCLP	2,922	825	3,224	1,051	2,718	1,073	8,865	2,950
split)	(-796)	(-56)	(+170)	(+265)	(2,081)	(+490)	(+1,456)	(+700)
NAS Whidbey Island Co No Action Alternative	тріех							
	7 221	4 220	6 215	2.462	6.502	4 112	20.027	11 004
High-Tempo FCLP Year Alternative 2	7,221	4,228	6,315	3,463	6,502	4,113	20,037	11,804
	E 647	4 200	6 5 5 4	2 970	11 272	E 4E4	22 474	12 622
Scenario A (20/80 FCLP split)	5,647 (-1,574)	4,300 (+72)	6,554 (+239)	2,879 (-584)	11,273 (+4,771)	5,454 (+1,341)	23,474 (+3,437)	12,632 (+828)
Scenario B (50/50 FCLP	6,015	4,222	6,728	3,551	10,412	5,310	23,156	13,083
split)	(-1,206)	(-6)	(+413)	(+88)	(+3,910)	(+1,197)	(+3,119)	(+1,279)
Scenario C (80/20 FCLP	7,439	4,793	6,315	3,559	8,474	4,698	22,228	13,050
split)	(+218)	(+565)	(0)	(+96)	(+1,972)	(+585)	(+2,191)	(+1,246)
Scenario D (30/70	5,612	4,280	6,670	3,231	11,159	5,460	23,441	12,972
FCLP split)	(-1,609)	(+52)	(+355)	(-232)	(+4,657)	(+1,347)	(+3,404)	(+1,168)
Scenario E (70/30 FCLP	6,890	4,546	6,386	3,538	9,461	4,982	22,738	13,065
split)	(-331)	(+318)	(+71)	(+75)	(+2,959)	(+869)	(+2,701)	(+1,261)
~P¢/	\ 33-1	(.510)	11.,+1	(, , 5)	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.000/	(. 2, / 0 1)	(, 20 -)

Table A7.4-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 2 (High-Tempo FCLP Year)^{2,3}

	DNL Conto	ur Ranges	
		Greater than or equal	
65 to <70 dB DNL	70 to <75 dB DNL	to 75 dB DNL	Total
Area (acres) Pop ⁴	Area (acres) Pop ⁴	Area (acres) Pop ⁴	Area (acres) Pop ⁴

- ¹ All five scenarios are outlined in Section 2.3.3, where the split represents the percent of FCLPs conducted at Ault Field and OLF Coupeville, respectively (i.e., 20/80 FCLP split = 20 percent of FCLPs at Ault Field and 80 percent of FCLPs at OLF Coupeville).
- ² Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- The difference between the No Action Alternative and Alternative 1 is noted in parentheses.
- Population counts of people within the DNL contour ranges were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour range, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contour ranges (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas within the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall within the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁵ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level FCLP = Field Carrier Landing Practice

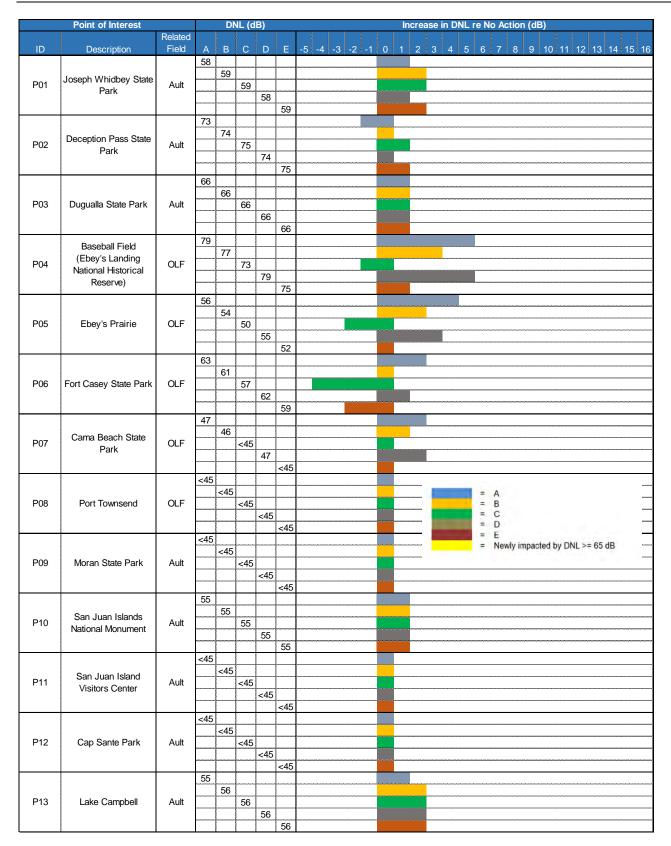


Figure A7.4-1 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 2

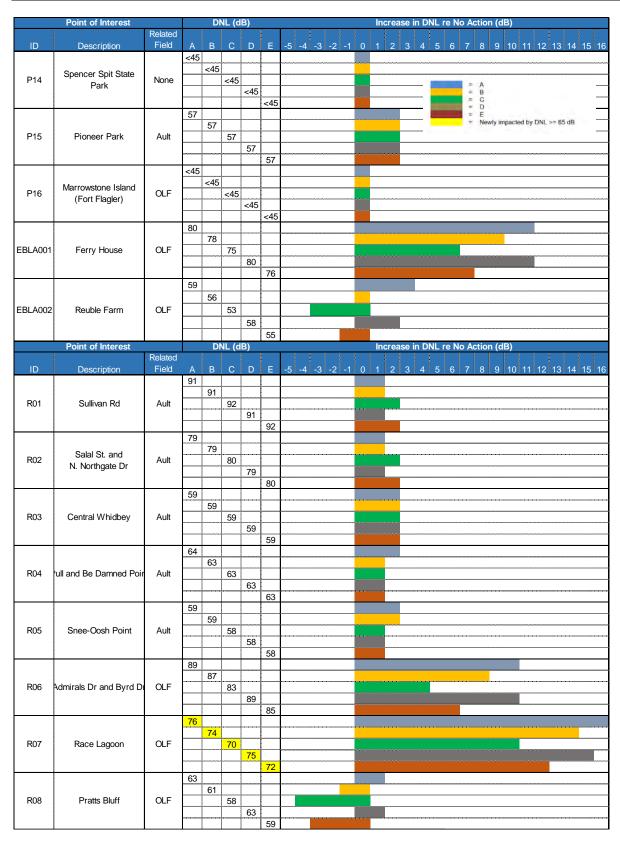


Figure A7.4-1. Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 2 (continued)

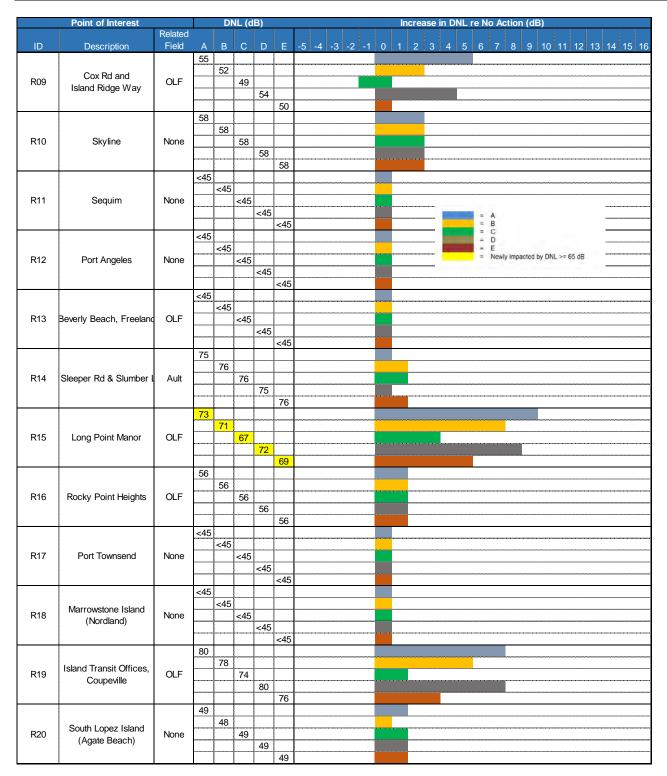


Figure A7.4-1. Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 2 (continued)

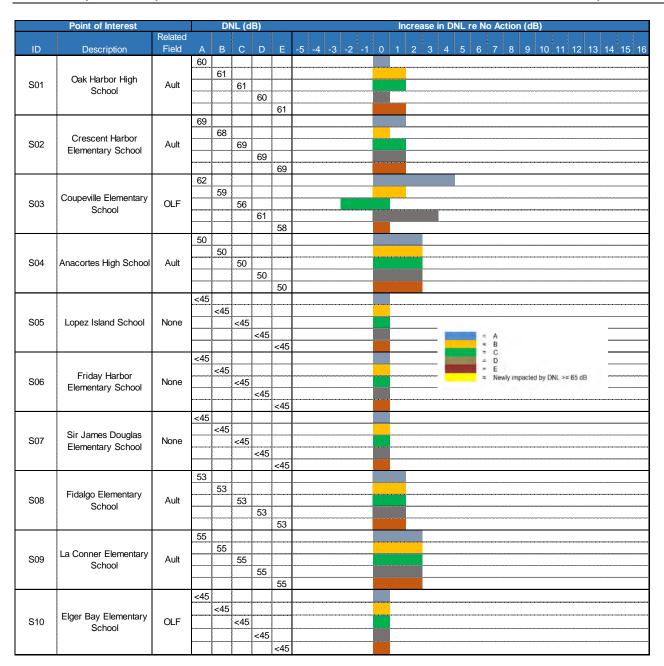


Figure A7.4-1. Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 2 (concluded)

Table A7.4-2 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2A

Band of	Average	10 th Percentile		Estimated	Population		Ch	nange in popula	ation re No Actior	
L _{eq(24)} (dB)	NIPTS (dB) (1)	NIPTS (dB) (1)	Ault Field (on-Station)		OLF Coupeville (off-Station)	TOTAL	Ault Field (on-Station)	Ault Field	OLF Coupeville (off-Station)	TOTAL
74-75	0.5	3.5	-	-	- 1	-	-	-	-	-
75-76	1.0	4.0	-	-	76	76	-	(0)	44	44
76-77	1.0	4.5	-	127	180	307	-	(28)	134	106
77-78	1.5	5.0	-	275	157	432	-	(1)	112	110
78-79	2.0	5.5	-	160	98	258	-	(9)	74	65
79-80	2.5	6.0	-	138	80	218	-	36	73	108
80-81	3.0	7.0	-	79	70	149	_	4	69	73
81-82	3.5	8.0	-	65	62	127	-	14	62	76
82-83	4.0	9.0	-	49	54	102	-	10	54	64
83-84	4.5	10.0	-	36	63	100	-	0	63	64
84-85	5.5	11.0	-	28	59	88	-	16	59	75
85-86	6.0	12.0	-	10	1	11	-	0	1	1
86-87	7.0	13.5	-	9	0	9	-	2	0	2
87-88	7.5	15.0	-	6	0	6	-	2	0	2
88-89	8.5	16.5	-	4	-	4	-	2	-	2
89-90	9.5	18.0	-	1	-	1	-	1	-	1
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

Table A7.4-3 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2B

Band of	Average	10 th Percentile		Estimated	Population		Ch	nange in popula	ation re No Actior	
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	2	27	29	-	2	(6)	(4)
76-77	1.0	4.5	114	337	101	552	114	182	55	351
77-78	1.5	5.0	-	353	78	431	-	76	33	109
78-79	2.0	5.5	-	260	69	329	-	91	45	136
79-80	2.5	6.0	-	171	62	234	-	70	55	124
80-81	3.0	7.0	-	104	56	160	-	29	55	84
81-82	3.5	8.0	-	73	64	137	-	22	64	86
82-83	4.0	9.0	-	62	49	111	-	23	49	72
83-84	4.5	10.0	-	38	1	38	-	2	1	2
84-85	5.5	11.0	-	27	0	27	-	15	0	15
85-86	6.0	12.0	-	24	0	24	-	14	0	14
86-87	7.0	13.5	-	9	-	9	-	2	-	2
87-88	7.5	15.0	-	7	-	7	-	3	-	3
88-89	8.5	16.5	-	5	-	5	-	3	-	3
89-90	9.5	18.0	-	2	-	2	-	2	-	2
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-		-	-

Table A7.4-4 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2C

Band		10 th		-	15 10					
of	Average	Percentile		Estimated	l Population		Cr	nange in popula	ation re No Actior	1
L _{eq(24)}	NIPTS	NIPTS	Ault Field		OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	4	36	40	-	4	4	8
76-77	1.0	4.5	195	293	55	543	195	139	8	342
77-78	1.5	5.0	2	458	64	524	2	181	18	201
78-79	2.0	5.5	-	307	55	361	_	137	31	168
79-80	2.5	6.0	-	271	1	272	-	169	(6)	163
80-81	3.0	7.0	-	146	0	147	-	71	(1)	70
81-82	3.5	8.0	-	82	0	82	-	31	(0)	31
82-83	4.0	9.0	-	66	-	66	-	27	-	27
83-84	4.5	10.0		42	-	42		6	-	6
84-85	5.5	11.0	-	30	-	30	-	17	-	17
85-86	6.0	12.0	-	29	-	29	-	19	-	19
86-87	7.0	13.5	-	10	-	10	-	3	-	3
87-88	7.5	15.0	-	8	-	8	-	4	-	4
88-89	8.5	16.5	-	5	-	5	-	3	-	3
89-90	9.5	18.0	_	3	-	3	_	3	-	3
90-91	10.5	19.5	-	_	-	_	_	_	-	_
91-92	11.5	21.0	-	-	-	-	-	-	-	-

⁽¹⁾ rounded to nearest 0.5 dB

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB are estimated based on extrapolating available data from EPA guidance (EPA 1982).

Table A7.4-5 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2D

Band		10 th								
of	Average	Percentile		Estimated	l Population		Cl	nange in popul	ation re No Action	1
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	•	-	-	-	-	-	-
75-76	1.0	4.0	-	0	72	72	-	(0)	39	39
76-77	1.0	4.5	-	149	170	320	-	(5)	124	119
77-78	1.5	5.0	-	317	113	430	-	40	67	108
78-79	2.0	5.5	-	198	88	286	-	29	64	93
79-80	2.5	6.0	-	144	74	218	-	42	67	109
80-81	3.0	7.0	-	89	64	153	-	13	63	76
81-82	3.5	8.0	-	70	57	127	-	18	57	75
82-83	4.0	9.0	-	49	60	109	-	11	60	71
83-84	4.5	10.0	-	37	80	117	-	1	80	81
84-85	5.5	11.0	-	31	3	34	-	18	3	22
85-86	6.0	12.0	-	11	0	11	-	1	0	2
86-87	7.0	13.5	-	9	0	9	-	2	0	2
87-88	7.5	15.0	_	6	0	6	_	2	0	2
88-89	8.5	16.5	_	4	_	4	_	2	-	2
89-90	9.5	18.0	_	1	-	1	-	1	-	1
90-91	10.5	19.5	_	_	-	-	_	_	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

⁽¹⁾ rounded to nearest 0.5 dB

Table A7.4-6 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 2E

Band		10 th								
of	Average	Percentile		Estimated	d Population		Ch	nange in popula	ation re No Actior	1
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	2	43	45	-	2	11	12
76-77	1.0	4.5	102	331	67	500	102	176	21	299
77-78	1.5	5.0	-	400	60	460	-	123	14	138
78-79	2.0	5.5	-	298	57	355	-	129	33	162
79-80	2.5	6.0	-	237	66	303	_	135	59	194
80-81	3.0	7.0	_	130	37	168	_	55	36	91
81-82	3.5	8.0	-	79	1	80	_	28	1	29
82-83	4.0	9.0	-	64	0	64	-	25	0	26
83-84	4.5	10.0	-	39	0	39	-	3	0	3
84-85	5.5	11.0	-	29	-	29	-	17	-	17
85-86	6.0	12.0	-	26	-	26	-	17	-	17
86-87	7.0	13.5	-	10	-	10	-	3	-	3
87-88	7.5	15.0	-	8	-	8	-	3	-	3
88-89	8.5	16.5	-	5	-	5	-	3	-	3
89-90	9.5	18.0	-	2	-	2	-	2	-	2
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

Table A7.4-7 Average Indoor Nightly Probability of Awakening at Applicable POIs for the High-Tempo FCLP Year, Alternative 2

		Point of Interest								Aı	nnual Avera	age Nightly	(2200-070	0) Probabi	lity of Awa	kening (%)	(1)						
				Alt	t2A	_	e from action	Alt	:2B	_	ge from Action	Ali	2C	_	e from ction	Alt	2D	_	e from action	Ali	t2E	_	ge from Action
			Related	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows
Type	ID	Description	Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
	R01	Sullivan Rd	Ault	68%	52%	6%	6%	73%	57%	11%	11%	76%	60%	14%	14%	69%	53%	7%	7%	74%	59%	12%	13%
	R02	Salal St. and N. Northgate Dr	Ault	50%	36%	6%	5%	54%	39%	10%	8%	57%	42%	13%	11%	51%	37%	7%	6%	56%	41%	12%	10%
	R03	Central Whidbey	Ault	20%	11%	3%	2%	23%	12%	6%	3%	24%	13%	7%	4%	21%	11%	4%	2%	23%	12%	6%	3%
	R04	Pull and Be Damned Point	Ault	26%	13%	5%	4%	27%	13%	6%	4%	28%	13%	7%	4%	26%	12%	5%	3%	28%	13%	7%	4%
	R05	Snee-Oosh Point	Ault	21%	8%	5%	3%	22%	8%	6%	3%	23%	8%	7%	3%	21%	8%	5%	3%	23%	8%	7%	3%
	R06	Admirals Dr and Byrd Dr	OLF	39%	28%	30%	22%	25%	17%	16%	11%	13%	8%	4%	2%	35%	25%	26%	19%	18%	12%	9%	6%
	R07	Race Lagoon	OLF	19%	8%	14%	6%	13%	5%	8%	3%	8%	3%	3%	1%	17%	8%	12%	6%	10%	4%	5%	2%
	R08	Pratts Bluff	OLF	14%	9%	10%	7%	9%	5%	5%	3%	5%	3%	1%	1%	13%	8%	9%	6%	6%	4%	2%	2%
	R09	Cox Rd and Island Ridge Way	OLF	11%	8%	8%	6%	7%	5%	4%	3%	3%	2%	-	-	10%	7%	7%	5%	5%	3%	2%	1%
iği l	R10	Skyline	None	8%	3%	2%	1%	8%	3%	2%	1%	10%	3%	4%	1%	9%	3%	3%	1%	10%	3%	4%	1%
Residential	R11	Sequim	None	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	_
Se l	R12	Port Angeles	None	1%	0%	1%	-	1%	0%	1%	-	0%	0%	-	-	1%	0%	1%	-	0%	0%	-	-
	R13	Beverly Beach, Freeland	OLF	6%	-	4%		4%	-	2%	-	2%	-	-	-	5%	-	3%	-	3%	-	1%	
	R14	E Sleeper Rd & Slumber Ln	Ault	45%	31%	5%	3%	49%	35%	9%	7%	52%	38%	12%	10%	46%	32%	6%	4%	51%	37%	11%	9%
	R15	Long Point Manor	OLF	23%	12%	12%	8%	18%	8%	7%	4%	14%	4%	3%	-	22%	11%	11%	7%	16%	6%	5%	2%
	R16	Rocky Point Heights	OLF	11%	4%	1%	1%	12%	4%	2%	1%	13%	3%	3%	-	12%	4%	2%	1%	13%	3%	3%	-
	R17	Port Townsend	None	1%	-	-	-	1%	-	-	-	0%	-	-1%	-	1%	-	-	-	1%		-	-
	R18	Marrowstone Island (Nordland)	None	-	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	0%	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	32%	21%	22%	16%	22%	13%	12%	8%	13%	6%	3%	1%	29%	18%	19%	13%	17%	9%	7%	4%
	R20	South Lopez Island (Agate Beach)	None	4%	1%	1%	-	3%	1%	-	-	3%	1%	-	-	3%	1%	-	-	3%	1%	-	-
	S01	Oak Harbor High School	Ault	26%	15%	4%	2%	28%	17%	6%	4%	30%	19%	8%	6%	26%	16%	4%	3%	29%	18%	7%	5%
	S02	Crescent Harbor Elementary School	Ault	27%	16%	4%	3%	30%	18%	7%	5%	31%	19%	8%	6%	28%	17%	5%	4%	31%	19%	8%	6%
al)	S03	Coupeville Elementary School	OLF	17%	10%	12%	7%	11%	6%	6%	3%	6%	3%	1%	-	15%	9%	10%	6%	8%	4%	3%	1%
enti	S04	Anacortes High School	Ault	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-
residential)	S05	Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ear re	S06	Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (near	S07	Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sch	S08	Fidalgo Elementary School	Ault	9%	3%	2%	1%	10%	3%	3%	1%	10%	3%	3%	1%	10%	3%	3%	1%	10%	3%	3%	1%
	S09	La Conner Elementary School	Ault	11%	5%	3%	2%	11%	5%	3%	2%	10%	5%	2%	2%	11%	5%	3%	2%	11%	5%	3%	2%
	S10	Elger Bay Elementary School	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A7.4-8 Indoor Speech Interference for the High-Tempo FCLP Year, Alternative 2

		Point of Interest												aily Indoor [ents per Ho	ur ⁽¹⁾								
				Alt	t2A		ge from Action	Alt2	2B	_	e from ction	Alt	2C	Chang No A		Alt	2D		ge from Action	Alta	2E		ge from Action
			Related		Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows		Windows		Windows	Windows	Windows	*
Type	ID	Description	Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
	R01	Sullivan Rd	Ault	9	9	+1	+1	10	10	+2	+2	10	10	+2	+2	10	10	+2	+2	10	10	+2	+2
	R02	Salal St. and N. Northgate Dr	Ault	9	9	+1	+1	10	10	+2	+2	10	10	+2	+2	9	9	+1	+1	10	10	+2	+2
	R03	Central Whidbey	Ault	5	-	-	-	6	-	+1	-	6	-	+1	-	5	-	-	-	6	-	+1	-
	R04	Pull and Be Damned Point	Ault	3	1	+1	-	3	2	+1	+1	3	1	+1	-	3	1	+1	-	3	1	+1	-
	R05	Snee-Oosh Point	Ault	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
	R06	Admirals Dr and Byrd Dr	OLF	2	2	+2	+2	1	1	+1	+1	1	-	+1	-	2	2	+2	+2	1	1	+1	+1
	R07	Race Lagoon	OLF	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
	R08	Pratts Bluff	OLF	2	1	+2	+1	1	1	+1	+1	1	-	+1	-	2	1	+2	+1	1	-	+1	-
	R09	Cox Rd and Island Ridge Way	OLF	1	-	+1	-	1	-	+1	-	-	-	-	-	1	-	+1	-	-	-	-	-
Residential	R10	Skyline	None	-	-	-	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
ent	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Si.	R12	Port Angeles	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	R13	Beverly Beach, Freeland	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	9	8	+1	+1	10	9	+2	+2	10	9	+2	+2	9	8	+1	+1	10	9	+2	+2
	R15	Long Point Manor	OLF	3	2	+2	+1	2	1	+1	-	1	1	-	-	3	2	+2	+1	2	1	+1	-
	R16	Rocky Point Heights	OLF	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
	R17	Port Townsend	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R18	Marrowstone Island (Nordland)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	2	2	+1	+1	2	1	+1	-	1	1	-	-	2	2	+1	+1	1	1	-	-
	R20	South Lopez Island (Agate Beach)	None	_		-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-
=	S01	Oak Harbor High School	Ault	7		+1	+1	7	3	+1	+1	8	3	+2	+1	7	3	+1	+1	7	3	+1	+1
residential)	S02	Crescent Harbor Elementary	Ault	6		+1		6	3	+1	+1	7	3	+2	+1	6	2	+1	-	6	3	+1	+1
ger	S03	Coupeville Elementary	OLF	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1	1.00	-	+1
esi	S04	Anacortes High School	Ault	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
=	S05	Lopez Island School	None	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(near	S06	Friday Harbor Elementary	None	-	-	-	<u> </u>	- [-	-	-	-	-		-	-	-	-	-	-	-	-	ļ
0	S07	Sir James Douglas	None	-	-	-	ļ <u>-</u>	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
School	S08	Fidalgo Elementary School	Ault	-	ļ		ļ <u>-</u>			-	ļ <u>-</u>	-	-	-	-	-	-	-	-		-	-	ļ <u>-</u>
လိ	S09	La Conner Elementary	Ault	1	1	-	+1	1,	1	-	+1	1		-	-	1		-	-	1		-	-
	S10	Elger Bay Elementary	OLF	-	<u> </u>	-	-	1	-	-	-	-	-	-	-		-	-	-	- 1	-	-	<u> </u>

Table A7.4-9 Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 2

						Alt2A			С	hange	from No	Actio	n
		Penrocentative School Legation				Indo	or ⁽¹⁾				Indo		
		Representative School Location				idows		dows			idows		dows
					0	pen	Clo	sed		O	pen	Clo	osed
				Outdoor		Events		Events	Outdoor		Events		Events
Tura	ID.	Description	Related	Leq(8h)	L _{eq(8h)}	per Hour ⁽²⁾	L _{eq(8h)}	per Hour ⁽²⁾	L _{eq(8h)}	L _{eq(8h)}	per Hour ⁽²⁾	L _{eq(8h)}	per
Туре	ID	Description	Field	(dB)	(dB)	Hour /	(dB)	Hour	(dB)	(dB)	Hour	(dB)	Hour ⁽²⁾
School	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
School Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	57	<45	2	<45	1	+5	+5	+2	+5	+1
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
_	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
S	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-3	-3	-	-3	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding				4		2			-		_
		1 Intrusive Event per Hour Minimum Number of Intrusive Events											
		per Hour if Exceeding 1				2		2			-		-
		Maximum Number of Intrusive Events per Hour if Exceeding 1				6		2			-		-
		Point of Interest				Alt2B			C	hange	from No	Action	n
ol ate	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
School Surrogate	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
		Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	
	************	Coupeville Elementary School	OLF	55	<45	1	<45	1	+3	+3	+1	+3	+1
	S04	Anacortes High School	Ault	47	<45		<45		+1	+1		+1	
8	***************************************	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School	***********	Friday Harbor Elementary School	None	<45	<45	-	<45	-	-	-	-	-	-
0,	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-3	-3	-	-3	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
		La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding				3		2			2		-
		1 Intrusive Event per Hour Minimum Number of Intrusive Events				5		2			+2		-
		per Hour if Exceeding 1 Maximum Number of Intrusive Events				_					_		
		per Hour if Exceeding 1				7		3			+2		-
41		Point of Interest				Alt2C			C	hange	from No	Action	n
School	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-
Sc	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
		Crescent Harbor Elementary School	Ault	69	54	6	<45	3	+2	+2	+2	+2	+1
		Coupeville Elementary School	OLF	51	<45	1	<45		-1	-1	+1	-1	-
_	**********	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
School	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
Sc		Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-3	-3	-	-3	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	+1	+1	-	+1	-
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding 1 Intrusive Event per Hour				3		2			3		-
		Minimum Number of Intrusive Events				6		3			+2		-
		per Hour if Exceeding 1 Maximum Number of Intrusive Events											
Motor		per Hour if Exceeding 1				7		3			+2		-

Table A7.4-9 Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 2 (concluded)

						Alt2D			CI	hange	from No	Actio	n
		Barrier and all and a section				Indo	or ⁽¹⁾				Indo	or ⁽¹⁾	
		Representative School Location			Win	idows	Win	dows		Wir	idows	Wir	ndows
					O	pen	Clo	sed		O	oen	Ck	osed
				Outdoor		Events		Events	Outdoor		Events		Events
			Related	L _{eq(8h)}	L _{eq(8h)}	per	L _{eq(8h)}	per	L _{eq(8h)}	L _{eq(8h)}	per	L _{eq(8h)}	per
Type	ID	Description	Field	(dB)	(dB)	Hour ⁽²⁾		Hour ⁽²⁾	(dB)		Hour ⁽²⁾	(dB)	Hour ⁽²⁾
School Surrogate	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-
r S													
Sn	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	-	+1	-	-
	S02	Crescent Harbor Elementary School	Ault	68	53	5	<45	2	+1	+1	+1	+1	-
	S03	Coupeville Elementary School	OLF	57	<45	2	<45	1	+5	+5	+2	+5	+1
	****************	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
_	S05	Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
School		Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
Sc													
	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-
	***************************************	Elger Bay Elementary School	OLF	<45	<45	_	<45		+1	+1		+1	<u> </u>
	010	Number of Sites Exceeding	OLI	\ 1 0	\ 1 0		\ 1 0		''				
		1 Intrusive Event per Hour				4		2			1		-
		Minimum Number of Intrusive Events											
		per Hour if Exceeding 1				5		2			+2		-
		Maximum Number of Intrusive Events											
		per Hour if Exceeding 1				6		2			+2		-
		Point of Interest				Alt2E			CI	hange	from No	Actio	n
(D)													
School Surrogate	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-
5 5													
Su	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-
****************	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1
		Crescent Harbor Elementary School	Ault	69	54	6	<45	2	+2	+2	+2	+2	-
		Coupeville Elementary School	OLF	53	<45	1	<45	-	+1	+1	+1	+1	-
		Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-
School		Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
l Sc		Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-
0,		Sir James Douglas Elementary School	None	<45	<45	-	<45	-	+1	+1	-	+1	-
		Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-
	S09	La Conner Elementary School	Ault	51	<45	1	<45	-	+1	+1	-	+1	-
		Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-
		Number of Sites Exceeding				_		_			_		
		1 Intrusive Event per Hour				3		2			3		-
		Minimum Number of Intrusive Events				6		2			+2		
		per Hour if Exceeding 1				0					72		_
		Maximum Number of Intrusive Events				7		3			+2		
		per Hour if Exceeding 1						3			TZ		_
Notes:													

Table A7.4-10 Recreational Speech Interference for the High-Tempo FCLP Year, Alternative 2

								Ar	nnual <i>I</i>	Average	Outd		ily Day 0 L _{max}	/time E	vents	per Ho	ur,					
	Represe	ntative Park Receptor	Al	t2A		ase re Action	Al	t2B		ase re Action	Alt	t2C	Incre No A	ase re Action	Al	t2D	No A	ase re Action	Alt	t2E		ase re
Type	₽	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	P01	Joseph Whidbey State Park	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	10	2	+2	-
	P02	Deception Pass State Park	9	2	+1	-	10	2	+1	-	10	3	+2	+1	9	2	+1	-	10	2	+2	-
	P03	Dugualla State Park	9	2	+1	-	9	2	+1	-	10	3	+2	+1	9	2	+1	-	10	2	+2	-
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	5	1	+2	-	4	1	+1	-	3	1	-	-	5	1	+2	-	4	1	+1	-
	P05	Ebey's Landing State Park	4	1	+2	+1	3	1	+1	+1	3	1	+1	+1	4	1	+2	+1	3	1	+1	+1
	P06	Fort Casey State Park	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	-	+1	-
	P07	Cama Beach State Park	5	1	+2	+1	4	1	+1	+1	4	1	+1	+1	5	1	+2	+1	4	1	+1	+1
	P08	Port Townsend	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
	P09	Moran State Park	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Park	1 00	San Juan Islands National																				
P	P10		8	2	+1	-	9	2	+2	-	9	2	+2	-	8	2	+1	-	9	2	+2	-
	P11	Monument San Juan Island Visitors Center	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	P12	Cap Sante Park	1	-	+1	_	1	-	+1	-	1	_	+1	-	1	_	+1	-	1	-	+1	-
	P13	Lake Campbell	5	1	+1		5	1	+1		6	1	+2		5	1	+1		6	1	+2	
	P14	Spencer Spit State Park		<u> </u>	<u> </u>		<u> </u>		<u> </u>		-	 	-		<u> </u>				<u>-</u> _		-	
				1	+1			1			4		 -					-				-
	P15 P16	Pioneer Park Marrowstone Island (Fort Flagler)	5 2	1	+1	+1	<u>4</u> 1		+1	-	4	<u>1</u> -	-	-	5 1	1	+1 +2	+1	<u>4</u> 1	<u>1</u> -	+1	-
	EBLA001	Reuble Farm	4	1	+2		3			+1	2		-	-	4		+2	+1	3	4		+1
						+1		1	+1				 -			1				1	+1	
	EBLA002	Ferry House	4	1	+2	+1	3	1	+1	+1	2			-	4	1	+2	+1	3	1	+1	+1
	R01	Sullivan Rd	10	2	+2	-	10	2	+2	-	11	3	+3	+1	10	2	+2	-	10	3	+2	+1
	R02	Salal St. and N. Northgate Dr	10	2	+1	-	10	2	+2	-	11	3	+2	+1	10	2	+2	-	10	3	+2	+1
	R03	Central Whidbey	9	2	+2	-	9	2	+2	-	10	2	+3	+1	9	2	+2	-	9	2	+3	+1
	R04	Pull and Be Damned Point	9	2	+2	-	9	2	+2	-	10	3	+3	+1	9	2	+2	-	10	2	+3	-
	R05	Snee-Oosh Point	8	2	+1		9	2	+2		9	2	+2		8	2	+1		9	2	+2	-
	R06	Admirals Dr and Byrd Dr	3	1	+2	+1	2	1	+1	+1	1		-	-	3	1	+2	+1	2	-	+1	_
	R07		5	1	+2	T.	4	1	+1	T.	3	1	 		5	1	+2	T1	3	1		
		Race Lagoon		**************										ļ <u>-</u>								
	R08 R09	Pratts Bluff Cox Rd and Island Ridge Way	3 2	1	+2 +1	+1 +1	2 2	1	+1 +1	+1 +1	2 1	-	+1 -	-	3 2	1	+2 +1	+1 +1	2 1	-	+1 -	-
-	D40	Ol- F																				
Residential	R10	Skyline	4	1	-	-	4	1		-	5	1	+1	-	4	1		-	5	1	+1	-
der	R11	Sequim	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
Si	R12	Port Angeles	1	-	-	-	1	-	-	-	1	-		-	1		-	-	1	-	-	
å	R13	Beverly Beach, Freeland	1	-	+1	-	1	-	+1	-	-	-	-	-	1	-	+1	-	-	-	-	-
	R14	E Sleeper Rd & Slumber Ln	10	2	+2	-	10	2	+2	-	11	3	+3	+1	10	2	+2	-	10	3	+2	+1
	R15	Long Point Manor	9	2	+2	-	9	2	+2	-	9	2	+1	-	9	2	+2	-	9	2	+1	-
	R16	Rocky Point Heights	5	1	+1	-	5	2	+1	_	6	2	+1	_	5	1	+1	-	5	2	+1	-
	R17	Port Townsend	2	1	+1	+1	1			-		-	-1	_	1	1	-	+1	1	-		_
						<u> </u>							 			 			<u> </u>			
	R18	Marrowstone Island (Nordland) Island Transit Offices,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Coupeville South Lopez Island (Agate	5	1	+2	-	4	1	+1	-	3	1	-	-	5	1	+2	-	4	1	+1	-
	R20 S01	Beach)	9	1 2	+1	-	10	1 2	+1	-	10	3	+1	- +1	9	1 2	+1	-	10	1 2	+1	-
1	301	Oak Harbor High School	9		, + ' -	<u> </u>	10		+4	ļ	10	- 3 -	, † <u>~</u>	<u> </u>	9		 		10		, † <u>∠</u>	
	S02	Crescent Harbor Elementary School	9	2	+2	-	9	2	+2	-	10	2	+3	+1	9	2	+2	-	9	2	+2	-
	S03	Coupeville Elementary School	5	1	+2	-	4	1	+1	-	3	1		-	5	1	+2	-	3	1	-	-
	S04	Anacortes High School	11	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-	11	-	-	-
_	S05	Lopez Island School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School	S06	Friday Harbor Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S07	Sir James Douglas Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S08	Fidalgo Elementary School	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
					***************************************			·						·····								
	S09 S10	La Conner Elementary School Elger Bay Elementary School	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-
	310	Liger day Elementary School																ــــــــــــــــــــــــــــــــــــــ				لـــَـــا

Table A7.5-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 3 (High-Tempo FCLP Year)²,³

				DNL Con	tour Ranges			
					Greater th	an or		
	65 to <70	dB DNL	70 to <75	dB DNL	equal to 7	5 dB DNL	Total	
	Area		Area		Area		Area	
	(acres)	Pop⁴	(acres)	Pop⁴	(acres)	Pop ⁴	(acres)	Pop ⁴
Ault Field								
No Action Alternativ	<i>ie</i>							
High-Tempo FCLP	3,503	3,347	3,260	2,677	5,864	3,530	12,628	9,554
Year								
Alternative 3								
Scenario A (20/80	4,026	3,685	3,263	1,922	5,923	3,513	13,212	9,120
FCLP split)	(+523)	(+338)	(+3)	(-755)	(+59)	(-17)	(+584)	(-434)
Scenario B (50/50	3,935	3,631	3,270	2,461	6,443	3,793	13,648	9,886
FCLP split)	(+432)	(+284)	(+10)	(-216)	(+579)	(+263)	(+1,020)	(+332)
Scenario C (80/20	3,949	3,738	3,130	2,499	6,811	3,946	13,890	10,182
FCLP split)	(+446)	(+391)	(-130)	(-178)	(+947)	(+416)	(+1,262)	(+628)
Scenario D (30/70	3,996	3,672	3,258	2,223	6,165	3,661	13,419	9,555
FCLP split)	(+493)	(+325)	(-2)	(-454)	(+301)	(+131)	(+791)	(+1)
Scenario E (70/30	3,941	3,711	3,216	2,542	6,666	3,910	13,824	10,163
FCLP split)	(+438)	(+364)	(-44)	(-135)	(+802)	(+380)	(+1,196)	(+609)
OLF Coupeville								
No Action Alternativ							1	1
High-Tempo FCLP	3,718	881	3,054	786	637	583	7,409	2,250
Year								
Alternative 3	T	1	Ta .a.	1	1	1	T	T
Scenario A (20/80	1,572	597	3,131	894	5,591	2,018	10,294	3,510
FCLP split)	(-2,146)	(-284)	(+77)	(+108)	(+4,954)	(+1,435)	(+2,885)	(+1,260)
Scenario B (50/50	1,887	493	3,461	1,080	4,247	1,603	9,596	3,176
FCLP split)	(-1,831)	(-388)	(+407)	(+294)	(+3,610)	(+1,020)	(+2,187)	(+926)
Scenario C (80/20	3,449	1,030	3,193	1,045	1,586	725	8,397	2,800
FCLP split)	(-269)	(+149)	(+139)	(+259)	(+949)	(+142)	(+988)	(+550)
Scenario D (30/70	1,551	538	3,310	961	5,239	1,918	10,100	3,417
FCLP split)	(-2,167)	(-343)	(+256)	(+175)	(+4,602)	(+1,335)	(+2,691)	(+1,167)
Scenario E (70/30 FCLP split)	2,932 (-786)	825 (-56)	3,213 (+159)	1,048 (+262)	2,711 (+2,074)	1,074 (+491)	8,846 (+1,437)	2,947 (+697)
NAS Whidbey Island		(-30)	(+139)	(+202)	(+2,074)	(+491)	(+1,457)	(+097)
No Action Alternativ	-							
High-Tempo FCLP		4,228	6,315	3,463	6,502	1 112	20,037	11,804
Year	7,221	4,220	0,313	3,403	0,302	4,113	20,037	11,004
Alternative 3								
Scenario A (20/80	5,599	4,283	6,394	2,816	11,513	5,531	23,506	12,631
FCLP split)	(-1,622)	(+55)	(+79)	(-647)	(+5,011)	(+1,418)	(+3,469)	(+827)
Scenario B (50/50	5,823	4,125	6,731	3,541	10,690	5,396	23,244	13,062
FCLP split)	(-1,398)	(-103)	(+416)	(+78)	(+4,188)	(+1,283)	(+3,207)	(+1,258)
Scenario C (80/20	7,398	4,767	6,323	3,544	8,397	4,671	22,118	12,982
FCLP split)	(+177)	(+539)	(+8)	(+81)	(+1,895)	(+558)	(+2,081)	(+1,178)
Scenario D (30/70	5,547	4,209	6,569	3,184	11,404	5,579	23,519	12,972
	U, U T /	1 .,	0,000	1 J, ±U-	1,	J, J, J	,	,-,-

Table A7.5-1 Estimated Acreage and Population within the DNL Contour Ranges¹ for the NAS Whidbey Island Complex, Alternative 3 (High-Tempo FCLP Year)^{2,3}

				DNL Con	tour Ranges			
					Greater th	an or		
	65 to <70	dB DNL	5 dB DNL	Total				
	Area		Area		Area		Area	
	(acres)	Pop ⁴	(acres)	Pop ⁴	(acres)	Pop⁴	(acres)	Pop ⁴
Scenario E (70/30	6,864	4,536	6,429	3,590	9,377	4,985	22,670	13,111
FCLP split)	(-357)	(+308)	(+114)	(+127)	(+2,875)	(+872)	(+2,633)	(+1,307)

- ¹ All five scenarios are outlined in Section 2.3.3, where the split represents the percent of FCLPs conducted at Ault Field and OLF Coupeville, respectively (i.e., 20/80 FCLP split = 20 percent of FCLPs at Ault Field and 80 percent of FCLPs at OLF Coupeville).
- ² Acreage presented does not include areas over water or areas over the NAS Whidbey Island complex.
- ³ The difference between the No Action Alternative and Alternative 1 is noted in parentheses.
- ⁴ Population counts of people within the DNL contour ranges were computed using 2010 Census block-level data. The percent area of the census block covered by the DNL contour range was applied to the population of that census block to estimate the population within the DNL contour range (e.g., if 25 percent of the census block is within a DNL contour range, then 25 percent of the population is included in the population count). This calculation assumes an even distribution of the population across the census block, and it excludes population on military properties within the DNL contour ranges (NAS Whidbey Island [Ault Field], the Seaplane Base, and OLF Coupeville). All population estimates for areas within the dB DNL contours utilized 2010 U.S. Census Bureau data. A 7.1-percent growth factor was applied to the 2010 census statistics to account for population changes between 2010 and 2020 based on medium forecasted population projections for Island County during that period (Washington State Office of Financial Management, 2017). To simplify the analysis, this growth factor was also used for areas of Skagit County that fall within the 65+ dB DNL contours. These data should be used for comparative purposes only and are not considered actual numbers within the DNL contour range.
- ⁵ Numbers have been rounded to ensure totals sum.

Key:

dB = decibel

DNL = day-night average sound level FCLP = Field Carrier Landing Practice

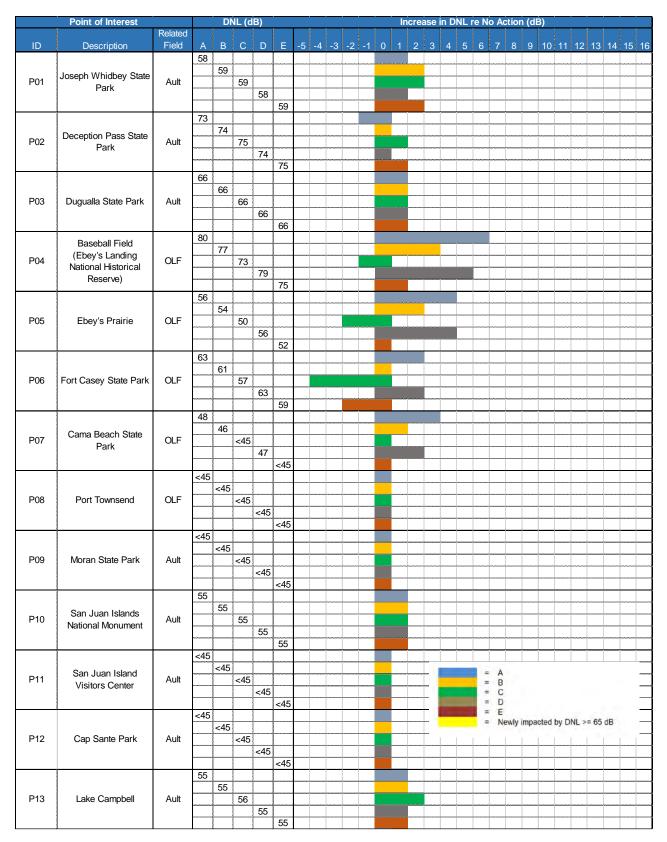


Figure A7.5-1 Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 3

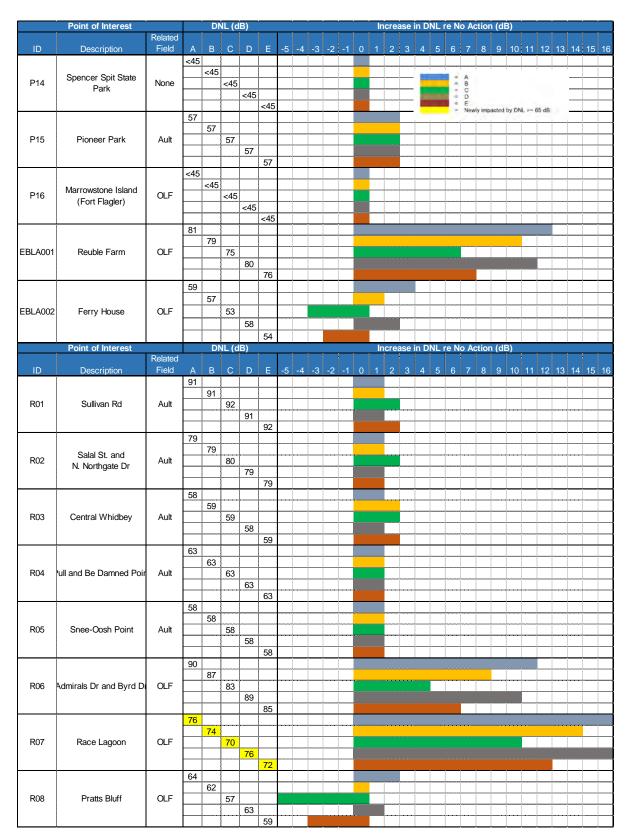


Figure A7.5-1. Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 3 (continued)

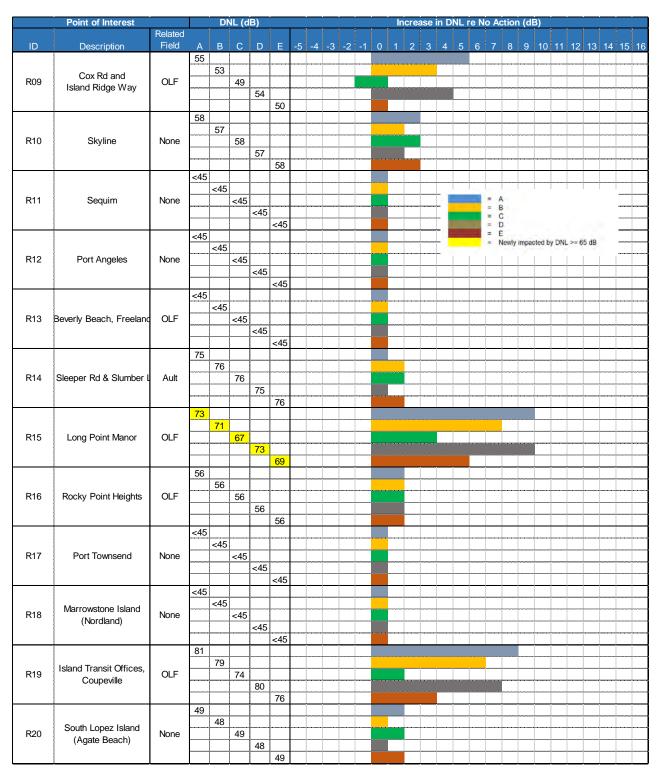


Figure A7.5-1. Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 3 (continued)

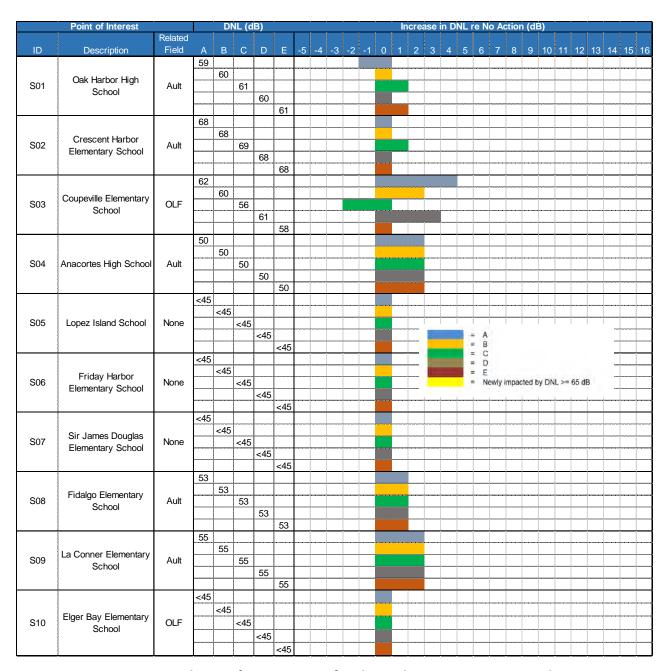


Figure A7.5-1. Estimated Aircraft DNL at POIs for the High-Tempo FCLP Year, Alternative 3 (concluded)

Table A7.5-2 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3A

Band		10 th								
of	Average	Percentile		Estimated	d Population		Ch	nange in popula	ation re No Actior	1
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	-	145	145	-	(0)	113	113
76-77	1.0	4.5	-	147	181	327	-	(8)	134	126
77-78	1.5	5.0	-	271	158	429	-	(5)	112	107
78-79	2.0	5.5	-	151	98	249	_	(18)	74	55
79-80	2.5	6.0	-	134	80	215	-	32	73	105
80-81	3.0	7.0	-	77	70	148	-	2	69	71
81-82	3.5	8.0	-	64	62	125	-	12	62	74
82-83	4.0	9.0	-	49	54	103	-	11	54	64
83-84	4.5	10.0	-	34	63	97	-	(2)	63	61
84-85	5.5	11.0	-	27	60	87	-	15	60	75
85-86	6.0	12.0	-	9	1	10	-	-	1	1
86-87	7.0	13.5	-	9	-	9	-	2	-	2
87-88	7.5	15.0	-	6	-	6	-	1	-	1
88-89	8.5	16.5	-	4	-	4	-	2	-	2
89-90	9.5	18.0	-	1	-	1	-	1	-	1
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

Table A7.5-3 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3B

Band		10 th								
of	Average	Percentile		Estimated	Population		Ch	nange in popula	ation re No Actior	า
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	1	102	102	-	0	69	70
76-77	1.0	4.5	79	305	101	486	79	151	55	285
77-78	1.5	5.0	-	351	79	430	-	75	33	108
78-79	2.0	5.5	-	256	70	325	-	86	45	132
79-80	2.5	6.0	-	170	62	232	-	68	55	123
80-81	3.0	7.0	-	102	56	158	-	27	55	82
81-82	3.5	8.0	_	73	64	137	-	22	64	86
82-83	4.0	9.0	-	61	50	111	-	23	50	73
83-84	4.5	10.0	_	37	1	38	-	1	1	2
84-85	5.5	11.0	-	27	-	27	-	14	-	15
85-86	6.0	12.0	-	23	-	23	-	14	-	14
86-87	7.0	13.5	-	9	-	9	-	2	-	2
87-88	7.5	15.0	-	7	-	7	-	3	-	3
88-89	8.5	16.5	-	5	-	5	-	3	-	3
89-90	9.5	18.0	-	2	-	2	-	2	-	2
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

Table A7.5-4 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3C

Band		10 th								
of	Average	Percentile		Estimated	d Population		Cr	iange in popula	ation re No Action	<u> </u>
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	2	33	35	-	2	0	2
76-77	1.0	4.5	137	285	55	477	137	130	8	276
77-78	1.5	5.0	-	454	64	518	-	178	18	196
78-79	2.0	5.5	-	305	56	361	-	136	31	168
79-80	2.5	6.0	-	267	1	268	-	165	(6)	159
80-81	3.0	7.0	-	142	-	143	-	67	(1)	66
81-82	3.5	8.0	-	82	-	82	-	30	(0)	30
82-83	4.0	9.0	-	66	-	66	-	28	-	28
83-84	4.5	10.0	-	40	-	40	-	4	-	4
84-85	5.5	11.0	-	30	-	30	-	17	-	17
85-86	6.0	12.0	-	28	-	28	-	19	-	19
86-87	7.0	13.5	-	10	-	10	-	3	-	3
87-88	7.5	15.0	-	8	-	8	-	4	-	4
88-89	8.5	16.5	-	5	-	5	-	3	-	3
89-90	9.5	18.0	-	2	-	2	-	2	-	2
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

Note: Average NIPTS values greater than 10 dB, and 10th Percentile NIPTS values greater than 12 dB are estimated based on extrapolating available data from EPA guidance (EPA 1982).

