
WORKING DOCUMENT // DRAFT

This page is licensed under a Creative Commons Attribution 4.0 International License.
Permission granted to copy, distribute, display, and modify this work, with attribution.

Defense Innovation Board Do’s and Don’ts for Software
Version 0.6, last modified 2 Oct 2018

This document provides a summary of the Defense Innovation Board’s (DIB’s) observations on
software practices in the DoD and a set of recommendations for a more modern set of
acquisition and development principles. These recommendations build on the DIB’s Ten
Commandments of Software.

Executive Summary

Observed practice (Don’ts) Desired state (Do’s) Obstacles

Defense Acquisition University, June 2010
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

In work

Spend 2 years on excessively
detailed requirements development

Require developers to meet with end
users, then start small and iterate to
quickly deliver useful code

In work

Define success as 100% compliance
with requirements

Accept 70% solutions1 in a short time
(months) and add functionality in rapid
iterations (weeks)

In work

Require OT&E to certify compliance
after development and before
approval to deploy

Create automated test environments to
enable continuous (and secure)
integration and deployment to shift
testing left

In work

Apply hardware life-cycle
management processes to software

Take advantage of the fact that software
is essentially free to duplicate, distribute,
and modify

In work

Require customized software
solutions to match DoD practices

For common functions, purchase existing
software and change DoD processes to
use existing apps

In work

1 70% is notional. The point is to deliver the simplest, most useful functionality to the warfighter quickly.
Acronyms defined: Operational Test and Evaluation (OT&E); Joint Capabilities Integration and
Development System (JCIDS); Apps is short for applications; Specs is short for specifications.

AS AMENDED

http://creativecommons.org/licenses/by/4.0/
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
HanesK
Rectangle

HanesK
Cleared As Amended

WORKING DOCUMENT // DRAFT

2

Use legacy languages and operating
systems that are hard to support and
insecure

Use modern software languages and
operating systems (with all patches up-
to-date)

In work

Evaluate cyber security after the
systems have been completed,
separately from OT&E

Use validated software development
platforms that permit continuous
integration & evaluation (DevSecOps)

In work

Consider development and
sustainment of software as entirely
separate phases of acquisition

Treat software development as a
continuous activity, adding functionality
across its life cycle

In work

Depend almost entirely on outside
vendors for all product development
and sustainment

Require source code as a deliverable on
all purpose-built DoD software contracts.
Continuous development and integration,
rather than sustainment, should be a part
of all contracts. DoD personnel should
be trained to extend the software through
source code or API access2

In work

Turn documents like this into a
process and enforce compliance

Hire competent people with appropriate
expertise in software to implement the
desired state and give them the freedom
to do so (“competence trumps process”)

In work

Supporting Information
The information below, broken out by entry in the executive summary table, provides additional
information and a rationale for each desired state.

Don’t Do

Defense Acquisition University, June 2010 https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

The DoD 5000 process, depicted on the left, provides a detailed DoD process for setting
requirements for complex systems and ensuring that delivered systems are compliant with

2 As noted in the DIB’s 10 Commandments of Software
Acronyms defined: Application Programming Interface (API).

AS AMENDED

https://dzone.com/refcardz/introduction-to-devsecops?chapter=3
http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-The-Defense-Acquisition-System-10-Aug-17-Change-3.pdf
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
HanesK
Rectangle

WORKING DOCUMENT // DRAFT

3

those requirements. The DoD’s “one size fits all” approach to acquisition has attempted to apply
this model to software systems, where it is wholly inappropriate. Software is different than
hardware. Modern software methods make use of a much more iterative process, often referred
to as “DevOps,” in which development and deployment (operations) are a continuous process,
as depicted on the right. A key aspect of DevOps is continuous delivery of improved
functionality through interaction with the end user.

Why this is hard to do, but also worth doing:3
● DoD 5000 is designed to give OSD, the Services, and Congress some level of visibility

and oversight into the development, acquisition, and sustainment of large weapons
systems. While this directive may be useful for weapons systems with multi-billion dollar
unit costs, it does not make sense for most software systems.

