

Atlantic Fleet Training and Testing Draft Environmental Impact Statement / Overseas Environmental Impact Statement Volume V

United States Department of the Navy

June 2017

Atlantic Fleet Training and Testing
Draft Environmental Impact Statement / Overseas
Environmental Impact Statement
Volume V
United States Department of the Navy

June 2017

APPENDIX A Navy Activity Descriptions

This page intentionally left blank.

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

Α.	NAVY	ACTIVITY	DESCRIP	TIONS	A-1
	A.1		-	onar, Munitions, Targets, and Other Systems Employed in raining and Testing Events	Λ 1
		A.1.1		stems and Other Acoustic Sources	
		A.1.1		ns	
		A.1.2		115	
		A.1.3	•	ve Countermeasures	
		A.1.4		arfare Systems	
		A.1.6		Expended Materials	
	A.2		•	es	
	۸.۷	A.2.1	•	raining Exercises	
		۸.2.1	A.2.1.1	Composite Training Unit Exercise	
			A.2.1.2	Fleet Exercise/Sustainment Exercise	
		A.2.2		ed/Coordinated Training	
		71.2.2	A.2.2.1	Navy Undersea Warfare Training and Assessment Course	
			A.2.2.2	Surface Warfare Advanced Tactical Training	
			A.2.2.3	Anti-Submarine Warfare Tactical Development Exercise	
			A.2.2.4	Amphibious Ready Group Marine Expeditionary Unit	
				Exercise	A-28
			A.2.2.5	Group Sail	A-30
		A.2.3	Air War	fare Training	A-32
			A.2.3.1	Air Combat Maneuver	A-32
			A.2.3.2	Air Defense Exercise	A-34
			A.2.3.3	Gunnery Exercise Air-to-Air Medium-Caliber	A-35
			A.2.3.4	Gunnery Exercise Surface-to-Air Large-Caliber	A-37
			A.2.3.5	Gunnery Exercise Surface-to-Air Medium-Caliber	A-39
			A.2.3.6	Missile Exercise Air-to-Air	A-41
			A.2.3.7	Missile Exercise – Man-Portable Air Defense System	A-43
			A.2.3.8	Missile Exercise Surface-to-Air	A-45
		A.2.4	Amphib	ious Warfare Training	A-47
			A.2.4.1	Amphibious Assault	A-47
			A.2.4.2	Amphibious Marine Expeditionary Unit Integration Exercise	A-49
			A.2.4.3	Amphibious Raid	A-50

	A.2.4.4	Amphibious Vehicle Maneuvers	A-52
	A.2.4.5	Humanitarian Assistance Operations	A-53
	A.2.4.6	Marine Expeditionary Unit Certification Exercise	A-54
	A.2.4.7	Naval Surface Fire Support Exercise – At Sea	A-56
	A.2.4.8	Naval Surface Fire Support Exercise – Land-Based Target	A-58
A.2.5	Anti-Sub	marine Warfare Training	A-60
	A.2.5.1	Torpedo Exercise – Helicopter	A-61
	A.2.5.2	Torpedo Exercise – Maritime Patrol Aircraft	A-63
	A.2.5.3	Torpedo Exercise – Ship	A-65
	A.2.5.4	Torpedo Exercise – Submarine	A-67
	A.2.5.5	Tracking Exercise – Helicopter	A-69
	A.2.5.6	Tracking Exercise – Maritime Patrol Aircraft	A-71
	A.2.5.7	Tracking Exercise – Submarine	A-73
	A.2.5.8	Tracking Exercise – Ship	A-75
A.2.6	Electroni	c Warfare	A-77
	A.2.6.1	Counter Targeting Chaff Exercise – Aircraft	A-77
	A.2.6.2	Counter Targeting Chaff Exercise – Ship	A-79
	A.2.6.3	Counter Targeting Flare Exercise	A-81
	A.2.6.4	Electronic Warfare Operations	A-83
	A.2.6.5	High-Speed Anti-Radiation Missile Exercise (Air-to-Surface)	A-85
A.2.7	Expedition	onary Warfare	A-87
	A.2.7.1	Dive and Salvage Operations	A-87
	A.2.7.2	Maritime Security Operations – Anti-Swimmer Grenades	A-88
	A.2.7.3	Personnel Insertion/Extraction – Air	A-90
	A.2.7.4	Personnel Insertion/Extraction – Surface and Subsurface	A-92
	A.2.7.5	Personnel Insertion/Extraction – Swimmer/Diver	A-93
	A.2.7.6	Underwater Construction Team Training	A-94
A.2.8	Mine Wa	rfare	A-95
	A.2.8.1	Airborne Mine Countermeasure – Mine Detection	A-95
	A.2.8.2	Airborne Mine Countermeasure – Towed Mine	
		Neutralization	A-97
	A.2.8.3	Civilian Port Defense – Homeland Security Anti-	
		Terrorism/Force Protection Exercise	A-99
	A.2.8.4	Countermassures Exercise	۸ 101
	A 2 0 F	Countermeasures Exercise	
	A.2.8.5	Mine Countermeasures - Ship Sonar	A-103
	A.2.8.6	Mine Countermeasures – Mine Neutralization – Remotely Operated Vehicle	Δ-105

		A.2.8.7	Mine Laying	. A-107
		A.2.8.8	Mine Neutralization – Explosive Ordnance Disposal	. A-109
		A.2.8.9	Underwater Mine Countermeasure Raise, Tow, Beach and	
			Exploitation Operations	. A-111
	A.2.9	Surface V	Varfare Training	. A-113
		A.2.9.1	Bombing Exercise Air-to-Surface	. A-113
		A.2.9.2	Fast Attack Craft and Fast Inshore Attack Craft	. A-115
		A.2.9.3	Gunnery Exercise Air-to-Surface Medium-Caliber	. A-116
		A.2.9.4	Gunnery Exercise Air-to-Surface Small-Caliber	. A-118
		A.2.9.5	Gunnery Exercise Surface-to-Surface Boat Medium-Caliber	. A-120
		A.2.9.6	Gunnery Exercise Surface-to-Surface Boat Small-Caliber	. A-122
		A.2.9.7	Gunnery Exercise Surface-to-Surface Ship Large-Caliber	. A-124
		A.2.9.8	Gunnery Exercise Surface-to-Surface Ship Medium-Caliber	. A-126
		A.2.9.9	Gunnery Exercise Surface-to-Surface Ship Small-Caliber	. A-128
		A.2.9.10	Integrated Live Fire	. A-131
		A.2.9.11	Laser Targeting – Aircraft	. A-133
		A.2.9.12	Laser Targeting – Ship	. A-135
		A.2.9.13	Maritime Security Operations	. A-137
		A.2.9.14	Missile Exercise Air-to-Surface	. A-139
		A.2.9.15	Missile Exercise Air-to-Surface – Rocket	. A-141
		A.2.9.16	Missile Exercise Surface-to-Surface	. A-143
		A.2.9.17	Sinking Exercise	. A-145
	A.2.10	Other Tra	aining Exercises	. A-147
		A.2.10.1	Elevated Causeway System	. A-147
		A.2.10.2	Precision Anchoring	. A-149
		A.2.10.3	Search and Rescue	. A-150
		A.2.10.4	Submarine Navigation	. A-152
		A.2.10.5	Submarine Sonar Maintenance and Systems Checks	. A-154
		A.2.10.6	Submarine Under Ice Certification	. A-155
		A.2.10.7	Surface Ship Object Detection	. A-156
		A.2.10.8	Surface Ship Sonar Maintenance and Systems Checks	. A-158
		A.2.10.9	Waterborne Training	. A-160
A.3	Testing	Activities		A-162
	A.3.1	Naval Air	Systems Command Testing Activities	. A-162
		A.3.1.1	Air Warfare	. A-162
		A.3.1.2	Anti-Submarine Warfare	. A-176
		A.3.1.3	Electronic Warfare	. A-187
		A.3.1.4	Mine Warfare	. A-193

Training and Testing Draft EIS/OEIS	June 2017
-------------------------------------	-----------

	A.3.1.5	Surface Warfare	A-203		
	A.3.1.6	Other Testing Activities	A-215		
A.3.2	Naval Se	ea Systems Command Testing Activities	A-225		
	A.3.2.1	Anti-Submarine Warfare	A-225		
	A.3.2.2	Electronic Warfare	A-241		
	A.3.2.3	Mine Warfare	A-243		
	A.3.2.4	Surface Warfare	A-249		
	A.3.2.4	Unmanned Systems	A-259		
	A.3.2.5	Vessel Evaluation	A-267		
	A.3.2.6	Submarine Sea Trials – Weapons System Testing	A-287		
	A.3.2.7	Other Testing	A-293		
A.3.3	Office of	f Naval Research Testing Activities	A-309		
	A.3.3.1	Acoustic and Oceanographic Science and Technology	A-309		
		List of Figures			
Figure A.1-1: Princip	le of an Ac	tive Sonar	A-2		
Figure A.1-2: Guideo	d Missile De	estroyer with an AN/SQS-53 Sonar	A-4		
Figure A.1-3: Subma	rine AN/Bo	QQ-10 Active Sonar Array	A-4		
Figure A.1-4: Sonob	uoy (e.g., A	N/SSQ-62)	A-4		
Figure A.1-5: Helico	oter Deplo	ys Dipping Sonar	A-5		
Figure A.1-6: Curren	t United St	tates Navy Torpedoes	A-5		
Figure A.1-7: Anti-Su	ubmarine V	Narfare Targets	A-6		
Figure A.1-8: Mine V	Varfare Sys	stems	A-6		
Figure A.1-9: Shipbo	ard Small A	Arms Training	A-7		
Figure A.1-10: Shipb	oard Medi	um-Caliber Guns	A-8		
Figure A.1-11: Shipb	oard Large	e-Caliber Gun and Projectiles	A-8		
Figure A.1-12: Rollin	g Airframe	Missile and Air-to-Air Missile	A-9		
Figure A.1-13: Anti-S	Surface Mis	ssile Fired from MH-60 Helicopter	A-9		
Figure A.1-14: F/A-1	8 Bomb Re	elease and Loading General Purpose Bombs	A-10		
Figure A.1-15: Subso	ale Bombs	for Training	A-10		
Figure A.1-16: Deplo	yment and	d Recovery of Air Warfare Targets	A-11		
Figure A.1-17: Deplo	ying a "Kil	ler Tomato™" Floating Target	A-12		
•		Surface Target and High-Speed Maneuverable	۸ 13		
	_	ormoacuroc			
Figure A.1-19: Acoustic Countermeasures					
Figure A.1-20: Towed Mine Detection SystemA Figure A.1-21: AN/AES-1 Airborne Laser Mine Detection SystemA					
Ligure A.T-71; AN/A	F2-T AILDO	THE LASEL WITHE DETECTION SASTELL	A-14		

Atlantic Fleet

Training and Testing Draft EIS/OEIS	June 2017
Figure A.1-22: Organic and Surface Influence Sweep	A-15
Figure A.1-23: Airborne Mine Neutralization System	A-15
Figure A.2-1: BQM-74 (Aerial Target)	A-42
Figure A.2-2: LUU-2B/B Illuminating Flare (Aerial Target)	A-42
Figure A.2-3: Tactical Air-Launched Decoy (Aerial Target)	A-42
Figure A.2-4: "Killer Tomato" Stationary Floating Target	A-129
Figure A.2-5: QST-35 Seaborne Powered Target (on Left) and High-Speed Maneuvering	
Surface Target (on Right)	A-130

This page intentionally left blank.

A. NAVY ACTIVITY DESCRIPTIONS

The Navy has been conducting military readiness activities throughout the northwestern Atlantic Ocean, Gulf of Mexico, and inshore waters for decades. The tempo and types of training and testing activities have fluctuated within the Atlantic Fleet Training and Testing (AFTT) Study Area (Study Area) due to changing requirements, the introduction of new technologies, the dynamic nature of international events, advances in warfighting doctrine and procedures, and force structure changes. Such developments have influenced the frequency, duration, intensity, and location of required training and testing.

A.1 DESCRIPTION OF SONAR, MUNITIONS, TARGETS, AND OTHER SYSTEMS EMPLOYED IN ATLANTIC FLEET TRAINING AND TESTING EVENTS

The Navy uses a variety of sensors, platforms, weapons, and other devices, including ones used to ensure the safety of Sailors and Marines, to meet its mission. Training and testing with these systems may have the potential to introduce acoustic (sound) energy and expended materials into the environment. The environmental impact of these activities was analyzed in Chapter 3 (Affected Environment and Environmental Consequences) of this Environmental Impact Statement (EIS)/Overseas Environmental Impact Statement (OEIS). This appendix presents and organizes sonar systems, munitions, targets, and other systems in a manner intended to facilitate understanding of both the activities that use them and the analysis of their environmental effects, described in Chapter 3 (Affected Environment and Environmental Consequences) of this EIS/OEIS.

A.1.1 SONAR SYSTEMS AND OTHER ACOUSTIC SOURCES

Sonar. Sonar, originally an acronym for "Sound Navigation And Ranging," is a technique that uses underwater sound to navigate, communicate, or detect underwater objects (the term sonar is also used for the equipment used to generate and receive sound). There are two basic types of sonar: active and passive.

Active sonar emits sound waves that travel through the water, reflect off objects, and return to a receiver. Sonar is used to determine the distance to an underwater object by calculating the speed of sound in water and the time for the sound wave to travel to the object and back. For example, active sonar systems are used to track targets or to aid in vessel navigation by identifying known ocean floor features. Some whales, dolphins, and bats use echolocation, a similar technique, to identify their surroundings and to locate prey.

Passive sonar uses listening equipment, such as underwater microphones (hydrophones) and receiving sensors on ships, submarines, aircraft, or autonomous vehicles, to pick up underwater sounds. The advantage of passive sonar is that it places no sound in the water and, thus, does not reveal the location of the listening vessel. Passive sonar can indicate the presence, character, and direction of noise producing objects such as ships and submarines; however, passive sonar is increasingly ineffective as modern submarines become quieter. Passive sonar has no potential acoustic impact on the environment and, therefore, is not discussed further or analyzed within this EIS/OEIS.

All sounds, including sonar, are categorized by frequency. For this EIS/OEIS, active sonar is categorized into four frequency ranges: low-frequency, mid-frequency, high-frequency, and very high-frequency.

- Low-frequency active sonar emits sounds at frequencies less than 1 kilohertz (kHz). Low-frequency active sonar is useful for detecting objects at great distances because low-frequency sounds do not dissipate as rapidly as higher-frequency sounds.
- Mid-frequency active sonar emits sounds at frequencies from 1 to 10 kHz. Mid-frequency active sonar is the Navy's primary tool for detecting and identifying submarines. Active sonar in this frequency range provides a valuable combination of range and target accuracy.
- High-frequency active sonar emits sounds at frequencies greater than 10 kHz, up to 100 kHz.
 High-frequency sounds dissipate rapidly and have a small effective range; however, high-frequency sounds provide higher resolution of objects and are useful at detecting and identifying smaller objects such as sea mines.
- Very high-frequency sources are those that operate above 100 kHz but below 200 kHz. Very
 high-frequency sounds provide even higher resolution of objects and are sometimes used for
 underwater communication.

Modern sonar technology includes a variety of sonar sensor and processing systems. In concept, the simplest active sonar emits sound waves, or "pings," sent out in multiple directions, and the sound waves then reflect off of the target object in multiple directions (Figure A.1-1).

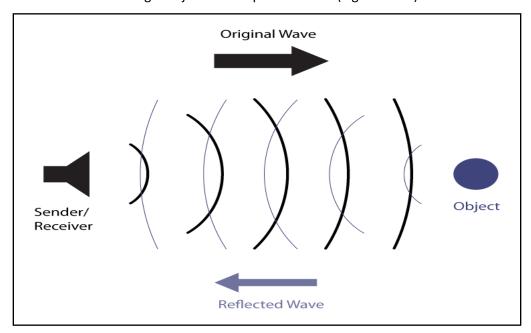


Figure A.1-1: Principle of an Active Sonar

¹ Surveillance Towed Array Sensor System (SURTASS) Low-Frequency Active sonar, which may be used in the Study Area, is not among the sources analyzed in this document. The potential environmental impacts from use of SURTASS Low-Frequency Active sonar are analyzed in separate analyses under the National Environmental Policy Act.

The sonar source calculates the time it takes for reflected sound waves to return; this calculation determines the distance to the target object. More sophisticated active sonars emit a ping and then rapidly scan or listen to the sound waves in a specific area. This provides both distance to the target and directional information. Even more advanced sonars use multiple receivers to listen to echoes from several directions simultaneously and provide efficient detection of both direction and distance. It should be noted that active sonar is rarely used continuously throughout the listed activities. In addition, when sonar is in use, the sonar "pings" occur at intervals, referred to as a duty cycle, and the signals themselves are very short in duration. For example, a sonar that emits a 1-second ping every 10 seconds has a 10 percent duty cycle.

The Navy utilizes sonar systems and other acoustic sensors in support of a variety of mission requirements. Primary uses include detection of and defense against submarines (anti-submarine warfare) and mines (mine warfare), safe navigation and effective communications, and oceanographic surveys. Specific examples of how sonar systems are used for Navy activities are discussed in the following sections.

Anti-Submarine Warfare. Systems used in anti-submarine warfare include sonars, torpedoes, and acoustic countermeasure devices. These systems are employed from a variety of platforms (surface ships, submarines, helicopters, and fixed-wing aircraft). Surface ships conducting anti-submarine warfare are typically equipped with hull-mounted sonar (passive and active) for the detection of submarines (or submarine targets during training and testing events). Helicopters use dipping sonar or sonobuoys (passive and active) to locate submarines (or targets). Fixed-wing aircraft deploy both active and passive expendable sonobuoys to assist in detecting and tracking submarines (or targets). Submarines are equipped with hull-mounted sonars to detect, localize, and track other submarines and surface ships. Submarines primarily use passive sonar; active sonar is used mostly for navigation. There are also unmanned vehicles currently being developed to deploy anti-submarine warfare systems.

Anti-submarine warfare activities often use mid-frequency (1 to 10 kHz) active sonar, though low-frequency and high-frequency active sonar systems are also used for specialized purposes. The Navy is currently developing and testing sonar systems that may utilize lower frequencies and longer duty cycles—albeit at lower source levels—than current systems. However, these new systems would only be operational if they significantly increase the Navy's ability to detect and identify quiet submarine threats.

Typical active sonar systems and acoustic sensors used during anti-submarine warfare sonar training and testing exercises include the following:

• Surface Ship Sonar Systems: A variety of surface ships operate hull-mounted or tethered midfrequency active sonar during training exercises and testing activities (Figure A.1-2). Only cruisers and destroyers have surface ship sonar systems. The littoral combat ship and new frigate will have a tethered variable depth sonar system. Unmanned surface vessels can also include sonar systems, such as the variable depth sonar and mine hunting sonar.

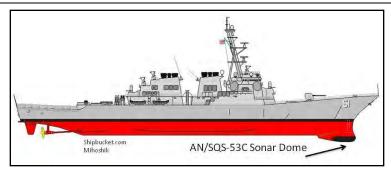


Figure A.1-2: Guided Missile Destroyer with an AN/SQS-53 Sonar

• **Submarine Sonar Systems:** Submarines are equipped with hull-mounted mid-frequency and high-frequency active sonar (Figure A.1-3) used to detect and target enemy submarines and surface ships. A submarine's mission relies on its stealth; therefore, a submarine uses its active sonar sparingly because each sound emission gives away the submarine's location.

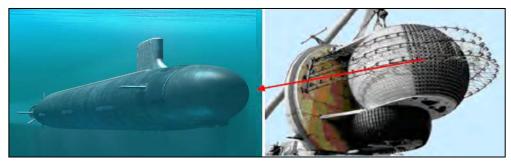
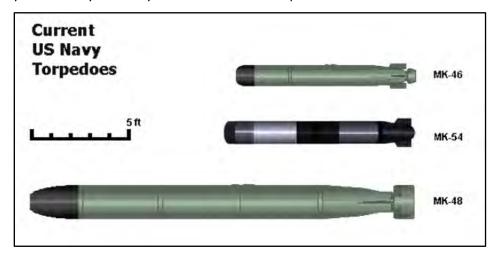


Figure A.1-3: Submarine AN/BQQ-10 Active Sonar Array

- Aircraft Sonar Systems: Aircraft sonar systems include sonobuoys and dipping sonars.
 - Sonobuoys: Active sonobuoys are expendable devices that contain a data transmitter and a hydrophone. The sounds collected by the sonobuoy are transmitted back to the operator (aboard ship or aircraft) for analysis. Sonobuoys are either active or passive and allow for short- and long-range detection of surface ships and submarines. These systems are deployed by ship, helicopter, and fixed-wing patrol aircraft (Figure A.1-4).


Figure A.1-4: Sonobuoy (e.g., AN/SSQ-62)

 Dipping Sonars: Dipping sonars are recoverable devices lowered into the water via cable from manned and unmanned helicopters (Figure A.1-5). The sonar detects underwater targets and determines the distance and movement of the target relative to the position of the helicopter.

Figure A.1-5: Helicopter Deploys Dipping Sonar

• Exercise Torpedoes: Some torpedoes used in training and testing activities may transmit active sonar signals. Surface ships, aircraft, and submarines primarily use torpedoes in anti-submarine warfare (Figure A.1-6). Recoverable, non-explosive torpedoes, categorized as either lightweight or heavyweight, are used during training and testing. Torpedoes operate autonomously, or in the case of heavyweight torpedoes, use a guidance system to operate the torpedo remotely through an attached wire (guidance wire). The autonomous guidance systems operate either passively (listening for sounds generated by the target) or actively (pinging to search for the target). Torpedo training in the Study Area is mostly simulated—solid masses that approximate the weight and shape of a torpedo are fired rather than fully functional torpedoes. Testing in the Study Area mostly uses fully functional exercise torpedoes.

Figure A.1-6: Current United States Navy Torpedoes

• Anti-Submarine Warfare Targets: Anti-submarine warfare targets are autonomous undersea vehicles used to simulate target submarines (Figure A.1-7). The targets are equipped with one or

more of the following devices: (1) acoustic projectors emitting sounds to simulate submarine acoustic signatures, (2) echo repeaters to simulate the characteristics of the echo of a sonar signal reflected from a submarine, or (3) magnetic sources that mimic those of a submarine.

Figure A.1-7: Anti-Submarine Warfare Targets

Mine Warfare. Mine warfare training and testing activities use a variety of different sonar systems that are typically high-frequency (greater than 10 kHz) and very high-frequency (greater than 100 kHz). These sonar systems are used to detect, locate, and characterize moored and bottom mines (Figure A.1-8). The majority of mine warfare sonar sensors can be deployed by more than one platform (e.g., helicopter, unmanned underwater vehicle, or surface ship) and may be interchangeable among platforms. Surface ships and submarines use sonar to detect mines and objects, while minesweeping ships use a specialized variable-depth mine detection and classification high-frequency active sonar system to detect mines.

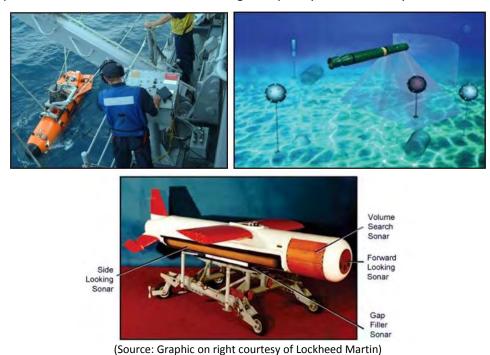


Figure A.1-8: Mine Warfare Systems

Safety, Navigation, Communications, and Oceanographic Systems. Naval ships, submarines, and unmanned surface and subsurface vehicles rely on equipment and instrumentation that use active sonar during both routine operations and training and testing events. Sonar systems are used to gauge water depth; detect and map objects, navigational hazards, and the ocean floor; and transmit communication signals.