Table A7.5-5 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3D

Band		10 th								
of	Average	Percentile		Estimated	l Population		Ch	nange in popula	ation re No Actior	า
L _{eq(24)}	NIPTS	NIPTS	Ault Field	Ault Field	OLF Coupeville		Ault Field	Ault Field	OLF Coupeville	
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL
74-75	0.5	3.5	-	-	-	-	-	-	-	-
75-76	1.0	4.0	-	-	158	158	-	(0)	125	125
76-77	1.0	4.5	-	193	178	371	-	39	132	170
77-78	1.5	5.0	-	287	115	402	-	11	69	80
78-79	2.0	5.5	-	195	88	284	-	26	64	90
79-80	2.5	6.0	-	142	74	216	-	40	67	107
80-81	3.0	7.0	-	81	64	145	-	6	63	68
81-82	3.5	8.0	-	70	58	128	-	19	58	77
82-83	4.0	9.0	-	51	60	112	-	13	60	73
83-84	4.5	10.0	-	35	78	113	-	(1)	78	77
84-85	5.5	11.0	-	32	3	35	-	19	3	22
85-86	6.0	12.0	-	10	-	11	-	1	-	1
86-87	7.0	13.5	-	9	-	9	-	2	-	2
87-88	7.5	15.0	-	6	-	6	-	2	-	2
88-89	8.5	16.5	-	4	-	4	-	2	-	2
89-90	9.5	18.0	-	2	-	2	-	2	-	2
90-91	10.5	19.5	-	-	-	-	-	-	-	-
91-92	11.5	21.0	-	-	-	-	-	-	-	-

(1) rounded to nearest 0.5 dB

Table A7.5-6 Estimated Potential Hearing Loss for the High-Tempo FCLP Year, Alternative 3E

Band of	Average	10 th Percentile		Estimated	l Population		Change in population re No Action								
L _{eq(24)}	NIPTS	NIPTS	Ault Field		OLF Coupeville		Ault Field	Ault Field	OLF Coupeville						
(dB)	(dB) ⁽¹⁾	(dB) ⁽¹⁾	(on-Station)	(off-Station)	(off-Station)	TOTAL	(on-Station)	(off-Station)	(off-Station)	TOTAL					
74-75	0.5	3.5	-	-	-	-	-	-	-	-					
75-76	1.0	4.0	-	1	39	40	-	1	6	7					
76-77	1.0	4.5	237	265	67	570	237	111	21	369					
77-78	1.5	5.0	30	437	60	527	30	160	15	205					
78-79	2.0	5.5	-	301	58	358	-	132	34	165					
79-80	2.5	6.0	-	216	67	283	-	114	60	174					
80-81	3.0	7.0	-	127	33	160	-	52	32	84					
81-82	3.5	8.0	-	79	1	79	-	27	1	28					
82-83	4.0	9.0	-	66	-	67	-	28	-	28					
83-84	4.5	10.0	-	41	-	41	-	5	-	5					
84-85	5.5	11.0	-	28	-	28	-	16	-	16					
85-86	6.0	12.0	-	28	-	28	-	19	-	19					
86-87	7.0	13.5	-	9	-	9	-	2	-	2					
87-88	7.5	15.0	-	8	-	8	-	4	-	4					
88-89	8.5	16.5	-	5	-	5	-	3	-	3					
89-90	9.5	18.0	-	3	-	3	-	3	-	3					
90-91	10.5	19.5	-	-	-	-	-	-	-	-					
91-92	11.5	21.0	-	-	-	-	-	-	-	-					

Table A7.5-7 Average Indoor Nightly Probability of Awakening at Applicable POIs for the High-Tempo FCLP Year, Alternative 3

		Point of Interest							Aı	nnual Avera	age Nightly	(2200-070	0) Probabi	lity of Awal	kening (%)	(1)							
				Alt	t3A	Change No A		Alt	t3B	_	e from ction	Alt	3C	Chang No A		Alt	3D	No A	e from action	Alt	:3E	No A	e from ction
			Related	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows	Windows
Type	₽	Description	Field	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed	Open	Closed
	R01	Sullivan Rd	Ault	68%	52%	6%	6%	72%	56%	10%	10%	75%	59%	13%	13%	69%	53%	7%	7%	74%	58%	12%	12%
	R02	Salal St. and N. Northgate Dr	Ault	50%	36%	6%	5%	53%	38%	9%	7%	57%	42%	13%	11%	51%	37%	7%	6%	55%	40%	11%	9%
	R03	Central Whidbey	Ault	20%	11%	3%	2%	22%	12%	5%	3%	24%	13%	7%	4%	21%	11%	4%	2%	23%	12%	6%	3%
	R04	Pull and Be Damned Point	Ault	25%	12%	4%	3%	27%	13%	6%	4%	28%	13%	7%	4%	26%	13%	5%	4%	28%	13%	7%	4%
	R05	Snee-Oosh Point	Ault	21%	8%	5%	3%	22%	8%	6%	3%	23%	8%	7%	3%	21%	8%	5%	3%	23%	8%	7%	3%
	R06	Admirals Dr and Byrd Dr	OLF	44%	31%	35%	25%	29%	20%	20%	14%	13%	8%	4%	2%	39%	28%	30%	22%	18%	12%	9%	6%
	R07	Race Lagoon	OLF	21%	10%	16%	8%	14%	6%	9%	4%	7%	3%	2%	1%	19%	9%	14%	7%	10%	4%	5%	2%
	R08	Pratts Bluff	OLF	16%	10%	12%	8%	10%	6%	6%	4%	4%	2%	-	-	14%	9%	10%	7%	6%	4%	2%	2%
	R09	Cox Rd and Island Ridge Way	OLF	13%	9%	10%	7%	8%	5%	5%	3%	3%	2%	-	-	12%	8%	9%	6%	5%	3%	2%	1%
ij	R10	Skyline	None	8%	3%	2%	1%	8%	3%	2%	1%	10%	3%	4%	1%	8%	3%	2%	1%	8%	3%	2%	1%
Residential	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ses	R12	Port Angeles	None	1%	0%	1%	-	1%	0%	1%	-	1%	0%	1%	-	1%	0%	1%	-	1%	0%	1%	-
I.	R13	Beverly Beach, Freeland	OLF	6%	-	4%	-	4%	-	2%	-	2%	-	-	-	6%	-	4%	-	3%	-	1%	-
	R14	E Sleeper Rd & Slumber Ln	Ault	45%	31%	5%	3%	48%	34%	8%	6%	52%	37%	12%	9%	46%	32%	6%	4%	51%	36%	11%	8%
	R15	Long Point Manor	OLF	25%	14%	14%	10%	20%	9%	9%	5%	14%	4%	3%	-	24%	12%	13%	8%	16%	6%	5%	2%
	R16	Rocky Point Heights	OLF	11%	4%	1%	1%	12%	4%	2%	1%	13%	4%	3%	1%	12%	4%	2%	1%	13%	4%	3%	1%
	R17	Port Townsend	None	1%	-	-	-	1%	-	-	-	0%	-	-1%	-	1%	-	-	-	1%	-	-	-
	R18	Marrowstone Island (Nordland)	None	-	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	0%	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	36%	23%	26%	18%	25%	15%	15%	10%	12%	6%	2%	1%	33%	21%	23%	16%	16%	9%	6%	4%
	R20	South Lopez Island (Agate Beach)	None	4%	1%	1%	-	3%	1%	-	-	3%	1%	-	-	3%	1%	-	-	3%	1%	-	-
	S01	Oak Harbor High School	Ault	25%	15%	3%	2%	28%	17%	6%	4%	30%	18%	8%	5%	26%	16%	4%	3%	29%	18%	7%	5%
	S02	Crescent Harbor Elementary School	Ault	27%	16%	4%	3%	29%	17%	6%	4%	31%	19%	8%	6%	28%	17%	5%	4%	30%	18%	7%	5%
residential)	S03	Coupeville Elementary School	OLF	19%	12%	14%	9%	12%	7%	7%	4%	6%	3%	1%	-	17%	10%	12%	7%	8%	4%	3%	1%
ent	S04	Anacortes High School	Ault	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-	3%	1%	1%	-
Sig	S05	Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(near re	S06	Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School (n	S07	Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
လွ	S08	Fidalgo Elementary School	Ault	9%	3%	2%	1%	9%	3%	2%	1%	10%	3%	3%	1%	9%	3%	2%	1%	9%	3%	2%	1%
	S09	La Conner Elementary School	Ault	11%	5%	3%	2%	11%	5%	3%	2%	10%	5%	2%	2%	11%	5%	3%	2%	11%	5%	3%	2%
	S10	Elger Bay Elementary School dB and 25 dB of Noise Level Reductions	OLF	0%	0%	-	-	0%	0%	-	-	0%	0%	-	-	0%	0%	-	-	0%	0%	-	-

Table A7.5-8 Indoor Speech Interference for the High-Tempo FCLP Year, Alternative 3

	Point of Interest													aily Indoor I									
				Alt		Change from No Action		Alt3B		No A	ge from Action	Alt3		No A	e from action	Alt3D		Change from No Action		Alt3	_	No A	ge from Action
Туре	ID	Description	Related Field	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows Open	Windows Closed	Windows ' Open	Windows Closed	Windows Open	Windows Closed
	R01	Sullivan Rd	Ault	9	9	+1	+1	10	10	+2	+2	10	10	+2	+2	9	9	+1	+1	10	10	+2	+2
	R02	Salal St. and N. Northgate Dr	Ault	9	9	+1	+1	10	10	+2	+2	10	10	+2	+2	9	9	+1	+1	10	10	+2	+2
	R03	Central Whidbey	Ault	5	-	-	-	6	-	+1	-	6	-	+1	-	5	-	-	-	6	-	+1	-
	R04	Pull and Be Damned Point	Ault	3	1	+1	-	3	2	+1	+1	3	1	+1	-	3	2	+1	+1	3	2	+1	+1
	R05	Snee-Oosh Point	Ault	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-	2	1	-	-
	R06	Admirals Dr and Byrd Dr	OLF	2	2	+2	+2	1	1	+1	+1	1	-	+1	-	2	2	+2	+2	1	1	+1	+1
	R07	Race Lagoon	OLF	2	1	+1	+1	1	1	-	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
	R08	Pratts Bluff	OLF	2	1	+2	+1	1	-	+1	-	1	-	+1	-	2	1	+2	+1	1	-	+1	-
a	R09	Cox Rd and Island Ridge Way	OLF	1	-	+1	-	1	-	+1	-	-	-	-	-	1	-	+1	-	-	-	-	-
Residential	R10	Skyline	None	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
ige	R11	Sequim	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ses	R12	Port Angeles	None	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- [-	-	
	R13	Beverly Beach, Freeland	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R14	E Sleeper Rd & Slumber Ln	Ault	9	8	+1	+1	10	9	+2	+2	10	9	+2	+2	9	8	+1	+1	10	9	+2	+2
	R15	Long Point Manor	OLF	3	2	+2	+1	2	1	+1	-	1	1	-	-	2	2	+1	+1	2	1	+1	-
	R16	Rocky Point Heights	OLF	2	1	-		2	1	-		2	1	-	-	2	1	-	_	2	1	-	
	R17	Port Townsend	None	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	ļ	-	-	-	-
	R18	Marrowstone Island (Nordland)	None	-	-	-	-	-	-	-	-	- [-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	OLF	2	2	+1	+1	1	1	-	-	1	1	-	-	2	2	+1	+1	1	1	-	-
	R20	South Lopez Island (Agate Beach)	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S01	Oak Harbor High School	Ault	6	2	-		7	3	+1	+1	8	3	+2	+1	7	3	+1	+1	8	3	+2	+1
	S02	Crescent Harbor Elementary School	Ault	5	2	-	-	6	3	+1	+1	7	3	+2	+1	6	2	+1	-	7	3	+2	+1
ial)	S03	Coupeville Elementary School	OLF	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1	1	-	+1
enti	S04	Anacortes High School	Ault	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
residential)	S05	Lopez Island School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ear re	S06	Friday Harbor Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
School (near	S07	Sir James Douglas Elementary School	None	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sch	S08	Fidalgo Elementary School	Ault	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	S09	La Conner Elementary School	Ault	1	1	-	+1	1	1	-	+1	1	1	-	+1	1	1	-	+1	1	1	-	+1
	S10	Elger Bay Elementary School	OLF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A7.5-9 Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 3

					Alt3A			Change from No Action						
		Representative School Location				Indo					Indo	oor ⁽¹⁾		
		Representative deficion Education				dows		dows			idows		dows	
				Outdoor	O	oen Events	Clo	sed Events	Outdoor	O	pen Events	Clo	sed Events	
			Related		L _{eq(8h)}	per	L _{eq(8h)}	per		L _{eq(8h)}	per	L _{eq(8h)}	per	
Туре	ID	Description	Field	L _{eq(8h)} (dB)	(dB)	Hour ⁽²⁾	(dB)	Hour ⁽²⁾	L _{eq(8h)} (dB)	(dB)	Hour ⁽²⁾	(dB)	Hour ⁽²⁾	
	R03	Central Whidbey	Ault	58	<45	5	<45	_	+1	+1	+1	+1	_	
School		-								·	''			
Su	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-	
	S01 S02	Oak Harbor High School Crescent Harbor Elementary School	Ault Ault	57 68	<45 53	6 5	<45 <45	2	+1	+1	+1 +1	- +1	-	
		Coupeville Elementary School	OLF	57	<45	2	<45	1	+5	+5	+2	+5	+1	
	S04	Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1		
_	S05	Lopez Island School	None	<45	<45	-	<45	-	+2	+2	-	+2	-	
School	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-	
လွ	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-3	-3	-	-3	-	
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-	
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-	
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+2	+2	-	+2	-	
		Number of Sites Exceeding 1 Intrusive Event per Hour				4		2			1		-	
		Minimum Number of Intrusive Events				2		2			+2		_	
		per Hour if Exceeding 1 Maximum Number of Intrusive Events												
		per Hour if Exceeding 1				6		2			+2		-	
0		Point of Interest	l			Alt3B			G	nange	from No	ACTIO	n	
School	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-	
Surr	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-	
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1	
	S02	Crescent Harbor Elementary School	Ault	68	53	6	<45	2	+1	+1	+2	+1	-	
	S03	Coupeville Elementary School	OLF	55	<45	1	<45	1	+3	+3	+1	+3	+1	
_		Anacortes High School	Ault	47	<45	-	<45	-	+1	+1	-	+1	-	
School		Lopez Island School	None	<45	<45	-	<45	-	+1	+1	-	+1	-	
Š		Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-	
	S07 S08	Sir James Douglas Elementary School Fidalgo Elementary School	None Ault	<45 50	<45 <45	-	<45 <45	-	-3 +1	-3 +1	-	-3 +1	-	
	S09	La Conner Elementary School	Ault	52	<45	1	<45		+2	+2	-	+2		
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-	
		Number of Sites Exceeding				3		2					-	
		1 Intrusive Event per Hour Minimum Number of Intrusive Events				5		2			+2		_	
		per Hour if Exceeding 1 Maximum Number of Intrusive Events												
		per Hour if Exceeding 1 Point of Interest				7 Alt3C		3	C	hango	+2 from No	Action	-	
_ p	Doo		Α "				!							
School	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-	
Sur	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-	
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1	
		Crescent Harbor Elementary School Coupeville Elementary School	Ault	69 51	54	6	<45	- 3	+2	+2 -1	+2	+2	+1	
		Anacortes High School	OLF Ault	51 47	<45 <45	1	<45 <45	-	-1 +1	-1 +1	+1	-1 +1	-	
5	***************************************	Lopez Island School	None	<45	<45	-	<45	-	+2	+2	-	+2	-	
School	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1	-	-	-	-	
Ñ	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	-3	-3	-	-3	-	
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-	
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-	
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-	
		Number of Sites Exceeding				3		2			3		-	
		1 Intrusive Event per Hour Minimum Number of Intrusive Events				6		3			+2		_	
		per Hour if Exceeding 1 Maximum Number of Intrusive Events												
		per Hour if Exceeding 1			7		3			+2		-		

Table A7.5-9 Classroom Learning Interference for the High-Tempo FCLP Year, Alternative 3

					Alt3D			Change from No Action						
						Indo	or ⁽¹⁾			Indoor (1)				
		Representative School Location			Win	dows		dows		Win	dows		idows	
						pen		osed			pen		osed	
				Outdoor	U	Events	Cit	Events	Outdoor		Events	Cit	Events	
			Related			per		per	· ·		per		per	
Turno	ID	Description	Field	L _{eq(8h)}	L _{eq(8h)} (dB)	Hour ⁽²⁾	L _{eq(8h)} (dB)	Hour ⁽²⁾	L _{eq(8h)}	L _{eq(8h)} (dB)	Hour ⁽²⁾	L _{eq(8h)} (dB)	Hour ⁽²⁾	
Туре	שו	Description	Fleiu	(dB)	(ub)	Houi	(ub)	Houi	(dB)	(ub)	Houi	(ub)	Houi	
School Surrogate	R03	Central Whidbey	Ault	58	<45	5	<45	-	+1	+1	+1	+1	-	
School		-	_											
ις Σ	R11	Sequim	None	<45	<45	-	<45	-	+1	+1	-	+1	-	
	S01	Oak Harbor High School	Ault	57	<45	6	<45	2	-	_	+1		-	
	S02	Crescent Harbor Elementary School	Ault	68	<45 53	5	<45 <45	2	+1	+1	+1	+1	-	
	S02		OLF			2		1			<u></u>	**************		
	S03	Coupeville Elementary School Anacortes High School	~	57 47	<45 <45		<45		+5 +1	+5 +1	+2	+5 +1	+1	
	000000000000000000000000000000000000000	Lopez Island School	Ault	<45	<45 <45	-	<45 <45	-	+1	+1	-	+1	-	
8	S05		None		~~~~~~	ļ				+2	ļ	+2		
School	S06	Friday Harbor Elementary School	None	<45	<45	-	<45	-	+1		-		-	
0)	S07	Sir James Douglas Elementary School	None	<45	<45	-	<45	-	+1	+1	-	+1	-	
	S08	Fidalgo Elementary School	Ault	50	<45	-	<45	-	+1	+1	-	+1	-	
	S09	La Conner Elementary School	Ault	52	<45	1	<45	-	+2	+2	-	+2	-	
	S10	Elger Bay Elementary School	OLF	<45	<45	-	<45	-	+1	+1	-	+1	-	
		Number of Sites Exceeding												
		1 Intrusive Event per Hour			4		2			1		-		
		Minimum Number of Intrusive Events				5		2			+2		_	
		per Hour if Exceeding 1				J					12			
		Maximum Number of Intrusive Events				6		2			+2		_	
		per Hour if Exceeding 1												
		Point of Interest				Alt3E			CI	hange	from No	Actio	n	
School Surrogate	R03	Central Whidbey	Ault	59	<45	6	<45	-	+2	+2	+2	+2	-	
School	R11	Sequim	None	<45	<45	-	<45	-	+2	+2	-	+2	-	
	S01	Oak Harbor High School	Ault	58	<45	7	<45	3	+1	+1	+2	+1	+1	
		Crescent Harbor Elementary School	Ault	69	_<45 54	6	<45 <45	2	+1	+1	+2	+1		
		Coupeville Elementary School	OLF	53	<45	1	<45		+1	+1	+1	+1	-	
		Anacortes High School	Ault	47	<45 <45	- '	<45 <45	-	+1	+1	-	+1	-	
<u>0</u>					<45 <45		<45 <45			+1	-	+1		
School	S05 S06	Lopez Island School Friday Harbor Elementary School	None None	<45 <45	<45 <45		<45 <45	-	+2 +1	+2	-	+2	-	
Ñ	S07					-								
	S07	Sir James Douglas Elementary School	None	<45 50	<45 <45	-	<45 <45	-	+1	+1	-	+1	-	
	S08 S09	Fidalgo Elementary School La Conner Elementary School	Ault Ault	50	<45 <45	<u>-</u> 1	<45 <45	-	+1 +2	+1	-	+1 +2	-	
	~~~~~~~~	Elger Bay Elementary School	OLF	5∠ <45	<45 <45	'	<45 <45	-	+2	+2	-	+2	-	
	010	Number of Sites Exceeding	ı OLI	\ <del>-</del> 10	V+0		\ <del>+</del> 3		TI	TI		TI		
		1 Intrusive Event per Hour				3		2			3		-	
		Minimum Number of Intrusive Events									_			
		per Hour if Exceeding 1				6		2			+2		-	
		Maximum Number of Intrusive Events				_		_						
		per Hour if Exceeding 1				7		3			+2			
Notes:														


⁽¹⁾ assumes 15 dB and 25 dB of Noise Level Reductions for windows open and closed, respectively.

⁽²⁾ Number of Average School-Day Events per hour during 8-hour school day (0800-1600) At or Above an Indoor Maximum (single-event) Sound Level (L max) of 50 dB;

Table A7.5-10 Recreational Speech Interference for the High-Tempo FCLP Year, Alternative 3

				-				Aı	nnual <i>i</i>	Average	Outd	oor Da NA 5	ily Day 0 L _{max}	/time E	vents	per Ho	ur,					
	Represe	ntative Park Receptor	Al	t3A	Increase re No Action		Al	t3B		ase re Action	Ali	t3C	Incre	ase re Action	Alt3D			ase re Action	Alt3E		Increase re	
Type	ID	Description	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
	P01	Joseph Whidbey State Park	9	2	+1	-	9	2	+1	-	10	2	+2	_	9	2	+1	-	10	2	+2	-
	P02	Deception Pass State Park	9	2	+1	-	10	2	+2	-	10	3	+2	+1	9	2	+1	-	10	2	+2	-
	P03	Dugualla State Park	9	2	+1	-	9	2	+1	-	10	2	+2	-	9	2	+1	-	10	2	+2	-
	P04	Baseball Field (Ebey's Landing National Historical Reserve)	5	1	+2	-	4	1	+1	-	3	1	-	-	4	1	+1	-	4	1	+1	-
	P05	Ebey's Landing State Park	4	1	+2	+1	3	1	+1	+1	3	1	+1	+1	4	1	+2	+1	3	1	+1	+1
	P06	Fort Casey State Park	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	-	+1	-
	P07	Cama Beach State Park	5	1	+2	+1	4	1	+1	+1	3	1	-	+1	5	1	+2	+1	4	1	+1	+1
	P08	Port Townsend	2	1	+1	+1	2	1	+1	+1	1	-	-	-	2	1	+1	+1	1	-	-	-
١.,	P09	Moran State Park	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Park	P10	San Juan Islands National Monument	8	2	+1	-	9	2	+2	-	9	2	+2	-	8	2	+1	-	9	2	+2	-
	P11	San Juan Island Visitors Center	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	P12	Cap Sante Park	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-	1	-	+1	-
	P13	Lake Campbell	5	1	+1	-	5	1	+1	-	6	1	+2	-	5	1	+1	-	5	1	+1	-
	P14	Spencer Spit State Park	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	P15	Pioneer Park	5	1	+1	-	4	1	-	-	4	1	-	-	4	1	-	-	4	1	-	-
	P16	Marrowstone Island (Fort Flagler)	2	1	+2	+1	1		+1	-		-	-	-	1	1	+1	+1	1	-	+1	-
	EBLA001	Reuble Farm	4	1	+2	+1	3	1	+1	+1	2		-	-	4	1	+2	+1	3	1	+1	+1
	EBLA002	Ferry House	4	1	+2	+1	3	1	+1	+1	2		-	-	4	1	+2	+1	3	1	+1	+1
	R01	Sullivan Rd	9	2	+1	-	10	2	+2	-	11	3	+3	+1	10	2	+2	-	10	3	+2	+1
	R02	Salal St. and N. Northgate Dr	9	2	+1	_	10	2	+2	-	11	3	+3	+1	10	2	+2	-	10	3	+2	+1
	R02	Central Whidbey	8	2	+1		9	2	+2	-	9	2	+3	-	9	2	+2	-	9	2	+2	-
	R04	Pull and Be Damned Point	8	2	+1		9	2	+2	-	10	2	+3		9	2	+2		9	2	+2	
	~~~~~~~~~~~~	Snee-Oosh Point	8	2	+1		9	2	+2		9	2	+3		8	2	+1	-	9	2	+2	
	R05					-				-				-								-
	R06	Admirals Dr and Byrd Dr	3	1	+2	+1	2	1	+1	+1	1	-	-	-	3	1	+2	+1	2	-	+1	-
	R07	Race Lagoon	5	11	+2		4	1	+1	-	3	11	-	-	4	11	+1	-	3	11		-
	R08 R09	Pratts Bluff Cox Rd and Island Ridge Way	3 2	1	+2	+1	2	1	+1	+1 +1	1	-	-	-	2	1	+2 +1	+1	1	-	+1	-
l =	D40	OL I											· · · · · · · · · · · · · · · · · · ·									
Ęi	R10	Skyline	4	11		-	4	1			5	1	+1		4	11			5	11	+1	
 8	R11	Sequim	1	-	+1	-	1	-	+1	-	11	-	+1	-	11	-	+1	-	1	-	+1	-
Residential	R12	Port Angeles	1	-		-	1	-		-	1	-	-	-	11	-		-	1	-	-	-
~	R13	Beverly Beach, Freeland	1	-	+1	-	1	-	+1	-	-	-	-		1	-	+1	-	-	-		
	R14	E Sleeper Rd & Slumber Ln	9	2	+1	-	10	2	+2	-	10	3	+2	+1	10	2	+2	-	10	3	+2	+1
	R15	Long Point Manor	9	3	+2	+1	9	2	+2	-	9	2	+2	-	9	3	+2	+1	9	2	+2	_
	R16	Rocky Point Heights	5	1	+1		5	2	+1	+1	6	2	+2	+1	5	1	+1		5	2	+1	+1
	R17	Port Townsend	2	1	+1	+1	1		-	-		-	-1	-	1	1	-	+1	1	-	-	-
	R18	Marrowstone Island (Nordland)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R19	Island Transit Offices, Coupeville	5	1	+2	-	4	1	+1	-	3	1	-	-	5	1	+2	-	4	1	+1	-
	R20	South Lopez Island (Agate Beach)	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-
	S01	Oak Harbor High School	9	2	+1	-	10	2	+2	-	10	3	+2	+1	9	2	+1	-	10	2	+2	-
	S02	Crescent Harbor Elementary School	8	2	+1	-	9	2	+2	-	10	2	+3	-	9	2	+2	-	9	2	+2	-
1	S03	Coupeville Elementary School	5	1	+2	-	4	1	+1	-	3	1	-	-	4	1	+1	-	3	1	-	-
	S04	Anacortes High School	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-
1 .	S05	Lopez Island School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
School	S06	Friday Harbor Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0)	S07	Sir James Douglas Elementary School	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S08	Fidalgo Elementary School	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-	5	1	+1	-
	S09	La Conner Elementary School	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-	4	1	+1	-
1	S10	Elger Bay Elementary School	1		-	-	1	-	-	-	1	-	-	-	1	-	-	_	1	-	-	-
	010	go. Day Lionibiliary Ochiool													<u>'</u>							

Appendix A8 Literature Review Process

NAS Whidbey Island Complex Growler FEIS, Volume 2

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	and significant?		Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Abel SM. The extra-auditory effects of noise and annoyance: an overview of research. J	Dahlgren Report	No	Not available	Not available	Not available	No	Review of research on extra-auditory effects of	No		Reviewed and not added to the analysis in the Final
Otolaryngol. 1990;19 Suppl 1:1-13. Akbavir N, Calis AB, Alkim C, Sokmen HM, Erdem L, Ozbal A, et al. Sensorineural	Dahlgren Report	No	no	NA	No	No	exposure to noise	No		Environmental Impact Statement Reviewed and not added to the analysis in the Final
hearing loss in patients with inflammatory bowel disease: a subclinical extraintestinal manifestation. Dig Dis Sci. 2005;50(10):1938-45.	Danigren Report	NO	no	INA	140	NO		140		Environmental Impact Statement
Alimohammadi I, Sandrock S, Gohari MR. The effects of low frequency noise on mental performance and annoyance. Environ Monit Assess. 2013;185(8):7043-51.	Dahlgren Report	Urban noise that included aircraft	Yes	50-70 dBA	Not available	No	Low frequency noise compared to silence increased the accuracy and test performance speed.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Aparicio-Ramon DV, Morales Suarez-Varela MM, Garcia GA, Llopis Gonzale A, Ruano	Dahlgren Report	No	Yes	Not assessed	Not available	No	40% of those interviewed considered environmental	No		Reviewed and not added to the analysis in the Final
L, Sanchez AM, et al. Subjective annoyance caused by environmental noise. J Environ Pathol Toxicol Oncol 1993 Oct-Dec;12(4):237-43. 1993.							noise to cause considerable distress.			Environmental Impact Statement
Argalasova-Sobotova L, Lekaviciute J, Jeram S, Sevcikova L, Jurkovicova J.	Dahlgren Report	No	Yes	N/A; meta-analysis including	Yes	No		No		Reviewed and not added to the analysis in the Final
Environmental noise and cardiovascular disease in adults: research in Central, Eastern and South-Eastern Europe and Newly Independent States. Noise Health. 2013;15(62):22-31.				over 20 papers all with varying exposures						Environmental Impact Statement
Babisch W BBSMKNIH. Traffic Noise and Risk of Myocardial Infarction. Epidemiology (Cambridge, Mass). 2005;16(1):33-40.	Dahlgren Report	No	Yes	65-70 dB	Yes	No	Not jet related	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Babisch W, Houthuijs D, Pershagen G, Cadum E, Katsouyanni K, Velonakis M, et al.	Dahlgren Report/	Yes	Yes	Not available	Not available	Already in analysis	Annoyance ratings due to aircraft noise were higher	Already in analysis	Study specific to Europe and Lden, and no evidence	Previously included in analysis and Draft
Annoyance due to aircraft noise has increased over the years—results of the HYENA study Environ Int. 2009;35(8):1169-76.	 Washington Department of Health 						than predicted in the EU		provided that the trend found would apply to the US and DNL.	Environmental Impact Statement
Babisch W, Kamp I. Exposure-response relationship of the association between aircraft noise and the risk of hypertension. Noise Health. 2009;11(44):161-8.	Dahlgren Report	Yes	NA	NA	NA	No	This is a review article. Does not provide new information	No		Reviewed and added to the analysis in the Final Environmental Impact Statement
Babisch W, Pershagen G, Selander J, et al. Noise annoyancea modifier of the association between noise level and cardiovascular health? <i>Sci Total Environ.</i> 2013;452-453:50-57.	Dahlgren Report/ Washington Department	Yes	Yes	Not available	Not available	Already in analysis	Noise annoyance acts as an effect modifier of the relationship between the noise level and hypertension	Already in analysis	Already in noise study and referenced but listed slightldifferently as:	y Previously included in analysis and Draft Environmental Impact Statement
doi:10.1016/j.scitote nv.2013.02.034.	of Health								Babisch, W., G. Pershagen, J. Selander, D. Houthuijs, O. Breugelmans, E. Cadum, F. Vigna-Taglianti, K. Katsouyanni, A.S. Haralabidis, K. Dimakopoulou, P. Sourtzi, S. Floud, and A.L. Hansell. 2013. Noise annoyance – A modifier of the association between noise level and cardiovascular health? Science of the Total Environment, Volumes 452-453, pp. 50-57, May	
Babisch W, Swart W, Houthuijs D, Selander J, Bluhm G, Pershagen G, et al. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance. The Journal of the Acoustical Society of America. 2012;132(6):3788-808.	Dahlgren Report	Not the main focus of the article	Yes, but ecologic	Unknown	Yes	No	Does not provide information on the environment under consideration.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
almoyance. The Journal of the Acoustical Society of America. 2012,132(0).5760-608.										
Babisch W, Wolf K, Petz M, Heinrich J, Cyrys J, Peters A. Associations between Traffic Noise, Particulate Air Pollution, Hypertension, and Isolated Systolic Hypertension in Adults: The KORA Study. Environmental health perspectives. 2014;122(5):492-8.	Dahlgren Report	No	Yes, but ecologic	31-80 dBA	Yes	No	Traffic noise and ambient noise levels typical in industrial cities	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Babisch W. Cardiovascular effects of noise. Noise Health. 2011;13(52):201.	Washington Department of Health					No	Prospective research proposal	No	This reference wouldn't add significant value to the analysis. However, several of the source citations may provide added value but each is reviewed directly (e.g. WHO)	
Babisch W. ROAD TRAFFIC NOISE AND CARDIOVASCULAR RISK. Noise & Health	. Dahlgren Report	No	Yes	They vary (it was a meta-	No	No	Not jet related	No	Study associations for road noise not readily applied to	Reviewed and not added to the analysis in the Final
2008;10(38):27-33.				analysis), but for the most part: <=60; 61-65; 66-70; 71- 75; 76-80 dB					aircraft noise due to the differences in nature (constant vs. intermittent)	Environmental Impact Statement
Babisch W. Stress hormones in the research on cardiovascular effects of noise. Noise Health. 2003;5(18)::1-11.	Dahlgren Report	No	Yes	Not reported	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Babisch W. The Noise/Stress Concept, Risk Assessment and Research Needs. <i>Noise Health</i> . 2002;4(16):1-11.	Washington Department of Health	No	Yes	No	None were given	No	Background/Informative only	No	Reference focuses more generally on trends, and although the concepts are all applicable to the analysis no details are included that would aid the analysis	Reviewed and not added to the analysis in the Final
Babisch W. Traffic noise and cardiovascular disease: Epidemiological review and synthesis. Noise & Health. 2000;2(8):9-32, 51 of 55	Dahlgren Report	Yes	Yes	>68 dB	N/A	No		No		Reviewed and not added to the analysis in the Final
synthesis. Noise & Health. 2000;2(8):9-32. 51 of 55 Babisch W. Updated exposure-response relationship between road traffic noise and	Dahlgren Report/	No	Yes	Varies, but mostly 60-75 dB	No	No	Meta-analysis	No	This reference may add some value to the analysis of	Environmental Impact Statement Reviewed and not added to the analysis in the Final
coronary heart diseases: A meta-analysis. Noise Health. 2014	Washington Department of Health		- 30						non-auditory health effects, specifically coronary heard disease, despite the relatively low correlation to noise exposure, but is meta-analysis.	Environmental Impact Statement
BaliatsasC, van Kamp I, van Poll R, Yzermans J. Health effects from low-frequency noise and infrasound in the general population: Is it time to listen? A systematic review of observational studies. Sci Total Environ 2016	Washington Department of Health					No		No	This reference would not add significant value to the analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Banbury SP, Macken WJ, Tremblay S, Jones DM. Auditory distraction and short-term memory: phenomena and practical implications. Hum Factors. 2001;43(1):12-29.	Dahlgren Report	No	No	NA	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Bartels S, Marki F, Muller U. The influence of acoustical and non-acoustical factors on short-term annoyance due to aircraft noise in the field - The COSMA study. The Science of the total environment. 2015;538:834-43.	Dahlgren Report	Yes	Yes	Used residents living close to airport	Not available	No	Number of fly overs predicted annoyance better than sound pressure levels among 55 residents close to Cologne airport	No	No additional value beyond what is already in the analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-3

Appendix A8

			Is the outcome due		Are the risk	Medical expert: should		Noise expert: should this paper be considered		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	and significant?		Medical expert notes	for the analysis?	Noise expert notes	Final resolution and notes
Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, et al. Auditory and non-auditory effects of noise on health. Lancet. 2014;383(9925):1325-32.	Dahlgren Report/ Washington Department of Health	Yes (some info on airports)	Yes	<30 to >=55	N/A	Yes	Background Only		Would add some additional background information to the analysis. Analysis analyzes classroom learning effects using Leq and a 5 dB increase in Leq as significant if increased beyond threshold. However, did not consider significant for 5 dB increase when it doesn't reach threshold of concern. Might consider revisiting text discussion. -analysis does not analyze LAeq levels. Aircraft generated night levels much more variable over time than in this reference (road or commercial air traffic) so not clear how easily conclusions can be applied to analysis -WHO 55 dB LAeq night target identified in may references and original source should probably be added to analysis (if not already there). Key point is that this is a target, not necessarily the threshold for significant non-auditory health effects. Other papers by same authors already included in analysis	Environmental Impact Statement
Basner M, Brink et al. ICBEN review of research on the biological effects of noise 2011-2014. Noise Health. 2015;17(75:57-82. doi:10.4103/1463-1741.153373	Washington Department of Health								Original source reviewed regarding hypertension and diabetes. Hospitalization correlation to Ldn doesn't appear to isolate Ldn and cause; too many uncontrolled variables. Train-borne vibration not easily translated to aircraft-sourced vibrations due to ground generated vs air generated. Other papers by same author already included in analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Basner M, Griefahn 8, Berg M van den. Aircraft noise effects on sleep: mechanisms, mitigation and research needs. Noise Health. 2010;12(47):95-109. doi:10.4103/1463-1741.63210.	Dahlgren Report/ Washington Department of Health	No	No	N/A	N/A	No	Used 200 ANE per night as the exposure	No	This references is a review of studies and doesn't add significant value to the analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Basner M, MullerU, Elmenhorst E-M. Single and compbined effects of air,road, and rail traffic noise on sleep and recuperations. Sleep. 2011	Washington Department of Health					Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Becker V, von Delius S, Bajbouj M, Karagianni A, Schmid RM, Meining A. Intravenous application of fluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-to-imaging time. Gastrointest Endosc. 2008;68(2):319-23.	Dahlgren Report	No	No	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Belojevic G S-TM. Prevalence of Arterial Hypertension and Myocardial Infarction in Relation to Subjective Ratings of Traffic Noise Exposure. Noise Health. 2002;4(16)::33-7. 54 of 55	Dahlgren Report	No	Unknown	Qualitative	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Beutel ME, Jünger C, Klein EM, Wild P, Lackner K, Blettner M, et al. (2016) Noise Annoyance Is Associated with Depression and Anxiety in the General Population- The Contribution of Aircraft Noise. PLoS ONE 11(5): e0155357	Dahlgren Report/ Washington Department of Health/ Independent	Yes	Yes	Did not assess levels	Yes	No	Cross sectional nature of the surveys does not establish an association between mental health and noise exposures.; Noise annoyance was associated with a two fold higher prevalence of depression and anxiety in the general population. Could not relate annoyance to aircraft noise directly to depression and anxiety.			Reviewed and added to the analysis in the Final Environmental Impact Statement
Bluhm G, Eriksson C. Cardiovascular effects of environmental noise: research in Sweden. Noise Health. 2011;13(52):212-6.	Dahlgren Report	Yes	Yes	>55	Yes	No		No	Nothing new beyond the HYENA study, which is already in the analysi	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Bodin T, Björk J, Öhrström E, Ardö J, Albin M. Survey context and question wording affects self reported annoyance due to road traffic noise: a comparison between two cross-sectional studies. Environ Health. 2012;11(1):1.	Washington Department of Health								Study focused on road traffic noise and annoyance. Does not provide significant additional value to add to analysis	Reviewed and not added to the analysis in the Final
Brenner H, Oberacker A, Kranig W, Buchwalsky R. A field study on the immediate effects of exposure to low-altitude flights on heart rate and arrhythmia in patients with cardiac diseases. International archives of occupational and environmental health. 1993;65(4):263-8.		Yes	Yes	>95 dB	No	No	Only studied effects in patients with pre-existing cardiovascular conditions		This study measured "startle" effect of MTR type flight on blood pressure. The "low-altitude military flights" consisted of events with sound level increases of up to 75 dB/s. Despite military jets operating at low altitudes, the sound level increase rate is typically an order of magnitude smaller, so this study does not apply to this analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Brisbane Airport Corporation. (2007). New Parallel Runway Draft Environmental Impact Statement/Major Development Plan. September 2007. Volume D—Airspace, Chapter 7: Human Impact Assessment. Retrieved May 7, 2018: https://bne.com.au/sites/default/files/docs/BNR_EIS_MDP_D7_Health_Impact_Assess.pdf										Reviewed and added to the analysis in the Final Environmental Impact Statement
Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, et al. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Research report (Health Effects Institute). 2009(139):5-71; discussion 3-89.	Dahlgren Report	No	No	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
C.D. Francis, J.R. Barber. A Framework/or Understanding Noise Impacts on Wildlife: An urgent Conservation Priority. August 1, 2013. Boise State University Scholar Works, Department of Biological Sciences.	USEPA Reg 10	No	Yes; noise impacts on wildlife	N/A	This is not a study	Yes	Background/Informative only		Analysis already includes significant discussion on wildlife impacts from noise; no new information	Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-4 Appendix A8

NAS Whidbey Island Complex Growler FEIS, Volume 2

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	estimates precise and significant?		Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585-592.	Washington Department of Health					No	Meta analysis with little or no association to the causes of short or long sleep durations.	No	The analysis focuses on potential for awakening without a current method to estimate effect on sleep duration due to noise exposure. This reference may no add significant value to the analysis because of this practical limitation, particularly due to fairly small relative risk correlation	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Carter NL. Transportation noise, sleep, and possible after-effects. Environ Int. 1996;22(1):105-16.	Dahlgren Report	No	Yes	Not available	Not available	No	Chronic exposure to traffic noise during sleep may affect mood states	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Castle JS, Xing JH, Warner MR, Korsten MA. Environmental noise alters gastric myoelectrical activity: Effect of age. World J Gastroenterol. 2007;13(3):403-7.	Dahlgren Report	No	Yes	N/A	Yes	No	focuses on gastric myoelectrical activity and noise exposures include hospital noise, conversation babble and traffic noise	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Chang Ty STCLSYJRMCCC. Effects of occupational noise exposure on 24-hour ambulatory vascular properties in male workers. Environmental health perspectives. 2007;115(11):1660-4.	Dahlgren Report	No	Yes	>=85 dB	Yes	No	and thirte roise	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Chang TY, Hwang BF, Liu CS, Chen RY, Wang VS, Bao BY, et al. Occupational noise exposure and incident hypertension in men: a prospective cohort study. American journal of epidemiology. 2013;177(8):818-25.	Dahlgren Report	No	Yes	80->=85 dB	Yes	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Chang TY, Liu CS, Huang KH, Chen RY, Lai JS, Bao BY. High-frequency hearing loss, occupational noise exposure and hypertension: a cross-sectional study in male workers. Environmental health: a global access science source. 2011;10:35.	Dahlgren Report	No	Yes	>=85 dB	Yes	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Charakida M, Deanfield JE. Nighttime aircraft noise exposure: flying towards arterial disease. Eur Heart J. 2013;34(45):3472-4.	Dahlgren Report	Yes	Yes	N/A	N/A	No	Article on biological mechanism of noise exposure. No results	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Chengzhi C, Yan T, Xuejun J, Xiang L, Youbin Q, Baijie T. Recovery of chronic noise exposure induced spatial learning and memory deficits in young male Sprague-Dawley rats. J Occup Health. 2011;53(3):157-63.	Dahlgren Report	No	Yes	80 and 100 dBA continuous for 4 hrs per day	NA	No	Rat study and not related to exposures similar to airports and jet noise.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Chiovenda P, Pasqualetti P, Zappasodi F, Ercolani M, Milazzo D, Tomei G, et al. Environmental noise-exposed workers: event-related potentials, neuropsychological and mood assessment. Int J Psychophysiol. 2007;65(3):228-37.	Dahlgren Report	No	Yes	N/A	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Clark C, Crombie R, Head J, van Kamp I, van Kempen E, Stansfeld SA. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project. American journal of epidemiology. 2012;176(4):327-37.	Dahlgren Report	Yes	Unknown	52-54 dBA	No	Yes		Yes	The predecessor studies (Clark, 2005; Clark, 2009) are already in analysis. This will provide udpate to the authors' work.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Clark C, Martin R, van Kempen E, Alfred T, Head J, Davies HW, et al. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project. American journal of epidemiology. 2006;163(1):27-37. 52 of 55	Dahlgren Report	Yes	Yes	30-77 dBA	Yes	Already in analysis		Already in analysis	This study was published in multiple journals a few months apart in both 2005 and 2006. The analysis references 2005.	Previously included in analysis and Draft Environmental Impact Statement
Cohen S, Evans GW, Krantz DS, Stokols D, Kelly S. Aircraft Noise and Children: Longitudal and Cross-Sectional Evidence on Adaptation to Noise and the Effectiveness of Noise Abatement. Journal of Personality and Social Psychology. 1981;40(2). 53 of 55	U 1	Yes	Yes	74 ave, 84 peak	Unknown	No	The article did not present data that could be readily evaluated.			Reviewed and added to the analysis in the Final Environmental Impact Statement
Cohen S, Evans GW, Krantz DS, Stokols D. Physiological, motivational, and cognitive effects of aircraft noise on children: moving from the laboratory to the field. Am Psychol. 1980;35(3):231-43.	Dahlgren Report	Yes	Yes	74 ave, 84 peak	Unknown	No	The article did not present data that could be readily evaluated.			Reviewed and added to the analysis in the Final Environmental Impact Statement
Cohen S, Krantz DS, Evans GW, Stokols D. Cardiovascular and Behavioral Effects of Community Noise: Evidence from field studies of schoolchildren supports laboratory findings that high-intensity noise adversely affects physical health and psychological functioning. American Scientist. 1981:528-35.	Dahlgren Report	Yes	Yes	None stated; just aircraft noise	No	No	Results not quantified.	No	The original Cohen 1980 study is already in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Crombie R, Clark C, Stansfeld SA. Environmental noise exposure, early biological risk and mental health in nine to ten year old children: a cross-sectional field study. Environmental health: a global access science source. 2011;10:39.		Yes	No association found	30-77 dBA	Yes	Yes	Study found no association between aircraft noise and later mental health issues in children at risk at birth.	Yes	Study found no association between aircraft noise and later mental health issues in children at risk at birth.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Cui B, Wu M, She X. Effects of chronic noise exposure on spatial learning and memory of rats in relation to neurotransmitters and NMDAR2B alteration in the hippocampus. J Occup Health. 2009;51(2):152-8.	Dahlgren Report	No	Yes	100 dB white noise, 4 h/day × 30 days, from 8:00 to 12:00	NA	No	Rat study with no clear association with the environment in question			Reviewed and not added to the analysis in the Final Environmental Impact Statement
da Fonseca J, dos Santos JM, Branco NC, Alves-Pereira M, Grande N, Oliveira P, et al. Noise-induced gastric lesions: a light and scanning electron microscopy study of the alterations of the rat gastric mucosa induced by low frequency noise. Cent Eur J Public Health. 2006;14(1):35-8.	Dahlgren Report	No	No	NA; low-frequency noise only.	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Davies H, Van Kamp I. Noise and cardiovascular disease: A review of the literature 2008-2011. Noise Health. 2012	Dahlgren Report/ Washington Department of Health	No	Yes	80-95 dB	No	No	No new information	Yes	May add a little value to the analysis on non-auditory health effects.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Davies HW, Teschke K, Kennedy SM, Hodgson MR, Hertzman C, Demers PA. Occupational exposure to noise and mortality from acute myocardial infarction. Epidemiology (Cambridge, Mass). 2005;16(1):25-32.	Dahlgren Report	No	Unknown	No	No	No	ecologic study	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Davis A, Rafaie EA. Epidemiology of tinnitus. <i>Tinnitus Handb.</i> 2000: 1-23.	Washington Department of Health	Yes	Not a study; an evidenced-based informative review	N/A	Doesn't provide	Yes	Background/Informative only	Yes	Evidence-based information review	Reviewed and added to the analysis in the Final Environmental Impact Statement

A8-5

Appendix A8

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	estimates precise and significant?		Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Dawes P, Cruickshanks KJ, Moore DR, et al. Cigarette smoking, passive smoking, alcohol	Washington Department					No	·	No	Reference does not address noise	Reviewed and not added to the analysis in the Final
consumption, and hearing loss. J Assoc Res Otolaryngol. 2014;15(4):663-674.	of Health									Environmental Impact Statement
de Kluizenaar Y, Gansevoort RT, Miedema HM, de Jong PE. Hypertension and road	Dahlgren Report	No	Yes	>=55 dB	Yes	No		No		Reviewed and not added to the analysis in the Final
traffic noise exposure. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine. 2007;49(5):484-92.										Environmental Impact Statement
Department of the Navy. Environmental Impacts Statement for EA-18G "Growler" Airfield Operations at Naval Air Station Whidbey Island Complex. Volume 1.: 2016	Washington Department of Health							No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
DeWitt JC. Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances: Springer; 2015.	Dahlgren Report	No	No	NA	Unknown	No	Article is related to an ingredient in fire-fighting foam and not noise exposure.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Di Nisi J, Muzet A, Ehrhart J, Libert JP. Comparison of cardiovascular responses to noise during waking and sleeping in humans. Sleep. 1990;13(2):108-20.	Dahlgren Report	No	Yes	Not available	Not available	No	Sleep pattern showed no significant modification in the night of noise disturbance.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Dreger S, Meyer N, Fromme H, Bolte G, Study Group of the GMEc. Environmental noise and incident mental health problems: A prospective cohort study among school children in Germany. Environmental research. 2015;143(Pt A):49-54.		Yes	Yes	N/A	No	No	ingit of hose distribute.	No		Reviewed and added to the analysis in the Final Environmental Impact Statement
Dzhambov AM, Dimitrova DD, Mihaylova-Alakidi VK. Burden of Sleep Disturbance Due to Traffic Noise in Bulgaria. Folia Med (Plovdiv). 2015;57(3-4):264-9.	Dahlgren Report	Included road, railway, and aircraft traffic	Yes	55-59 dBA	No	No	No p-values or confidence intervals. 12% of those exposed to 55-59 dBA of noise were highly sleep disturbed	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Earshen JJ. Sound Measurement: Instrumentation and Noise Descriptors. In: The Noise Manual. Fifth. American Industrial Hygiene Association; 2000	Washington Department of Health							No	This reference is complimentary to the discussion of noise section, and all relevant topics are currently already addressed in the analysis. The addition of this reference to the analysis would not add significant value.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Elmenhorst EM, Pennig S, Rolny V, Quehl J, Mueller U, Maass H, et al. Examining nocturnal railway noise and aircraft noise in the field: sleep, psychomotor performance, and annoyance. The Science of the total environment. 2012;424:48-56.	Dahlgren Report	No	Yes	35-80 dBA	Not available	Yes	Train noise at night in Germany was associated with higher awakening probability than seen with aircraft noise.	No	Potential for awakening attributable directly to aircraft noise, and associated studies, already discussed in analysis. This study would not add additional value.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Elmenhorst EM, Quehl J, Muller U, Basner M. Nocturnal air, road, and rail traffic noise and daytime cognitive performance and annoyance. The Journal of the Acoustical Society of America. 2014;135(1):213-22.	Dahlgren Report	Included road, railway, and aircraft traffic	Yes	Not available	Not available	No	Aircraft noise annoyance ranked above railway and road for nocturnal exposure.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM. Community exposure to perfluorooctanoate: relationships between serum concentrations and exposure sources. Journal of occupational and environmental medicine/American College of Occupational and Environmental Medicine. 2006;48(8):759.	Dahlgren Report	No	No	NA	Unknown	No	Article is related to an ingredient in fire-fighting foam and not noise exposure.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
EPA U. Protective noise levels. 1978;550/9-79-100:1-28.	Dahlgren Report	NA	NA	NA	NA	No	Reference document that is too old for consideration.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Eriksson C RMPGHAOCGBG. Aircraft noise and incidence of hypertension. Epidemiology (Cambridge, Mass). 2005;18(6)::716-21.	Dahlgren Report	Yes	Yes	50-70 dBA	Yes	No		No	A newer 2010 paper by the same author already in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Eriksson C, Bluhm G, Hilding A, Ostenson CG, Pershagen G. Aircraft noise and incidence of hypertension—gender specific effects. Environmental research. 2010;110(8):764-72.	Dahlgren Report	Yes	Yes	>=50dB	Yes	Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Eriksson C, Rosenlund M, Pershagen G, Hilding A, Ostenson CG, Bluhm G. Aircraft noise and incidence of hypertension. Epidemiology (Cambridge, Mass). 2007;18(6):716-21.	Dahlgren Report	Yes	Yes	70->=70 dB	Yes	Already in analysis		Already in analysis	Follow-up study by the author already included in analysis (Erikkson, Bluhm & Hilding, 2010)	Previously included in analysis and Draft Environmental Impact Statement
Ettema Jh ZRL. Health effects of exposure to noise, particularly aircraft noise. International Archives of Occupational Environmental Health. 1977;40:163-84.	Dahlgren Report							No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Evans GW, Hygge S, Bullinger M. Chronic noise and psychological stress. Psychological science. 1995;6(6):333-8.	Dahlgren Report	No; ambient noise levels typical in industrial cities	Yes, but ecologic	Not available	Not available	No	Chronic noise exposure is associated with elevated neuroendocrine and cardiovascular measures, muted cardiovascular reactivity, deficits in standardized testing, poor long term memory, and low quality of life.	No		Reviewed and added to the analysis in the Final Environmental Impact Statement
Evans GW, Lercher P, Meis M, Ising H, Kofler WW. Community noise exposure and stress in children. The Journal of the Acoustical Society of America. 2001;109(3):1023-7.	Dahlgren Report	No; ambient noise levels typical in industrial cities	Yes, but ecologic	Two groups: below 50 dBA and above 60 dBA	Yes, but interaction occurred.	No	Does not provide information that is useful to the environment under consideration.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Evrard AS, Bouaoun L, Champelovier P, Lambert J, Laumon B. Does exposure to aircraft noise increase the mortality from cardiovascular disease in the population living in the vicinity of airports? Results of an ecological study in France. Noise Health. 2015;17(78):328-36.	Dahlgren Report	Yes	Yes	Averages for the three airports: 45.3 dB, 45.7 dB, 51.6 dB	Yes	No		No		Reviewed and added to the analysis in the Final Environmental Impact Statement
Evrard AS, Lefevre M, Champelovier P, Lambert J, Laumon B. Does aircraft noise exposure increase the risk of hypertension in the population living near airports in France? Occupational and environmental medicine. 2016.	Dahlgren Report	Yes	Yes	Measured in 10 dB increasing increments	y Yes	Already in analysis		Already in analysis	This is already in the noise study but cited as 2015, which is correct: Evrard AS, Bouaoun L, Champelovier P, Lambert J, Laumon B. 2015. Does exposure to aircraft noise increase the mortality from cardiovascular disease in the population living in the vicinity of airports? Results of an ecological study in France. Noise Health 2015;17:328-36	Previously included in analysis and Draft Environmental Impact Statement

A8-6

Appendix A8

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	and significant?	for the analysis?	Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Fechter Ld GCFSCJFJNKCDN-MAMPPB. Promotion of noise-induced cochlear injury by toluene and ethylbenzene in the rat. Toxicological sciences: an official journal of the Society of Toxicology. 2007;98(2):542-51. 45 of 55	/ Dahlgren Report	No	Combined exposure to ethylbenzene and toluene with noise exposure	93-95 dB	Not available	No	Combined exposure of ethylbenzene and toluene with 93 dB exposure yielded loss in auditory function and hair cell death	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Fidell S, Barber OS, Schultz TJ. Updating a dosage-effect relationship for the prevalence	Washington Department					No	Report and only deals with modeling to predict	No		Reviewed and not added to the analysis in the Final
of annoyance due to general transportation noise. J Acoust Soc Am. 1991;89(1):221-233.	of Health						annoynace.			Environmental Impact Statement
Fidell S, Tabachnick B, Mestre V, Fidell L. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels. J Acoust Soc Am. 2013	Dahlgren Report/Washington Department of Health	Yes	Yes	Not available	Not available	Yes	Probabilities of awakening are closely related to sound exposure levels	Yes	The reference essentially supports the ANSI 2008 predictive function, utilized in the analysis, as the current best method but explains the limitations of this methodology due to habituation and self-selection in living choices. This reference would add some value to the analysis in respect to tempering the precision of the calculation as well as advising that increasing numbers of events, which populations are familiar with, may have minimal effect on awakenings.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Finegold LS. Sleep disturbance due to aircraft noise exposure. Noise Health. 2010;12(47):88-94. doi:10.4103/1463-1741.63208.	Washington Department of Health					Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Floud S, Vigna-Taglianti F, Hansell A, Blangiardo M, Houthuijs D, Breugelmans O, et al. Medication use in relation to noise from aircraft and road traffic in six European countries results of the HYENA study. Occupational and environmental medicine. 2011;68(7):518-24.	Dahlgren Report	Yes	Yes	30-35 dBA	Yes	Already in analysis	Effect of aircraft noise on the use of antihypertensive medication, but not consistent across countries	Already in analysis	The analysis already includes the HYENA study focusing on heart disease and stroke (Floud, 2013)	Previously included in analysis and Draft Environmental Impact Statement
Foertsch K, Davies P. The number-of-events as a predictor variable in aircraft noise annoyance models. Partn Proj. 2013;24.	Washington Department of Health					No	This is a modeling report, not from a peer reviewed journal. The report propses different ways to use noise data to predict annoyance.	No	This reference does not conflict with the analysis or use of DNL but does not add significant value either.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Fonseca J, Martins-dos-Santos J, Oliveira P, Laranjeira N, Aguas A, Castelo-Branco N. Noise-induced gastric lesions: a light and electron microscopy study of the rat gastric wall exposed to low frequency noise. Arquivos de gastroenterologia. 2012;49(1):82-8.	Dahlgren Report	No	Yes	Low-frequency noise	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Foraster M, Eze IC, Vienneau D, Brink M, Cajochen C, Caviezel S, et al. Long-term transportation noise annoyance is associated with subsequent lower levels of physical activity. Environ Int. 2016;91:341-9. 44 of 55	Dahlgren Report	Included road, railway, and aircraft traffic	No	Not used	Yes	No	Long term noise annoyance reduced physical activity.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Foraster M. Is it traffic-related air pollution or road traffic noise, or both? Key questions not yet settled. Int J Public Health. 2013;58:647-648.	Washington Department of Health					No	Editorial	No	This reference would not add significant value to the analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Foud S, Vigna-Taglianti F, Hansell A, et al. Medication use in relation to noise from aircraft and road traffic in six European countries: results of the Hyena study. Occup Environ Med. 2011.	Washington Department of Health					No	Hypertension is related to exposure to noise. Use of hypertension drugs is related to hypertension. No real finding here. Same issues with collinearity as other HYENA studies.	Yes	Hard to draw strong conclusion of causal link between aircraft noise exposure and hypertension and/or anxiety from this reference. This reference would support a discussion in the analysis of this nature but could not lead it. If non-auditory health effects discussion is to be expanded, then this reference may provide some value; otherwise, much less so. Similar reference already in analysis.	
Franks JR, Merry C. Preventing Occupatipnal Hearing loss: A Practical Guide. US Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Biomedical and Behavioral Science, Physical Agents Effects Branch; 1996.	Washington Department of Health	No				Yes	Background/Informative only	No	The reference focus is for occupational hearing protection administration and doesn't add significant value to the analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Franssen EA, van Wiechen CM, Nagelkerke NJ, Lebret E. Aircraft noise around a large international airport and its impact on general health and medication use. Occupational and environmental medicine. 2004;61(5):405-13.	Dahlgren Report	Yes	Yes	41-76 dBA	Yes	Yes	None of the health indicators were associated with aircraft noise exposure during the night. Tiredness and headaches associate with aircraft noise.		More recent studies with better applicability have already been included in the analysis (e.g. Haralabidis, 2008).	Reviewed and added to the analysis in the Final Environmental Impact Statement
Fruhstorfer B HH. Extra-auditory responses to long-term intermittent noise stimulation in humans. J Appl Physiol. 1980;49(6:985-93.	Dahlgren Report	No	No	100 dB	N/a	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Fyhri A KR. Road traffic noise, sensitivity, annoyance and self-reported healtha structural equation model exercise. Environ Int. 2009;35(1:91-7.	Dahlgren Report	No	Yes	Not available	Not available	No	No relationships between noise and health complaints in Norway. Health complaints were subjective.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Geerse GJ, van Gurp LC, Wiegant VM, Stam R. Individual reactivity to the open-field predicts the expression of cardiovascular and behavioural sensitisation to novel stress. Behav Brain Res. 2006;175(1):9-17.	Dahlgren Report	No	No	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Gille LA, Marquis-Favre C, Morel J. Testing of the European Union exposure-response relationships and annoyance equivalents model for annoyance due to transportation noises. The need of revised exposure-response relationships and annoyance equivalents model. Environ Int. 2016;94:83-94.	Dahlgren Report :	Included road, railway, and aircraft traffic	Yes	Not available	Not available	No	Testing European Union exposure-response relationships to suggest revision.	No	Focused on updating EU DALY calculation by adjusting method for determining percent highly annoyed	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Goines, Lisa, RN and Hagler, Louis, MD. Noise Pollution: A Modern Plague. Southern Medical Journal, Volume 100: March 2007, pages 287-294.	USEPA Reg 10		No	No	No	Yes	Background/Informative only			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Griefahn BaM, A. Noise-Induced Sleep Disturbances and their Effects on Health. Journal of Sound and Vibration. 1978;59(1):99-106.		No	Yes	Not available	Not available	Already in analysis	Acoustical stimuli causing disturbances of rest and sleep are extremely annoying.	Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Gue M, Fioramonti J, Frexinos J, Alvinerie M, Bueno L. Influence of acoustic stress by noise on gastrointestinal motility in dogs. Dig Dis Sci. 1987;32(12):1411-7.	Dahlgren Report	No	Yes	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-7 Appendix A8

