

WORKING DOCUMENT // DRAFT

Defense Innovation Board Do’s and Don’ts for Software
Authors: Michael McQuade, Milo Medin, Richard Murray

Version 0.7, last modified 1 Nov 2018

This document provides a summary of the Defense Innovation Board’s (DIB’s) observations on
software practices in the DoD and a set of recommendations for a more modern set of
acquisition and development principles. These recommendations build on the ​DIB Ten
Commandments of Software​. In addition, we indicate some of the specific statutory, regulatory,
and policy obstacles to implementing modern software practices that need to be changed.

Executive Summary

Observed practice (Don’ts) Desired state (Do’s) Obstacles

Defense Acquisition University, June 2010

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
(modifications licensed ​CC-BY-SA​)

10 U.S.C. §2334
10 U.S.C. §2399
10 U.S.C. §2430
10 U.S.C §2433a
10 U.S.C. ​§​2460
10 U.S.C. §2464

DODI 5000.02,
par 5.c.(2)​ and
5.c.(3)(c)-(d)

Spend 2 years on ​excessively
detailed ​requirements development

Require developers to meet with end
users, then start small and iterate to
quickly deliver useful code

DODI 5000.02,
par 5.c.(2)

CJCSI 3170.01I
App A.1.b

Define success as 100% compliance
with requirements

Accept 70% solutions in a short time 1

(months) and add functionality in rapid
iterations (weeks)

10 U.S.C. §2399

OMB Cir A-11
pp 42-43

Require OT&E to certify compliance
after development and before
approval to deploy

Create automated test environments to
enable continuous (and secure) integra-
tion and deployment to shift testing left

10 U.S.C. §139b/d
10 U.S.C. §2399

Cultural

Apply hardware life-cycle
management processes to software

Take advantage of the fact that software
is essentially free to duplicate, distribute,
and modify

10 U.S.C. §2334
10 U.S.C. §2399
10 U.S.C. §2430

1 70% is notional. The point is to deliver the simplest, most useful functionality to the warfighter quickly.
Acronyms defined​: Operational Test and Evaluation (OT&E); Joint Capabilities Integration and
Development System (JCIDS); Apps is short for applications; Specs is short for specifications.

This page is licensed under a ​Creative Commons Attribution 4.0 International License​.
Permission granted to to copy, distribute, display, and modify this work, with attribution.

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://www.law.cornell.edu/uscode/text/10/2334
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2431a
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
http://www.jcs.mil/Portals/36/Documents/Library/Instructions/3170_01a.pdf?ver=2016-02-05-175022-720
http://www.jcs.mil/Portals/36/Documents/Library/Instructions/3170_01a.pdf?ver=2016-02-05-175022-720
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/139
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2334
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
http://creativecommons.org/licenses/by/4.0/
dkluzik
Cleared

WORKING DOCUMENT // DRAFT

48 CFR 207.106
DODI 5000.02

Require customized software
solutions to match DoD practices

For common functions, purchase existing
software and change DoD processes to
use existing apps

Culture

Use legacy languages and operating
systems that are hard to support and
insecure

Use modern software languages and
operating systems (with all patches
up-to-date)

10 U.S.C. §2334

DoDI 5000.02,
Enclosure 11

Culture

Evaluate cyber security after the
systems have been completed,
separately from OT&E

Use validated software development
platforms that permit continuous
integration & evaluation (​DevSecOps​)

DOT&E Memos

Culture

Consider development and
sustainment of software as entirely
separate phases of acquisition

Treat software development as a
continuous activity, adding functionality
across its life cycle

10 U.S.C. §2399
10 U.S.C. §2430
10 U.S.C. ​§​2460
10 U.S.C. §2464

DODI 5000.02,
par 5.c.(2)​ and
5.c.(3)(c)-(d)

Depend almost entirely on outside
vendors for all product development
and sustainment

Require source code as a deliverable on
all purpose-built DoD software contracts.
Continuous development and integration,
rather than sustainment, should be a part
of all contracts. DoD personnel should be
trained to extend the software through
source code or API access 2

Culture

(no apparent
statutory obstacle)

FAR/DFARS
technical data

rights

Turn documents like this into a
process and enforce compliance

Hire competent people ​with appropriate
expertise in software ​to implement the
desired state and give them the freedom
to do so (“competence trumps process”)

Culture

2 As noted in the ​DIB’s 10 Commandments of Software

2

https://www.law.cornell.edu/cfr/text/48/207.106
https://www.law.cornell.edu/uscode/text/10/2334
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268
https://dzone.com/refcardz/introduction-to-devsecops?chapter=3
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

WORKING DOCUMENT // DRAFT

Supporting Information
The information below, broken out by entry in the executive summary table, provides additional
information and a rationale for each desired state.