Other Acoustic Systems. The Navy uses a variety of other acoustic sensors to protect ships anchored or at the pier, as well as shore facilities. These systems, both active and passive, detect potentially hostile swimmers, broadcast warnings to alert Navy divers of potential hazards, and gather information regarding ocean characteristics (ocean currents and wave measurements). They are generally stationary systems in Navy harbors and piers. Navy marine mammals (Atlantic bottlenose dolphins [*Tursiops truncatus*] and California sea lions [*Zalophus californianus*]) are also used to detect hostile swimmers around Navy facilities. A trained animal is deployed under behavioral control of a handler to find an intruding swimmer. Upon finding the "target" of the search, the animal returns to the boat and alerts the animal handlers, and the animals are given a localization marker or leg cuff that they attach to the intruder. Swimmers that have been marked with a leg cuff are reeled in by security support boat personnel via a line attached to the cuff. In addition, the Navy's research and acquisition community uses various sensors for tracking during testing activities and to collect data for test analysis.

A.1.2 MUNITIONS

Most munitions used during training and testing events fall into three basic categories: projectiles, missiles, and bombs. Munitions can be further defined by their net explosive weight, which is the actual weight in pounds of the explosive substance without the packaging, casings, bullets, etc. Net explosive weight is also the trinitrotoluene (TNT) equivalent of energetic material, which is the standard measure of strength of bombs and other explosives. For example, a 2,000-pound (lb.) bomb may have anywhere from 600 to 1,000 lb. of net explosive weight.

Projectiles. Projectiles are fired during gunnery exercises and testing events from a variety of weapons, ranging from pistols and rifles to large-caliber, turret-mounted guns on the decks of Navy ships. Projectiles can be either high-explosive munitions (e.g., certain cannon shells), or non-explosive practice munitions (e.g., rifle/pistol bullets). Explosive rounds can be fused to either explode on impact or in the air (i.e., just prior to impact). Projectiles are broken down into three basic categories in this EIS/OEIS:

• **Small-Caliber Projectiles:** These projectiles are up to and including 0.50 caliber. Small-caliber projectiles (e.g., bullets) are primarily fired from pistols, rifles, and machine guns (i.e., small arms) and mostly during training events for an individual Sailor to become and remain proficient (Figure A.1-9).

Figure A.1-9: Shipboard Small Arms Training

• Medium-Caliber Projectiles: These projectiles are larger than 0.50 caliber but smaller than 57 millimeter (mm) (approximately 2- to ¼-inch (in.) diameter). The most common size medium-caliber projectiles are 20 mm, 25 mm, and 40 mm. Medium-caliber projectiles are fired from machine guns operated by one to two crewman and mounted on the deck of a ship, wing-mounted guns on aircraft, and fully automated guns mounted on ships for defense against missile attack (Figure A.1-10). Medium-caliber projectiles also include 40 mm grenades, which can be fired from hand-held grenade launchers or crew-served deck-mounted guns. Medium-caliber projectiles can be non-explosive practice munitions or high-explosive projectiles. High-explosive projectiles are usually fused to detonate on impact; however, advanced high-explosive projectiles can detonate based on time, distance, or proximity to a target.

Figure A.1-10: Shipboard Medium-Caliber Guns

• Large-Caliber Projectiles: These includes projectiles 57 mm and larger. The largest projectile currently in service has a 5-in. (12.7-centimeter) diameter, but larger weapons are under development. The most widely used large-caliber projectiles are 57 mm and 5 in. (Figure A.1-11). The most common 5-in. projectile is approximately 26 in. long and weighs 70 lb. Large-caliber projectiles are fired exclusively from turret-mounted guns located on ship decks and can be used to fire on surface ships and boats, in defense against missiles and aircraft, and against land-based targets. Large-caliber projectiles can be non-explosive practice munitions or explosive munitions. High-explosive projectiles can detonate on impact or in the air.

Figure A.1-11: Shipboard Large-Caliber Gun and Projectiles

Missiles. Missiles are rocket or jet-propelled munitions used to attack ships, aircraft, and land-based targets, as well as defend ships against other missiles. Guidance systems and advanced fusing technology ensure that missiles reliably impact on or detonate near their intended target. Missiles are categorized according to their intended target, as described below, and can be further classified according to net explosive weight. Rockets are included within the category of missiles.

• Air Missiles: Air missiles are fired from ships and aircraft against enemy aircraft and incoming missiles (Figure A.1-12). Air missiles are configured to explode in the air near, or on impact with, their intended target. Missiles are the primary ship-based defense against incoming missiles.

Figure A.1-12: Rolling Airframe Missile and Air-to-Air Missile

• Surface Missiles: Surface missiles are fired from aircraft, ships, and submarines against surface ships (Figure A.1-13). Surface missiles are typically configured to detonate on impact or just above the intended target.

Figure A.1-13: Anti-Surface Missile Fired from MH-60 Helicopter

- Anti-Radiation Missiles: The AGM-88 High-Speed Anti-Radiation Missile, used to destroy enemy radar sites, is fired at a floating sea-borne target that replicates a land-based radar site.
- **Rockets:** Rockets are fired from helicopters against water and land-based targets. Rockets can either be laser guided or unguided, and while most contain inert warheads there are high-explosive variants that detonate on impact or flechette warheads that open at the conclusion of rocket motor burnout and contain approximately 1,180 60-grain flechettes.

Bombs. Bombs are unpowered munitions dropped from aircraft on land and water targets. The majority of bombs used during training and testing in the Study Area are non-explosive. However, explosive munitions are occasionally used for proficiency inspections and testing requirements. Bombs fall into two categories: general-purpose bombs and subscale practice bombs. Similar to missiles, bombs are further classified according to their net explosive weight.

• **General-Purpose Bombs:** General-purpose bombs consist of precision-guided and unguided full-scale bombs, ranging in size from 250 to 2,000 lb. (Figure A.1-14). Common bomb nomenclature used includes: MK 80 series, which is the Navy's standard model; Guided Bomb Units and Joint Direct Attack Munitions, which are precision-guided (including laser guided) bombs; and the Joint Standoff Weapon, which is a long-range "glider" precision weapon. General-purpose bombs can be either non-explosive practice munitions or high explosive.

Figure A.1-14: F/A-18 Bomb Release and Loading General Purpose Bombs

• Subscale Bombs: Subscale bombs (Figure A.1-15) are non-explosive practice munitions containing a spotting (smoke) charge to aid in scoring the accuracy of hitting the target during training and testing activities. Common subscale bombs are 25 lb. and less and are steel-constructed. Laser guided training rounds are another variation of a subscale practice bomb. They weigh approximately 100 lb. and are cost-effective non-explosive weapons used in training aircrew in laser-guided weapons employment.

Figure A.1-15: Subscale Bombs for Training

Other Munitions. There are other munitions used in naval at-sea training and testing events that do not fit into one of the above categories and are discussed below:

- **Demolition Charges:** Divers place explosive charges in the marine environment during some training and testing activities. These activities may include the use of timed charges, in which the charge is placed, a timer is started, and the charge detonates at the set time. Munitions of up to 60-lb. blocks of composition 4 (C-4) plastic explosive, with the necessary detonators and cords, are used to support mine neutralization, demolition, and other warfare activities. The vast majority of underwater detonations involve explosive charges of 20 lb. or less in size. All demolition charges are further classified according to the net explosive weight of the charge.
- Anti-Swimmer Grenades: Maritime security forces use hand grenades to defend against enemy scuba divers.
- **Torpedoes:** Explosive torpedoes are required in some training and testing events. Torpedoes are described as either lightweight or heavyweight and are further categorized according to the net explosive weight.
- Extended Echo Ranging Sonobuoys: Extended Echo Ranging sonobuoys include mini soundsource seeker sonobuoys that use small explosive charges as the active sound source instead of electrically produced sounds. Extended Echo Ranging sonobuoys are only used in testing activities.

A.1.3 TARGETS

Training and testing require an assortment of realistic and challenging targets. Targets vary from items as simple and ordinary as an empty steel drum used for small-caliber weapons training from the deck of a ship, to sophisticated, unmanned aerial drones used in air defense training. For this EIS/OEIS, targets are organized by warfare area.

Air Warfare Targets: Air warfare targets, tow target systems, and aerial targets are used in training and testing events that involve detection, tracking, defending against, and attacking enemy missiles and aircraft. Aerial tow target systems include textile (nylon banner) and rigid (fiberglass shapes) towed targets used for gunnery events. Aerial targets include expendable ballistic targets and recoverable radio-controlled drones used for gunnery and missile exercises (Figure A.1-16). Parachute flares are used as air-to-air missile targets. Manned high-performance aircraft may be used as targets—to test ship and aircraft defensive systems and procedures—without the actual firing of munitions.

Figure A.1-16: Deployment and Recovery of Air Warfare Targets

Surface Warfare Targets: Floating, towed, and mobile targets are used as surface warfare targets during gunnery events. Targets include floating steel drums, inflatable shapes or target balloons (e.g., Killer Tomato™) (Figure A.1-17), and towed sleds. High-speed targets, such as jet skis and motorboats, are also used (Figure A.1-18).

Figure A.1-17: Deploying a "Killer Tomato™" Floating Target

Figure A.1-18: Ship Deployable Surface Target and High-Speed Maneuverable Seaborne Target

Anti-Submarine Warfare Targets: Anti-submarine warfare uses multiple types of targets, including the following:

- Submarines: Submarines may act as tracking and detection targets during training and testing events.
- **Motorized Autonomous Targets:** Motorized autonomous targets simulate the acoustic and magnetic characteristics of a submarine, providing realism for exercises when a submarine is not available. There are two types of mobile targets, one is designed for recovery and reuse, while the other is expendable.
- Stationary Artificial Targets: Stationary targets either resemble submarine hulls or are simulated systems with acoustic properties of enemy submarines. These targets either rest on the seafloor or are suspended at varying depths in the water column.

Mine Warfare Targets: Mine targets are used in training activities that involve the detection, location, and neutralization of mines in the water. There are a wide variety of mine targets that mimic floating, bottom, and moored mines. All mine targets are made out of inert material.

A.1.4 DEFENSIVE COUNTERMEASURES

Naval forces depend on effective defensive countermeasures to protect against missile and torpedo attack. Defensive countermeasures are devices designed to confuse, distract, and confound precision-guided munitions. Defensive countermeasures fall into five basic categories:

- Chaff: Chaff consists of reflective, aluminum-coated glass fibers used to obscure ships and aircraft from radar-guided systems. Chaff, which is stored in canisters, is either dispensed from aircraft or fired into the air from the decks of surface ships when an attack is imminent. The glass fibers create a radar cloud that masks the position of the ship or aircraft.
- **Flares:** Flares are pyrotechnic devices used to defend against heat-seeking missiles, where the missile seeks out the heat signature from the flare rather than the aircraft's engines. Similar to chaff, flares are also dispensed from aircraft and fired from ships.
- Acoustic Countermeasures: Acoustic countermeasures are used by surface ships and submarines to defend against torpedo attack (Figure A.1-19). Acoustic countermeasures are either released from ships and submarines or towed at a distance behind the ship.
- **Electromagnetic Countermeasures:** Electromagnetic countermeasures are used by surface ships and aircraft to defend against missile attacks. Electromagnetic countermeasures are also used in anti-submarine warfare activities.
- Biodegradable Polymer: Biodegradable polymer is a biodegradable vessel entanglement technology used to slow or stop specific maritime targets by entangling the propulsion mechanism.

Figure A.1-19: Acoustic Countermeasures

A.1.5 MINE WARFARE SYSTEMS

Mine warfare systems fall into two broad categories: mine detection and mine neutralization.

Mine Detection Systems. Mine detection systems are used to locate, classify, and map suspected mines. Once located, the mines can either be neutralized or avoided. These systems are specialized to either locate mines on the surface, in the water column, or on the sea floor.

• Towed or Hull-Mounted Mine Detection Systems: These detection systems use acoustic and laser or video sensors to locate and classify suspect mines. Helicopters, ships, and unmanned vehicles are used for towed systems, which can rapidly assess large areas (Figure A.1-20).

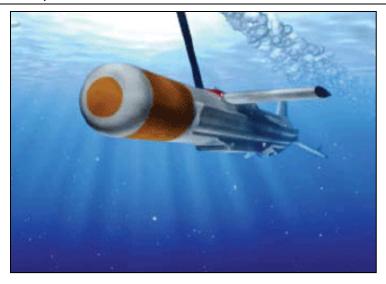


Figure A.1-20: Towed Mine Detection System

• **Airborne Laser Mine Detection Systems:** Airborne laser detection systems work in concert with neutralization systems. The detection system initially locates mines, and a neutralization system is then used to relocate and neutralize the mine (Figure A.1-21).

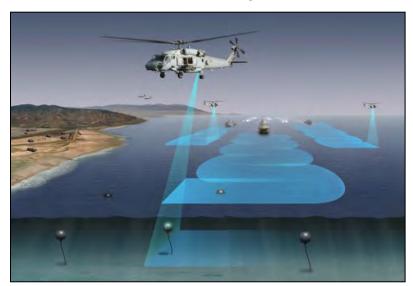


Figure A.1-21: AN/AES-1 Airborne Laser Mine Detection System

- Unmanned/Remotely Operated Vehicles: These vehicles use acoustic, video, or lasers, or combinations thereof, to locate and classify mines. Unmanned/remotely operated vehicles provide unique mine warfare capabilities in nearshore littoral areas, surf zones, ports, and channels.
- Marine Mammal System: Navy personnel and Navy marine mammals work together to detect specified underwater objects. The Navy deploys trained bottlenose dolphins and California sea lions as part of the marine mammal minehunting and object recovery system.

Mine Neutralization Systems. These systems disrupt, disable, or detonate mines to clear ports and shipping lanes, as well as littoral, surf, and beach areas in support of naval amphibious operations. Mine neutralization systems can clear individual mines or a large number of mines quickly.

• **Towed Influence Mine Sweep Systems:** These systems use towed equipment that mimics a particular ship's magnetic and acoustic signature, triggering the mine and causing it to explode (Figure A.1-22).

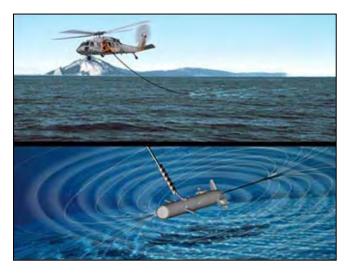


Figure A.1-22: Organic and Surface Influence Sweep

- Towed Mechanical Mine Sweeping Systems: These systems tow a sweep wire to snag the line
 that attaches a moored mine to its anchor and then uses a series of cables and cutters to sever
 those lines. Once these lines are cut, the mines float to the surface where explosive ordnance
 personnel can neutralize the mines.
- Unmanned/Remotely Operated Mine Neutralization Systems: Surface ship and helicopters
 operate these systems, which place explosive charges near or directly against mines to destroy
 the mine (Figure A.1-23).

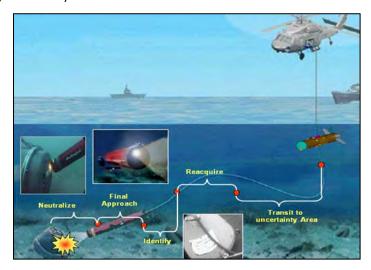


Figure A.1-23: Airborne Mine Neutralization System

- **Projectiles:** Small- and medium-caliber projectiles fired from surface ships or hovering helicopters are used to neutralize floating and near-surface mines.
- Diver-Placed Explosive Charges: Operating from small craft, divers place explosive charges, which may use time-delay fusing, near or on mines to destroy the mine or disrupt its ability to function.

A.1.6 MILITARY EXPENDED MATERIALS

Navy training and testing events may introduce or expend various items, such as non-explosive munitions and targets, into the marine environment as a direct result of using these items for their intended purpose. In addition to the items described below, some accessory materials—related to the carriage or release of these items—may be released. These materials, referred to as military expended materials, are not recovered and potentially result in environmental impacts. These impacts are analyzed in detail in Chapter 3 (Affected Environment and Environmental Consequences) of this EIS/OEIS. This section includes descriptions of a representative sample of military expended materials. A more comprehensive discussion can be found in Chapter 3 (Affected Environment and Environmental Consequences).

Military expended materials analyzed in this document include the following:

- **Sonobuoys:** Sonobuoys consist of decelerators/parachutes, wires, and the sonobuoys themselves.
- Bathythermographs: Bathythermographs as used by the Navy are similar to sonobuoys in that they consist of decelerators/parachutes, wires, and the buoy themselves. In the case of bathythermographs, the buoys are used to measure temperature information of the water column and transmit that information to the platform (usually a ship or aircraft) that deployed the bathythermograph.
- **Torpedo Launch Accessories:** Torpedoes are usually recovered; however, materials such as decelerators/parachutes used with air-dropped torpedoes, guidance wire used with submarine-launched torpedoes, and ballast weights are expended. Explosive-filled torpedoes expend torpedo fragments.
- Projectiles and Bombs: Non-explosive projectiles, non-explosive bombs, or fragments from
 explosive projectiles and bombs are expended during training and testing events. These items
 are primarily constructed of lead (most small-caliber projectiles) or steel (medium- and largecaliber projectiles and all bombs). Casings are expended as a result of firing either non-explosive
 or explosive projectiles.
- Blank Ammunition: Blank ammunition is used in some training activities when the sound or flash of gunfire adds to the realism of the training activity but safety of personnel or nearby civilians is critical. Blank ammunition contains gunpowder, but no projectile is sent downrange upon firing the weapon. Casings are expended as a result of firing blank ammunition.
- Missiles and Rockets: Non-explosive missiles and missile fragments from explosive missiles are
 expended during training and testing events. Propellant, and any explosive material involved, is
 consumed during firing/detonation. Rockets are similar to missiles and both non-explosive and
 fragments may be expended.

- **Countermeasures:** Countermeasures (acoustic, chaff, flares, and biodegradable polymer) are expended as a result of training or testing events, with the exception of towed acoustic countermeasures. Chaff activities also include an expended canister, end caps, and pistons. Flares expend only end caps and pistons.
- Targets: Some targets are designed to be expended; other targets, such as aerial drones and remote-controlled boats, are recovered for re-use. Targets struck with munitions will result in target fragments.

A.2 Training Activities

The Navy's training activities are organized generally into seven primary mission areas and a miscellaneous category ("Other Training") that includes those activities that do not fall within a primary mission area but are an essential part of Navy training. In addition, because the Navy conducts a number of activities within larger training exercises, descriptions of those larger exercises are also included here. It is important to note that these larger exercises are composed entirely of individual activities described in the primary mission areas.

A.2.1 Major Training Exercises

A major anti-submarine warfare training exercise comprises several "unit-level" range exercises conducted by several units operating together while commanded and controlled by a single commander. These exercises typically employ an exercise scenario developed to train and evaluate the strike group in naval tactical tasks. In a major training exercise, most of the operations and activities being directed and coordinated by the strike group commander are identical in nature to the operations conducted during individual, crew, and smaller-unit training events. In a major training exercise, however, these disparate training tasks are conducted in concert, rather than in isolation.

Major training exercises are listed below.

A.2.1.1 Composite Training Unit Exercise

Major Training Exercises – Large Integrated Anti-Submarine Warfare								
Composite Trai	Composite Training Unit Exercise							
Short	Aircraft carrier and carrier air wing integrate with Typical Duration							
Description	surface and submarine units in a challenging multi- threat operational environment that certifies them ready to deploy.	21 days						
Long Description	Intermediate level carrier strike exercise designed to deployment or Joint Task Force Exercise. Typically er	.						
	and helicopters, two submarines, and various unmar							
	Each strike group performs a rehearsal called Compo Prior to the Composite Training Unit Exercise, each s their specialty. The Composite Training Unit Exercise designed to forge the group into a cohesive fighting normally consists of an 18-day schedule of event-driv	hip and aircraft in the strike group trains in is an intermediate-level strike group exercise team. Composite Training Unit Exercise						
The Composite Training Unit Exercise is an integration phase, at-sea, major training exercise the Carrier Strike Group, this exercise integrates the aircraft carrier and carrier air wing wit surface and submarine units in a challenging operational environment. Special operations to may also be integrated with the exercise scenario.								

Major Training Exercises – Large Integrated Anti-Submarine Warfare						
Composite Training Unit Exercise						
	For Composite Training Unit Exercise only, the anti-submarine warfare activities were analyzed as a Composite Training Unit Exercise. Other warfare area training conducted during the Composite Training Unit Exercise is analyzed elsewhere as unit-level training (gunnery exercises, missile exercises, etc.).					
Typical Components	Platforms: Aircraft carriers, fixed-wing aircraft, rotary-wing aircraft, submarines, surface combatants Targets: Sub-surface targets Systems being Trained/Tested: Sonar systems					
Standard	Vessel safety	Typical Loca	tions			
Operating Procedures (Section 2.3.3)	Aircraft safety Towed in-water device safety	Range Complexes/Testing Ranges Gulf of Mexico Jacksonville Navy Cherry Point Virginia Capes			Inland Waters/Pierside: None	
Stressors to Biological Resources	Acoustic: Sonar and other transducers Aircraft noise Vessel noise Explosives: None	Physical Disturbance and Strike: Aircraft and aerial targets Vessels and in-water devices Military expended materials Ingestion: Military expended materials – other than munitions		;	Energy: In-air electromagnetic devices In-water electromagnetic devices Entanglement: Wires and cables	
					Decelerators/parachutes	
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stri expended material	Sediments and Metals Other materials		Quality: Chemicals		
Stressors to Human Resources	None					
Military Expended Material	Ingestible Material: Small decelerators/parachut Non-Ingestible Material: Acoustic countermeasures, e bathythermographs, expe bathythermograph wires, (non-explosive), sonobuoy	expendable indable sonobuoys	Military Recoverable Material	Sub-su	rface targets	

Major Training Exercises – Large Integrated Anti-Submarine Warfare							
Composite Training Unit Exercise							
Sonar and	Low-Frequency: Anti-Submarine Warfare:						
Other	LF6	ASW1	ASW4				
Transducer		ASW2	ASW5				
Bins	Mid-Frequency:	ASW3					
	MF1 MF5						
	MF3 MF11						
	MF4 MF12						
	High-Frequency:						
	HF1						
In-Water	Analyzed in individual unit-	level training eve	ents.				
Explosive							
Bins							
Procedural	Acoustic Stressors: (Section	5.3.2)					
Mitigation	Active sonar						
Measures							
	Physical Disturbance and Strike: (Section 5.3.4)						
	Vessel movement						
	Towed in-water devices						
Assumptions	-	•	he anti-submarine warfare activities were analyzed as a				
Used for			rfare area training conducted during the Composite				
Analysis	_	•	level training (gunnery exercise, missile exercise, etc.).				
	Stressors to human resourd	ces were not ana	lyzed for this activity since it occurs greater than 12 NM				
	from shore.						

A.2.1.2 Fleet Exercise/Sustainment Exercise

Included in the Fleet Response Training Plan is a requirement to conduct post-deployment training, and maintenance. This ensures that the components of a strike group maintain an acceptable level of readiness after returning from deployment. A sustainment exercise is an exercise designed to challenge the strike group in all warfare areas. Marine mammal systems may be used during the exercise. This exercise is similar to a Composite Training Unit Exercise but is of shorter duration.