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	e estimates precise and significant?		Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Guoqing D, Xiaoyi L, Xiang S, Zhengguang L, Qili L. Investigation of the relationship between aircraft noise and community annoyance in China. Noise Health. 2012;14(57):52-7.	Dahlgren Report	Yes	Yes	Annoyance threshold was 73.7 dB. Range of 50-75	Yes	Yes	Annoyance threshold of aircraft noise was 73.7 dB, which is lower than the 75 dB standard limit for aircraft noise in the study area.	No	The 73.7 WECPNL correlates approximately to 60 DNL. US utilizes DNL, which is thoroughly discussed in analysis. This study focuses on annoyance using the metric LWECPN. Conclusions regardin LWECPN cannot be directed translated to DNL, so this study can't be utilized in the noise study beyond supporting the conclusion that greater noise levels result in greater annoyance	Reviewed and not added to the analysis in the Final Environmental Impact Statement
H. M.E. Miedema & H. Voss, "Noise sensitivity and reactions to noise and other environmental conditions," J. Acoust. Soc. Am. 113(3), March 2003, pp. 1492 to 1504.	Independent									Reviewed and added to the analysis in the Final Environmental Impact Statement
Haines MM, Stansfeld SA, Job RF, Berglund B, Head J. A follow-up study of effects of chronic aircraft noise exposure on child stress responses and cognition. International journal of epidemiology. 2001;30(4):839-45.	Dahlgren Report	Yes	Yes	>66 dB and <57 dB	No	Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Hallback M, Jones JV, Bianchi G, Folkow B. Cardiovascular control in the Milan strain of spontaneously hypertensive rat (MHS) at "rest" and during acute mental "stress". Acta Physiol Scand. 1977;99(2):208-16.	Dahlgren Report	No	No	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Hammersen F, Niemann H, Hoebel J. Environmental Noise Annoyance and Mental Health in Adults: Findings from the Cross-Sectional German Health Update (GEDA) Study 2012. Int J Environ Res Public Health. 2016;13(10):954.						No	The findings were inconsistent with other studies and the entire basis is self-report.	No	High noise annoyance from environmental noise and mental health are not discussed in the analysis. This reference does not provide added value to the analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Hansell AL, Blangiardo M, Fortunato L, Floud S, de Hoogh K, Fecht D, et al. Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study. BMJ. 2013;347:f5432.	U 1	Yes	Yes	Daytime: <=51 and >63; Nightime: <= 50, 50-55, >55		Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Haralabidis AS, Dimakopoulou K, Velonaki V, et al. Can exposure to noise affect the 24 h blood pressure profile? Results from the HYENA study. J Epidemiol Community Health. 2011;65(6):535-541.						Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Haralabidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley ML, et al. Acute effects of night-time noise exposure on blood pressure in populations living near airports. Eur Heart J. 2008;29(5):658-64.	Dahlgren Report	Yes	Yes	>35 dB	Yes	Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Hardoy MC, Carta MG, Marci AR, Carbone F, Cadeddu M, Kovess V, et al. Exposure to aircraft noise and risk of psychiatric disorders: the Elmas surveyaircraft noise and psychiatric disorders. Soc Psychiatry Psychiatr Epidemiol. 2005;40(1):24-6.	Dahlgren Report	Yes	Yes	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Harlan WR, Sharrett AR, Weill H, Turino GM, Borhani NO, Resnekov L. Impact of the environment on cardiovascular disease. Report of the American Heart Association Task Force on environment and the cardiovascular system. Circulation 1981 Jan;63(1):243A-246A. 1981.	Dahlgren Report									Reviewed and not added to the analysis in the Final Environmental Impact Statement
Heinonen-Guzejev M VHSM-RHHKKMKJ. The association of noise sensitivity with coronary heart and cardiovascular mortality among Finnish adults. The Science of the total environment. 2007;372(2-3):406-12.	Dahlgren Report	No	Yes		No	No	Only found increased risk among noise-sensitive women	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Henderson D, Hamernik RP, Sitler RW. Audiometric and histological correlates of exposure to 1-msec noise impulses in the chinchilla. The Journal of the Acoustical Society of America. 1974;56(4):1210-21.	Dahlgren Report	No	Yes	155, 161, or 166 dB	Not available	No	The chinchillas with 155 dB had no pTS, some of the chinchilla's with 161 dB had PTS, and the chinchillas with 166 dB had a median of 5-15 dB PTS	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Herbold M HHWKU. Effects of road traffic noise on prevalence of hypertension in men: results of the Luebeck Blood Pressure Study. Soz Praventivmed. 1989;;34(1)::19-23. 48 of 55		No	Yes	Categorized by high and low groups	Yes	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Hessel Pa S-CGK. Occupational noise exposure and blood pressure: longitudinal and cross sectional observations in a group of underground miners. Archives of environmental health. 1994;;49(2)::128-34.	-Dahlgren Report	No	Yes	<=85, 86-99, >=100 dB	No	No	non-signficant results	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Hohmann C, Grabenhenrich L, de Kluizenaar Y, et al. Health effects of chronic noise exposure in pregnancy and childhood: a systematic review initiated by ENRIECO. Intl Hyg Environ Health. 2013;216(3):217-2 29. doi:10.1016/j.ijheh.2012.06.001.	Washington Department g of Health					No	Inconclusive fidnings of a meta-analysis. Individual papers with a rating of 2+ should be reviewed if this is a concern.	No	Currently, this topic is not included in the analysis because no link had been identified and may not be necessary.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Holt JB, Zhang X, Sizov N, Croft JB. Airport noise and self-reported sleep insufficiency, United States, 2008 and 2009. Prev Chronic Dis 2015	Dahlgren Report/Washington Department of Health	Yes	Yes	55-over 65 dBA	Yes	Yes	This paper provides another methods for assessing noise exposures and specific heath outcomes. No significant differences between noise exposure zones and outside zones when controlling for socioeconomic status.	Yes	References suggest that sleep disturbance is not as sensitive to DNL as previously suggested, perhaps due to habituation. Candidate to add to analysis	Reviewed and added to the analysis in the Final Environmental Impact Statement
Huang D, Song X, Cui Q, Tian J, Wang Q, Yang K. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants. Noise Health. 2015;17(75):93-7.	Dahlgren Report	Yes	Yes	20->=75 dB	YEs	Already in analysis		Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Huang EI, Durrant JD, Boston JR. Will diminishing cochlear delay affect speech perception in noise? Int J Audiol. 2015;54(8):562-7.	Dahlgren Report	No	No	N/A	No	No	No statistical difference between delay conditions and speech treatments	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Hume K. Sleep disturbance due to noise: current issues and future research. Noise Health. 2010;12(47):70-76. doi:10.4103/1463-1741.63206.	Washington Department of Health					No	Another review article from the same journal.	100	Document did not include sufficient specificity regarding noise analysis or other topics appropriate in the analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-8

Appendix A8

		Is the exposure related to jet noise	Is the outcome due to exposure to	What are the average/range	Are the risk	Medical expert: should this paper be considered		Noise expert: should this paper be considered		
Article	Source	or airports?	noise?	of noise levels ?	and significant?		Medical expert notes	for the analysis?	Noise expert notes	Final resolution and notes
Hume Kl, Brink M, Basner M. Effects of environmental noise on sleep. Noise Health. 2012;14(61):297.	Washington Department of Health					No	Paper does not provide any new inforamtion and is more a commentary on the regulations and policies in Europe.	No	This references would not add significant value to the analysis, but a few of the sources may (e.g. WHO night guidelines). The value of these cited sources have been addressed separately.	Environmental Impact Statement
Hurtley C. Night Noise Guidelines for Europe. WHO Regional Office Europe; 2009.	Washington Department of Health					Already in analysis		Already in analysis	Cited as WHO. (2009). "Night Noise Guidelines for Europe," World Health Organization.	Previously included in analysis and Draft Environmental Impact Statement
Hwang BF, Chang TY, Cheng KY, Liu CS. Gene-environment interaction between	Dahlgren Report	Yes	Yes	30-130 dB	Yes	Yes		Yes		Reviewed and added to the analysis in the Final
angiotensinogen and chronic exposure to occupational noise contribute to hypertension. Occupational and environmental medicine. 2012;69(4):236-42.										Environmental Impact Statement
Hygge S. Classroom experiments on the effects of different noise sources and sound levels on long-term recall and recognition in children. Applied Cognitive Psychology. 2003;17(8):895-914.	Dahlgren Report	Yes	Yes	66 dBA	No	no	Simulations were not realistic for jet noise expected at airports.	No	Appears to be based on the original (Hygge, S., G.W. Evans, & M. Bullinger, 2002.), which is already addressed in the analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ishida A, Matsui T, Yamamura K. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea. Eur Arch Otorhinolaryngol. 1993;250(1):22-6.	Dahlgren Report	No	Yes	10 kHz to 28 kHz	Not available	No	Low frequency ultrasound below 100 dB induced significant changes in cochlear microphonic	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ising H, Kruppa B. Health effects caused by noise: Evidence in the literature from the past 25 years. Noise Health, 2004; 6: 5-13.	USEPA Reg 10	It's mentioned; a summary of the results of another study		maximum levels 55 dBA; mean 30 dBA	This is not a study	Yes	Background/Informative only	No	Several of the studies discussed in this document are already reviewed directly in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ising H, Rebentisch E, Babisch W, Curio I, Sharp D, Baumgärtner H. Medically relevant effects of noise from military low-altitude flights—results of an interdisciplinary pilot study. Environ Int. 1990;16(4):411-23.	Dahlgren Report	Yes	Yes	Unknown	Unknown	No		No	The "low-altitude military flights" consisted of events with sound level increases of up to 75 dB/s. NASWI operations-generated sound level increase is an order of magnitude smaller, so this study not readily applicable.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ising H, Rebentisch E, Poustka F, Curio I. Annoyance and health risk caused by military low-altitude flight noise. Int Arch Occup Environ Health. 1990;62(5):357-363.	Dahlgren Report/ Washington Department of Health	Yes. Military flight noise	Yes	Not available	Not available		Ear symptoms were only higher in areas with flight noise exceeding 115 dBA	No	This study appears to evaluate military-training-route-type aircraft noise, which typically includes significantly faster rise-time rates than other flight activity. Although the sound levels in the vicinity of NASWI are relatively high, the rise-time rate is slow and typical of that in areas surrounding a civil/commercial airfield. Due to this difference in rise-time, this reference would not be of particular applicability to the analysis and therefore would not significant value; The 'low-altitude military flights' consisted of events with sound level increases of up to 75 d B/s. NASWI operations generated sound level increase an order of magnitude smaller so this study not readily applicable.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Jakovljevic B, Paunovic K, Belojevic G. Road-traffic noise and factors influencing noise annoyance in an urban population. Environ Int. 2009;35(3):552-6.	Dahlgren Report	No	Yes	N/A	Yes	No	Increased annoyance with regard to orientation of rooms toward street, time in apartment during the day, noise sensitivity, and night traffic noise.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Jarup L BWHDPGKKCEDMLSPSISWBOBG. Hypertension and exposure to noise near airports: the HYENA study. Environmental health perspectives. 2008;116(3):329-33.	Dahlgren Report	Yes	Yes	Not provided	Yes	Yes	The Ors are quick low, though significant.	No	HYENA study already included in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Jarup L, Dudley M, Babisch W, Houthuijs D, Swart W, Pershagen G. Hypertension and exposure to noise near airports-the HYENA study. Epidemiology. 2007;18(5):S137.	Dahlgren Report/Washington Department of Health	Yes	Yes	<50,>60 dB	Yes	Already in analysis		Already in analysis	The 2008 publication of this reference is already in the analysis	Previously included in analysis and Draft Environmental Impact Statement
Job R. Community response to noise: A review of factors influencing the relationship between noise exposure and reaction. J Acoust Soc Am. 1988;83(3):991-1001.	Washington Department of Health							No	Doesn't add significant value to analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Jonsson AHL. Prolonged exposure to a stressful stimulus (noise) as a cause of raised blood pressure in man. The Lancet. 1977:86-7.	l-Dahlgren Report	No	Yes	>=65 dB	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Kaltenbach M, Maschke C, Klinke R. Health consequences of aircraft noise. Deutsches Arzteblatt international. 2008;105(31-32):548-56.	Dahlgren Report	Yes	Yes	Daytime: 60 dB; nightime: 45	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Kalyoncu D, Urganci N, Calis AB, Ozbal A. Sensorineural hearing loss in pediatric patients with inflammatory bowel disease. Dig Dis Sci. 2010;55(1):150-2.	Dahlgren Report	No	no	NA NA	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Karmody CS, Valdez TA, Desai U, Blevins NH. Sensorineural hearing loss in patients with	Dahlgren Report	No	No	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final
inflammatory bowel disease. Am J Otolaryngol. 2009;30(3):166-70. Kasicka-Jonderko A, Jonderko K, Dolinski K, Dolinski M, Kaminska M, Szymszal M, et al. Extracirculatory effects of noise of various frequency spectra in humanseffect of pink and blue noise on gastric myoelectrical activity and gastrointestinal passage of nutrients. Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi. 2007;43(1):25-42.	Dahlgren Report	No	No	NA	No	No		No		Environmental Impact Statement Reviewed and not added to the analysis in the Final Environmental Impact Statement
Katsouyanni K, Dadum E, Dudley M-L, et al. Hypertension and exposure to noise near airports: the HYENA study. Environ Health Perspect. 2008	Washington Department of Health					No	Authors acknowledge that there was collinearity (r = 0.8), but did not address how it was managed in the analysis; could really impact the validity of the analysis.	Yes	May add some value to more general discussion in the analysis regarding stress response to noise. Similar reference in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Kavoussi N. The relationship between the length of exposure to noise and the incidence of hypertension at a silo in Terran. Med Lavoro. 1973;64(7-8):292-5.	Dahlgren Report	Yes	Yes	N/A	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-9

Appendix A8

NAS Whidbey Island Complex Growler FEIS, Volume 2

		Is the exposure related to jet noise		What are the average/range		Medical expert: should this paper be considered		Noise expert: should this paper be considered		
Article	Source	or airports?	noise?	of noise levels ?	and significant?	for the analysis?	Medical expert notes	for the analysis?	Noise expert notes	Final resolution and notes
Kawada T. Noise and health-Sleep disturbance in adults. J Occup Health. 2011;53(6):413-						No	No a research paper. Summary of impressions using	No	Consistent with analysis of potential for awakening,	Reviewed and not added to the analysis in the Final
410.	of Health						studies.		and doesn't add significant additional information	Environmental Impact Statement
Kim CY, Ryu JS, Hong SS. Effect of air-craft noise on gastric function. Yonsei medical journal. 1968;9(2):149-54.	Dahlgren Report	No	no	NA	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Kim SJ, Chai SK, Lee KW, Park JB, Min KB, Kil HG, et al. Exposure-Response	Dahlgren Report/	Yes. Military	Yes	Proximity to airfield.	Yes	Yes	Sleep disturbance was 2.6 fold higher in the low		Relationship between aircraft noise and sleep	Reviewed and added to the analysis in the Final
Relationship Between Aircraft Noise and Sleep Quality: A Community-based Cross-sectional Study. Osong public health and research perspectives. 2014;5(2):108-14.	Washington Department of Health	airfield exposure					exposure group and 3.5 fold higher in the high exposure group.		disturbance already established in analysis (includes Finegold, 1994), which found correlation between interior SEL and percent awakening. This study doesn't add any new information to the topic	Environmental Impact Statement
Klatte M, Bergstrom K, Lachmann T. Does noise affect learning? A short review on noise effects on cognitive performance in children. Front Psychol. 2013;4:578.	Dahlgren Report	Summary articles that included airport noise	Yes	Summary article	NA	Yes	Good summary of the literature.	Yes	Reference consistent with analysis of classroom learning, which considers both single-event disruptions as well as averaged sound levels.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Kmietowicz Z. Aircraft noise is linked to raised risk of cardiovascular disease. BMJ. 2013;347;f6082.	Dahlgren Report							No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Koch S, Haesler E, Tiziani A, Wilson J. Effectiveness of sleep management strategies for	Washington Department					No	Meta-analysis to find assessment methods, not to	No	This reference focuses on assessing and diagnosing	Reviewed and not added to the analysis in the Final
residents of aged care facilities: findings of a systematic review. J Clin Ntlfs. 2006;15{10}:1267-1275.	of Health						confirm injury.		sleep problems and is not directly relevant to the analysis, so would not add value.	Environmental Impact Statement
Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res. 2012;288(1-2):34-46.	Dahlgren Report	No; biologic response to noise	NA	biology paper	NA	No	Maybe. Not sure of value for the analysis as it is more background.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Krysa I. The effect of noise on learning and retention. Act Nerv Super (Praha). 1983;25(4):299-303.	Dahlgren Report	No	Yes	81-82 dBA	NA	No	Paper had a very small sample size and did not use exposures similar to airports.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Kwak KM, Ju YS, Kwon YJ, Chung YK, Kim BK, Kim H, et al. The effect of aircraft	Dahlgren Report/	Yes	Yes	Not directly measured. Used	Yes	Yes	Insomnia and hypersomnia was higher in the aircraft		The use of the cumulative day and night metric	Reviewed and added to the analysis in the Final
noise on sleep disturbance among the residents near a civilian airport: a cross-sectional study. Annals of occupational and environmental medicine. 2016;28(1):38.	Washington Department of Health			noise maps publicly available			noise exposure group		(WECPNL) makes isolating the effects from nightime flights difficult. The conclusion "higher WECPNL (or DNL)" increases prevalence of sleep disturbance is already addressed in the analysis, and this reference doesn't add any new information or value.	Environmental Impact Statement
Lang T, Fouriaud C, Jacquinet-Salord MC. Length of occupational noise exposure and blood pressure. Int Arch Occup Environ Health 1992;63(6):369-72. 1992.	Dahlgren Report	No	Yes	>=85 dB	Yes	No	longitudinal study not relevant to acute noise	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Laszlo H, McRobie E, Stansfeld S, Hansell A. Annoyance and other reaction measures to changes in noise exposure-A review. <i>Sci Total Environ.</i> 2012;435:551-562.	Washington Department of Health					Yes	This paper addresses the priamry issue with noise - annoyance and speaks to the lack of control the public perceives as a contributory factor.	Yes	May add value to discussion of Shultz curve update/validating, particularly regarding limitations of dose-response curve relationship, and provides insight when annoyance doesn't follow DNL	Reviewed and added to the analysis in the Final Environmental Impact Statement
Lee EY, Jerrett M, Ross Z, Coogan PF, Seto EY. Assessment of traffic-related noise in	Dahlgren Report	No	No	NA	NA	No		No	Not applicable	Reviewed and not added to the analysis in the Final
three cities in the United States. Environmental research. 2014;132C:182-9.										Environmental Impact Statement
Lee Jh KWYSRCNLCR. Cohort study for the effect of chronic noise exposure on blood pressure among male workers in Busan, Korea. American journal of industrial medicine. 2009.	Dahlgren Report	No	Yes	<60 dB	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Lekaviciute J, Argalasova-Sobotova L. Environmental noise and annoyance in adults:	Dahlgren Report	No	Yes	Varies	N/A	No	Review of articles mostly related to road traffic noise in	ı No	Analysis of health effects due to Lnight and Lden better	Reviewed and not added to the analysis in the Final
research in Central, Eastern and South-Eastern Europe and Newly Independent States. Noise Health. 2013;15(62):42-54.							Eastern Europe.		addressed in other studies more directly. No significan value added	
Leon Bluhm G BNNERM. Road traffic noise and hypertension. Occupational and environmental medicine. 2007;64(2):122-6.	Dahlgren Report	No	Yes	<45 dB, >65dB	Yes	No	prolonged exposure to road noise for 10+ years	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Lepore GEaS. Nonauditory Effects of Noise on Children: A Critical Review. Children's Environments. 1993;10(1):31-51.	Dahlgren Report	No; summary article	Yes	NA	Unknown	Yes	Only for background.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Leventhall H. Low frequency noise and annoyance. Noise Health. 2004;6(23):59	Washington Department of Health					Yes	This paper provides another methods for assessing noise exposures and specific heath outcomes.	Yes	Analysis may benefit from additional discussion of low frequency noise and annoyance, which could occur beyond the 65 dB DNL; analysis would benefit from additional discussion regarding annoyance from low-frequency noise, which would occur outside the 65 DNL. This reference (particularly citations used) may be appropriate to include in the literature review section of the analysis. -People that suffer from hearing loss (age related or otherwise) tend to loose mid and higher frequency ranges first. May explain why the older age group is bother most by low frequency noise.	Reviewed and added to the analysis in the Final Environmental Impact Statement

A8-10 Appendix A8

		Is the exposure related to jet noise	Is the outcome due to exposure to	What are the average/range	Are the risk	Medical expert: should		se expert: should aper be considered		
Article	Source	or airports?	noise?	of noise levels ?	and significant?			r the analysis?	Noise expert notes	Final resolution and notes
Liberman MC. Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration. <i>Adv Exp Med Biol.</i> 2016;875:1-7. doi: 10.1007/978-1-4939-2981-8_1.	Washington Department of Health	No	No	N/A		Yes Background/Informative	e only Yes	h e d n e a r r	Not clear how applicable the results of this study are to numans. If true, potential for hearing could be expanded to include decreases in speech discriminations. However, there are currently no nethods to estimate this effect in occupational exposure settings nor standards for environmental sssessments of aircraft noise exposure, so this efference would not change impact analysis. If other esearch supports the reference conclusion, then there may be some value of including in general background discussion.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Lilliy J. Whidbey Island Military Jet Noise Measurements.; 2013	Washington Department of Health						Yes	() T ii	Aircraft measurements typically utilize fast response 0.125 second) vs slow response (1 second). The calculated Ldn in Table 4 appears to be based on incorrect assumptions that may need to be addressed lirectly in the analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Liu C, Fuertes E, Tiesler CM, Birk M, Babisch W, Bauer CP, et al. The associations between traffic-related air pollution and noise with blood pressure in children: results from the GINIplus and LISAplus studies. Int J Hyg Environ Health. 2014;217(4-5):499-505.	Dahlgren Report	No	Yes	N/A	Yes	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Liu J, Xu M, Ding L, Zhang H, Pan L, Liu Q, et al. Prevalence of hypertension and noise-induced hearing loss in Chinese coal miners. Journal of Thoracic Disease. 2016;8(3):422-9.	Dahlgren Report	No	No	N/A	Yes	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Matsui T, Uehara T, Miyakita T, Hiramatsu K, Yamamoto T. Dose-response relationship between hypertension and aircraft noise exposure around Kadena airfield in Okinawa. 2004.	Dahlgren Report	Yes	Yes	60-72 dB	Yes	Already in analysis	Already	M T b a	This is already in the noise study but cited as 2008, which is correct: Matsui, T., T. Uehara, T. Miyakita, K. Hiramatsu and T. Yamamoto. 2008. "Dose-response relationship between hypertension and aircraft noise exposure uround Kadena airfield in Okinawa", 9th International Congress on Noise as a Public Health Problem ICBEN) 2008, Foxwoods, CT.	Previously included in analysis and Draft Environmental Impact Statement
McCann SMRABYEHSHA. Adrenalectomy and blood pressure of rats subjected to auditory stimulation. American Journal Physiology. 1948;155:128-31.	Dahlgren Report	No	No	N/A	Yes	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
McNamee R BGDWMCN. Occupational noise exposure and ischaemic heart disease mortality. Occupational and environmental medicine. 2006;63:813-9. 50 of 55	Dahlgren Report	Yes	Yes	<85 dB	No	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Medoff HSBAM. Blood pressure in rats subjected to audiogenic stimulation. American Journal of Physiology. 1945;193:300-5.	Dahlgren Report	No	No	N/A	Yes	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Meline J, Van Hulst A, Thomas F, Chaix B. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study). Noise Health. 2015;17(78):308-19.	Dahlgren Report	No	Yes	30-80 dB	Yes	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Michalak R, Ising H, Rebentisch E. Acute circulatory effects of military low-altitude flight noise. International archives of occupational and environmental health. 1990;62(5):365-72		Yes	Yes	Lmax 99-114 dB	N/A	No noise simulations used at comprised of 70-89 year		w sj	This study analyzed fast rise-time sounds, consistent with MTR-type activity operating at high sub-sonic peeds, which are not applicable to any activity ddressed in the analysis.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Miedema H, Oudshoorn C. Annoyance from transportation noise: relationships with exposure metrics DNL and DENL and their confidence intervals. <i>Environ Health Perspect.</i> 2001;109(4):409.	Washington Department of Health	Yes	Yes; annoyance from transportation noise, including airports	45-75 DENL, DNL	P-values are significant. There is a significant between-study variation for aircraft and road traffic, but the within-study variation is much larger		n varying as a function of noise tudy is not applicable to local,	T rr H R (i	The analysis computes people exposed to various DNL anges but doesn't clearly translate to counts of people HA. Regarding updating/validating the Shultz curve annoyance vs DNL), this reference may add value to include briefly in the analysis, although it does not trastically conflict with existing methodologies.	
Mintchev MP, Girard A, Bowes KL. Nonlinear adaptive noise compensation in electrogastrograms recorded from healthy dogs. IEEE Trans Biomed Eng. 2000;47(2):239-48.	Dahlgren Report	No	No	NA	No	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
More SR. Aircraft Noise Characteristics and Metrics; 2011	Washington Department of Health						No	ir	This dissertation provides good background information on noise but would not add significant value to the analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Morrell MJ, Finn L, Kim H, Peppard PE, Badr MS, Young T. Sleep fragmentation, awake blood pressure, and sleep-disordered breathing in a population-based study. American journal of respiratory and critical care medicine. 2000;162(6):2091-6.		No	No	NA	Unknown	No			-	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Moslehi A, Nabavizadeh-Rafsanjani F, Keshavarz M, Rouhbakhsh N, Sotudeh M, Salimi E. Traffic noise exposure increases gastric acid secretion in rat. Acta medica Iranica. 2010;48(2):77-82.	Dahlgren Report	No	Yes	N/A	Yes	No	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-11 Appendix A8

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/rang of noise levels ?	and significant?		Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Munzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur Heart J. 2014;35(13):829-36.	Dahlgren Report/Washington Department of Health	Yes	Yes	55 dB	Borderline significant for ORs for risk of arterial hypertension and coronary heart disease from exposure to aircraft noise	Yes	Most useful sumary report on cardiovascular effects		Several of the underlying studies supporting this document (i.e. Haralabidis, 2008 and WHO, 1999/2011) are already included in the analysis. Although the OR may have been statistically significant, a direct causal relationship is less clear. This reference may provide some value in a general sense to describe the current state of scientific study and research on the topic of non-auditory health effects, specifically CVD, due to environmental noise exposure.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Muzet A. Environmental noise, sleep and health. Sleep Medicine Reviews. 2007;11:135-	Dahlgren Report	No	No	N/A	N/A	Yes	Background information on environmental noise and health		Draws from studies already included in analysis directly, such as WHO, 2000, etc.	Reviewed and added to the analysis in the Final Environmental Impact Statement
N. Miller, N. Sizov, S. Lor, ands D. Cantor, "New Research on Community Reaction to Aircraft Noise in the United States," 11 th International Congress on Noise as a Public Health Problem (ICBEN) 2014, Nara, Japan	Independent						neum		unectry, such as WHO, 2000, etc.	Reviewed and added to the analysis in the Final Environmental Impact Statement
National Academies of Sciences, Engineering, and Medicine. 2017. Assessing Aircraft Noise Conditions Affecting Student Learning—Case Studies. Washington, DC: The National Academies Press. https://doi.org/10.17226/24941.	Independent							Yes		Reviewed and added to the analysis in the Final Environmental Impact Statement
Ndrepepa A, Twardella D. Relationship between noise annoyance from road traffic noise and cardiovascular diseases: a meta-analysis. Noise Health. 2011; 13(52):251	Washington Department of Health					No	meta-analysis of only 8 articles and the study types were varied.	No	Confirms the analysis conclusion that noise exposure may lead to stress, which may lead to additional health effects including CVD. This reference doesn't add additional or new value beyond others considered.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Neus H RHSW. Traffic noise and hypertension: an epidemiological study on the role of subjective reactions. International archives of occupational and environmental health. 1983;51:223-9. 47 of 55	Dahlgren Report	No	Yes	>73 dB	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ni Ch CZYZYZJWPJJLNWJLCKZZZZY. Associations of blood pressure and arterial compliance with occupational noise exposure in female workers of textile mill. Chinese Medical Journal. 2007;120(15):1309-13.	Dahlgren Report	No	Yes	80.1-113.5 dB	Yes	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Nomura K, Nakao M, Morimoto T. Effect of smoking on hearing loss: quality assessment and meta- analysis. Prev Med. 2005;40(2):138-144.	Washington Department of Health					No	Meta-analysis or significant original studies.	No	Reference does not address noise so would not add value to analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Orban E, McDonald K, Sutcliffe R, et al. Residential Road Traffic Noise and High Depressive Symptoms after Five Years of Follow-up: Results from the Heinz Nixdorf Recall Study. Environ Health Perspect. 2016;124(5):578-585.	Washington Department of Health					No	Road noise study.	No	The analysis does not discuss depression as a non- auditory health effect. This reference does not provide added value to the analysis	Reviewed and not added to the analysis in the Final
Passchier-Vermeer W PWF. Noise exposure and public health. Environ Health Perspectives. 2000;108(1):123-31.	Dahlgren Report	No	Yes	Unknown	NA	No	review paper without much substance.	No		Reviewed and added to the analysis in the Final Environmental Impact Statement
Passchier-Vermeer W, Passchier WF. Noise exposure and public health. Environ Health Perspect. 2000;108 Suppl 1:123-131.	Dahlgren Report/ Washington Department of Health	Yes	Yes	Depends on health outcome looking at			Background/Informative only	Yes	PHL not inconsistent with analysis. Although DNL analysis of significant impact begins at 65 dB, supplemental metrics address areas outside of 65 DNL This supports the display of 55 DNL as comparison for proposed action but not necessarily as a criteria for significant impact. Need to review source for 70 Ldn affecting hypertension to determine applicability; may need to include in analysis literature review section. -analysis sleep disturbance analyzes both the SEL and number of events occurring at each SEL using a curve fit. Reference does not conflict with analysis methodology although slight differences in thresholds found may exist. -analysis threshold for classroom Leq already lower than referenced 66 dBA -reference does not conflict with analysis PHL approach	Reviewed and added to the analysis in the Final Environmental Impact Statement
Pattenden S. Air traffic noise and hypertension in Stockholm County. Occupational and environmental medicine. 2001;58(12):761.	Dahlgren Report	Yes	Yes	N/A	N/A	No	Editorial paper	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Paunovic K, Stansfeld S, Clark C, Belojevic G. Epidemiological studies on noise and bloo pressure in children: Observations and suggestions. Environ Int. 2011;37(5):1030-41.	d Dahlgren Report	Yes	Yes	Varying exposure levels; some studies only used modeled effects	Some; meta- analysis included studies with non- significant results	Yes		No	Blood pressure changes in children due to aircraft noise not drastically different from correlations found in other studies for all people	
Pearson T, Campbell MJ, Maheswaran R. Acute effects of aircraft noise on cardiovascula admissions - an interrupted time-series analysis of a six-day closure of London Heathrow Airport caused by volcanic ash. Spatial and spatio-temporal epidemiology. 2016;18:38-43.		Yes	Yes	55 dB	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Perron S, Tetreault LF, King N, Plante C, Smargiassi A. Review of the effect of aircraft noise on sleep disturbance in adults. Noise Health. 2012;14(57):58-67.	Dahlgren Report/Washington Department of Health	Yes	Yes	N/A	N/A	Yes	Review of aircraft noise and sleep disturbance; Crtieria for including articles in review was explicit. Findings were not specuflative and centered on the studies themselves. Nothing new here.	Yes	Consistent with analysis of sleep disturbance discussion. May be worth a mention in analysis	Reviewed and added to the analysis in the Final Environmental Impact Statement

A8-12 Appendix A8

		Is the exposure related to jet noise	Is the outcome due to exposure to	What are the average/range	Are the risk estimates precise	Medical expert: should this paper be considered		Noise expert: should this paper be considered		
Article	Source	or airports?	noise?	of noise levels ?	and significant?	for the analysis?	Medical expert notes	for the analysis?	Noise expert notes	Final resolution and notes
Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE, et al. Exposure to traffic and the onset of myocardial infarction. The New England journal of medicine. 2004;351(17):1721-30.	Dahlgren Report	No	Yes	N/A	Yes	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Pipkin A Ebey's Landing National Historical Reserve: Acoustical Monitoring Report. 2016	Washington Department of Health							Yes	The 35 dB level identified by the author as potentially causing adverse blood pressure effects while sleeping was referring to the Haralabidis study. However, the 35 dB level was simply the threshold for counting noise events and not necessarily a threshold of adverse effects. Many events exceeded this threshold significantly. Additionally, the Haralibidis study found no link between nightime noise and aircraft events but instead with traffic noise. "The pooled estimates from all 4 centers show that the only noise indicator associated consistently with decrease in BP dipping is higher road traffic noise during the study night. The effect is statistically significant only on diastolic dipping and shows that a 5 dB increase in measured road traffic noise during the study night is associated with 0.8 % less dipping in diastolic BP." This difference could be due to the continuous vs intermittent nature of the sound sources. It is important to point out that the 45 dBA interior nighttime level identified by the author and in the WHO recommendation (Berglund, 1999) is not a threshold of significance for adverse health effects but merely a target to strive for by administrators. The author's background appears to be in biology and natural resource with limited noise experience which may explain why the above thresholds were selected. It is not clear whether the Ldn computed utilizes the DNL nighttime period or the NPS period. The above items may need to be addressed in the analysis	
Prieve BA, Yanz JL. Age-dependent changes in susceptibility to ototoxic hearing loss. Acta Otolaryngol (Stockh) 1984 Nov-Dec;98(5-6):428-38. 1984.	Dahlgren Report	No	No	N/A	N/A	No	Age-dependent changes in susceptibility to ototoxic hearing loss in mice exist	No		Reviewed and not added to the analysis in the Final
Prior H. Effects of the acoustic environment on learning in rats. Physiol Behav. 2006;87(1):162-5.	Dahlgren Report	No; rat study with continuous noise levels	Yes	unknown	NA		Rat study with no clear association with the environment in question.			Environmental Impact Statement Reviewed and not added to the analysis in the Final Environmental Impact Statement
Pujol S, Levain JP, Houot H, Petit R, Berthillier M, Defrance J, et al. Association between	Dahlgren Report	No, but aircraft	Yes	38-71 dBA, at home and	Yes	Yes	Only for background.	Yes	Brief mention in learning effects discussion	Reviewed and added to the analysis in the Final
ambient noise exposure and school performance of children living in an urban area: a cross sectional population-based study. Journal of urban health: bulletin of the New York Academy of Medicine. 2014;91(2):256-71.		noise could be a contributor		school						Environmental Impact Statement
Pyko A, Eriksson C, Oftedal B, et al. Exposure to traffic noise and markers of obesity. Occup Environ Med. 2015;72(8):594-601. doi:10.1136/oemed-2014-102516.	Washington Department of Health	Traffic noise: road traffic is the dominating source, followed by railway and aircraft noise	Yes	in exposure preceding the follow-up survey (due to people moving), the exposure was estimated as an average for the time period. For participants who had changed their address between the baseline and follow-up surveys, a time-weighted average of exposure was	traffic noise and other risk factors in relation to central obesity, except for age. Sleep disturbances were not associated with central obesity in the fully adjusted model; data were not shown.		Sometimes with certain p-values that are significant they don't report CI's and in their tables they do not report p-values with confidence intervals, and those that do report confidence intervals throughout the results are not strong and close to 1.		Although relationship may be statistically significant, from a study standpoint, it doesn't appear to be correlated strongly enough to justify analyzing as a potentially significant effect of EIS action. Additionally, road noise characteristics can vary greatly from military airfield noise; particularly the durations of noise events are sporadic at NASWI, while road noise may be fairly constant. Suggest time-above comparison to confirm.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Rabinowitz PM. Noise-induced hearing loss. Am Fam Physician. 2000;61(9):2759-2760.	Washington Department of Health	No	This is not a study; it provides a short overview of two individual case studies	This is not a study	This is not a study	Yes	Background/Informative only	No	Does not add any additional value to the analysis that hasn't already been covered by existing references	Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-13 Appendix A8

		Is the exposure related to jet noise	Is the outcome due to exposure to	What are the average/range	Are the risk estimates precise	Medical expert: should this paper be considered	Noise expert: should this paper be considered		
Article	Source	or airports?	noise?	of noise levels ?	and significant?	for the analysis? Medical expert notes	for the analysis?	Noise expert notes	Final resolution and notes
Ragettli MS, Goudreau S, Plante C, Perron S, Fournier M, Smargiassi A. Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels. Int J environ Res Public Health. 2015	_ ~	Include road, railway, and aircraft traffic	Yes	50.1 dBA-78.7 dBA	Yes	No Montreal residents living near busy roads, main railway lines, as well as within and close to the Montreal airpor are annoyed by transportation noise. Percentage of people disturbed by noise significantly decreased as distance to roads or airports increased.	· 1	Not particularly valuable regarding annoyance rates from noise exposure (highly annoyed vs Leq/Lden), so this reference would not add significant value to the analysis. Utilized the Land Use Regression (LUR) statistical model for sound exposure estimates. LUR is still in development and designed specifically for road noise. Insufficient evidence for applicability to aircraft noise.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Rathsam J, Loubeau A, Klos J. Effects of indoor rattle sounds on annoyance caused by sonic booms. The Journal of the Acoustical Society of America. 2015;138(1):EL43-8.	Dahlgren Report	Yes	Yes	Not available	Not available	No Results provide community annoyance models that include the effects of indoor rattle sounds.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ray Rl BJVEHH. Cardiovascular effects of noise during complex task performance. International Journal of Psychophysiology. 1984;1:335-40.	Dahlgren Report	No	Yes	N/A	N/A	No	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Regecova V, Kellerova E. Effects of urban noise pollution on blood pressure and heart rate in preschool children. J Hypertens. 1995;13(4):405-12.	Dahlgren Report	No; ambient noise levels typical in industrial cities	Yes	Only mentioned >60 dBA in abstract	NA	No			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Reinis S. Acute changes in animal inner ears due to simulated sonic booms. The Journal of the Acoustical Society of America. 1976;60(1):133-8.	Dahlgren Report	Sonic booms	Yes	Not available	Not available	No Mice exposed to sonic booms has bleeding in the inner ear	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Rhee MY, Kim HY, Roh SC, Kim HJ, Kwon HJ. The effects of chronic exposure to aircraft noise on the prevalence of hypertension. Hypertension research: official journal of the Japanese Society of Hypertension. 2008;31(4):641-7.	Dahlgren Report	Yes	Yes	88-115 dB	Yes	Yes	Yes	Compares exposure to helicopter noise and jet noise to control. Higher ORs for helicopter noise	Reviewed and added to the analysis in the Final Environmental Impact Statement
Ristovska G, Laszlo HE, Hansell AL. Reproductive outcomes associated with noise exposure-a systematic review of the literature. <i>Int 1Environ Res Public Health</i> . 2014; 11(8):7931-7952.	Washington Department of Health	Yes; meta-analysis: 6 out of 23 studies evaluated aircraft noise; 14 studies were summaries of occupational noise exposure	Yes	<65dBA, 75-95 dBA, 75-100 dBA, >85 dBA etc. Mean value and standard deviation of individual exposure was 67.9 dBA (52.4 dBA-86.8 dBA)	No; not the studies pertaining to noise exposure and reproductive outcomes	No A major limitation of the study investigated was the exposure assessment.	No	Outdoor noise levels in off-station areas in the vicinity of NASWI could potentially affect LBW. However, when building attenuation is taken into consideration, the indoor sounds would be sufficiently low (Leq(indoor)<65) to not cause LBW.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Ristovska G, Lekaviciute J. Environmental noise and sleep disturbance: research in Central, Eastern and South-Eastern Europe and Newly Independent States. Noise Health. 2013;15(62):6-11. doi:10.4103/1463-1741.107147.	Washington Department of Health					No Review article with no real purpose.	No	Consistent with analysis potential for awakening, and doesn't add significant additional information	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Rosenlund M BNPGJLBG. Increased prevalence of hypertension in population exposed to aircraft noise. Occupational and environmental medicine. 2001;58:769-73.	Dahlgren Report	Yes	Unknown	50-75 dBA	Yes	Already in analysis	Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Ryan AF, Kujawa SG, Hammill T, Le Prell C, Kil J. Temporary and Permanent Noise- induced Threshold Shifts: A Review of Basic and Clinical Observations. Otol Neurotol Off Publ AM Otol Soc AM Neurotol Soc Eur Acad Otol 2016	Washington Department of Health						No	Consistent with analysis PHL, and doesn't add significant additional value to analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Rylander R. Noise, Stress, and Annoyance. Noise & Vibration Worldwide. 2006.	Dahlgren Report	Sound in general	Yes	Not available	Not available	No Noise is interpreted in the central nervous system, generating secondary and tertiary reactions that are not controlled by the brain cortex.	No	Summary of info on noise and annoyance, which are already covered in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Salomons EM, Jansses SA. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise. Int J Environ Res Public Health. 2011;8(6):1847-1864	Washington Department of Health					No	No	Provides useful information about the need to consider noise beyond A-weighted. Supports providing Growler frequency spectrum plot (C-weighted or unweighted) for comparison to other aircraft. Doesn't provide sufficient evidence to justify C-weighted contour computation or extensive analysis. Less value to add reference to analysis	
Sayapathi BS, Su AT, Koh D. The effectiveness of applying different permissible exposure limits in preserving the hearing threshold level: A systematic review. <i>J Occup Health</i> . 2014;56(1):1·11.	e Washington Department of Health	No	Yes	≤85 dBA and >85 dBA	Systematic review; some were, but the majorityif they were significant had wide confidence intervals		No	Consistent with analysis PHL methodology, reference would not add significant value to analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Sbihi H DHWDPA. Hypertension in noise-exposed sawmill workers: a cohort study. Occupational and environmental medicine. 2008;65:643-6.	Dahlgren Report	No	Yes	>85 dB	Yes	No the article covers prolonged noise exposure in a confined occupational environment	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Scheibe F, Haupt H, Ludwig C. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res. 1992;63(1-2):19-25.	Dahlgren Report	No	Yes	85-90 dB SPL	Not available	No Intracochlear oxygenation plays an important role in inner ear physiology during acoustic stimulation	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Scheibe F, Haupt H, Ludwig C. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Eur Arch Otorhinolaryngol. 1993;250(5):281-5.	Dahlgren Report	No	Yes	85-125 dB SPL	Not available	No Intensity-related effects of acoustic exposure on the cochlear microcirculation in mice.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Schmidt F, Kolle K, Kreuder K, Schnorbus B, Wild P, Hechtner M, et al. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease. Clin Res Cardiol. 2015;104(1):23-30.	Dahlgren Report	Yes	YEs	39-46 dB	Yes	Yes	Yes		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Schmidt FP, Basner M, Kroger G, Weck S, Schnorbus B, Muttray A, et al. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults. Eur Heart J. 2013;34(45):3508-14a.	Dahlgren Report	Yes	Yes	60 dB	Yes	No Focuses mostly on sleep disturbance and endothelial dysfunction	No	Not really applicable; one night of noise exposure to random individuals. Does not account for habituation effects found in other research	Reviewed and not added to the analysis in the Final Environmental Impact Statement

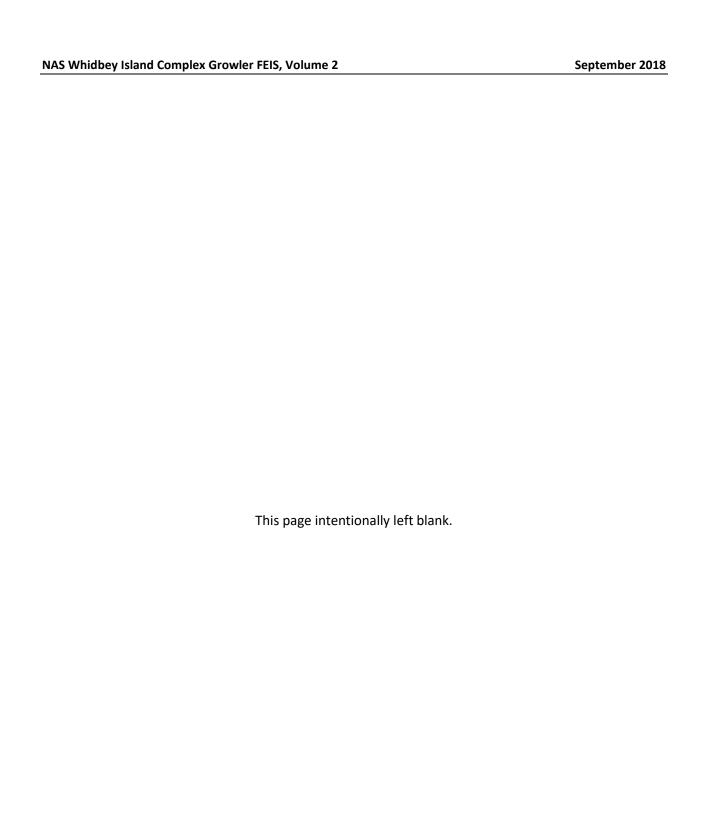
A8-14 Appendix A8

		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	estimates precise and significant?	for the analysis?	Medical expert notes	this paper be considered for the analysis?	Noise expert notes	Final resolution and notes
Schneider A HRI-MAZWSGSRRRCJPMBOGWGPM. Changes in deceleration capacity	Dahlgren Report	No	No	N/A	N/A	No	Not related to noise or airports	No		Reviewed and not added to the analysis in the Final
of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease. Part Fibre Toxicol. 2010;7:29.										Environmental Impact Statement
Schomer, Paul D. Criteria for Assessment of noise annoyance. Received 2004 March 31; revised 2005 January 16; accepted 2005 September 2002; Noise Control Eng J. 2005 July-	Independent									Reviewed and added to the analysis in the Final Environmental Impact Statement
Aug Schreckenberg, M. Meis, C. Kahl, C. Peschel, and T. Eikmann, "Aircraft Noise and Quality of Life around Frankfurt Airport," Int. J. Environ. Res. Public Health, 2010, 7, pp. 3382-3405.	Independent									Reviewed and added to the analysis in the Final Environmental Impact Statement
Schulte W, Otten H. Results of a low-altitude flight noise study in Germany: long-term extraaural effects. Schriftenr Ver Wasser Boden Lufthyg. 1993;88:322-38.	Dahlgren Report	Yes	Yes	N/A	No	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Schultz TJ. Synthesis of social surveys on noise annoyance. The Journal of the Acoustical Society of America. 1978;64(2):377-405.	Dahlgren Report	Yes	Yes. Relationship for predicting community annoyance due to all kinds of transportation noise.	Not available	Not available	Already in analysis	Relationship for predicting community annoyance due to all kinds of transportation noise. Highly cited by others in the field.	Already in analysis		Previously included in analysis and Draft Environmental Impact Statement
Schwartz J, Litonjua A, Suh H, Verrier M, Zanobetti A, Syring M, et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax. 2005;60(6):455-	Dahlgren Report	No	No	N/A	Yes	No	Not related to noise or aiports and population is elderly	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
61. Seabi J, Cockcroft K, Goldschagg P, Greyling M. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language. Noise Health. 2012;14(60):244-52.	Dahlgren Report	Yes	Yes	69 dBA average, 95 dBA peak	Yes	No	There were methodological problems with the study that the authors did not address.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Seabi J. An epidemiological prospective study of children's health and annoyance reactions to aircraft noise exposure in South Africa. Int J Environ Res Public Health. 2013;10(7):2760-77.	Dahlgren Report/Washington Department of Health	Yes	Yes	54-97 dB	No	No	Report is elementary in its analysis and some values are outside expected levels.		Although this study supports the idea that chronic noise exposure does not have any negative effects on health of children, the exposure levels were not high enough to cover all areas at NASWI. May not add significant value to analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Seidler A, Hegewald J, Seidler AL, et al. Association between aircraft, road and railway traffic noise and depression in a large case-control study based on secondary data. Environ Res. 2017;152:263-271. doi:10.1016/j.envres.2016.10.017.	Washington Department of Health					No	Ecologic exposure assessment. Results not consistent for exposure to high noise levels.		Reference did not include any new information and wouldn't add significant value to the analysis. Several of the citations, which are included in this literature review, are candidates for inclusion in the analysis regarding non-auditory health effects	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Seidler A, Wagner M, Schubert M, Droge P, Pons-Kuhnemann J, Swart E, et al. Myocardial Infarction Risk Due to Aircraft, Road, and Rail Traffic Noise. Deutsches Arzteblatt international. 2016;113(24):407-14.	Dahlgren Report	Yes	Yes	Maximum noise level: >60 dB	No	Yes		Yes	Although this doesn't provide any new info beyond the EIS text (which includes Haralabidis, 2008), it is more recent so could be added to summary of "recent studies."	
Seidler A, Wagner M, Schubert M, Droge P, Romer K, Pons-Kuhnemann J, et al. Aircraft, road and railway traffic noise as risk factors for heart failure and hypertensive heart disease-A case-control study based on secondary data. Int J Hyg Environ Health. 2016;219(8):749-58.	Dahlgren Report	Yes	Yes	increasing 10 dB increments	Yes	Yes		Yes	Topic already covered in analysis, but this is a more recent study	Reviewed and added to the analysis in the Final Environmental Impact Statement
Selander J, Bluhm G, Theorell T, et al. Saliva cortisol and exposure to aircrarft noise in six European countries. Environ Health Perspect. 2009	Washington Department of Health					No	Inconclusive paper.	Yes	May add some value to more general discussion in the analysis regarding stress response to noise. Similar reference in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Serrano S, Karr C, Beaudet N. Chronic Aircraft Noise Exposure and Children's Health: A Review of the Literature and Comparison to Whidbey Island Situation. Pediatric Environmental Health Specialty Unity, University of Washinton: 2013	of Health								The maximum permissible level cited (55 day/45 night) applies to a residential noise source received at a neighboring residential location. Report compares outdoor sound levels to indoor thresholds (learning, sleep, etc.) without adjustment for building attenuation. This is a Powerpoint slide and would not be considered peer reviewed research so not appropriate for inclusion in the analysis	Environmental Impact Statement
Shepherd D, Dirks K, Welch D, McBride D, Landon J. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life. Int J Environ Res Public Health. 2016;13(8):792.	Dahlgren Report	Yes		~62 (Legislated to be below 75 dBA) in "Airport" sample	No	No	No significant difference between air pollution and noise annoyance ratings in New Zealand cities. Air pollution and noise impact (in New Zealand) health independently	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Singh Ap RRMBMRNHS. Effect of chronic and acute exposure to noise on phsiological functions in man. International archives of occupational and environmental health. 1982;50:169-74.	Dahlgren Report	No	Yes	88-107 dB	Yes	No	Occupational noise related	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Sorensen M. Aircraft noise exposure and hypertension. Occupational and environmental medicine. 2016.	Dahlgren Report	No	No	N/A, editorial commentary	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-15 Appendix A8