Don’t Do

Defense Acquisition University, June 2010

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

The ​DoD 5000 process​, depicted on the left, provides a detailed DoD process for setting
requirements for complex systems and ensuring that delivered systems are compliant with those
requirements. The DoD’s “one size fits all” approach to acquisition has attempted to apply this
model to software systems, where it is wholly inappropriate. Software is different than hardware.
Modern software methods make use of a much more iterative process, often referred to as
“DevOps,” in which development and deployment (operations) are a continuous process, as
depicted on the right. A key aspect of DevOps is continuous delivery of improved functionality
through interaction with the end user.

Why this is hard to do, but also worth doing: 3

● DoD 5000 is designed to give OSD, the Services, and Congress some level of visibility
and oversight into the development, acquisition, and sustainment of large weapons
systems. While this directive may be useful for weapons systems with multi-billion dollar
unit costs, it does not make sense for most software systems.

● While having one consistent procurement process is desirable in many cases, the cost of
using that same process on software is that software is delivered late to need, costs
substantially more than the proposed estimates, and cannot easily be continuously
updated and optimized.

● Moving to a software development​ ​approach​ ​will enable the DoD to move from a ​specify,
develop, acquire, sustain​ mentality to a more modern (and more useful) ​create, scale,
optimize​ (DevOps/DevSecOps) mentality. Enabling rapid iteration will create a system in

3 These comments and the similar ones that follow for other area were obtained by soliciting feedback on
this document from people familiar with government acquisition processes and modern software
development environments.

Acronyms defined​: Office of the Secretary of Defense (OSD), OODA is short for the the decision cycle of
Observe, Orient, Decide, and Act.

3

http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-The-Defense-Acquisition-System-10-Aug-17-Change-3.pdf

WORKING DOCUMENT // DRAFT

which the US can update software at least as fast as our adversaries can change tactics,
allowing us to get inside their OODA loop.

Don’t Do

Spend 2 years on ​excessively detailed
requirements development

Require developers to meet with end users, then
start small and iterate to quickly deliver useful code

Define success as 100% compliance to
requirements

Accept 70% solutions in a short time (months) and
add functionality in rapid iterations (weeks)

Developing major weapons systems is costly and time consuming, so it is important that the
delivered system meets the needs of the user. The DoD attempts to meet these needs with a
lengthy process in which a series of requirements are established, and a successful program is
one that meets those requirements (ideally close to the program’s cost and schedule estimates).
Software, however, is different. When done right, it is easy to quickly deploy new software that
improves functionality and, when necessary, rapidly rollback deployed code. It is more useful to
get something simple working quickly (time-constrained execution) and then exploit the ability to
iterate rapidly in order to get the remaining desired functionality (which will often change in any
case, either in response to user needs or adversarial tactics).

Why this is hard to do, but also why it is worth doing:

● Global deployment of software on systems which are not always network-connected
(e.g., an aircraft carrier or submarine underway) introduces very real problems around
version management, training, and wisely managing changes to mission critical systems.

● In the world of non-military, consumer Internet applications, it is easy to glibly talk about
continuous deployment and delivery. In these environments, it is easy to execute and
the consequences for messing up (such as making something incredibly confusing or
hard to find) are minor. The same is not always true for DoD systems -- and DoD
software projects rarely offer scalable and applicable solutions to address the need for
continuous development.

● Creating an approach (and the supporting platforms) that enables the DoD to achieve
continuous deployment is a non-trivial task and will have different challenges than the
process for a consumer Internet application. The DoD must lay out strategies for
mitigating these challenges. Fortunately, there are tools that can be build upon: many
solutions have already been developed in consumer industries that require failsafe
applications with security complexities.