Major Training Exercises – Medium Integrated Anti-Submarine Warfare						
Fleet Exercise/Sustainment Exercise						
Short	Aircraft carrier and carrier a	ir wing integrates with	Typical Dura	ation		
Description	surface and submarine units	in a challenging multi-				
	threat operational environm	nent to maintain ability	Up to 10 day	ys		
	to deploy.					
Long			-	omposite Training Unit Exercises		
Description				ercises are integrated joint and		
	_	_	-	s maritime warfare disciplines.		
				Group maintains an acceptable		
			order to mail	ntain a surge capability. Marine		
	mammal systems may be us		anaisas and C.	retainment Francisco is included in		
	unit-level events.	explosives in the Fleet Ex	ercises and St	ustainment Exercises is included in		
Typical		fixed wing aircraft rotar	, wing aircraft	t, submarines, surface combatants		
Components	Targets: Sub-surface targets		-willig all Clair	t, submarmes, surface compatants		
Components	Systems being Trained/Test					
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety					
Procedures	Towed in-water device	Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:		
(Section 2.3.3)	safety	Jacksonville		None		
, ,	,	Navy Cherry Point				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a		Energy:		
Biological	Sonar and other	Aircraft and aerial targe		In-air electromagnetic		
Resources	transducers Aircraft noise	Vessels and in-water de		devices In-water electromagnetic		
	Vessel noise	Military expended mat	eriais	devices		
	vesserrioise	Ingestion:		devices		
	Explosives:	Military expended mate	erials – other	Entanglement:		
	None	than munitions		Wires and cables		
				Decelerators/parachutes		
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:		
Physical	Criteria air pollutants	·				
Resources		Other ma				
	Habitats:					
	Physical disturbance and stri	ke – military				
	expended material					
Stressors to	None					
Human						
Resources						

Major Training Exercises – Medium Integrated Anti-Submarine Warfare Fleet Exercise/Sustainment Exercise							
Ingestible Material: Small decelerators/parachutes Non-Ingestible Material: Acoustic countermeasures, sonobuoys (non-explosive), sonobuoy wires	Military Recoverable Material	Sub-surface targets					
LF6 ASW1 Mid-Frequency: ASW3 MF1 MF5	ASW4						
Analyzed in individual unit-level training e	vents.						
Acoustic Stressors: (Section 5.3.2) Active sonar	Vessel r	Il Disturbance and Strike: (Section 5.3.4) movement in-water devices					
Only the anti-submarine warfare activities were analyzed as a Fleet Exercise/Sustainment Exercise Other warfare area training conducted during the Fleet Exercise/Sustainment Exercise was analyzed as unit-level training (gunnery exercise, missile exercise, etc.). Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NN							
	Ingestible Material: Small decelerators/parachutes Non-Ingestible Material: Acoustic countermeasures, sonobuoys (non-explosive), sonobuoy wires Low-Frequency: LF6 ASW1 ASW2 Mid-Frequency: MF1 MF5 MF3 MF11 High-Fre MF4 MF12 HF1 Analyzed in individual unit-level training explosed as unit-level training (gunnery explosed) Other warfare area training conducted duranalyzed as unit-level training (gunnery explosed)	Ingestible Material: Small decelerators/parachutes Non-Ingestible Material: Acoustic countermeasures, sonobuoys (non-explosive), sonobuoy wires Low-Frequency: LF6 ASW1 ASW2 ASW2 Mid-Frequency: MF1 MF5 MF3 MF11 High-Frequency: MF4 MF12 HF1 Analyzed in individual unit-level training events. Acoustic Stressors: (Section 5.3.2) Active sonar Only the anti-submarine warfare activities were analyzed at Other warfare area training conducted during the Fleet Exeanalyzed as unit-level training (gunnery exercise, missile exeats).					

A.2.2 INTEGRATED/COORDINATED TRAINING

Integrated or coordinated anti-submarine warfare training exercises are similar to major training exercises in that they are composed of several basic, unit-level exercises, training conducted by an individual unit, but are generally on a smaller scale, are of shorter duration, and use fewer hours of active sonar than a major training exercise.

A.2.2.1 Navy Undersea Warfare Training and Assessment Course

Small Integrated Anti-Submarine Warfare Training						
Navy Undersea Warfare Training and Assessment Course						
Short	Multiple ships, aircraft, and	submarines integrate	Typical Durat	tion		
Description	the use of their sensors, incl	uding sonobuoys, to				
	search for, detect, classify, le	ocalize, and track a	2-5 days			
	threat submarine.					
Long	The Navy Undersea Warfare	_				
Description				grated anti-submarine warfare		
	warfighting skill sets. Navy L		-			
	training scenario that typica		•	and attacking one submarine.		
			-	per year. The submarine may		
				Il-mounted, towed array, and		
	· · ·		_	also periodically operates its		
	sonar.	,		and paragram, aparagram		
Typical	Platforms: Fixed-wing aircra	ft, rotary-wing aircraft, s	ubmarines, surf	face combatants		
Components	Targets: Sub-surface targets					
	Systems being Trained/Test	ed: Sonar systems				
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
Procedures	Towed in-water device	Jacksonville	ang nanges.	None		
(Section 2.3.3)	safety	Navy Cherry Point				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a	ınd Strike:	Energy:		
Biological	Sonar and other	Aircraft and aerial targ	ets	In-air electromagnetic		
Resources	transducers	Vessels and in-water d		devices		
	Aircraft noise	Military expended mat	erials	In-water electromagnetic		
	Vessel noise			devices		
	Fundadisas	Ingestion:	سمطفم ملمنسمه	Fotos elements		
	Explosives: None	Military expended ma than munitions	teriais – otner	Entanglement: Wires and cables		
	None	tilali illullitiolis		Decelerators/parachutes		
Stressors to	Air Quality:	Sedimen	ts and Water C			
Physical				Chemicals		
Resources	P	Other ma				
	Habitats:					
	Physical disturbance and stri	ke – military				
	expended material					
Stressors to	None					
Human						
Resources						

Small Integrated Anti-Submarine Warfare Training					
Navy Undersea Warfare Training and Assessment Course					
Military	Ingestible Material:		Military		
Expended	Small decelerators/parachutes		Recoverab	le Some sub-surface targets	
Material			Material		
	Non-Ingestible Material:				
	Sub-surface targets, surface targets	gets,			
	sonobuoys (non-explosive),				
	sonobuoy wires				
Sonar and	Mid-Frequency:	High-Fre	quency:	Anti-Submarine Warfare:	
Other	MF1 MF5	HF1		ASW1	
Transducer	MF3 MF12	Low-Fre	guency:	ASW3	
Bins	MF4	LF6	47-	ASW4	
In-Water	Analyzed in individual unit-level training events.				
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section 5.3.2) Physical Disturbance and Strike: (Section 5.3.4)				
Mitigation	Active sonar Vessel movement			essel movement	
Measures		Towed in-water devices			
Assumptions	Two MK-39 Expendable Mobile Anti-Submarine Warfare Training Targets may be used in place				
Used for	of an actual submarine target.				
Analysis	Air deployed sonobuoys will have	Air deployed sonobuoys will have a decelerator/parachute.			
	Stressors to human resources were not analyzed for this activity since it occurs greater than 12				
	NM from shore.				

A.2.2.2 Surface Warfare Advanced Tactical Training

Small Integrate	d Anti-Submarine Warfare Tra	aining					
_	e Advanced Tactical Training						
Short	Multiple ships and aircraft o	oordinate the use of	Typical Duration				
Description	sensors, including sonobuoy		,,				
	and track a threat submarin						
	Advanced Tactical Training 6	exercises are not	Up to 15 days				
	dedicated anti-submarine w	arfare exercises and	,,-				
	involve multiple warfare are	as.					
Long	Surface Warfare Advanced 1	Tactical Training (SWATT) is an intermediate training exercise designed					
Description	primarily to increase operator proficiency and exercise combined force responses to surface						
	warfare, anti-submarine warfare, air warfare and electromagnetic spectrum operations.						
	Surface Warfare Advanced 1	Tactical Training is conduc	ted after a car	rier strike group's first Group			
		_		ultiple surface warfare, anti-			
			-	ft search for, locate, and track			
	one submarine. Occurs once						
	Use of other munitions and						
Typical	Platforms: Surface combata	nts, fixed-wing aircraft, ro	tary-wing airc	raft, unmanned vehicles,			
Components	submarines						
	=	Targets: Sub-surface targets					
	Systems being Trained/Test	·					
Standard	Vessel safety	Typical Locations					
Operating	Aircraft safety	Range Complexes/Testing Ranges:		Inland Waters/Pierside:			
Procedures	Towed in-water device	Jacksonville		None			
(Section 2.3.3)	safety	Navy Cherry Point					
		Virginia Capes					
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:			
Biological	Sonar and other	Vessels and in-water de	evices	In-air electromagnetic			
Resources	transducers	Military expended mate	erials	devices			
	Aircraft noise		In-water				
	Vessel noise	Ingestion: devices					
		Military expended mate	erials – other				
	Explosives:	than munitions		Entanglement:			
	None			Wires and cables			
				Decelerators/parachutes			
Stressors to	Air Quality:	Sediments and Water Quality:					
Physical	Criteria air pollutants	Metals Chemicals					
Resources		Other ma	terials				
	Habitats:	lea meilikame					
	Physical disturbance and stri	ke – military					
Character to	expended material						
Stressors to	None						
Human							
Resources							

Small Integrated Anti-Submarine Warfare Training					
Surface Warfare Advanced Tactical Training					
Military	Ingestible Material:		Military	Anti-submarine warfare targets	
Expended	Target fragments, small		Recoverable	Some sub-surface targets	
Material	decelerators/parachutes		Material		
	Non-Ingestible Material: Sonobuoys (non-explosive), sonobu wires, acoustic countermeasure sub-surface targets	· ·			
Sonar and	Mid-Frequency: A	nti-Sub	marine Warfare:	High-Frequency:	
Other	MF1 MF5MF1K MF6 AS	SW2	ASW4	HF1	
Transducer	MF3 MF12 AS	SW3			
Bins	MF4			Acoustic Modems:	
				M3	
In-Water Explosive Bins	Analyzed in individual unit-level training events.				
Procedural	Acoustic Stressors: (Section 5.3.2) Physical Disturbance and Strike: (Section 5.3.4)				
Mitigation	Active sonar Vessel movement				
Measures			Towed	in-water devices	
Assumptions	Only the anti-submarine warfare activities were analyzed as a SWATT. Other warfare area training				
Used for	conducted during SWATT was analyzed as unit-level training (gunnery exercises, missile exercises,				
Analysis	etc.).				
	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore.				

A.2.2.3 Anti-Submarine Warfare Tactical Development Exercise

Medium Coordinated Anti-Submarine Warfare Training						
Anti-Submarine	Anti-Submarine Warfare Tactical Development Exercise					
Short	Multiple ships, aircraft, and	submarines co	oordinate	Турі	ical Duration	
Description	their efforts to search for, d	etect, and tra	ck			
	submarines with the use of	all sensors. Ar	nti-	-	dava	
	Submarine Warfare Tactical	I Development Exercise 5-7 days				
	is a dedicated anti-submarir	ne warfare exercise.				
Long					fforts to search for, detect, and track	
Description					arfare Tactical Development Exercise is a	
					and aircraft. Active and passive sonar and	
					aining exercises. The purpose of the	
			-	forma	ance and capability among various units	
	operating together in a spec					
Typical	Platforms: Fixed-wing aircra		g aircraft, su	ırface	e combatants, submarines	
Components	Targets: Sub-surface targets					
	Systems being Trained/Test			uoys,	, acoustic countermeasures	
Standard	Vessel safety	Typical Loca	tions			
Operating	Aircraft safety	Range Com	plexes/Test	ing Ra	anges: Inland Waters/Pierside:	
Procedures	Towed in-water device	Jacksonville			None	
(Section 2.3.3)	safety	Navy Cherry	/ Point			
		Virginia Cap	es			
Stressors to	Acoustic:	Physical Dis	turbance a	nd Str	rike: Energy:	
Biological	Sonar and other	Aircraft and	l aerial targe	ets	In-air electromagnetic	
Resources	transducers	Vessels and	in-water de	evices	devices	
	Aircraft noise	Military exp	ended mat	erials	In-water electromagnetic	
	Vessel noise	devices				
		Ingestion:				
	Explosives:	Military expended materials – other Entanglement:				
	None	than munitions Wires and cables				
		Decelerators/parachutes				
Stressors to	Air Quality:	Sediments and Water Quality:				
Physical	Criteria air pollutants		Metals		Chemicals	
Resources	Habitata.		Other ma	iteriai	IS	
	Habitats:	برم جنانجم مان				
	Physical disturbance and stri expended material	ike – military				
	experiueu materiai					
Stressors to	None					
Human						
Resources						
Military	Ingestible Material:		Military			
Expended	Target fragments, small		Recoveral	ble	Anti-submarine warfare targets	
Material	decelerators/parachutes	i	Material]	
	Non-Ingestible Material:					
	Sonobuoys (non-explosive),	-				
	wires, acoustic counterm	neasures				

Medium Coord	Medium Coordinated Anti-Submarine Warfare Training					
Anti-Submarine	Anti-Submarine Warfare Tactical Development Exercise					
Sonar and	Low-Frequency:	High-Freque	ncy:	Acoustic Modems:		
Other	LF6	HF1		M3		
Transducer	Mid-Frequency:	Anti-Submar	ine Warfare:			
Bins	MF1 MF5 MF3 MF11 MF4 MF12	ASW1 A	SW4			
In-Water Explosive Bins	Analyzed in individual unit-level	training event	S.			
Procedural Mitigation	Acoustic Stressors: (Section 5.3.2) Physical Disturbance and Strike: (Section 5.3.4) Active sonar Vessel movement					
Measures	Towed in-water devices					
Assumptions Used for Analysis	Only the anti-submarine warfare activities were analyzed as an Anti-Submarine Warfare Tactical Development Exercise. Other warfare area training conducted during the exercise was analyzed as unit-level training. Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM					
	from shore.	o. oot analyz	ou .o. as delivity sii			

A.2.2.4 Amphibious Ready Group Marine Expeditionary Unit Exercise

Small Coordina	ted Anti-Submarine Warfare	Training					
	ady Group Marine Expedition		Se				
Short	Navy and Marine Corps forc			Typical Dura	tion		
Description	training at sea in preparation			5-7 days			
Long		Amphibious ships and embarked Marine Expeditionary Units train to a multitude of scenarios to					
Description			-				
Description		abilities of the amphibious force. Operations include ship to shore movement with craft and Landing Craft Air Cushion vessels. Marine Corps forces conduct more advance					
	-	perations to include small boat raids; visit, board, search, and seizure training;					
	helicopter and mechanized						
	This exercise generally occur	-					
	Exercise. All military expend	led materials, e	xplosives, a	nd use of oth	ner munitions in Amphibious		
	Ready Group Marine Expedi	itionary Unite E	xercise are	included in u	ınit-level events.		
Typical	Platforms: Amphibious warf	are ships, fixed	-wing aircra	ft, rotary-wi	ng aircraft, small boats, surface		
Components	combatants, tiltrotor aircraft	t					
	Targets: None						
	Systems Being Trained/Test						
Standard	Vessel	Typical Locati	ions				
Operating	Aircraft safety	Range Compl	lexes/Testir	ng Ranges:	Inland Waters/Pierside:		
Procedures	Towed in-water device	Navy Cherry I			None		
(Section 2.3.3)	safety						
Stressors to	Acoustic:	Physical Dist	urbance an	d Strike:	Energy:		
Biological	Sonar and other	Aircraft and a			In-air electromagnetic		
Resources	transducers	Vessels and i	n-water dev	vices	devices		
	Aircraft noise	Military expe	nded mate	rials	In-water electromagnetic		
	Vessel noise				devices		
		Ingestion:			- · · · ·		
	Explosives: None	Military expe than mun		riais – otner	Entanglement: Wires and cables		
	None	tilali illuli	11110113		Decelerators/parachutes		
Stressors to	Air Quality:		Sediments	and Water			
Physical	Criteria air pollutants		Metals	alla water	Chemicals		
Resources	Criteria an ponatarito		Other mat	erials	one.medis		
	Habitats:						
	Physical disturbance and s	strike –					
	military expended mat	terial					
Stressors to	None						
Human							
Resources							
Military	Ingestible Material:		Military		ıbmarine warfare targets		
Expended	Small decelerators/parachut		Recoverable	е			
Material		Material					
	Non-Ingestible Material:						
C	Sonobuoys, acoustic counter				.		
Sonar and	Low-Frequency:	High-Freq	uency:				
Other Transducer	LF6	HF1	narina Mar	fara			
Bins	Mid-Frequency: MF1 MF11	Anti-Submarine Warfare: ASW1					
DIIIS	MF3 MF12						
	IVII J IVII 12						

Small Coordina	Small Coordinated Anti-Submarine Warfare Training				
Amphibious Re	ady Group Marine Expeditionary Unit Exe	rcise			
In-Water	Analyzed in individual unit-level training of	events.			
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Active sonar Vessel movement				
Measures	Towed in-water devices				
Assumptions	Only the anti-submarine warfare activities were analyzed as Amphibious Ready Group Marine				
Used for	Expeditionary Unit training. Other warfare area training conducted during the exercise was				
Analysis	analyzed as unit-level training.				
	Sonar is not used during every exercise.				
	Stressors to human resources were not a	nalyzed for this activity since it occurs greater than 12 NM			
	from shore.				

A.2.2.5 Group Sail

Small Coordinate	ted Anti-Submarine Warfare				
Group Sail					
Short	Surface ships and helicopter	s integrate to search	Typical Dura	tion	
Description	for, detect, and track threat				
	Sails are not dedicated anti-	submarine warfare	2-3 days		
	exercises and involve multip	le warfare areas.			
Long		_		cluding sonobuoys, to search for,	
Description	detect, classify, localize, and				
				e and involves multiple warfare	
	=		•	a Group Sail. Other warfare area	
	training conducted during a Group Sail is an intermediate			_	
	-	= -	=	This exercise stresses planning,	
	coordination, and communic		_		
		= :	_	d attack one submarine. Typically,	
	one ship and helicopter are			e e e	
	repositioning. Simultaneous	ly, the submarine may pi	actice simulate	ed attacks against the ships.	
	Multiple acoustic sources m	ay be active at one time.			
Typical	Platforms: Fixed-wing aircra	ft, rotary-wing aircraft, s	urface combat	ants, submarines	
Components	Targets: Sub-surface targets				
	Systems being Trained/Test	·	buoys, acousti	c countermeasures	
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures		Jacksonville	0 0	None	
(Section 2.3.3)		Navy Cherry Point			
		Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological	Sonar and other	Aircraft and aerial targ		In-air electromagnetic	
Resources	transducers	Vessels and in-water d		devices	
	Aircraft noise	Military expended mat	erials		
	Vessel noise	In anation.		Entanglement: Wires and cables	
	Explosives:	Ingestion: Military expended mat	orials — othor	Decelerators/parachutes	
	None	than munitions	eriais – otilei	Decererators/ paracritices	
Stressors to	Air Quality:		ts and Water	Quality:	
Physical	Criteria air pollutants	Metals	to and water	Chemicals	
Resources	Circuit di pondidito	Other ma	aterials	<u> </u>	
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
Stressors to	None				
Human					
Resources					

Small Coordina	ted Anti-Subm	arine Warfare			
Group Sail					
Military	Ingestible M	aterial:		Military	Some sub-surface targets
Expended	Small decele	rators/parachu	tes	Recoverable	
Material				Material	
	Non-Ingestil	ole Material:			
		intermeasures,	-		
	(non-explo	osive), sonobuo	y wires,		
	expendabl	e bathythermo	graphs,		
	expendabl	e bathythermo	graph wires,		
	sub-surfac	e targets			
Sonar and	Mid-Freque	ncy:	Anti-Sub	marine Warfare:	High-Frequency:
Other	MF1	MF5	ASW2	ASW4	HF1
Transducer	MF3	MF11	ASW3		
Bins	MF4	MF12			
In-Water	Analyzed in i	ndividual unit-l	evel training e	vents.	
Explosive					
Bins		<u> </u>	5 0 0 l		
Procedural		essors: (Section	5.3.2)	-	l Disturbance and Strike: (Section 5.3.4)
Mitigation	Active sonar			Vessel r	novement
Measures	1441 11 11	· · · · · · · · · · · · · · · · · · ·			
Assumptions	While the preference will be to train against an actual submarine or MK 30 recoverable target,				
Used for	assume only MK 39 expendable targets will be used. One MK 39 Expendable Mobile Anti-Submarine Warfare Training Target may be used in place of an				
Analysis		•		arine wartare Ira	aining Target may be used in place of an
		bmarine target.		word analyzed or	Crown Sail training Other warfare area
				•	Group Sail training. Other warfare area
	training C	onducted durir	ig tile exercise	was allalyzed as	unit-level training.

A.2.3 AIR WARFARE TRAINING

Air warfare is the primary mission area that addresses combat operations by air and surface forces against hostile aircraft. Navy ships contain an array of modern anti-aircraft weapon systems, including naval guns linked to radar-directed fire-control systems, surface-to-air missile systems, and radar-controlled cannon for close-in point defense. Strike/fighter aircraft carry anti-aircraft weapons, including air-to-air missiles and aircraft cannon. Air warfare training encompasses events and exercises to train ship and aircraft crews in employment of these weapons systems against simulated threat aircraft or targets. Air warfare training includes surface-to-air gunnery, surface-to-air and air-to-air missile exercises, and aircraft force-on-force combat maneuvers.

