
WORKING DOCUMENT // DRAFT

1

Is Your Compute Environment Holding You Back?
A DIB Guide for the Acquisition Community

Version 0.1, last modified 3 Oct 2018

To enable software to provide a competitive advantage to the warfighter, DoD must adopt a
strategy for rapidly transitioning DoD IT to current industry standards. This modernization
agenda should include providing distributed databases and abundant computing power; making
bandwidth available as a platform; integrating mobile technologies; and developing DoD
platforms for downloading applications. These capabilities should be available to DoD
programmers (and contractors) who are developing software for national defense:

1. Scalable compute. Access to computing resources should never be a limiting factor
when developing code. Modern cloud environments provide mechanisms to provide any
developer with a powerful computing environment that can easily scale with the needs of
an individual programmer, a product development team, or an entire enterprise.

2. Containerization. Container technology provides sandbox environments in which to
test new software without exposing the larger system to the new code. It “packages up”
an application with all of the operating system services required for executing the
application and allowing that application to run in a virtualized environment. Containers
allow isolation of components (that communicate with each other through well-defined
channels) and provide a way to “freeze” a software configuration of an application
without freezing the underlying physical hardware and operating system.

3. Continuous integration/continuous delivery (CI/CD) pipeline (DevSecOps
platform). A platform that provides the CI/CD pipeline is used for automated testing,
security, and deployment. This includes license access for security tools and a
centralized artifacts repository with tools, databases, and a base operating system (OS)
with an existing authorization to operate (ATO).

4. Infrastructure as code: Automated configuration, updating, distribution, and
recovery management. Manual configuration management of operating systems and
middleware platforms leads to inconsistencies in fielded systems and drives up the
operating costs due to the labor hours required for systems administration. Modern
software processes avoid this by implementing “infrastructure as code,” which replaces
manual processes for provisioning infrastructure with automated processes that use
machine-readable definition files to manage and provision containers, virtual machines,
networking, and other components. Adopting infrastructure as code and software
distribution tools in a standardized way streamlines uniformity of deployment and testing
of changes, which are both vital to realizing the benefits of agile development processes.

5. Federated identity management and authentication backend with common log file
management and analysis. Common identity management across military,
government, and contractors greatly simplifies the assignment of permissions for
accessing information across multiple systems and allows rapid and accurate auditing of

AS AMENDED

HanesK
Rectangle

WORKING DOCUMENT // DRAFT

2

code. The ability to audit access to information across multiple systems enables the
detection of inappropriate access to information, and can be used to develop the
patterns of life that are essential for proper threat analysis. Common identity
management can ease the integration of multi-factor authentication across servers,
desktops, and mobile devices. Along with public key infrastructure (PKI) integration, it
allows verification of both the service being accessed by the user and the user
accessing information from the service.

6. Firewall configuration and network access control lists. Having a common set of
OS and application configurations allows network access control not just through
network equipment, but at the server itself. Pruning unnecessary services and forcing
information transfer only through intentional interfaces reduce the attack surface and
make servers more resilient against penetration. Server-to-server communication can be
encrypted to protect from network interception and authenticated so that software
services can only communicate with authorized software elements.

7. Client software. Remote login through remote desktop access is common throughout
DoD. This greatly increases the difficulty of integrating mobile platforms and of permitting
embedded devices to access vital information, especially from the field. It also
complicates uniform identity management and multi-factor verification, which is key to
securing information. By moving to web client access, mobile integration and
development are greatly eased. It also becomes possible to leverage industry
innovation, as this is where the commercial sector is heading for all interactions.

8. Common information assurance (IA) profiles. Information assurance (IA) for DoD
systems is complex, difficult, and not yet well-architected. Test, certification, and IA are
almost always linear “tailgate” processes instead of being integrated into a continuous
delivery cycle. Common IA profiles integrated into the development environment and
part of the development system architecture are less likely to have bugs than
customized and add-on solutions.

Desired State with Examples
Effective use of software requires sufficient resources for computing, storage, and
communications. Software development teams must be provided with abundant compute,
storage, and bandwidth to enable rapid creation, scaling, and optimization of software products.

Modern cloud computing services provide such environments and are widely available for
government use. In its visits to DoD programs, the DIB Software Acquisition and Practices
(SWAP) team has observed many programs that are regenerating computing infrastructure on
their own -- often in a highly non-optimal way -- and typically due to constraints (or perceived
constraints) created by government statutes, regulations, and culture. This approach results in
situations where compute capability does not scale with needs; operating systems cannot be
upgraded without upgrading applications; applications cannot be upgraded without updating the
operating systems; and any change requires a complete information assurance recertification.

AS AMENDED

HanesK
Rectangle

WORKING DOCUMENT // DRAFT

3

Compute platforms are thus “frozen” at a point established early in the program lifecycle, and
development teams are unable to take advantage of new tools and new approaches as they
become available. The DIB SWAP team has noted a general lack of good tools for profiling code,
maintaining access and change logs, and providing uniform identity management, even though
the DoD has system-wide credentials through Common Access Control (CAC) cards.

It would be highly beneficial to create common frameworks and/or a common set of
platforms that provide developers with a streamlined or pre-approved ATO. Use of these
pre-approved platforms should not be mandated, but they create cost and time incentives by
enabling more consolidated platforms. DoD could make use of emerging government cloud
computing platforms or achieve similar consolidation within a DoD-owned data center (hybrid
cloud). DoD should move swiftly from a legacy data center approach to a cloud-based model,
while taking into account the lessons learned and tools and services available from commercial
industry, with assumed hardware and operating system updates every 2-3 years1.