		Is the exposure related to jet noise		What are the average/range	Are the risk	Medical expert: should this paper be considered		Noise expert: should this paper be considered		
Article	Source	or airports?	noise?	of noise levels ?	and significant?		Medical expert notes	for the analysis?	Noise expert notes	Final resolution and notes
Stansfeld S A, Haines M M, Burr M, Berry B, Lercher P. A review of environmental noise I and mental health. Noise Health; 2000; 2:1-8	Independent								Review paper with source papers already included in analysis	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Stansfeld S, Clark C. Health Effects of Noise Exposure in Children. Curr Environ Health Rep. 2015;2(2):171-178	Dahlgren Report/Washington Department of Health	Yes, but the article is a summary of other articles	Yes	Unknown	NA	Yes	Good summary paper	Yes	In general, this reference found similar effects in children as in adults and doesn't add much value to analysis. One item worth considering to add to the analysis literature review is the "5dBA LAeq16 increase in aircraft noise associated with 2-month delay in reading age" (similar to analysis classroom learning analysis) by including the source document Stansfeld, Berglund Aircraft and road traffic noise and children's cognition and health; The original papers discussed are, for the most part, already included. Can also add this as a citation.	Reviewed and added to the analysis in the Final Environmental Impact Statement
United Kingdom. Noise Health. 2011	Washington Department of Health/Dalgren Report	Yes	Yes	Unknown (linear model suggests increased risk with every 10 dB increase of noise)	Borderline significance	Yes	Review article. Better to cite original research.	Yes	This reference may add some value to the analysis of non-auditory health effects in a more general sense and discussion, but no strong correlation was found.	Reviewed and added to the analysis in the Final I Environmental Impact Statement
	Washington Department of Health					No	No validation and more hypothesis generating	Yes	This reference and/or the two studies analyzed in this reference do provide additional valuespecifically, tha noise at school is a significant factor in child learning, while nighttime noise at home is not. May be a candidate to include in analysis, although similar publications already exist in the analysis	Reviewed and added to the analysis in the Final t Environmental Impact Statement
Stansfeld S. Airport noise and cardiovascular disease. BMJ. 2013;347:f5752.	Dahlgren Report	Yes	Yes	45-70 dB	No	No	It goes into detail about the lack of studies around exposure to airport noise and poor health outcomes as well as the lack of evidence to link hypertension with airport noise.	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Stansfeld Sa MMP. Noise pollution: non-auditory effects on health. British Medical Bulletin. 2003;68:243-57.	Dahlgren Report	Included aircraft and traffic	Yes	N/A	N/A	Yes	In children, chronic aircraft noise exposure impairs reading comprehension and long-term memory, and may be associated with raised blood pressure.	Yes	Adds some background info	Reviewed and added to the analysis in the Final Environmental Impact Statement
	Washington Department of Health					No	Good use of a cohort study to study changes over many years. But each phase was cross-sectional and unable to separate noise exposure to mental health outcomes: Is an anxious person more likely to be annoyed by noise, or does annoying noise make a person anxious?	y No	Reference does not conflict with the analysis but doesn't add significant value.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Summers RW, Harker L. Ulcerative colitis and sensorineural hearing loss: is there a relationship? J Clin Gastroenterol. 1982;4(3):251-2.	Dahlgren Report	No	no	NA	No	No	Case report of a single patient	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Sung JH, Lee J, Park SJ, Sim CS. Relationship of Transportation Noise and Annoyance for I Two Metropolitan Cities in Korea: Population Based Study. PLoS One. 2016;11(12):e0169035.	Dahlgren Report	Included road, railway, and aircraft traffic. Transportation noise identified as aircraft and road traffic noise	Yes. Transportation t noise levels (in two Korean cities) were significantly associated with annoyance in adults	55-65 dBA	Yes	No	Transportation noise levels (in two Korean cities) were significantly associated with annoyance in adults.	No	Correlation between transportation noise and annoyance thoroughly covered in analysis; this would not add any new information	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Swift H. A Review of the Literature Related to Potential Hea [L] Th Effects of Aircraft Noise. Partnership for AiR Transportation Noise and Emissions Reduction Massachusetts Institute of Technology; 2010.	Washington Department of Health	0.	Not really; I feel like the article is insinuating that aircraft noise results in sleep disturbance		The only odds ratios presented in this study were odds ratios or relative risks for developing diabetes for various sleep patterns, not necessarily pertaining to noise or aircraft noise exposure.	Yes	Background/Informative only	Yes	SID and SFI could provide additional useful information an quality of sleep. May be particularly important since many of the non-auditory health effect are linked to decreases in sleep quality. Original source(s) of blood pressure increase may be applicable to include in analysis literature review text. Reference does not conflict with sleep analysis methodology. This reference was not published in a peer-reviewed journal so it does not meet the criteria for inclusion.	5
relationship between occupational noise and blood pressure. Archives of environmental health. 1999;54(2):71-8.	Dahlgren Report	No	Yes	<= 83, >= 89 dB	Yes	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Tanyel M, Lee KY, Chey WY, Chitrapu PR. Multistage enhancement of surface recordings of canine gastric electrical signals. Ann Biomed Eng. 1993;21(4):337-50.	Dahlgren Report	No	No	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Taylor J. Noise: a new cardiovascular risk factor. Eur Heart J. 2014;35(13):821-2.	Dahlgren Report							No	News article about politics of airport expansion; appears to use info from Munzel, 2014	Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-16 Appendix A8


		Is the exposure	Is the outcome due		Are the risk	Medical expert: should		Noise expert: should		
Article	Source	related to jet noise or airports?	to exposure to noise?	What are the average/range of noise levels?	estimates precise and significant?		l Medical expert notes	this paper be considered for the analysis?	I Noise expert notes	Final resolution and notes
Tetreault I-F, Perron S, Smargiassi A. Cardiovascular health, traffic-related air pollution			noise.	or noise levels .	and significant:	No	Review article of health effects that may be	No.	This reference would not add significant value to the	Reviewed and not added to the analysis in the Final
and noise: are associations mutually confounded? A systematic review. Int J Public Health.						110	compounded by pollution. While little compoudning	110	analysis	Environmental Impact Statement
2013;58(5):649- 666.							was found, the exposure assessment limited the studies.			
Tetreault L-F, Plante C, Perron S, Goudreau S, King N, Smargiassi A. Risk assessment of aircraft noise on sleep in Montreal. Can J public health Rev Can Sante Publique. 2012	Washington Department of Health					No	Predicitive study that did not offer any validation.	No	Not inconsistent with sleep disturbance analysis, and this reference wouldn't add any additional value.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
and that notice on steep in visitional can be public health for can builte I don't do.									and reference wouldn't add any additional value.	231 To Simonal Impact Statement
Tiesler CM, Birk M, Thiering E, Kohlböck G, Koletzko S, Bauer C-P, et al. Exposure to	Dahlgren Report	No	Yes	5-11.2 dBA	Yes	No	Road traffic noise at home may be related to increased	No		Reviewed and not added to the analysis in the Final
road traffic noise and children's behavioural problems and sleep disturbance: Results from							hyperactivity and more emotional symptoms in children			Environmental Impact Statement
the GINIplus and LISAplus studies. Environmental research. 2013;123:1-8.										
Tomei F TEPBBTPAP. Study of some cardiovascular parameters after chronic exposure	Dahlgren Report	No	Yes	N/A	No	No		No		Reviewed and not added to the analysis in the Final
to noise. International Journal of Cardiology. 1991;33:393-400.										Environmental Impact Statement
Tomei F, De Sio S, Tomao E, Anzelmo V, Baccolo TP, Ciarrocca M, et al. Occupational	Dahlgren Report	Yes	Yes	60-115 dB		No		No		Reviewed and not added to the analysis in the Final
exposure to noise and hypertension in pilots. Int J Environ Health Res. 2005;15(2):99-106.									other differences between the two work environments beyond noise level (stress, g-loads, etc.) that the study	Environmental Impact Statement
									was unable to account for?	
									Better studies of assessing aircraft overflight noise and	
									hypertension exist in the analysis already.	
				27/4	37/4					
Tomei F, Tomao E, Papaleo B, Baccolo TP, Alfi P. Study of some cardiovascular parameters after chronic exposure to noise. Int J Cardiol. 1991;33(3):393-9.	Dahlgren Report	No	Yes	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
Trimmel M, Atzlsdorfer J, Tupy N, Trimmel K. Effects of low intensity noise from aircraft	Dahlgren Report	Yes	Yes	45 dBA peak, once per	Unknown	Yes	Sample size was very small.	Yes	Did simulate aircraft overflight events once per minute	1
or from neighbourhood on cognitive learning and electrophysiological stress responses. Int				minute					at 48 dBAa rate much more frequent than NASWI bu	t Environmental Impact Statement
J Hyg Environ Health. 2012;215(6):547-54.									still adds to cognitive effects discussion	
Turnovska T, Staykova J, Petkov T. Health assessment of populations living close to the	Dahlgren Report	Yes	Yes	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final
airport of Bourgas, Bulgaria. Arhiv za Higijenu Rada I Toksikologiju/Archives of	Danigren Keport	ies	ies	IN/A	IN/A	NO		NO		Environmental Impact Statement
Industrial Hygiene and Toxicology. 2004;55(1):5-10.										r
Valenti VE, Guida HL, Frizzo AC, Cardoso AC, Vanderlei LC, Abreu LC. Auditory	Dahlgren Report	No	Yes	N/A	N/A	No		No		Reviewed and not added to the analysis in the Final
stimulation and cardiac autonomic regulation. Clinics (Sao Paulo). 2012;67(8):955-8.										Environmental Impact Statement
van Kamp I, Davies H. Noise and health in vulnerable groups: a review. Noise Health.	Washington Department					No	Summary article of studies already published.	No	Reference would not provide significant value to	Reviewed and added to the analysis in the Final
2013;15(64):153-159. doi:10.4103/1463-1741 .112361.	of Health								analysis	Environmental Impact Statement
Van Kempen E, Babisch W. The quantitative relationship between road traffic noise and	Dahlgran Panort	No	Yes	45-75 dB	Yes	No		No	Road traffic noise	Reviewed and not added to the analysis in the Final
hypertension: a meta-analysis. Journal of hypertension. 2012;30(6):1075-86.	Danigien Report	No	ies	43-73 db	i es	140		No	Road traffic noise	Environmental Impact Statement
van Kempen Emm KHBHCACBSBAMdHAEM. The association between noise exposure	Dahlgren Report	No	Yes	50-116 dB	No	No		No		Reviewed and added to the analysis in the Final
and blood pressure and ischemic heart disease: a meta-analysis. Environ Health										Environmental Impact Statement
Perspectives. 2002;110(3):307-17.	D. H D	NT.		NT/A	N/A	No		NT.		Decimal and actually decimal and a First
Vera MN, Vila J, Godoy JF. Cardiovascular effects of traffic noise: the role of negative self-statements. Psychol Med. 1994;24(4):817-27.	Dahlgren Report	NO	Yes	N/A	IN/A	INO		NO		Reviewed and not added to the analysis in the Final Environmental Impact Statement
* ' ' '	Dahlgren Report	No	Yes	48 dB	No	No		No		Reviewed and not added to the analysis in the Final
life lost and morbidity cases attributable to transportation noise and air pollution: A										Environmental Impact Statement
comparative health risk assessment for Switzerland in 2010. Int J Hyg Environ Health. 2015;218(6):514-21.										
	Dahlgren Report	No	Yes	risk estimates reported per 10	Yes	Already in analysis		Already in analysis		Previously included in analysis and Draft
between traffic noise exposure and ischemic heart disease: a meta-analysis'. 42nd	Danigren Report	110		dB increase	103	rineady in unarysis		7 in cady in unarysis		Environmental Impact Statement
International Congress and Exposition on Noise Control Engineering; 2013.										
W. Dali II an I Die II Die IV Die IV Til I de IV I	W II . D	N		N. 4		N	No. 1	v	With City Is a let I will be a let	
Vienneau D, Schindler C, Perez L, Probst-Hensch N, Roosli M. The relationship between transportation noise exposure and ischemic heart disease: a meta-analysis. Environ Res.	Washington Department of Health	No; meta-analysis	Yes	NA	Unknown	No	Meta-analysis	Yes	With a fairly weak correlation between IHD and noise exposure, it is unclear what value this reference would	
2015	or readin								add to the analysis other than to describe the current	Environmental impact statement
									state of scientific research on the topic, which may be	
									of some value.	
Westman Jc WJR. Noise and stress: A comprehensive approach. Environmental health perspectives. 1981;41:291-309.	Dahlgren Report	No	No	N/A	N/A	No	Comprehensive approach to noise and stress	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement
WHO (2010), Burden of Disease from Environmental Noise: Quantification of Healthy	Dahlgren Report/	It's mentioned	This is not a study;	This is not a study	This is not a study	Already in analysis	Already in noise study but cited as the more recent:	Already in analysis		Previously included in analysis and Draft
Life Years Lost in Europe, The World Health Organization (www.euro.who.int); at www	Washington Department		it is more like an			,,	1]		Environmental Impact Statement
.euro.who.int/ _ data/assets/pdf _file/0008/136466/e94888.pdf.	of Health/USEPA Reg		evidence-based				WHO. (2011). "Burden of Disease from Environmental			
	10		informational				Noise," World Health Organization			
			article on health effects due to							
			environmental noise							
			and how to quantify							
			these effects							

A8-17 Appendix A8

Article	Source	Is the exposure related to jet noise or airports?	Is the outcome due to exposure to noise?	What are the average/range of noise levels ?	Are the risk estimates precise and significant?		Medical expert notes	Noise expert: should this paper be considered for the analysis?	i Noise expert notes	Final resolution and notes
World Health Organization. Burden of disease from environmental noise-Quantification of healthy life years lost in Europe. WHO Reg Off Eur Bonn. 2011.	Washington Department of Health	It's mentioned	This is not a study; it is more like an evidence-based informational article on health effects of environmental noise and how to quantify these effects	This is not a study	This is not a study	Already in analysis		Already in analysis	This report focused on the calculation of disability- adjusted life years (DALYs) due to noise exposure, which is a methodology not currently used for noise impact analysis under NEPA.	Previously included in analysis and Draft Environmental Impact Statement
Wright B, Peters E, Ettinger U, Kuipers E, Kumari V. Understanding noise stress-induced cognitive impairment in healthy adults and its implications for schizophrenia. Noise Health. 2014;16(70):166-176. doi:10.4103/1463-1741.134917.	Washington Department of Health					No	Summary article that does not represent original analysis.	No	This reference serves primarily to guide future research and would not add value to the analysis of potential for impacts due to noise.	·
Wu Tn KYCCPY. Study of noise exposure and high blood pressure in shipyard workers. American journal of industrial medicine. 1987;12:431-8. 46 of 55	Dahlgren Report	No	Yes	>85 dB	Yes	No		No	Assessed continuous sound exposure	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Wunderli JM, Pieren R, Habermacher M, Vienneau D, Cajochen C, Probst-Hensch N, et al. Intermittency ratio: A metric reflecting short-term temporal variations of transportation noise exposure. Journal of exposure science & environmental epidemiology. 2016;26(6):575-85.	Dahlgren Report	Included road, railway, and aircraft traffic	Yes	30-70 dBA	No	No	In the presence of elevated background noise (road traffic), aircraft flyover events can be masked, resulting in a reduction of intermittency ratio.	No	The study reviews a proposed metric (Intermittency Ratio) that is defined as the ratio of the event-based sound energy to the overall sound energy. Insufficient evidence at this time to utilize IR for impact analysis in NEPA.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
YAMANAKA K W-N, f. KOBAYASHI, S. KANADA, M. TANAHASHI, T. MURAMATSU AND S. YAMADA. CRITERIA FOR ACCEPTABLE LEVELS OF THE SHINKANSEN SUPER EXPRESS TRAIN NOISE AND VIBRATION IN RESIDENTIAL AREAS. Journal of Sottnd and Vibration. 1982;84(4):573-91.	Dahlgren Report	No	Yes, but ecologic	Unknown	NA	No	Train noise was correlated to health conditions.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Zaharna M, Guilleminault C. Sleep, noise and health: review. Noise Health. 2010	Washington Department of Health						Medical article on the impact of noise on sleep and the health impact of less sleep.	Yes	The analysis focuses on direct effects of noise (sleep disturbance, speech interference, etc.), while this reference discusses secondary potential effect of sleep disturbance. This information could potentially be added to the analysis discussion, but additional review of the sources cited would be required.	Reviewed and added to the analysis in the Final Environmental Impact Statement
Zaporozhets O, Tokarev V, Attenborough K. Aircraft Noise: Assessment, Prediction and Control. CRC Press; 2011	Washington Department of Health							No	The types of noise controls addressed, for the most part, have either been done or are not practical at reducing noise from military overflights. This reference would not add significant value to the analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Zhang Y, Beesoon S, Zhu L, Martin JW. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environmental science & technology. 2013;47(18):10619-27.	Dahlgren Report	No	No	NA	Unknown	No	Article is related to an ingredient in fire-fighting foam and not noise exposure.			Reviewed and not added to the analysis in the Final Environmental Impact Statement
Zhao Y, Zhang S, Selvin S, Spear RC. A dose-response relationship for occupational noise induced hypertension. Schriftenr Ver Wasser Boden Lufthyg. 1993;88:189-207.	- Dahlgren Report	No	No	unknown	no	no				Reviewed and not added to the analysis in the Final Environmental Impact Statement
Zhao YM, Zhang SZ, Selvin S, Spear RC. A dose response relation for noise induced hypertension. Br J Ind Med. 1991;48(3):179-84.	Dahlgren Report	No	Yes	75-104 dB	No	No		No	Studied industrial noise comprised of continuous SPLs, which are readily applied to intermittent aircraft noise. More applicable studies already included in analysis.	Reviewed and not added to the analysis in the Final Environmental Impact Statement
Zijlema WL, Morley DW, Stolk RP, Rosmalen JG. Noise and somatic symptoms: A role for personality traits? Int J Hyg Environ Health. 2015;218(6):543-9.	Dahlgren Report	No	Yes	N/A	N/A	No	Personality factors, hostility, and vulnerability to stress did not modify the relationship between road traffic noise exposure and somatic symptom reporting	No		Reviewed and not added to the analysis in the Final Environmental Impact Statement

A8-18 Appendix A8

Appendix B Air Emissions Calculations

Aircraft and Personnel Loading by Alternative for the EA 18G (Growler) Operations at NAS Whidbey Island Complex: Ault Field and And OLF Coupeville

EIS Alternative	Description	Aircraft Loading	Total VAQ Aircraft	Personnel Loading	Total Personnel
Baseline		9 carrier squadrons (45 aircraft) 3 expeditionary squadrons (15 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (17 aircraft)	82	• 517 Officer • 3,587 Enlisted	4,104
Alternative 1	Expand carrier capabilities by adding three additional aircraft to each existing carrier squadron and augmenting the FRS with eight additional aircraft (a net increase of 35 aircraft).	9 carrier squadrons (72 aircraft) 3 expeditionary squadrons (15 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (25 aircraft)	117 (+35)	• 597 Officer • 3,842 Enlisted	4,439 (+335)
Alternative 2	Expand expeditionary and carrier capabilities by establishing two new expeditionary squadrons, adding two additional aircraft to each existing carrier squadron, and augmenting the FRS with eight additional aircraft (a net increase of 36 aircraft).	9 carrier squadrons (63 aircraft) 5 expeditionary squadrons (25 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (25 aircraft)	118 (+36)	• 619 Officer • 4,113 Enlisted	4,732 (+628)
Alternative 3	Expand expeditionary and carrier capabilities by adding three additional aircraft to each existing expeditionary squadron, adding two additional aircraft to each existing carrier squadron, and augmenting the FRS with nine additional aircraft (a net increase of 36 aircraft).	9 carrier squadrons (63 aircraft) 3 expeditionary squadrons (24 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (26 aircraft)	118 (+36)	• 597 Officer • 3,848 Enlisted	4,445 (+341)

No Action: 30% FCLP at Coupville, 70% at Ault Field
Scenario A: 80% FCLP at Coupville, 20% at Ault Field
Scenario B: 50% FCLP at Coupville, 50% at Ault Field
Scenario C: 20% FCLP at Coupville, 80% at Ault Field
Scenario D: 30% FCLP at Coupville, 70% at Ault Field
Scenario E: 70% FCLP at Coupville, 30% at Ault Field

EA-18 G (Growler) (F414-GE-400 Engines) Emission Factors

	Fuel used		Emissic	ns from Sir	ngle Flight (Operation ¹	,2,3,4 (lb/op)	
Flight Operation	(lbs)	CO	NO _x	VOC⁴	SO ₂ ⁵	PM _{2.5}	PM ₁₀	CO ₂
Straight-In Arrival LTO ¹	2413	210.67	29.16	79.04	3.16	17.62	17.62	7285.16
Break Arrival LTO ¹	2329	211.83	29.23	79.70	3.05	16.95	16.95	7014.30
OLF LTO ²	1,383	112.53	25.79	4.14	1.81	6.60	6.60	4215.07
Touch-and-Go/FCLP3	706	0.50	14.47	0.09	0.92	3.95	3.95	2249.53
Depart&Reenter/ GCA Box (GCA Pattern) ³	1411	1.01	28.95	0.20	1.85	7.89	7.89	4499.05
3.0 minutes at 85%N2 (Approach) ²	517	0.37	7.63	0.07	0.68	3.39	3.39	1649.71
3.5	Minutes int	erfacility flig	ght, Ault Fie	ld to Coupev	ville			
3.5 minutes at 85%N2 (Approach) ²	603.17	0.44	8.90	0.10	0.79	3.96	3.96	1924.66

Notes:

Emission Factors for EA-18G (F414-GE-400 Engines) In-Frame Aircraft Maintenance, per test

		Fuel used	Emissions	from Maint	enance Tes	ts ^{1,2} (lb/tes	st)		
Test Type	# tests	(lbs)	СО	NOx	VOC3	SO ₂	PM2.5	PM10	CO2
Water Wash	1.0	132.0	11.41	0.47	8.71	0.17	1.47	1.47	369.57
Low Power, one engine	1.0	364.07	34.16	1.21	26.12	0.48	4.40	4.40	1085.62
Low Power, two engines	1.0	711.67	68.29	2.31	52.24	0.93	8.79	8.79	2119.19
High Power (two engines)	1.0	6375.13	1043.01	90.67	63.89	8.35	19.61	19.61	18505.40

¹ Fuel used and Emission factors for Estimated annual maintenance operations per test, per engine based on ratio of data from Table 9 of AESO Memorandum Report No. 9815, Rev I, June 2017. See table below

Emission Factors for EA-18G In-Frame Aircraft Maintenance, Annual estimates per aircraft¹

	Annual #	# engines	Fuel used		Emissions from Maintenance Test (lb/aircraft-yr) ^{1,2}							
Test Type	tests	in use	(lbs)	CO	NOx	HC	SO ₂	PM2.5	PM10	CO2		
Water Wash	1.0	1.0	132	11.41	0.47	7.57	0.17	1.47	1.47	369.57		
Low Power, 1 engine	15.0	1.0	5461	512.45	18.11	340.70	7.15	65.95	65.95	16284.26		
Low Power, 2 engines	30.0	2.0	21,350	2048.81	69.38	1362.69	27.97	263.71	263.71	63575.80		
High Power	8.0	2.0	51,001	8344.08	725.39	444.43	66.81	156.87	156.87	148043.20		

Notes

¹ Fuel used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines for operations at NAS Whidbey Island based on Table S-1, AESO Memorandum Report No. 9815, Rev I, June 2017, Except adjusted to reduce Max Power Time in mode during Take off from 30 seconds to 20 seconds, per email from CDR Sean Michaels, May 12, 2016.

²Estimated Air Emissions for a Single F/A-18 LTO Cycle with straight in Arrival—At OLF (no Startup/Taxi/Refuel) and "3.0 minutes at 85%N2"using Table 5 of AESO Memorandum Report No. 9815, Rev I, June 2017. Emissions for interfacility flight based on ratio of # of minutes from Ault field to Coupeville/ 3.

³ Emission factors for "Touch-and-Go" and "GCA Box" from AESO Memorandum Report No. 9933, Revision E November 2015.

⁴ VOC emissions = 1.15 x THC emissions as reported in Table S-1, AESO Memorandum Report No. 9815, Rev I, June, 2017 as noted for reporting VOCs as defined by the EPA.

⁵ SO2 Emission Factor based on fuel used (lbs) from Table S-1, AESO Memorandum Report No. 9933, Revision E November 2015 and AESO Memorandum Report No. 9815, Rev I, June, 2017 and SO2 factor of 1.31 lbs/1000 lbs JP-5 fuel for operations after 2016 in AESO Memorandum report No 2012-01E, April, 2017

³ VOC emissions = 1.15 x THC emissions as noted for reporting VOCs as defined by the EPA.

 $^{^{\}rm 1}$ From Table 9, AESO Memorandum Report No. 9815, Rev I, June 2017.

² SO2 Emission Factor based on fuel used (lbs) from Table 9, AESO Memorandum Report No. 9815, Rev I, June, 2017 and SO2 factor of 1.31 lbs/1000 lbs JP-5 fuel for operations after 2016 in AESO Memorandum report No 2012-01E, April 2017

Estimated Air Emissions for a Single E/A-18G | TO Cycle with straight in Arrival-At OLE (no Startun/Tavi/Refuel)

		Stimutou	All Ellissio	ns for a Sing	IC I IA IOC	LIOU	yolc with	Judgittii	Airivai	AL OLI (I	io otarta	, ruxii/itci	ucij				
								Emission	Indexes	2			Emission	ns from Si	ngle Fligh	t Operation	n ⁵
			Time-In	Fuel Flow			(pou	nds per 1,0	00 poun	ds fuel)				(II	o/ op)		
Flight Operation and Flight Mode	Engine Power Setting ¹		Mode per Engine (min) ²	Rate per Engine (lb/hr) 1	Fuel Used (lbs) ^{4,8}	EI CO	EI NO _x	EI HC	EI SO ₂ 9	EI PM ₁₀	CO2	со	NO _x	VOC ¹⁰	SO ₂	PM ₁₀	CO2
Departure																	
Engine Run up	80	2	0.5	3079.00	51	1.86	8.98	0.14	1.31	8.780	3205	0.10	0.46	0.01	0.07	0.45	164.46
Take off ^{6,11,12}	Max	2	0.33	35763.00	397	274.97	9.67	4.87	1.31	2.950	2712	109.26	3.84	2.23	0.52	1.17	1077.66
Climb out ⁷	95	2	1.0	11320.00	377	0.7	36.29	0.12	1.31	2.950	3179	0.26	13.69	0.05	0.49	1.11	1199.62
Departure Total					826							109.62	18.00	2.29	1.08	2.74	2441.74
Arrival																	
Approach	85	2	3.0	5169.00	517	0.72	14.75	0.12	1.31	6.56	3191	0.37	7.62	0.07	0.68	3.39	1649.58
On Runway	G Idle	2	1.0	695.00	23	98.18	3.18	65.33	1.31	12.64	2973	2.27	0.07	1.74	0.03	0.29	68.88
Unstick	75	2	0.3	1720.00	17	15.2	5.58	1.98	1.31	10.73	3190	0.26	0.10	0.04	0.02	0.18	54.86
Arrival Total			,		557							2.91	7.79	1.85	0.73	3.87	1773.33
LTO Total					1,383							112.5	25.8	4.1	1.8	6.6	4,215.1

Source: Table 5, AESO Memorandum Report No. 9815, Rev I, June 2017(except SO2 emission factors)

- /A-18E/F Notes:

 1) Estimated from 1998 F/A-18A,B,C, D pilot interviews, which are on file at AESO.
 2) Source for all non APU fuel flow and emission indexes: Gaseous and Particulate Emission Indexes for the F414-GE-400 Turbofan Engine; Aircraft Environmental Support Office; FRCSW, San Diego, CA., February 2011, AESO Memorandum Report No. 9725, Revision D
 3) The APU fuel flow and emission index data is manufacturer information provided by Rick Stanley (36-200 Project Engineer).
 4) Fuel used = fuel flow x time-in-mode / 60 x no. of engines in use.
 5) Emissions = fuel used / 1,000 x emission index.
 6) Takeoff is from brake release to 500 feet above ground level.
 7) Climbout is fino 500 feet above ground level to 3,000 feet above ground level. Climbout time-in-mode emay be longer if departure corridor is restricted in regards to climbout rate and/or hold down altitude.
 8) For F/A-18E/F, the maximum internal fuel load is 14,460 lbs. The maximum fuel load is 24,272 lbs with 3 external tanks.

- 9) SO2 Emission Factor for JP-5 fuel as recommended for operations after 2016 in AESO Memorandum report No 2012-01E, April 2017
 10) VOC emissions = 1.15 x THC emissions as reported in Table S-1, AESO Memorandum Report No. 9815, Rev 1, June, 2017 as noted for reporting VOCs as defined by the EPA.
 11) Time in Mode for Max (Afterburner) power setting has been adjusted from 30 seconds to 20 seconds, per email from CDR Sean Michaels, May 12, 2016.
- 12) AB PM 10 and 2.5 data not provided in AESO Memo N. 9815. Per Xu Li-Jones (AESO) comments (6/22/2016), 2.95 lbs/1000 gal fuel is used.

Estimated Change in Air Emissions for a Single F/A-18G LTO Cycle: adjustment of Max Take off Afterburner use

			Time-In	Fuel Flow		Emission Indexes ² (pounds per 1,000 pounds fuel)						s from Sii (It	ngle Fligh o/ op)	t Operatio	n ⁵		
Flight Operation and Flight Mode		No. of Engines in Use ¹	Mode per Engine (min) ²	Rate per Engine (lb/hr) ¹	Fuel Used (lbs) ^{4,8}	EI CO	EI NO _x	EI HC	EI SO ₂ ⁹	EI PM ₁₀	CO2	со	NO _x	VOC ¹⁰	SO ₂	PM ₁₀	CO2
AESO Estimated Take off	Max	2	0.50	35763.00	596	274.97	9.67	4.87	1.31	2.950	2712	163.90	5.76	3.34	0.78	1.76	1616.49
NAS Whidbey Island Estimated Take off	Max	2	0.33	35763.00	397	274.97	9.67	4.87	1.31	2.950	2712	109.26	3.84	2.23	0.52	1.17	1077.66
Difference			0.17	0.00	198.68							54.63	1.92	1.11	0.26	0.59	538.83

Adjusted EA-18 G (Growler) (F414-GE-400 Engines) Emission Factors

	Fuel used		Emissions from Single Flight Operation (lb/op)							
Flight Operation	(lbs)	CO	NO _x	VOC ₃	SO ₂ ⁴	PM _{2.5}	PM ₁₀	CO ₂		
AESO Estimated Straight- In Arrival LTO ¹	2612	265.30	31.08	80.16	3.42	18.21	18.21	7823.99		
NAS Whidbey Island Estimated Take off ²	2413	210.67	29.16	79.04	3.16	17.62	17.62	7285.16		
AESO Estimated Break Arrival LTO ¹	2528	266.46	31.15	80.81	3.31	17.54	17.54	7553.13		
NAS Whidbey Island Break Arrival LTO ²	2329	211.83	29.23	79.70	3.05	16.95	16.95	7014.30		

Fled used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines from Table ES-1, AESO Memorandum Report No. 9815, Rev I, June, 2017, except SO2 and VOC.

Fuel used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines for operations at NAS Whidbey Island adjusted to reduce Max Power Time in mode during Take off from 30 seconds to 20 seconds, per email from CDR Sean Michaels, May 12, 2016.

3VOC emissions = 1.15 x THC emissions as reported in Table S-1, AESO Memorandum Report No. 9815, Rev LJune, 2017 as noted

factor of 1.31 lbs/1000 lbs JP-5 fuel for operations after 2016 in AESO Memorandum report No 2012-01E, April 2017

⁴SO2 Emission Factor based on fuel used (lbs) from Table S-1, AESO Memorandum Report No. 9815, Rev I, June, 2017 and SO2

Baseline Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		E1100/0			
Ault Field	CVW	EA18G (Grow FRS	ler) Operations RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	45	17	5	15	82
Departures	5,088	6,581	1,225	1,622	14,516
Interfacility Departures	174	192	16	0	382
Straight in Arrivals	1,786	2,712	434	577	5,509
Overhead Break Arrivals	2,980	3,650	725	943	8,298
IFR Arrivals	317	219	64	99	699
Interfacility Arrivals	174	192	17	0	383
FCLP Ops ²	7,571	7,303	215	0	15,089
Touch & Go Ops ²	2,881	5,463	510	593	9,447
Depart-Re-enter Ops ²	1,701	0	428	529	2,658
GCA pattern Ops ²	3,808	5,732	523	584	10,647
Total	26,480	32,044	4,157	4,947	67,628
OLF Coupeville					
Interfacility Departures	174	192	17	0	383
	174	192	17		383
FCLP Ops ²	2,441	2,685	229	0	5,355
Total	2,789	3,069	263	0	6,121
Interfacility Arrivals FCLP Ops ²	174 2,441	192 2,685	17 229	0	
Maintenance Run Ups (Ault F	ield) ³				
Water Wash	Tora)				82
Low Power, one engine					1,230
Low Power, two engines					2,460
High Power, two engines					656

¹ Operations information from Tab Fops_BaselineAveMaxYr2, file Ops Tables AveYr_BL_20171018.xlsx, as of 12/8/2016. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington, Wyle Laboratories, 2017.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit—therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Baseline maintenance run ups from Baseline Static Ops.lxs from Wyle, 12/16/2015

⁴ Out-of-Frame testing of F414 engines is not at performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Baseline Average Year Emissions NAS Whidbey Island Complex

•	No. of	Fuel use			En	nissions (tp	v) ³		
Operation	Operations ¹	(lbs)	СО	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	•								
Ault Field									
Straight-In Arrival LTO ²	5,509	13,294,962	580.29	80.32	217.72	8.71	48.54	48.54	20,066.98
Break Arrival LTO ²	9,380	21,848,990	993.47	137.08	373.78	14.31	79.51	79.51	32,897.07
FCLP ⁴	7,545	5,326,417	1.89	54.58	0.35	3.49	14.90	14.90	8,485.79
Touch-and-Go ⁴	4,724	3,334,791	1.18	34.17	0.22	2.18	9.33	9.33	5,312.83
Depart and Re-enter ⁴	1,329	1,875,219	0.67	19.24	0.13	1.23	5.24	5.24	2,989.62
GCA Pattern ⁴	5,324	7,511,459	2.69	77.06	0.52	4.92	21.00	21.00	11,975.35
Total Emissions for Ault Field	l Flight Operation	53,191,837.4	1,580.2	402.5	592.7	34.8	178.5	178.5	81,727.6
NOLF Coupeville						•	•		
Interfacility LTO2	383	529,798	21.55	4.94	0.79	0.35	1.26	1.26	807.19
FCLP ⁴	5,355	3,780,630	1.34	38.74	0.25	2.48	10.58	10.58	6,023.12
Interfacility Transit	383	231,013	0.08	1.70	0.02	0.15	0.76	0.76	368.57
Total Emissions for Coupevill	e Flight Operation	4,541,440.4	23.0	45.4	1.1	3.0	12.6	12.6	7,198.9
Maintenance Operations									
Water Wash	82	10,824	0.47	0.019	0.36	0.007	0.06	0.06	15.15
Low Power, one engine	1,230	447,802	21.01	0.74	16.06	0.29	2.70	2.70	667.65
Low Power, two engines	2,460	1,750,700	84.00	2.84	64.25	1.15	10.81	10.81	2,606.61
High Power, two engines	656	4,182,082	342.11	29.74	20.95	2.74	6.43	6.43	6,069.77
Total Emissions for Maintena	nce Operations	6,391,408.0	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2
Total		64,124,685.7	2,050.7	481.2	695.4	42.0	211.1	211.1	98,285.7

9,443,989.06 gallons of fuel

Notes:

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
All Personnel	4,104	25,650,000	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Existing Mobile Emissions

		Emissions (tpy)									
Activity	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂				
Ault Field Aircraft											
Flight Operations	1,580.19	402.45	592.72	34.84	178.53	178.53	81,727.63				
OLF Coupville											
Aircraft Flight											
Operations	23.0	45.4	1.1	3.0	12.6	12.6	7,198.9				
Aircraft Maintenance											
Operations	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2				
Personnel Commute	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77				
Total	2,125.81	490.07	697.04	42.07	299.70	220.95	108,308.46				

See Previous Table of this Appendix for Estimated Operations
 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

No Action Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

1	9 45 5,092 197	FRS 1 17 6,587	RES 1 5 1,226	3 15 1.623	EA-18G Total 14 82
Departures Interfacility Departures	45 5,092	17		15	82
Interfacility Departures	5,092				
Interfacility Departures		6,587	1.226	1 623	14.500
	197		, -	1,023	14,528
Straight in Arrivale	171	206	19	0	422
Straight iii Affivais	1,790	2,698	418	611	5,517
Overhead Break Arrivals	3,009	3,659	727	918	8,313
IFR Arrivals	287	229	81	89	686
Interfacility Arrivals	197	208	19	0	424
FCLP Ops ²	5,609	5,589	63	0	11,261
Touch & Go Ops ²	3,011	5,484	532	527	9,554
Depart-Re-enter Ops ²	1,738	0	459	537	2,734
GCA pattern Ops ²	4,019	5,774	540	520	10,853
Total	24,949	30,434	4,084	4,825	64,292
OLF Coupeville					
Interfacility Departures	197	208	19	0	424
Interfacility Arrivals	197	206	19	0	422
FCLP Ops ²	2,452	2,583	239	0	5,274
Total	2,846	2,997	277	0	6,120

¹ Operations information from Tab Fops_NoActionAveYr3, file Ops Tables AveYr_NoAc20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington, Wyle Laboratories, 2017.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Baseline maintenance run ups from Baseline Static Ops.lxs from Wyle, 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

No Action Average Year Air Emissions NAS Whidbey Island Complex

The Fredhold		Fuel use			Em	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	5,517	13,314,268	581.13	80.43	218.04	8.72	48.62	48.62	20,096.12
Break Arrival LTO ²	9,423	21,949,151	998.03	137.71	375.50	14.38	79.88	79.88	33,047.88
FCLP ⁴	5,631	3,975,133	1.41	40.74	0.26	2.60	11.12	11.12	6,332.99
Touch-and-Go4	4,777	3,372,562	1.19	34.56	0.22	2.21	9.43	9.43	5,373.00
Depart and Re-enter ⁴	1,367	1,928,837	0.69	19.79	0.13	1.26	5.39	5.39	3,075.10
GCA Pattern ⁴	5,427	7,656,792	2.74	78.55	0.53	5.02	21.41	21.41	12,207.05
Total Emissions for Ault Field	d Flight Operations	52,196,742.5	1,585.2	391.8	594.7	34.2	175.8	175.8	80,132.1
NOLF Coupeville									
Interfacility LTO2	424	586,512	23.86	5.47	0.88	0.38	1.40	1.40	893.59
FCLP ⁴	5,274	3,723,444	1.32	38.16	0.24	2.44	10.42	10.42	5,932.01
Interfacility Transit	424	255,743	0.09	1.89	0.02	0.17	0.84	0.84	408.03
Total Emissions for Coupevil	le Flight Operations	4,565,698.8	25.3	45.5	1.1	3.0	12.7	12.7	7,233.6
Maintenance Operations									
Water Wash	82	10,824	0.47	0.019	0.36	0.007	0.06	0.06	15.15
Low Power, one engine	1,230	447,802	21.01	0.74	16.06	0.29	2.70	2.70	667.65
Low Power, two engines	2,460	1,750,700	84.00	2.84	64.25	1.15	10.81	10.81	2,606.61
High Power, two engines	656	4,182,082	342.11	29.74	20.95	2.74	6.43	6.43	6,069.77
Total In-frame Maintenance Op	perations	6,391,408	447.59	33.35	101.63	4.19	20.01	20.01	9,359
Total Emissions for Maintena	nce Operations	6,391,408.0	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2
Total		63,153,849.3	2,058.0	470.6	697.4	41.4	208.5	208.5	96,725.0

9,301,008.73 gallons of fuel

See Previous Table of this Appendix for Estimated Operations
 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,104	25,650,000	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Lillissions Summary											
		Emissions (tpy)									
Activity	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂				
Ault Field Aircraft											
Flight Operations	1,585.19	391.78	594.68	34.19	175.85	175.85	80,132.13				
OLF Coupville Aircraft											
Flight Operations	25.3	45.5	1.1	3.0	12.7	12.7	7,233.6				
Aircraft Maintenance											
Operations	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2				
Personnel Commute	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77				
Total	2,133.11	479.52	699.08	41.43	297.08	218.32	106,747.73				

 $^{^3\,}$ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

 $^{^{2}}$ See Table X of this Appendix for calculations and emission factors

Alternative 1A Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

FRS 1 25 6,011 564 2,473 3,290 249 566 2,140 5,388	1 5 1,236 13 407 748 81 15 139	593 928 121 0	EA-18G Tota 14 117 16,899 1,551 6,310 9,613 979 1,555
6,011 564 2,473 3,290 249 566 2,140	1,236 13 407 748 81 15	15 1,641 0 593 928 121 0	117 16,899 1,551 6,310 9,613 979
6,011 564 2,473 3,290 249 566 2,140	1,236 13 407 748 81 15	1,641 0 593 928 121 0	16,899 1,551 6,310 9,613 979
564 2,473 3,290 249 566 2,140	13 407 748 81 15	0 593 928 121 0	1,551 6,310 9,613 979
2,473 3,290 249 566 2,140	407 748 81 15	593 928 121 0	6,310 9,613 979
3,290 249 566 2,140	748 81 15	928 121 0	9,613 979
249 566 2,140	81 15	121	979
566 2,140	15	0	
2,140			1.555
	139	0	1,000
5.388		U	6,145
-,	561	559	11,881
0	448	536	3,653
5,744	565	553	14,586
3 26,425	4,213	4,931	73,172
564	13		1,551
566	15	0	1,555
7,909	207	0	21,749
9,039	235	0	24,855
	26,425 564 566 7,909	3 26,425 4,213 564 13 566 15 7,909 207	3 26,425 4,213 4,931 564 13 0 566 15 0 3 7,909 207 0

¹ Operations information from Tab SEIS_Alt1AAveYr, workbook Ops Tables AveYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1A Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Automative TA Average Tear		Fuel use			Emi	ssions (tpy) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,310	15,228,028	664.66	92.00	249.38	9.97	55.60	55.60	22,984.68
Break Arrival LTO ²	12,147	28,294,210	1,286.54	177.52	484.04	18.53	102.97	102.97	42,601.36
FCLP ⁴	3,073	2,169,185	0.77	22.23	0.14	1.42	6.07	6.07	3,455.84
Touch-and-Go ⁴	5,941	4,193,993	1.49	42.98	0.27	2.75	11.73	11.73	6,681.67
Depart and Re-enter ⁴	1,827	2,577,192	0.92	26.44	0.18	1.69	7.21	7.21	4,108.76
GCA Pattern ⁴	7,293	10,290,423	3.68	105.57	0.71	6.74	28.77	28.77	16,405.79
Total Emissions for Ault Fiel	d Flight Operations	62,753,030.2	1,958.1	466.7	734.7	41.1	212.3	212.3	96,238.1
NOLF Coupeville									
Interfacility LTO2	1,551	2,145,472	87.27	20.00	3.21	1.41	5.12	5.12	3,268.79
FCLP ⁴	21,749	15,354,794	5.44	157.35	1.00	10.06	42.95	42.95	24,462.51
Interfacility Transit	1,551	935,512	0.34	6.90	0.07	0.61	3.07	3.07	1,492.58
Total Emissions for Coupevil	le Flight Operations	18,435,778.0	93.0	184.3	4.3	12.1	51.1	51.1	29,223.9
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Mainten	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		90,308,256.2	2,689.7	698.6	884.0	59.2	292.0	292.0	138,815.9

13,300,185.00 total gallons of fuel

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

					Em	issions (tpy) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 1A

	Emissions (tpy)									
Activity	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Ault Field Aircraft										
Flight Operations	1,958.05	466.73	734.73	41.10	212.35	212.35	96,238.09			
OLF Coupville Aircraft										
Flight Operations	93.0	184.3	4.3	12.1	51.1	51.1	29,223.9			
Aircraft Maintenance										
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0			
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91			
Total	2,770,92	708.17	885.78	59.22	387.83	302,65	149,656,83			

Emissions carculated using AESO Report emission ractors. π-Qp λ Eq (us emissionary) συρί συνία

Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

Alternative 1B Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

			ler) Operations		_
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,940	5,964	1,227	1,623	16,754
Interfacility Departures	612	347	13	0	972
Straight in Arrivals	2,777	2,441	409	596	6,223
Overhead Break Arrivals	4,635	3,287	740	927	9,589
IFR Arrivals	528	236	78	99	941
Interfacility Arrivals	612	347	13	0	972
FCLP Ops ²	9,762	5,602	175	0	15,539
Touch & Go Ops ²	5,373	5,388	561	559	11,881
Depart-Re-enter Ops ²	2,669	0	448	536	3,653
GCA pattern Ops ²	7,724	5,744	565	553	14,586
Total	42,632	29,356	4,229	4,893	81,110
OLF Coupeville					
Interfacility Departures	612	347	13	0	972
Interfacility Arrivals	612	346	14	0	972
FCLP Ops ²	8,559	4,849	189	0	13,597
Total	9,783	5,542	216	0	15,541
Maintenance Run Ups (at Ault	t Field) ³				
Water Wash	,				117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936

¹ Operations information from Tab SEIS_Alt1BAveYr, workbook Ops Tables AveYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit—therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1B Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Alternative 15 Average real		Fuel use			Em	issions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,223	15,018,070	655.49	90.73	245.94	9.84	54.84	54.84	22,667.78
Break Arrival LTO ²	11,502	26,791,800	1,218.22	168.09	458.34	17.55	97.50	97.50	40,339.24
FCLP ⁴	7,770	5,485,267	1.94	56.21	0.36	3.59	15.34	15.34	8,738.86
Touch-and-Go ⁴	5,941	4,193,993	1.49	42.98	0.27	2.75	11.73	11.73	6,681.67
Depart and Re-enter ⁴	1,827	2,577,192	0.92	26.44	0.18	1.69	7.21	7.21	4,108.76
GCA Pattern ⁴	7,293	10,290,423	3.68	105.57	0.71	6.74	28.77	28.77	16,405.79
Total Emissions for Ault Field Flight Operations		64,356,744.4	1,881.7	490.0	705.8	42.2	215.4	215.4	98,942.1
NOLF Coupeville	•		•	•	•	•	•		•
Interfacility LTO2	972	1,344,551	54.69	12.53	2.01	0.88	3.21	3.21	2,048.52
FCLP ⁴	13,597	9,599,482	3.40	98.37	0.63	6.29	26.85	26.85	15,293.43
Interfacility Transit	972	586,278	0.21	4.32	0.05	0.38	1.92	1.92	935.39
Total Emissions for Coupevil	le Flight Operations	11,530,311.4	58.3	115.2	2.7	7.6	32.0	32.0	18,277.3
	•		•	•	•		•		•
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Mainten	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		85,006,503.8	2,578.7	652.8	853.5	55.7	275.9	275.9	130,573.4

12,519,367.28 total gallons of fuel

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- ³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

			Emissions (tpy) ³						
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1B

Total Ellissions, Aiter	nauve 10						
			En	issions (tp	y)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,881.75	490.02	705.80	42.15	215.39	215.39	98,942.09
OLF Coupville Aircraft							
Flight Operations	58.3	115.2	2.7	7.6	32.0	32.0	18,277.3
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,659.88	662.44	855.26	55.75	371.72	286.54	141,414.30

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 1C Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,953	5,962	1,228	1,624	16,767
Interfacility Departures	243	136	11	0	390
Straight in Arrivals	2,816	2,432	413	590	6,251
Overhead Break Arrivals	4,631	3,315	737	935	9,618
IFR Arrivals	505	216	78	100	899
Interfacility Arrivals	244	137	11	0	392
FCLP Ops ²	15,609	9,067	175	0	24,851
Touch & Go Ops ²	5,373	5,388	561	559	11,881
Depart-Re-enter Ops ²	2,669	0	448	536	3,653
GCA pattern Ops ²	7,724	5,744	565	553	14,586
Total	47,767	32,397	4,227	4,897	89,288
OLF Coupeville					
Interfacility Departures	243	136	11	0	390
Interfacility Arrivals	244	137	11	0	392
FCLP Ops ²	3,404	1,903	138	0	5,445
Total	3,891	2,176	160	0	6,227
	3				
Maintenance Run Ups (at Aul	t Field)"				115
Water Wash					117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936

 $^{^{1}} Operations information from Tab SEIS_Alt1CAveYr, workbook Ops Tables AveYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD. \\$

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1C Average Year FA-18G (Growler) Air Emissions NAS Whidhey Island Complex

		Fuel use			Em	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	-								
Ault Field									
Straight-In Arrival LTO ²	6,251	15,085,642	658.44	91.14	247.05	9.88	55.08	55.08	22,769.77
Break Arrival LTO ²	10,909	25,410,516	1,155.42	159.43	434.71	16.64	92.47	92.47	38,259.50
FCLP ⁴	12,426	8,772,403	3.11	89.90	0.57	5.75	24.54	24.54	13,975.77
Touch-and-Go ⁴	5,941	4,193,993	1.49	42.98	0.27	2.75	11.73	11.73	6,681.67
Depart and Re-enter ⁴	1,827	2,577,192	0.92	26.44	0.18	1.69	7.21	7.21	4,108.76
GCA Pattern ⁴	7,293	10,290,423	3.68	105.57	0.71	6.74	28.77	28.77	16,405.79
Total Emissions for Ault Fiel	d Flight Operations	66,330,168.5	1,823.1	515.4	683.5	43.4	219.8	219.8	102,201.3
NOLF Coupeville									
Interfacility LTO2	392	542,247	22.06	5.05	0.81	0.36	1.29	1.29	826.15
FCLP ⁴	5,445	3,844,170	1.36	39.39	0.25	2.52	10.75	10.75	6,124.35
Interfacility Transit	390	235,235	0.08	1.74	0.02	0.15	0.77	0.77	375.31
Total Emissions for Coupevi	lle Flight Operations	4,621,652.1	23.5	46.2	1.1	3.0	12.8	12.8	7,325.8
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Mainten	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		80,071,268.6	2,485.2	609.2	829.6	52.4	261.2	261.2	122,881.0

11,792,528.51 total gallons of fuel

Notes:

Notes:										
See Previous Table of this Appendi	ix for Estimated Operations									
All LTOs represent 2 operations, a	Departure and Break or Straight-In	Arrival								
³ Emissions calculated using AESO I	Report emission factors: #Ops x EF	(lbs emission/op)/2000								
4 Touch and Go/FCLP, and Depart&	Reenter/GCA Pattern operations ar	e counted as two operations in	Wyle calculations, but	only once for air	emission calcula	ation purposes				
Employee Commute Emissions										
Emissions (tpv) ³										
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91	

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1C

			Emi	issions (tpy)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,823.06	515.45	683.49	43.45	219.81	219.81	102,201.25
OLF Coupville Aircraft							
Flight Operations	23.5	46.2	1.08	3.0	12.8	12.8	7,325.8
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,566.39	618.82	831.35	52.52	356.97	271.79	133,721.93

Alternative 1D Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

# Squadrons # Aircraft Departures Interfacility Departures	9 72 8,011	FRS 1 25 6,011	RES 1 5	3 15	EA-18G Total
# Aircraft Departures	72 8,011	25	-		
Departures	8,011		-	15	117
		6.011	4 00 4		
Interfacility Departures		0,011	1,236	1,641	16,899
	853	494	11	0	1,358
Straight in Arrivals	2,837	2,473	407	593	6,310
Overhead Break Arrivals	4,647	3,290	748	928	9,613
IFR Arrivals	528	249	81	121	979
Interfacility Arrivals	853	495	13	0	1,361
FCLP Ops ²	5,800	3,210	209	0	9,219
Touch & Go Ops ²	5,373	5,388	561	559	11,881
Depart-Re-enter Ops ²	2,669	0	448	536	3,653
GCA pattern Ops ²	7,724	5,744	565	553	14,586
Total	39,295	27,354	4,279	4,931	75,859
OLF Coupeville					_
Interfacility Departures	853	494	11	0	1,358
Interfacility Arrivals	853	495	13	0	1,361
FCLP Ops ²	11,929	6,920	182	0	19,031
Total	13,635	7,909	206	0	21,750

¹ Operations information from Tab SEIS_Alt1DAveYr, workbook Ops Tables AveYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1D Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Alternative 1D Average Teal		Fuel use	, , , , , , , , , , , , , , , , , , , ,		Em	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,310	15,228,028	664.66	92.00	249.38	9.97	55.60	55.60	22,984.68
Break Arrival LTO ²	11,953	27,842,322	1,265.99	174.69	476.31	18.24	101.32	101.32	41,920.97
FCLP ⁴	4,610	3,254,307	1.15	33.35	0.21	2.13	9.10	9.10	5,184.60
Touch-and-Go ⁴	5,941	4,193,993	1.49	42.98	0.27	2.75	11.73	11.73	6,681.67
Depart and Re-enter ⁴	1,827	2,577,192	0.92	26.44	0.18	1.69	7.21	7.21	4,108.76
GCA Pattern ⁴	7,293	10,290,423	3.68	105.57	0.71	6.74	28.77	28.77	16,405.79
Total Emissions for Ault Field Flight Operations		63,386,264.8	1,937.9	475.0	727.1	41.5	213.7	213.7	97,286.5
NOLF Coupeville						•			
Interfacility LTO2	1,358	1,878,499	76.41	17.51	2.81	1.23	4.48	4.48	2,862.03
FCLP ⁴	19,031	13,435,886	4.76	137.69	0.88	8.80	37.59	37.59	21,405.40
Interfacility Transit	1,358	819,100	0.30	6.04	0.06	0.54	2.69	2.69	1,306.85
Total Emissions for Coupevil	lle Flight Operations	16,133,485.1	81.5	161.2	3.7	10.6	44.8	44.8	25,574.3
	•		•	•	•	•	•	•	•
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Mainten	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		88,639,197.9	2,658.0	683.8	875.8	58.1	287.0	287.0	136,214.7

13,054,373.77 total gallons of fuel

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- ³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					Em	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1D

			Emi	issions (tpy)		
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,937.89	475.02	727.07	41.52	213.74	213.74	97,286.47
OLF Coupville Aircraft							
Flight Operations	81.5	161.2	3.7	10.6	44.8	44.8	25,574.3
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,739.18	693.45	877.59	58.13	382.84	297.66	147,055.61

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 1E Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

_		EA 18G (Grow	ler) Operations		_
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,953	5,962	1,228	1,624	16,767
Interfacility Departures	365	205	17	0	587
Straight in Arrivals	2,816	2,432	413	590	6,251
Overhead Break Arrivals	4,631	3,315	737	935	9,618
IFR Arrivals	505	216	78	100	899
Interfacility Arrivals	367	206	17	0	590
FCLP Ops ²	13,659	7,934	153	0	21,746
Touch & Go Ops ²	5,373	5,388	561	559	11,881
Depart-Re-enter Ops ²	2,669	0	448	536	3,653
GCA pattern Ops ²	7,724	5,744	565	553	14,586
Total	46,062	31,402	4,217	4,897	86,578
OLF Coupeville					
Interfacility Departures	365	205	17	0	587
Interfacility Arrivals	367	206	17	0	590
FCLP Ops ²	4,864	2,637	172	0	7,673
Total	5,596	3,048	206	0	8,850
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash	,				117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936
Test Cell Maintenance Run U	os (at Ault Fiel	ld) ⁴			

¹ Operations information from Tab SEIS_Alt1EAveYr, workbook Ops Tables AveYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit—therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1E Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

		Fuel use			Em	issions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,251	15,085,642	658.44	91.14	247.05	9.88	55.08	55.08	22,769.77
Break Arrival LTO ²	11,107	25,871,720	1,176.39	162.32	442.60	16.95	94.15	94.15	38,953.92
FCLP ⁴	10,873	7,676,338	2.72	78.67	0.50	5.03	21.47	21.47	12,229.57
Touch-and-Go ⁴	5,941	4,193,993	1.49	42.98	0.27	2.75	11.73	11.73	6,681.67
Depart and Re-enter ⁴	1,827	2,577,192	0.92	26.44	0.18	1.69	7.21	7.21	4,108.76
GCA Pattern ⁴	7,293	10,290,423	3.68	105.57	0.71	6.74	28.77	28.77	16,405.79
otal Emissions for Ault Field Flight Operations		65,695,308.2	1,843.6	507.1	691.3	43.0	218.4	218.4	101,149.5
NOLF Coupeville									
Interfacility LTO2	587	811,987	33.03	7.57	1.21	0.53	1.94	1.94	1,237.12
FCLP ⁴	7,673	5,417,138	1.92	55.51	0.35	3.55	15.15	15.15	8,630.32
Interfacility Transit	587	354,059	0.13	2.61	0.03	0.23	1.16	1.16	564.89
Total Emissions for Coupevi	lle Flight Operations	6,583,184.2	35.1	65.7	1.6	4.3	18.3	18.3	10,432.3
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Mainter	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		81,397,940.4	2,517.3	620.4	837.9	53.3	265.2	265.2	124,935.8

11,987,914.63 total gallons of fuel

Notes:

