
WORKING DOCUMENT // DRAFT

1

Is Your Development Environment Holding You Back?
A DIB Guide for the Acquisition Community

Version 0.2, last modified 3 Oct 2018

A strong software development team is marked by some common attributes, including the use
of practices, processes, and various tools.

An effective team starts with clear goals. The entire software team should have a clear
sense of the project’s goals and the value they seek to provide “the client.” The goals should be
translated into specific objectives, which may be measured in terms of agreed-upon key
performance indicators (KPIs) or other frameworks. An effective development environment is
one designed to deliver value towards those goals. (This KPI-driven paradigm should not be
seen as an invitation to reprise an extended debate about requirements.)

Technical practices and processes that enable a development environment to deliver
value towards those goals include:

● Organization through discrete “user stories” that can be broken down into smaller
components and continually prioritized by the product owner

● Relatively short “sprints” (often two weeks), each ending in a retrospective, that enable
measurement and learning throughout the process

● Blameless post-mortems that allow for maximum learning and speedy recovery from
failures

● Automated testing, security, and deployment
● Testing (including user testing) and security should be shifted to the left and be part of

the day-to-day operations within the development teams
● Continuous integration, in which developers integrate code into a shared repository

several times a day, and check-ins are then verified by an automated build for early
problem detection

● Continuous delivery or continuous deployment, in which the software is seamlessly
deployed into staging and production environments

● Trunk-based development, in which team members work in small batches and develop
off of trunk or master, rather than long-lived feature branches

● Version control for all production artifacts including open source and third party libraries
● Infrastructure as code: version control for all configuration, networking requirements,

container orchestration files, continuous integration/continuous delivery (CI/CD) pipeline
files

● Ability to execute A/B testing and canary deployments
● Ability to get rapid and continuous user feedback and to test new features with users

throughout the development process

Effective teams will practice continuous delivery, in which teams deploy software in short cycles,
ensuring that the software can be reliably released at any time. Continuous deployment can be
measured by a team’s ability to achieve the following outcomes:

HanesK
Cleared

WORKING DOCUMENT // DRAFT

2

● Teams can deploy on-demand to production or to end users throughout the software
delivery lifecycle.

● Fast feedback on the quality and deployability of the system is available to everyone on
the team, and people make acting on this feedback their highest priority.

Specific measures that will help you gauge if your development environment is working as it
should include development frequency; lead time for changes; time to restore service after
outage; and change failure rate (rollback deployed code). These questions and data, borrowed
from the 2017 State of DevOps Report from DORA, can help assess where your teams stand:

 High
performance

Medium
performance

Low
performance

Deployment frequency
How often does your organization
deploy code?

On demand
(multiple deploys
per day)

Between once
per week and
once per month

Between once
per week and
once per month

Lead time for changes
What is your lead time for changes
(i.e., how long does it take to go from
code-commit to code successfully
running in production)?

Less than one
hour

Between one
week and one
month

Between one
week and one
month*

Mean time to recover (MTTR)
How long does it generally take to
restore service when a service
incident occurs (e.g., unplanned
outage, service impairment)?

Less than one
hour

Less than one
day

Between one
week and one
day

Change failure rate
What percentage of changes results
either in degraded service or
subsequently requires remediation
(e.g., leads to service impairment,
service outage, requires a hotfix,
rollback, fix forward, patch)?

0-15%

0-15% 31-45%

* Low performers were lower on average (at a statistically significant level), but had the same median as the medium
performers (2017 DevOps Report)

There is no exact set of tools that indicate that your development environment is working as it
should, but the use of some tools will often indicate that the practices and processes above are
in place. You commonly see effective software teams using:

● An issue tracker, like Jira or Pivotal Tracker
● Continuous integration and/or continuous integration/continuous delivery (CI/CD) tools,

like Jenkins, Circle CI, or Travis CI

https://puppet.com/resources/whitepaper/state-of-devops-report

WORKING DOCUMENT // DRAFT

3

● Automated build tools, like Maven, Grable, Cmake, and Apache Ant
● Automated testing tools, like Selenium, Cucumber, J-Unit
● A centralized artifacts repository, like Nexus, Artifactory, or Maven
● Automated security tools for static and dynamic code analysis and container security,

like Sonarqube, OWASP ZAP, Fortify, Nessus, Twistlock, Aqua, and more.
● Automation tools, like Chef, Ansible, or Puppet
● Automated code review tools, like Code Climate
● Automated monitoring tools, like Nagios, Splunk, New Relic, and ELK
● Container and container orchestration tools like Docker, Docker Swarm, Kubernetes,

and more

Warning signs that you may have screwed up your development environment include:
● If teams cannot effectively track progress towards defined goals and objectives roughly

every two weeks
● If teams cannot rapidly deploy various environments that mirror production to test their

code such as in development, QA, and staging
● If teams cannot have real-time feedback regarding their code building, passing tests,

and passing security scans
● If it takes months for end users to be able to see changes and provide feedback
● If teams cannot rapidly roll-back to previous versions or perform rolling-update to new

versions without downtime
● If recovering from incidents results in significant drama or the assignment of blame
● If having code ready to deploy is a big event (it should happen routinely and without

drama)
● If changes to the software frequently result in breaking it
● If developers are not empowered to change the code or build new functionality based on

user feedback, or to change their process based on what they learn