● While having one consistent procurement process is desirable in many cases, the cost
of using that same process on software is that software is delivered late to need, costs
substantially more than the proposed estimates, and cannot easily be continuously
updated and optimized.

● Moving to a software development approach will enable the DoD to move from a specify,
develop, acquire, sustain mentality to a more modern (and more useful) create, scale,
optimize (DevOps/DevSecOps) mentality. Enabling rapid iteration will create a system in
which the US can update software at least as fast as our adversaries can change tactics,
allowing us to get inside their OODA loop.

Don’t Do

Spend 2 years on excessively detailed
requirements development

Require developers to meet with end users, then
start small and iterate to quickly deliver useful code

Define success as 100% compliance to
requirements

Accept 70% solutions in a short time (months) and
add functionality in rapid iterations (weeks)

Developing major weapons systems is costly and time consuming, so it is important that the
delivered system meets the needs of the user. The DoD attempts to meet these needs with a
lengthy process in which a series of requirements are established, and a successful program is
one that meets those requirements (ideally close to the program’s cost and schedule estimates).
Software, however, is different. When done right, it is easy to quickly deploy new software that
improves functionality and, when necessary, rapidly rollback deployed code. It is more useful to
get something simple working quickly (time-constrained execution) and then exploit the ability to
iterate rapidly in order to get the remaining desired functionality (which will often change in any
case, either in response to user needs or adversarial tactics).

Why this is hard to do, but also worth doing:

3 These comments and the similar ones that follow for other area were obtained by soliciting feedback on
this document from people familiar with government acquisition processes and modern software
development environments.

Acronyms defined: Office of the Secretary of Defense (OSD), OODA is short for the the decision cycle of
Observe, Orient, Decide, and Act.

AS AMENDED

HanesK
Rectangle

WORKING DOCUMENT // DRAFT

4

● Global deployment of software on systems which are not always network-connected
(e.g., an aircraft carrier or submarine underway) introduces very real problems around
version management, training, and wisely managing changes to mission critical systems.

● In the world of non-military, consumer Internet applications, it is easy to glibly talk about
continuous deployment and delivery. In these environments, it is easy to execute and
the consequences for messing up (such as making something incredibly confusing or
hard to find) are minor. The same is not always true for DoD systems -- and DoD
software projects rarely offer scalable and applicable solutions to address the need for
continuous development.

● Creating an approach (and the supporting platforms) that enables the DoD to achieve
continuous deployment is a non-trivial task and will have different challenges than the
process for a consumer internet application. The DoD must lay out strategies for
mitigating these challenges. Fortunately, there are tools that can be built upon: many
solutions have already been developed in consumer industries that require failsafe
applications with security complexities.

● Continuous deployment depends on the entire ecosystem, not just the front-end
software development.

● Make sure to focus on product design and product management, which prioritizes
delivery of capability to meet the changing needs of users, rather than program/project
management, which focus on execution against a pre-approved plan. This shift is key to
user engagement, research, and design.

Don’t Do

Require OT&E to certify compliance after
development and before approval to deploy

Create automated test environments to enable
continuous (and secure) integration and deployment
to shift testing left

Evaluate cyber security after the system has
been completed, separately from OT&E

Use validated software development platforms that
permit continuous integration and evaluation

Why this is hard to do, but also worth doing:

● The DoD typically performs a cyber evaluation on software only after delivery of the
initial product. Modern software approaches have not always explicitly addressed cyber
security (though this is changing with “DevSecOps”). This omission has given DoD
decision-makers an easy “out” for dismissing recommendations (or setting up
roadblocks) for DevOps strategies like continuous deployment. Cyber security concerns
must be addressed head on, and in a manner that demonstrates better security in
realistic circumstances. Until then, change is unlikely.

● More dynamic approaches to address the cyber security concerns must be developed
and implemented through some amount of logic and a fair bit of data. Case studies of
red teaming also help: Hack the Pentagon should be able to provide some true
examples that generate concern. It may be necessary to obtain access to some
additional good data that goes beyond what corporations are willing to share publicly.