A.2.3.1 Air Combat Maneuver

Air Warfare					
Air Combat Ma	neuver				
Short	Fixed-wing aircrews aggress	ively maneuver agains	Typical Dur	ation	
Description	threat aircraft to gain tactic	al advantage.	1-2 hours		
Long Description	Basic flight maneuvers in which fixed-wing aircrew engage in offensive and defensive maneuvering against each other. During air combat maneuver engagements, no munitions are fired, however countermeasures such as chaff and flares may be used. These maneuvers typically involve two aircraft; however, based upon the training requirement, air combat maneuver exercises may involve over a dozen aircraft.				
Typical Components	Platforms: Fixed-wing aircra Targets: Air targets Systems being Trained/Tes				
Standard	Aircraft safety	Typical Locations			
Operating Procedures (Section 2.3.3)		Range Complexes/To Jacksonville Key West Navy Cherry Point Virginia Capes	esting Ranges:	Inland Waters/Pierside: None	
Stressors to	Acoustic:	Physical Disturbance	and Strike:	Energy:	
Biological Resources	Aircraft noise	Aircraft and aerial ta	rgets	In-air electromagnetic devices	
	Explosives:	Ingestion:			
	None	None		Entanglement: None	
Stressors to	Air Quality:	Sedim	ents and Water	Quality:	
Physical	Criteria air pollutants	None			
Resources	Habitats: None				
Stressors to	Cultural Resources:	Socioeconomic Re	sources:	Public Health and Safety:	
Human	Physical disturbance and	Accessibility		Physical interactions	
Resources	strike	Airborne acoustic Physical disturbar		In-air energy	
Military Expended Material	Ingestible Material: None Non-Ingestible Material: None	Military Recove Materia	rable		

Air Warfare	
Air Combat Ma	neuver
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	None
Mitigation	
Measures	
Assumptions	No munitions are fired. Flares and chaff may be used. All flares and chaff are accounted for in flare
Used for	exercise and chaff exercise.
Analysis	

A.2.3.2 Air Defense Exercise

Air Warfare							
Air Defense Exercis	se						
Short Description	Aircrew and ship crews c	onduct defen	sive measures	Турі	cal Duration		
	against threat aircraft or	simulated mi	ssiles.	1-4 h	nours		
Long Description	Fixed-wing aircrew and sl	nip personnel	perform measur	es desigi	ned to defend against attacking		
	threat aircraft or missiles	or reduce the	e effectiveness of	such att	tack. This exercise involves full		
	detection through engage	ement sequer	ice. Aircraft oper	ate at va	arying altitudes and speeds.		
		e may include air intercept control exercises where aircraft controllers on ships, in					
	_	wing aircraft or at land based locations use search radars to track and direct friendly aircraft					
	•	the threat aircraft, and detect to engage exercises where personnel on ships use rs to detect, classify, and track enemy aircraft or missiles up to the point of					
	engagement.	liassify, affu ti	ack ellellly all cla	art Or IIIIs	ssiles up to the point of		
Typical	Platforms: Fixed-wing air	craft, surface	combatants				
Components	Targets: Air targets	0.0.0, 00	0004.4				
·	Systems being Trained/1	Tested: None					
Standard	Vessel safety	Typical Loca	tions				
Operating	Aircraft safety	Range Com	plexes/Testing Ra	anges.	Inland Waters/Pierside:		
Procedures		Gulf of Mex	_	anges.	None		
(Section 2.3.3)		Jacksonville					
		Navy Cherry	Point				
		Virginia Cap	es				
Stressors to	Acoustic:	-	turbance and St	rike:	Energy:		
Biological	Aircraft noise		aerial targets		In-air electromagnetic		
Resources	Vessel noise Vessel and in-water devices devices				devices		
	Explosives:	Ingestion:			Entanglement:		
	None	None			None		
Stressors to	Air Quality:		Sediments and	l Water	Quality:		
Physical	Criteria air pollutants		None				
Resources							
	Habitats:						
Chucasanaha	None	Casiaaaa	namia Bassumasa		Dublic Health and Cafety		
Stressors to Human Resources	Cultural Resources: Physical disturbance and	Accessibi	nomic Resources	:	Public Health and Safety: Physical interactions		
Traman Resources	strike	Airborne	•		In-air energy		
			listurbance and s	trike			
Military	Ingestible Material:		Military	None			
Expended	None		Recoverable				
Material	Non-Ingestible Material:		Material				
	None	<u>.</u>			_		
Sonar and Other	None						
Transducer Bins In-Water	None						
Explosive Bins	NOTE						
Procedural	Physical Disturbance and	Strike: (Section	on 5.3.4)		·		
Mitigation	Vessel movement		- · - · · /				
Measures							
Assumptions	No munitions are fired.		-				
Used for Analysis							

A.2.3.3 Gunnery Exercise Air-to-Air Medium-Caliber

Air Warfare						
	se Air-to-Air Medium-Caliber					
Short		dium-caliber g	uns at air	Tynical	Duration	
Description	Fixed-wing aircrews fire medium-caliber guns at air targets.			1-2 hours		
Long		ver aircraft in a	gunnery n		o achieve a weapons firing solution	
Description					or more fixed-wing aircraft and a	
	target banner towed by a contract aircraft (e.g., Lear jet). The target banner is recovered after the					
	exercise.					
Typical	Platforms: Fixed-wing aircra	nft				
Components	Targets: Air targets					
	Systems being Trained/Test	ted: Medium-d	aliber gun s	systems		
Standard	Aircraft safety	Typical Locat	tions			
Operating	Weapons firing safety	Range Comp	olexes/Test	ing Rang	ges: Inland Waters/Pierside:	
Procedures		Jacksonville	,		None	
(Section 2.3.3)		Key West				
		Navy Cherry	Point			
		Virginia Cape	es			
Stressors to	Acoustic:	Physical Dis	turbance ai	nd Strike	e: Energy:	
Biological	Aircraft noise	Aircraft and	aerial targe	ets	In-air electromagnetic	
Resources	Weapons noise	Military exp	ended mate	erials	devices	
	Explosives:	Ingestion:			Entanglement:	
	None	Military exp		erials –	None	
Chunanawaha	Air Oveliter	munitions				
Stressors to Physical	Air Quality: Criteria air pollutants		Metals	is and w	ater Quality:	
Resources	Criteria ali poliutarits		IVICTAIS			
	Habitats:					
	Physical disturbance and str	ike – military				
	expended material					
Stressors to	Cultural Resources:	Socioecor	nomic Reso	urces:	Public Health and Safety:	
Human	Physical disturbance and	Accessibil	•		Physical interactions	
Resources	strike	Airborne			In-air energy	
			isturbance			
Military	Ingestible Material:		Military	_ T	owed air targets	
Expended	Medium-caliber projectiles,	medium-	Recoverat	ole		
Material	caliber casings		Material			
	Non-Ingestible Material:					
	None					
Sonar and	None	.			•	
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						

Air Warfare	Air Warfare				
Gunnery Exerci	Gunnery Exercise Air-to-Air Medium-Caliber				
Procedural Mitigation Measures	None				
Assumptions Used for Analysis	This activity is conducted at an altitude of 15,000 ft. and above, during the daytime, and approximately 40 NM from shore. A towed air target is a banner target and will be recovered. Only non-explosive munitions used.				

A.2.3.4 Gunnery Exercise Surface-to-Air Large-Caliber

Air Warfare							
Gunnery Exerc	ise Surface-to-Air Large-Calibe	er					
Short	Surface ship crews fire large	e-caliber guns at air	Тур	oical Dura	ition		
Description	targets.	.		1-2 hours			
Long	Surface ship crews defend against threat aircraft or missiles with large-caliber guns to disable or						
Description	destroy the threat.	Bamer im ear ameran			. Se camper game to alcabre of		
•	· · · · · · · · · · · · · · · · · · ·	in and a simulated the	eat airci	raft or mi	ssile that is detected by the ship's		
		•					
		adar. Large-caliber guns fire non-explosive projectiles at the threat before it reaches the ship. Th arget is towed by a contract air services jet.					
Typical	Platforms: Aircraft carriers,	amphibious warfare	ships, fix	ed-wing a	aircraft, surface combatants		
Components	Targets: Air targets	·	• •	Ū	,		
•	Systems being Trained/Tes	ted: Large-caliber gur	system	S			
Standard	Vessel safety	Typical Locations					
Operating	Aircraft safety	Barras Carrallanas /	T	<u> </u>	Indeed Webser / Disposides		
Procedures	Weapons firing safety	Range Complexes/	resting i	kanges:	Inland Waters/Pierside:		
(Section		Jacksonville			None		
2.3.3)		Virginia Capes					
Stressors to	Acoustic:	Physical Disturban	ce and S	trike:	Energy:		
Biological	Aircraft noise	Aircraft and aerial	_		In-air electromagnetic		
Resources	Vessel noise Vessels and in-water devices				devices		
	Weapons noise						
		Entanglement:					
	Explosives:	Ingestion:			None		
	None		Military expended material – other				
<u> </u>	A. O. IV	than munitions		1111	0 10		
Stressors to Physical	Air Quality: Criteria air pollutants	Sedir Meta		d Water	Quality: materials		
Resources	Criteria air poliutarits	ivieta	15	Other	materials		
Resources	Habitats:						
	Physical disturbance and str	ike – military					
	expended material	,					
Stressors to	None	.			-		
Human							
Resources							
Military	Ingestible Material:	Milita	ry	None			
Expended	Target fragments		erable				
Material		Mate	ial				
	Non-Ingestible Material:						
	Large-caliber projectiles, large-caliber						
	casings	_					
Sonar and	None						
Other							
Transducer							
Bins				-			
In-Water	None						
Explosive							
Bins							

Air Warfare	
Gunnery Exerci	se Surface-to-Air Large-Caliber
Procedural	Acoustic Stressors: (Section 5.3.2)
Mitigation	Weapons firing noise
Measures	
	Physical Disturbance and Strike: (Section 5.3.4)
	Vessel movement
Assumptions	The target is a fiberglass finned target that is towed approximately 3 NM behind the towing aircraft.
Used for	All projectiles are assumed to be non-explosive.
Analysis	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM
	from shore.
	Hom shore.

A.2.3.5 Gunnery Exercise Surface-to-Air Medium-Caliber

Air Warfare						
Gunnery Exercis	se Surface-to-Air Medium-Cal	liber				
Short	Surface ship crews fire medi	um-caliber gu	ns at air	Typi	cal Dura	tion
Description	targets.			1-2 hours		
Long		gainst threat a	ircraft or m			edium-caliber guns to disable or
Description	destroy the threat.	Samst till cat a	in crare or in			caram cancer gans to alsacre of
	•	n and a simula	ted threat :	aircraf	ft or anti	i-ship missile that is detected by
	-					to disable or destroy the threat
	before it reaches the ship. Th	_	-	-	-	-
Typical	Platforms: Aircraft carriers,					-
Components	Targets: Air targets	ap	aa. c cp	o, ou		insurance, initial raing an erain
	Systems being Trained/Test	t ed: Medium-d	caliber gun	svster	ns	
Standard	Vessel safety	Typical Loca			-	
Operating	Aircraft safety	- 1				.
Procedures	Weapons firing safety	Range Comp	olexes/Test	ing Ra	anges:	Inland Waters/Pierside:
(Section 2.3.3)	31,	Jacksonville				None
,		Navy Cherry				
		Virginia Cap				
-		Other AFTT				
Stressors to	Acoustic:	Physical Dis			ike:	Energy:
Biological	Aircraft noise	Aircraft and	_			In-air electromagnetic
Resources	Vessel noise	Vessels and				devices
	Weapons noise	Military exp	ended mat	eriais		Fotos element.
	Evalosivos	Ingestions				Entanglement:
	Explosives: None	Ingestion: Military exp	andad mat	orials.	_	None
	None	munition		eriais ·	_	
		Military exp	-	erials -	– other	
		than mu		criais	o circi	
Stressors to	Air Quality:		Sedimen	ts and	Water (Quality:
Physical	Criteria air pollutants		Metals		er mater	
Resources	, , , , , , , , , , , , , , , , , , ,					
	Habitats:					
	Physical disturbance and stri	ke – military				
	expended material					
Stressors to	None	-	-			•
Human						
Resources						
Military	Ingestible Material:		Military		None	
Expended	Medium-caliber projectiles, i	medium-	Recovera	ble		
Material	caliber casings, target fra	igments	Material			
	Non-Ingestible Material:					
	None	<u>.</u>				
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					

Air Warfare	
Gunnery Exerci	se Surface-to-Air Medium-Caliber
Explosive Bins	
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement
Assumptions Used for Analysis	The target is a fiberglass finned target that is towed approximately 3 NM behind the towing aircraft. Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore.

A.2.3.6 Missile Exercise Air-to-Air

Air Warfare							
Missile Exercise Air-to-Air							
Short Description	Fixed-wing aircrews fir	e air-to-air	Typical Duration				
	missiles at air targets	c an to an	1-2 hours				
Long Description		vo or more fi		a target. Missiles are either			
20.18 2 000.19 110.1	explosive warheads or non-explosive practice munitions. The target is an unmanned						
	aerial target drone, a t	-	•	_			
	•		• • • • •	are recovered by small boat			
	_			illumination flares are			
	expended and not reco	overed. Thes	e exercises typically o	occur at high altitudes.			
Typical Components	Platforms: Fixed-wing	aircraft, rota	ry-wing aircraft, sma	II boats			
	Targets: Air targets, fla	ares					
	Systems being Trained	d/Tested: Mi	ssile and rocket syste	ems			
Standard Operating	Vessel safety		Typical Locations				
Procedures	Aircraft safety		Range	Inland Waters/Pierside:			
(Section 2.3.3)	Weapons firing safety		Complexes/Testing	_			
			Ranges:	g None			
			Jacksonville				
			Key West				
			Navy Cherry Point				
			Virginia Capes				
Stressors to Biological	Acoustic:	Physical Dis	sturbance and Strike:	Energy:			
Resources	Aircraft noise	=	nd aerial targets In-air electromag				
	Vessel noise	Military exp	ended materials	devices			
	Weapons noise	In-air explo	osives				
				Entanglement:			
	Explosives:	Ingestion:	Decelerators/parachu				
	In-air explosives		ended materials –	S			
		munitio	-				
			ended materials –				
S:	A: 0 !!!	otner th	an munitions				
Stressors to Physical Resources	Air Quality:		Sediments and Water Quality: Explosives Chemicals				
	Criteria air pollutants		Explosives	Chemicais			
	Habitats:		Metals				
	Physical disturbance ar	nd strike -					
	military expended i						
Stressors to Human Resources	None						
Military Expended Material	Ingestible Material:		Military	Recoverable drones			
, ·	Missiles (explosive) and	d target	Recoverable				
	fragments		Material				
	Non-Ingestible Material:						
	Parachutes-large, illumination						
	flares, missiles (nor	n-explosive)					
Sonar and Other Transducer	None						
Bins							
In-Water Explosive Bins	None						

Air Warfare	
Missile Exercise Air-to-Air	
Procedural Mitigation	None
Measures	
Assumptions Used for Analysis	For analysis, all missiles are assumed to be explosive, although non-explosive practice munitions may be used. All missiles explode at high altitude. All propellant and explosives are consumed. Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore.

Figure A.2-1: BQM-74 (Aerial Target)

Figure A.2-2: LUU-2B/B Illuminating Flare (Aerial Target)

Figure A.2-3: Tactical Air-Launched Decoy (Aerial Target)

A.2.3.7 Missile Exercise – Man-Portable Air Defense System

Air Warfare							
	– Man-Portable Air Defense	System					
Short	Personnel employ a shoulde	er fired surface	to air	Typical D	uration		
Description	missile at air targets.		- 10 1	Varies			
Long	<u> </u>	Portable Air D	efense Syste	Systems, a shoulder fired surface to air			
Description	missile, against threat missil		C1C113C 3 7 3 C	21113, 4 31100	ander in ed sarrace to an		
	An exercise involves personi		/Jan-Portahl	e Air Defen	ise System at remote nilot	ed or	
	ballistic aerial targets. Activi	_					
	targets over the water. Small			-	_		
Typical	Platforms: Small boats						
Components	Targets: Air targets						
	Systems being Trained/Test	ted: Man-Port	able Defens	e Systems			
Standard	Vessel safety	Typical Loca		e systems			
Operating	Weapons firing safety						
Procedures	Unmanned aerial, surface	_	plexes/Test	ing Ranges	: Inland Waters/Piersi	de:	
(Section 2.3.3)	and subsurface vehicle	Navy Cherry	Point		None		
(0000.0 =.0.0)	safety						
Stressors to	Acoustic:	Physical Dis	sturbance a	nd Strike:	Energy:		
Biological	Aircraft noise		l aerial targe		None		
Resources	Weapons noise		in-water de				
			ended mate		Entanglement:		
	Explosives:	In-air explo			None		
	In-air explosives	•					
	·	Ingestion:					
		Military exp	ended mate	erial –			
		munitio					
		Military exp	ended mate	erial – othe	r		
		than mu	unitions				
Stressors to	Air Quality:	-	Sediment	s and Wat	er Quality:		
Physical	Criteria air pollutants		Explosive	s Ch	emicals		
Resources			Metals				
	Habitats:						
	Physical disturbance and str	ike – military					
	expended material						
Stressors to	Cultural Resources:	Socioeco	nomic Reso	urces:	Public Health and Sa	fety:	
Human	Physical disturbance and	Accessibi	-		Physical interactions		
Resources	strike		acoustics				
		Physical o	disturbance	and strike			
Military	Ingestible Material:		Military	Nor	ne		
Expended	Target and missile (explosive	e) fragments	Recoverab	ole			
Material			Material				
	Non-Ingestible Material:						
	None						
Sonar and	None						
Other							
Transducer							
Bins							
In-Water	None						
Explosive							

Air Warfare	Air Warfare					
Missile Exercise	e – Man-Portable Air Defense System					
Bins						
Procedural	Physical Disturbance and Strike: (Section 5.3.4)					
Mitigation	Non-explosive missiles and rockets					
Measures						
Assumptions	For analysis, all missiles are assumed to be explosive, although non-explosive practice munitions					
Used for	may be used. All missiles explode in-air at low altitude.					
Analysis	All propellant and explosives are consumed.					

A.2.3.8 Missile Exercise Surface-to-Air

Air Warfare							
Missile Exercise	Surface-to-Air						
Short	Surface ship crews fire surfa	ace-to-air miss	iles at air	Typica	al Duration		
Description	targets.			1-2 hours			
Long Description	Surface ship crews defend a	gainst threat r	nissiles and	aircraf	ft with ship launched surface-to-air		
	The exercise involves a simu radar. Ship launched surface	The exercise involves a simulated threat aircraft or anti-ship missile which is detected by the ship's radar. Ship launched surface-to-air missiles are fired (high-explosive) to disable or destroy the threat.					
	against land attack missiles.	ote controlled	urone. Sun	ace-to-	-air missiles may also be used to train		
Typical Components	Platforms: Aircraft carriers, Targets: Air targets						
Standard	Systems being Trained/Tes Vessel safety	Typical Loca		systen	TIS		
Operating	Aircraft safety						
Procedures	Weapons firing safety	Range Comp Gulf of Mexi	-	ing Rar	nges: Inland Waters/Pierside: None		
(Section 2.3.3)		Jacksonville	CO		None		
		Navy Cherry	Point				
		Northeast					
		Virginia Cap	es				
Stressors to	Acoustic:	Physical Dis					
Biological	Aircraft noise	Aircraft and			In-air electromagnetic		
Resources	Vessel noise	Vessel and i			devices		
	Weapons noise	Military exp		eriais	Entanglement:		
	Explosives:	III-all explo	SIVC3		Decelerators/parachutes		
	In-air explosives	Ingestion:			, p		
	·	Military exp	ended mate	erial –			
		munitio					
		Military exp		erial – (other		
Stressors to	Air Quality:				Water Quality:		
Physical Resources	Criteria air pollutants		Explosive Metals	S	Chemicals		
	Habitats:						
	Physical disturbance and stri expended material	ike – military					
Stressors to	None						
Human Resources							
Military	Ingestible Material:		Military		Recoverable drones		
Expended Material	Target and missile (explosive	e) fragments	Recoveral Material	ole			
	Non-Ingestible Material: None						

Air Warfare	
Missile Exercise	Surface-to-Air
Sonar and	None
Other	
Transducer	
Bins	
Explosive	None
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	
Assumptions	Assumes that all surface-to-air missiles are high-explosive. Missile explodes well above the
Used for	water's surface. All explosive and propellant are consumed.
Analysis	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM
	from shore.

A.2.4 AMPHIBIOUS WARFARE TRAINING

Amphibious warfare is a type of naval warfare involving the utilization of naval firepower, logistics, and Marine Corps landing forces to project military power ashore. Amphibious warfare encompasses a broad spectrum of activities involving maneuver from the sea to objectives ashore, ranging from reconnaissance or raid missions involving a small unit to large-scale amphibious operations involving over 1,000 Marines and Sailors and multiple ships and aircraft embarked in a strike group.

Amphibious warfare training includes tasks at increasing levels of complexity, from individual, crew, and small unit events to large task force exercises. Individual and crew training include the operation of amphibious vehicles and naval gunfire support training. Small-unit training activities include shore assaults, boat raids, airfield or port seizures, and reconnaissance. Larger-scale amphibious exercises involve ship-to-shore maneuver, shore bombardment and other naval fire support, and air strike and close air support training.

A.2.4.1 Amphibious Assault

Amphibious Wa	arfare							
Amphibious Ass	sault							
Short	Large unit forces move asho	=	Typical Duration					
Description	ships at sea for the immedia	ate execution of inland	Up to 2 wee	ks				
Long	objectives. Large unit forces move asho	ro from amphibious ships	at soa for the	immediate execution of				
Description	inland objectives. Amphibio	•						
Description.	· ·			se, or denying the enemy use of				
	an area.	.g a once for an aaraneea i		, , , , , , , , , , , , , , , , , , , ,				
	Unit-level training exercises	involve one or more amp	hibious ships,	and their associated watercraft				
	and aircraft, to move persor	-						
				ne goal is to practice loading,				
	unloading, and movement a	<u> </u>	•					
Typical	•	fare ships, fixed-wing aird	raft, rotary-w	ing aircraft, small boats, tiltrotor				
Components	aircraft							
	Targets: None Systems being Trained/Tes	ted. None						
Standard	Vessel safety	Typical Locations						
Operating	Aircraft safety		· -					
Procedures		Range Complexes/Test Navy Cherry Point	ing Ranges:	Inland Waters/Pierside: None				
(Section 2.3.3)		navy Cherry Point		None				
Stressors to	Acoustic:	Physical Disturbance a		Energy:				
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic				
Resources	Vessel noise	Vessels and in-water d	evices	devices				
	Explosives:	Ingestion:		Entanglement:				
	None	None		None				
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:				
Physical	Criteria air pollutants	None	· · · · · · · · · · · · · · · · · · ·					
Resources								
	Habitats:							
Chungana ta	None Cultural Resources:	Casiana anamia Dasa		Dublic Health and Cafety				
Stressors to Human	Physical disturbance and	Socioeconomic Reso Accessibility	urces:	Public Health and Safety: Physical interactions				
Hullidii	rifysical disturbance and	Accessibility		rnysical interactions				

Amphibious Wa	Amphibious Warfare						
Amphibious Ass	sault						
Resources	strike Airbor	ne acoustics	In-air energy				
	Physic	al disturbance and s	trike				
Military	Ingestible Material:	Military	None				
Expended	None	Recoverable					
Material		Material					
	Non-Ingestible Material:						
	None						
Sonar and	None						
Other							
Transducer							
Bins							
In-Water	None						
Explosive							
Bins							
Procedural	Physical Disturbance and Strike: (Section 5.3.4)						
Mitigation	Vessel movement						
Measures							
Assumptions	Typical exercise: 1-3 amphibious ships	e.g., LHA or LHD, LP	D, LSD); 2-8 landing craft (landing				
Used for	craft, air cushion; landing craft, utility);	-					
Analysis	MH-53, H-46/MV-22, AH-1, UH-1, AV-8	•					

A.2.4.2 Amphibious Marine Expeditionary Unit Integration Exercise

Amphibious Warfar						
	Expeditionary Unit Inter					
Short Description	Navy and Marine Corps		_	Typical Dur	ation	
	integration training at s deployment.			Up to 3 weeks		
Long Description		•	•	_	or the first time at sea to practice	
	-			-	larine Corps forces conduct basic	
	The state of the s			s; visit, boai	rd, search, and seizure training;	
Tour Second	helicopter and mechani			-:C+	and the sign of the same II have be	
Typical Components	tiltrotor aircraft	warrare snips	s, fixed-wing	aircraft, rot	ary-wing aircraft, small boats,	
Components	Targets: None					
	Systems being Trained,	/Tested: None	P			
Standard	Vessel safety	Typical Loca				
Operating	Aircraft safety					
Procedures		_	plexes/Test		Inland Waters/Pierside:	
(Section 2.3.3)		Navy Cherry	y Point (Ons	iow Bay)	None	
Stressors to	Acoustic:	•	sturbance a		Energy:	
Biological	Aircraft noise		l aerial targe		In-air electromagnetic	
Resources	Vessel noise	Vessels and	in-water de	evices	devices	
	Explosives:	Ingestion:			Entanglement:	
	None	None			None	
	None	None			None	
Stressors to	Air Quality:	-	Sediment	s and Wate	r Quality:	
Physical	Criteria air pollutants		None			
Resources						
	Habitats:					
	None		-			
Stressors to	Cultural Resources:		nomic Reso	urces:	Public Health and Safety:	
Human Resources	Physical disturbance and		•		Physical interactions	
	strike		acoustics disturbance	and strike	In-air energy	
Military	Ingestible Material:	Filysical C	Military	None	<u>,</u>	
Expended	None		Recoverab			
Material			Material			
	Non-Ingestible Materia	l:				
	None					
Sonar and Other	None					
Transducer Bins	_					
In-Water	None					
Explosive Bins				-	<u>-</u>	
Procedural	Physical Disturbance ar	nd Strike: (Sec	tion 5.3.4)			
Mitigation	Vessel movement					
Measures			1	1 1 1		
Assumptions					otions of appropriate unit-level	
Used for Analysis	exercises (e.g., surrace-	lo-surrace and	a air-to-surfa	ace smaii-ca	liber gunnery exercises).	