- 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

					Em	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1E

		Emissions (tpy)									
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂				
Ault Field Aircraft											
Flight Operations	1,843.64	507.11	691.31	43.03	218.42	218.42	101,149.47				
OLF Coupville Aircraft											
Flight Operations	35.1	65.7	1.6	4.3	18.3	18.3	10,432.3				
Aircraft Maintenance											
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0				
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91				
Total	2,598.54	629.99	839.68	53.39	361.02	275.83	135,776.67				

a Entos represent 2 operations, a Departue and Break of Stangin-in Artival

3 Emissions calculated using AESO Report emission factors: #Ops x E(pls emission/op)/2000

4 Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

NAS Whidbey Island Complex Annual GHG Emissions, Alternative 1

			Metric TPY)				
Emission Source	Existing	No Action	Alt 1A	Alt 1B	Alt 1C	Alt 1D	Alt 1E
Stationary Sources							
tewide Total GHG Emissions (2016 Reported)	13,575	13,575					
New Electricity Building Use (Indirect)	0	0	181	181	181	181	181
New Natural Gas Building Use (Direct)	0	0	276	276	276	276	276
Total Change in Stationary CO ₂							
Emissions (MTPY)			456	456	456	456	456
% increase in Stationary CO ₂ Emissions			3%	3%	3%	3%	3%
Mobile Sources							
Aircraft Operations	89,145	87,730	125,906	118,430	111,453	123,547	113,317
GSE Emissions	130	131	161	155	150	160	152
Personnel Commute Emissions	9,091	9,091	9,833	9,833	9,833	9,833	9,833
Total Mobile CO ₂ Emissions (MTPY)	98,366	96,951	135,900	128,418	121,436	133,539	123,301
Change in Mobile CO ₂ Emissions			38,949	31,467	24,485	36,588	26,350
% increase in Mobile CO ₂ Emissions			40%	32%	25%	37%	27%
Total Change in Emissions (Stationary							
and Mobile)			39,405	31,923	24,941	37,044	26,807
2013 Total CO2e from all sources in							
Washington State ¹				94,400,000)		
Change in Emissions (Stationary and Mobile)							
as % of Total 2013 CO2e Emissions in							
Washington State			0.04%	0.03%	0.03%	0.04%	0.03%
2013 Total CO2 from Transportation in							
Washington State ¹				40,400,000)		
Change in Mobile Emissions as % of Total							
2013 Transportation CO2e Emissions in							
Washington State			0.10%	0.08%	0.06%	0.09%	0.07%
2013 Total CO2e from Aircraft in				•			
Washington State ¹				6,570,000			
Change in Aircraft Emissions as % of Total				.,,,,,,,			
2013 Aircraft CO2e Emissions in							
Washington State			0.59%	0.48%	0.37%	0.56%	0.40%
1 Inventory 1990-2013 (2016) Report to the Legislatur	3371-1	. C1 C					

^{1.} Inventory 1990-2013 (2016). Report to the Legislature on Washington Greenhouse Gas Emissions Inventory: 2010 – 2013 (Publication 16-02-025) October 2016. Retrieved March 29, 2018 from: https://fortress.wa.gov/ecy/publications/documents/1602025.pdf
Key:

TPY = Tons per year

CO₂e = Carbon Dioxide Equivalent

GHG = Greenhouse Gas

metric tons per short ton = 0.907

Alternative 2A Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	7,424	6,044	1,236	2,711	17,415
Interfacility Departures	901	566	14	0	1,481
Straight in Arrivals	2,662	2,469	433	966	6,530
Overhead Break Arrivals	4,298	3,360	721	1,584	9,963
IFR Arrivals	463	216	82	161	922
Interfacility Arrivals	903	566	14	0	1,483
FCLP Ops ²	3,631	2,158	147	0	5,936
Touch & Go Ops ²	5,052	5,432	489	882	11,855
Depart-Re-enter Ops ²	2,456	0	453	950	3,859
GCA pattern Ops ²	7,214	5,795	507	875	14,391
Total	35,004	26,606	4,096	8,129	73,835
OLF Coupeville					
Interfacility Departures	901	566	14	0	1,481
Interfacility Arrivals	903	566	14	0	1,483
FCLP Ops ²	12,641	7,919	205	0	20,765
Total	14,445	9,051	233	0	23,729
	3				
Maintenance Run Ups (at Aul	t Field)*				110
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

¹ Operations information from Tab SEIS_Alt2AAveYr, workbook Ops Tables AveYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2A Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Alternative 2A Average Tear		Fuel use			En	nissions (tr	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,530	15,758,958	687.83	95.20	258.07	10.32	57.54	57.54	23,786.05
Break Arrival LTO ²	12,368	28,808,989	1,309.94	180.75	492.85	18.87	104.84	104.84	43,376.44
FCLP ⁴	2,968	2,095,408	0.74	21.47	0.14	1.37	5.86	5.86	3,338.30
Touch-and-Go4	5,928	4,184,815	1.48	42.89	0.27	2.74	11.71	11.71	6,667.04
Depart and Re-enter ⁴	1,930	2,722,525	0.97	27.93	0.19	1.78	7.61	7.61	4,340.46
GCA Pattern ⁴	7,196	10,152,851	3.63	104.15	0.70	6.65	28.39	28.39	16,186.46
Total Emissions for Ault Field Flight Operations		63,723,544.4	2,004.6	472.4	752.2	41.7	216.0	216.0	97,694.7
NOLF Coupeville			•	•	•		•	•	
Interfacility LTO2	1,481	2,048,643	83.33	19.10	3.06	1.34	4.89	4.89	3,121.26
FCLP ⁴	20,765	14,660,090	5.19	150.23	0.96	9.60	41.01	41.01	23,355.75
Interfacility Transit	1,481	893,290	0.32	6.59	0.07	0.59	2.93	2.93	1,425.21
Total Emissions for Coupevi	lle Flight Operations	17,602,022.5	88.8	175.9	4.1	11.5	48.8	48.8	27,902.2
					•	•	•		
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance Operations		9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	Total Emissions for Maintenance Operations		644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		90,522,958.8	2,737.5	696.3	902.6	59.3	293.6	293.6	139,065.1

13,331,805.42 total gallons of fuel

Notes:

- See Previous Table of this Appendix for Estimated Operations
- All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	НС	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 2A

_		Emissions (tpy)									
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂				
Ault Field Aircraft Flight											
Operations	2,004.61	472.40	752.23	41.74	215.95	215.95	97,694.75				
OLF Coupville Aircraft Flight											
Operations	88.8	175.9	4.1	11.5	48.8	48.8	27,902.2				
Aircraft Maintenance											
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1				
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47				
Total	2,824.10	706.55	904.44	59.37	395.69	304.89	150,621.53				

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

		EA 41	9C (Crawler) On	avation a	
Ault Field	CVW	FRS	8G (Growler) Op RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	7,360	5,992	1,224	2,687	17,263
Interfacility Departures	564	350	14	0	928
Straight in Arrivals	2,627	2,465	425	942	6,459
Overhead Break Arrivals	4,322	3,328	729	1,588	9,967
IFR Arrivals	410	198	71	158	837
Interfacility Arrivals	564	350	14	0	928
FCLP Ops ²	9,047	5,612	176	0	14,835
Touch & Go Ops ²	5,052	5,432	489	882	11,855
Depart-Re-enter Ops ²	2,456	0	453	950	3,859
GCA pattern Ops ²	7,214	5,795	507	875	14,391
Total	39,616	29,522	4,102	8,082	81,322
OLF Coupeville					
Interfacility Departures	564	350	13	0	927
Interfacility Arrivals	564	350	14	0	928
FCLP Ops ²	7,889	4,907	187	0	12,983
Total	9,017	5,607	214	0	14,838
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash	. Holaj				118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944
Test Cell Maintenance Run U	ps (at Ault Fiel	d) ⁴			•

¹ Operations information from Tab SEIS_Alt2BAveYr, workbook Ops Tables AveYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit—therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2B Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	, , , , ,	Fuel use			E	missions (t	oy) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,459	15,587,612	680.35	94.17	255.27	10.21	56.92	56.92	23,527.43
Break Arrival LTO ²	11,732	27,327,543	1,242.58	171.46	467.51	17.90	99.45	99.45	41,145.89
FCLP ⁴	7,418	5,236,755	1.85	53.67	0.34	3.43	14.65	14.65	8,342.94
Touch-and-Go ⁴	5,928	4,184,815	1.48	42.89	0.27	2.74	11.71	11.71	6,667.04
Depart and Re-enter ⁴	1,930	2,722,525	0.97	27.93	0.19	1.78	7.61	7.61	4,340.46
GCA Pattern ⁴	7,196	10,152,851	3.63	104.15	0.70	6.65	28.39	28.39	16,186.46
Total Emissions for Ault Field Flight Operations		65,212,100.5	1,930.9	494.3	724.3	42.7	218.7	218.7	100,210.2
NOLF Coupeville									
Interfacility LTO2	927	1,282,304	52.16	11.95	1.92	0.84	3.06	3.06	1,953.68
FCLP ⁴	12,983	9,165,998	3.25	93.93	0.60	6.00	25.64	25.64	14,602.82
Interfacility Transit	927	559,136	0.20	4.12	0.04	0.37	1.83	1.83	892.08
Total Emissions for Coupevill	le Flight Operations	11,007,437.2	55.6	110.0	2.6	7.2	30.5	30.5	17,448.6
Maintenance Operations			1						
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance Operations		9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Maintena	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		85,416,929.6	2,630.6	652.3	873.1	55.9	278.0	278.0	131,126.9

12,579,812.91 total gallons of fuel

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

					Е	missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 2B

			En	nissions (tp	y)		
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,930.88	494.26	724.28	42.71	218.72	218.72	100,210.22
OLF Coupville Aircraft							
Flight Operations	55.6	110.0	2.6	7.2	30.5	30.5	17,448.6
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,717,13	662.50	874.97	56.02	380.17	289.36	142,683,38

Emissions carculated using AESO Report emission ractors. π-Qp λ Eq (us emissionary) συρί συνία

Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

Alternative 2C Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	7,360	5,993	1,223	2,693	17,269
Interfacility Departures	225	136	10	0	371
Straight in Arrivals	2,639	2,465	417	972	6,493
Overhead Break Arrivals	4,307	3,338	729	1,570	9,944
IFR Arrivals	415	189	77	151	832
Interfacility Arrivals	226	136	10	0	372
FCLP Ops ²	14,384	9,148	201	0	23,733
Touch & Go Ops ²	5,052	5,432	489	882	11,855
Depart-Re-enter Ops ²	2,456	0	453	950	3,859
GCA pattern Ops ²	7,214	5,795	507	875	14,391
Total	44,278	32,632	4,116	8,093	89,119
OLF Coupeville					
Interfacility Departures	225	136	10	0	371
Interfacility Arrivals	226	136	11	0	373
FCLP Ops ²	3,160	1,895	146	0	5,201
Total	3,611	2,167	167	0	5,945
	. = 1 . 03				
Maintenance Run Ups (at Aul	t Field)"				110
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

 $^{^{1}} Operations information from Tab SEIS_Alt2CAveYr, workbook Ops Tables AveYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD. \\$

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2C Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Automative 20 Average Tee	· · ·	Fuel use			E	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	<u> </u>								
Ault Field									
Straight-In Arrival LTO ²	6,493	15,669,665	683.93	94.66	256.61	10.26	57.22	57.22	23,651.27
Break Arrival LTO ²	11,148	25,967,222	1,180.73	162.92	444.24	17.01	94.50	94.50	39,097.71
FCLP ⁴	11,867	8,377,749	2.97	85.85	0.55	5.49	23.44	23.44	13,347.02
Touch-and-Go4	5,928	4,184,815	1.48	42.89	0.27	2.74	11.71	11.71	6,667.04
Depart and Re-enter ⁴	1,930	2,722,525	0.97	27.93	0.19	1.78	7.61	7.61	4,340.46
GCA Pattern ⁴	7,196	10,152,851	3.63	104.15	0.70	6.65	28.39	28.39	16,186.46
Total Emissions for Ault Field Flight Operations		67,074,826.3	1,873.7	518.4	702.6	43.9	222.9	222.9	103,290.0
NOLF Coupeville									
Interfacility LTO2	371	513,198	20.87	4.78	0.77	0.34	1.23	1.23	781.90
FCLP ⁴	5,201	3,671,906	1.30	37.63	0.24	2.41	10.27	10.27	5,849.90
Interfacility Transit	371	223,775	0.08	1.65	0.02	0.15	0.73	0.73	357.02
Total Emissions for Coupev	rille Flight Operations	4,408,879.0	22.3	44.1	1.0	2.9	12.2	12.2	6,988.8
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance	Operations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainte	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		80,681,097.3	2,540.1	610.5	849.8	52.8	263.9	263.9	123,746.9

11,882,341.28 total gallons of fuel

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

					6	:missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

			Er	nissions (t	oy)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO2
Ault Field Aircraft							
Flight Operations	1,873.72	518.41	702.56	43.93	222.86	222.86	103,289.97
OLF Coupville Aircraft							
Flight Operations	22.3	44.1	1.0	2.9	12.2	12.2	6,988.8
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,626.62	620.70	851.71	52,92	366.00	275.19	135,303.36

Emissions carculated using AESO Report emission ractors. π-Qp λ Eq (us emissionary) συρί συνία

Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

Alternative 2D Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

Departures Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals	9 63 7,424 789 2,662 4,298	FRS 1 25 6,044 495 2,469	1 5 1,236 13 433	5 25 2,711 0	16 118 17,415 1,297
# Aircraft Departures Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals	63 7,424 789 2,662 4,298	25 6,044 495 2,469	1,236 13	25 2,711 0	118 17,415
Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals	7,424 789 2,662 4,298	6,044 495 2,469	1,236 13	2,711 0	17,415
Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals	789 2,662 4,298	495 2,469	13	0	
Straight in Arrivals Overhead Break Arrivals IFR Arrivals	2,662 4,298	2,469			1,297
Overhead Break Arrivals IFR Arrivals	4,298	,	433		
IFR Arrivals		2.260	155	966	6,530
		3,360	721	1,584	9,963
T . C . 111. A . 1 . 1	463	216	82	161	922
Interfacility Arrivals	790	495	13	0	1,298
FCLP Ops ²	5,447	3,238	221	0	8,906
Touch & Go Ops ²	5,052	5,432	489	882	11,855
Depart-Re-enter Ops ²	2,456	0	453	950	3,859
GCA pattern Ops ²	7,214	5,795	507	875	14,391
Total	36,595	27,544	4,168	8,129	76,436
OLF Coupeville					
Interfacility Departures	789	495	13	0	1,297
Interfacility Arrivals	790	495	13	0	1,298
FCLP Ops ²	11,062	6,929	180	0	18,171
Total	12,641	7,919	206	0	20,766

¹ Operations information from Tab SEIS_Alt2DAveYr, workbook Ops Tables AveYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2D Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Atternative 25 Average Tea		Fuel use			Е	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	<u> </u>								
Ault Field									
Straight-In Arrival LTO ²	6,530	15,758,958	687.83	95.20	258.07	10.32	57.54	57.54	23,786.05
Break Arrival LTO ²	12,183	28,378,065	1,290.35	178.05	485.48	18.59	103.27	103.27	42,727.61
FCLP ⁴	4,453	3,143,818	1.11	32.22	0.20	2.06	8.79	8.79	5,008.58
Touch-and-Go ⁴	5,928	4,184,815	1.48	42.89	0.27	2.74	11.71	11.71	6,667.04
Depart and Re-enter ⁴	1,930	2,722,525	0.97	27.93	0.19	1.78	7.61	7.61	4,340.46
GCA Pattern ⁴	7,196	10,152,851	3.63	104.15	0.70	6.65	28.39	28.39	16,186.46
Total Emissions for Ault Field Flight Operations		64,341,030.8	1,985.4	480.4	744.9	42.1	217.3	217.3	98,716.2
NOLF Coupeville									
Interfacility LTO2	1,297	1,794,118	72.98	16.73	2.68	1.18	4.28	4.28	2,733.47
FCLP ⁴	18,171	12,828,726	4.54	131.47	0.84	8.40	35.89	35.89	20,438.10
Interfacility Transit	1,297	782,307	0.28	5.77	0.06	0.51	2.56	2.56	1,248.14
Total Emissions for Coupevi	lle Flight Operations	15,405,151.7	77.8	154.0	3.6	10.1	42.7	42.7	24,419.7
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance (Operations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainter	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		88,943,574.4	2,707.3	682.4	894.7	58.3	288.8	288.8	136,604.0

13,099,200.95 total gallons of fuel

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					E	missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 2D

			E	missions (py)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,985.38	480.44	744.92	42.14	217.32	217.32	98,716.20
OLF Coupville Aircraft							
Flight Operations	77.8	154.0	3.6	10.1	42.7	42.7	24,419.7
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,793.83	692.63	896.63	58.33	390.96	300.16	148,160.49

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 2E Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	7,360	5,993	1,223	2,693	17,269
Interfacility Departures	339	205	15	0	559
Straight in Arrivals	2,639	2,465	417	972	6,493
Overhead Break Arrivals	4,307	3,338	729	1,570	9,944
IFR Arrivals	415	189	77	151	832
Interfacility Arrivals	339	205	17	0	561
FCLP Ops ²	12,586	8,004	175	0	20,765
Touch & Go Ops ²	5,052	5,432	489	882	11,855
Depart-Re-enter Ops ²	2,456	0	453	950	3,859
GCA pattern Ops ²	7,214	5,795	507	875	14,391
Total	42,707	31,626	4,102	8,093	86,528
OLF Coupeville					
Interfacility Departures	339	205	17	0	561
Interfacility Arrivals	339	205	15	0	559
FCLP Ops ²	4,741	2,843	219	0	7,803
Total	5,419	3,253	251	0	8,923
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

 $^{^{1}} Operations information from Tab SEIS_Alt2EAveYr, workbook Ops Tables AveYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD. \\$

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2E Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	, i	Fuel use			Е	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,493	15,669,665	683.93	94.66	256.61	10.26	57.22	57.22	23,651.27
Break Arrival LTO ²	11,337	26,407,463	1,200.75	165.68	451.77	17.30	96.10	96.10	39,760.56
FCLP ⁴	10,383	7,330,045	2.60	75.12	0.48	4.80	20.51	20.51	11,677.87
Touch-and-Go ⁴	5,928	4,184,815	1.48	42.89	0.27	2.74	11.71	11.71	6,667.04
Depart and Re-enter ⁴	1,930	2,722,525	0.97	27.93	0.19	1.78	7.61	7.61	4,340.46
GCA Pattern ⁴	7,196	10,152,851	3.63	104.15	0.70	6.65	28.39	28.39	16,186.46
Total Emissions for Ault Fiel	d Flight Operations	66,467,363.2	1,893.4	510.4	710.0	43.5	221.5	221.5	102,283.7
NOLF Coupeville									
Interfacility LTO2	561	776,022	31.57	7.23	1.16	0.51	1.85	1.85	1,182.33
FCLP ⁴	7,803	5,508,918	1.95	56.45	0.36	3.61	15.41	15.41	8,776.54
Interfacility Transit	561	338,377	0.12	2.50	0.03	0.22	1.11	1.11	539.87
Total Emissions for Coupevil	le Flight Operations	6,623,316.5	33.6	66.2	1.5	4.3	18.4	18.4	10,498.7
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		82,288,071.6	2,571.1	624.6	857.8	53.9	268.7	268.7	126,250.5

12,119,009.07 total gallons of fuel

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

					Е	missions (1	py) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 2E

	Emissions (tpy)										
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂				
Ault Field Aircraft											
Flight Operations	1,893.37	510.43	710.02	43.54	221.53	221.53	102,283.67				
OLF Coupville Aircraft											
Flight Operations	33.6	66.2	1.5	4.3	18.4	18.4	10,498.7				
Aircraft Maintenance											
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1				
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47				
Total	2,657,65	634.85	859.69	53,98	370.81	280.01	137,806,97				

Emissions carculated using AESO Report emission ractors. π-Qp λ Eq (us emissionary) συρί συνία

Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

NAS Whidbey Island Complex Annual GHG Emissions. Alternative 2

NAS Whidbey Island Complex Annual G	,		CO2 Emi	ssions (Metric T	PY)		
Emission Source	Existing	No Action	Alt 2A	Alt 2B	Alt 2C	Alt 2D	Alt 2E
Stationary Sources							
e Total GHG Emissions (2014 Reported)	13,575	13,575					
New Electricity Building Use (Indirect)	0	0	181	181	181	181	181
New Natural Gas Building Use (Direct)	0	0	276	276	276	276	276
Total Change in Stationary CO ₂							
Emissions (MTPY)			456	456	456	456	456
% increase in Stationary CO ₂							
Emissions			3%	3%	3%	3%	3%
Mobile Sources							
Aircraft Operations	89,145	87,730	126,132	118,932	112,238	123,900	114,509
GSE Emissions	130	131	165	159	154	164	156
Personnel Commute Emissions	9,091	9,091	10,482	10,482	10,482	10,482	10,482
Total Mobile CO2 Emissions (MTPY)	98,366	96,951	136,779	129,573	122,875	134,545	125,147
Change in Mobile CO ₂ Emissions	55,555	00,001	39,828	32,622	25,924	37,594	28,196
z mange memore e e y z memore e			00,000	,	==,== :	01,001	
% increase in Mobile CO2 Emissions			40%	33%	26%	38%	29%
Total Change in Emissions							
(Stationary and Mobile)			40,284	33,078	26,380	38,051	28,652
2013 Total CO2e from all sources in							
Washington State ¹				94,400,000			
Change in Emissions (Stationary and							
Mobile) as % of Total 2013 CO2e							
Emissions in Washington State			0.04%	0.04%	0.03%	0.04%	0.03%
2013 Total CO2 from Transportation in			•			•	
Washington State ¹				40,400,000			
Change in Mobile Emissions as % of							
Total 2013 Transportation CO2e							
Emissions in Washington State			0.10%	0.08%	0.06%	0.09%	0.07%
2013 Total CO2e from Aircraft in							
Washington State ¹				6,570,000			
Change in Aircraft Emissions as % of				-,,			
Total 2013 Aircraft CO2e Emissions in							
Washington State			0.61%	0.50%	0.39%	0.57%	0.43%
1 I 1000 2012 (2016) P 11 I 1			0.0170	0.5070	0.3770	0.5770	0.7370

^{1.} Inventory 1990-2013 (2016). Report to the Legislature on Washington Greenhouse Gas Emissions Inventory: 2010 – 2013 (Publication 16-02-025) October 2016. Retrieved March 29, metric tons per short ton

TPY = Tons per year

CO₂e = Carbon Dioxide Equivalent

GHG = Greenhouse Gas

Alternative 3A Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

Ault Field	CVW	FRS	vler) Operations RES	EXP	EA-18G Total
Squadrons	9	1	1	3	14
Aircraft	63	24	5	26	118
Departures	7,442	6,047	1,239	2,628	17,356
Interfacility Departures	899	568	12	0	1,479
Straight in Arrivals	2,650	2,471	437	948	6,506
Overhead Break Arrivals	4,318	3,359	731	1,511	9,919
FR Arrivals	475	218	70	169	932
nterfacility Arrivals	898	568	13	0	1,479
FCLP Ops ²	3,647	2,132	146	0	5,925
Fouch & Go Ops ²	4,935	5,406	535	951	11,827
Depart-Re-enter Ops ²	2,491	0	434	804	3,729
GCA pattern Ops ²	7,089	5,901	552	938	14,480
Total	34,844	26,670	4,169	7,949	73,632
DLF Coupeville					_
Interfacility Departures	898	568	13	0	1,479
nterfacility Arrivals	899	568	12	0	1,479
FCLP Ops ²	12,583	7,949	182	0	20,714
Total	14,380	9,085	207	0	23,672

¹ Operations information from Tab SEIS_Alt3AAveYr, workbook Ops Tables AveYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit—therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3A Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	, i	Fuel use			Е	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,506	15,701,038	685.30	94.85	257.12	10.28	57.33	57.33	23,698.63
Break Arrival LTO ²	12,330	28,720,475	1,305.92	180.20	491.34	18.81	104.52	104.52	43,243.16
FCLP ⁴	2,963	2,091,525	0.74	21.43	0.14	1.37	5.85	5.85	3,332.12
Touch-and-Go ⁴	5,914	4,174,931	1.48	42.78	0.27	2.73	11.68	11.68	6,651.30
Depart and Re-enter ⁴	1,865	2,630,810	0.94	26.99	0.18	1.72	7.36	7.36	4,194.24
GCA Pattern ⁴	7,240	10,215,640	3.66	104.80	0.71	6.69	28.56	28.56	16,286.56
Total Emissions for Ault Fiel	d Flight Operations	63,534,418.2	1,998.0	471.1	749.8	41.6	215.3	215.3	97,406.0
NOLF Coupeville									
Interfacility LTO2	1,479	2,045,876	83.22	19.07	3.06	1.34	4.88	4.88	3,117.04
FCLP ⁴	20,714	14,624,084	5.18	149.87	0.95	9.58	40.91	40.91	23,298.38
Interfacility Transit	1,479	892,084	0.32	6.58	0.07	0.58	2.92	2.92	1,423.29
Total Emissions for Coupevil	le Flight Operations	17,562,043.6	88.7	175.5	4.1	11.5	48.7	48.7	27,838.7
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		90,293,853.8	2,730.8	694.6	900.1	59.1	292.8	292.8	138,712.8

13,298,063.89 total gallons of fuel

Notes:

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					Е	missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 3A

	Emissions (tpy)									
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Ault Field Aircraft										
Flight Operations	1,998.04	471.05	749.76	41.62	215.30	215.30	97,406.01			
OLF Coupville Aircraft										
Flight Operations	88.7	175.5	4.1	11.5	48.7	48.7	27,838.7			
Aircraft Maintenance										
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1			
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56			
Total	2.812.15	704.18	901.86	59.21	388.73	303.44	149,568,38			

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 3B Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

CVW FRS RES EXP EA-18G Total 9 1 1 3 14 63 24 5 26 118 7,450 6,053 1,240 2,631 17,374 561 351 13 0 925 2,643 2,474 424 929 6,470 4,327 3,319 743 1,518 9,907 480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 7,858 4,914 180 0 12,952			EA 18G (Grow	ler) Operations		
63 24 5 26 118 7,450 6,053 1,240 2,631 17,374 561 351 13 0 925 2,643 2,474 424 929 6,470 4,327 3,319 743 1,518 9,907 480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 7,858 4,914 180 0 12,952	Ault Field	CVW	FRS	RES	EXP	EA-18G Total
7,450 6,053 1,240 2,631 17,374 561 351 13 0 925 2,643 2,474 424 929 6,470 4,327 3,319 743 1,518 9,907 480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	# Squadrons	9	1	1	3	14
561 351 13 0 925 2,643 2,474 424 929 6,470 4,327 3,319 743 1,518 9,907 480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 7,858 4,914 180 0 12,952	# Aircraft	63	24	5	26	118
2,643 2,474 424 929 6,470 4,327 3,319 743 1,518 9,907 480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 7,858 4,914 180 0 12,952	Departures	7,450	6,053	1,240	2,631	17,374
4,327 3,319 743 1,518 9,907 480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 5,858 4,914 180 0 12,952	Interfacility Departures	561	351	13	0	925
480 260 73 184 997 561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	Straight in Arrivals	2,643	2,474	424	929	6,470
561 351 13 0 925 9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	Overhead Break Arrivals	4,327	3,319	743	1,518	9,907
9,034 5,587 175 0 14,796 4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	IFR Arrivals	480	260	73	184	997
4,935 5,406 535 951 11,827 2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	Interfacility Arrivals	561	351	13	0	925
2,491 0 434 804 3,729 7,089 5,901 552 938 14,480 11 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	FCLP Ops ²	9,034	5,587	175	0	14,796
7,089 5,901 552 938 14,480 39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	Touch & Go Ops ²	4,935	5,406	535	951	11,827
39,571 29,702 4,202 7,955 81,430 561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	Depart-Re-enter Ops ²	2,491	0	434	804	3,729
561 351 13 0 925 561 351 13 0 925 7,858 4,914 180 0 12,952	GCA pattern Ops ²	7,089	5,901	552	938	14,480
561 351 13 0 925 7,858 4,914 180 0 12,952	Total	39,571	29,702	4,202	7,955	81,430
561 351 13 0 925 7,858 4,914 180 0 12,952	OLF Coupeville					
7,858 4,914 180 0 12,952						
1,000	Interfacility Arrivals	561	351	13	0	925
ıl 8,980 5,616 206 0 14,802	FCLP Ops ²	7,858	4,914	180	0	12,952
	Total	8,980	5,616	206	0	14,802
	Interfacility Departures Interfacility Arrivals FCLP Ops ²	561 7,858	351 4,914	1: 18	3	3 0 30 0
	Maintenance Run Ups (at Ault	Field) ³				
	Water Wash					118
	Low Power, one engine					1,770
118 1,770	Low Power, two engines					3,540
118 1,770	High Power, two engines					944

¹ Operations information from Tab SEIS_Alt3BAveYr, workbook Ops Tables AveYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3B Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Automative ob Average Tea	· · ·	Fuel use			Er	nissions (t	oy) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,470	15,614,159	681.51	94.33	255.70	10.23	57.01	57.01	23,567.50
Break Arrival LTO ²	11,829	27,553,487	1,252.86	172.87	471.37	18.05	100.27	100.27	41,486.08
FCLP ⁴	7,398	5,222,988	1.85	53.52	0.34	3.42	14.61	14.61	8,321.01
Touch-and-Go4	5,914	4,174,931	1.48	42.78	0.27	2.73	11.68	11.68	6,651.30
Depart and Re-enter ⁴	1,865	2,630,810	0.94	26.99	0.18	1.72	7.36	7.36	4,194.24
GCA Pattern ⁴	7,240	10,215,640	3.66	104.80	0.71	6.69	28.56	28.56	16,286.56
Total Emissions for Ault Fie	eld Flight Operations	65,412,014.2	1,942.3	495.3	728.6	42.8	219.5	219.5	100,506.7
NOLF Coupeville									
Interfacility LTO2	925	1,279,537	52.05	11.93	1.91	0.84	3.05	3.05	1,949.47
FCLP ⁴	12,952	9,144,112	3.24	93.71	0.60	5.99	25.58	25.58	14,567.96
Interfacility Transit	925	557,929	0.20	4.12	0.04	0.37	1.83	1.83	890.16
Total Emissions for Coupev	ille Flight Operations	10,981,578.3	55.5	109.8	2.6	7.2	30.5	30.5	17,407.6
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance (Operations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainte	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		85,590,984.4	2,641.9	653.0	877.4	56.1	278.8	278.8	131,382.4

12,605,446.90 total gallons of fuel

 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

					Eı	missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 3B

	Emissions (tpy)									
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Ault Field Aircraft										
Flight Operations	1,942.29	495.30	728.58	42.84	219.49	219.49	100,506.69			
OLF Coupville Aircraft										
Flight Operations	55.5	109.8	2.6	7.2	30.5	30.5	17,407.6			
Aircraft Maintenance										
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1			
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56			
Total	2,723,18	662,66	879.14	56.13	374.67	289.38	142,237,93			

Emissions carculated using AESO Report emission ractors. π-Qp λ Eq (us emissionary) συρί συνία

Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

Alternative 3C Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	7,390	6,003	1,231	2,608	17,232
Interfacility Departures	225	135	10	0	370
Straight in Arrivals	2,652	2,487	412	940	6,491
Overhead Break Arrivals	4,297	3,306	728	1,498	9,829
IFR Arrivals	440	210	91	170	911
Interfacility Arrivals	226	135	10	0	371
FCLP Ops ²	14,341	9,132	199	0	23,672
Touch & Go Ops ²	4,935	5,406	535	951	11,827
Depart-Re-enter Ops ²	2,491	0	434	804	3,729
GCA pattern Ops ²	7,089	5,901	552	938	14,480
Total	44,086	32,715	4,202	7,909	88,912
OLF Coupeville					
Interfacility Departures	225	135	10	0	370
Interfacility Arrivals	226	135	10	0	371
FCLP Ops ²	3,157	1,892	136	0	5,185
Total	3,608	2,162	156	0	5,926
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash					118
Low Power, one engine		•		•	1,770
Low Power, two engines					3,540
High Power, two engines					944

¹ Operations information from Tab SEIS_Alt3CAveYr, workbook Ops Tables AveYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3C Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Alternative 30 Average Teal		Fuel use			En	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	-								
Ault Field									
Straight-In Arrival LTO ²	6,491	15,664,838	683.72	94.63	256.53	10.26	57.20	57.20	23,643.99
Break Arrival LTO ²	11,111	25,881,037	1,176.81	162.38	442.76	16.95	94.19	94.19	38,967.95
FCLP ⁴	11,836	8,356,216	2.96	85.63	0.54	5.47	23.38	23.38	13,312.72
Touch-and-Go ⁴	5,914	4,174,931	1.48	42.78	0.27	2.73	11.68	11.68	6,651.30
Depart and Re-enter ⁴	1,865	2,630,810	0.94	26.99	0.18	1.72	7.36	7.36	4,194.24
GCA Pattern ⁴	7,240	10,215,640	3.66	104.80	0.71	6.69	28.56	28.56	16,286.56
Total Emissions for Ault Fie	ld Flight Operations	66,923,472.5	1,869.6	517.2	701.0	43.8	222.4	222.4	103,056.8
NOLF Coupeville			•			•			
Interfacility LTO2	370	511,815	20.82	4.77	0.77	0.34	1.22	1.22	779.79
FCLP ⁴	5,185	3,660,610	1.30	37.51	0.24	2.40	10.24	10.24	5,831.91
Interfacility Transit	370	223,172	0.08	1.65	0.02	0.15	0.73	0.73	356.06
Total Emissions for Coupevi	lle Flight Operations	4,395,596.5	22.2	43.9	1.0	2.9	12.2	12.2	6,967.8
			-			-			•
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainter	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		80,516,461.0	2,535.9	609.1	848.3	52.7	263.3	263.3	123,492.6

11,858,094.40 total gallons of fuel

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- ³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 3C

,			En	nissions (tp	ov)		
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,869.57	517.22	701.00	43.83	222.36	222.36	103,056.75
OLF Coupville Aircraft							
Flight Operations	22.2	43.9	1.0	2.9	12.2	12.2	6,967.8
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56
Total	2,617.16	618.76	850.03	52.81	359.27	273.97	134,348.17

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 3D Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

# Squadrons # Aircraft Departures Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals Interfacility Arrivals	9 63 7,442 786 2,650 4,318 475	FRS 1 24 6,047 498 2,471 3,359 218	RES 1 5 1,239 11 437 731	3 26 2,628 0 948	14 118 17,356 1,295 6,506
# Aircraft Departures Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals Interfacility Arrivals	63 7,442 786 2,650 4,318 475	24 6,047 498 2,471 3,359	1,239 11 437	26 2,628 0 948	118 17,356 1,295
Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals Interfacility Arrivals	7,442 786 2,650 4,318 475	6,047 498 2,471 3,359	1,239 11 437	2,628 0 948	17,356 1,295
Interfacility Departures Straight in Arrivals Overhead Break Arrivals IFR Arrivals Interfacility Arrivals	786 2,650 4,318 475	498 2,471 3,359	11 437	0 948	1,295
Straight in Arrivals Overhead Break Arrivals IFR Arrivals Interfacility Arrivals	2,650 4,318 475	2,471 3,359	437	948	
Overhead Break Arrivals IFR Arrivals Interfacility Arrivals	4,318 475	3,359			6,506
IFR Arrivals Interfacility Arrivals	475	,	731		- /
Interfacility Arrivals		218		1,511	9,919
	=0.4	∠10	70	169	932
FCLP Ops ²	786	498	12	0	1,296
rela ops	5,471	3,199	219	0	8,889
	4,935	5,406	535	951	11,827
	2,491	0	434	804	3,729
	7,089	5,901	552	938	14,480
Total 3	6,443	27,597	4,240	7,949	76,229
OLF Coupeville	<u> </u>				
Interfacility Departures	786	498	11	0	1,295
Interfacility Arrivals	786	498	12	0	1,296
FCLP Ops ²	1,010	6,955	159	0	18,124
	2,582	7,951	182	0	20,715

¹ Operations information from Tab SEIS_Alt3DAveYr, workbook Ops Tables AveYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3D Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Alternative 3D Average Teal		Fuel use			En	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	-								
Ault Field									
Straight-In Arrival LTO ²	6,506	15,701,038	685.30	94.85	257.12	10.28	57.33	57.33	23,698.63
Break Arrival LTO ²	12,147	28,294,210	1,286.54	177.52	484.04	18.53	102.97	102.97	42,601.36
FCLP ⁴	4,445	3,137,817	1.11	32.16	0.20	2.06	8.78	8.78	4,999.02
Touch-and-Go ⁴	5,914	4,174,931	1.48	42.78	0.27	2.73	11.68	11.68	6,651.30
Depart and Re-enter ⁴	1,865	2,630,810	0.94	26.99	0.18	1.72	7.36	7.36	4,194.24
GCA Pattern ⁴	7,240	10,215,640	3.66	104.80	0.71	6.69	28.56	28.56	16,286.56
Total Emissions for Ault Fie	ld Flight Operations	64,154,445.3	1,979.0	479.1	742.5	42.0	216.7	216.7	98,431.1
NOLF Coupeville			•						
Interfacility LTO2	1,295	1,791,352	72.86	16.70	2.68	1.17	4.28	4.28	2,729.26
FCLP ⁴	18,124	12,795,544	4.53	131.13	0.83	8.38	35.79	35.79	20,385.24
Interfacility Transit	1,295	781,101	0.28	5.76	0.06	0.51	2.56	2.56	1,246.22
Total Emissions for Coupevi	lle Flight Operations	15,367,996.8	77.7	153.6	3.6	10.1	42.6	42.6	24,360.7
	•		•	•	•		•		•
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainter	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		88,719,834.0	2,700.8	680.7	892.4	58.1	288.1	288.1	136,259.9

13,066,249.49 total gallons of fuel

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- ³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 3D

			En	nissions (tp	y)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,979.03	479.10	742.54	42.02	216.67	216.67	98,431.10
OLF Coupville Aircraft							
Flight Operations	77.7	153.6	3.6	10.1	42.6	42.6	24,360.7
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56
Total	2,782.10	690.30	894.12	58.18	384.02	298.73	147,115.47

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 3E Average Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	7,390	6,003	1,231	2,608	17,232
Interfacility Departures	338	203	15	0	556
Straight in Arrivals	2,652	2,487	412	940	6,491
Overhead Break Arrivals	4,297	3,306	728	1,498	9,829
IFR Arrivals	440	210	91	170	911
Interfacility Arrivals	339	203	16	0	558
FCLP Ops ²	12,549	7,991	174	0	20,714
Touch & Go Ops ²	4,935	5,406	535	951	11,827
Depart-Re-enter Ops ²	2,491	0	434	804	3,729
GCA pattern Ops ²	7,089	5,901	552	938	14,480
Total	42,520	31,710	4,188	7,909	86,327
OLF Coupeville					
Interfacility Departures	338	203	15	0	556
Interfacility Arrivals	339	203	16	0	558
FCLP Ops ²	4,736	2,839	205	0	7,780
Total	5,413	3,245	236	0	8,894
Maintenance Run Ups (at Ault	Field) ³				
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

 $^{^{1}} Operations information from Tab SEIS_Alt3EAveYr, workbook Ops Tables AveYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD. \\$

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

 $^{^{\}rm 3}$ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3E Average Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Alternative 3E Average Year	21 100 (0.00.0.) 7	Fuel use	indico in in in in in in in in in in in in in	piex	En	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,491	15,664,838	683.72	94.63	256.53	10.26	57.20	57.20	23,643.99
Break Arrival LTO ²	11,298	26,316,620	1,196.62	165.11	450.21	17.24	95.77	95.77	39,623.79
FCLP ⁴	10,357	7,312,042	2.59	74.93	0.48	4.79	20.46	20.46	11,649.19
Touch-and-Go ⁴	5,914	4,174,931	1.48	42.78	0.27	2.73	11.68	11.68	6,651.30
Depart and Re-enter ⁴	1,865	2,630,810	0.94	26.99	0.18	1.72	7.36	7.36	4,194.24
GCA Pattern ⁴	7,240	10,215,640	3.66	104.80	0.71	6.69	28.56	28.56	16,286.56
Total Emissions for Ault Fiel	d Flight Operations	66,314,880.7	1,889.0	509.3	708.4	43.4	221.0	221.0	102,049.1
NOLF Coupeville			•	-					
Interfacility LTO2	556	769,106	31.28	7.17	1.15	0.50	1.84	1.84	1,171.79
FCLP ⁴	7,780	5,492,680	1.95	56.29	0.36	3.60	15.37	15.37	8,750.67
Interfacility Transit	556	335,361	0.12	2.47	0.03	0.22	1.10	1.10	535.06
Total Emissions for Coupevi	lle Flight Operations	6,597,146.2	33.3	65.9	1.5	4.3	18.3	18.3	10,457.5
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total	82,109,418.9	2,566.4	623.2	856.2	53.8	268.1	268.1	125,974.7	

12,092,697.92 total gallons of fuel

114,259.03

- 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- ³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	НС	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 3F

Total Emissions, Alte	rnative 3E						
			Er	nissions (tp	oy)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,889.01	509.25	708.38	43.44	221.02	221.02	102,049.06
OLF Coupville Aircraft							
Flight Operations	33.3	65.9	1.5	4.3	18.3	18.3	10,457.5
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56
Total	2,647.75	632.79	857.93	53.85	364.04	278.74	136,830.24

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

NAS Whidbey Island Complex Annual GHG Emissions, Alternative 3

NAS Wildbey Island Complex Annual GHG Entit	oorono, miorne		CO2 En	nissions (Metri	c TPY)		
Emission Source	Existing	No Action	Alt 3A	Alt 3B	Alt 3C	Alt 3D	Alt 3E
Stationary Sources							
Sitewide Total GHG Emissions (2014 Reported)	13,575	13,575					
New Electricity Building Use (Indirect)	0	0	181	181	181	181	181
New Natural Gas Building Use (Direct)	0	0	276	276	276	276	276
Total Change in Stationary CO ₂ Emissions							
(MTPY)			456	456	456	456	456
% increase in Stationary CO ₂ Emissions			3%	3%	3%	3%	3%
Mobile Sources							
Aircraft Operations	89,145	87,730	125,813	119,164	112,008	123,588	114,259
GSE Emissions	130	131	165	160	154	167	160
Personnel Commute Emissions	9,091	9,091	9,846	9,846	9,846	9,846	9,846
Total Mobile CO2 Emissions (MTPY)	98,366	96,951	135,823	129,170	122,008	133,601	124,265
Change in Mobile CO ₂ Emissions		-1,415	38,872	32,219	25,057	36,650	27,314
% increase in Mobile CO2 Emissions			40%	33%	25%	37%	28%
Total Change in Emissions (Stationary and							
Mobile)			39,329	32,675	25,513	37,106	27,770
2013 Total CO2e from all sources in Washington							
State ¹				94,400,000			
Change in Emissions (Stationary and Mobile) as							
% of Total 2013 CO2e Emissions in Washington							
State			0.04%	0.03%	0.03%	0.04%	0.03%
2013 Total CO2 from Transportation in							
Washington State ¹				40,400,000			
Change in Mobile Emissions as % of Total 2013							
Transportation CO2e Emissions in Washington							
State			0.10%	0.08%	0.06%	0.09%	0.07%
2013 Total CO2e from Aircraft in Washington			•				
State ¹				6,570,000			
Change in Aircraft Emissions as % of Total 2013							
Aircraft CO2e Emissions in Washington State			0.59%	0.49%	0.38%	0.56%	0.42%

^{1.} Inventory 1990-2013 (2016). Report to the Legislature on Washington Greenhouse Gas Emissions Inventory: 2010 – 2013 (Publication 16-02-025) October 2016. Retrieved March 20, 2018 0.907

metric tons per short ton
TPY = Tons per year

CO₂e = Carbon Dioxide Equivalent

GHG = Greenhouse Gas

Onroad Vehicle Exhaust Emission Factors

	Fuel				Exhaust	Emission	Factor ¹ (g/VMT)			Road Emis Fac (g/V	sion tor ^d	Fac	Emission tor ^e (MT)
Equipment Type	Туре	VOC	CO	NO _x	SO ₂	PM ₁₀	PM _{2.5}	CH4	N2O	CO ₂	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
Cars and Light Trucks	Gasoline	0.06	2.66	0.31	0.0024	0.0066	0.0058	0.0038	0.0021	354	3.13	0.341	3.13	0.347
Delivery Vehicles	Diesel	0.28	1.10	8.06	0.158	0.17	0.17			1,400	3.13	0.341	3.30	0.511

- 1. MOVES Onroad run for analysis year 2017, Island Count, WA. Includes weekdays and weekends, January through December, all hours of day. 'Cars and Light Trucks' Assumes 50% Passenger Car, 50% Passenger Truck
- d. See emission factor derivation table below.
- e. Sum of exhaust and road dust emission factors.

Paved Roads - Emission Fac	tor Derivati	ion							
$E = (k(sL/2)^{0.65}(W/3)^{1.5}-C)$		AP-42 Se	ction 13.2	.1 (11/06 version)					
where:									
E = particulate emission factor (lb/VMT)									
k = particle size multiplier									
$sL = road$ surface silt loading (g/m^2)									
	average vel		0.0						
				le fleet exhaust, break wear and tire wear					
Parameter	Units	PM_{10}	$PM_{2.5}$	Reference					
Mean Vehicle Weight	tons	3	3	Assumption					
k factor	k factor g/VMT 7.3 1.1 Table 13.2-1.1								
Silt Loading, sL	Silt Loading, sL g/m ² 0.6 0.6 Table 13.2.1-3								
Emission factor, C	Table 13.2.1-2								
Emission factor F	g/VMT	3.13	0.341	Table 13.2.1-3					

Ground Transportation Vehicle Emissions for Existing POV: Growler Squadron Personnel only

Ground Transportation Vernote Emissions for Ex							Emission	Factors (lbs	s/mi)¹					En	nissions (1	py)		
Source			Annual days of Commute	Total Annual Miles ³	voc	со	NO _x	SO ₂	CO ₂	PM ₁₀	PM _{2.5}	voc	со	NO _x	SO ₂	CO ₂	PM ₁₀	PM _{2.5}
No Action																		
Total Military and Non Military Personnel	4,104	25	250	25,650,000	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.63	75.07	8.88	0.067	10023	88.56	9.81
Alternative 1																		
Total Military and Non Military Personnel	4,439	25	250	27,743,750	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.77	81.20	9.61	0.072	10841	95.79	10.61
Change in Personnel	335	25	250	2,093,750	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	0.13	6.13	0.73	0.005	818	7.23	0.80
Alternative 2																		
Total Military and Non Military Personnel	4,732	25	250	29,575,000	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.88	86.56	10.24	0.077	11556	102.12	11.31
Change in Personnel	628	25	250	3,925,000	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	0.25	11.49	1.36	0.010	1534	13.55	1.50
Alternative 3																		
Total Military and Non Military Personnel	4,445	25	250	27,781,250	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.77	81.31	9.62	0.072	10856	95.92	10.63
Change in Personnel	341	25	250	2,131,250	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	0.14	6.24	0.74	0.006	833	7.36	0.82

See Emission factors in Previous Table of this Appendix

 $^{^2}$ Assumes one vehicle per person, based on Total Military personnel at NAS Whidbey island, revised 2017 3 Based on 250 days for commute

GSE Equipment Exhaust Emission Factors and Estimated Emissions
Equipment types, sizes, operations, ratio to LTOs and emission factors from those listed for NAS Lemoore in Navy F-35c West Coast Conformity Determination
All NAS Mikhley Equipment types, sizes, operations and emissions estimated based NAS Lemoore data and ratio of NAS Whidbey LTOs to NAS LeMoore LTOs
NAS Whidbey LTOs = Departures + Interfacility Departures

GSE Equipment Exhaust Emission Factors	LeMoore Baseline LTO: 32966

GSE Equipment Exhaust Em	ission Factors	i	LeMoo	re Baseline LTO:	32966		_																			
	Size ¹									Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)	Number of Equipment	Gallons fuel/unit/LTO	Estimated fuel flow (gal/hr)	Annual hours per unit	Fuel Type	Load Factor	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	NO _x	VOC	со	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
Tow Tractor	88	48	0.0107	4.89	72.29	Diesel	0.36	g/hp-hr 4.80000	g/hp-hr 0.10000	g/hp-hr 2.72000	g/hp-hr 0.00205	g/hp-hr 0.16000	g/hp-hr 0.15500	g/gal 10.150	g/gal 0.58	g/gal 0,26	1,160.76	lbs/year 24.18	657.76	lbs/year 0.50	Ibs/year 38,69	lbs/year 37.48	kg/year 172,174.30	kg/year 9.84	kg/year 4.41	173,734.55
Tow Tractor	192	1	0.0003	10.67	0.93	Diesel	0.36	2.27000		2.70000	0.00205	0.01000		10,150	0.58	0.26	0.32	0.01	0.38	0.00	0.00	0.00	100.38	0.01	0.00	101.29
Turbine	396		0.0003	22.00	0.25	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	_	0.58	0.26	0.52	0.03	0.35	0.00	0.00	0.00	284.41	0.02	0.01	286.99
	390	3						1.36000																		
Air Compressor	58	2	0.0002	3.22	1.53	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000		_	0.58	0.26	0.64	0.01	0.36	0.00	0.02	0.02	100.38	0.01		101.29
Hydraulic Power Supply	111	37	0.0010	6.17	5.56	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	43.21	1.54	52.09	0.04	0.17	0.17	12,875.60	0.74	0.33	12,992.28
Aircon	210	8	0.0003	11.67	0.85	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	1.45	0.07	0.98	0.00	0.01	0.01	803.05	0.05	0.02	810.33
MEPP	215	37	0.0080	11.94	22.19	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	179.57	9.24	121.47	0.27	1.32	1.32	99,538.27	5.69	2.55	100,440.29
-	Total Equipment:	138														Totals in lbs	1,386.46	35.09	833.40	0.80	40.22	39.01				
															т	otals in Tons	0.69	0.02	0.42	0.00	0.02	0.02				
																al Metric tons							285.88	0.02	0.01	
															To	IOLINT CO20						$\overline{}$				200 47

Equipment Type Tow Tractor Tow Tractor	(hp) 88 192	Number of Equipment	Gallons fuel/unit/LTO	Estimated fuel flow (gal/hr)	per unit	Fuel Type	Factor	NO _x	VOC	CO	SO ₂															
	88	48	0.0107	4.00				g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	102		0.0107	4.89	32.67	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	524.57	10.93	297.26	0.22	17.49	16.94	77,809.04	4.45	1.99	78,514.1
	192	1	0.0003	10.67	0.42	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.14	0.01	0.17	0.00	0.00	0.00	45.36	0.00	0.00	45.7
Turbine	396	5	0.0002	22.00	0.12	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.23	0.01	0.16	0.00	0.00	0.00	128.53	0.01	0.00	129.7
Air Compressor	58	2	0.0002	3.22	0.69	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.29	0.01	0.16	0.00	0.01	0.01	45.36	0.00	0.00	45.7
Hydraulic Power Supply	111	37	0.0010	6.17	2.51	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	19.53	0.69	23.54	0.02	0.08	0.08	5,818.74	0.33	0.15	5,871.4
Aircon	210	8	0.0003	11.67	0.38	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.65	0.03	0.44	0.00	0.00	0.00	362.92	0.02	0.01	366.2
MEPP	215	37	0.0080	11.94	10.03	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	81.15	4.18	54.90	0.12	0.60	0.60	44,983.35	2.57	1.15	45,390.9
Total E	Equipment:	138													1	Totals in lbs	626.57	15.86	376.63	0.36	18.18	17.63				i —
			_													tals in Tons	0.31	0.01	0.19	0.00	0.01	0.01				$\overline{}$
																Metric tons al MT CO2e							129.19	0.01	0.00	130.3

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors							1	Emissions	(lbs/yr)						MT/yea
Equipment Type	(hp)		fuel/unit/LTO		per unit	Fuel Type	Factor	NO _χ g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	88	48	0.0107	4.89	32.78	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	526.40	10.97	298.29	0.22	17.55	17.00	78,080.62	4.46	2.00	78,788.
Tow Tractor	192	1	0.0003	10.67	0.42	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.15	0.01	0.17	0.00	0.00	0.00	45.52	0.00	0.00	45.
Turbine	396	5	0.0002	22.00	0.12	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.23	0.01	0.16	0.00	0.00	0.00	128.98	0.01	0.00	130.
Air Compressor	58	2	0.0002	3.22	0.70	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.29	0.01	0.16	0.00	0.01	0.01	45.52	0.00	0.00	45.9
Hydraulic Power Supply	111	37	0.0010	6.17	2.52	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	19.60	0.70	23.62	0.02	0.08	0.08	5,839.05	0.33	0.15	5,891.9
Aircon	210	8	0.0003	11.67	0.38	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.66	0.03	0.44	0.00	0.00	0.00	364.18	0.02	0.01	367.4
MEPP	215	37	0.0080	11.94	10.06	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	81.44	4.19	55.09	0.12	0.60	0.60	45,140.36	2.58	1.16	45,549.4
Te	otal Equipment:	138														Totals in lbs	628.76	15.91	377.94	0.37	18.24	17.69				
			-													tals in Tons	0.31	0.01	0.19	0.00	0.01	0.01				
															Tota	Metric tons							129.64	0.01	0.00	

	Size ¹	Number of	Gallons	Estimated fuel	Annual houre					Emission	factors								Emissions	s (lbs/yr)						MT/ye
Equipment Type	(hp)	Equipment	Gallotto		per unit	Fuel Type	Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X	VOC Ibs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	40.46	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	649.64	13.53	368.13	0.28	21.65	20.98	96,360.36	5.51	2.47	97,233.
Tow Tractor	192	1	0.0003	10.67	0.52	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	56.18	0.00	0.00	56
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.01	0.19	0.00	0.00	0.00	159.18	0.01	0.00	160
Air Compressor	58	2	0.0002	3.22	0.86	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.36	0.01	0.20	0.00	0.01	0.01	56.18	0.00	0.00	56.
draulic Power Supply	111	37	0.0010	6.17	3.11	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.18	0.86	29.15	0.02	0.10	0.10	7,206.05	0.41	0.18	7,271.
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.81	0.04	0.55	0.00	0.01	0.01	449.44	0.03	0.01	453.
MEPP	215	37	0.0080	11.94	12.42	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	100.50	5.17	67.99	0.15	0.74	0.74	55,708.34	3.18	1.43	56,213.
To	otal Equipment:	138														Totals in lbs	775.96	19.64	466.43	0.45	22.51	21.83				i
																otals in Tons	0.39	0.01	0.23	0.00	0.01	0.01				
																al Metric tons							160.00	0.01	0.00	

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/ye
Equipment Type	(hp)		fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ Ibs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	38.87	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	624.15	13.00	353.68	0.27	20.80	20.15	92,579.07	5.29	2.37	93,418.
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	53.98	0.00	0.00	54.4
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	152.93	0.01	0.00	154.3
Air Compressor	58	2	0.0002	3.22	0.83	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	53.98	0.00	0.00	54.4
Hydraulic Power Supply	111	37	0.0010	6.17	2.99	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.23	0.83	28.01	0.02	0.09	0.09	6,923.28	0.40	0.18	6,986.0
Aircon	210	8	0.0003	11.67	0.46	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.78	0.04	0.53	0.00	0.01	0.01	431.81	0.02	0.01	435.7
MEPP	215	37	0.0080	11.94	11.93	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	96.56	4.97	65.32	0.15	0.71	0.71	53,522.27	3.06	1.37	54,007.3
To	tal Equipment:	138														Totals in lbs	745.51	18.87	448.12	0.43	21.63	20.98				
			-													otals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
															Tota	Il Metric tons							153.72	0.01	0.00	