● Continuous deployment depends on the entire ecosystem, not just the front-end
software development.

● Make sure to focus on product design and ​product​ management, which prioritizes
delivery of capability to meet the changing needs of users, rather than program/project
management, which focus on execution against a pre-approved plan. This shift is key to
user engagement, research, and design.

4

WORKING DOCUMENT // DRAFT

Don’t Do

Require OT&E to certify compliance after
development and before approval to deploy

Create automated test environments to enable
continuous (and secure) integration and deployment
to shift testing left

Evaluate cyber security after the system has
been completed, separately from OT&E

Use validated software development platforms that
permit continuous integration and evaluation

Why this is hard to do, but also worth doing:

● The DoD typically performs a cyber evaluation on software only after delivery of the
initial product. Modern software approaches have not always explicitly addressed cyber
security (though this is changing with “DevSecOps”). This omission has given DoD
decision-makers an easy “out” for dismissing recommendations (or setting up
roadblocks) for DevOps strategies like continuous deployment. Cyber security concerns
must be addressed head on, and in a manner that demonstrates better security in
realistic circumstances. Until then, change is unlikely.

● More dynamic approaches to address the cyber security concerns must be developed
and implemented through some amount of logic and a fair bit of data. Case studies of
red teaming also help: ​Hack the Pentagon​ should be able to provide some true
examples that generate concern. It may be necessary to obtain access to some
additional good data that goes beyond what corporations are willing to share publicly.

● To succeed, it will be important not to assume that it will be clear how these
recommendations solve for all cyber security concerns. Recommendations should make
explicit statements about what can be accomplished, taking away the reasons to say
"no."

Don’t Do

Apply hardware life cycle management processes
to software

Take advantage of the fact that software is
essentially free to duplicate, distribute, and modify

Consider development and sustainment of
software as entirely separate phases of acquisition

Treat software development as a continuous
activity, adding functionality across its life cycle

Why this is hard to do, but also worth doing:

● Program of record funding is specifically broken out into development and sustainment.
These distinct categories of appropriations lead program managers and acquisition
professionals to the conclusion that new functionality can only be added within
development contracts and that money allocated for sustainment cannot be used to add
new features. Vendor evaluation for development and sustainment contracts are
different; vendors on sustainment contracts often do not have the same development
competencies and frequently are not the people who built the original system. To create
an environment that will support a DevOps/DevSecOps approach, DoD Commands and

5

WORKING DOCUMENT // DRAFT

Services should jointly own the development and maintenance of software with
contractors who provide more specialized capabilities. Contracts for software should
focus on developing and deploying software (to operations) over the long term, rather
than the typical, sequential approach - “acquiring” software followed by “sustaining” that
software.

Don’t Do

Require customized software solutions to match
DoD practices

For common functions, purchase existing software
and change DoD processes to use existing apps

Business processes, financial, human resources, accounting and other “enterprise” applications
in the DoD are generally not more complicated nor significantly larger in scale than those in the
private sector. Commercial software, unmodified, should be deployed in nearly all
circumstances. Where DoD processes are not amenable to this approach, those processes
should be modified, not the software. Doing so allows the DoD to take advantage of the much
larger commercial base for common functions (e.g., Concur has 25M active users for its travel
software).

Don’t Do

Use legacy languages and operating systems
that are hard to support and insecure

Use modern software languages and operating
systems (with all patches up-to-date)

Modern programming languages and software development environments have been optimized
to help eliminate bugs and security vulnerabilities that were often left to programmers to avoid
(an almost impossible endeavor). Additionally, outdated operating systems are a major security
vulnerability and the DoD should assume that any computer running such a system will
eventually be compromised. Standard practice in industry is to apply security patches within 48 4

hours of release, though even this is probably too big a window for defense systems. Treat
software vulnerabilities like perimeter defense vulnerabilities: if there is a hole in your perimeter
and people are getting in, you need to patch the hole quickly and effectively.