A.2.4.3 Amphibious Raid

Amphibious Wa	erfare						
Amphibious Ra							
Short	Small unit forces move from	amphihious s	hins at	Tynica	l Duration		
Description	sea for a specific short-term quick operations with as few possible.	mission. These are					
Long Description	mission, including a planned information, create a diversi	ve from amphibious vessels at sea into hostile territory for a specific withdrawal. Raids are conducted to inflict loss or damage, secure ion, confuse the enemy, or capture or evacuate individuals or orces are kept as small as possible to maximize stealth and speed of					
	live-fire operations. Surveilla used during this exercise.	ince or reconr	naissance un	manne	d surface a	and aerial vehicles may be	
	Exercises are also conducted or areas requiring assistance		-	f humar	nitarian as	sistance to remote locations	
Typical Components	Platforms: Amphibious warf Targets: None Systems being Trained/Test	·	all boats, un	manned	d aerial sys	stems	
Standard	Vessel safety	Typical Loca	tions				
Operating	Aircraft safety				•		
Procedures	Unmanned aerial, surface,	Range Com	plexes/Test	ing Ran	_	land Waters/Pierside:	
(Section 2.3.3)	and subsurface vehicle safety	Jacksonville Navy Cherry	Point		No	one	
Stressors to	Acoustic:	Physical Dis	turbance a	nd Strike	e:	Energy:	
Biological	Aircraft noise	Aircraft and				In-air electromagnetic	
Resources	Vessel noise	Vessels and	_			devices	
	Explosives: None	Ingestion: None				Entanglement: None	
Chusasanaka		None	Cadinaan	d \A	Inter Over		
Stressors to Physical Resources	Air Quality: Criteria air pollutants		Sediment None	s and w	ater Qua	iity:	
Resources	Habitats: None						
Stressors to	Cultural Resources:	Sociogramamic Pasaurcas: Dublic Haalth and S				ublic Health and Safety:	
Human	Physical disturbance and	Socioeconomic Resources: Accessibility					
Resources	strike	Accessibility Physical interactions Airborne acoustics In-air energy Physical disturbance and strike					
Military	Ingestible Material:	,	Military		None		
Expended Material	None		Recoverat Material				
	Non-Ingestible Material:						
	None						

Amphibious Wa	Amphibious Warfare				
Amphibious Ra	id				
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	None				
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement				
Assumptions Used for Analysis	Weapons firing during this exercise is discussed in appropriate unit-level training descriptions (e.g., surface-to-surface and air-to-surface small-caliber gunnery exercises).				

A.2.4.4 Amphibious Vehicle Maneuvers

Amphibious Warfare							
Amphibious Vehicle Ma	neuvers						
Short Description	Small boat crews p			Typic	cal Duration		
	employment of amphibious vehicles.		cles.	1-4 hours			
Long Description	Navy personnel train to learn handling ch						
	include Landing Craft Air Cushion vehicles, amphibious assault vehicles, and Lighter						
	Amphibious Resupply Cargo vehicles. Training includes the driving of vehicles into the water, basic in-water vehicle maneuvers, and the driving of vehicles back to shore.						
Torrigal Comments					driving of vehicles back to shore.		
Typical Components	Platforms: Amphib Targets: None	ious venicies,	smail boats	Ó			
	Systems being Train	ined/Tested:	None				
Standard Operating	Vessel safety	Typical Loca					
Procedures				_			
(Section 2.3.3)		Range Com	plexes/Test	ing	Inland Waters/Pierside:		
		Ranges:			Lower Chesapeake Bay		
		Virginia Cap Jacksonville			Joint Expeditionary Base Little Creek beaches and harbor		
		Jacksonvine			Joint Expeditionary Base Fort Story		
					Dam Neck Annex		
					Camp Pendleton		
					St. Johns River (Blount Island)		
Stressors to Biological	Acoustic:	Physical Dis	turbance a	nd Str	ike: Energy:		
Resources	Vessel noise	Vessels and	in-water de	evices	None		
	Explosives:	Ingestion:			Entanglement:		
Chusasaus to Dhusiaal	None	None	Cadinaan		None		
Stressors to Physical Resources	Air Quality: Criteria air pollutan	ts	None	ts and	Water Quality:		
Resources	Criteria dii poliatari		None				
	Habitats:						
	None						
Stressors to Human	Cultural Resources		nomic		Public Health and Safety:		
Resources	Physical disturbanc				Physical interactions		
	and strike	Accessibi	-				
		Pnysicai d strike	disturbance	and			
Military Expended	Ingestible Materia		Military		None		
Material	None	•	Recovera	ble	None		
Tria Corrai	TTOTIC		Material				
	Non-Ingestible Ma	terial:					
	None						
Sonar and Other	None	-					
Transducer Bins	_				<u>.</u>		
In-Water Explosive	None						
Bins		1 5 . "	/s = :	2.41			
Procedural Mitigation	Physical Disturband	ce and Strike:	(Section 5.3	3.4)			
Measures	Vessel movement						
Assumptions Used for Analysis	None						
Alidiysis							

A.2.4.5 Humanitarian Assistance Operations

Amphibious Warfare						
•	Humanitarian Assistance Operations					
	<u> </u>	to noncombat	ants	Tunion	l Dunat	line
Short Description	Military units evacuate from hostile or unsafe			Туріса	l Durat	uon
	humanitarian assistar	-		12 hou	ırc	
	disaster.	ice iii tiiiles o	'	12 1100	JI S	
Long Description		Military units evacuate noncombatants from hostile or unsafe areas to safe havens or to				
Long Description						
		provide humanitarian assistance in times of disaster. Non-Combatant Evacuation Operation is conducted by military units (generally Marine Corps) usually operating in conjunction with				
			•			n their lives are endangered by
						peditionary units train for
				-		orce, though usually there is no
			-			and landing crafts could be
	expected to participa				-	
Typical Components						Itrotor aircraft, small boats
	Targets: None			•		
	Systems being Traine	ed/Tested: No	one			
Standard Operating	Vessel safety	Typical Loca	itions			
Procedures	Aircraft safety	Banga Cam	nlovos/Tosti	na Dan	-	Inland Maters/Diesside
(Section 2.3.3)		Navy Cherry	plexes/Testi	ng Kan	iges:	Inland Waters/Pierside: None
Stressors to	Acoustic:			od C+vile	.01	
Biological Resources	Acoustic: Aircraft noise	-	sturbance ar I aerial targe		e:	Energy:
biological Resources	Vessel noise		l in-water de			In-air electromagnetic devices
	Vessel Holse	vessels and	i iii-watei de	VICES		devices
	Explosives:	Ingestion:				Entanglement:
	None	None				None
Stressors to Physical	Air Quality:		Sediment	s and V	Vater C	Quality:
Resources	Criteria air pollutants		None			
	·					
	Habitats:					
	None					
Stressors to Human	Cultural Resources:	Socioeco	nomic Reso	urces:		Public Health and Safety:
Resources	Physical disturbance	Accessibi	•			Physical interactions
	and strike		acoustics			In-air energy
		Physical o	disturbance a	and stri	ike	
Military Expended	Ingestible Material:		Military		None	
Material	None		Recoverab	ole		
	Non-Ingestible Mater	rial:	Material			
	None	-				
Sonar and Other	None					
Transducer Bins	<u>.</u>			-		
In-Water Explosive	None					
Bins		10.11		-		.
Procedural	Physical Disturbance	and Strike: (S	ection			
Mitigation	5.3.4)					
Measures	Vessel movement					
Assumptions Used	None					
for Analysis						

A.2.4.6 Marine Expeditionary Unit Certification Exercise

Amphibious Wa	arfare					
Marine Expedit	ionary Unit Certification Exer	cise				
Short	Amphibious Ready Group ex	rercises are conducted	Typical Duration			
Description	to validate the Marine Expe	ditionary Unit's				
	readiness for deployment ar	nd include small boat				
	raids; visit, board, search, ar	_	Up to 3 weeks	(S		
	helicopter and mechanized					
	non-combatant evacuation of		·			
Long Description		orces move from amphibious ships at sea, by watercraft or aircraft, and stablish a beachhead, and occupy the area or move further inland for				
	The amphibious assault conducted by a Marine Expeditionary Unit involves employment of the advance force, combat, combat support, and combat service support units in close coordination with the expeditionary strike group and carrier strike group. The landing is conducted in waves and is focused on concentrating forces quickly in order to establish the beachhead. A typical exercise involves two reinforced companies from the battalion landing team coming ashore via landing crafts and amphibious assault vehicles. Follow-on waves include fire support assets, armored units, and service support elements.					
Typical	Platforms: Amphibious warf	are ships, fixed-wing aird	raft, rotary-wing aircraf	t, small boats, tiltrotor		
Components	aircraft					
	Targets: None					
	Systems being Trained/Test	ed: None				
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety	Range Complexes/Testing Ranges: Inland Waters/Pierside:				
Procedures		Navy Cherry Point	None	waters, ricisiae.		
(Section 2.3.3)			10. "			
Stressors to	Acoustic: Aircraft noise	Physical Disturbance a				
Biological Resources	Vessel noise	Aircraft and aerial targ Vessels and in-water d		ir electromagnetic devices		
Resources	vessei iloise	vessels allu ili-water u	evices	devices		
	Explosives:	Ingestion:	Enta	inglement:		
	None	None	Non	-		
Stressors to	Air Quality:	Sedimer	t and Water Quality:			
Physical	Criteria air pollutants	None	-			
Resources						
	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioeconomic Resources: Public Health and Safety		· ·		
Human	Physical disturbance and	Accessibility Physical interactions				
Resources	strike	Airborne acoustics Physical disturbance	In-air e	nergy		
Military	Ingestible Material:	Military	None			
Expended	None	Recovera				
Material	NOTE	Material				
···accilai	Non-Ingestible Material:	Widterlai				
	None					

Amphibious Wa	Amphibious Warfare			
Marine Expedit	ionary Unit Certification Exercise			
Sonar and Other Transducer Bins	None			
In-Water Explosive Bins	None			
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement			
Assumptions Used for Analysis	Weapons firing during this exercise is discussed in appropriate unit-level exercise descriptions (e.g., surface-to-surface and air-to-surface small-caliber gunnery exercises).			

A.2.4.7 Naval Surface Fire Support Exercise – At Sea

Amphibious Wa	rfare					
Naval Surface Fi	re Support Exercise – At Sea					
Short	Surface ship crews fire large	-caliber guns a	t a Typ	ical Duration		
Description	passive acoustic hydrophone	e scoring syste	m. 1-2	hours of firing, 8 hou	ırs total	
Long	Surface ship crews use large	-caliber guns to	o support forces	ashore; however, th	e land target is	
Description	simulated at sea. Rounds are	d at sea. Rounds are scored by passive acoustic buoys located at or near the target area.				
	The portable scoring system is composed of buoys (Integrated Maritime Portable Acoustic Scoring					
	and Simulation System) set in a pre-designed pattern at specific intervals, which are retrieved after					
	the exercise. A scoring system provides a realistic presentation, such as a land mass with					
	topography, to the vessel's o	-		-	•	
	array. The vessel fires its mu		-		_	
	impact of the round landing		-			
	triangulates the exact point of vessel were firing at an actual	•		_		
	support forces ashore.	ai iaiiu taiget	Surface ship cre	ws use large-caliber (illalli battery) gulis to	
Typical	Platforms: Surface combata	nts				
Components	Targets: Surface targets					
•	Systems being Trained/Test	ted: Large-calik	oer gun systems			
Standard	Vessel safety	Typical Locat	ions			
Operating	Weapons firing safety	Range Comp	lexes/Testing R	anges: Inland Wa	aters/Pierside:	
Procedures		Jacksonville		None		
(Section 2.3.3)		Navy Cherry Point				
		Virginia Cape	es			
Stressors to	Acoustic:	-	turbance and St			
Biological	Vessel noise		in-water devices		lectromagnetic	
Resources	Weapons noise Explosives:	Military expe	ended materials	devi	ices	
	None	Ingestion:		Fntang	lement:	
	Tronc	None		None	.cc.	
Stressors to	Air Quality:	•	Sediments and	d Water Quality:		
Physical	Criteria air pollutants		Metals	Other materia	ıls	
Resources						
	Habitats:					
	Physical disturbance and stri expended material	ike – military				
Stressors to	None					
Human	None					
Resources						
Military	Ingestible Material:		Military	None		
Expended	None		Recoverable			
Material			Material			
	Non-Ingestible Material:	go calibar				
	Large-caliber projectiles, large casings	ge-camber				
Sonar and	None					
Other						
Transducer						

Amphibious Wa	Amphibious Warfare			
Naval Surface F	ire Support Exercise – At Sea			
In-Water Explosive Bins	None			
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Weapons firing noise			
	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Small-, medium-, and large-caliber non-explosive practice munitions			
Assumptions Used for Analysis	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore.			

A.2.4.8 Naval Surface Fire Support Exercise – Land-Based Target

Amphibious Wa	arfare						
•	ire Support Exercise – Land-B	ased Target					
Short	Surface ship crews fire large		t land- Tv	pical Dura	tion		
Description	based targets in support of t						
Long	Surface ship crews use large						
Description		· ·					
	One or more ships position themselves from three to six NM from the target area and a land-b						
			t location of the target. After observing the fall of the shot, the spotter ed to reach the target. Once the rounds are on target, the spotter				
			_		s are on target, the spotter		
	requests a sufficient number	r to effectively (destroy the tar	get.			
	This exercise occurs on land	_	-	-			
		orted by targe	t shapes such a	as tanks, ti	rucks, trains, or aircraft on the		
	ground.						
Typical	Platforms: Surface combata	nts					
Components	Targets: Land targets	1.1					
0	Systems being Trained/Test			S			
Standard Operating	Vessel safety Weapons firing safety	Typical Locat	ions				
Procedures	Weapons nining salety	Range Comp	lexes/Testing	Ranges:	Inland Waters/Pierside:		
(Section 2.3.3)		Navy Cherry	Point		None		
Stressors to	Acoustic:	Physical Dist	urbance and S	Strike:	Energy:		
Biological	Vessel noise	-	n-water device		In-air electromagnetic		
Resources	Weapons noise				devices		
	·	Ingestion:					
	Explosives:	None			Entanglement:		
	None				None		
Stressors to	Air Quality:		Sediments ar	nd Water (Quality:		
Physical	Criteria air pollutants		Metals				
Resources	Habitana.						
	Habitats: None						
Stressors to	Cultural Resources:	Socioscon	omic Resource		Public Health and Safety:		
Human	Physical disturbance and	Accessibili		es.	Physical interactions		
Resources	strike	Airborne a	•		In-air energy		
	ouc		sturbance and	strike	a ee.g,		
Military	Ingestible Material:	,,,,,,	Military	None			
Expended	None		Recoverable				
Material			Material				
	Non-Ingestible Material:						
	Large-caliber projectiles (cas	sings only)					
Sonar and	None						
Other							
Transducer							
Bins In Water	None						
In-Water Explosive	None						
Bins							
2.113							

Amphibious Wa	Amphibious Warfare				
Naval Surface F	ire Support Exercise – Land-Based Target				
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Weapons firing noise Physical Disturbance and Strike: (Section 5.3.4) Vessel movement				
Assumptions Used for Analysis	Projectile impact is on land and is not further analyzed. No land based impacts are included in this document. Firing point from sea is Area 15B. Impact occurs at G-10 Impact Area, Camp Lejeune.				

A.2.5 ANTI-SUBMARINE WARFARE TRAINING

Anti-submarine warfare involves helicopter and maritime patrol aircraft, ships, and submarines. These units operate alone or in combination to locate, track, and neutralize submarines. Controlling the undersea battlespace is a unique naval capability and a vital aspect of sea control. Undersea battlespace dominance requires proficiency in anti-submarine warfare. Every deploying strike group and individual surface combatant must possess this capability.

Various types of active and passive sonar are used by the Navy to determine water depth, and identify, track, and target submarines. Passive sonar "listens" for sound waves by using underwater microphones, called hydrophones, which receive, amplify, and process underwater sounds. No sound is introduced into the water when using passive sonar. Passive sonar can indicate the presence, character, and movement of submarines. However, passive sonar provides only a bearing (direction) to a sound-emitting source; it does not provide an accurate range (distance) to the source. Active sonar is needed to locate objects because active sonar provides both bearing and range to the detected contact (such as an enemy submarine).

The Navy's anti-submarine warfare training plan, including the use of active sonar in at-sea training scenarios, includes multiple levels of training. Individual-level anti-submarine warfare training addresses basic skills such as detection and classification of contacts; distinguishing discrete acoustic signatures including those of ships, submarines, and marine life; and identifying the characteristics, functions, and effects of controlled jamming and evasion devices.

More advanced, integrated anti-submarine warfare training exercises involving active sonar are conducted in coordinated, at-sea operations during training exercises involving submarines, ships, aircraft, and helicopters. This training integrates the full anti-submarine warfare continuum, from detecting and tracking a submarine to attacking a target using either exercise torpedoes or simulated weapons. Training events include detection and tracking exercises against "enemy" submarine contacts, torpedo employment exercises against the target, and exercising command and control tasks in a multi-dimensional battlespace.

A.2.5.1 Torpedo Exercise – Helicopter

Anti-Submarine	: Warfare				
	Warfare Torpedo Exercise - I	Helicopter			
Short	Helicopter crews search for,	track, and detect	Typical Dura	ition	
Description	submarines. Recoverable air are employed against submare	•	2-5 hours		
Long Description	Helicopters using sonobuoys and dipping sonar search for, detect, classify, localize, and track a simulated threat submarine with the goal of determining a firing solution that could be used to launch a torpedo and destroy the submarine. Sonobuoys (both passive and active) are typically employed by a helicopter operating at altitudes below 3,000 ft. Dipping sonar (both passive and active) is employed from an altitude of about 50 ft. after the search area has been narrowed based on the sonobuoy search. The anti-submarine warfare target used for this exercise may be a MK-39 Expendable Mobile Anti-Submarine Warfare Training Target, a MK-30 target, or a live submarine. This exercise may involve a single aircraft, or occur during a coordinated larger exercise involving multiple aircraft and ships, including a major range event. Unmanned aerial systems, such as the MQ-8 Fire Scout, may also be used. The exercise torpedo is recovered by a special recovery helicopter or small craft. The preferred range for this exercise is an instrumented underwater range, but it may be conducted in other range complexes depending on training requirements and available assets.				
Typical Components	Platforms: Rotary-wing airco Targets: Sub-surface targets Systems being Trained/Tes	ted: Sonar systems, sono	•		
Standard	Vessel safety	Typical Locations			
Operating Procedures (Section 2.3.3)	Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety	Range Complexes/Tes Jacksonville Virginia Capes	ting Ranges:	Inland Waters/Pierside: None	
Stressors to	Acoustic:	Physical Disturbance a	ınd Strike:	Energy:	
Biological	Sonar and other	Aircraft and aerial targ	ets	In-air electromagnetic	
Resources	transducers	Vessels and in-water d	evices	devices	
	Aircraft noise	Military expended mat	erials		
	Vessel noise			Entanglement:	
		Ingestion:		Wires and cables	
	Explosives:	Military expended mat than munitions	eriais – other	Decelerators/parachutes	
Chuocoa	None Air Cuality		to and Materi	Ovality	
Stressors to	Air Quality: Criteria air pollutants	Sedimen Metals	ts and Water (Quality: nemicals	
Physical Resources	Cinteria an politicants	Other m		icinicais	
	Habitats:	Other III	accitats		
	Physical disturbance and strike – military expended material				
Stressors to Human Resources	None				

Anti-Submarine	Anti-Submarine Warfare						
Anti-Submarine	Anti-Submarine Warfare Torpedo Exercise - Helicopter						
Military Expended	Ingestible Material: Small decelerators/parachutes,	Military Recoverable	Recoverable sub-surface targets, lightweight torpedoes (non-				
Material	parachutes-medium	Material	explosive)				
	Non-Ingestible Material: Lightweight torpedo accessories, sonobuoys (non-explosive), sonobuoy wires						
Sonar and Other Transducer Bins	Mid-Frequency: Torpedo MF4 MF5 TORP1	es:					
In-Water Explosive Bins	None						
Procedural Mitigation Measures	Active sonar	-	Il Disturbance and Strike: (Section 5.3.4) movement				
Assumptions Used for Analysis	Stressors to human resources were not an from shore.	alyzed for this ac	tivity since it occurs greater than 12 NM				

A.2.5.2 Torpedo Exercise – Maritime Patrol Aircraft

Anti-Submarine	e Warfare							
Anti-Submarine	Warfare Torpedo Exercise –	Maritime Patrol Aircraft						
Short	Maritime patrol aircraft crev	ws search for, track,	Typical Dura	tion				
Description	and detect submarines. Rec							
	torpedoes are employed aga	ainst submarine	2-8 hours					
	targets.							
Long		Fixed-wing maritime patrol aircraft employ sonobuoys to search for, detect, classify, localize, and						
Description	track a simulated threat sub-	-	_	iring solution that could be				
	used to launch a torpedo and	d destroy the submarine.						
	Sonobuoys (both passive an	d active) are typically em	ployed by a ma	aritime patrol aircraft operating				
		, ,,		ne High Altitude Anti-Submarine				
	Warfare Weapon Capability	kit) may be delivered at I	nigh altitudes t	o remain clear of high threat				
	areas. Sonobuoys are deplo	yed in specific patterns b	ased on the ex	pected threat submarine and				
	•	-	-	atterns will cover many different				
			-	e classified. The anti-submarine				
	_		•	Mobile Anti-Submarine Warfare				
		_		nay involve a single aircraft, or be gmultiple aircraft and vessels,				
			_	helicopter or small craft. The				
		•		nge, but it may be conducted in				
	other OPAREAs depending of							
Typical	Platforms: Fixed-wing aircra							
Components	Targets: Sub-surface targets	;						
	Systems being Trained/Test	ted: Sonobuoys, torpedo	es					
Standard	Aircraft safety	Typical Locations						
Operating Procedures		Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:				
(Section 2.3.3)		Jacksonville		None				
(3600001 2.3.3)		Virginia Capes						
Stressors to	Acoustic:	Physical Disturbance a		Energy:				
Biological	Sonar and other	Aircraft and aerial targe		In-air electromagnetic				
Resources	transducers	Military expended mat	erials	devices				
	Aircraft noise	Ingostion		Futon alomout.				
	Explosives:	Ingestion: Military expended mat	arials — other	Entanglement: Wires and cables				
	None	than munitions	eriais other	Decelerators/parachutes				
Stressors to	Air Quality: Sediments and Water Quality:							
Physical	Criteria air pollutants	Metals		emicals				
Resources	·	Other ma	iterials					
	Habitats:							
	Physical disturbance and stri	ke – military						
	expended material							
Stressors to	None							
Human Resources								
	1							

Anti-Submarine	· Warfare				
Anti-Submarine	Anti-Submarine Warfare Torpedo Exercise – Maritime Patrol Aircraft				
Military Expended	Ingestible Material: Small decelerators/parachutes,	Military Recoverable	Recoverable sub-surface targets, lightweight torpedoes (non-		
Material	parachutes-medium	Material	explosive)		
	Non-Ingestible Material: Lightweight torpedo accessories, sonobuoys (non-explosive), sonobuoy wires, expendable sub-surface targets				
Sonar and Other Transducer Bins	Mid-Frequency: Torpedo MF5 TORP1	es:			
In-Water Explosive Bins	None				
Procedural Mitigation Measures	Active sonar				
Assumptions	Submarine may provide service as the targ	=			
Used for	If target is air-dropped, one parachute per target.				
Analysis	Stressors to human resources were not an from shore.	alyzed for this ac	tivity since it occurs greater than 12 NM		