Warning Signs
Some indicators that you may have screwed up your compute environment include:

● Your programmers are using tools that are less effective than what they used in school
● The headcount needed to support the system grows linearly with the number of servers

or instances
● You need system managers deployed with hardware at field locations because it is

impossible to configure new instances without highly skilled local support
● You have older than current versions of operating systems or vendor software because it

is too hard to test or validate changes
● Unit costs for compute, network transport, and storage are not declining, or are not able

to be determined
● Logging in via remote desktop is the normal way to access an information service
● You depend on network firewalls to secure your compute resource from unauthorized

access
● You depend on hardware encryptors to keep your data safe from interception
● You have to purge data on a regular basis to avoid running out of storage
● Compute tasks are taking the same or longer time to run than they did when the system

was first fielded
● Equipment or software is in use that has been “end of lifed” by the vendor and no longer

has mainstream support
● It takes significant work to find out who accessed a given set of files or resources over a

reasonable period of time
● No one knows what part of the system is consuming the most resources or what code

should be refactored for optimization
● Multifactor authentication is not being used

1 See the DIB 10 Commandments of Software supporting thoughts and recommendations. “Move to a
model of continuous hardware refresh in which computers are treated as a consumable with a 2-3 year
lifetime.”

AS AMENDED

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
HanesK
Rectangle

WORKING DOCUMENT // DRAFT

4

● You cannot execute a disaster recovery exercise where a current backup up of a system
cannot be brought online on different hardware in less than a day

Getting It Right These capabilities should be available to all DoD programmers and
contractors developing software for national defense:

Scalable compute
● Modern compute architectures
● Environments that make transitions across cloud and local services easy
● Graphics Processing Unit (GPU)- and machine learning (ML)-optimized compute nodes

available for specialized tasks
● Standardized storage elements and ability to expand volumes and distribute them based

on performance needs
● Standardized network switching options with centralized image control
● Property management tagging -- no equipment can be placed in a data center without

being tagged for inventory and tracked for End of Life support from vendors
● Supply chain tracking for all compute elements

Containerization
● Software deployment against standard profile OS image
● Containers can be moved from physical to cloud-based infrastructure and vice versa
● Applications and services run in containers and expand or contract as needed
● OS updates separated from application container updates
● Centralized OS patch validation and testing
● Containers can be scaled massively horizontally
● Containers are stateless and can be restarted without impact
● Configuration management for deployment and audit

Continuous integration/continuous delivery (CI/CD) pipeline (DevSecOps platform)
● Select, certify, and package best of breed development tools and services
● Can be leveraged across DoD Services as a turnkey solution
● Develop standard suite of configurable and interoperable cybersecurity capabilities
● Provide onboarding and support for adoption of Agile and DevSecOps
● Develop best-practices, training, and support for pathfinding and related activities
● Build capability to deliver a Software Platform to the Defense Enterprise Cloud

Environment
● Self-service portal to selectively configure and deliver software toolkit with pre-

configured cybersecurity capabilities

Infrastructure as code: automated configuration, updating, distribution and recovery
management

● Ability to test changes against dev environments
● Standardized profiling tools for performance measurement
● Centralized push of patches and updates with ability for rapid rollback

AS AMENDED

HanesK
Rectangle

WORKING DOCUMENT // DRAFT

5

● Auditing and revision control framework to ensure proper code is deployed and running
● Ability to inject faults and test for failover in standardized ways
● Disaster recovery testing and failover evaluation
● Utilization tracking and performance management utilities to predict resource crunches
● Standardized OS patch and distribution repositories
● Validation tools to detect manual changes to OS or application containers with alerting

and reporting

Federated identity management and authentication backend with common log file
management and analysis

● Common identity management across all DoD and contractors
● Common multifactor backends for authentication of all users along with integration of

LDAP/Radius/DNS or active directory services
● Integrated PKI services and tools for automated certificate installation and updating
● Common DRM modules that span domains between DoD/contractors and vendor

facilities that can protect, audit and control documents, files, and key information. All
encrypted at rest, even for plain text files.

● Useful for debugging and postmortem analysis
● Develop patterns of life to flag unusual activity by users or processes
● Automated escalation to defensive cyber teams

Firewall configuration and network access control lists
● Default configuration for containers is no access
● Profiles for minimal amounts of ports and services being open/run
● All network communications are encrypted and authenticated, even on the same

server/container

Client software
● Web-based access the norm, from desktops/laptops as well as mobile devices
● Remote login used as a last resort - not as the default
● Security technical implementation guides (STIGs) for browsers and plugins, as well as

common identity management at the browser interface (browsers authenticate to servers
as well as servers authenticating to browsers)

● Minimal state kept on local hardware - purged at end of session

Common information assurance (IA) profiles
● Enforces data encrypted in flight and at rest
● Software versions across DoD with automated testing
● Application lockdowns at the system level so only authorized applications can run on

configured systems
● “Makefile” to build configurations from scratch from base images in standardized

approved configurations
● Use of audit tools to detect spillage and aid in remediation (assisted via DRM)

AS AMENDED

HanesK
Rectangle

	Desired State with Examples
	Warning Signs