Why this is hard to do, but also worth doing:

● DoD looks at the cost of upgrading hardware as a major cost that is tied to
“modernization.” But hardware should be thought of as a consumable like any other,
such as fuel and parts, that must be continually replaced for a weapon system to
maintain operational capability. This change would require DoD to provide a stable
annual budget that paid for new hardware and software capability.

4 See the DIB ​10 Commandments of Software​ supporting thoughts and recommendations. “​Move to a
model of continuous hardware refresh in which computers are treated as a consumable with a 2-3 year
lifetime.”

6

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

WORKING DOCUMENT // DRAFT

● The advantage of using modern hardware and operating systems on DoD systems are
manifold: better security, better functionality, reduced (unit) costs, and lower overall
maintenance costs.

Don’t Do

Turn documents like this into a process and
enforce compliance

Hire competent people ​with appropriate expertise in
software ​to implement the desire state and give them
the freedom to do so (“competence trumps process”)

Why this is hard to do, but also why it is worth considering doing it:

● Good engineers want to build things, not just write and evaluate contracts. If their jobs
are mainly contracting or monitoring, their software skills will quickly become outdated.
This can be solved in the short term by a rotational program: do not allow programmers
to stay in contracting for more than 4 years, so their technical capabilities are current.

● The government must team with commercial companies to ensure that it has access to
the collection of talent required to develop modern software systems, as well as develop
internal talent. The DoD should increase its use of contractors whose aim is not just to
provide software, but to increase the software development capabilities and competency
of the department. By making use of enlisted personnel, reservists, contractors, and
other resources, it is possible to create and maintain highly effective teams who
contribute to national security through software development.

Additional Obstacles
In addition to the specific obstacles listed above, we capture here a collection of statutes,
regulations, processes and cultural norms that are impediments to implementing a modern set
of software acquisition and development principles.

Statutes
The statutes below provide examples of impediments to the implementation of modern software
development practices in DoD systems.

Acquisition strategy ​(​10 U.S.C §2431a​): 2431a(d) establishes the review process for major
defense acquisition programs and is written around the framework of waterfall development for
long timescale, hardware-centric programs. In particular, this statute establishes decision-gates
at Milestone A (entry into technology maturation and risk reduction), Milestone B (entry into
system development and demonstration), and entry into full-rate production. For many software
programs this set of terms and approach does not make sense and is incompatible with the
ability to deliver capability to the field in a rapid fashion.

7

https://www.law.cornell.edu/uscode/text/10/2431a

WORKING DOCUMENT // DRAFT

Critical cost growth in major defense acquisition programs ​(​10 U.S.C. §2433a​ [Nunn-McCurdy]):
2433 establishes the conditions under which Congress reviews a major program that has
undergone critical cost growth and determines with it should continue. By the time a software
program hits a Nunn-McCurdy breach it has already gone well past the point where the program
should have been terminated and restarted using a different approach. All software
procurement programs should start small, be iterative, and build on success ‒ or be terminated
quickly.

Independent cost estimation and cost analysis ​(​10 U.S.C. §2334​)

Working capital funds​ (​10 U.S.C. §2208(r)​):

● 2+ year lead times from plan to budget does not allow for continuous engineering
● Differentiating software development workload as Research, Development, Test and

Engineering (RDT&E), Procurement, or Operations and Maintenance (O&M) is
meaningless as there should be no final fielding or sustainment element to continuous
engineering

● System-defined program elements hinder the ability to deliver holistic capabilities and
enable real-time resource, requirements, performance and schedule trades across
systems without significant work.

Operational Test and Evaluation​ (​10 U.S.C. §139b/d​, ​10 U.S.C. §2399​): 139 establishes the
position of the Director of Operational Test and Evaluation (DOT&E) and requires that person to
carry out field tests, under realistic combat conditions, of weapon systems for the purpose of
determining the effectiveness and suitability of those systems in combat by typical military
users. 2399(a) states that a major defense acquisition program “may not proceed beyond
low-rate initial production until initial operational test and evaluation of the program,
subprogram, or element is completed”. 2399(b)(4) further states that the program many not
proceed “until the Director [of Operational Test and Evaluation] has submitted to the Secretary
of Defense the report with respect to that program under paragraph (2) and the congressional
defense committees have received that report”. These are obstacles for DevSecOps
implementation of software, where changes should be deployed to the field quickly as part of
the (continuous) development process. They are an example of a “tailgate” process for OT&E
that impedes our ability to deploy software quickly and drives a set of processes in which OT&E
impedes rather than enhances the software development process. Instead of this process,
Congress should allow independent OT&E of software to occur in parallel with deployment and
also require that OT&E cycles for software match development cycles through the use of
automated workflows and test harnesses wherever possible.