A.2.5.3 Torpedo Exercise - Ship

Anti-Submarine	e Warfare				
Anti-Submarine	Warfare Torpedo Exercise –	Ship			
Short	Surface ship crews search fo	r, track, and detect	Typical Dura	ition	
Description	submarines. Exercise torped	loes are used during	2-5 hours		
	this exercise.				
Long Description	Surface ships search for, detect, and track threat submarines to determine a firing position to launch a torpedo and attack the submarine. A surface ship operates at slow speeds while employing hull-mounted or towed array sonar. Passive or active sonar is employed depending on the type of threat submarine, the tactical situation, and environmental conditions. The antisubmarine warfare target used for this exercise is a MK-39 Expendable Mobile Anti-Submarine Warfare Training Target, MK-30 Target, or live submarine. This exercise may involve a single ship, or be undertaken in the context of a coordinated larger exercise involving multiple aircraft, ships, and submarines, including a major range event. The exercise torpedo is recovered by helicopter or small craft. The preferred range for this exercise is an instrumented underwater range, but it may be conducted in other range complexes depending				
	on training requirements and				
Typical Components	Platforms: Rotary-wing aircraft, small boats, surface combatants Targets: Sub-surface targets Systems being Trained/Tested: Sonar systems, acoustic countermeasures, torpedoes				
Standard	Vessel safety	Typical Locations		, ,	
Operating	Aircraft safety	Range Complexes/Tes	ting Bangası	Inland Waters/Pierside:	
Procedures	Towed in-water device	Jacksonville	illig hallges.	None	
(Section 2.3.3)	safety	Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:	
Biological	Sonar and other	Aircraft and aerial targ	ets	In-air electromagnetic	
Resources	transducers	Vessels and in-water d	evices	devices	
	Aircraft noise	Military expended mat	erials		
	Vessel noise			Entanglement:	
		Ingestion:		Wires and cables	
	Explosives: None	Military expended mat than munitions	eriais – otner		
Stressors to	Air Quality:		ts and Water	Quality	
Physical	Criteria air pollutants	Metals		emicals	
Resources	Circina dii poliatanti	Other ma	_	cimedis	
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
Stressors to	None				
Human					
Resources					

Anti-Submarine	e Warfare		
Anti-Submarine	e Warfare Torpedo Exercise – Ship		
Military Expended Material	Ingestible Material: Small decelerators/parachutes Non-Ingestible Material: Sonobuoys (non-explosive), sonobuoy wires, expendable bathythermographs, expendable bathythermograph wires, lightweight torpedo accessories, expendable sub- surface targets	Military Recoverable Material	Recoverable sub-surface targets, lightweight torpedoes (non- explosive)
Sonar and Other Transducer Bins	MF1 ASW3 Torpedo TORP1	marine Warfare: es:	
In-Water Explosive Bins	None		
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Active sonar Physical Disturbance and Strike: (Section Vessel movement Towed in-water devices	5.3.4)	
Assumptions Used for Analysis	Submarines may provide service as the tar Stressors to human resources were not an from shore.	•	

A.2.5.4 Torpedo Exercise – Submarine

Anti-Submarine	e Warfare					
Anti-Submarine	Warfare Torpedo Exercise –	Submarine				
Short	Submarine crews search for	, track, and de	etect	Typical	Duration	
Description	submarines. Exercise torpedoes are used during this exercise.			8 hours		
Long	Submarine crews search for,	detect and ti	rack a threat	submari	ne to develop firing position to	
Description	launch a torpedo. A single submerged submarine operates at slow speeds and various depths while using its hull mounted or towed array sonar to track a threat submarine. Passive sonar is used almost exclusively. Non-explosive exercise torpedoes can be fired and active sonar can be used during this training exercise.					
	•	_			n in the context of a coordinated es, including a major range event. The	
	_	-	•		preferred range for this exercise is an	
					ther range complexes depending on	
	training requirements and a			cteu III o	their alige complexes depending on	
Typical	Platforms: Rotary-wing airci			noc		
Typical		-	ats, subiliali	nes		
Components	Targets: Sub-surface targets Systems being Trained/Test		stoms acous	tic count	tormoscuros tornodoos	
Chandand				stic couri	termeasures, torpeudes	
Standard	Vessel safety	Typical Loca	ations			
Operating	Aircraft safety	Range Com	plexes/Test	ing Rang	es: Inland Waters/Pierside:	
Procedures	Towed in-water device	Jacksonville			None	
(Section 2.3.3)	safety	Northeast				
		Virginia Cap	es			
Stressors to	Acoustic:	*-	sturbance a	nd Strike	: Energy:	
Biological	Sonar and other	=	d in-water de		In-air electromagnetic	
Resources	transducers	Military exp	pended mate	erials	devices	
	Aircraft noise					
	Vessel noise	Ingestion:			Entanglement:	
		None			Wires and cables	
	Explosives:					
	None					
Stressors to	Air Quality:		Sediment	ts and W	ater Quality:	
Physical	Criteria pollutants		Metals		•	
Resources	·					
	Habitats: Physical disturbance and stri expended material	ike – military				
Stressors to	None					
Human						
Resources						
Military	Ingestible Material:		Military		ecoverable sub-surface targets,	
Expended Material	None		Recoveral Material	ole	torpedoes (non-explosive)	
	Non-Ingestible Material:					
	Guidance wires, heavyweigh	nt tornado				
	Galdanice Wires, neavy weigh	it torpedo				

Anti-Submarine	Anti-Submarine Warfare				
Anti-Submarine	Warfare Torpedo Exercise – Sub	marine			
Sonar and	Mid-Frequency:	Anti-Submarine Warfare:			
Other	MF3	ASW4			
Transducer					
Bins	High-Frequency:	Torpedoes:			
	HF1	TORP2			
In-Water	None				
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section 5.3.2)				
Mitigation	Active sonar				
Measures					
	Physical Disturbance and Strike: (Section 5.3.4)				
	Vessel movement				
	Towed in-water devices				
Assumptions	Torpedoes are recovered.				
Used for	Guidance wire has a low tensile strength and breaks easily. Weights and flex tubing sink rapidly.				
Analysis	Stressors to human resources w	ere not analyzed for this activity since it occurs greater than 12 NM			
	from shore.				

A.2.5.5 Tracking Exercise – Helicopter

Anti-Submarine	Warfare					
	Warfare Tracking Exercise –	Helicopter				
Short	Helicopter crews search for,		tost	Tyni	ical Duration	
Description	submarines.	track, and de	rieci	2-4 hours		
		and dinning	conor coord			
Long Description					detect, classify, localize, and track a firing solution that could be used to	
Description	launch a torpedo and destro	_		iiig a	innig solution that could be used to	
	laurich a torpedo and destro	y the subman	iiie.			
					d by a helicopter operating at altitudes	
	below 3,000 ft. Dipping sonar (both passive and active) is employed from an altitude of about 50					
	ft. after the search area has	been narrowe	ed based on	the so	onobuoy search.	
	The anti-submarine warfare	target used fo	or this exerc	cise m	nay be a MK-39 Expendable Mobile Anti-	
	submarine Warfare Training	Target, a MK	-30 target, o	or a liv	ve submarine. This exercise may involve a	
	single aircraft, or occur duri	ng a coordinat	ted larger ex	xercise	e involving multiple aircraft and ships,	
			-		such as the MQ-8 Fire Scout, may also be	
	-				ted range, but it may be conducted in	
Tourism !	other range complexes depe					
Typical	Platforms: Rotary-wing aircu Targets: Sub-surface targets		its, unmann	ed aei	erial systems	
Components	Systems being Trained/Test		stams sono	huovs	rc	
Standard	Vessel safety	Typical Loca		buoys	3	
Operating	Aircraft safety					
Procedures	Unmanned aerial, surface,	Range Com	plexes/Test	ing Ra	_	
(Section 2.3.3)	and subsurface vehicle	Jacksonville			None	
	safety	Navy Cherry				
		Virginia Cap Other AFTT				
Stressors to	Acoustic:	Physical Dis		nd Str	rike: Energy:	
Biological	Sonar and other	Aircraft and			In-air electromagnetic	
Resources	transducers	Vessels and	_		_	
	Aircraft noise	Military exp	ended mat	erials		
	Vessel noise				Entanglement:	
		Ingestion:			Decelerators/parachutes	
	Explosives:	Military exp		erials ·	– other Wires and cables	
	None	than mu				
Stressors to	Air Quality:			ts and	d Water Quality:	
Physical	Criteria air pollutants		Metals Other ma	+ori-l	Chemicals	
Resources	Habitats:		Other ma	iterials	15	
	Physical disturbance and stri	ke – military				
	expended material	in initiary				
Stressors to	None					
Human	-					
Resources						
Military	Ingestible Material:		Military		Recoverable sub-surface targets	
Expended	Small decelerators/parachut	es	Recoveral	ble		
Material			Material			
	Non-Ingestible Material:					
	Sonobuoys (non-explosive),					
	wires, expendable sub-sur	tace targets				

Anti-Submarine	e Warfare	
Anti-Submarine	e Warfare Tracking Exercise – Helicopter	
Sonar and	Mid-Frequency:	
Other	MF4	
Transducer	MF5	
Bins		
In-Water	None	
Explosive		
Bins		
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Active sonar	Vessel movement
Measures		
Assumptions	Tracking exercise can occur in all locations.	
Used for	Submarines may provide service as the target	
Analysis	Stressors to human resources were not analyze	zed for this activity since it occurs greater than 12 NM
	from shore.	

A.2.5.6 Tracking Exercise – Maritime Patrol Aircraft

Anti-Submarine	e Warfare					
Anti-Submarine	Warfare Tracking Exercise –	Maritime Patrol Aircraft				
Short	Maritime patrol aircraft crev	vs search for, track,	Typical Dura	tion		
Description	and detect submarines.	, ,	2-8 hours			
Long Description	Fixed-wing maritime patrol a and track a simulated threat be used to launch a torpedo Sonobuoys (both passive and at altitudes below 3,000 ft. In deployed in specific patterns Depending on these two facts sonobuoys, tactical paramet this exercise may be a MK-35 target, or a live submarine. To context of a coordinated larger.	submarine with the goal and destroy the submarine discrive) are typically employeer, sonobuoys may based on the expected fors, these patterns will deers of use may be classifications. Expendable Mobile Antichis exercise may involve	rs to search for of determining ne. ployed by a may be released at threat submaricover many diffed. The anti-sui-Submarine Was a single aircraf	g a firing solution that could aritime patrol aircraft operating thigher altitudes. Sonobuoys are ne and specific water conditions. Ferent size areas. For certain abmarine warfare target used for varfare Training Target, a MK-30		
	range event.					
Typical Components	Platforms: Fixed-wing aircraft Targets: Sub-surface targets Systems being Trained/Tested: Sonobuoys, acoustic countermeasures					
Standard	Vessel safety	Typical Locations				
Operating Procedures (Section 2.3.3)	Aircraft safety Weapons firing safety Swimmer defense activity safety Unmanned aerial, surface, and subsurface vehicle safety Towed in-water device safety	Range Complexes/Test Jacksonville Navy Cherry Point Northeast Virginia Capes	ting Ranges:	Inland Waters/Pierside: None		
Stressors to Biological Resources	Acoustic: Sonar and other transducers Aircraft noise Vessel noise Explosives: None	Physical Disturbance a Aircraft and aerial targ Vessels and in-water d Military expended mat Ingestion: Military expended mat than munitions	ets evices erials	Energy: In-air electromagnetic devices Entanglement: Decelerators/parachutes Wires and cables		
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stri expended material	Metals Other ma		Quality: emicals		
Stressors to Human Resources	None					

Anti-Submarine	e Warfare					
Anti-Submarine	Anti-Submarine Warfare Tracking Exercise – Maritime Patrol Aircraft					
Military	Ingestible Material: Military Recoverable sub-surface targets					
Expended	Small decelerators/parachutes	Recoverable				
Material		Material				
	Non-Ingestible Material:					
	Sonobuoys (non-explosive), sonobuoy					
	wires, expendable sub-surface targets					
Sonar and	Mid-Frequency: Anti-Sub	marine Warfare:				
Other	MF5 ASW2					
Transducer	ASW5					
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	None					
Mitigation						
Measures						
Assumptions	Tracking exercise can occur in all locations					
Used for	Submarine may provide service as the target.					
Analysis	If target is air-dropped, one parachute per target.					
	Stressors to human resources were not an	alyzed for this ac	tivity since it occurs greater than 12 NM			
	from shore.					

A.2.5.7 Tracking Exercise – Submarine

Anti-Submarine	Warfare						
Anti-Submarine	Warfare Tracking Exercise –	Submarine					
Short	Submarine crews search for	, track, and de	etect	Typic	al Durat	tion	
Description	submarines.	,		8 hours			
Long	Submarine crews search for,	Submarine crews search for, detect, and track a threat submarine to develop firing position to					
Description	launch a torpedo.	•				1 01	
	•		* ala a.a.a.a.d	امميما		البيط مغنج مينمين مانطيب مطغمهام	
	A single submerged submari	=	=			· · ·	
	mounted or towed array sor exclusively. The target for th						
	warfare training target, MK 3				•		
	This exercise may involve a s		_	_			
	larger exercise involving mul	_					
Typical	Platforms: Submarines	tipic anciart,	3111p3, aria 30	abiliai	11103, 1110	idanig a major range event	
Components	Targets: Sub-surface targets	:					
Components	Systems being Trained/Test		ır systems, a	cousti	ic counte	ermeasures	
Standard	Vessel safety	Typical Loca					
Operating	Towed in-water device						
Procedures	safety		plexes/Testi	ng Ra	nges:	Inland Waters/Pierside:	
(Section 2.3.3)		Gulf of Mexico None Jacksonville					
		Navy Cherry					
		Northeast	TOILL				
		Virginia Cap	es				
		Other AFTT					
Stressors to	Acoustic:	Physical Dis	sturbance ar	nd Str	ike:	Energy:	
Biological	Sonar and other	Vessels and	l in-water de	vices		None	
Resources	transducers	Military exp	ended mate	rials			
	Vessel noise					Entanglement:	
		Ingestion:				Wires and cables	
	Explosives:	None					
Ci i	None		6 li i		144 1 6	N 111	
Stressors to	Air Quality:		Sediment: Metals	s and	water C	Quality:	
Physical Resources	None		ivietais				
Resources	Habitats:						
	Physical disturbance and stri	ke – military					
	expended material	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Stressors to	None	-	_				
Human							
Resources							
Military	Ingestible Material:		Military		Recove	rable sub-surface targets	
Expended	None		Recoverab	le			
Material			Material				
	Non-Ingestible Material:						
	Expendable sub-surface targ	gets					

Anti-Submarine	: Warfare					
Anti-Submarine	Warfare Tracking Exercise	- Submarine				
Sonar and	Mid-Frequency:		Anti-Submarine Warfare:			
Other	MF3	ASW4				
Transducer						
Bins	High-Frequency:					
	HF1					
In-Water	None					
Explosive						
Bins						
Procedural	Acoustic Stressors: (Section	on 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Active sonar		Vessel movement			
Measures			Towed in-water devices			
Assumptions	Stressors to human reso	ources were not anal	yzed for this activity since it occurs greater than			
Used for	12 NM from shore. For biological resource analysis, vessel noise and vessel strike are only					
Analysis	analyzed for the period	ds while the submarine	s are surfaced, typically brief in nature. Mitigation			
			ly considered during the period of surfacing as well.			

A.2.5.8 Tracking Exercise – Ship

Anti-Submarine	Warfare						
	Warfare Tracking Exercise –	Shin					
Short			data at 1	ypical Dura	tion		
Description	Surface ship crews search for submarines.	or, track, and t					
				2-4 hours			
Long	Surface ships search for, detect, and track threat submarines to determine a firing position to						
Description	launch a torpedo and attack	the submarin	e.				
	A surface ship operates at sl	ow speeds wh	nile employing	sonobuoys	, hull-mounted sonars, or		
	towed array sonar. Passive o	r active sonar	is employed	depending o	on the type of threat		
	submarine, the tactical situa	tion, and envi	ironmental co	nditions. Th	e target for this exercise is		
	either a MK-39 Expendable I	Mobile Anti-Sเ	ubmarine War	fare Trainin	g Target, MK-30 Recoverable		
	Training Target, or live subm	arine.					
	This exercise may involve a s	single shin or	he undertake	n in the con	text of a coordinated larger		
	exercise involving multiple a				_		
Typical	Platforms: Surface combata		ana sabinami	cs, meraam	5 a major range event.		
Components	Targets: Sub-surface targets						
, , , , , , , , , , , , , , , , , , ,	Systems being Trained/Tes		F12Sonar syst	ems, acoust	ic countermeasures		
Standard	Vessel safety	Typical Loca		· ·			
Operating	Towed in-water device						
Procedures	safety	_	plexes/Testin	g Ranges:	Inland Waters/Pierside:		
(Section 2.3.3)		Gulf of Mexi			None		
		Navy Cherry					
		Northeast	Polit				
			Virginia Capes				
		Other AFTT					
Stressors to	Acoustic:	Physical Dis	sturbance and	Strike:	Energy:		
Biological	Sonar and other	-	l in-water devi		In-air electromagnetic		
Resources	transducers	Military exp	ended materi	ials	devices		
	Vessel noise						
		Ingestion:			Entanglement:		
	Explosives:	No			Wires and cables		
	None						
Stressors to	Air Quality:		Sediments	and Water	Quality:		
Physical	Criteria air pollutants		Metals				
Resources							
	Habitats:						
	Physical disturbance and stri expended material	ike – military					
Stressors to	None	<u>-</u>	<u> </u>		-		
Human	INOTIC						
Resources							
Military	Ingestible Material:		Military	Recov	erable sub-surface targets		
=	None		Recoverable				
Expended			Material				
Expended Material			iviateriai				
•	Non-Ingestible Material:		iviateriai				
•	Expendable sub-surface targ		iviateriai				
•	_	graphs,	iviateriai				

Anti-Submarine	e Warfare		
Anti-Submarine	Warfare Tracking Exercis	e – Ship	
Sonar and	Mid-Frequency:	Anti-Subma	arine Warfare:
Other	MF1	ASW1	
Transducer	MF11	ASW3	
Bins	MF12		
In-Water	None		
Explosive			
Bins			
Procedural	Acoustic Stressors: (Sect	ion 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Active sonar		Vessel movement
Measures			Towed in-water devices
Assumptions	A submarine may provid	e service as the targ	et.
Used for	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM		
Analysis	from shore.		

A.2.6 ELECTRONIC WARFARE

Electronic warfare is the mission area of naval warfare that aims to control use of the electromagnetic spectrum and to deny its use by an adversary. Typical electronic warfare activities include threat avoidance training, signals analysis for intelligence purposes, and use of airborne and surface electronic jamming devices to defeat tracking systems.

A.2.6.1 Counter Targeting Chaff Exercise – Aircraft

Electronic Warf	are				
Counter Target	ing Chaff Exercise – Aircraft				
Short	Fixed-winged aircraft and he	elicopter aircrews	Typical Durat	tion	
Description	deploy chaff to disrupt threa guidance radars.	at targeting and missile	1-2 hours		
Long Description	Fixed-winged aircraft and helicopter aircrews deploy chaff to disrupt threat targeting and mis guidance radars.				
	Fixed-winged aircraft and he or missiles, dispense chaff, a deceives the inbound missile	ind immediately maneuv	er to defeat the		
	frequency responses, which enemy radar and weapons s	deceive enemy radars. Cystem away from the ac	Chaff is employe	ips cut in various lengths to elicit ed to create a target that will lure atform.	
Typical	Platforms: Fixed-wing aircra	ft, rotary-wing aircraft			
Components	Targets: None				
	Systems being Trained/Test				
Standard	Aircraft safety	Typical Locations			
Operating		Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures (Section 2.3.3)		Gulf of Mexico	-	None	
(3800001 2.3.3)		Jacksonville			
		Key West			
		Navy Cherry Point			
		Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic	
Resources	Front action is	Military expended mat	terials	devices	
	Explosives: None	Ingostions		Entanglement:	
	None	Ingestion: Military expended mat	erials – other	None	
		than munitions	teriais other	None	
Stressors to	Air Quality:		ts and Water (Quality:	
Physical	Criteria air pollutants	Sediments and Water Quality: Metals Other materials			
Resources	р				
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
Stressors to	None				
Human					
Resources					

Electronic Warf	Electronic Warfare				
Counter Target	Counter Targeting Chaff Exercise – Aircraft				
Military Expended Material	Ingestible Material: Per chaff: one chaff-air cartridge, one plastic endcap, one compression pad or one plastic piston, chaff fibers Non-Ingestible Material: None	Military Recoverable Material	None		
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	None				
Procedural Mitigation Measures	None				
Assumptions Used for Analysis	Chaff is usually expended while conducting other training activities, such as air combat maneuvering. Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore.				

A.2.6.2 Counter Targeting Chaff Exercise – Ship

Electronic Warf	are				
	ing Chaff Exercise – Ship				
Short	Surface ship crews deploy of	haff to disrun	t threat	Typical Durat	ion
Description	targeting and missile guida	-	_	1-2 hours	-
Long					ile guidance radars to defend
Description	against an attack.	а со а.о. а.р			ne garaanse raaans te aerena
•	Surface ship crews detect electronic targeting signals from threat radars or missiles, dispe				dare or missiles dispense shoff
					ceives the inbound missile and
					is approximately 1.5 hours.
	Chaff is a radar reflector ma				
	elicit frequency responses,	which deceive	enemy rada	rs. Chaff is em	ployed create a target that will
	lure enemy radar and weap	-	-		
		dvanced count	ermeasure sy	stems, such a	as the MK 53 Decoy Launching
	System (Nulka).				
Typical	Platforms: Navy ships				
Components	Targets: None Systems being Trained/Tes	stad: None			
Standard	Vessel safety	Typical Loca	ations		
Operating	vesser sarety				
Procedures		_	plexes/Testi	ng Ranges:	Inland Waters/Pierside:
(Section 2.3.3)		Gulf of Mexico None			
		Jacksonville			
		Navy Cherry Virginia Cap			
Stressors to	Acoustic:			d Strike:	Energy:
Biological	Vessel noise				In-air electromagnetic
Resources		Military exp	pended mate	rials	devices
	Explosives:				In-water electromagnetic
	None	Ingestion:			devices
			pended mate	rials – other	
		than mu	initions		Entanglement: None
Stressors to	Air Quality:		Sadimente	and Water C	
Physical	Criteria air pollutants		Metals		materials
Resources					
	Habitats:				
	Physical disturbance and str	rike – military			
	expended material				
Stressors to	None				
Human					
Resources	Ingostible Meterial:		Militory	None	
Military Expended	Ingestible Material: Expended components of c	haff-shin	Military Recoverab	None	
Material	(chaff-ship fibers)	11011-3111 p	Material		
	(chan ship hocis)		acciiai		
	Non-Ingestible Material:				
	MK 53 decoy, chaff-ship car	tridges			

Electronic Warf	are			
Counter Target	Counter Targeting Chaff Exercise – Ship			
Sonar and	None			
Other				
Transducer				
Bins				
In-Water	None			
Explosive				
Bins				
Procedural	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Vessel movement			
Measures				
Assumptions	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM			
Used for	from shore.			
Analysis				

A.2.6.3 Counter Targeting Flare Exercise

Electronic Warf	are					
	ing – Flare Exercise					
Short	Fixed-winged aircraft and he	elicopter aircre	ews	Typic	cal Durat	tion
Description	deploy flares to disrupt thre	-				
•	guidance systems.		1-2 hours			
Long	Fixed-winged aircraft and he	elicopter aircre	ews deploy	flares	to disrup	ot threat infrared missile
Description	guidance systems.					
	Aircraft detect electronic targeting signals from threat radars or missiles or a threat missile plume when launched and dispense flares and immediately maneuver to defeat the threat. This exercise trains aircraft personnel in the use of defensive flares designed to confuse infrared sensors or infrared homing missiles, thereby causing the sensor or missile to lock onto the flares instead of the real aircraft. Typically an aircraft will expend five flares in an exercise while operating above 3,000 ft. Flare exercises are often conducted with chaff exercises, rather than as a stand-alone exercise.					
Typical	Platforms: Fixed-wing aircra	oft, rotary-wing	g aircraft			
Components	Targets: None					
	Systems being Trained/Test					
Standard	Aircraft safety	Typical Loca	tions			
Operating Procedures (Section 2.3.3)		Range Com Gulf of Mexi Jacksonville Key West Navy Cherry Virginia Cape	co Point	ing Ra	nges:	Inland Waters/Pierside: None
Stressors to	Acoustic:	Physical Dis		nd Stri	ike:	Energy:
Biological	Aircraft noise	Aircraft and				In-air electromagnetic
Resources		Military exp	ended mat	erials		devices
	Explosives:					
	None	Ingestion:				Entanglement:
		Military exp		erials -	- other	None
		than mu				
Stressors to	Air Quality:		Sedimen	ts and	Water C	Quality:
Physical Resources	Criteria air pollutants		Metals			
Resources	Habitats:					
	Physical disturbance and stri	ike – military				
	expended material	,				
Stressors to	None	-				
Human						
Resources						
Military	Ingestible Material:		Military		None	
Expended Material	Per flare: one casing, one co pad (closed cell foam) or c		Recoveral Material	ble		
iviateriai	pad (closed cell foam) or c piston, one plastic endcap (rubber, nitrile)	•	iviateriai			
	Non-Ingestible Material: None					

Electronic Warf	are
Counter Target	ing – Flare Exercise
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	None
Mitigation	
Measures	<u>_</u>
Assumptions	Approximately five flares per aircraft are expended per exercise.
Used for	All combustible material in flares is assumed to be consumed before contact of the casing with the
Analysis	water.
	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM
	from shore.