AS AMENDED

HanesK
Rectangle

WORKING DOCUMENT // DRAFT

5

● To succeed, it will be important not to assume that it will be clear how these
recommendations solve for all cyber security concerns. Recommendations should make
explicit statements about what can be accomplished, taking away the reasons to say
"no."

Don’t Do

Apply hardware life cycle management processes
to software

Take advantage of the fact that software is
essentially free to duplicate, distribute, and modify

Consider development and sustainment of
software as entirely separate phases of acquisition

Treat software development as a continuous
activity, adding functionality across its life cycle

Why this is hard to do, but also worth doing:

● Program of record funding is specifically broken out into development and sustainment.
These distinct categories of appropriations lead program managers and acquisition
professionals to the conclusion that new functionality can only be added within
development contracts and that money allocated for sustainment cannot be used to add
new features. Vendor evaluation for development and sustainment contracts are
different; vendors on sustainment contracts often do not have the same development
competencies and frequently are not the people who built the original system. To create
an environment that will support a DevOps/DevSecOps approach, DoD Commands and
Services should jointly own the development and maintenance of software with
contractors who provide more specialized capabilities. Contracts for software should
focus on developing and deploying software (to operations) over the long term, rather
than the typical, sequential approach - “acquiring” software followed by “sustaining” that
software.

Don’t Do

Require customized software solutions to match
DoD practices

For common functions, purchase existing software
and change DoD processes to use existing apps

Business processes, financial, human resources, accounting and other “enterprise” applications
in the DoD are generally not more complicated nor significantly larger in scale than those in the
private sector. Commercial software, unmodified, should be deployed in nearly all
circumstances. Where DoD processes are not amenable to this approach, those processes
should be modified, not the software. Doing so allows the DoD to take advantage of the much
larger commercial base for common functions (e.g., Concur has 25M active users for its travel
software).

Don’t Do

Use legacy languages and operating systems
that are hard to support and insecure

Use modern software languages and operating
systems (with all patches up-to-date)

AS AMENDED

HanesK
Rectangle

WORKING DOCUMENT // DRAFT

6

Modern programming languages and software development environments have been optimized
to help eliminate bugs and security vulnerabilities that were often left to programmers to avoid
(an almost impossible endeavor). Additionally, outdated operating systems are a major security
vulnerability and the DoD should assume that any computer running such a system will
eventually be compromised.4 Standard practice in industry is to apply security patches within 48
hours of release, though even this is probably too big a window for defense systems. Treat
software vulnerabilities like perimeter defense vulnerabilities: if there is a hole in your perimeter
and people are getting in, you need to patch the hole quickly and effectively.

Why this is hard to do, but also worth doing:
● DoD looks at the cost of upgrading hardware as a major cost that is tied to

“modernization.” But hardware should be thought of as a consumable like any other,
such as fuel and parts that must be continually replaced for a weapon system to
maintain operational capability. This change would require DoD to provide a stable
annual budget that paid for new hardware and software capability.

● The advantage of using modern hardware and operating systems on DoD systems are
manifold: better security, better functionality, reduced (unit) costs, and lower overall
maintenance costs.

Don’t Do

Turn documents like this into a process and
enforce compliance

Hire competent people with appropriate expertise in
software to implement the desire state and give them
the freedom to do so (“competence trumps process”)

Why this is hard to do, but also worth doing:

● Good engineers want to build things, not just write and evaluate contracts. If their jobs
are mainly contracting or monitoring, their software skills will quickly become outdated.
This can be solved in the short term by a rotational program: do not allow programmers
to stay in contracting for more than 4 years, so their technical capabilities are current.

● The government must team with commercial companies to ensure that it has access to
the collection of talent required to develop modern software systems, as well as develop
internal talent. The DoD should increase its use of contractors whose aim is not just to
provide software, but to increase the software development capabilities and competency
of the department. By making use of enlisted personnel, reservists, contractors, and
other resources, it is possible to create and maintain highly effective teams who
contribute to national security through software development.