Additional issues:

● Testing and evaluation (T&E) must be integrated into the development lifecycle to
facilitate DevSecOps, and reduce operations and sustainment (O&S) costs. T&E should
be present from requirements setting to O&S

8

https://www.law.cornell.edu/uscode/text/10/2433a
https://www.law.cornell.edu/uscode/text/10/2334
https://www.law.cornell.edu/uscode/text/10/2208
https://www.law.cornell.edu/uscode/text/10/139
https://www.law.cornell.edu/uscode/text/10/2399

WORKING DOCUMENT // DRAFT

● Programs need persistent and realistic environments that permit continuous, agile
testing of all systems (embedded, networked, etc) in a representative SoS environment

● Software environments should be part of the contract deliverables and accessible to
T&E, including source code, build tools, test scripts, data

Definition of a major acquisition program​ (​10 U.S.C. §2430​): The designation of a program as a
major acquisition program triggers a set of procedures that are designed for acquisition of
hardware. This includes triggering of the ​DoD Instruction 5000.02​, which is currently tuned for
hardware systems. An alternative instruction, ​DoD Instruction 5000.75​, is better tuned for
software, but can only used for defense ​business​ systems; it is not valid for “weapons systems”.

Depot level maintenance and repair; core logistics​ (​10 U.S.C. ​§​2460​, ​10 U.S.C. §2464​):​ ​​The
definitions of maintenance, repair, and logistics are based on an acquisition model that is
appropriate for hardware but not well aligned with the operation of modern software. For
example, §2464 says that services will “maintain and repair the weapon systems”. But software
is not maintained, it is ​optimized ​(with better performance and new functionality) on a
continuous ​basis. §2460(b)(1) further states that depot level maintenance and repair “does not
include the procurement of major modifications or upgrades of weapon systems that are
designed to improve program performance”.

Additional issues:

● DoD’s challenge in shifting from applying a Hardware (HW) maintenance mindset to
Software (SW) hinders DoD’s ability to better leverage DoD’s organic SW engineering
infrastructure to deliver greater capability to the warfighter.

● DoD’s acquisition process is not emphasizing an upfront focus on design for software
sustainment and a seamless transition to organic software engineering sustainment to
reduce the life cycle cost of software and to speed delivery of capability over the life
cycle. Such upfront emphasis is critical given the scope, complexity, and mix of the
growing software sustainment demand, in the face of persistent affordability concerns.

● DoD’s organic software engineering capabilities and infrastructure are critical to national
security, but there is limited enterprise visibility of this infrastructure, its capabilities,
workload, and resources to leverage it at the enterprise level to deliver greater capability
more affordably to the warfighter.

Regulations
The regulations are the mechanism by which the DoD implements the statutes that govern its
operations. They provide additional examples of impediments to the implementation of modern
software development practices in DoD systems.

Cost estimating system requirements​ (​48 CFR 252.215-7002​) : These regulations set out the
expectations for estimation of costs of a program against a set of system requirements. While

9

https://www.law.cornell.edu/uscode/text/10/2430
https://aida.mitre.org/dodi-5000/
https://aida.mitre.org/dodi-5000-75/
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.law.cornell.edu/cfr/text/48/252.215-7002

WORKING DOCUMENT // DRAFT

perhaps appropriate for a hardware-oriented system, they do not take into account the type of
continuous development cycle that is required to implement modern software.

Additional requirements for major systems​ ​​(​48 CFR 207.106​): These regulations set out
procedures for competition of contracts and are written in a manner that separates out the initial
deployment of a system with the operation and sustainment of that system. This doesn’t make
sense for software.

Processes (Instructions)
The detailed processes used to implement the regulations are laid out in Department of Defense
Instructions. We illustrate here some of the specific instructions that are obstacles to
implementation of modern software development practices.