A.2.6.4 Electronic Warfare Operations

Electronic Warfare Operations Short Aircraft and surface ship crews control portions of Typical Duration	
Short Aircraft and surface ship crews control portions of Typical Duration	
Description the electromagnetic spectrum used by enemy	
systems to degrade or deny the enemy's ability to 1-2 hours	
take defensive actions.	
Long Aircraft and surface ship crews control the electromagnetic spectrum used by enemy sy	stems to
Description degrade or deny the enemy's ability to take defensive actions. Electronic Warfare Operation	ations can be
active or passive, offensive or defensive. Fixed-wing aircraft employ active jamming and	•
against enemy search radars to mask the friendly inbound strike aircraft mission. Surface	-
detect and evaluate enemy electronic signals from enemy aircraft or missile radars, eva	
of action concerning the use of passive or active countermeasures, then use ship manel	
either chaff, flares, active electronic countermeasures, or a combination of them to def	eat the
threat.	
Typical Platforms: Fixed-wing aircraft, surface combatants Components Targets: Air targets, electronic warfare targets	
Components Targets: Air targets, electronic warfare targets Systems being Trained/Tested: Radar systems	
Standard Vessel safety Typical Locations	
Operating Aircraft safety	
Procedures Range Complexes/Testing Ranges: Inland Waters/Pie	rside:
(Section 2 3 3) Jacksonville None	
Navy Cherry Point	
Virginia Capes	
Stressors to Acoustic: Physical Disturbance and Strike: Energy:	
BiologicalAircraft noiseAircraft and aerial targetsIn-air electromaResourcesVessel noiseVessels and in-water devicesdevices	ignetic
vessels and in-water devices devices	
Explosives: Ingestion: Entanglement:	
None None None	
Stressors to Air Quality: Sediments and Water Quality:	
Physical Criteria air pollutants None	
Resources	
Habitats:	
None	
Stressors to Cultural Resources: Socioeconomic Resources: Public Health and	Safety:
Human Physical disturbance and Accessibility Physical interaction	าร
Resources strike Airborne acoustics In-air energy	
Physical disturbance and strike	
Military Ingestible Material: Military None	
Expended None Recoverable	
Material Material Non-Ingestible Material:	
None	
Sonar and None	
Other	
Transducer	
Bins	
In-Water None	
Explosive	
Bins	

Electronic Warf	Electronic Warfare			
Electronic Warf	are Operations			
Procedural	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Vessel movement			
Measures				
Assumptions	All chaff and flares involved in this exercise are covered under chaff exercises and flare exercises,			
Used for	respectively.			
Analysis				

A.2.6.5 High-Speed Anti-Radiation Missile Exercise (Air-to-Surface)

Electronic Warf	are						
	i-Radiation Missile Exercise (A	\ir-to-Surface\					
Short	-	-		'unical Dura	tion		
Description	Aircrews launch a High-Spee			ypical Dura	ition		
	Missile against threat radar			-2 hours			
Long	Aircrews detect radar signals						
Description		losive) to destroy or disable the threat radar site. One or more fighter					
		ar site from high altitude. Once the target is located with onboard					
			s a High-Speed Anti-Radiation Missile at the electronic signal. At-sea ainst a target vessel or a specially configured target barge that has a				
		_	•	•			
Tourisal			ssiie wiii se	ek arter ber	ng fired from the launch aircraft.		
Typical	Platforms: Fixed-wing aircra						
Components	Targets: Barge with an elect						
a	Systems being Trained/Test	-					
Standard	Aircraft safety	Typical Location	ons				
Operating		Range Comple	xes/Testin	g Ranges:	Inland Waters/Pierside:		
Procedures		Jacksonville			None		
(Section 2.3.3)		Navy Cherry Po	oint				
		Virginia Capes					
Stressors to	Acoustic:	Physical Distu	rbance and	Strike:	Energy:		
Biological	Aircraft noise	Aircraft and a			In-air electromagnetic		
Resources		In-air explosiv	es		devices		
	Explosives:						
	In-air explosives	Ingestion:			Entanglement:		
		Military expended materials – None					
		munitions					
Stressors to	Air Quality:	:	Sediments	and Water	Quality:		
Physical	Criteria air pollutants		Explosives		nemicals		
Resources		I	Metals	Ot	ther materials		
	Habitats:						
	Physical disturbance and stri	ke – military					
	expended material						
Stressors to	None						
Human							
Resources					_		
Military	Ingestible Material:		Vilitary	None			
Expended	Missile fragments		Recoverable	2			
Material	Non Ingestible Material.	, N	Material				
	Non-Ingestible Material:						
Comparated	None						
Sonar and Other	None						
Otner Transducer							
Bins							
In-Water	None	<u> </u>		_			
Explosive	None						
Bins							
פוווט							

Electronic Warf	are			
High Speed Ant	High Speed Anti-Radiation Missile Exercise (Air-to-Surface)			
Procedural	Explosive Stressors: (Section 5.3.3) Explosive			
Mitigation	missiles and rockets			
Measures				
Assumptions	All chaff and flares involved in this exercise are covered under chaff exercises and flare exercises,			
Used for	respectively.			
Analysis	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM			
	from shore.			

A.2.7 EXPEDITIONARY WARFARE

A.2.7.1 Dive and Salvage Operations

Expeditionary Warfa	re							
Dive and Salvage Ope								
Short Description	Navy divers perform o	live operation	ns and	Typic	al Dura	tion		
·		salvage training.			12 hours			
Long Description		uct a variety c	f salvage tr			de debeaching operations,		
		underwater repairs to ships, underwater survey operations, and other underwater training as						
	required.	. ,		, ,	,	Ü		
Typical	Platforms: Support cr	aft, unmanne	d underwat	ter veh	icles			
Components	Targets: None							
	Systems being Traine	d/Tested: Su	bmersible t	raining	aids			
Standard	Vessel safety	Typical Loca	ations					
Operating	Unmanned aerial,	Range Com	nleves/Tes	ting Pa	ngos:	Inland Waters/Pierside:		
Procedures	surface, and	Gulf of Mex	-	tilig iva	iliges.	Naval Station Norfolk basin		
(Section 2.3.3)	subsurface	Jacksonville				Willoughby Bay		
	vehicle safety	Key West				Joint Expeditionary Base Little		
		Navy Cherry	/ Point			Creek harbor		
		Virginia Cap				Naval Station Mayport basin and		
				beach		• •		
Stressors to	Acoustic:	Physical Di	sturbance a	nd Str	ike:	Energy:		
Biological	Vessel noise	Vessels and	d in-water d	evices		None		
Resources		Seafloor de	vices					
	Explosives:					Entanglement:		
	None	Ingestion:				None		
		None						
Stressors to	Air Quality:		Sedimen	ts and	Water	Quality:		
Physical Resources	Criteria air pollutants		None					
	Habitats:							
	Physical disturbance a	nd strike -						
	seafloor devices	na strike						
Stressors to	Cultural Resources:	Socioeco	nomic Reso	ources	·	Public Health and Safety:		
Human Resources	Physical disturbance	Accessibi		, u. ccs.	•	Physical interactions		
	and strike		disturbance	and st	rike	,		
Military Expended	Ingestible Material:		Military		None			
Material	None		Recovera	ble				
			Material					
	Non-Ingestible Mater	ial:						
	None							
Sonar and Other	None			_				
Transducer Bins								
In-Water Explosive	None							
Bins								
Procedural	Physical Disturbance a	and Strike: (S	ection 5.3.4	.)				
Mitigation	Vessel movement							
Measures	- 1	1.16			CI :			
Assumptions Used	The practice salvage p	iattorm can b	e sunk and	then re	efloated	a and removed.		
for Analysis								

A.2.7.2 Maritime Security Operations – Anti-Swimmer Grenades

Expeditionary	aritime Security Opera	ations - Anti	-Swill	mer Grena	aues		
	rity Operations – Anti-Swin	nmor Granadas					
				Tunical Dun	ation		
Short	Small boat crews engage i	· · · · · · · · · · · · · · · · · · ·		Typical Dur	ation		
Description	activities by using anti-sw	_	s to	1 hour			
	defend against hostile div	ews train to maneuver small boats in specific search patterns while surveying the area for					
Long			-	-			
Description	-	. Crews train in	the safe	handling and	d use of anti-swimmer grenades to		
	counter the diver threat.						
Typical	Platforms: Small boats						
Components	Targets: None						
	Systems being Trained/To						
Standard	Vessel safety	Typical Location	ons				
Operating		Range Comple	exes/Te	sting	Inland Waters/Pierside:		
Procedures		Ranges:	CACO, 10	B	None		
(Section		Gulf of Mexico	1		TTO TO		
2.3.3)		Jacksonville	•				
		Navy Cherry P	oint				
		Northeast					
		Virginia Capes	;				
Stressors to	Acoustic:	Physical Distu		and Strike:	Energy:		
Biological	Vessel noise	Vessels and in			None		
Resources	7 0000. 110.00	Underwater e					
110000111000	Explosives:	Military exper	-		Entanglement:		
	Underwater explosives	, , , , , , , , , , , , , , , , , , , ,			None		
		Ingestion:					
		Military exper	nded ma	iterials –			
		munitions					
Stressors to	Air Quality:	S	Sedimen	ts and Wate	r Quality:		
Physical	Criteria air pollutants	E	Explosive	es Me	tals		
Resources							
	Habitats:						
	Physical disturbance and s	strike –					
	military expended mat	erial					
	Underwater explosives						
Stressors to	Cultural Resources:	Socioecono		ources:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility	-		Physical interactions		
Resources	strike	Physical dis	turbanc	e and strike	Underwater energy		
	Underwater explosives				,		
Military	Ingestible Material:	r	Military		None		
Expended	Grenade fragments		Recover				
Material		r	Materia				
	Non-Ingestible Material:						
	None						
Sonar and	None	_					
Other							
Transducer							
Bins							
In-Water	E2						
Explosive							

Expeditionary	Expeditionary Warfare				
Maritime Secu	rity Operations – Anti-Swimmer Grenades				
Bins					
Procedural	Physical Disturbance and Strike: (Section	Explosive Stressors: (Section 5.3.3)			
Mitigation	5.3.4)	Maritime security operations – anti-swimmer			
Measures	Vessel movement	grenades			
Assumptions	Exercises would usually be conducted in esta	ablished underwater detonation areas.			
Used for					
Analysis					

A.2.7.3 Personnel Insertion/Extraction – Air

Expeditionary V	rsonner insertion/Extra Narfare	J. 1011 7.11				
	rtion/Extraction – Air					
Short		and outracted from an	Typical Dura	ation		
Description				ition		
•	objective area by fixed-wing aircraft or helicopters. 2-4 hours Personnel are inserted into a water objective via fixed-wing aircraft using parachutes or by					
Long Description	helicopters via ropes or jumping into the water. They will conduct an infiltration to an objective					
Description	(harbor, beach, moored vessel, etc.) and conduct a variety of tasks. The insertion/extraction					
	activities are confined to in-water training. Upon completion of training objectives, personnel are					
	extracted by helicopters or		inpletion of tra	ining objectives, personner are		
Typical	Platforms: Fixed-wing aircra		small hoats			
Components	Targets: None	int, rotary wing an orart, t	man boats			
	Systems being Trained/Tes	ted: None				
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety					
Procedures	Vessel safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
(Section 2.3.3)	,	Jacksonville		Naval Station Mayport basin		
		Key West		St. Johns River		
		Virginia Capes		St. Andrew Bay		
				North Bay		
				Lower Chesapeake Bay James River and tributaries		
				York River		
				Mobjack Bay		
				Willoughby Bay		
				Naval Station Norfolk		
				Cheatham Annex pier		
				Joint Expeditionary Base Fort		
				Story		
				Dam Neck Annex		
				Camp Pendleton		
Stressors to	Acoustic:	Physical Disturbance	and Strike:	Energy:		
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic		
Resources	Vessel noise	Vessels and in-water of		energy		
	Explosives:	Ingestion:		Entanglement:		
	None	None		None		
Stressors to	Air Quality:		its and Water	Quality:		
Physical	Criteria air pollutants	None				
Resources						
	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioeconomic Res	ources:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility		Physical interactions		
Resources	strike	Airborne acoustics	and strike	In-air energy		
N/ilita m	Ingostible Metarial	Physical disturbance				
Military	Ingestible Material:	Military	None			
Expended Material	None	Recovera Material	Bible			
iviaterial	Non-Ingestible Material:	iviateriai				
	None					
	None					

Expeditionary V	Varfare
Personnel Inser	rtion/Extraction – Air
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	
Assumptions	Exercises are typically conducted in waters near land.
Used for	
Analysis	

A.2.7.4 Personnel Insertion/Extraction – Surface and Subsurface

Expeditionary Warfare							
Personnel Insertion/Extr	action – Surface and	d Subsurface					
Short Description	Personnel are inse	erted into and		Typi	cal Dura	tion	
	extracted from an	objective are	a by	2 4 4	201186		
	small boats or sub	surface platfo	orms.	2-4 r	nours		
Long Description	Utilizing both sma	Utilizing both small surface and subsurface platforms, personnel are inserted in the					
	water. They will co	onduct an infi	Itration to a	an obje	ective (ha	arbor, beach, moored vessel,	
	etc.) and conduct	etc.) and conduct a variety of tasks. The insertion/extraction activities are confined to in-					
	water training.						
Typical Components	Platforms: Small b	oats, manned	d underwate	er veh	icles		
	Targets: None						
	Systems being Tra						
Standard Operating	Vessel safety	Typical Loca	ations				
Procedures		Range Com	plexes/Tes	ting Ra	anges:	Inland Waters/Pierside:	
(Section 2.3.3)		Gulf of Mex	-	Ū	Ū	Lower Chesapeake Bay	
		Jacksonville	<u>}</u>			James River and tributaries	
		Key West				York River	
		Navy Cherry	y Point			Joint Expeditionary Base Little	
		Northeast				Creek beaches and harbor	
		Virginia Cap	oes			Joint Expeditionary Base Fort	
						Story	
						St. Julien's Creek Annex pier	
Stressors to Biological	Acoustic:	Physical Di				Energy:	
Resources	Vessel noise	Vessels and	l in-water d	evices		None	
						_	
	Explosives:	Ingestion:				Entanglement:	
C	None	None	o !:			None	
Stressors to Physical	Air Quality:	nto	Sedimen	ts and	water	Quality:	
Resources	Criteria air polluta	nts	None				
	Habitats:						
	None						
Stressors to Human	Cultural Resource	s: Socioeco	nomic Reso	ources	:	Public Health and Safety:	
Resources	None	Accessibi				Physical interactions	
			, disturbance	and s	trike	•	
Military Expended	Ingestible Materia	al:	Military		None		
Material	None		Recovera	ble			
			Material				
	Non-Ingestible Ma	aterial:					
	None	_					
Sonar and Other	None						
Transducer Bins					-		
In-Water Explosive	None						
Bins					-	<u>-</u>	
Procedural Mitigation	Physical Disturbar	ice and Strike	:: (Section 5	.3.4)			
Measures	Vessel movement						
Assumptions Used for	Exercises are typic	ally conducte	d in waters	near la	and.		
Analysis							

A.2.7.5 Personnel Insertion/Extraction – Swimmer/Diver

Expeditionary \							
	rtion/Extraction Training – Sv	vimmer/Diver					
Short	Divers and swimmer infiltra		aches .	Typical Dura	tion		
Description	or moored vessels and cond						
Long		mmer infiltrate harbors, beaches, or moored vessels and conduct a variety of tasks.					
Description	Activity may include Navy personnel learning advanced self-contained underwater breathing						
	apparatus (SCUBA) diving to		_		_		
	procedures. Small boats are		·-	,	ζ,		
Typical	Platforms: Small boats						
Components	Targets: None						
	Systems being Trained/Tes	ted: None					
Standard	Vessel safety	Typical Locat	tions				
Operating		Range Comp	lexes/Testin	ng Ranges:	Inland Waters/Pierside:		
Procedures		Key West	nexes, restil	.8a8co.	Lower Chesapeake Bay		
(Section		Virginia Cape	es		,		
2.3.3) Stressors to	Acoustic:			d Chritica.	Enormy		
Biological	Vessel noise	Physical Dist			Energy: None		
Resources	vessei noise	vessels allu	iii-watei uei	rices	None		
Resources	Explosives:	Ingestion:			Entanglement:		
	None	None			None		
Stressors to	Air Quality:	Sediments and Water Quality:					
Physical	Criteria air pollutants		None		•		
Resources	·						
	Habitats:						
	None						
Stressors to	Cultural Resources:		nomic Resou	rces:	Public Health and Safety:		
Human	None	Accessibil	=	1 . 1	Physical interactions		
Resources		Physical d	isturbance a				
Military	Ingestible Material:		Military Recoverabl	None			
Expended Material	None		Material	е			
Waterial	Non-Ingestible Material:		iviateriai				
	None						
Sonar and	None						
Other							
Transducer							
Bins							
In-Water	None						
Explosive							
Bins	<u> </u>			<u>-</u>			
Procedural	Physical Disturbance and St	crike: (Section S	5.3.4)				
Mitigation	Vessel movement						
Measures	.		-				
Assumptions Used for	None						
Analysis							
Allalysis							

A.2.7.6 Underwater Construction Team Training

Expeditionary V	Varfare					
Underwater Co	nstruction Team Training					
Short	Navy divers conduct underw	vater repair a	nd	Typical Du	ration	
Description	construction.			Up to 12 d		
Long	Navy divers will perform cut	ting welding		-		
Description	Navy divers will perform cutting, welding, assembly, and installation of deep-water structures, mooring systems, underwater instrumentation, and other systems as needed.					
Typical	Platforms: Small boats	<u> </u>		5,500.		
Components	Targets: None					
Components	Systems being Trained/Tes	ted: None				
Standard	Vessel safety	Typical Loca	itions			
Operating	,					
Procedures		_	plexes/Testi	ng Ranges		
(Section		Gulf of Mex			Various harbors	
2.3.3)		Jacksonville				
·		Key West				
		Virginia Cap				
Stressors to	Acoustic:	-	sturbance an		Energy:	
Biological	Vessel noise		l in-water de	vices	None	
Resources		Seafloor de	vices			
	Explosives:				Entanglement:	
	None	Ingestion:			None	
		None				
Stressors to	Air Quality:		Sediments	and Wate	er Quality:	
Physical	Criteria air pollutants		None			
Resources						
	Habitats:					
	Physical disturbance and stri	ike –				
_	seafloor devices					
Stressors to	Cultural Resources:		nomic Resou	ırces:	Public Health and Safety:	
Human	None	Accessibi	•	1	Physical interactions	
Resources		Physical	disturbance a			
Military	Ingestible Material:		Military	Non	e	
Expended	None		Recoverab	le		
Material			Material			
	Non-Ingestible Material:					
	None	<u>-</u>			_ _	
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins		11 /6	5 0 A)	-	.	
Procedural	Physical Disturbance and St	rike: (Section	5.3.4)			
Mitigation						
_	Vessel movement					
Measures						
Measures Assumptions	None Vessel movement					
Measures						

A.2.8 MINE WARFARE

Mine warfare is the naval warfare area involving the detection, avoidance, and neutralization of mines to protect Navy ships and submarines and offensive mine laying in naval operations. A naval mine is a self-contained explosive device placed in water to destroy ships or submarines. Naval mines are deposited and left in place until triggered by the approach of an enemy ship or are destroyed or removed. Naval mines can be laid by purpose-built minelayers, other ships, submarines, or airplanes. Mine warfare training includes mine countermeasures exercises and mine-laying exercises.

A.2.8.1 Airborne Mine Countermeasure – Mine Detection

Mine Warfare					
Airborne Mine	Countermeasures – Mine Det	ection			
Short	Helicopter aircrews detect r	nines using towed or	Typical Dura	ation	
Description	laser mine detection system	is.	2 hours		
Long Description	Helicopter aircrews use towed and airborne devices to detect, locate, and classify potential mines. Towed devices employ active acoustic sources, such as high-frequency and side scanning sonar. These devices are similar in function to systems used to map the seafloor or locate submerged structures/items. Airborne devices utilize laser systems to locate mines located below the surface. Devices used include the AN/AQS-20/A, towed mine-hunting sonar used to detect and classify bottom and floating/moored mines in deep and shallow water, and the Airborne Laser Mine Detection System, developed to detect and classify floating and near-surface, moored mines.				
Typical Components	Platforms: Rotary-wing airco				
Chandard	Systems being Trained/Tes		ems		
Standard Operating Procedures (Section 2.3.3) Stressors to Biological Resources	Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Towed in-water device safety Acoustic: Sonar and other transducers Aircraft noise Vessel noise Explosives:	Typical Locations Range Complexes/Tes Gulf of Mexico Jacksonville Navy Cherry Point Virginia Capes Naval Surface Warfare Panama City Divisio Physical Disturbance a Aircraft and aerial targ Vessels and in-water d Seafloor devices Ingestion: None	Center, n ind Strike: ets	Inland Waters/Pierside: None Energy: In-air electromagnetic devices Lasers Entanglement: None	
Stressors to Physical Resources	None Air Quality: Criteria air pollutants Habitats: Physical disturbance and stridevices	None	ts and Water	Quality:	
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike	Socioeconomic Reso Accessibility Airborne acoustics Physical disturbance		Public Health and Safety: Physical interactions In-air energy Underwater energy	

Mine Warfare	Mine Warfare						
Airborne Mine	Airborne Mine Countermeasures – Mine Detection						
Military	Ingestible Material:	Military	Mine shapes (non-explosive)				
Expended	None	Recoverable					
Material		Material					
	Non-Ingestible Material:						
	None						
Sonar and	High-Frequency:						
Other	HF4						
Transducer							
Bins							
In-Water	None						
Explosive							
Bins							
Procedural	Acoustic Stressors: (Section 5.3.2)	Physica	l Disturbance and Strike: (Section 5.3.4)				
Mitigation	Active sonar	Towed	in-water devices				
Measures							
Assumptions	Sonar mine detection systems towed from helicopters.						
Used for	Airborne laser systems used to detect mine shapes.						
Analysis	Laser systems are similar to commercial Light Detection And Ranging (LIDAR) systems. The in-air						
	energy stressor was used in analysis of	potential impact	s on human resources.				
	Mine shapes may be deployed via ship and	d will be recovere	d.				