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors							E	Emissions	(lbs/yr)						MT/yea
Equipment Type	(hp)	realine or or	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	37.62	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	604.11	12.59	342.33	0.26	20.14	19.51	89,607.31	5.12	2.30	90,419.3
Tow Tractor	192	1	0.0003	10.67	0.48	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	52.24	0.00	0.00	52.7
Turbine	396	5	0.0002	22.00	0.13	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.18	0.00	0.00	0.00	148.02	0.01	0.00	149.3
Air Compressor	58	2	0.0002	3.22	0.80	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.33	0.01	0.19	0.00	0.01	0.01	52.24	0.00	0.00	52.7
Hydraulic Power Supply	111	37	0.0010	6.17	2.89	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	22.49	0.80	27.11	0.02	0.09	0.09	6,701.04	0.38	0.17	6,761.7
Aircon	210	8	0.0003	11.67	0.44	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.75	0.04	0.51	0.00	0.01	0.01	417.94	0.02	0.01	421.73
MEPP	215	37	0.0080	11.94	11.55	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	93.46	4.81	63.22	0.14	0.69	0.69	51,804.22	2.96	1.33	52,273.68
To	tal Equipment:	138														Totals in lbs	721.58	18.26	433.74	0.42	20.93	20.30				í
			_													otals in Tons	0.36	0.01	0.22	0.00	0.01	0.01				
															Tota	Metric tons							148.78	0.01	0.00	1

	CO ₂	CH ₄	N ₂ O
GWP	1	25	298

EPA, 2016.U.S. Inventory of Greenhouse Gas Emissions and Sinks 1990-2014, April 2016. Accessed March 21, 2018 at https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2014 (latest final report: Draft 2016 inventory was released February 6, 2018)

SSE Equipment Exhaust Em	ission Factors		NAS	Whidbey Alt 1D:	18,257																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	40.03	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	642.84	13.39	364.28	0.27	21.43	20.76	95,352.37	5.45	2.44	96,216.4
Tow Tractor	192	1	0.0003	10.67	0.51	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	55.59	0.00	0.00	56.1
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	157.51	0.01	0.00	158.9
Air Compressor	58	2	0.0002	3.22	0.85	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	55.59	0.00	0.00	56.1
Hydraulic Power Supply	111	37	0.0010	6.17	3.08	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.93	0.85	28.85	0.02	0.09	0.09	7,130.67	0.41	0.18	7,195.2
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.80	0.04	0.54	0.00	0.01	0.01	444.74	0.03	0.01	448.7
MEPP	215	37	0.0080	11.94	12.29	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	99.45	5.12	67.27	0.15	0.73	0.73	55,125.59	3.15	1.41	55,625.14
1	otal Equipment:	138														Totals in lbs	767.84	19.43	461.55	0.45	22.27	21.60				i —
			-													tals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
																Metric tons							158.32	0.01	0.00	
															Tota	al MT CO2e				ш						159.7

GSE Equipment Exhaust Em	ission Factors	S	NAS	Whidbey Alt 1E:	17,354																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	NO _X	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	38.05	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	611.05	12.73	346.26	0.26	20.37	19.73	90,636.19	5.18	2.32	91,457.5
Tow Tractor	192	1	0.0003	10.67	0.49	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	52.84	0.00	0.00	53.3
Turbine	396	5 5	0.0002	22.00	0.13	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.18	0.00	0.00	0.00	149.72	0.01	0.00	151.0
Air Compressor	58	3 2	0.0002	3.22	0.81	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	52.84	0.00	0.00	
Hydraulic Power Supply	111	37	0.0010	6.17	2.93	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	22.75	0.81	27.42	0.02	0.09	0.09	6,777.99	0.39	0.17	6,839.4
Aircon	210	8	0.0003	11.67	0.45	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.76	0.04	0.52	0.00	0.01	0.01	422.74	0.02	0.01	426.5
MEPP	215	37	0.0080	11.94	11.68	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	94.53	4.87	63.95	0.14	0.70	0.70	52,399.05	2.99	1.34	52,873.8
	Total Equipment	138	3													Totals in lbs	729.86	18.47	438.72	0.42	21.17	20.54				i —
			_												To	otals in Tons	0.36	0.01	0.22	0.00	0.01	0.01				
																Metric tons							150.49	0.01	0.00	454 0

GSE Equipment Exhaust Emi	ssion Factors		NAS	Whidbey Alt 2A:	18,896																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)		fuel/unit/LTO		per unit	Fuel Type	Factor	NO _Y	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N₂O	NO _Y	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
=4				(3)				g/hp-ĥr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	41.43	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	665.34	13.86	377.03	0.28	22.18	21.48	98,689.73	5.64	2.53	99,584.06
Tow Tractor	192	1	0.0003	10.67	0.53	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.22	0.00	0.00	0.00	57.54	0.00	0.00	58.06
Turbine	396	5	0.0002	22.00	0.15	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.02	0.20	0.00	0.00	0.00	163.03	0.01	0.00	164.50
Air Compressor	58	2	0.0002	3.22	0.88	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.37	0.01	0.21	0.00	0.01	0.01	57.54	0.00	0.00	58.06
Hydraulic Power Supply	111	37	0.0010	6.17	3.19	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.77	0.88	29.86	0.02	0.10	0.10	7,380.25	0.42	0.19	7,447.13
Aircon	210	8	0.0003	11.67	0.49	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.83	0.04	0.56	0.00	0.01	0.01	460.31	0.03	0.01	464.48
MEPP	215	37	0.0080	11.94	12.72	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	102.93	5.30	69.63	0.16	0.76	0.76	57,055.00	3.26	1.46	57,572.03
Т	otal Equipment:	138														Totals in lbs	794.71	20.11	477.70	0.46	23.05	22.36				
																otals in Tons	0.40	0.01	0.24	0.00	0.01	0.01				
																Metric tons							163.86	0.01	0.00	
															Tol	al MT CO2e				I I						165.35

GSE Equipment Exhaust Emi	ission Factors		NAS	Whidbey Alt 2B:	18,191																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO ₂ e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	39.89	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	640.52	13.34	362.96	0.27	21.35	20.68	95,007.66	5.43	2.43	95,868.63
Tow Tractor	192	1	0.0003	10.67	0.51	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	55.39	0.00	0.00	55.89
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	156.94	0.01	0.00	158.37
Air Compressor	58	2	0.0002	3.22	0.85	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	55.39	0.00	0.00	55.89
Hydraulic Power Supply	111	37	0.0010	6.17	3.07	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.84	0.85	28.75	0.02	0.09	0.09	7,104.90	0.41	0.18	7,169.28
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.80	0.04	0.54	0.00	0.01	0.01	443.13	0.03	0.01	447.15
MEPP	215	37	0.0080	11.94	12.24	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	99.09	5.10	67.03	0.15	0.73	0.73	54,926.31	3.14	1.41	55,424.05
7	Total Equipment:	138														Totals in lbs	765.06	19.36	459.88	0.44	22.19	21.53				
																otals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
																al Metric tons							157.75	0.01	0.00	1
															To	tal MT CO2e	- 1				- 1	- 1				159.18

Equipment Type	(hp)	Number of			Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
	()	Equipment	Gallons fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	88	48	0.0107	4.89	38.68	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	621.12	12.94	351.97	0.27	20.70	20.06	92,129.91	5.26	2.36	92,964.80
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	53.71	0.00	0.00	54.20
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.19	0.00	0.00	0.00	152.19	0.01	0.00	153.5
Air Compressor	58	2	0.0002	3.22	0.82	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	53.71	0.00	0.00	54.20
Hydraulic Power Supply	111	37	0.0010	6.17	2.97	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.12	0.82	27.87	0.02	0.09	0.09	6,889.69	0.39	0.18	6,952.12
Aircon	210	8	0.0003	11.67	0.45	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.78	0.04	0.52	0.00	0.01	0.01	429.71	0.02	0.01	433.60
MEPP	215	37	0.0080	11.94	11.87	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	96.09	4.95	65.00	0.14	0.71	0.71	53,262.60	3.04	1.36	53,745.27
Tot	al Equipment:	138													1	Totals in lbs	741.89	18.78	445.95	0.43	21.52	20.87				
			4													tals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
																Metric tons al MT CO2e							152.97	0.01	0.00	154.3

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/yea
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	88	48	0.0107	4.89	41.03	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	658.86	13.73	373.36	0.28	21.96	21.28	97,728.73	5.58	2.50	98,614.3
Tow Tractor	192	1	0.0003	10.67	0.53	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.22	0.00	0.00	0.00	56.98	0.00	0.00	57.
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.01	0.20	0.00	0.00	0.00	161.44	0.01	0.00	162.
Air Compressor	58	2	0.0002	3.22	0.87	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.36	0.01	0.21	0.00	0.01	0.01	56.98	0.00	0.00	57.
Hydraulic Power Supply	111	37	0.0010	6.17	3.16	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.53	0.87	29.57	0.02	0.10	0.10	7,308.38	0.42	0.19	7,374.
Aircon	210	8	0.0003	11.67	0.48	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.82	0.04	0.56	0.00	0.01	0.01	455.82	0.03	0.01	459.9
MEPP	215	37	0.0080	11.94	12.60	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	101.93	5.25	68.95	0.15	0.75	0.75	56,499.42	3.23	1.45	57,011.4
To	otal Equipment:	138														Totals in lbs	786.98	19.92	473.05	0.46	22.83	22.14			i - 1	
																otals in Tons	0.39	0.01	0.24	0.00	0.01	0.01				
															Tota	al Metric tons							162.27	0.01	0.00	162

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors							1	Emissions	(lbs/yr)						MT/yea
Equipment Type	(hp)		fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} Ibs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	39.09	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	627.74	13.08	355.72	0.27	20.92	20.27	93,111.79	5.32	2.39	93,955.
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.21	0.00	0.00	0.00	54.29	0.00	0.00	54.
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	153.81	0.01	0.00	155.
Air Compressor	58	2	0.0002	3.22	0.83	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	54.29	0.00	0.00	54.
lydraulic Power Supply	111	37	0.0010	6.17	3.01	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.37	0.83	28.17	0.02	0.09	0.09	6,963.12	0.40	0.18	7,026.2
Aircon	210	8	0.0003	11.67	0.46	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.78	0.04	0.53	0.00	0.01	0.01	434.29	0.02	0.01	438.2
MEPP	215	37	0.0080	11.94	12.00	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	97.11	5.00	65.69	0.15	0.71	0.71	53,830.26	3.08	1.38	54,318.0
To	otal Equipment:	138														Totals in lbs	749.80	18.98	450.70	0.44	21.75	21.10				
	-		-													otals in Tons	0.37	0.01	0.23	0.00	0.01	0.01				
																Metric tons tal MT CO2e							154.60	0.01	0.00	156.

GSE Equipment Exhaust Emi	ission Factors		NAS	Whidbey Alt 3A:	18,835																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	41.30	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	663.19	13.82	375.81	0.28	22.11	21.42	98,371.14	5.62	2.52	99,262.58
Tow Tractor	192	1	0.0003	10.67	0.53	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.22	0.00	0.00	0.00	57.35	0.00	0.00	57.87
Turbine	396	5	0.0002	22.00	0.15	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.02	0.20	0.00	0.00	0.00	162.50	0.01	0.00	163.97
Air Compressor	58	2	0.0002	3.22	0.88	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.37	0.01	0.21	0.00	0.01	0.01	57.35	0.00	0.00	57.87
Hydraulic Power Supply	111	37	0.0010	6.17	3.18	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.69	0.88	29.76	0.02	0.10	0.10	7,356.42	0.42	0.19	7,423.09
Aircon	210	8	0.0003	11.67	0.48	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.83	0.04	0.56	0.00	0.01	0.01	458.82	0.03	0.01	462.98
MEPP	215	37	0.0080	11.94	12.68	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	102.60	5.28	69.40	0.15	0.75	0.75	56,870.81	3.25	1.46	57,386.18
1	Total Equipment:	138														Totals in lbs	792.15	20.05	476.16	0.46	22.98	22.29				
																otals in Tons	0.40	0.01	0.24	0.00	0.01	0.01				
															Tot	al Metric tons			_	1 -			163.33	0.01	0.00	

Equipment Type Chapter Factor Fuel Type Fuel Type Factor F	x VOC C	missions (lbs/yr) CO SO ₂ lbs/year lbs/year	PM ₁₀ lbs/year	PM _{2.5} CC	, CH₄	N₂O	MT/year CO₂e
Equipment Type Character Equipment Type Equipment Type Equipment Type Equipment Type Equipment Type Factor NO _x VOC CO SO ₂ PM _{HO} PM _{LS} CO ₂ CH ₄ N ₂ O NO _x NO _x NO _x NO _x PM _{HO} PM _{LS} CO ₂ CH ₄ N ₂ O NO _x NO _x NO _x NO _x PM _{HO} PM _{LS} NO _x ar Ibs/year Ibs	lbs/year lbs/year			, CH₄	N _o O	CO 4	
Tow Tractor 88 48 0.0107 4.89 40.12 Diesel 0.36 4.80000 0.10000 2.72000 0.00205 0.16000 0.15500 10,150 0.58 0.26 644.32 Tow Tractor 192 1 0.0003 10.67 0.51 Diesel 0.36 2.27000 0.09000 2.70000 0.00205 0.01000 0.01000 10,150 0.58 0.26 0.18 Turbine 396 5 0.0002 22.00 0.14 JP-5 0.34 1.36000 0.07000 0.07000 0.02005 0.01000 0.01000 10,150 0.58 0.26 0.28 Air Compressor 58 2 0.0002 3.22 0.85 Diesel 0.34 4.80000 0.10000 2.72000 0.00205 0.1000 0.01500 10,150 0.58 0.26 0.28 Hydraulic Power Supply 111 37 0.0010 6.17 3.09 Diesel 0.34 2.53000 0.09000 3.05000 0.00205 0.01000 0.01000 10,150 0.58 0.26 0.38 Aircon 2.10 8 0.0003 11.67 0.47 Diesel 0.34 1.36000 0.07000 0.07000 0.02005 0.01000 0.01000 10,150 0.58 0.26 0.38 0.000 0.00000 0	1.32 13.42 36			lbs/year kg/y	ar kg/year	kg/year	CO ₂ e
Turbine 396 5 0.0002 22.00 0.14 JP-5 0.34 1.36000 0.07000 0.92000 0.01000 10,150 0.58 0.26 0.26 Air Compressor 58 2 0.0002 3.22 0.85 Diesel 0.34 4.80000 0.10000 2.72000 0.0205 0.16000 0.15500 10,150 0.58 0.26 0.35 Hydraulic Power Supply 111 37 0.0010 6.17 3.09 Diesel 0.34 2.53000 0.09000 3.05000 0.00205 0.01000 10,150 0.58 0.26 0.38 Aircon 210 8 0.0003 11.67 0.47 Diesel 0.34 1.36000 0.07000 0.02025 0.01000 10,150 0.58 0.26 0.38 Aircon 210 8 0.0003 11.67 0.47 Diesel 0.34 1.36000 0.07000 0.02025 0.01000 0.01000 10,150 0.58 0.26 0.38		365.12 0.28	21.48	20.81 95,5			96,437.8
Air Compressor 58 2 0.0002 3.22 0.88 Diesel 0.34 4.80000 0.10000 2.72000 0.00205 0.16000 0.15500 10.150 0.58 0.26 0.38 Hydralic Power Supply 111 37 0.0010 6.17 3.09 Diesel 0.34 2.53000 0.09000 3.05000 0.00205 0.01000 0.01000 10.150 0.58 0.26 0.38 Aircon 210 8 0.0003 11.67 0.47 Diesel 0.34 1.36000 0.07000 0.92000 0.00205 0.01000 0.01000 10.150 0.58 0.26 0.38 0.0003 0.000000	0.01	0.21 0.00	0.00	0.00	5.72 0.00	0.00	56.2
Hydraulic Power Supply 111 37 0.0010 6.17 3.09 Diesel 0.34 2.53000 0.09000 3.05000 0.00205 0.01000 10,150 0.58 0.26 23.99 Aircon 210 8 0.0003 11.67 0.47 Diesel 0.34 1.36000 0.07000 0.92000 0.01000 10,150 0.58 0.26 0.80	0.01	0.19 0.00	0.00	0.00 1	7.87 0.01	0.00	159.3
Airon 210 8 0.0003 11.67 0.47 Diesel 0.34 1.36000 0.07000 0.92000 0.00205 0.01000 10,150 0.58 0.26 0.80	0.01	0.20 0.00	0.01	0.01	5.72 0.00	0.00	56.2
	3.99 0.85 2	28.92 0.02	0.09	0.09 7,1	7.08 0.41	0.18	7,211.8
MEPP 215 37 0.0080 11.94 12.32 Diesel 0.34 1.36000 0.07000 0.92000 0.00205 0.01000 0.01000 10,150 0.58 0.26 99.68	0.04	0.54 0.00	0.01	0.01 4	5.76 0.03	0.01	449.8
	9.68 5.13 6	67.43 0.15	0.73	0.73 55,2	2.40 3.16	1.42	55,753.1
Total Equipment: 138 Totals in lbs 769.6	9.61 19.48 4	462.61 0.45	22.33	21.65			
	0.38 0.01	0.23 0.00	0.01	0.01			
Total Metric tons					58.69 0.0	0.00	
Feruinment Exhaust Emission Earters NAS Whidhey Alt 3C: 17 602							160.

GSE Equipment Exhaust Em	ission Factors		NAS	Whidbey Alt 3C:	17,602											_										
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emission:	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	CO ₂ e
10.000								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	38.60	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	619.78	12.91	351.21	0.26	20.66	20.01	91,931.44	5.25	2.35	92,764.53
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	53.60	0.00	0.00	54.08
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.19	0.00	0.00	0.00	151.86	0.01	0.00	153.24
Air Compressor	58	2	0.0002	3.22	0.82	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	53.60	0.00	0.00	54.08
Hydraulic Power Supply	111	37	0.0010	6.17	2.97	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.07	0.82	27.81	0.02	0.09	0.09	6,874.85	0.39	0.18	6,937.15
Aircon	210	8	0.0003	11.67	0.45	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.77	0.04	0.52	0.00	0.01	0.01	428.78	0.02	0.01	432.67
MEPP	215	37	0.0080	11.94	11.85	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	95.88	4.94	64.86	0.14	0.71	0.71	53,147.87	3.04	1.36	53,629.50
1	Fotal Equipment:	133	3													Totals in lbs	740.29	18.74	444.99	0.43	21.48	20.83				
	_		_													otals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
																Il Metric tons							152.64	0.01	0.00	
															To	al MT CO2e	- 1			I .				I		154.03

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors							1	Emissions	(lbs/yr)						MT/ye
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _x	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH ₄	N ₂ O	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO2
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	40.90	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	656.72	13.68	372.14	0.28	21.89	21.21	97,410.14	5.57	2.50	98,29
Tow Tractor	192	1	0.0003	10.67	0.52	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.22	0.00	0.00	0.00	56.79	0.00	0.00	5
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.01	0.20	0.00	0.00	0.00	160.91	0.01	0.00	16
Air Compressor	58	2	0.0002	3.22	0.87	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.36	0.01	0.20	0.00	0.01	0.01	56.79	0.00	0.00	5
lydraulic Power Supply	111	37	0.0010	6.17	3.15	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.45	0.87	29.47	0.02	0.10	0.10	7,284.56	0.42	0.19	7,35
Aircon	210	8	0.0030	11.67	4.80	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	8.20	0.42	5.54	0.01	0.06	0.06	4,543.38	0.26	0.12	4,58
MEPP	215	37	0.0080	11.94	12.55	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	101.60	5.23	68.73	0.15	0.75	0.75	56,315.24	3.22	1.44	56,825
To	otal Equipment:	138														Totals in lbs	791.79	20.23	476.50	0.47	22.81	22.12				$\overline{}$
			-													tals in Tons	0.40	0.01	0.24	0.00	0.01	0.01				
																Metric tons							165.83	0.01	0.00	

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	88	48	0.0107	4.89	39.00	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	626.33	13.05	354.92	0.27	20.88	20.23	92,902.88	5.31	2.38	93,744.77
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.21	0.00	0.00	0.00	54.16	0.00	0.00	54.66
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	153.47	0.01	0.00	154.86
Air Compressor	58	2	0.0002	3.22	0.83	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.20	0.00	0.01	0.01	54.16	0.00	0.00	54.66
Hydraulic Power Supply	111	37	0.0010	6.17	3.00	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.32	0.83	28.11	0.02	0.09	0.09	6,947.49	0.40	0.18	7,010.45
Aircon	210	8	0.0030	11.67	4.57	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	7.82	0.40	5.29	0.01	0.06	0.06	4,333.16	0.25	0.11	4,372.42
MEPP	215	37	0.0080	11.94	11.97	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	96.89	4.99	65.55	0.15	0.71	0.71	53,709.48	3.07	1.38	54,196.20
To	tal Equipment:	138														Totals in lbs	755.15	19.30	454.45	0.44	21.75	21.10				i —
																otals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
															Tota	al Metric tons							158.15	0.01	0.00	i -

Total Change in Criteria Pollutant and GHG Emissions, Average Operations, All Alternatives

		Em	issions (tpy)2	•		MT CO2e
Alternative	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Alternative 1 A	229.1	190.3	638.1	18.0	90.8	84.4	39,405
Alternative 1 B	183.3	159.8	527.0	14.5	74.7	68.2	31,923
Alternative 1 C	139.7	135.9	433.5	11.3	59.9	53.5	24,941
Alternative 1 D	214.3	182.1	606.3	16.9	85.8	79.4	37,044
Alternative 1 E	150.9	144.2	465.7	12.1	64.0	57.5	26,807
Alternative 2 A	227.5	209.0	691.2	18.1	98.6	86.6	40,284
Alternative 2 B	183.4	175.9	584.3	14.8	83.1	71.1	33,078
Alternative 2 C	141.6	152.6	493.8	11.7	68.9	56.9	26,380
Alternative 2 D	213.5	197.6	661.0	17.1	93.9	81.9	38,051
Alternative 2 E	155.7	160.6	524.8	12.7	73.8	61.7	28,652
Alternative 3 A	225.1	202.8	679.3	17.9	91.7	85.1	39,329
Alternative 3 B	183.6	180.1	590.3	14.9	77.6	71.1	32,675
Alternative 3 C	139.6	154.6	484.3	11.5	62.2	55.7	25,513
Alternative 3 D	211.2	198.7	649.2	16.9	87.0	80.4	37,106
Alternative 3 E	153.7	162.5	514.9	12.6	67.0	60.4	27,770

Total Change in GHG Emissions, All Alternatives

	Average	High-Tempo	
	Operations	Operations	Percent
Alternative/Scenario	MT CO	O ₂ e	Difference
Alternative 1			
Scenario A	39,405	40,828	4%
Scenario B	31,923	32,770	3%
Scenario C	24,941	25,254	1%
Scenario D	37,044	38,254	3%
Scenario E	26,807	27,854	4%
Scenario A	40,284	42,538	6%
Scenario B	33,078	34,653	5%
Scenario C	26,380	27,407	4%
Scenario D	38,051	40,047	5%
Scenario E	28,652	29,889	4%
Scenario A	39,329	40,702	3%
Scenario B	32,675	33,690	3%
Scenario C	25,513	25,982	2%
Scenario D	37,106	38,209	3%
Scenario E	27,770	28,463	2%

Key

CO₂e = carbon dioxide equivalent

MT = metric ton

Aircraft and Personnel Loading by Alternative for the EA 18G (Growler) Operations at NAS Whidbey Island Complex: Ault Field and and OLF Coupeville

EIS Alternative	Description	Aircraft Loading	Total VAQ Aircraft	Personnel Loading	Total Personnel
Baseline		9 carrier squadrons (45 aircraft) 3 expeditionary squadrons (15 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (17 aircraft)	82	• 517 Officer • 3,587 Enlisted	4,104
Alternative 1	Expand carrier capabilities by adding three additional aircraft to each existing carrier squadron and augmenting the FRS with eight additional aircraft (a net increase of 35 aircraft).	9 carrier squadrons (72 aircraft) 3 expeditionary squadrons (15 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (25 aircraft)	117 (+35)	• 597 Officer • 3,842 Enlisted	4,439 (+335)
Alternative 2	Expand expeditionary and carrier capabilities by establishing two new expeditionary squadrons, adding two additional aircraft to each existing carrier squadron, and augmenting the FRS with eight additional aircraft (a net increase of 36 aircraft).	9 carrier squadrons (63 aircraft) 5 expeditionary squadrons (25 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (25 aircraft)	118 (+36)	• 619 Officer • 4,113 Enlisted	4,732 (+628)
Alternative 3	Expand expeditionary and carrier capabilities by adding three additional aircraft to each existing expeditionary squadron, adding two additional aircraft to each existing carrier squadron, and augmenting the FRS with nine additional aircraft (a net increase of 36 aircraft).	9 carrier squadrons (63 aircraft) 3 expeditionary squadrons (24 aircraft) 1 Reserve Squadron (5 aircraft) 1 training squadron (26 aircraft)	118 (+36)	• 597 Officer • 3,848 Enlisted	4,445 (+341)

No Action: 30% FCLP at Coupville, 70% at Ault Field
Scenario A: 80% FCLP at Coupville, 20% at Ault Field
Scenario B: 50% FCLP at Coupville, 50% at Ault Field
Scenario C: 20% FCLP at Coupville, 80% at Ault Field

EA-18 G (Growler) (F414-GE-400 Engines) Emission Factors

	Fuel used			ons from Si	ngle Flight (Operation ^{1,}	^{2,3,4} (lb/op)	
Flight Operation	(lbs)	СО	NO _x	VOC⁴	SO ₂	PM _{2.5}	PM ₁₀	CO2
Straight-In Arrival LTO ¹	2413	210.67	29.16	79.04	3.16	17.62	17.62	7285.16
Break Arrival LTO ¹	2329	211.83	29.23	79.70	3.05	16.95	16.95	7014.30
OLF LTO ²	1,383	112.53	25.79	4.14	1.81	6.60	6.60	4215.07
Touch-and-Go/FCLP3	706	0.50	14.47	0.09	0.92	3.95	3.95	2249.53
Depart&Reenter/ GCA Box (GCA Pattern) ³	1411	1.01	28.95	0.20	1.85	7.89	7.89	4499.05
3.0 minutes at 85% N2 (Approach) ²	517	0.37	7.63	0.07	0.68	3.39	3.39	1649.71
3.5	Minutes into	erfacility flig	ght, Ault Fiel	d to Coupev	ille			
3.5 minutes at 85% N2 (Approach) ²	603.17	0.44	8.90	0.10	0.79	3.96	3.96	1924.66

Notes:

Emission Factors for EA-18G (F414-GE-400 Engines) In-Frame Aircraft Maintenance, per test

		Fuel used Emissions from Maintenance Tests ^{1,2} (lb/test)											
Test Type	# tests	(lbs)	CO	NOx	VOC ³	SO ₂	PM2.5	PM10	CO2				
Water Wash	1.0	132.0	11.41	0.47	8.71	0.17	1.47	1.47	369.57				
Low Power, one engine	1.0	364.07	34.16	1.21	26.12	0.48	4.40	4.40	1085.62				
Low Power, two engines	1.0	711.67	68.29	2.31	52.24	0.93	8.79	8.79	2119.19				
High Power (two engines)	1.0	6375.13	1043.01	90.67	63.89	8.35	19.61	19.61	18505.40				

¹ Fuel used and Emission factors for Estimated annual maintenance operations per test, per engine based on ratio of data from Table 9 of AESO Memorandum Report No. 9815, Rev I, June 2017. See table below

Emission Factors for EA-18G In-Frame Aircraft Maintenance, Annual estimates per aircraft¹

	Annual #	# engines	Fuel used Emissions from Maintenance Test (lb/aircraft-yr) ^{1,2}							
Test Type	tests	in use	(lbs)	CO	NOx	HC	SO ₂	PM2.5	PM10	CO2
Water Wash	1.0	1.0	132	11.41	0.47	7.57	0.17	1.47	1.47	369.57
Low Power, 1 engine	15.0	1.0	5461	512.45	18.11	340.70	7.15	65.95	65.95	16284.26
Low Power, 2 engines	30.0	2.0	21,350	2048.81	69.38	1362.69	27.97	263.71	263.71	63575.80
High Power	8.0	2.0	51,001	8344.08	725.39	444.43	66.81	156.87	156.87	148043.20

Notes

¹ Fuel used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines for operations at NAS Whidbey Island based on Table S-1, AESO Memorandum Report No. 9815, Rev I, June 2017, Except adjusted to reduce Max Power Time in mode during Take off from 30 seconds to 20 seconds, per email from CDR Sean Michaels, May 12, 2016.

Michaels, May 12, 2016.

²Estimated Air Emissions for a Single F/A-18 LTO Cycle with straight in Arrival--At OLF (no Startup/Taxi/Refuel) and "3.0 minutes at 85%N2"using Table 5 of AESO Memorandum Report No. 9815, Rev I, June 2017. Emissions for interfacility flight based on ratio of # of minutes from Ault field of Coupeville/3.

 $^{^3\,}Emission\,factors\,for\,"Touch-and-Go"\,and\,"GCA\,Box"\,from\,AESO\,Memorandum\,Report\,No.\,9933,\,Revision\,E\,November\,2015.$

⁴ VOC emissions = 1.15 x THC emissions as reported in Table S-1, AESO Memorandum Report No. 9815, Rev I, June, 2017 as noted for reporting VOCs as defined by the EPA.

⁵ SO2 Emission Factor based on fuel used (lbs) from Table S-1, AESO Memorandum Report No. 9933, Revision E November 2015 and AESO Memorandum Report No. 9815, Rev I, June, 2017 and SO2 factor of 1.31 lbs/1000 lbs JP-5 fuel for operations after 2016 in AESO Memorandum report No 2012-01E, April, 2017

 $^{^3}$ VOC emissions = 1.15 x THC emissions as noted for reporting VOCs as defined by the EPA.

 $^{^{\}rm 1}$ From Table 9, AESO Memorandum Report No. 9815, Rev I, June 2017.

² SO2 Emission Factor based on fuel used (lbs) from Table 9, AESO Memorandum Report No. 9815, Rev I, June, 2017 and SO2 factor of 1.31 lbs/1000 lbs JP-5 fuel for operations after 2016 in AESO Memorandum report No 2012-01E, April 2017

a Single F/A-18G I TO Cycle with straight in Arrival--At OI F (no Startu

	E	stimated	Air Emissio	ns for a Sing	le F/A-180	3 LTO C	cycle with	n straight ii	n Arrival-	-At OLF (no Startu	p/Taxi/Ret	uel)				
							Emission Indexes ² (pounds per 1,000 pounds fuel)						Emission	ns from Si		t Operation	on ⁵
			Time-In	Fuel Flow			(pou	nds per 1,0	00 poun	ds fuel)				(11	o/ op)		
Flight Operation and Flight Mode		No. of Engines in Use ¹	Mode per Engine (min) ²	Rate per Engine (lb/hr) ¹	Fuel Used (lbs) ^{4,8}	EI CO	EI NO _x	EI HC	EI SO ₂ 9	EI PM ₁₀	CO2	СО	NO _x	VOC ¹⁰	SO ₂	PM ₁₀	CO2
Departure																	
Engine Run up	80	2	0.5	3079.00	51	1.86	8.98	0.14	1.31	8.780	3205	0.10	0.46	0.01	0.07	0.45	164.46
Take off ^{6,11,12}	Max	2	0.33	35763.00	397	274.97	9.67	4.87	1.31	2.950	2712	109.26	3.84	2.23	0.52	1.17	1077.66
Climb out	95	2	1.0	11320.00	377	0.7	36.29	0.12	1.31	2.950	3179	0.26	13.69	0.05	0.49	1.11	1199.62
Departure Total					826							109.62	18.00	2.29	1.08	2.74	2441.74
Arrival																	
Approach	85	2	3.0	5169.00	517	0.72	14.75	0.12	1.31	6.56	3191	0.37	7.62	0.07	0.68	3.39	1649.58
On Runway	G Idle	2	1.0	695.00	23	98.18	3.18	65.33	1.31	12.64	2973	2.27	0.07	1.74	0.03	0.29	68.88
Unstick	75	2	0.3	1720.00	17	15.2	5.58	1.98	1.31	10.73	3190	0.26	0.10	0.04	0.02	0.18	54.86
Arrival Total					557							2.91	7.79	1.85	0.73	3.87	1773.33
LTO Total					1,383							112.5	25.8	4.1	1.8	6.6	4,215.1

Source: Table 5. AESO Memorandum Report No. 9815. Rev I. June 2017(except SO2 emission factors)

F/A-18E/F Notes:

- 9) SO2 Emission Factor for JP-5 fuel as recommended for operations after 2016 in AESO Memorandum report No 2012-01E, April 2017
 10) VOC emissions = 1.15 x THC emissions as reported in Table S-1. AESO Memorandum Report No. 9815, Rev. 1 June, 2017 as noted for reporting VOCs as defined by the EPA.
 11) Time in Mode for Max (Afterburner) power setting has been adjusted from 30 seconds, per email from Classea Michaels, May 12, 2016.
 12) AB PM 10 and 2.5 data not provided in AESO Memo N. 9815. Per Xu Li-Jones (AESO) comments (6/22/2016), 2.95 lbs/1000 gal fuel is used.

		stimated	nange in A	ur Emissions	for a Sin	gie F/A-	18G LIC	Cycle: ad	ustment	of wax 1	ake off Af	terburner	use				
			Time-In	Fuel Flow		Emission Indexes ² (pounds per 1,000 pounds fuel)				Emissions from Single Flight Operation (lb/ op)					on ⁵		
Flight Operation and Flight Mode		No. of Engines in Use ¹	Mode per Engine (min) ²	Rate per Engine (lb/hr) 1	Fuel Used (lbs) ^{4,8}	EI CO	EI NO _x	EI HC	EI SO ₂ 9	EI PM ₁₀	CO2	со	NO _x	VOC ¹⁰	SO ₂	PM ₁₀	CO2
AESO Estimated Take off	Max	2	0.50	35763.00	596	274.97	9.67	4.87	1.31	2.950	2712	163.90	5.76	3.34	0.78	1.76	1616.49
ALSO Estillated Take off	IVIAX		0.50	33703.00	370	214.71	9.07	4.07	1.31	2.930	2/12	103.90	3.70	3.34	0.76	1.70	1010.49
NAS Whidbey Island																	
Estimated Take off	Max	2	0.33	35763.00	397	274.97	9.67	4.87	1.31	2.950	2712	109.26	3.84	2.23	0.52	1.17	1077.66
Difference			0.17	0.00	198.68							54.63	1.92	1.11	0.26	0.59	538.83

Adjusted EA-18 G (Growler) (F414-GE-400 Engines) Emission Factors

	Fuel used		Emissio	ns from Sing	le Flight C	peratio	n (lb/op)	
Flight Operation	(lbs)	СО	NO _x	VOC ₃	SO ₂ ⁴	PM _{2.5}	PM ₁₀	CO ₂
AESO Estimated Straight- In Arrival LTO ¹	2612	265.30	31.08	80.16	3.42	18.21	18.21	7823.99
NAS Whidbey Island Estimated Take off ²	2413	210.67	29.16	79.04	3.16	17.62	17.62	7285.16
AESO Estimated Break Arrival LTO ¹	2528	266.46	31.15	80.81	3.31	17.54	17.54	7553.13
NAS Whidbey Island Break Arrival LTO ²	2329	211.83	29.23	79.70	3.05	16.95	16.95	7014.30

¹ Fuel used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines from Table ES-1.

AESO Memoradum Report No. 9815, Rev I, June 2017, except SO2 and VOC.

Fuel used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines from Table E2-1,

Fuel used and Emission factors for "Straight-In Arrival LTO," and "Break Arrival LTO" for F414-GE-400 Engines for operations at NAS

Whilebys Island adjusted to reduce Max Power Time in mode during Take off from 30 seconds to 20 seconds, per email from CDR Sean

Michaels, May 12, 2016.

³VOC emissions = 1.15 x THC emissions as reported in Table S-1, AESO Memorandum Report No. 9815, Rev LJune, 2017 as noted for

⁴ SO2 Emission Factor based on fuel used (lbs) from Table S-1, AESO Memorandum Report No. 9815, Rev I, June, 2017 and SO2 factor of 1.31 lbs/1000 lbs JP-5 fuel for operations after 2016 in AESO Memorandum report No. 2012-01E, April 2017

Baseline High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	45	17	5	15	82
Departures	4,766	6,556	1,207	1,933	14,462
Interfacility Departures	166	198	19	0	383
Straight in Arrivals	1,655	2,652	418	716	5,441
Overhead Break Arrivals	2,766	3,635	712	1,075	8,188
IFR Arrivals	338	269	74	140	821
Interfacility Arrivals	166	198	18	0	382
FCLP Ops ²	9,544	7,510	170	0	17,224
Touch & Go Ops ²	3,030	5,422	542	644	9,638
Depart-Re-enter Ops ²	1,504	0	410	624	2,538
GCA pattern Ops ²	4,062	5,656	552	634	10,904
Total	27,997	32,096	4,122	5,766	69,981
OLF Coupeville					
Interfacility Departures	166	198	18	0	382
Interfacility Arrivals	166	198	19	0	383
FCLP Ops ²	2,332	2,764	259	0	5,355
Total	2,664	3,160	296	0	6,120
	3				
Maintenance Run Ups (Ault F	ield)°				92
Water Wash					82
Low Power, one engine					1,230
Low Power, two engines					2,460
High Power, two engines					656

¹ Operations information from Tab Fops_BaselineAveMaxYr2, file Ops Tables MaxYr_BL_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington, Wyle Laboratories, 2017.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Baseline maintenance run ups from Baseline Static Ops.lxs from Wyle, 12/16/2015

⁴ Out-of-Frame testing of F414 engines is not at performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Baseline High Tempo Year Emissions NAS Whidbey Island Complex

	No. of	Fuel use			En	nissions (tp	y) ³		
Operation	Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	5,441	13,130,856	573.12	79.33	215.03	8.60	47.95	47.95	19,819.28
Break Arrival LTO ²	9,391	21,874,613	994.64	137.24	374.22	14.33	79.61	79.61	32,935.65
FCLP ⁴	8,612	6,080,072	2.15	62.31	0.40	3.98	17.01	17.01	9,686.48
Touch-and-Go ⁴	4,819	3,402,214	1.20	34.87	0.22	2.23	9.52	9.52	5,420.24
Depart and Re-enter ⁴	1,269	1,790,559	0.64	18.37	0.12	1.17	5.01	5.01	2,854.65
GCA Pattern ⁴	5,452	7,692,772	2.75	78.92	0.53	5.04	21.51	21.51	12,264.41
Total Emissions for Ault Field	Flight Operations	53,971,085.8	1,574.5	411.0	590.5	35.4	180.6	180.6	82,980.7
NOLF Coupeville									
Interfacility LTO2	382	528,414	21.49	4.93	0.79	0.35	1.26	1.26	805.08
FCLP ⁴	5,355	3,780,630	1.34	38.74	0.25	2.48	10.58	10.58	6,023.12
Interfacility Transit	382	230,410	0.08	1.70	0.02	0.15	0.76	0.76	367.61
Total Emissions for Coupeville	e Flight Operation	4,539,453.9	22.9	45.4	1.1	3.0	12.6	12.6	7,195.8
Maintenance Operations									
Water Wash	82	10,824	0.47	0.019	0.36	0.007	0.06	0.06	15.15
Low Power, one engine	1,230	447,802	21.01	0.74	16.06	0.29	2.70	2.70	667.65
Low Power, two engines	2,460	1,750,700	84.00	2.84	64.25	1.15	10.81	10.81	2,606.61
High Power, two engines	656	4,182,082	342.11	29.74	20.95	2.74	6.43	6.43	6,069.77
Total Emissions for Maintena	otal Emissions for Maintenance Operations		447.6	33.3	101.6	4.2	20.0	20.0	9,359.2
Total		64,901,947.7	2,045.0	489.7	693.2	42.5	213.2	213.2	99,535.7

9,558,460.63 gallons of fuel

Notes:

- See Previous Table of this Appendix for Estimated Operations
 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

			Emissions (tpy) ³								
Population	No. of Vehicles ¹	VMT	СО	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	CO ₂		
All Personnel	4,104	25,650,000	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77		

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Existing Mobile Emissions

Total Existing Mobile							
			Er	nissions (tp	y)		
Activity	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,574.51	411.03	590.53	35.35	180.59	180.59	82,980.71
OLF Coupville							
Aircraft Flight							
Operations	22.9	45.4	1.1	3.0	12.6	12.6	7,195.8
Aircraft Maintenance							
Operations	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2
Personnel Commute	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77
Total	2,120,09	498.63	694.85	42,58	301.76	223,01	109,558,47

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

No Action High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	45	17	5	15	82
Departures	4,783	6,564	1,207	1,938	14,492
Interfacility Departures	197	206	19	0	422
Straight in Arrivals	1,730	2,687	404	722	5,543
Overhead Break Arrivals	2,775	3,650	720	1,100	8,245
IFR Arrivals	275	227	81	111	694
Interfacility Arrivals	197	208	19	0	424
FCLP Ops ²	7,256	6,566	178	0	14,000
Touch & Go Ops ²	3,056	5,558	530	676	9,820
Depart-Re-enter Ops ²	1,524	0	468	664	2,656
GCA pattern Ops ²	4,214	5,830	564	670	11,278
Total	26,007	31,496	4,190	5,881	67,574
OLF Coupeville					
Interfacility Departures	197	208	19	0	424
Interfacility Arrivals	197	206	19	0	422
FCLP Ops ²	2,452	2,583	239	0	5,274
Total	2,846	2,997	277	0	6,120
	3				
Maintenance Run Ups (Ault F	ield) ³				0.0
Water Wash					82
Low Power, one engine					1,230
Low Power, two engines					2,460
High Power, two engines		1			656
Test Cell Maintenance Run Up	os (at Ault Fie	ld) ^⁴			

¹ Operations information from Tab Fops_NoActionMaxYr3, file Ops Tables MaxYr_NoAc20171018.xlsx, Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington, Wyle Laboratories, 2017.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Baseline maintenance run ups from Baseline Static Ops.lxs from Wyle, 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

No Action High Tempo Year Air Emissions NAS Whidbey Island Complex

No Action riigh Tempo Tear		Fuel use			En	issions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	5,543	13,377,014	583.87	80.81	219.07	8.76	48.84	48.84	20,190.82
Break Arrival LTO ²	9,363	21,809,392	991.67	136.83	373.11	14.29	79.37	79.37	32,837.45
FCLP ⁴	7,000	4,942,000	1.75	50.65	0.32	3.24	13.83	13.83	7,873.36
Touch-and-Go4	4,910	3,466,460	1.23	35.52	0.23	2.27	9.70	9.70	5,522.60
Depart and Re-enter ⁴	1,328	1,873,808	0.67	19.22	0.13	1.23	5.24	5.24	2,987.37
GCA Pattern ⁴	5,639	7,956,629	2.85	81.62	0.55	5.21	22.25	22.25	12,685.07
Total Emissions for Ault Field Flight Operations		53,425,303.2	1,582.0	404.7	593.4	35.0	179.2	179.2	82,096.7
NOLF Coupeville									
Interfacility LTO2	424	586,512	23.86	5.47	0.88	0.38	1.40	1.40	893.59
FCLP ⁴	5,274	3,723,444	1.32	38.16	0.24	2.44	10.42	10.42	5,932.01
Interfacility Transit	424	255,743	0.09	1.89	0.02	0.17	0.84	0.84	408.03
Total Emissions for Coupevi	lle Flight Operations	4,565,698.8	25.3	45.5	1.1	3.0	12.7	12.7	7,233.6
Maintenance Operations									
Water Wash	82	10,824	0.47	0.019	0.36	0.007	0.06	0.06	15.15
Low Power, one engine	1,230	447,802	21.01	0.74	16.06	0.29	2.70	2.70	667.65
Low Power, two engines	2,460	1,750,700	84.00	2.84	64.25	1.15	10.81	10.81	2,606.61
High Power, two engines	656	4,182,082	342.11	29.74	20.95	2.74	6.43	6.43	6,069.77
Total In-frame Maintenance O	perations	6,391,408	447.59	33.35	101.63	4.19	20.01	20.01	9,359
Total Emissions for Mainten	ance Operations	6,391,408.0	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2
Total		64,382,410.0	2,054.9	483.5	696.2	42.2	211.9	211.9	98,689.5

9,481,945.51 gallons of fuel

Notes:

Employee Commute Emissions

					Em	nissions (tp)	/) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,104	25,650,000	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Emissions Summary							
			En	nissions (tp	y)		
Activity	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,582.04	404.66	593.40	34.99	179.22	179.22	82,096.66
OLF Coupville Aircraft							
Flight Operations	25.3	45.5	1.1	3.0	12.7	12.7	7,233.6
Aircraft Maintenance							
Operations	447.6	33.3	101.6	4.2	20.0	20.0	9,359.2
Personnel Commute	75.07	8.88	1.63	0.07	88.56	9.81	10,022.77
Total	2,129.96	492.41	697.80	42.24	300.45	221.70	108,712.26

See Previous Table of this Appendix for Estimated Operations
 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

² See Table X of this Appendix for calculations and emission factors

Alternative 1A High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,516	5,961	1,212	1,946	16,635
Interfacility Departures	1,137	556	16	0	1,709
Straight in Arrivals	2,670	2,439	399	721	6,229
Overhead Break Arrivals	4,388	3,309	759	1,088	9,544
IFR Arrivals	459	213	54	137	863
Interfacility Arrivals	1,137	556	15	0	1,708
FCLP Ops ²	4,550	2,147	141	0	6,838
Touch & Go Ops ²	5,576	5,331	582	656	12,145
Depart-Re-enter Ops ²	2,525	0	407	602	3,534
GCA pattern Ops ²	8,226	5,722	580	646	15,174
Total	38,184	26,234	4,165	5,796	74,379
OLF Coupeville					
Interfacility Departures	1,137	556	16	0	1,709
Interfacility Arrivals	1,137	556	15	0	1,708
FCLP Ops ²	15,908	7,780	215	0	23,903
Total	18,182	8,892	246	0	27,320
	3				
Maintenance Run Ups (at Ault	Field)				115
Water Wash					117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936

¹ Operations information from Tab SEIS_Alt1AMaxYr, workbook Ops Tables MaxYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1A High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

Atternative 1A riight rempo	(3.3.4)	Fuel use			Emi	issions (tpy)3		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,229	15,032,550	656.13	90.81	246.18	9.85	54.89	54.89	22,689.63
Break Arrival LTO ²	12,115	28,219,671	1,283.15	177.05	482.77	18.48	102.70	102.70	42,489.13
FCLP ⁴	3,419	2,413,814	0.85	24.74	0.16	1.58	6.75	6.75	3,845.57
Touch-and-Go ⁴	6,073	4,287,185	1.52	43.93	0.28	2.81	11.99	11.99	6,830.14
Depart and Re-enter ⁴	1,767	2,493,237	0.89	25.58	0.17	1.63	6.97	6.97	3,974.91
GCA Pattern ⁴	7,587	10,705,257	3.83	109.82	0.74	7.01	29.93	29.93	17,067.15
Total Emissions for Ault Fiel	d Flight Operations	63,151,713.9	1,946.4	471.9	730.3	41.4	213.2	213.2	96,896.5
NOLF Coupeville									
Interfacility LTO2	1,709	2,364,031	96.16	22.04	3.53	1.55	5.64	5.64	3,601.78
FCLP ⁴	23,903	16,875,518	5.98	172.94	1.10	11.05	47.21	47.21	26,885.26
Interfacility Transit	1,709	1,030,812	0.37	7.60	0.08	0.68	3.38	3.38	1,644.62
Total Emissions for Coupevi	lle Flight Operations	20,270,361.1	102.5	202.6	4.7	13.3	56.2	56.2	32,131.7
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Mainten	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		92,541,523.0	2,687.5	722.1	880.0	60.6	298.0	298.0	142,382.1

13,629,090.28 total gallons of fuel

Notes:

					Emi	ssions (tpy) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1A

			Em	ssions (tpy)		
Activity	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft Flight							
Operations	1,946.37	471.94	730.30	41.36	213.23	213.23	96,896.52
OLF Coupville Aircraft Flight							
Operations	102.5	202.6	4.7	13.3	56.2	56.2	32,131.7
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,768.70	731.71	881.79	60.69	393.81	308.63	153,223.05

See Previous Table of this Appendix for Estimated Operations
 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes Employee Commute Emissions

Alternative 1B High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		FA 18G (Grove	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,470	5,926	1,208	1,934	16,538
Interfacility Departures	698	355	14	0	1,067
Straight in Arrivals	2,627	2,447	382	725	6,181
Overhead Break Arrivals	4,303	3,221	754	1,072	9,350
IFR Arrivals	539	258	73	136	1,006
Interfacility Arrivals	698	355	14	0	1,067
FCLP Ops ²	11,316	5,583	178	0	17,077
Touch & Go Ops ²	5,576	5,331	582	656	12,145
Depart-Re-enter Ops ²	2,525	0	407	602	3,534
GCA pattern Ops ²	8,226	5,722	580	646	15,174
Total	43,978	29,198	4,192	5,771	83,139
OLF Coupeville					
Interfacility Departures	698	355	14	0	1,067
Interfacility Arrivals	698	355	14	0	1,067
FCLP Ops ²	9,772	4,977	202	0	14,951
Total	11,168	5,687	230	0	17,085
Maintenance Run Ups (at Aul	Field) ³				
Water Wash	. i leiu)				117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936

¹ Operations information from Tab SEIS_Alt1BMaxYr, workbook Ops Tables MaxYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1B High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

rate man to 12 mgm rempe	· · · · · · · · · · · · · · · · · · ·	Fuel use	Í		Em	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,181	14,916,710	651.07	90.12	244.28	9.77	54.47	54.47	22,514.79
Break Arrival LTO ²	11,423	26,607,784	1,209.86	166.94	455.19	17.43	96.83	96.83	40,062.18
FCLP ⁴	8,539	6,028,181	2.13	61.78	0.39	3.95	16.86	16.86	9,603.81
Touch-and-Go ⁴	6,073	4,287,185	1.52	43.93	0.28	2.81	11.99	11.99	6,830.14
Depart and Re-enter ⁴	1,767	2,493,237	0.89	25.58	0.17	1.63	6.97	6.97	3,974.91
GCA Pattern ⁴	7,587	10,705,257	3.83	109.82	0.74	7.01	29.93	29.93	17,067.15
Total Emissions for Ault Field Flight Operations		65,038,354.6	1,869.3	498.2	701.1	42.6	217.1	217.1	100,053.0
NOLF Coupeville									
Interfacility LTO2	1,067	1,475,963	60.04	13.76	2.21	0.97	3.52	3.52	2,248.74
FCLP ⁴	14,951	10,555,406	3.74	108.17	0.69	6.91	29.53	29.53	16,816.36
Interfacility Transit	1,067	643,579	0.23	4.75	0.05	0.42	2.11	2.11	1,026.81
Total Emissions for Coupevil	le Flight Operations	12,674,948.2	64.0	126.7	2.9	8.3	35.2	35.2	20,091.9
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance O	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Maintena	ance Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		86,832,750.8	2,571.9	672.4	849.0	56.9	280.8	280.8	133,498.8

12,788,328.53 total gallons of fuel

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

Employee Commute Emissions

					En	nissions (tp	y) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27,743,750	81.20	9.61	1.77	0.07	95.79	10.61	10,840,91

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1B

Total Zimoorono, ruton			En	nissions (tp	A.		
_				iissioiis (tþ	y <i>)</i>		
Activity	СО	NO _x	HC	SO₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,869.30	498.16	701.06	42.60	217.06	217.06	100,052.97
OLF Coupville Aircraft							
Flight Operations	64.0	126.7	2.9	8.3	35.2	35.2	20,091.9
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,653.14	682.03	850.78	56.95	376.56	291.38	144,339.74

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

4 Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 1C High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,513	5,939	1,212	1,940	16,604
Interfacility Departures	274	143	12	0	429
Straight in Arrivals	2,674	2,399	417	727	6,217
Overhead Break Arrivals	4,322	3,295	731	1,060	9,408
IFR Arrivals	517	246	64	152	979
Interfacility Arrivals	274	143	11	0	428
FCLP Ops ²	18,092	9,068	151	0	27,311
Touch & Go Ops ²	5,576	5,331	582	656	12,145
Depart-Re-enter Ops ²	2,525	0	407	602	3,534
GCA pattern Ops ²	8,226	5,722	580	646	15,174
Total	49,993	32,286	4,167	5,783	92,229
OLF Coupeville					
Interfacility Departures	274	143	12	0	429
Interfacility Arrivals	274	143	11	0	428
FCLP Ops ²	3,831	1,999	159	0	5,989
Total	4,379	2,285	182	0	6,846
Maintenance Run Ups (at Ault	Field) ³				
Water Wash	- I - Ioiu j				117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936

¹ Operations information from Tab SEIS_Alt1CMaxYr, workbook Ops Tables MaxYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1C High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	· ·	Fuel use			Em	issions (tp	/) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,217	15,003,590	654.86	90.64	245.70	9.83	54.78	54.78	22,645.92
Break Arrival LTO ²	10,815	25,191,560	1,145.46	158.05	430.97	16.50	91.68	91.68	37,929.83
FCLP ⁴	13,656	9,640,783	3.41	98.80	0.63	6.31	26.97	26.97	15,359.23
Touch-and-Go ⁴	6,073	4,287,185	1.52	43.93	0.28	2.81	11.99	11.99	6,830.14
Depart and Re-enter ⁴	1,767	2,493,237	0.89	25.58	0.17	1.63	6.97	6.97	3,974.91
GCA Pattern ⁴	7,587	10,705,257	3.83	109.82	0.74	7.01	29.93	29.93	17,067.15
Total Emissions for Ault Field Flight Operations		67,321,611.5	1,810.0	526.8	678.5	44.1	222.3	222.3	103,807.2
NOLF Coupeville									
Interfacility LTO2	428	592,045	24.08	5.52	0.89	0.39	1.41	1.41	902.02
FCLP ⁴	5,989	4,228,234	1.50	43.33	0.28	2.77	11.83	11.83	6,736.22
Interfacility Transit	429	258,759	0.09	1.91	0.02	0.17	0.85	0.85	412.84
Total Emissions for Coupevil	le Flight Operations	5,079,037.8	25.7	50.8	1.2	3.3	14.1	14.1	8,051.1
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance Op	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Maintena	nce Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		81,520,097.2	2,474.3	625.2	824.7	53.4	265.0	265.0	125,212.2

12,005,905.34 total gallons of fuel

					En	nissions (tp	/) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27.743.750	81.20	9.61	1.77	0.07	95.79	10.61	10.840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1C

			Em	issions (tp)	/)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,809.98	526.83	678.49	44.10	222.33	222.33	103,807.17
OLF Coupville Aircraft							
Flight Operations	25.7	50.8	1.18	3.3	14.1	14.1	8,051.1
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,555.48	634.77	826.44	53.47	360.76	275.58	136,053.12

[|] See Previous Table of this Appendix for Estimated Operations
| See Previous Table of this Appendix for Estimated Operations
| All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
| Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
| Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes
| Employee Commute Emissions
| Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Emission

Alternative 1D High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,516	5,961	1,212	1,946	16,635
Interfacility Departures	995	487	14	0	1,496
Straight in Arrivals	2,670	2,439	399	721	6,229
Overhead Break Arrivals	4,388	3,309	759	1,088	9,544
IFR Arrivals	459	213	54	137	863
Interfacility Arrivals	995	487	13	0	1,495
FCLP Ops ²	6,825	3,221	212	0	10,258
Touch & Go Ops ²	5,576	5,331	582	656	12,145
Depart-Re-enter Ops ²	2,525	0	407	602	3,534
GCA pattern Ops ²	8,226	5,722	580	646	15,174
Total	40,175	27,170	4,232	5,796	77,373
OLF Coupeville					
Interfacility Departures	995	487	14	0	1,496
Interfacility Arrivals	995	487	13	0	1,495
FCLP Ops ²	13,920	6,808	188	0	20,916
Total	15,910	7,782	215	0	23,907
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash					117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936
Test Cell Maintenance Run U	os (at Ault Fiel	d) ⁴			

¹ Operations information from Tab SEIS_Alt1DMaxYr, workbook Ops Tables MaxYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1D High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