Major acquisition program development process​ (​DODI 5000.02, par 5.c.(2) and 5.c.(3)(c)-(d)​):
These portions of the DoD Instructions apply to “Defense Unique Software Intensive” programs
and “Incrementally Deployed Software Intensive” programs. While well-intentioned, they are still
waterfall processes with years between the cycles of deployments (instead of weeks). These
processes may be appropriate for some embedded systems, but are not the right approach for
DoD-specific software running on commercial hardware and operating systems, as the diagrams
below illustrate:

Definitely not this: Better, but still not right: What we need:

Specify, design, deploy, sustain

DODI 5000.02, Figure 4. Model 2:

Defense Unique Software Intensive Program
DODI 5000.02, Figure 5. Model 3: Incrementally

Deployed Software Intensive Program

Implement, scale, optimize

https://commons.wikimedia.org/wiki

/File:Devops-toolchain.svg
(modifications licensed ​CC-BY-SA​)

Waterfall development Waterfall development with
overlapping builds

Continuous integration and
deployment (DevSecOps)

Requirements for programs containing information technology​ (​DoDI 5000.02, Enclosure 11​): This
enclosure attempts to define the requirements for ensuring information security. It is written
under the assumption that the standard waterfall process is being used.

Preparation, Submission, and Execution of the Budget - Acceptance ​(​OMB Cir A-11, II.10): This
document is ​the primary document that instructs agencies how to prepare and submit budget

10

https://www.law.cornell.edu/cfr/text/48/207.106
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268

WORKING DOCUMENT // DRAFT

requests for OMB review and approval. Section II.10 describes the conditions for acceptance of an
acquired item by the government, and requires that the asset meets the requirements of the
contract. The impact of this procedure is that it establishes a “100% compliance” mentality in order
for the government to accept a software “asset”.

Culture
In this final section we catalog a list of culture items that do not necessarily require changes in
statutes, regulations, or instructions, but rather a change in the way that DoD personnel
interpret implement their processes. Changing the culture of DoD is a complex process,
depending in large part on incentivizing the behaviors that will lead to the desired state.

Data and metrics

● Multiple, competing, and sometimes conflicting types of data and metrics used, or not
used, for assessing software in DOD

● Inability to collect meaningful data about software development and performance in a
low cost manner, at scale

● Inability to turn data into meaningful analysis and inability to implement decisions or
changes to software activities (L/R/C)

Contracts

● Individual contracts are subject to review processes designed for large programs (of
which they are likely enabling). This limits the agility of individual contract actions, even
when modular contracting approaches are applied. In addition, the acquisition process is
rigid and revolves around templates, boards, and checklists thus limiting the ability for
innovation and streamlining execution.

● Contracts focus on technical requirements instead of contractual process requirements.
The contract should address overall scope, PoP, and price. The technical execution
requirements should be separate and managed by the product owner or other technical
lead.

● Intellectual Property (IP) rights are often generically incorporated without considering the
layers of technology often applied to a solution. A single solution might include open
source, proprietary SW, and government custom code. The IP clauses should reflect all
of the technology that is used.

Security Accreditation

● Although developing and operating software securely is a primary concern, the means to
achieve and demonstrate security is overly complex and hampered by inconsistent and
outdated/misapplied policy and implementation practices (e.g. overlaying historical DoD
Information Assurance Certification and Accreditation Process (DIACAP) over risk
management framework (RMF) controls for individual pieces of software versus system
accreditation). The sense is that the certification and accreditation process is primarily a
“check- the-box” documentary process, adds little value to the overall security of the
system, and is likely to overlook flaws in the design, implementation, and the
environment in which the software operates.

11

WORKING DOCUMENT // DRAFT

● The DoD needs to be able to calculate the true and component costs for implementing
the RMF and certification and accreditation (C&A) in order to identify inefficiencies,
duplicative / capabilities, and redundant or overlapping security products and services
that are being acquired or developed. Absent a set of metrics it is difficult to prioritize risk
areas, investments, and evaluating risk reduction and return on -investment.