4 See the DIB 10 Commandments of Software supporting thoughts and recommendations. “Move to a
model of continuous hardware refresh in which computers are treated as a consumable with a 2-3 year
lifetime.”

AS AMENDED

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
HanesK
Rectangle

WORKING DOCUMENT // DRAFT

7

Supporting Recommendations
The recommendations above are based on existing assessments and recommendations
regarding DoD software acquisition and practices. A brief summary (and links to further
information) of materials that provide additional details is provided here.

DIB Ten Commandments (v1.1, May 2018):

1. Make computing, storage, and bandwidth and programmers abundant to DoD
developers and users.

2. All software procurement programs should start small, be iterative, and build on success
‒ or be terminated quickly.

3. Budgets should be constructed to support the full, iterative life-cycle of the software
being procured with amount proportional to the criticality and utility of the software.

4. Adopt a DevOps culture for software systems.

5. Automate testing of software to enable critical updates to be deployed in days to weeks,
not months or years.

6. Every purpose-built DoD software system should include source code as a deliverable.

7. Every DoD system that includes software should have a local team of DoD software
experts who are capable of modifying or extending the software through source code or
API access.

8. Only run operating systems that are receiving (and utilizing) regular security updates for
newly discovered security vulnerabilities.

9. Data should always be encrypted unless it is part of an active computation.

10. All data generated by DoD systems - in development and deployment - should be
stored, mined, and made available for machine learning.

DSB Design and Acquisition of Software for Defense Systems recommendations (Feb 2018):

● Rec 1: Software Factory - A key evaluation criterion in the source selection process
should be the efficacy of the offeror’s software factory.

● Rec 2: Continuous Iterative Development - The DoD and its defense industrial base
partners should adopt continuous iterative development best practices for software,
including through sustainment.

● Rec 3: Risk Reduction and Metrics for New Programs - For all new programs,
starting immediately, the following best practices should be implemented in formal
program acquisition strategies.

AS AMENDED

https://docs.google.com/document/d/1dFId4ipjYX6-Hz5u39usCLGJuL68UQqwADwSGHCiKxk/edit?usp=sharing
https://drive.google.com/file/d/1om8HOjwPEFOUQ-xmZ2BkJi_j2iRw4YZi/view?usp=sharing
HanesK
Rectangle

WORKING DOCUMENT // DRAFT

8

● Rec 4: Current and Legacy Programs in Development, Production, and
Sustainment - For ongoing development programs, the Under Secretary of Defense for
Acquisition and Sustainment (USD(A&S)) should immediately task the PMs with the
PEOs for current programs to plan transition to a software factory and continuous
iterative development. Defense prime contractors should transition execution to a hybrid
model, within the constraints of their current contracts. Defense prime contractors should
incorporate continuous iterative development into a long-term sustainment plan. The
USD(A&S) should immediately task the SAEs to provide a quarterly status update to the
USD(A&S) on the transition plan for programs, per the ACAT category.

● Rec 5: Workforce - The U.S. Government does not have modern software development
expertise in its program offices or the broader functional acquisition workforce. This
requires Congressional engagement and significant investment immediately.

● Rec 6: Software is Immortal – Software Sustainment - Starting immediately, the
USD(R&E) should direct that requests for proposals (RFPs) for acquisition programs
entering risk reduction and full development should specify the basic elements of the
software framework supporting the software factory, including code and document
repositories, test infrastructure (e.g., gtest), software tools (e.g., fuzz testing,
performance test harnesses), check-in notes, code provenance, and reference and
working documents informing development, test, and deployment. These should then be
reflected in the source selection criteria for the RFP.

● Rec 7: Independent Verification and Validation for Machine Learning - Machine
learning is an increasingly important component of a broad range of defense systems,
including autonomous systems, and will further complicate the challenges of software
acquisition.

AS AMENDED

HanesK
Rectangle

	Supporting Information
	Supporting Recommendations