		Fuel use			Em	issions (tp	/) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,229	15,032,550	656.13	90.81	246.18	9.85	54.89	54.89	22,689.63
Break Arrival LTO ²	11,902	27,723,527	1,260.59	173.94	474.28	18.16	100.89	100.89	41,742.10
FCLP ⁴	5,129	3,621,074	1.28	37.11	0.24	2.37	10.13	10.13	5,768.92
Touch-and-Go4	6,073	4,287,185	1.52	43.93	0.28	2.81	11.99	11.99	6,830.14
Depart and Re-enter ⁴	1,767	2,493,237	0.89	25.58	0.17	1.63	6.97	6.97	3,974.91
GCA Pattern ⁴	7,587	10,705,257	3.83	109.82	0.74	7.01	29.93	29.93	17,067.15
Total Emissions for Ault Field Flight Operations		63,862,829.5	1,924.2	481.2	721.9	41.8	214.8	214.8	98,072.8
NOLF Coupeville									
Interfacility LTO2	1,496	2,069,392	84.17	19.29	3.09	1.36	4.94	4.94	3,152.87
FCLP ⁴	20,916	14,766,696	5.23	151.33	0.96	9.67	41.31	41.31	23,525.58
Interfacility Transit	1,496	902,337	0.33	6.66	0.07	0.59	2.96	2.96	1,439.65
Total Emissions for Coupevil	le Flight Operations	17,738,425.2	89.7	177.3	4.1	11.6	49.2	49.2	28,118.1
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance Operations		9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Maintena	Total Emissions for Maintenance Operations		638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		90,720,702.7	2,652.6	706.1	871.0	59.4	292.6	292.6	139,544.9

13,360,928.23 total gallons of fuel

					En	nissions (tp	/) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27.743.750	81.20	9.61	1.77	0.07	95.79	10.61	10.840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1D

			En	nissions (tp	y)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,924.24	481.20	721.89	41.83	214.81	214.81	98,072.85
OLF Coupville Aircraft							
Flight Operations	89.7	177.3	4.1	11.6	49.2	49.2	28,118.1
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,733.79	715.66	872.79	59.49	388.36	303.18	150,385.82

[|] See Previous Table of this Appendix for Estimated Operations
| See Previous Table of this Appendix for Estimated Operations
| All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
| Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
| Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes
| Employee Commute Emissions
| Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Emission

Alternative 1E High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	72	25	5	15	117
Departures	7,513	5,939	1,212	1,940	16,604
Interfacility Departures	411	215	18	0	644
Straight in Arrivals	2,674	2,399	417	727	6,217
Overhead Break Arrivals	4,322	3,295	731	1,060	9,408
IFR Arrivals	517	246	64	152	979
Interfacility Arrivals	411	215	17	0	643
FCLP Ops ²	15,831	7,935	132	0	23,898
Touch & Go Ops ²	5,576	5,331	582	656	12,145
Depart-Re-enter Ops ²	2,525	0	407	602	3,534
GCA pattern Ops ²	8,226	5,722	580	646	15,174
Total	48,006	31,297	4,160	5,783	89,246
OLF Coupeville					
Interfacility Departures	411	215	18	0	644
Interfacility Arrivals	411	215	17	0	643
FCLP Ops ²	5,747	2,999	239	0	8,985
Total	6,569	3,429	274	0	10,272
	3				
Maintenance Run Ups (at Ault	Field)				
Water Wash					117
Low Power, one engine					1,755
Low Power, two engines					3,510
High Power, two engines					936

¹ Operations information from Tab SEIS_Alt1EMaxYr, workbook Ops Tables MaxYr_Alt1_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 1E High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

		Fuel use			Em	issions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,217	15,003,590	654.86	90.64	245.70	9.83	54.78	54.78	22,645.92
Break Arrival LTO ²	11,030	25,692,363	1,168.23	161.20	439.53	16.83	93.50	93.50	38,683.87
FCLP ⁴	11,949	8,435,994	2.99	86.45	0.55	5.53	23.60	23.60	13,439.82
Touch-and-Go4	6,073	4,287,185	1.52	43.93	0.28	2.81	11.99	11.99	6,830.14
Depart and Re-enter ⁴	1,767	2,493,237	0.89	25.58	0.17	1.63	6.97	6.97	3,974.91
GCA Pattern ⁴	7,587	10,705,257	3.83	109.82	0.74	7.01	29.93	29.93	17,067.15
Total Emissions for Ault Field Flight Operations		66,617,625.6	1,832.3	517.6	687.0	43.6	220.8	220.8	102,641.8
NOLF Coupeville									
Interfacility LTO2	644	890,834	36.24	8.30	1.33	0.58	2.13	2.13	1,357.25
FCLP ⁴	8,985	6,343,410	2.25	65.01	0.41	4.15	17.75	17.75	10,106.01
Interfacility Transit	644	388,439	0.14	2.87	0.03	0.25	1.27	1.27	619.74
Total Emissions for Coupevil	le Flight Operations	7,622,683.8	38.6	76.2	1.8	5.0	21.1	21.1	12,083.0
Maintenance Operations									
Water Wash	117	15,444	0.67	0.027	0.51	0.010	0.09	0.09	21.62
Low Power, one engine	1,755	638,937	29.98	1.06	22.92	0.42	3.86	3.86	952.63
Low Power, two engines	3,510	2,497,950	119.86	4.06	91.67	1.64	15.43	15.43	3,719.18
High Power, two engines	936	5,967,117	488.13	42.44	29.90	3.91	9.18	9.18	8,660.53
Total In-frame Maintenance Op	perations	9,119,448	639	48	145	6	29	29	13,354
Total Emissions for Maintena	nce Operations	9,119,448.0	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Total		83,359,757.4	2,509.6	641.4	833.8	54.6	270.5	270.5	128,078.8

12,276,842.03 total gallons of fuel

					En	nissions (tp	/) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,439	27.743.750	81.20	9.61	1.77	0.07	95.79	10.61	10.840.91

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 1E

			En	nissions (tp	y)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,832.32	517.62	686.98	43.63	220.78	220.78	102,641.80
OLF Coupville Aircraft							
Flight Operations	38.6	76.2	1.8	5.0	21.1	21.1	12,083.0
Aircraft Maintenance							
Operations	638.6	47.6	145.0	6.0	28.5	28.5	13,354.0
Employee Commute	81.20	9.61	1.77	0.07	95.79	10.61	10,840.91
Total	2,590.77	650.99	835.53	54.67	366.27	281.09	138,919.68

[|] See Previous Table of this Appendix for Estimated Operations
| See Previous Table of this Appendix for Estimated Operations
| All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
| Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
| Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes
| Employee Commute Emissions
| Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Employee Commute Emissions | Emission

NAS Whidbey Island Complex Annual GHG Emissions, Alternative 1

NAO Willabey Island Complex Almaal Cite	CO2 Emissions (Metric TPY)							
Emission Source	Existing	No Action	Alt 1A	Alt 1B	Alt 1C	Alt 1D	Alt 1E	
Stationary Sources								
tewide Total GHG Emissions (2014 Reported)	13,575	13,575						
New Electricity Building Use (Indirect)	0	0	181	181	181	181	181	
New Natural Gas Building Use (Direct)	0	0	276	276	276	276	276	
Total Change in Stationary CO ₂								
Emissions (MTPY)			456	456	456	456	456	
% increase in Stationary CO ₂ Emissions			3%	3%	3%	3%	3%	
Mobile Sources		-1		_1	-1			
Aircraft Operations	0	0	0	0	0	0	0	
GSE Emissions	130	131	161	154	149	159	151	
Personnel Commute Emissions	0	0	0	0	0	0	0	
Total Mobile CO ₂ Emissions (MTPY)	130	131	161	154	149	159	151	
Change in Mobile CO ₂ Emissions			30	24	19	28	20	
% increase in Mobile CO ₂ Emissions			23%	18%	14%	22%	16%	
Total Change in Emissions (Stationary and Mobile)			486	480	475	484	477	
2013 Total CO2e from all sources in			460	460	4/3	404	4//	
				0.4.400.000				
Washington State ¹ Change in Emissions (Stationary and Mobile)				94,400,000				
as % of Total 2013 CO2e Emissions in								
,			0.000/	0.000/	0.000	0.000/	0.000/	
Washington State 2013 Total CO2 from Transportation in			0.00%	0.00%	0.00%	0.00%	0.00%	
-								
Washington State ¹				40,400,000				
Change in Mobile Emissions as % of Total								
2013 Transportation CO2e Emissions in								
Washington State			0.00%	0.00%	0.00%	0.00%	0.00%	
2013 Total CO2e from Aircraft in								
Washington State ¹				6,570,000				
Change in Aircraft Emissions as % of Total								
2013 Aircraft CO2e Emissions in								
Washington State			0.00%	0.00%	0.00%	0.00%	0.00%	

^{1.} Inventory 1990-2013 (2016). Report to the Legislature on Washington Greenhouse Gas Emissions Inventory: 2010 – 2013 (Publication 16-02-025) October 2016. Retrieved March 29, 2018 from: https://fortress.wa.gov/ecy/publications/documents/1602025.pdf

Key:

TPY = Tons per year

CO₂e = Carbon Dioxide Equivalent

GHG = Greenhouse Gas

metric tons per short ton = 0.907

Alternative 2A High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	7,006	6,030	1,221	3,197	17,454
Interfacility Departures	1,055	564	12	0	1,631
Straight in Arrivals	2,479	2,486	432	1,135	6,532
Overhead Break Arrivals	4,098	3,337	699	1,873	10,007
IFR Arrivals	428	208	90	188	914
Interfacility Arrivals	1,055	564	12	0	1,631
FCLP Ops ²	4,022	2,224	167	0	6,413
Touch & Go Ops ²	5,210	5,452	469	1,026	12,157
Depart-Re-enter Ops ²	2,282	0	439	1,128	3,849
GCA pattern Ops ²	7,675	5,735	483	1,018	14,911
Total	35,310	26,600	4,024	9,565	75,499
OLF Coupeville					
Interfacility Departures	1,055	564	12	0	1,631
Interfacility Arrivals	1,055	564	12	0	1,631
FCLP Ops ²	14,766	7,916	183	0	22,865
Total	16,876	9,044	207	0	26,127
	3				
Maintenance Run Ups (at Aul	Field)				110
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines		4			944
Test Cell Maintenance Run Up	os (at Ault Fiel	d) [*]			

¹ Operations information from Tab SEIS_Alt2AAveYr, workbook Ops Tables MaxYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2A High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

, monauto zatingii rompo		Fuel use	Emissions (tpy) ³						
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,532	15,763,784	688.04	95.23	258.15	10.33	57.56	57.56	23,793.34
Break Arrival LTO ²	12,552	29,237,583	1,329.43	183.44	500.18	19.15	106.40	106.40	44,021.75
FCLP ⁴	3,207	2,263,789	0.80	23.20	0.15	1.48	6.33	6.33	3,606.56
Touch-and-Go ⁴	6,079	4,291,421	1.52	43.98	0.28	2.81	12.01	12.01	6,836.88
Depart and Re-enter ⁴	1,925	2,715,470	0.97	27.86	0.19	1.78	7.59	7.59	4,329.21
GCA Pattern ⁴	7,456	10,519,711	3.77	107.92	0.73	6.89	29.41	29.41	16,771.33
Total Emissions for Ault Fie	ld Flight Operations	64,791,757.3	2,024.5	481.6	759.7	42.4	219.3	219.3	99,359.1
NOLF Coupeville			•						
Interfacility LTO2	1,631	2,256,135	91.77	21.03	3.37	1.48	5.39	5.39	3,437.39
FCLP ⁴	22,865	16,142,690	5.72	165.43	1.05	10.57	45.16	45.16	25,717.75
Interfacility Transit	1,631	983,765	0.35	7.26	0.08	0.64	3.23	3.23	1,569.56
Total Emissions for Coupev	ille Flight Operations	19,382,590.0	97.8	193.7	4.5	12.7	53.8	53.8	30,724.7
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance Operations		9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainter	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		93,371,739.2	2,766.5	723.3	910.4	61.2	301.9	301.9	143,551.9

13,751,360.71 total gallons of fuel

Notes:

- 1 See Previous Table of this Appendix for Estimated Operations 2 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- 3 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
- ⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

					Er	nissions (tr	py) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4.732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556,47

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 2A

		Emissions (tpy)								
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Ault Field Aircraft										
Flight Operations	2,024.53	481.62	759.68	42.44	219.30	219.30	99,359.07			
OLF Coupville Aircraft										
Flight Operations	97.8	193.7	4.5	12.7	53.8	53.8	30,724.7			
Aircraft Maintenance										
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1			
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47			
Total	2,853.02	733.57	912.31	61.24	403.98	313.18	155,108.34			

Alternative 2B High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	6,939	5,970	1,211	3,159	17,279
Interfacility Departures	657	349	14	0	1,020
Straight in Arrivals	2,445	2,483	419	1,098	6,445
Overhead Break Arrivals	4,018	3,270	700	1,823	9,811
IFR Arrivals	478	216	91	238	1,023
Interfacility Arrivals	657	350	14	0	1,021
FCLP Ops ²	10,496	5,660	180	0	16,336
Touch & Go Ops ²	5,210	5,452	469	1,026	12,157
Depart-Re-enter Ops ²	2,282	0	439	1,128	3,849
GCA pattern Ops ²	7,675	5,735	483	1,018	14,911
Total	40,857	29,485	4,020	9,490	83,852
OLF Coupeville					
Interfacility Departures	657	349	14	0	1,020
Interfacility Arrivals	657	350	14	0	1,021
FCLP Ops ²	9,195	4,904	198	0	14,297
Total	10,509	5,603	226	0	16,338
Maria de la Carta	3				
Maintenance Run Ups (at Aul	Field)*				110
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines		4			944
Test Cell Maintenance Run Up	os (at Ault Fiel	d) ⁻			

¹ Operations information from Tab SEIS_Alt2BAveYr, workbook Ops Tables MaxYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2B High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

		Fuel use			E	missions (t	Emissions (tpy) ³					
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Flight Operations												
Ault Field												
Straight-In Arrival LTO ²	6,445	15,553,826	678.88	93.96	254.71	10.19	56.79	56.79	23,476.43			
Break Arrival LTO ²	11,855	27,614,049	1,255.61	173.25	472.41	18.09	100.49	100.49	41,577.27			
FCLP ⁴	8,168	5,766,608	2.04	59.10	0.38	3.78	16.13	16.13	9,187.08			
Touch-and-Go ⁴	6,079	4,291,421	1.52	43.98	0.28	2.81	12.01	12.01	6,836.88			
Depart and Re-enter ⁴	1,925	2,715,470	0.97	27.86	0.19	1.78	7.59	7.59	4,329.21			
GCA Pattern ⁴	7,456	10,519,711	3.77	107.92	0.73	6.89	29.41	29.41	16,771.33			
Total Emissions for Ault Fie	eld Flight Operations	66,461,084.0	1,942.8	506.1	728.7	43.5	222.4	222.4	102,178.2			
NOLF Coupeville			•	•	•	•	•					
Interfacility LTO2	1,020	1,410,949	57.39	13.15	2.11	0.92	3.37	3.37	2,149.68			
FCLP ⁴	14,297	10,093,682	3.57	103.44	0.66	6.61	28.24	28.24	16,080.77			
Interfacility Transit	1,020	615,230	0.22	4.54	0.05	0.40	2.02	2.02	981.58			
Total Emissions for Coupev	ille Flight Operations	12,119,861.0	61.2	121.1	2.8	7.9	33.6	33.6	19,212.0			
Maintenance Operations												
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80			
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77			
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97			
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55			
Total In-frame Maintenance (Operations	9,197,392	644	48	146	6	29	29	13,468			
Total Emissions for Mainter	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1			
Total	-	87.778.337.0	2.648.1	675.2	877.8	57.5	284.8	284.8	134,858.3			

Notes:

 $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Employee Commute Emissions

					Е	missions (t	oy) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 2B

			E	missions (t	py)		
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,942.79	506.07	728.69	43.53	222.43	222.43	102,178.21
OLF Coupville Aircraft							
Flight Operations	61.2	121.1	2.8	7.9	33.6	33.6	19,212.0
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,734.62	685.43	879.64	57.57	386.96	296.16	146,414.80

⁴ Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Alternative 2C High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	6,949	5,987	1,211	3,176	17,323
Interfacility Departures	264	135	10	0	409
Straight in Arrivals	2,488	2,443	406	1,127	6,464
Overhead Break Arrivals	4,000	3,318	699	1,838	9,855
IFR Arrivals	462	226	106	212	1,006
Interfacility Arrivals	264	135	10	0	409
FCLP Ops ²	16,678	9,237	225	0	26,140
Touch & Go Ops ²	5,210	5,452	469	1,026	12,157
Depart-Re-enter Ops ²	2,282	0	439	1,128	3,849
GCA pattern Ops ²	7,675	5,735	483	1,018	14,911
Total	46,272	32,668	4,058	9,525	92,523
OLF Coupeville					
Interfacility Departures	264	135	10	0	409
Interfacility Arrivals	265	135	10	0	410
FCLP Ops ²	3,709	1,884	130	0	5,723
Total	4,238	2,154	150	0	6,542
	3				
Maintenance Run Ups (at Ault	Field)				110
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

¹ Operations information from Tab SEIS_Alt2CAveYr, workbook Ops Tables MaxYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2C High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	,	Fuel use	Emissions (tpy) ³						
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	<u> </u>								
Ault Field									
Straight-In Arrival LTO ²	6,464	15,599,679	680.88	94.24	255.46	10.22	56.96	56.96	23,545.64
Break Arrival LTO ²	11,270	26,251,399	1,193.65	164.70	449.10	17.19	95.54	95.54	39,525.59
FCLP ⁴	13,070	9,227,420	3.27	94.56	0.60	6.04	25.81	25.81	14,700.68
Touch-and-Go ⁴	6,079	4,291,421	1.52	43.98	0.28	2.81	12.01	12.01	6,836.88
Depart and Re-enter ⁴	1,925	2,715,470	0.97	27.86	0.19	1.78	7.59	7.59	4,329.21
GCA Pattern ⁴	7,456	10,519,711	3.77	107.92	0.73	6.89	29.41	29.41	16,771.33
otal Emissions for Ault Field Flight Operation		68,605,098.8	1,884.1	533.3	706.4	44.9	227.3	227.3	105,709.3
NOLF Coupeville			•						
Interfacility LTO2	409	565,763	23.01	5.27	0.85	0.37	1.35	1.35	861.98
FCLP ⁴	5,723	4,040,438	1.43	41.41	0.26	2.65	11.30	11.30	6,437.03
Interfacility Transit	409	246,695	0.09	1.82	0.02	0.16	0.81	0.81	393.59
Total Emissions for Coupey	ille Flight Operations	4,852,896.1	24.5	48.5	1.1	3.2	13.5	13.5	7,692.6
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance (Operations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainte	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		82,655,386.8	2,552.7	629.7	853.7	54.1	269.6	269.6	126,870.0

12,173,105.57 total gallons of fuel

 $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

ı						Е	missions (t	py) ³		
	Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO2
1	Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alterna	ative 2C						
			Eı	nissions (tr	oy)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,884.05	533.26	706.36	44.94	227.32	227.32	105,709.33
OLF Coupville Aircraft							
Flight Operations	24.5	48.5	1.1	3.2	13.5	13.5	7,692.6
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,639,23	639 99	855 62	54 22	371 69	280.89	138 426 50

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Emissions calculated using ALSO Report emission factors. #Ops A El (tils emission/p)/2007

Touch and GoFCLP, and Depart&Renetric/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes Employee Commute Emissions

Alternative 2D High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	7,006	6,030	1,221	3,197	17,454
Interfacility Departures	923	494	11	0	1,428
Straight in Arrivals	2,479	2,486	432	1,135	6,532
Overhead Break Arrivals	4,098	3,337	699	1,873	10,007
IFR Arrivals	428	208	90	188	914
Interfacility Arrivals	923	494	11	0	1,428
FCLP Ops ²	6,033	3,336	251	0	9,620
Touch & Go Ops ²	5,210	5,452	469	1,026	12,157
Depart-Re-enter Ops ²	2,282	0	439	1,128	3,849
GCA pattern Ops ²	7,675	5,735	483	1,018	14,911
Total	37,057	27,572	4,106	9,565	78,300
OLF Coupeville					
Interfacility Departures	923	494	11	0	1,428
Interfacility Arrivals	924	494	11	0	1,429
FCLP Ops ²	12,920	6,927	160	0	20,007
Total	14,767	7,915	182	0	22,864
	3				
Maintenance Run Ups (at Ault	Field)				110
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

¹ Operations information from Tab SEIS_Alt2DAveYr, workbook Ops Tables MaxYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2D High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

, and the second second	Ì	Fuel use	Í		Е	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	СО	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,532	15,763,784	688.04	95.23	258.15	10.33	57.56	57.56	23,793.34
Break Arrival LTO ²	12,349	28,764,732	1,307.93	180.47	492.09	18.84	104.68	104.68	43,309.80
FCLP ⁴	4,810	3,395,860	1.20	34.80	0.22	2.22	9.50	9.50	5,410.12
Touch-and-Go ⁴	6,079	4,291,421	1.52	43.98	0.28	2.81	12.01	12.01	6,836.88
Depart and Re-enter ⁴	1,925	2,715,470	0.97	27.86	0.19	1.78	7.59	7.59	4,329.21
GCA Pattern ⁴	7,456	10,519,711	3.77	107.92	0.73	6.89	29.41	29.41	16,771.33
Total Emissions for Ault Fiel	d Flight Operations	65,450,977.0	2,003.4	490.3	751.7	42.9	220.8	220.8	100,450.7
NOLF Coupeville									
Interfacility LTO2	1,428	1,975,329	80.35	18.41	2.95	1.29	4.72	4.72	3,009.56
FCLP ⁴	20,007	14,124,942	5.00	144.75	0.92	9.25	39.51	39.51	22,503.17
Interfacility Transit	1,428	861,322	0.31	6.35	0.07	0.56	2.82	2.82	1,374.21
Total Emissions for Coupevil	le Flight Operations	16,961,592.6	85.7	169.5	3.9	11.1	47.1	47.1	26,886.9
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		91,609,961.6	2,733.2	707.8	901.8	60.0	296.6	296.6	140,805.7

13,491,894.19 total gallons of fuel

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
- ³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

					E	missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 2D

				missions (tpy)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	2,003.43	490.26	751.66	42.87	220.75	220.75	100,450.68
OLF Coupville Aircraft							
Flight Operations	85.7	169.5	3.9	11.1	47.1	47.1	26,886.9
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,819.74	718.01	903.73	60.08	398.71	307.91	152,362.19

Emissions calculated using ALSO Report emission factors. #Ops A El (tils emission/p)/2007

Touch and GoFCLP, and Depart&Renetric/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes Employee Commute Emissions

Alternative 2E High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	5	16
# Aircraft	63	25	5	25	118
Departures	6,949	5,987	1,211	3,176	17,323
Interfacility Departures	396	203	15	0	614
Straight in Arrivals	2,488	2,443	406	1,127	6,464
Overhead Break Arrivals	4,000	3,318	699	1,838	9,855
IFR Arrivals	462	226	106	212	1,006
Interfacility Arrivals	398	203	15	0	616
FCLP Ops ²	14,593	8,082	197	0	22,872
Touch & Go Ops ²	5,210	5,452	469	1,026	12,157
Depart-Re-enter Ops ²	2,282	0	439	1,128	3,849
GCA pattern Ops ²	7,675	5,735	483	1,018	14,911
Total	44,453	31,649	4,040	9,525	89,667
OLF Coupeville					
Interfacility Departures	396	203	15	0	614
Interfacility Arrivals	396	203	15	0	614
FCLP Ops ²	5,564	2,826	195	0	8,585
Total	6,356	3,232	225	0	9,813
	3				
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944
Test Cell Maintenance Run Up	os (at Ault Fiel	d) ⁴			

¹ Operations information from Tab SEIS_Alt2EAveYr, workbook Ops Tables MaxYr_Alt2_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 2E High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

rate man e z z mgm rempe .		Fuel use	Í		Е	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,464	15,599,679	680.88	94.24	255.46	10.22	56.96	56.96	23,545.64
Break Arrival LTO ²	11,477	26,733,567	1,215.58	167.73	457.35	17.51	97.29	97.29	40,251.57
FCLP ⁴	11,436	8,073,816	2.86	82.74	0.53	5.29	22.59	22.59	12,862.81
Touch-and-Go ⁴	6,079	4,291,421	1.52	43.98	0.28	2.81	12.01	12.01	6,836.88
Depart and Re-enter ⁴	1,925	2,715,470	0.97	27.86	0.19	1.78	7.59	7.59	4,329.21
GCA Pattern ⁴	7,456	10,519,711	3.77	107.92	0.73	6.89	29.41	29.41	16,771.33
Total Emissions for Ault Fiel	d Flight Operations	67,933,663.3	1,905.6	524.5	714.5	44.5	225.8	225.8	104,597.4
NOLF Coupeville									
Interfacility LTO2	614	849,336	34.55	7.92	1.27	0.56	2.03	2.03	1,294.03
FCLP ⁴	8,585	6,061,010	2.15	62.11	0.39	3.97	16.96	16.96	9,656.11
Interfacility Transit	614	370,344	0.13	2.73	0.03	0.24	1.21	1.21	590.87
Total Emissions for Coupevil	le Flight Operations	7,280,690.3	36.8	72.8	1.7	4.8	20.2	20.2	11,541.0
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		84,411,745.6	2,586.5	645.2	862.5	55.3	274.8	274.8	129,606.5

12,431,774.02 total gallons of fuel

 $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

					E				
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,732	29,575,000	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 2E

			E	missions (tpy)		
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Ault Field Aircraft							
Flight Operations	1,905.57	524.46	714.53	44.50	225.85	225.85	104,597.45
OLF Coupville Aircraft							
Flight Operations	36.8	72.8	1.7	4.8	20.2	20.2	11,541.0
Aircraft Maintenance							
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Employee Commute	86.56	10.24	1.88	0.08	102.12	11.31	11,556.47
Total	2,673.04	655.46	864.36	55.37	376.95	286.15	141,163.02

³ Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

Emissions calculated using ALSO Report emission factors. #Ops A El (tils emission/p)/2007

Touch and GoFCLP, and Depart&Renetric/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes Employee Commute Emissions

NAS Whidbey Island Complex Annual GHG Emissions, Alternative 2

NAS Whidbey Island Complex Annual		7	CO2 Emi	ssions (Metric 1	ГРҮ)		
Emission Source	Existing	No Action	Alt 2A	Alt 2B	Alt 2C	Alt 2D	Alt 2E
Stationary Sources							
e Total GHG Emissions (2014 Reported)	13,575	13,575					
New Electricity Building Use (Indirect)	0	0	181	181	181	181	181
New Natural Gas Building Use (Direct)	0	0	276	276	276	276	276
Total Change in Stationary CO ₂							
Emissions (MTPY)			456	456	456	456	456
% increase in Stationary CO ₂							
Emissions			3%	3%	3%	3%	3%
Mobile Sources							
Aircraft Operations	90,279	89,511	130,202	122,317	115,071	127,711	117,553
GSE Emissions	130	131	167	160	155	165	157
Personnel Commute Emissions	9,091	9,091	10,482	10,482	10,482	10,482	10,482
Total Makila COO Emissions (MTDV)	00.400	00.700	440.050	400.050	405 700	400.050	400 400
Total Mobile CO2 Emissions (MTPY)	99,499	98,733	140,850	132,958	125,708	138,358	128,192
Change in Mobile CO ₂ Emissions			42,118	34,226	26,975	39,625	29,459
% increase in Mobile CO2 Emissions			42%	34%	27%	40%	30%
Total Change in Emissions						70.0	
(Stationary and Mobile)			42,574	34,682	27,432	40,082	29,916
2013 Total CO2e from all sources in							
Washington State ¹				94,400,000			
Change in Emissions (Stationary and							
Mobile) as % of Total 2013 CO2e							
Emissions in Washington State			0.05%	0.04%	0.03%	0.04%	0.03%
2013 Total CO2 from Transportation in						•	
Washington State ¹				40,400,000			
Change in Mobile Emissions as % of				.,,			
Total 2013 Transportation CO2e							
Emissions in Washington State			0.10%	0.08%	0.07%	0.10%	0.07%
2013 Total CO2e from Aircraft in						'	
Washington State ¹				6,570,000			
Change in Aircraft Emissions as % of				,,			
Total 2013 Aircraft CO2e Emissions in							
Washington State			0.64%	0.52%	0.41%	0.60%	0.45%

 $^{1.\} Inventory\ 1990-2013\ (2016).\ Report\ to\ the\ Legislature\ on\ Washington\ Greenhouse\ Gas\ Emissions\ Inventory:\ 2010-2013\ (Publication\ 16-02-025)\ October\ 2016.\ Retrieved\ March\ 29,\ 2018\ from:\ https://fortress.wa.gov/ecy/publications/documents/1602025.pdf$

metric tons per short ton

0.907

TPY = Tons per year CO₂e = Carbon Dioxide Equivalent

GHG = Greenhouse Gas

Alternative 3A High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	6,955	5,973	1,212	2,694	16,834
Interfacility Departures	1,058	565	13	0	1,636
Straight in Arrivals	2,503	2,413	426	918	6,260
Overhead Break Arrivals	3,894	3,292	715	1,773	9,674
IFR Arrivals	557	268	71	281	1,177
Interfacility Arrivals	1,059	565	13	0	1,637
FCLP Ops ²	4,120	2,205	142	0	6,467
Touch & Go Ops ²	5,050	5,312	531	1,041	11,934
Depart-Re-enter Ops ²	2,311	0	444	1,019	3,774
GCA pattern Ops ²	7,546	5,794	545	1,025	14,910
Total	35,053	26,387	4,112	8,751	74,303
OLF Coupeville					
Interfacility Departures	1,058	565	13	0	1,636
Interfacility Arrivals	1,059	565	13	0	1,637
FCLP Ops ²	14,829	7,905	182	0	22,916
Total	16,946	9,035	208	0	26,189
Maria de la Caractería de la Caractería de la Caractería de la Caractería de la Caractería de la Caractería de	x3				
Maintenance Run Ups (at Ault Water Wash	r Field)*				118
Low Power, one engine					1,770
Low Power, two engines					3,540
Low rower, two engines					3,340

¹ Operations information from Tab SEIS_Alt3AAveYr, workbook Ops Tables MaxYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3A High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	` '	Fuel use	Í		Е	missions (t	py) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	·								
Ault Field									
Straight-In Arrival LTO ²	6,260	15,107,362	659.39	91.27	247.40	9.90	55.16	55.16	22,802.55
Break Arrival LTO ²	12,488	29,088,507	1,322.65	182.50	497.63	19.05	105.86	105.86	43,797.29
FCLP ⁴	3,234	2,282,851	0.81	23.39	0.15	1.50	6.39	6.39	3,636.93
Touch-and-Go ⁴	5,967	4,212,702	1.49	43.17	0.27	2.76	11.78	11.78	6,711.47
Depart and Re-enter ⁴	1,887	2,662,557	0.95	27.31	0.18	1.74	7.44	7.44	4,244.85
GCA Pattern ⁴	7,455	10,519,005	3.76	107.91	0.73	6.89	29.41	29.41	16,770.21
Total Emissions for Ault Fie	ld Flight Operations	63,872,983.9	1,989.1	475.6	746.4	41.8	216.0	216.0	97,963.3
NOLF Coupeville									
Interfacility LTO2	1,636	2,263,052	92.05	21.10	3.38	1.48	5.40	5.40	3,447.93
FCLP ⁴	22,916	16,178,696	5.73	165.80	1.05	10.60	45.26	45.26	25,775.11
Interfacility Transit	1,636	986,781	0.36	7.28	0.08	0.65	3.24	3.24	1,574.37
Total Emissions for Coupevi	lle Flight Operations	19,428,528.2	98.1	194.2	4.5	12.7	53.9	53.9	30,797.4
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance C	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainter	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		92,498,904.1	2,731.3	717.7	897.1	60.6	298.7	298.7	142,228.8

98,904.1 2,731.3 13,622,813.56 total gallons of fuel

Notes:

- See Previous Table of this Appendix for Estimated Operations
 All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
- 4 Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes Employee Commute Emissions

					Е	missions (t	py) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4.445	27 781 250	81 31	9.62	1 77	0.07	95 92	10.63	10 855 56

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions Alternative 3A

Total Emissions, Alterna	ative 3A									
	Emissions (tpy)									
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Ault Field Aircraft										
Flight Operations	1,989.06	475.56	746.37	41.84	216.05	216.05	97,963.31			
OLF Coupville Aircraft										
Flight Operations	98.1	194.2	4.5	12.7	53.9	53.9	30,797.4			
Aircraft Maintenance										
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1			
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56			
Total	2.812.60	727 34	898 90	60 66	394 66	309 36	153 084 38			

Alternative 3B High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	6,943	5,964	1,210	3,101	17,218
Interfacility Departures	657	354	12	0	1,023
Straight in Arrivals	2,528	2,432	416	1,087	6,463
Overhead Break Arrivals	3,899	3,216	722	1,752	9,589
IFR Arrivals	514	316	72	262	1,164
Interfacility Arrivals	657	353	12	0	1,022
FCLP Ops ²	10,576	5,655	139	0	16,370
Touch & Go Ops ²	5,050	5,312	531	1,041	11,934
Depart-Re-enter Ops ²	2,311	0	444	1,019	3,774
GCA pattern Ops ²	7,546	5,794	545	1,025	14,910
Total	40,681	29,396	4,103	9,287	83,467
OLF Coupeville					
Interfacility Departures	657	354	12	0	1,023
Interfacility Arrivals	657	353	12	0	1,022
FCLP Ops ²	9,209	4,955	166	0	14,330
Total	10,523	5,662	190	0	16,375
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash					118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944
Test Cell Maintenance Run U	os (at Ault Fiel	d) ⁴			

¹ Operations information from Tab SEIS_Alt3BAveYr, workbook Ops Tables MaxYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3B High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

7 atomativo o 2 migni rompo	Ì	Fuel use	Í		E	nissions (t	oy) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,463	15,597,266	680.77	94.23	255.43	10.22	56.95	56.95	23,542.00
Break Arrival LTO ²	11,775	27,427,704	1,247.14	172.08	469.22	17.97	99.82	99.82	41,296.70
FCLP ⁴	8,185	5,778,610	2.05	59.22	0.38	3.78	16.17	16.17	9,206.20
Touch-and-Go4	5,967	4,212,702	1.49	43.17	0.27	2.76	11.78	11.78	6,711.47
Depart and Re-enter ⁴	1,887	2,662,557	0.95	27.31	0.18	1.74	7.44	7.44	4,244.85
GCA Pattern ⁴	7,455	10,519,005	3.76	107.91	0.73	6.89	29.41	29.41	16,770.21
Total Emissions for Ault Fie	ld Flight Operations	66,197,843.4	1,936.2	503.9	726.2	43.4	221.6	221.6	101,771.4
NOLF Coupeville									
Interfacility LTO2	1,023	1,415,099	57.56	13.19	2.12	0.93	3.38	3.38	2,156.01
FCLP ⁴	14,330	10,116,980	3.58	103.68	0.66	6.63	28.30	28.30	16,117.88
Interfacility Transit	1,023	617,040	0.22	4.55	0.05	0.40	2.02	2.02	984.46
Total Emissions for Coupevi	lle Flight Operations	12,149,118.4	61.4	121.4	2.8	8.0	33.7	33.7	19,258.4
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		87,544,353.7	2,641.6	673.3	875.3	57.3	284.1	284.1	134,497.9

12,893,130.15 total gallons of fuel

Notes:

					E	missions (t	oy) ³		
Population	No. of Vehicles ¹	VMT	со	NO _x	НС	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

¹ Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 3B

		Emissions (tpy)									
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂				
Ault Field Aircraft											
Flight Operations	1,936.17	503.93	726.21	43.36	221.57	221.57	101,771.43				
OLF Coupville Aircraft											
Flight Operations	61.4	121.4	2.8	8.0	33.7	33.7	19,258.4				
Aircraft Maintenance											
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1				
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56				
Total	2,722.93	682.96	877.05	57.41	379.99	294.69	145,353.44				

² All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival
3 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
4 Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

Alternative 3C High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	6,912	5,923	1,205	3,082	17,122
Interfacility Departures	265	135	10	0	410
Straight in Arrivals	2,470	2,478	414	1,122	6,484
Overhead Break Arrivals	3,949	3,210	703	1,736	9,598
IFR Arrivals	493	233	88	225	1,039
Interfacility Arrivals	266	135	10	0	411
FCLP Ops ²	16,839	9,198	153	0	26,190
Touch & Go Ops ²	5,050	5,312	531	1,041	11,934
Depart-Re-enter Ops ²	2,311	0	444	1,019	3,774
GCA pattern Ops ²	7,546	5,794	545	1,025	14,910
Total	46,101	32,418	4,103	9,250	91,872
OLF Coupeville					
Interfacility Departures	265	135	10	0	410
Interfacility Arrivals	266	135	10	0	411
FCLP Ops ²	3,720	1,886	130	0	5,736
Total	4,251	2,156	150	0	6,557
Maintenance Run Ups (at Ault	Field) ³				
Water Wash	. i iciu)				118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

¹ Operations information from Tab SEIS_Alt3CAveYr, workbook Ops Tables MaxYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3C High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

	· · · · · · · · · · · · · · · · · · ·	Fuel use			En	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations	·								
Ault Field									
Straight-In Arrival LTO ²	6,484	15,647,945	682.99	94.53	256.26	10.25	57.14	57.14	23,618.49
Break Arrival LTO ²	11,048	25,734,291	1,170.14	161.46	440.25	16.86	93.65	93.65	38,747.00
FCLP ⁴	13,095	9,245,070	3.27	94.74	0.60	6.06	25.86	25.86	14,728.80
Touch-and-Go ⁴	5,967	4,212,702	1.49	43.17	0.27	2.76	11.78	11.78	6,711.47
Depart and Re-enter ⁴	1,887	2,662,557	0.95	27.31	0.18	1.74	7.44	7.44	4,244.85
GCA Pattern ⁴	7,455	10,519,005	3.76	107.91	0.73	6.89	29.41	29.41	16,770.21
Total Emissions for Ault Fie	eld Flight Operations	68,021,569.8	1,862.6	529.1	698.3	44.6	225.3	225.3	104,820.8
NOLF Coupeville			•				•		
Interfacility LTO2	410	567,146	23.07	5.29	0.85	0.37	1.35	1.35	864.09
FCLP ⁴	5,736	4,049,616	1.43	41.50	0.26	2.65	11.33	11.33	6,451.65
Interfacility Transit	410	247,298	0.09	1.82	0.02	0.16	0.81	0.81	394.56
Total Emissions for Coupev	ille Flight Operations	4,864,060.5	24.6	48.6	1.1	3.2	13.5	13.5	7,710.3
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance (Operations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainter	nance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		82,083,022.3	2,531.3	625.7	845.7	53.8	267.6	267.6	125,999.2

12,088,810.35 total gallons of fuel

Notes:

			Emissions (tpy) ³							
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56	

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 3C

	Emissions (tpy)									
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂			
Ault Field Aircraft										
Flight Operations	1,862.61	529.13	698.30	44.55	225.29	225.29	104,820.82			
OLF Coupville Aircraft										
Flight Operations	24.6	48.6	1.1	3.2	13.5	13.5	7,710.3			
Aircraft Maintenance										
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1			
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56			
Total	2,612.60	635.35	847.44	53.84	363.50	278.20	136,854.78			

 $^{^1\,}$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

The latter of the latter

Alternative 3D High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grove	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	6,955	5,973	1,212	2,694	16,834
Interfacility Departures	926	494	11	0	1,431
Straight in Arrivals	2,503	2,413	426	918	6,260
Overhead Break Arrivals	3,894	3,292	715	1,773	9,674
IFR Arrivals	557	268	71	281	1,177
Interfacility Arrivals	927	494	11	0	1,432
FCLP Ops ²	6,180	3,308	213	0	9,701
Touch & Go Ops ²	5,050	5,312	531	1,041	11,934
Depart-Re-enter Ops ²	2,311	0	444	1,019	3,774
GCA pattern Ops ²	7,546	5,794	545	1,025	14,910
Total	36,849	27,348	4,179	8,751	77,127
OLF Coupeville					
Interfacility Departures	927	494	11	0	1,432
Interfacility Arrivals	926	494	11	0	1,431
FCLP Ops ²	12,975	6,917	159	0	20,051
Total	14,828	7,905	181	0	22,914
Maintenance Run Ups (at Aul	t Field) ³				
Water Wash	r reiu)				118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944

¹ Operations information from Tab SEIS_Alt3DAveYr, workbook Ops Tables MaxYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3D High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

, and the desired the second	· · · · · · · · · · · · · · · · · · ·	Fuel use	Í		En	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,260	15,107,362	659.39	91.27	247.40	9.90	55.16	55.16	22,802.55
Break Arrival LTO ²	12,283	28,610,997	1,300.94	179.51	489.46	18.74	104.12	104.12	43,078.33
FCLP ⁴	4,851	3,424,453	1.21	35.09	0.22	2.24	9.58	9.58	5,455.67
Touch-and-Go ⁴	5,967	4,212,702	1.49	43.17	0.27	2.76	11.78	11.78	6,711.47
Depart and Re-enter ⁴	1,887	2,662,557	0.95	27.31	0.18	1.74	7.44	7.44	4,244.85
GCA Pattern ⁴	7,455	10,519,005	3.76	107.91	0.73	6.89	29.41	29.41	16,770.21
Total Emissions for Ault Fiel	d Flight Operations	64,537,076.0	1,967.8	484.3	738.3	42.3	217.5	217.5	99,063.1
NOLF Coupeville									
Interfacility LTO2	1,432	1,980,862	80.57	18.47	2.96	1.30	4.73	4.73	3,017.99
FCLP ⁴	20,051	14,156,006	5.01	145.07	0.92	9.27	39.60	39.60	22,552.66
Interfacility Transit	1,432	863,735	0.31	6.37	0.07	0.57	2.83	2.83	1,378.06
Total Emissions for Coupevi	lle Flight Operations	17,000,602.4	85.9	169.9	4.0	11.1	47.2	47.2	26,948.7
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		90,735,070.4	2,697.7	702.2	888.5	59.4	293.5	293.5	139,479.9

13,363,044.23 total gallons of fuel

Notes:

			Emissions (tpy) ³							
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56	

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 3D

		Emissions (tpy)													
Activity	СО	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂								
Ault Field Aircraft															
Flight Operations	1,967.75	484.27	738.28	42.27	217.50	217.50	99,063.09								
OLF Coupville Aircraft															
Flight Operations	85.9	169.9	4.0	11.1	47.2	47.2	26,948.7								
Aircraft Maintenance															
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1								
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56								
Total	2,779.05	711.78	890.24	59.50	389.38	304.08	150,335.46								

 $^{^1\,}$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000
 Touch and Go/FCLP, and Depart&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes Employee Commute Emissions

Alternative 3E High Tempo Year EA-18G (Growler) Operations NAS Whidbey Island Complex

		EA 18G (Grow	ler) Operations		
Ault Field	CVW	FRS	RES	EXP	EA-18G Total
# Squadrons	9	1	1	3	14
# Aircraft	63	24	5	26	118
Departures	6,912	5,923	1,205	3,082	17,122
Interfacility Departures	398	203	15	0	616
Straight in Arrivals	2,470	2,478	414	1,122	6,484
Overhead Break Arrivals	3,949	3,210	703	1,736	9,598
IFR Arrivals	493	233	88	225	1,039
Interfacility Arrivals	398	203	15	0	616
FCLP Ops ²	14,734	8,048	134	0	22,916
Touch & Go Ops ²	5,050	5,312	531	1,041	11,934
Depart-Re-enter Ops ²	2,311	0	444	1,019	3,774
GCA pattern Ops ²	7,546	5,794	545	1,025	14,910
Total	44,261	31,404	4,094	9,250	89,009
OLF Coupeville					
Interfacility Departures	398	203	15	0	616
Interfacility Arrivals	398	203	15	0	616
FCLP Ops ²	5,580	2,829	195	0	8,604
Total	6,376	3,235	225	0	9,836
Maintananaa Dun IIna (at Aul	4 E:-14/3				
Maintenance Run Ups (at Aul Water Wash	t Field)				118
Low Power, one engine					1,770
Low Power, two engines					3,540
High Power, two engines					944
Test Cell Maintenance Run U	ps (at Ault Fiel	d) ⁴			

¹ Operations information from Tab SEIS_Alt3EAveYr, workbook Ops Tables MaxYr_Alt3_20171018.xlsx. Preliminary data provided by Wyle from "Aircraft Noise Study for Naval Air Station Whidbey Island Complex, Washington (Wyle report X-X), Wyle Laboratories, TBD.

² One circuit counted at two operations (one take of and one landing), while emission factors are applied to the entire circuit--therefore reported operations on air tables will be half operations reported by noise analysis as listed in these tables

³ Maintenance run ups from "Alternates Static Ops.xls" from Wyle 12/16/2015

⁴ Out-of-Frame testing of F414 engines will not be performed at the test cell facilities at NAS Whidbey Island. All engine testing is assumed to be In-frame testing, Source: email from CDR Sean Michaels, May 11, 2016.

Alternative 3E High Tempo Year EA-18G (Growler) Air Emissions, NAS Whidbey Island Complex

		Fuel use			En	nissions (tp	y) ³		
Operation	No. of Operations ¹	(lbs)	CO	NO _x	VOC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Flight Operations									
Ault Field									
Straight-In Arrival LTO ²	6,484	15,647,945	682.99	94.53	256.26	10.25	57.14	57.14	23,618.49
Break Arrival LTO ²	11,253	26,211,800	1,191.85	164.46	448.42	17.17	95.39	95.39	39,465.96
FCLP ⁴	11,458	8,089,348	2.86	82.90	0.53	5.30	22.63	22.63	12,887.56
Touch-and-Go ⁴	5,967	4,212,702	1.49	43.17	0.27	2.76	11.78	11.78	6,711.47
Depart and Re-enter ⁴	1,887	2,662,557	0.95	27.31	0.18	1.74	7.44	7.44	4,244.85
GCA Pattern ⁴	7,455	10,519,005	3.76	107.91	0.73	6.89	29.41	29.41	16,770.21
Total Emissions for Ault Fie	ld Flight Operations	67,343,357.7	1,883.9	520.3	706.4	44.1	223.8	223.8	103,698.5
NOLF Coupeville				-					
Interfacility LTO2	616	852,103	34.66	7.94	1.27	0.56	2.03	2.03	1,298.24
FCLP ⁴	8,604	6,074,424	2.15	62.25	0.40	3.98	16.99	16.99	9,677.48
Interfacility Transit	616	371,551	0.13	2.74	0.03	0.24	1.22	1.22	592.80
Total Emissions for Coupevi	lle Flight Operations	7,298,077.2	36.9	72.9	1.7	4.8	20.2	20.2	11,568.5
Maintenance Operations									
Water Wash	118	15,576	0.67	0.028	0.51	0.010	0.09	0.09	21.80
Low Power, one engine	1,770	644,398	30.23	1.07	23.12	0.42	3.89	3.89	960.77
Low Power, two engines	3,540	2,519,300	120.88	4.09	92.46	1.65	15.56	15.56	3,750.97
High Power, two engines	944	6,018,118	492.30	42.80	30.15	3.94	9.26	9.26	8,734.55
Total In-frame Maintenance O	perations	9,197,392	644	48	146	6	29	29	13,468
Total Emissions for Mainten	ance Operations	9,197,392.0	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1
Total		83,838,826.9	2,564.9	641.2	854.3	54.9	272.8	272.8	128,735.2

12,347,397.19 total gallons of fuel

116,762.79

Notes:

- $^1\,$ See Previous Table of this Appendix for Estimated Operations $^2\,$ All LTOs represent 2 operations, a Departure and Break or Straight-In Arrival

					Er	nissions (tr	py) ³		
Population	No. of Vehicles ¹	VMT	СО	NO _x	нс	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Associated Personnel	4,445	27,781,250	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56

Based on one vehicle per person, Total Military and Non-Military personnel from NAS whidbey island loading sheet master (March 2015).xls

Total Emissions, Alternative 3E

_	Emissions (tpy)													
Activity	CO	NO _x	HC	SO ₂	PM ₁₀	PM _{2.5}	CO ₂							
Ault Field Aircraft														
Flight Operations	1,883.91	520.28	706.39	44.11	223.80	223.80	103,698.55							
OLF Coupville Aircraft														
Flight Operations	36.9	72.9	1.7	4.8	20.2	20.2	11,568.5							
Aircraft Maintenance														
Operations	644.1	48.0	146.2	6.0	28.8	28.8	13,468.1							
Employee Commute	81.31	9.62	1.77	0.07	95.92	10.63	10,855.56							
Total	2,646.25	650.83	856.10	54.99	368.76	283.46	139,590.72							

A LTOs represent 2 operations, a Departure and Beach of Standagher Harring

3 Emissions calculated using AESO Report emission factors: #Ops x EF(lbs emission/op)/2000

4 Touch and Go/FCLP, and Departd&Reenter/GCA Pattern operations are counted as two operations in Wyle calculations, but only once for air emission calculation purposes

Employee Commute Emissions

NAS Whidbey Island Complex Annual GHG Emissions, Alternative 3

				nissions (Metri			
Emission Source	Existing	No Action	Alt 3A	Alt 3B	Alt 3C	Alt 3D	Alt 3E
Stationary Sources							
Sitewide Total GHG Emissions (2014 Reported)	13,575	13,575					
New Electricity Building Use (Indirect)	0	0	181	181	181	181	181
New Natural Gas Building Use (Direct)	0	0	276	276	276	276	276
Total Change in Stationary CO ₂ Emissions							
(MTPY)			456	456	456	456	456
% increase in Stationary CO ₂ Emissions			3%	3%	3%	3%	3%
Mobile Sources							
Aircraft Operations	90,279	89,511	129,002	121,990	114,281	126,508	116,763
GSE Emissions	130	131	162	160	153	160	155
Personnel Commute Emissions	9,091	9,091	9,846	9,846	9,846	9,846	9,846
Total Mobile CO2 Emissions (MTPY)	99,499	98,733	139,009	131,995	124,281	136,514	126,764
Change in Mobile CO ₂ Emissions			40,277	33,263	25,548	37,782	28,031
% increase in Mobile CO2 Emissions			40%	33%	26%	38%	28%
Total Change in Emissions (Stationary and							
Mobile)			40,733	33,719	26,004	38,238	28,488
2013 Total CO2e from all sources in Washington							
State ¹				94,400,000			
Change in Emissions (Stationary and Mobile) as							
% of Total 2013 CO2e Emissions in Washington							
State			0.04%	0.04%	0.03%	0.04%	0.03%
2013 Total CO2 from Transportation in				-			
Washington State ¹				40,400,000			
Change in Mobile Emissions as % of Total 2013				,,			
Transportation CO2e Emissions in Washington							
State			0.10%	0.08%	0.06%	0.09%	0.07%
2013 Total CO2e from Aircraft in Washington			0.00,0		010070		
State ¹				6.570.000			
State				0,370,000			
Change in Aircraft Emissions as % of Total 2013							
Aircraft CO2e Emissions in Washington State			0.61%	0.51%	0.39%	0.58%	0.43%
1 . Inventory 1990-2013 (2016). Report to the Legislature on	Washington Green	house Gas Emission					
2018 from: https://fortress.wa.gov/ecy/publications/document			•	`	,		,
metric tons per short ton	0.907						
TPY = Tons per year							
CO ₂ e = Carbon Dioxide Equivalent							
GHG = Greenhouse Gas							

GHG = Greenhouse Gas

Onroad Vehicle Exhaust Emission Factors

			Exhaust Emission Factor ¹ (g/VMT)								Emis Fac	Dust ssion tor ^d MT)	Total PM Emission Factor ^e (g/VMT)	
Equipment Type	Fuel Type	voc	СО	NO _x	SO ₂	PM ₁₀	PM _{2.5}	CH4	N2O	CO ₂	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
Cars and Light Trucks	Gasoline	0.06	2.66	0.31	0.0024	0.0066	0.0058	0.0038	0.0021	354	3.13	0.341	3.13	0.347
Delivery Vehicles	Diesel	0.28	1.10	8.06	0.158	0.17	0.17			1,400	3.13	0.341	3.30	0.511

- 1. MOVES Onroad run for analysis year 2017, Island Count, WA. Includes weekdays and weekends, January through December, all hours of day. 'Cars and Light Trucks' Assumes 50% Passenger Car, 50% Passenger Truck
- d. See emission factor derivation table below.
- e. Sum of exhaust and road dust emission factors.