● The DoD needs to ensure that each Joint Capability Area (JCA) flow-down its strategy,
best practices, and implementation requirements / guidance for security and
accreditation to allow the Component responsible for implementing the software to
appropriately tailor RMF and plan the development, accreditation, and operation of the
software.

● The DoD needs to provide automated tools and services needed to integrate continuous
monitoring with the development lifecycle, enable continuous assessment and
accreditation, and delegate decision making at the lowest level possible. The DoD
should embrace DevSecOps (not just DevOps) and provide policy supported processes,
certified libraries, tools, and a toolchain reference implementation to produce “born
secure” software

Testing and Evaluation

● The DoD lacks the realistic test environments needed to support test at the pace of
modern software methods.

● The DoD lacks the modern software intellectual property (IP) regime needed to support
test and evaluation at the pace of modern software methods

● The DoD lack the enterprise knowledge management/data analytics capability needed to
support evaluation of test data at the pace of modern software methods

Workforce

● No defined requirements for software developers
● Antiquated policies (talent management, software development)
● Culture and knowledge (DoD, societal, defense contractors)

Appropriations/Funding

● 2+ year lead times from plan to budget does not allow for continuous engineering
● Differentiating software development workload as Research, Development, Test and

Engineering (RDT&E), Procurement, or Operations and Maintenance (O&M) is
meaningless as there should be no final fielding or sustainment element to continuous
engineering.

● System defined program elements hinder the ability to deliver holistic capabilities and
enable real-time resource, requirements, performance and schedule trades across
systems without significant work.

Infrastructure

● Creating software: The DoD lacks availability of vetted, secure, reusable components,
either as source code, or other digital artifacts (think hardened Docker containers or
virtual machines (VMs) here). A repository of discoverable, well indexed, vetted, secure,
and reusable components could go a long way. This also emphasizes the point that an

12

WORKING DOCUMENT // DRAFT

awful lot of software now-a-days is software by construction with minimal "glue" code
applied.

● Building/managing/testing software: There is a general lack of available tools to build
software, especially automated tools (testing/scanning/fuzzing etc.) integrated into a
secure pipeline supporting rapid agile development. There is also a significant need to
have a common, government owned and managed code repository that all programs
could/should/must use (e.g. and government-furnished GitHub).

● Running/hosting software: The DoD needs to continually push the level of abstraction up
as much as possible for programs. Traditionally programs, even cloud-based solutions,
tend to start at Infrastructure as a Service (IaaS) and build their own rest of the stack.
We need secure and available Platform as a Service (PaaS) and Function as a Service
(FaaS) so that programs only need to focus on core business logic and not on securing a
database or message bus over and over again.

● Operating/updating securely: Once developed and instantiated on a secure and
available platform, we need to continually monitor, red team (automated?), and evolve
the software. This requires proper instrumentation, logging, and monitoring of the
platform, supporting libraries / components, and the core program code. A
standard/common way to provide instrumentation and monitoring of the running services
built into the infrastructure would be very helpful.

Requirements

● A byproduct of top-level requirement flow down is rigidity and over specificity at the
derived requirements level that greatly hinders agile s/w design.

● Too often exquisite requirements are levied on a system that in turn drive extensive
complex software requirements and design, affecting development, integration, and
system test.

● Data sets are siloed within programs: a common “law of requirements” is that programs
of record try to avoid dependencies with other programs of record. This is problematic for
software-based capabilities because data is often siloed within single programs of
record. We have network programs to "pass" data, but the promise of artificial
intelligence (AI), including machine learning (ML), is that software algorithms can
leverage pools of data from disparate sources (data lakes).

● By tying software to a program of record, it becomes harder to transfer that code across
systems and data environments. As a result, DoD limits code reuse within and across
Services.

Modernization and sustainment

● DoD’s challenge in shifting from applying a hardware maintenance mindset to software
hinders DoD’s ability to better leverage DoD’s organic software engineering
infrastructure to deliver greater capability to the warfighter.

● DoD’s acquisition process is not emphasizing an upfront focus on design for software
sustainment and a seamless transition to organic software engineering sustainment to
reduce the life cycle cost of software and to speed delivery of capability over the life
cycle. Such upfront emphasis is critical given the scope, complexity, and mix of the
growing software sustainment demand, in the face of persistent affordability concerns.