Paved Roads - Emission Factor Derivation												
$E = (k(sL/2)^{0.65}(W/3)^{1.5}-C)$		AP-42 Se	ction 13.2	1 (11/06 version)								
where:												
E =	particulate en	ission fact	or (lb/VM	T)								
k = particle size multiplier												
sL =	sL = road surface silt loading (g/m2)											
W =	average vehic	le weight (tons)									
C =	emission facto	or for 1980	's vehicle	fleet exhaust, break wear and tire wear								
Parameter	Units	PM ₁₀	PM _{2.5}	Reference								
Mean Vehicle Weight	tons	3	3	Assumption								
k factor	g/VMT	7.3	1.1	Table 13.2-1.1								
Silt Loading, sL	g/m ²	0.6	0.6	Table 13.2.1-3								
Emission factor, C	g/VMT	0.2119	0.1617	Table 13.2.1-2								
Emission factor, E	g/VMT	3.13	0.341	Table 13.2.1-3								

Ground Transportation Vehicle Emissions for Existing POV: Growler Squadron Personnel only

					Emission Factors (lbs/mi) ¹						Emissions (tpy)							
Source			Annual days of Commute	Total Annual Miles ³	voc	со	NO _x	SO₂	CO ₂	PM ₁₀	PM _{2.5}	voc	со	NO _x	SO₂	CO ₂	PM ₁₀	PM _{2.5}
No Action																		
Total Military and Non Military Personnel	4,104	25	250	25,650,000	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.63	75.07	8.88	0.067	10023	88.56	9.81
Alternative 1								•										
Total Military and Non Military Personnel	4,439	25	250	27,743,750	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.77	81.20	9.61	0.072	10841	95.79	10.61
Change in Personnel	335	25	250	2,093,750	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	0.13	6.13	0.73	0.005	818	7.23	0.80
Alternative 2																		
Total Military and Non Military Personnel	4,732	25	250	29,575,000	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.88	86.56	10.24	0.077	11556	102.12	11.31
Change in Personnel	628	25	250	3,925,000	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	0.25	11.49	1.36	0.010	1534	13.55	1.50
Alternative 3				•				•										
Total Military and Non Military Personnel	4,445	25	250	27,781,250	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	1.77	81.31	9.62	0.072	10856	95.92	10.63
Change in Personnel	341	25	250	2,131,250	0.0001	0.0059	0.0007	0.000005	0.7815	0.0069	0.0008	0.14	6.24	0.74	0.006	833	7.36	0.82

See Emission factors in Previous Table of this Appendix

 $^{^2}$ Assumes one vehicle per person, based on Total Military personnel at NAS Whidbey island, revised 2017

³ Based on 250 days for commute

GSE Equipment Exhaust Emission Factors and Estimated Emissions

Equipment types, sizes, operations, ratio to LTOs and emission factors from those listed for NAS Lemoore in Navy F-35c West Coast Conformity Determination
All NAS Whidbey Equipment types, sizes, operations and emissions estimated based NAS Lemoore data and ratio of NAS Whidbey LTOs to NAS LeMoore LTOs
NAS Whidbey LTOs = Departures + Interfacility Departures

GSE Equipment Exhaust Emission Factors	LeMoore Baseline LTO: 32966
Size ¹	

GSE Equipment Exhaust Er	ilission i actors		Leivioui	e Baseline LTO:	32300																					
	Size ¹									Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Number of Equipment	Gallons fuel/unit/LTO		Annual hours per unit	Fuel Type	Load Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH ₄	N ₂ O	NO _X	VOC	CO lbs/vear	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH ₄	N ₂ O	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	72.29	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	1,160.76	24.18	657.76	0.50	38.69	37.48		9.84		173,734.55
Tow Tractor	192	1	0.0003	10.67	0.93	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.32	0.01	0.38	0.00	0.00	0.00	100.38	0.01	0.00	101.29
Turbine	396	5	0.0002	22.00	0.25	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.51	0.03	0.35	0.00	0.00	0.00	284.41	0.02	0.01	286.99
Air Compressor	58	2	0.0002	3.22	1.53	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.64	0.01	0.36	0.00	0.02	0.02	100.38	0.01	0.00	101.29
Hydraulic Power Supply	111	37	0.0010	6.17	5.56	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	43.21	1.54	52.09	0.04	0.17	0.17	12,875.60	0.74	0.33	12,992.28
Aircon	210	8	0.0030	11.67	8.48	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	14.49	0.75	9.80	0.02	0.11	0.11	8,030.52	0.46	0.21	8,103.29
MEPP	215	37	0.0080	11.94	22.19	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	179.57	9.24	121.47	0.27	1.32	1.32	99,538.27	5.69	2.55	100,440.29
	Total Equipment:	138														Totals in lbs	1,399.50	35.76	842.22	0.82	40.32	39.11				
			=												T	otals in Tons	0.70	0.02	0.42	0.00	0.02	0.02				
																al Metric tons							293.10	0.02	0.01	
															To	tal MT CO2e										295.76

GSE Equipment Exhaust Em	ission Factors	i	NAS Whidbe	y Baseline LTOs	: 14,845		_																			
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH ₄	N ₂ O	CO ₂ e
4.7 2								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	32.55	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	522.70	10.89	296.20	0.22	17.42	16.88	77,532.23	4.43	1.99	78,234.83
Tow Tractor	192	1	0.0003	10.67	0.42	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.14	0.01	0.17	0.00	0.00	0.00	45.20	0.00	0.00	45.61
Turbine	396	5	0.0002	22.00	0.11	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.23	0.01	0.16	0.00	0.00	0.00	128.08	0.01	0.00	129.24
Air Compressor	58	2	0.0002	3.22	0.69	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.29	0.01	0.16	0.00	0.01	0.01	45.20	0.00	0.00	45.61
Hydraulic Power Supply	111	37	0.0010	6.17	2.50	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	19.46	0.69	23.46	0.02	0.08	0.08	5,798.04	0.33	0.15	5,850.58
Aircon	210	8	0.0003	11.67	0.38	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.65	0.03	0.44	0.00	0.00	0.00	361.62	0.02	0.01	364.90
MEPP	215	37	0.0080	11.94	9,99	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	80.86	4.16	54.70	0.12	0.59	0.59	44.823.32	2.56	1.15	45,229,51

GSE Equipment Exhaust Emi	ission Factors	N	NAS Whidbey N	No Action LTOs:	14,914																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO ₂ e
107 00 270								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	32.70	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	525.13	10.94	297.58	0.22	17.50	16.96	77,892.60	4.45	2.00	78,598.47
Tow Tractor	192	1	0.0003	10.67	0.42	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.14	0.01	0.17	0.00	0.00	0.00	45.41	0.00	0.00	45.82
Turbine	396	5	0.0002	22.00	0.12	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.23	0.01	0.16	0.00	0.00	0.00	128.67	0.01	0.00	129.84
Air Compressor	58	2	0.0002	3.22	0.69	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.29	0.01	0.16	0.00	0.01	0.01	45.41	0.00	0.00	45.82
Hydraulic Power Supply	111	37	0.0010	6.17	2.52	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	19.55	0.70	23.57	0.02	0.08	0.08	5,824.99	0.33	0.15	5,877.78
Aircon	210	8	0.0003	11.67	0.38	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.66	0.03	0.44	0.00	0.00	0.00	363.31	0.02	0.01	366.60
MEPP	215	37	0.0080	11.94	10.04	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	81.24	4.18	54.96	0.12	0.60	0.60	45,031.66	2.57	1.15	45,439.74
Т	otal Equipment:	138														Totals in lbs	627.24	15.87	377.03	0.36	18.20	17.65				

GSE Equipment Exhaust Emission Factors NAS Whidbey Alt 1A: 18.344 | Part | | CH₄ | N₂O grad | Daylear | Day Equipment Type Tow Tractor Tow Tractor Turbine Air Compressor Hydraulic Power Supply

SE Equipment Exhaust Emi	Size ¹	Number of	Gallons	Whidbey Alt 1B: Estimated fuel						Emission	factors								Emissions	(lbs/vr)						MT/yea
Equipment Type	(hp)		fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂	CH ₄	N ₂ O g/gal	NO _X	VOC lbs/year	CO lbs/year	SO ₂	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	38.60	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	619.88	12.91	351.27	0.26	20.66	20.02	91,947.11	5.25	2.36	92,780
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	53.61	0.00	0.00	54
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.19	0.00	0.00	0.00	151.89	0.01	0.00	153
Air Compressor	58	2	0.0002	3.22	0.82	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	53.61	0.00	0.00	54
Hydraulic Power Supply	111	37	0.0010	6.17	2.97	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.08	0.82	27.82	0.02	0.09	0.09	6,876.02	0.39	0.18	6,938
Aircon	210	8	0.0003	11.67	0.45	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.77	0.04	0.52	0.00	0.01	0.01	428.86	0.02	0.01	432
MEPP	215	37	0.0080	11.94	11.85	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	95.90	4.94	64.87	0.14	0.71	0.71	53,156.92	3.04	1.36	53,638
Т	otal Equipment:	138														Totals in lbs	740.42	18.74	445.06	0.43	21.48	20.83				$\overline{}$
																tals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
															Total	Metric tons							152.67	0.01	0.00	

	Size ¹	Number of	Gallons	Estimated fuel	Annual houre					Emission	factors							E	missions	(lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	37.35	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	599.74	12.49	339.86	0.26	19.99	19.37	88,959.68	5.08	2.28	89,765.8
Tow Tractor	192	1	0.0003	10.67	0.48	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	51.87	0.00	0.00	52.3
Turbine	396	5	0.0002	22.00	0.13	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.18	0.00	0.00	0.00	146.95	0.01	0.00	148.2
Air Compressor	58	2	0.0002	3.22	0.79	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.33	0.01	0.19	0.00	0.01	0.01	51.87	0.00	0.00	52.3
Hydraulic Power Supply	111	37	0.0010	6.17	2.87	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	22.33	0.79	26.92	0.02	0.09	0.09	6,652.61	0.38	0.17	6,712.90
Aircon	210	8	0.0003	11.67	0.44	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.75	0.04	0.51	0.00	0.01	0.01	414.92	0.02	0.01	418.68
MEPP	215	37	0.0080	11.94	11.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	92.78	4.78	62.76	0.14	0.68	0.68	51,429.81	2.94	1.32	51,895.88
T	otal Equipment:	138													T	otals in lbs	716.36	18.13	430.60	0.42	20.78	20.16				
			-													als in Tons	0.36	0.01	0.22	0.00	0.01	0.01				
																Metric tons MT CO2e							147.71	0.01	0.00	149.0

	CO ₂	CH₄	N₂O
GWP	1	25	298

EPA, 2016.U.S. Inventory of Greenhouse Gas Emissions and Sinks 1990-2014, April 2016. Accessed March 21, 2018 at LT N, 2010/03. Interiorly or disclaimouse das Linissons and onlins 1990/2014, April 2010. Notes https://www.epa.gov/ghgensiosins/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2014 (latest final report: Draft 2016 inventory was released February 6, 2018)

SSE Equipment Exhaust Em	ission Factors		NAS	Whidbey Alt 1D:	18,131																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emission	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment			per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ Ibs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	88	48	0.0107	4.89	39.76	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	638.41	13.30	361.76	0.27	21.28	20.62	94,694.30	5.41	2.43	95,552.4
Tow Tractor	192	1	0.0003	10.67	0.51	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	55.21	0.00	0.00	55.7
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	156.43	0.01	0.00	157.8
Air Compressor	58	2	0.0002	3.22	0.84	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	55.21	0.00	0.00	55.7
Hydraulic Power Supply	111	37	0.0010	6.17	3.06	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.77	0.85	28.65	0.02	0.09	0.09	7,081.46	0.40	0.18	7,145.6
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.80	0.04	0.54	0.00	0.01	0.01	441.67	0.03	0.01	445.6
MEPP	215	37	0.0080	11.94	12.20	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	98.76	5.08	66.81	0.15	0.73	0.73	54,745.14	3.13	1.40	55,241.2
1	Total Equipment:	138													1	Totals in lbs	762.54	19.30	458.36	0.44	22.12	21.46				i —
			_													tals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
																Metric tons				\vdash			157.23	0.01	0.00	
															Tota	al MT CO2e										158.6

GSE Equipment Exhaust Em	ission Factors	3	NAS	Whidbey Alt 1E:	17,248																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	37.82	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	607.31	12.65	344.14	0.26	20.24	19.61	90,082.58	5.15	2.31	90,898.9
Tow Tractor	192	1	0.0003	10.67	0.49	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	52.52	0.00	0.00	53.00
Turbine	396	5	0.0002	22.00	0.13	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.18	0.00	0.00	0.00	148.81	0.01	0.00	150.1
Air Compressor	58	2	0.0002	3.22	0.80	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.33	0.01	0.19	0.00	0.01	0.01	52.52	0.00	0.00	53.0
Hydraulic Power Supply	111	37	0.0010	6.17	2.91	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	22.61	0.80	27.26	0.02	0.09	0.09	6,736.59	0.38	0.17	6,797.63
Aircon	210	8	0.0003	11.67	0.44	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.76	0.04	0.51	0.00	0.01	0.01	420.16	0.02	0.01	423.97
MEPP	215	37	0.0080	11.94	11.61	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	93.95	4.84	63.56	0.14	0.69	0.69	52,078.99	2.98	1.33	52,550.93
	Total Equipment	138														Totals in lbs	725.40	18.36	436.04	0.42	21.04	20.41				
			_												To	otals in Tons	0.36	0.01	0.22	0.00	0.01	0.01				
																Metric tons							149.57	0.01	0.00	150.0

GSE Equipment Exhaust Emis	ssion Factors		NAS	Whidbey Alt 2A:	19,085																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N₂O	NO _Y	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N₂O	CO₂e
_4				(3)				g/hp-ĥr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	41.85	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	672.00	14.00	380.80	0.29	22.40	21.70	99,676.83	5.70	2.55	100,580.11
Tow Tractor	192	1	0.0003	10.67	0.54	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.19	0.01	0.22	0.00	0.00	0.00	58.11	0.00	0.00	58.64
Turbine	396	5	0.0002	22.00	0.15	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.30	0.02	0.20	0.00	0.00	0.00	164.66	0.01	0.00	166.15
Air Compressor	58	2	0.0002	3.22	0.89	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.37	0.01	0.21	0.00	0.01	0.01	58.11	0.00	0.00	58.64
Hydraulic Power Supply	111	37	0.0010	6.17	3.22	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	25.02	0.89	30.16	0.02	0.10	0.10	7,454.07	0.43	0.19	7,521.62
Aircon	210	8	0.0003	11.67	0.49	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.84	0.04	0.57	0.00	0.01	0.01	464.91	0.03	0.01	469.12
MEPP	215	37	0.0080	11.94	12.85	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	103.96	5.35	70.33	0.16	0.76	0.76	57,625.67	3.29	1.48	58,147.88
T	otal Equipment:	138														Totals in lbs	802.66	20.31	482.48	0.47	23.28	22.58				
	-		_													otals in Tons	0.40	0.01	0.24	0.00	0.01	0.01				
															Tota	al Metric tons							165.50	0.01	0.00	
															To	tal MT CO2e				l .		- 1				167.00

GSE Equipment Exhaust Emi	ission Factors		NAS	Whidbey Alt 2B:	18,299																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emission:	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	40.12	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	644.32	13.42	365.12	0.28	21.48	20.81	95,571.72	5.46	2.45	96,437.80
Tow Tractor	192	1	0.0003	10.67	0.51	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	55.72	0.00	0.00	56.23
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	157.87	0.01	0.00	159.31
Air Compressor	58	2	0.0002	3.22	0.85	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	55.72	0.00	0.00	56.23
Hydraulic Power Supply	111	37	0.0010	6.17	3.09	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.99	0.85	28.92	0.02	0.09	0.09	7,147.08	0.41	0.18	7,211.84
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.80	0.04	0.54	0.00	0.01	0.01	445.76	0.03	0.01	449.80
MEPP	215	37	0.0080	11.94	12.32	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	99.68	5.13	67.43	0.15	0.73	0.73	55,252.40	3.16	1.42	55,753.10
1	Total Equipment:	138														Totals in lbs	769.61	19.48	462.61	0.45	22.33	21.65				
			_													otals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
																al Metric tons							158.69	0.01	0.00	
															To	ital MT CO2e				_					_	160.12

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/ye
Equipment Type	(hp)	Equipment	Gamono		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO₂€
Tow Tractor	88	48	0.0107	4.89	38.88	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	624.36	13.01	353.80	0.27	20.81	20.16	92,610.41	5.29	2.37	93,449.
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	53.99	0.00	0.00	54.
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	152.98	0.01	0.00	154.
Air Compressor	58	2	0.0002	3.22	0.83	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	53.99	0.00	0.00	54.
Hydraulic Power Supply	111	37	0.0010	6.17	2.99	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.24	0.83	28.02	0.02	0.09	0.09	6,925.62	0.40	0.18	6,988.
Aircon	210	8	0.0003	11.67	0.46	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.78	0.04	0.53	0.00	0.01	0.01	431.95	0.02	0.01	435.
MEPP	215	37	0.0080	11.94	11.94	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	96.59	4.97	65.34	0.15	0.71	0.71	53,540.39	3.06	1.37	54,025.
T	otal Equipment:	138														Totals in lbs	745.76	18.87	448.28	0.43	21.63	20.98				·
	-		_													otals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
																al Metric tons							153.77	0.01	0.00	
															To	tal MT CO2e	- 1			I I						15

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/yea
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂ e
Tow Tractor	88	48	0.0107	4.89	41.40	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	664.85	13.85	376.75	0.28	22.16	21.47	98,616.61	5.64	2.53	99,510.2
Tow Tractor	192	1	0.0003	10.67	0.53	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.22	0.00	0.00	0.00	57.50	0.00	0.00	58.0
Turbine	396	5	0.0002	22.00	0.15	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.02	0.20	0.00	0.00	0.00	162.90	0.01	0.00	164.3
Air Compressor	58	2	0.0002	3.22	0.88	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.37	0.01	0.21	0.00	0.01	0.01	57.50	0.00	0.00	58.0
lydraulic Power Supply	111	37	0.0010	6.17	3.18	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.75	0.88	29.84	0.02	0.10	0.10	7,374.78	0.42	0.19	7,441.6
Aircon	210	8	0.0003	11.67	0.49	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.83	0.04	0.56	0.00	0.01	0.01	459.97	0.03	0.01	464.13
MEPP	215	37	0.0080	11.94	12.71	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	102.85	5.29	69.58	0.16	0.76	0.76	57,012.73	3.26	1.46	57,529.38
To	otal Equipment:	138														Totals in lbs	794.13	20.10	477.35	0.46	23.04	22.34				í T
																otals in Tons	0.40	0.01	0.24	0.00	0.01	0.01				
															Tota	al Metric tons							163.74	0.01	0.00	105.2

	0'1									Emission	factors.								Emissions	/II /\			/			MT/year
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours														Emissions	s (IDS/yr)						
Equipment Type	(hp)	Equipment	fuel/unit/LTO	flow (gal/hr)	per unit	Fuel Type	Factor	NO _X	VOC g/hp-hr	CO g/hp-hr	SO ₂	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂	CH ₄	N ₂ O	NO _X	VOC lbs/year	CO lbs/year	SO ₂	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂	CH ₄ kg/year	N ₂ O kg/year	CO₂e
Tow Tractor	88	48	0.0107	4.89	39.33	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	631.57	13.16	357.89	0.27	21.05	20.39	93,681.08	5.35	2.40	94,530.0
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.21	0.00	0.00	0.00	54.62	0.00	0.00	55.1
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	154.75	0.01	0.00	156.1
Air Compressor	58	2	0.0002	3.22	0.83	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	54.62	0.00	0.00	55.1
Hydraulic Power Supply	111	37	0.0010	6.17	3.03	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.51	0.84	28.34	0.02	0.09	0.09	7,005.69	0.40	0.18	7,069.1
Aircon	210	8	0.0003	11.67	0.46	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.79	0.04	0.53	0.00	0.01	0.01	436.95	0.02	0.01	440.90
MEPP	215	37	0.0080	11.94	12.07	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	97.71	5.03	66.10	0.15	0.72	0.72	54,159.37	3.09	1.39	54,650.17
	Fotal Equipment:	138														Totals in lbs	754.38	19.09	453.46	0.44	21.88	21.23				
	-		=													otals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
																al Metric tons tal MT CO2e	-						155.55	0.01	0.00	156.9
																										100.0
SE Equipment Exhaust En	ission Factors		NAS	Whidbey Alt 3A:	18,470																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NOx	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N₂O	NOx	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO ₂ e
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(3)		, , ,		g/hp-hr	alba be	g/hp-hr	a/hp-hr	a/hp-hr	alba br	g/gal	g/gal	alasi	lhohioor	lhohroor	lhohroor	lhohroor	lbs/vear	lholugar	kg/year	kg/year	kg/year	

GOE Equipment Exhaust Enn	ISSIUII FACIUIS	•	INAS	Williabey Alt 3A.	10,470																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTC		per unit	Fuel Type	Factor	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	40.50	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	650.34	13.55	368.53	0.28	21.68	21.00	96,464.82	5.51	2.47	97,338.99
Tow Tractor	192	1	0.0003	10.67	0.52	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	56.24	0.00	0.00	56.75
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.29	0.01	0.19	0.00	0.00	0.00	159.35	0.01	0.00	160.79
Air Compressor	58	2	0.0002	3.22	0.86	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.36	0.01	0.20	0.00	0.01	0.01	56.24	0.00	0.00	56.75
Hydraulic Power Supply	111	37	0.0010	6.17	3.11	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	24.21	0.86	29.19	0.02	0.10	0.10	7,213.86	0.41	0.18	7,279.24
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.81	0.04	0.55	0.00	0.01	0.01	449.93	0.03	0.01	454.01
MEPP	215	37	0.0080	11.94	12.43	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	100.61	5.18	68.06	0.15	0.74	0.74	55,768.72	3.19	1.43	56,274.10
Т	Total Equipment:	138	3													Totals in lbs	776.80	19.66	466.93	0.45	22.53	21.86				
																otals in Tons	0.39	0.01	0.23	0.00	0.01	0.01				
																Metric tons							160.17	0.01	0.00	
															To	al MT CO2e										161.62

GSE Equipment Exhaust Em	ssion Factors		NAS I	Whidbey Alt 3B:	18,241																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors							I	Emissions	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO	flow (gal/hr)	per unit	Fuel Type	Factor	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N₂O	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N₂O	CO₂e
-4				(2)				g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	-
Tow Tractor	88	48	0.0107	4.89	40.00	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	642.28	13.38	363.96	0.27	21.41	20.74	95,268.80	5.44	2.44	96,132.14
Tow Tractor	192	1	0.0003	10.67	0.51	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	55.54	0.00	0.00	56.05
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	157.37	0.01	0.00	158.80
Air Compressor	58	2	0.0002	3.22	0.85	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	55.54	0.00	0.00	56.05
Hydraulic Power Supply	111	37	0.0010	6.17	3.08	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.91	0.85	28.82	0.02	0.09	0.09	7,124.42	0.41	0.18	7,188.99
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.80	0.04	0.54	0.00	0.01	0.01	444.35	0.03	0.01	448.38
MEPP	215	37	0.0080	11.94	12.28	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	99.36	5.11	67.22	0.15	0.73	0.73	55,077.28	3.15	1.41	55,576.39
	otal Equipment:	138														Totals in lbs	767.17	19.42	461.14	0.45	22.25	21.59				
			_													tals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
																Metric tons							158.18	0.01	0.00	
															Tota	MT CO2e						1				159.62

SE Equipment Exhaust Emis	ssion Factors		NAS	Whidbey Alt 3C:	17,532											-										
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emission:	s (lbs/yr)						MT/year
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2	CH₄	N ₂ O	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO₂e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	38.44	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	617.31	12.86	349.81	0.26	20.58	19.93	91,565.85	5.23	2.35	92,395.6
Tow Tractor	192	1	0.0003	10.67	0.49	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	53.38	0.00	0.00	53.8
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.27	0.01	0.18	0.00	0.00	0.00	151.26	0.01	0.00	152.6
Air Compressor	58	2	0.0002	3.22	0.82	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	53.38	0.00	0.00	53.8
Hydraulic Power Supply	111	37	0.0010	6.17	2.96	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	22.98	0.82	27.70	0.02	0.09	0.09	6,847.51	0.39	0.18	6,909.5
Aircon	210	8	0.0003	11.67	0.45	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.77	0.04	0.52	0.00	0.01	0.01	427.08	0.02	0.01	430.9
MEPP	215	37	0.0080	11.94	11.80	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	95.50	4.92	64.60	0.14	0.70	0.70	52,936.51	3.02	1.36	53,416.2
T	otal Equipment:	138														Totals in lbs	737.35	18.66	443.22	0.43	21.39	20.75				
																tals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
																Metric tons							152.03	0.01	0.00	
															Tota	al MT CO2e				I I						153.

	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	s (lbs/yr)						MT/ye
Equipment Type	(hp)	Equipment	fuel/unit/LTO		per unit	Fuel Type	Factor	NO _X g/hp-hr	VOC g/hp-hr	CO g/hp-hr	SO ₂ g/hp-hr	PM ₁₀ g/hp-hr	PM _{2.5} g/hp-hr	CO ₂ g/gal	CH ₄ g/gal	N ₂ O g/gal	NO _X lbs/year	VOC lbs/year	CO lbs/year	SO ₂ lbs/year	PM ₁₀ lbs/year	PM _{2.5} lbs/year	CO ₂ kg/year	CH ₄ kg/year	N ₂ O kg/year	CO ₂
Tow Tractor	88	48	0.0107	4.89	40.05	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	643.12	13.40	364.44	0.27	21.44	20.77	95,394.15	5.45	2.44	96,258
Tow Tractor	192	1	0.0003	10.67	0.51	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.18	0.01	0.21	0.00	0.00	0.00	55.62	0.00	0.00	56
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	157.58	0.01	0.00	159
Air Compressor	58	2	0.0002	3.22	0.85	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.35	0.01	0.20	0.00	0.01	0.01	55.62	0.00	0.00	56
ydraulic Power Supply	111	37	0.0010	6.17	3.08	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.94	0.85	28.86	0.02	0.09	0.09	7,133.80	0.41	0.18	7,198
Aircon	210	8	0.0003	11.67	0.47	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.80	0.04	0.54	0.00	0.01	0.01	444.94	0.03	0.01	448
MEPP	215	37	0.0080	11.94	12.29	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	99.49	5.12	67.30	0.15	0.73	0.73	55,149.74	3.15	1.41	55,649
Tot	tal Equipment:	138														Totals in lbs	768.18	19.44	461.75	0.45	22.28	21.61				$\overline{}$
																otals in Tons	0.38	0.01	0.23	0.00	0.01	0.01				
															Tota	Metric tons							158.39	0.01	0.00	<i></i>

E Equipment Exhaust Emis	sion Factors		NAS	Whidbey Alt 3E:	17,738																					
	Size ¹	Number of	Gallons	Estimated fuel	Annual hours					Emission	factors								Emissions	(lbs/yr)						MT/year
Equipment Type	(hp)		fuel/unit/LTO		per unit	Fuel Type	Factor	NO _x	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	CH₄	N ₂ O	CO ₂ e
								g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/gal	g/gal	g/gal	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	kg/year	kg/year	kg/year	
Tow Tractor	88	48	0.0107	4.89	38.89	Diesel	0.36	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	624.57	13.01	353.92	0.27	20.82	20.17	92,641.74	5.29	2.37	93,481.27
Tow Tractor	192	1	0.0003	10.67	0.50	Diesel	0.36	2.27000	0.09000	2.70000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.17	0.01	0.20	0.00	0.00	0.00	54.01	0.00	0.00	54.50
Turbine	396	5	0.0002	22.00	0.14	JP-5	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.28	0.01	0.19	0.00	0.00	0.00	153.03	0.01	0.00	154.42
Air Compressor	58	2	0.0002	3.22	0.83	Diesel	0.34	4.80000	0.10000	2.72000	0.00205	0.16000	0.15500	10,150	0.58	0.26	0.34	0.01	0.19	0.00	0.01	0.01	54.01	0.00	0.00	54.50
Hydraulic Power Supply	111	37	0.0010	6.17	2.99	Diesel	0.34	2.53000	0.09000	3.05000	0.00205	0.01000	0.01000	10,150	0.58	0.26	23.25	0.83	28.03	0.02	0.09	0.09	6,927.97	0.40	0.18	6,990.7
Aircon	210	8	0.0003	11.67	0.46	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	0.78	0.04	0.53	0.00	0.01	0.01	432.10	0.02	0.01	436.0
MEPP	215	37	0.0080	11.94	11.94	Diesel	0.34	1.36000	0.07000	0.92000	0.00205	0.01000	0.01000	10,150	0.58	0.26	96.62	4.97	65.36	0.15	0.71	0.71	53,558.51	3.06	1.37	54,043.86
To	tal Equipment:	138														Totals in lbs	746.01	18.88	448.43	0.43	21.64	20.99				
			4													otals in Tons	0.37	0.01	0.22	0.00	0.01	0.01				
															Tota	al Metric tons							153.82	0.01	0.00	1

Total Change in Criteria Pollutant and GHG Emissions, High Tempo Operations, All Alternatives

		E	missions (t	py)²			MT CO2e
Alternative	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Alternative 1 A	239.7	187.6	639.0	18.6	93.4	87.0	486
Alternative 1 B	190.0	156.6	523.4	14.9	76.1	69.7	480
Alternative 1 C	142.8	132.2	425.8	11.4	60.3	53.9	475
Alternative 1 D	223.7	178.6	604.1	17.4	87.9	81.5	484
Alternative 1 E	159.0	141.3	461.1	12.6	65.8	59.4	477
Alternative 2 A	241.6	218.1	723.3	19.2	103.6	91.5	42,574
Alternative 2 B	193.4	185.4	604.9	15.5	86.5	74.5	34,682
Alternative 2 C	148.0	161.4	509.5	12.1	71.3	59.2	27,432
Alternative 2 D	226.0	209.5	690.0	18.0	98.3	86.2	40,082
Alternative 2 E	163.5	170.2	543.3	13.3	76.5	64.5	29,916
Alternative 3 A	235.4	204.7	682.9	18.6	94.2	87.7	40,733
Alternative 3 B	191.0	182.9	593.2	15.3	79.6	73.0	33,719
Alternative 3 C	143.3	153.2	482.9	11.8	63.1	56.5	26,004
Alternative 3 D	219.8	196.0	649.3	17.4	89.0	82.4	38,238
Alternative 3 E	158.8	161.9	516.5	12.9	68.3	61.8	28,488

Facility Construction - NAS Whidbey Island Complex

Alternative	total sq ft	Acres
Alternative 1, 2 and 3		
Armament Storage	4,660	0.11
Hangar 12 Expansion for FRS	55,606	1.28
Mobile Maintenance Facility Storage	32,000	0.73
Temporary Hangers	43,601	1.00
Two Squadron Hangar	37,500	0.86
Total New Construction	173,367	3.98
Privately Owned Vehicle Parking Expansion	70,860	1.63
Taxiway Juliet Repair for Attrition Aircraft	173,781	3.99
New Paving	244,641	5.62
Demolition (Building 151)	38,632	0.89
Total Construction Area	456,640	10.48

Area provided based on Figure 2.3-1 of DEIS

Emission calculations assume all activities will be performed within one year

Nonroad Construction Equipment Exhaust Emission Factors

	Fuel		Size ¹	Engine Size			Emissio	n Factor	. ³ (g/hr)				Equi	pment E	mission	Rate ⁴ (lbs-hr)	
Equipment Type	Type	SCC	(hp)	Range ²	voc	co	NO _x	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	voc	co	NO _x	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Asphalt Paving Machine	Diesel	2270002003	100	75 <hp≤100< td=""><td>20.460</td><td>190.904</td><td>206.642</td><td>0.289</td><td>24.693</td><td>23.952</td><td>49552.899</td><td>0.045</td><td>0.421</td><td>0.456</td><td>0.001</td><td>0.054</td><td>0.053</td><td>109.244</td></hp≤100<>	20.460	190.904	206.642	0.289	24.693	23.952	49552.899	0.045	0.421	0.456	0.001	0.054	0.053	109.244
Paver/Roller	Diesel	2270002009	100	75 <hp≤100< td=""><td>17.321</td><td>169.807</td><td>176.275</td><td>0.287</td><td>21.878</td><td>21.222</td><td>50475.026</td><td>0.038</td><td>0.374</td><td>0.389</td><td>0.001</td><td>0.048</td><td>0.047</td><td>111.277</td></hp≤100<>	17.321	169.807	176.275	0.287	21.878	21.222	50475.026	0.038	0.374	0.389	0.001	0.048	0.047	111.277
Generators	Diesel	2270006005	25	16 < hp <= 25	9.478	50.640	94.054	0.085	7.420	7.197	12548.679	0.021	0.112	0.207	0.000	0.016	0.016	27.665
Air Compressors	Diesel	2270006015	40	25 <hp≤40< td=""><td>6.361</td><td>27.166</td><td>123.285</td><td>0.112</td><td>4.087</td><td>3.965</td><td>20332.505</td><td>0.014</td><td>0.060</td><td>0.272</td><td>0.000</td><td>0.009</td><td>0.009</td><td>44.825</td></hp≤40<>	6.361	27.166	123.285	0.112	4.087	3.965	20332.505	0.014	0.060	0.272	0.000	0.009	0.009	44.825
Tractors/Loaders/Backhoes	Diesel	2270002066	100	75 <hp≤100< td=""><td>66.136</td><td>426.666</td><td>343.491</td><td>0.368</td><td>60.829</td><td>59.005</td><td>60459.265</td><td>0.146</td><td>0.941</td><td>0.757</td><td>0.001</td><td>0.134</td><td>0.130</td><td>133.288</td></hp≤100<>	66.136	426.666	343.491	0.368	60.829	59.005	60459.265	0.146	0.941	0.757	0.001	0.134	0.130	133.288
Aerial Lifts (Cherry Pickers)	Diesel	2270003010	50	40 <hp≤50< td=""><td>63.308</td><td>247.349</td><td>238.955</td><td>0.197</td><td>35.930</td><td>34.852</td><td>31438.171</td><td>0.140</td><td>0.545</td><td>0.527</td><td>0.000</td><td>0.079</td><td>0.077</td><td>69.308</td></hp≤50<>	63.308	247.349	238.955	0.197	35.930	34.852	31438.171	0.140	0.545	0.527	0.000	0.079	0.077	69.308
Excavators	Diesel	2270002069	175	100 <hp≤175< td=""><td>21.099</td><td>70.182</td><td>165.305</td><td>0.394</td><td>15.944</td><td>15.466</td><td>73800.564</td><td>0.047</td><td>0.155</td><td>0.364</td><td>0.001</td><td>0.035</td><td>0.034</td><td>162.700</td></hp≤175<>	21.099	70.182	165.305	0.394	15.944	15.466	73800.564	0.047	0.155	0.364	0.001	0.035	0.034	162.700
Off-Highway Trucks	Diesel	2270002051	600	300 <hp≤600< td=""><td>58.490</td><td>156.315</td><td>445.272</td><td>1.161</td><td>22.665</td><td>21.985</td><td>225228.578</td><td>0.129</td><td>0.345</td><td>0.982</td><td>0.003</td><td>0.050</td><td>0.048</td><td>496.536</td></hp≤600<>	58.490	156.315	445.272	1.161	22.665	21.985	225228.578	0.129	0.345	0.982	0.003	0.050	0.048	496.536

Notes:

- hp value set at Max of engine size range.
 hp range used to select Emission Factors
 Emission factors from EPA's NONROAD model (Year 2017) for Island County, Washington. VOC emissions include both Exhaust and Crankcase Emissions
 Equipment Emission Rate = Emission Factor x 453.6 g/lb.

Onroad Vehicle Exhaust Emission Factors

Official Vehicle Exila	Fuel .			E	xhaust En	nission F	actor ¹ (g/	VMT)			Emis Fac	Dust ssion tor ^d (MT)	Fac	Emission tor ^e MT)
Equipment Type	Туре	VOC	СО	NO _x	SO ₂	PM ₁₀	PM _{2.5}	CH4	N2O	CO ₂	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
Cars and Light Trucks	Gasoline	0.06	2.66	0.31	0.0024	0.0066	0.0058	0.0038	0.0021	354	3.13	0.341	3.13	0.347
Delivery Vehicles	Diesel	0.28	1.10	8.06	0.158	0.17	0.17			1,400	3.13	0.341	3.30	0.511

Notes:

1. MOVES Onroad run for analysis year 2017, Island Count, WA. Includes weekdays and weekends, January through December, all hours of day. 'Cars and Light Trucks' Assumes 50% Passenger Car, 50% Passenger Truck

- d. See emission factor derivation table below.
- e. Sum of exhaust and road dust emission factors.

Paved Roads - Emission Factor Derivation

Tavea Roads - Emission Face														
$E = (k(sL/2)^{0.65}(W/3)^{1.5}-C)$		AP-42 Se	ction 13.2.	1 (11/06 version)										
where:														
E =	particulate e	mission fa	ctor (lb/V)	MT)										
k =	particle size	multiplier												
sL =	road surface	silt loadir	$g(g/m^2)$											
W =	average veh	icle weigh	t (tons)											
C =	W = average vehicle weight (tons) C = emission factor for 1980's vehicle fleet exhaust, break wear and tire wear Parameter Units PM ₁₀ PM ₂₅ Reference													
Parameter	Parameter Units PM ₁₀ PM _{2.5} Reference													
Mean Vehicle Weight	tons	3	3	Assumption										
k factor	g/VMT	7.3	1.1	Table 13.2-1.1										
Silt Loading, sL	2													
Emission factor, C	<u> </u>													
Emission factor, E	g/VMT	3.13	0.341	Table 13.2.1-3										

Equipment Exhaust Emissions, Construction and Demolition Equipment Use On Site, All Alternatives

		Eqpt	Days		Emission Factors (lb/day/unit) ¹						Er	nissions (TPY)				
Activity	Equipment List	qty	Used	VOC	CO	NO _X	SO ₂	PM ₁₀	PM _{2.5}	CO ₂	VOC	CO	NO _X	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Demolition	Loader	1	60	1.17	7.52	6.06	0.01	1.07	1.04	1066.30	0.03	0.23	0.18	0.0002	0.03	0.03	31.99
	Haul Truck	1	60	1.03	2.76	7.85	0.02	0.40	0.39	3972.29	0.03	0.08	0.24	0.0006	0.01	0.01	119.17
Excavation	Backhoe Loader	1	60	1.17	7.52	6.06	0.01	1.07	1.04	1066.30	0.03	0.23	0.18	0.0002	0.03	0.03	31.99
	Haul Truck	1	60	1.03	2.76	7.85	0.02	0.40	0.39	3972.29	0.03	0.08	0.24	0.0006	0.01	0.01	119.17
Cut and fill	Tractor	1	125	1.17	7.52	6.06	0.01	1.07	1.04	1066.30	0.07	0.47	0.38	0.0004	0.07	0.07	66.64
	Excavator	1	125	0.37	1.24	2.92	0.01	0.28	0.27	1301.60	0.02	0.08	0.18	0.0004	0.02	0.02	81.35
	Water Truck	1	125	1.03	2.76	7.85	0.02	0.40	0.39	3972.29	0.06	0.17	0.49	0.0013	0.02	0.02	248.27
Trenching	Trencher	1	125	0.37	1.24	2.92	0.01	0.28	0.27	1301.60	0.02	0.08	0.18	0.0004	0.02	0.02	81.35
	Track loader	1	125	1.17	7.52	6.06	0.01	1.07	1.04	1066.30	0.07	0.47	0.38	0.0004	0.07	0.07	66.64
Grading	Grader	1	125	0.37	1.24	2.92	0.01	0.28	0.27	1301.60	0.02	0.08	0.18	0.0004	0.02	0.02	81.35
	Excavator	1	125	0.37	1.24	2.92	0.01	0.28	0.27	1301.60	0.02	0.08	0.18	0.0004	0.02	0.02	81.35
	Water Truck	1	125	1.03	2.76	7.85	0.02	0.40	0.39	3972.29	0.06	0.17	0.49	0.0013	0.02	0.02	248.27
Concrete Slab pouring	Cement Truck	1	125	1.03	2.76	7.85	0.02	0.40	0.39	3972.29	0.06	0.17	0.49	0.0013	0.02	0.02	248.27
	Compactor	1	125	1.17	7.52	6.06	0.01	1.07	1.04	1066.30	0.07	0.47	0.38	0.0004	0.07	0.07	66.64
Portable Equipment	Generator	3	125	0.17	0.89	1.66	0.00	0.13	0.13	221.32	0.03	0.17	0.31	0.0003	0.02	0.02	41.50
	Air Compressor	3	125	0.11	0.48	2.17	0.00	0.07	0.07	358.60	0.02	0.09	0.41	0.0004	0.01	0.01	67.24
Paving	Asphalt Paving Machine	1	60	0.36	3.37	3.64	0.01	0.44	0.42	873.95	0.01	0.10	0.11	0.0002	0.01	0.01	26.22
	Paver/Roller	1	60	0.31	2.99	3.11	0.01	0.39	0.37	890.21	0.01	0.09	0.09	0.0002	0.01	0.01	26.71
	Haul Truck	2	60	1.03	2.76	7.85	0.02	0.40	0.39	3972.29	0.06	0.17	0.47	0.0012	0.02	0.02	238.34
Architectural Coatings	Air Compressor	5	60	0.11	0.48	2.17	0.00	0.07	0.07	358.60	0.02	0.07	0.33	0.0003	0.01	0.01	53.79
		29	·					Ann	ual Emiss	ions (TPY)	0.8	3.5	5.9	0.011	0.532	0.516	2026.2

¹ Calculated using EPA NONROAD equipment emission rates (see Table 2.1), assuming operation for 8 hours per day.

Air Quality Calculations

EIS for the Construction and Operation of an OLF on the East Coast of the U.S.

Particulate Emissions from Construction

				PAN SCRAPING	PAN SCRAPING	EMISS	IONS
			BULLDOZING	SOIL	ETHMOVING		
Activity	ACRES	ACTIVITY DAYS	(LBS)(1)	REMOV(LBS)(2)	(LBS)(3)	lbs	Tons
Total Disturbed Acreage	10.48	60	360	168	106	634	0.32

- (1) Bulldozing dust emissions based on 8hr/activity day
- (2) Soil removal dust emissions based on 20.25 VMT/acre
- (3) Earthmoving dust emissions based on soil removal miles

EPA 1992 Fugitive Dust Background document (EPA-450/2-92-004) used as data reference.

VOC Emissions from Paving

		Emission Factor(1)	EMISS	SIONS
Activity	Acres Paved	(lbs/acre)	LBS/YR	TPY
Paving	5.62	2.62	441.4	0.221

(1) URBEMIS 9.2.4, 2007

VOC Emissions from Architectural Coatings

				EMISSI	ONS
			Avg VOC		
Activity	Sq ft surfaces ¹	Est. Paint Qty (gal) ²	Content (lb/gal)	LBS/YR	TPY
New Built Space	520,102	1734	5	8668	4.33

¹assumes sq ft of painted surface three times total sq ft of built space

²assumes one gallon covers 300 sq ft

On Road Vehicle Emissions for Construction Vehicles, Criteria Pollutants, All Alternatives

					Em	ission Fa	ctors (lbs/	mi) ¹				Emissic	ons (tpy)		
Source	# of vehicles ²	Avg Daily mileage ³	Total Annual Miles	VOC	со	NO _x	SO ₂	PM ₁₀	PM _{2.5}	voc	СО	NO _x	SO ₂	PM ₁₀	PM _{2.5}
Worker commute	29	30	217,500	0.0001	0.0059	0.0007	0.0000	0.0069	0.0008	0.01	0.64	0.08	0.001	0.75	0.08
Deliveries	2	50	25,000	0.0006	0.0024	0.0178	0.0003	0.0073	0.0011	0.01	0.03	0.22	0.004	0.09	0.01
	•	•	•		· · · · · ·		Total Grou	und Vehicle E	missions	0.02	0.67	0.30	0.00	0.84	0.10

See Emission factors in Table 2.2 of this Appendix

On Road Vehicle Emissions for Construction Vehicles, Greenhouse Gas Emissions, All Alternatives

				Emissio	n Factors (I	bs/mi) ¹	Em	nissions (tpy)		Emiss	ions (MT C	CO2e) ⁴	Total
Source	# of vehicles ²	Avg Daily mileage ³	Total Annual Miles	CH4	N2O	CO ₂	CH4	N2O	CO ₂	CH4	N2O	CO ₂	CO₂e
Worker commute	29	30	217,500	0.000008	0.000005	0.7815	0.0225	0.1524	84.9884	0.02	0.14	77.08	77.243
Deliveries	2	50	25,000	0.000000	0.000000	3.0864	0.0000	0.0000	38.5802	0.00	0.00	34.99	34.992
							Total Grou	nd Vehicle E	missions	0.02	0.14	112.08	112.24

See Emission factors in Table 2.2 of this Appendix

Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013.

	CO ₂	CH₄	N ₂ O
GWP	1	25	298

² See Construction Assumptions, Table 1 of this Appendix

⁵ Based on use of local landfills for wastes and local sources for construction materials.

² See Construction Assumptions, Table 1 of this Appendix

³ Based on use of local landfills for wastes and local sources for construction materials.

⁴ Based on Global Warming Potential (GWP) from U.S. Inventory of Greenhouse Gas Emissions and Sinks 1990-2013, 2015.

Table 6 Summary of Construction Emissions NAS Whidbey Island, All Alternatives

		Emissions (TPY)						
Activity	NO _X	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	CO₂e	
	7 00	0.50		0.011	0.70		1.020	
Construction equipment	5.89	0.79	3.54	0.011	0.53	0.52	1,838	
VOCs from paving and painting		4.55						
PM ₁₀ from grading and demolition					0.32	0.03		
Worker Commute and Deliveries	0.30	0.02	0.67	0.005	0.84	0.10	112	
Total	6.19	5.36	4.21	0.016	1.69	0.65	1,950	

Key:

CO = Carbon monoxide.

NOx = Nitrogen oxides.

 PM_{10} = Particulate matter less than 10 microns in diameter.

Tpy = Tons per year.

VOC = Volatile organic compound.

Building Energy Use Associated with the EA 18G (Growler)Operations at NAS Whidbey Island Complex

All	New building	Space Type	CBESC 2003 Electricity Intensity	CBESC 2003 Natural Gas Intensity	Estimated Electricity use	0/ -56%- 1-1-1	Estimated Natural Gas Use	0/ af6"hanaal
Alternative/ Buildings	space (Sqft) ¹	(CBECS) ²	(kWh/Sq ft)	(ccf/Sq ft)	(kWh)⁵	% of Site total	(ccf)⁴	% of Site total
Total	129,766				1,645,821	3.3%	50,063	2.11%
		Warehouse/						
Armament Storage	4,660	Storage	7.14	0.23	23,305		763	
Hangar 12 Expansion for								
FRS	55,606	Other	22.44	0.68	873,443		26,313	
Mobile Maintenance Facility		Warehouse/						
Storage	32,000	Storage	7.14	0.23	160,032		5,242	
Two Squadron Hangar	37,500	Other	22.44	0.68	589,041		17,745	
					1,462,484.40			

- New building space based on GIS data provided by Navy. See Chapter 2, Figures 2.3.1
 Space type used to determine emission factors from EIA 2003 Commercial Buildings Energy Consumption Survey
- 3. 2003 CBECS Energy Intensity from Table E6: http://www.eia.gov/consumption/commercial/data/archive/cbecs/cbecs2003/detailed_tables_2003/2003set19/2003html/e06.html
- 4. 2003 CBECS Energy Intensity from Table E8: http://www.eia.gov/consumption/commercial/data/archive/cbecs/cbecs2003/detailed_tables_2003/2003set19/2003html/e08.html 5. Energy use estimated using CBECS 2003 Energy Intensity, building sq ft, and assuming a 30% improvement in energy efficiency for new buildings as required by Federal building standards https://www.energycodes.gov/energy-efficiency-standards-federal-buildings

		FY15	
	FY15 Reported	Reported	Estimated
FY15 Reported Electricity use,	Electricity use,	Natural Gas	Natural Gas Use
site wide (MMBTU)	site wide (kWh)	Use (MMBtu)	(ccf)⁵
171,511	50,303,662	244426	2,375,374.15

Source: NAS Whidbey Island. 2015. FY 2015 Shore Installation Energy and Water Management. Annual Report

Fiscal Year	Energy Consumed (Million BTU)	Energy Intensity (Million BTU/KSF)	% Progress from Previous Year	% Progress from Baseline
FY2003 Baseline	630,431.72	179.20		
FY2015	421,069.00	107.58	-4.17%	-39.97%
FY2014	439,392.00	112.26	-4.50%	-37.35%
FY2013	460,113.02	117.56	-4.52%	-34.40%
FY2012	481,913.32	123.13	2.03%	-31.29%
FY2011	478,246.19	120.68	2.35%	-32.66%
FY2010	467,287.60	117.91	-6.22%	-34.20%
FY2009	498,278.15	125.73		-29.84%

Source: NAS Whidbey 2016. FY 2015 Shore Installation Energy and Water Management Annual Report

CBECS 2003 Energy Intensity Factors

Energy Intensity by Building	Use, Existing (C	BECS2003)
		Natural Gas
		Energy
	Electricity	Intensity
	intensity	(cubic feet/
Building Use	(kWh/sq ft) ¹	square foot) ²
Education	11.039	36.9
Food Sales	48.606	50.2
Food Service	38.089	141.2
Health Care	23.079	92.5
Inpatient	27.297	109.8
Outpatient	15.898	50.2
Lodging	13.540	48.9
Mercantile	0.000	32.5
Enclosed and Strip Malls	0.000	30.9
Retail (Other Than Mall)	14.362	33.4
Office	17.284	31.8
Public Assembly	12.440	36.4
Public Order and Safety	15.596	43.7
Religious Worship	4.795	30.3
Service	10.864	54.1
Warehouse and Storage	7.144	23.4
Other	22.440	67.6
Vacant	1.558	23.0

^{1.} http://www.eia.gov/consumption/commercial/data/archive/cbecs/cbecs2003/detailed_tables_2003/2003set19/2003html/e06.html 2. http://www.eia.gov/consumption/commercial/data/archive/cbecs/cbecs2003/detailed_tables_2003/2003set19/2003html/e08.html

Household Average Site Energy Consumption, 2009 RECS

	Average Site Energy				
	Consumption (per household)			
West, AK,HI, OR, and WA	Electricity	Natural Gas			
Households (Millions)	(kWh)	(1000 cf)			
4.7	12,570	73			

(Table CE2.5: Household Site Fuel Consumption in the West Region, Totals and Averages, 2009, Physical Units, Final) http://www.eia.gov/consumption/residential/data/2009/index.cfm?view=consumption#fuel-consumption

Estimated Emissions from Electricity in new buildings, NAS Whidbey Island Complex

Total Annual Increase in Electricity Use			Emission	ns factors (lbs/MWH) Emissions per year (tor			year (tons)	Emissions per year (MT)	
Alternative	Unit	Total	NOX	SO2	CO2	NOX	SO2	CO2	
All Alternatives	MWH	1,646	0.30	0.2	242	0.25	0.16	180.62	

Washington Electricity Profile 2013 Edition , July 8, 2015 release

http://www.eia.gov/electricity/state/washington/index.cfm

MWH KWH

Net Generation 114,172,916 114,172,916,000

Pollutant	Emissiens (see unit)	Matria tana	lbs	lbs/KWH
Poliulani	Emissions (see unit)	METHE TOHS	inz	ID2/VAAL
Sulfur Dioxide (short tons)	13259	12,026	26512599.83	0.00023221
Nitrogen Oxide (short tons)	17975	16,303	35942679.08	0.00031481
Carbon Dioxide (thousand MT)	12,543	12,543,000	27652581523	0.24219914
Sulfur Dioxide (lbs/MWh)	0.2			
Nitrogen Oxide (lbs/MWh)	0.3			
Carbon Dioxide (lbs/MWh)	242			

CO2 emission rates are the lowest in the country

Source type	MWH	%
Total electric industry	114,172,916	100%
Coal	6,740,425	5.90%
Hydroelectric	78,155,087	68.45%
Natural gas	11,424,310	10.01%
Nuclear	8,460,890	7.41%
Other	129,103	0.11%
Other biomass	283,904	0.25%
Other gas	409,786	0.36%
Petroleum	24,363	0.02%
Pumped storage	7,188	0.01%
Solar	762	0.00%
Wind	7,004,365	6.13%
Wood	1,532,734	1.34%
Total renewable	86,976,852	76.18%

Estimated Emissions from Natural Gas use in new buildings, NAS Whidbey Island Complex

											Emissions per	1
Total Annual Increase in Electricity Use Alternative Unit ² Total NOx VOC All Alternatives IMMBtu 5.151.458 0.10 0.00		Emissions per year (tons) ¹						1				
	Alternative	Unit ²	Total	NOx	VOC	СО	SO2	PM10	PM2.5	CO2	CO2	l
	All Alternatives	MMBtu	5,151.458	0.10	0.01	0.21	0.00	0.02	0.02	303.94	275.67	

^{1.} Annual emissions (tons) = Natural Gas use in MMBtu x EF (lb/MMBtu) / 2000 2. 1 ccf = 0.1029 MMBtu

	Emissions factors (EF) (lbs/MMBtu) ¹								
Unit	NOx ²	VOC	СО	SO2	PM10	PM2.5	CO2		
Unit 3 Process 1	0.0392	0.00539	0.0824	0.000588	0.00745	0.00745	118		

From NAS Whidbey Island's CY2014 Air Emission Inventory Report. April 9, 2015.
 Assuming 60% NOx control from Flue gas recirculation and Low NOx Burner

Stationary VOC Emission Increase Estimates: Growler Operations

Source	Year	voc
	2015	24.20
	2016	25.50
Gas Stations	2017	28.00
	Average	25.90
	per capita	0.00
	increase	1.64
Painting, Area Coating and Solvent use in		
Growler Hangars and Facilities		
Crowner Harrigare and Facilities	Annual	4.28
	per aircraft	0.05
	increase	1.93
Total estimated VOC increase, All	Alternatives	3.57

Gas station average annual emissions based on reported gas station emissions from 2015, 2016, and 2017 AEI Reports Per capita gas station emissions based on existing population at NASWI Gas station emission increases based on largest projected increase, 628

Painting, Area Coating and Solvent Use in Growler Hangars annual emission totals based on data provided by Jen Stewart, NASWI, May 15, 2018. Painting, Area Coating and Solvent Use in Growler Hangars based on existing and projected aircraft:

Existing Growlers	82
New Growlers	37
Population	9908
Alt 1 increase	335
Alt 2 increase	628
Alt 3 increase	341

Sources:

NASWI. (2017). NAS Whidbey Island's CY2016 air emission inventory report. Updated April 12, 2017.

NASWI. (2016). NAS Whidbey Island's CY2015 air emission inventory report. Updated April 12, 2016.

NASWI. (2018). NAS Whidbey Island's CY2017 air emission inventory report. April 13, 2018.

NASWI. (2018). NAS Whidbey Island's VAQ Emissions from painting and depaining operations. May 16, 2018.

NASWI 2015 Air Emissions Inventory Report Facility Wide Emissions

		CY 2015 Emissions (TPY)										
Pollutant	Reported CY2014 Totals (TPY)	Boilers	Generators	Test Engines	Gas Stations	Paved/ Unpaved Roads	Area Coating and Solvent Use	Paint Booths	CY 2015 Totals			
VOC	29.6	0.5	0.2	0.0	24.2	0.0	3.5	2.0	30.4			
PM	18.4	0.7	0.2	0.0	0.0	7.0	1.0	0.0	8,9			
PM10	15.3	0.7	0.2	0.0	0.0	4.1	1.0	0.0	6,0			
PM2.5	14.2	0.7	0.2	0.0	0.0	3.4	0,5	0.0	4.8			
502	2.3	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0,3			
NOx	7.7	3.5	2.8	1.1	0.0	0.0	0.0	0.0	7.3			
co	11.9	7.6	0.7	0.0	0.0	0.0	0.0	0.0	8.2			
Ammonia	0.6	94.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

NASWI 2016 Air Emissions Inventory Report Facility Wide Emissions

				CY 20	16 Emissions	(TPY)			
Pollutant	Reported CY2015 Totals (TPY)	Boilers	Generators	Test Engines	Gas Stations	Paved/ Unpaved Roads	Area Coating and Solvent Use	Paint Booths	CY2016 Totals (TPY)
VOC	30.4	0.6	0.2	0.0	25.5	0.0	19.4	6.1	51.7
PM	8.9	0.8	0.1	0.0	0.0	7.5	6.3	0.2	14.9
PM10	6.0	0.8	0.3	0.0	0.0	4.2	0.0	0.0	5.3
PM2.5	4.8	8.0	0.3	0.0	0.0	3.5	0.0	0.0	4.6
SO2	0.3	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.4
NOx	7,3	4.8	2.9	1.6	0.0	0.0	0.0	0.0	9.4
CO	8.2	8.5	0.8	0.0	0.0	0.0	0.0	0.0	9.2
Ammonia	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1

NASWI 2017 Air Emissions Inventory Report Facility Wide Emissions

				CY 20	17 Emissions	(TPY)			
Pollutant	Reported CY2016 Totals (TPY)	Boilers	Generators	Test Engines	Gas Stations	Paved/ Unpaved Roads	Area Coating and Solvent Use	Paint Booths	CY2017 Totals (TPY)
VOC	51.7	0.6	0.3	,=	28.0	-	4.8	1.4	35.2
PM	14.9	0.9	0.2	-	-2	7.3	0.0	0.0	
PM10	5.3	0.9	0.4		-				8.4
PM2.5	4.6	0.9	0.4	-	-	4.2	0.0	0.0	5.5
SO2	0.4				-	3.5	0.0	0.0	4.8
		0.1	0.4	-		-,			0.5
NOx	9.4	5.6	4.3	2.1		-	_		
co	9.2	9.7	1.0	Ψ.	-				12.1
Ammonia	0.1	0.1	0.0				- ×		10.7
	V.1	0.1	0.0	<u>~</u>		-	- 1	-	0.1

Summary of Increased Stationary Emissions NAS Whidbey Island Complex, All Alternatives

		Emissions (TPY)							
Activity	NO _X	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	CO2e		
Electricity Use (Indirect)	0.25	N/A	N/A	0.165	N/A	N/A	180.62		
Natural Gas Use (Direct)	0.10	0.01	0.21	0.002	0.02	0.02	275.67		
Painting, Solvent, and Gas Station Use		3.57							
Total	0.35	3.59	0.21	0.166	0.02	0.02	456.29		

Key:

CO = Carbon monoxide.

NOx = Nitrogen oxides.

 PM_{10} = Particulate matter less than 10 microns in diameter.

Tpy = Tons per year.

VOC = Volatile organic compound.