● DoD’s organic software engineering capabilities and infrastructure are critical to national
security, but there is limited enterprise visibility of this infrastructure, its capabilities,

13

WORKING DOCUMENT // DRAFT

workload, and resources to leverage it at the enterprise level to deliver greater capability
more affordably to the warfighter.

Acquisition Strategy

● Acquisition policy framework: Create a cohesive acquisition policy architecture within
which effective, efficient software acquisition policy has a home.

● Acquisition management and governance: Flip the concept of an oversight model on its
head.

14

WORKING DOCUMENT // DRAFT

Supporting Recommendations
The recommendations above are based on existing assessments and recommendations
regarding DoD software acquisition and practices. A brief summary (and links to further
information) of materials that provide additional details is provided here.

DIB Ten Commandments​ (v1.1, May 2018):

1. Make computing, storage, and bandwidth and programmers abundant to DoD
developers and users.

2. All software procurement programs should start small, be iterative, and build on success
‒ or be terminated quickly.

3. Budgets should be constructed to support the full, iterative life-cycle of the software
being procured with amount proportional to the criticality and utility of the software.

4. Adopt a DevOps culture for software systems.

5. Automate testing of software to enable critical updates to be deployed in days to weeks,
not months or years.

6. Every purpose-built DoD software system should include source code as a deliverable.

7. Every DoD system that includes software should have a local team of DoD software
experts who are capable of modifying or extending the software through source code or
API access.

8. Only run operating systems that are receiving (and utilizing) regular security updates for
newly discovered security vulnerabilities.

9. Data should always be encrypted unless it is part of an active computation.

10. All data generated by DoD systems - in development and deployment - should be stored,
mined, and made available for machine learning.

DSB ​Design and Acquisition of Software for Defense Systems​ recommendations (Feb 2018):

● Rec 1: Software Factory​​ - A key evaluation criterion in the source selection process
should be the efficacy of the offeror’s software factory.

● Rec 2: Continuous Iterative Development​​ - The DoD and its defense industrial base
partners should adopt continuous iterative development best practices for software,
including through sustainment.

15

https://docs.google.com/document/d/1dFId4ipjYX6-Hz5u39usCLGJuL68UQqwADwSGHCiKxk/edit?usp=sharing
https://drive.google.com/file/d/1om8HOjwPEFOUQ-xmZ2BkJi_j2iRw4YZi/view?usp=sharing

WORKING DOCUMENT // DRAFT

● Rec 3: Risk Reduction and Metrics for New Programs​​ - For all new programs,
starting immediately, the following best practices should be implemented in formal
program acquisition strategies.

● Rec 4: Current and Legacy Programs in Development, Production, and
Sustainment​​ - For ongoing development programs, the Under Secretary of Defense for
Acquisition and Sustainment (USD(A&S)) should immediately task the PMs with the
PEOs for current programs to plan transition to a software factory and continuous
iterative development. Defense prime contractors should transition execution to a hybrid
model, within the constraints of their current contracts. Defense prime contractors should
incorporate continuous iterative development into a long-term sustainment plan. The
USD(A&S) should immediately task the SAEs to provide a quarterly status update to the
USD(A&S) on the transition plan for programs, per the ACAT category.

● Rec 5: Workforce​​ - The U.S. Government does not have modern software development
expertise in its program offices or the broader functional acquisition workforce. This
requires Congressional engagement and significant investment immediately.

● Rec 6: Software is Immortal – Software Sustainment​​ - Starting immediately, the
USD(R&E) should direct that requests for proposals (RFPs) for acquisition programs
entering risk reduction and full development should specify the basic elements of the
software framework supporting the software factory, including code and document
repositories, test infrastructure (e.g., gtest), software tools (e.g., fuzz testing,
performance test harnesses), check-in notes, code provenance, and reference and
working documents informing development, test, and deployment. These should then be
reflected in the source selection criteria for the RFP.

● Rec 7: Independent Verification and Validation for Machine Learning​​ - Machine
learning is an increasingly important component of a broad range of defense systems,
including autonomous systems, and will further complicate the challenges of software
acquisition.

16