A.2.8.2 Airborne Mine Countermeasure – Towed Mine Neutralization

Mine Warfare							
Airborne Mine Countermea	sures – Towed Mine Neutra	lization					
Short Helicopter	aircrews tow systems throug	gh the Typ	oical Duration				
Description water that	are designed to disable or tr	igger	1.5-4 hours				
mines.		1.5-	-4 nours				
Long Helicopter	vehicle operators use towed	devices to trigger	mines that are designed to detonate when				
			or magnetic (steel construction)				
_	•	•	detach floating moored mines. Training				
may be co	nducted with non-explosive	training mine shape	es.				
Devices us	ed include the following: MK	following: MK 105 sled, which creates a magnetic field used to trigger					
			ble cutter system and the MK 104 acoustic				
		agnetic Orange Pipe	e), a magnetic pipe that is used to trigger				
	lly influenced mines.						
	: Rotary-wing aircraft						
	line shapes						
	eing Trained/Tested: Towed		on systems				
Standard Aircraft saf	,	ocations					
	vater device Range Co	mplexes/Testing R	Ranges: Inland Waters/Pierside:				
Procedures safety (Section 2.3.3)	Gulf of M	-	None				
(36011011 2.3.3)	Jacksonv	ille					
	Navy Che	erry Point					
	Virginia (Virginia Capes					
Stressors to Acoustic:	-	Disturbance and St					
Biological Aircraft noi		ind aerial targets	In-air electromagnetic				
Resources		nd in-water devices					
Explosives	: Seafloor	devices	In-water electromagnetic				
None	Ingostion		devices				
	Ingestior None	1.	Entanglement:				
	None		None				
Stressors to Air Quality	/:	Sediments and	d Water Quality:				
Physical Criteria air		None	•				
Resources							
Habitats:							
	sturbance and strike – seaflo	or					
devices							
Stressors to Cultural Re		conomic Resource	•				
	sturbance and Access		Physical interactions				
Resources strike		ne acoustics al disturbance and s	In-air energy strike Underwater energy				
Military Ingestible	•	Military	Mine shapes (non-explosive)				
Expended None	iviateliai.	Recoverable	with a shapes (Holf-explosive)				
Material		Material					
	tible Material:						
None							
Sonar and None	.		•				
Other							
Tuesday							
Transducer							

Mine Warfare	
Airborne Mine	Countermeasures – Towed Mine Neutralization
In-Water	None
Explosive	
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Towed in-water devices
Measures	
Assumptions	Mechanical sweeping (cable cutting), acoustic and magnetic influence sweeping devices are towed
Used for	from helicopters.
Analysis	Cable cutters utilize an insignificant charge (similar to a shotgun shell).
	Acoustic sweeps generate ship-type noise via a mechanical system.
	Towing systems though minefields (or without mines, to train to deploy, tow, and recover) may
	involve instrumented mines.
	Mine shapes are recovered.

A.2.8.3 Civilian Port Defense – Homeland Security Anti-Terrorism/Force Protection Exercise

Mine Warfare					
	fense – Homeland Security A	nti-Terrorism/Force Prot	ection Exercis	es	
Short	Maritime security personne	train to protect	Typical Dura	ition	
Description	civilian ports and harbors ag interfere with access to thos	· · · · · · · · · · · · · · · · · · ·	Multiple day	r'S	
Long	Naval forces provide mine w	-			
Description	sponsored exercises. The three pillars of mine warfare, airborne (helicopter), surface (surface ships), and undersea (divers, marine mammals, and unmanned vehicles) mine countermeasures will be brought to bear in order to ensure strategic U.S. ports remain free of mine threats. Various mine warfare sensors, which utilize active acoustics, will be employed in the detection, classification, and neutralization of mines. Along with traditional mine warfare techniques, such as helicopter towed mine countermeasures, new technologies (unmanned vehicles) will be utilized. Marine mammal systems may be used during this exercise.				
	Exercise locations and scena goals and evolving world evo	· · · · · · · · · · · · · · · · · · ·	o Department	of Homeland Security strategic	
Typical Components	Platforms: Moored platforms, rotary-wing aircraft, support craft, surface combatants, unmanned underwater vehicles Targets: Mine shapes Systems being Trained/Tested: Mine detection systems, towed mine neutralization systems, airborne mine neutralization systems				
Standard	Vessel safety	Typical Locations			
Operating Procedures (Section 2.3.3)	Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Towed in-water device safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside: Beaumont, Texas Boston, Massachusetts Corpus Christi, Texas Delaware Bay, Delaware Earle, New Jersey Hampton Roads, Virginia Kings Bay, Georgia Naval Station Mayport, Florida	
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:	
Biological Resources	Sonar and other transducers Aircraft noise Vessel noise	Aircraft and aerial targ Underwater explosives Vessels and in-water d Seafloor devices	5	In-water electromagnetic devices In-air electromagnetic devices	
	Explosives: Underwater explosives	Ingestion: Military expended mat munitions	erials –	Entanglement: None	
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:	
Physical Resources	Criteria air pollutants Habitats: Physical disturbance and stri expended materials Physical disturbance and stri devices	·	Explosi	ives	
	devices Underwater explosives				

Mine Warfare	Mine Warfare					
Civilian Port De	Civilian Port Defense – Homeland Security Anti-Terrorism/Force Protection Exercises					
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike Explosives	Socioeconomic Resources: Accessibility Airborne acoustics Physical disturbance and strike			Public Health and Safety: Physical interactions In-air energy Underwater energy	
Military Expended Material	Ingestible Material: Mine neutralizer fragments Non-Ingestible Material: None		Military Recoverable Material	Mine sh	napes (non-explosive)	
Sonar and Other Transducer Bins	High-Frequency: HF4	Syntheti SAS2	c Aperture Sonar	s:		
In-Water Explosive Bins	E2 E4					
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3) Active sonar Physical Disturbance and Strike Vessel movement Towed in-water devices	·	Explosiv Nav		ors: (Section 5.3.3) neutralization activities involving	
Assumptions Used for Analysis	Non-permanent mine shapes will be laid in various places on the bottom and will be retrieved. Shapes are varied, from about 1 m circular to about 2.5 m long by 1 m wide. They will be recovered using normal assets, with diver involvement. Explosives may be used if required for scheduled mine neutralization exercises. While goal is to conduct once per year, alternating east/west coast, assume that an east coast exercise will occur every other year with a total of three per five year period.					

A.2.8.4 Coordinated Unit-Level Helicopter Airborne Mine Countermeasures Exercise

Mine Warfare					
Coordinated Ur	nit-Level Helicopter Airborne	Mine Counterm	easures E	kercise	
Short	A detachment of helicopters	s aircrews train	as a	Typical Du	ıration
Description	unit in the use of airborne m	nine counterme	asures,		
	such as towed mine detection	on and neutraliz	ation	Multiple d	lays
	systems.				
Long					e mine countermeasures. Systems
Description		nine detection systems, mechanical (cable cutting) mine sweeps, magnetic and other airborne systems and sensors.			
			-		
					e shapes will be supplemented with aining mine shapes could be
	bottom placed, moored, or		aceu mme	snapes. n	allillig Illille Shapes could be
Typical	Platforms: Rotary-wing airc				
Components	Targets: Mine shapes	iaic			
	_	ted: Mine detec	tion syste	ns, towed	mine neutralization systems
Standard	Aircraft safety	Typical Location	ons		
Operating	Towed in-water device	Range Comple	eves/Testi	ng Ranges	: Inland Waters/Pierside:
Procedures	safety	Gulf of Mexic		iig italiges	None
(Section 2.3.3)		Jacksonville			
		Navy Cherry F	Point		
		Virginia Capes			
Stressors to	Acoustic:	Physical Distu			Energy:
Biological	Sonar and other	Aircraft and a			In-air electromagnetic
Resources	transducers Aircraft noise	Vessels and ir Seafloor device		vices	devices In-water electromagnetic
	All craft floise	Scanoor acvic	ccs		devices
	Explosives:	Ingestion:			
	None	Military expe	nded mate	rials –	Entanglement:
		munitions			Wires and cables
Stressors to	Air Quality:			s and Wate	er Quality:
Physical	Criteria air pollutants		Metals		
Resources	Habitats:				
	Physical disturbance and stri	ike – militarv			
	expended materials	•			
	Physical disturbance and stri	ike – seafloor			
	devices				
Stressors to	Cultural Resources:	Socioecono		urces:	Public Health and Safety:
Human Resources	Physical disturbance and strike	Accessibility Physical interactions			
Resources	Strike	Airborne acoustics In-air energy Physical disturbance and strike Underwater energy			Underwater energy
Military	Ingestible Material:	- · ·	Military		e shapes (non-explosive)
Expended	Medium-caliber projectiles,		Recoverab		, , ,
Material	caliber casings		Material		
	Non-Ingestible Material:	nos (nos			
	Fiber optic cables, mine shapex explosive)	pes (non-			
	explosive)				

Mine Warfare			
Coordinated Ur	Coordinated Unit-Level Helicopter Airborne Mine Countermeasures Exercise		
Sonar and	High-Frequency:		
Other	HF4		
Transducer			
Bins			
In-Water	None		
Explosive			
Bins			
Procedural	Acoustic Stressors: (Section 5.3.2)		
Mitigation	Active sonar		
Measures			
	Physical Disturbance and Strike: (Section 5.3.4)		
	Vessel movement		
	Towed in-water devices		
Assumptions	Multiple helicopters conduct airborne mine countermeasure training using an assortment of mine		
Used for	warfare gear similar to unit-level events, except that a squadron trains together.		
Analysis	Assume up to 24 temporary mine shapes will be deployed to support each of these exercises.		

A.2.8.5 Mine Countermeasures – Ship Sonar

Mine Warfare							
Mine Counterm	neasure Exercise – Ship Sonar						
Short	Ship crews detect and avoid	mines while		Турі	cal Dura	tion	
Description	navigating restricted areas o	or channels usi	ng active	ive			
	sonar.			1.5-4 hours			
Long	Surface ship crews detect ar	nd avoid mines or other underwater hazardous objects while navigating				hile navigating	
Description		s using active sonar. A Littoral Combat Ship utilizes unmanned surface					
	vehicles and remotely opera				-		•
	operate from a shallow zone	_	40 ft. to de	ep wa	iter. Exe	rcises could be er	mbedded
	within major training exercis						
Typical	Platforms: Surface combata	nts, unmanne	d surface v	ehicle	S		
Components	Targets: Mine shapes						
	Systems being Trained/Test						
Standard	Vessel safety	Typical Loca	tions				
Operating	Unmanned aerial, surface,	Range Comp	olexes/Test	ing Ra	anges:	Inland Waters/	Pierside:
Procedures	and subsurface vehicle	Gulf of Mexi	-	Ū	Ū	None	
(Section 2.3.3)	safety Towed in-water device	Jacksonville					
	safety	Virginia Cap	es				
Stressors to	Acoustic:	Physical Dis	turbance a	nd Str	ike:	Energy:	
Biological	Sonar and other	Vessels and				In-air electro	omagnetic
Resources	transducers	Seafloor dev				devices	
	Vessel noise					In-water ele	ctromagnetic
		Ingestion:				devices	
	Explosives:	None					
	None					Entangleme	nt:
						None	
Stressors to	Air Quality:		Sedimen	ts and	Water (Quality:	
Physical	Criteria air pollutants		None				
Resources							
	Habitats:						
	Physical disturbance and stri devices	ike – seatioor					
Stressors to	Cultural Resources:	Sociooso	nomic Reso	urcoc		Public Health a	nd Cafatur
Human	Physical disturbance and	Accessibil		uices	•	Physical interac	-
Resources	strike		listurbance	and st	trike	In-air energy	
nesources	Strike	Titysical a	iistai bailee	una s	crike	Underwater en	ergv
Military	Ingestible Material:	-	Military		Mine s	hapes (non-explo	
Expended	None		Recoveral	ble			,
Material			Material				
	Non-Ingestible Material:						
	None						
Sonar and	High-Frequency:				-	<u>. </u>	
Other	HF4						
Transducer							
Bins							
In-Water	None						
Explosive							
Bins							

Mine Warfare	Mine Warfare					
Mine Counterm	Mine Countermeasure Exercise – Ship Sonar					
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)				
Mitigation	Active sonar	Vessel movement				
Measures		Towed in-water devices				
Assumptions	No explosives are used.					
Used for	It is assumed that the system will be operate	d in areas free of obstructions and will be towed well				
Analysis	above the seafloor. Towed system are all	ways operated in a manner to avoid entanglement and				
	damage. Exercises take place in water depths of 40 ft. and greater.					
	Existing placed mine shapes to be used. Ther	e is the potential for temporary placement of mine				
	shapes.					

A.2.8.6 Mine Countermeasures – Mine Neutralization – Remotely Operated Vehicle

Mine Warfare						
Mine Counterm	neasures – Mine Neutralizatio	n – Remotely Op	erated Vehic	les		
Short	Ship, small boat, and helicop		and Typ	ical Duration		
Description	disable mines using remotel	y operated	1 5-	4 hours		
	underwater vehicles.					
Long		Ship, small boat, and helicopter crews utilize remotely operated vehicles to neutralize potential				
Description			-	cal systems to locate and target mine		
Typical	shapes. Explosive mine neut Platforms: Rotary-wing airca					
Components	Targets: Mine shapes	iait, Siliali Duats, S	Surface Comb	datants		
Components		ted: Airborne min	ne neutralizati	ion systems, underwater explosives		
Standard	Vessel safety	Typical Location				
Operating	Aircraft safety					
Procedures	Towed in-water device	Range Complex Gulf of Mexico	kes/Testing R	_		
(Section 2.3.3)	safety	Jacksonville		None		
		Navy Cherry Po	oint			
		Virginia Capes				
Stressors to	Acoustic:	Physical Distur	bance and St	rike: Energy:		
Biological	Aircraft noise	Aircraft and aeı	rial targets	In-air electromagnetic		
Resources	Vessel noise	Underwater explosives devices				
		Vessels and in-				
	Explosives:	Military expend		<u> </u>		
	Underwater explosives	Seafloor device	es .	Wires and cables		
		Ingestion:				
		Military expend	ded materials	; -		
		munitions				
Stressors to	Air Quality:	S	ediments and	d Water Quality:		
Physical	Criteria air pollutants	E:	xplosives	Metals		
Resources						
	Habitats: Physical disturbance and stri	iko military				
	expended material	ike – military				
	Physical disturbance and stri	ike – seafloor				
	devices					
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeconon	nic Resources	s: Public Health and Safety:		
Human		Accessibility Physical interactions				
Resources	Physical disturbance and	Airborne acoustics In-air energy Physical disturbance and strike Underwater energy				
	strike Explosives					
Military	Ingestible Material:	M	lilitary	Mine shapes (non-explosive)		
Expended	Mine neutralizer fragments		ecoverable	white shapes (hon-explosive)		
Material			laterial			
	Non-Ingestible Material:					
	Fiber optic cables					

Mine Warfare		
Mine Counterm	neasures – Mine Neutralization – Remotely Operat	ed Vehicles
Sonar and	High-Frequency:	
Other	HF4	
Transducer		
Bins		
In-Water	E4	
Explosive		
Bins		
Procedural	Acoustic Stressors: (Section 5.3.2)	Explosive Stressors: (Section 5.3.3)
Mitigation	Active sonar	Explosive mine countermeasure and
Measures		neutralization activities
	Physical Disturbance and Strike: (Section 5.3.4)	
	Vessel movement	
	Towed in-water devices	
Assumptions	None	
Used for		
Analysis		

A.2.8.7 Mine Laying

Mine Warfare					
Mine Laying					
Short	Fixed-winged aircraft drop n	on-explosive mi	ne	Typical Dura	ation
Description	shapes.	ion explosive iiii	''C	1 hour	
	·	Fixed-winged aircraft lay offensive or defensive mines for a tactical advantage for friendly forces			Ladvantage for friendly forces
Long Description					ctical situations. The aircrew
Description			-	-	p one or more training shapes
					d are recovered when possible.
Tunical			are non-	explosive and	a are recovered when possible.
Typical	Platforms: Fixed-wing aircra	IIL			
Components	Targets: None	tad. Nana			
<u> </u>	Systems being Trained/Test				
Standard	Aircraft safety	Typical Locatio	ons		
Operating		Range Comple	xes/Testi	ng Ranges:	Inland Waters/Pierside:
Procedures		Jacksonville		0 - 0	None
(Section 2.3.3)		Navy Cherry Po	oint		
		Virginia Capes			
Stressors to	Acoustic:	Physical Distu		nd Strike:	Energy:
Biological	Aircraft noise	Aircraft and a			In-air electromagnetic
Resources	7 in crare moise		_		devices
Resources	Explosives:	Military expended materials devices Seafloor devices			
	None	Entanglement:			
	None	Ingestion:			None
		None			None
Stressors to	Air Quality:		Sadimant	s and Water	Quality:
Physical	Criteria air pollutants		Metals	s and water	Quanty.
Resources	Criteria ali poliutarits	'	ivictais		
Resources	Habitats:				
	Physical disturbance and stri	ika – saafloor			
	devices	ike seamoor			
Stressors to	Cultural Resources:	Socioecono	mic Reso	ilices.	Public Health and Safety:
Human	Physical disturbance and	Accessibility			Physical interactions
Resources	strike	Airborne ac			In-air energy
1100001000	Strike	Physical dist		and strike	a ee.gy
Military	Ingestible Material:	· ·	/lilitary		shapes (non-explosive)
Expended	None	_	Recoverab		shapes (non explosive)
Material	None		/laterial	,,,,,	
Widteria	Non-Ingestible Material:		, accilai		
	Mine shapes (non-explosive)) I			
Sonar and	None	/			
Other	None				
Transducer					
Bins					
In-Water	None			-	· · · · · · · · · · · · · · · · · · ·
	None				
Explosive Bins					
	Dhusiaal Disturbs 10:		2.41		
Procedural	Physical Disturbance and St		5.4)		
Mitigation	Non-explosive bombs and m	ine shapes			
Measures					

Mine Warfare	
Mine Laying	
Assumptions	Mine laying is similar to non-explosive bombing exercises.
Used for	These exercises primarily occur during major training exercises.
Analysis	While some mine shapes will be recovered if possible, assume they will not for the analysis.
	Mine laying will typically take place in waters less than 100 ft. in depth.
	Assume 12 mine shapes are used per exercise.

A.2.8.8 Mine Neutralization – Explosive Ordnance Disposal

Mine Warfare						
Mine Neutraliza	ation Explosive Ordnance Disp	oosal				
Short	Personnel disable threat mir	nes using expl	osive	Typic	cal Duration	
Description	charges.			Up to 4 hours		
Long	Navy divers, typically explos	ive ordnance	disposal per	rsonne	el, disable threat mines with explosive	
Description	charges to create a safe channel for friendly vessels to transit.					
	Personnel detect, identify, e	valuate, and r	neutralize m	nines ir	n the water with an explosive device and	
					om 4 to 60 pounds of TNT equivalent.	
	These operations are norma		•	_	·	
	Time-delay fuses may be use	ed for these ex	xercises.			
Typical	Platforms: Small boats					
Components	Targets: Mine shapes					
	Systems being Trained/Test	ted: Underwa	ter explosiv	es		
Standard	Vessel safety	Typical Loca	tions			
Operating		Range Com	plexes/Test	ing Ra	nges: Inland Waters/Pierside:	
Procedures		Gulf of Mex			Lower Chesapeake Bay	
(Section 2.3.3)		Jacksonville				
		Key West				
		Navy Cherry Point				
		Virginia Capes				
Stressors to	Acoustic:	Physical Dis		nd Stri	~ ·	
Biological	Vessel noise	Underwater	•		None	
Resources	Funlaciuses	Vessels and			Fatanalamanti	
	Explosives: Underwater explosives	Military exp Seafloor de		eriais	Entanglement: None	
	Onderwater explosives	Scarioor ac	VICCS		None	
		Ingestion:				
		Military exp	ended mat	erials –	_	
		munition	ıs			
Stressors to	Air Quality:				Water Quality:	
Physical	Criteria air pollutants		Explosive	S	Metals	
Resources	11-1-2					
	Habitats: Physical disturbance and stri	ke – military				
	expended material	Ke – Illilital y				
	Physical disturbance and stri	ke – seafloor				
	devices					
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeco	nomic Reso	urces:	Public Health and Safety:	
Human		Accessibi	-		Physical interactions	
Resources	Physical disturbance and	Airborne acoustics Underwater energy				
	strike	Physical c	disturbance	and st	rike	
B.O.L.L.	Explosives		NA:1:4		Mina ahanaa (nan ayustasiya)	
Military Expended	Ingestible Material: Mine shape (explosive) fragi	ments	Military Recoveral	ale	Mine shapes (non-explosive)	
Material	winie snape (explosive) nagi	nents	Material	JIE		
	Non-Ingestible Material:					
	None					

Mine Warfare			
Mine Neutraliza	ation Explosive Ordnance Disposal		
Sonar and	None		
Other			
Transducer			
Bins			
In-Water	E4 E5	E6	E7
Explosive			
Bins			
Procedural	Acoustic Stressors: (Section 5.3.2))	Explosive Stressors: (Section 5.3.3)
Mitigation	Aircraft overflight noise		Explosive mine neutralization activities involving
Measures			Navy divers
	Physical Disturbance and Strike:	(Section 5.3.4)	
	Vessel movement		
Assumptions	Time-delayed fuses may be used	(up to 10 minu	tes) for charges up to 29 lb. net explosive weight in
Used for	some locations. Charge placed	d anywhere in v	vater column, including bottom.
Analysis	Mine shapes will be recovered.		

A.2.8.9 Underwater Mine Countermeasure Raise, Tow, Beach and Exploitation Operations

Mine Warfare				
	ne Countermeasure Raise, To	w Reach and Evaloitation	on Operations	
		•	•	
Short	Personnel locate mines, per		Typical Dura	ation
Description	neutralization, raise and tow mines to the beach, and conduct exploitation operations for Up to			
		Up to 4 hour	rs	
	intelligence gathering.			
Long	Navy divers, typically explos			
Description				iques. Mines are then neutralized,
				ce disposal personnel ensure the
				ring to the beach. A lift balloon is
	attached to the line and slow			
		ifying the mine and now	it works, and i	then disassembling it or disposing
	of it.			
Typical	Platforms: Small boats			
Components	Targets: Mine shapes			
	Systems being Trained/Tes			
Standard	Vessel safety	Typical Locations		
Operating		Range Complexes/Test	ting Ranges:	Inland Waters/Pierside:
Procedures		Gulf of Mexico	0 1 0 1	James River and tributaries
(Section 2.3.3)		Jacksonville		Lower Chesapeake Bay
		Key West		Mobjack Bay
		Navy Cherry Point		Dam Neck Annex
		Virginia Capes		Camp Pendleton
				Joint Expeditionary Base Little
				Creek Harbor
				Joint Expeditionary Base Fort
				Story
				Naval Station Norfolk pier
				Cheatham Annex pier
				York River
				Naval Submarine Base Kings
				Bay (St. Mary's River)
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:
Biological	Vessel noise	Vessels and in-water d	evices	None
Resources		Seafloor devices		
	Explosives:			Entanglement:
	None	Ingestion:		None
		None		
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:
Physical	Criteria air pollutants	None		
Resources				
	Habitats:			
	Physical disturbance and str	ike – seafloor		
	devices			
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:
Human	Physical disturbance and	Accessibility		Physical interactions
Resources	strike	Airborne acoustics		
		Physical disturbance	and strike	

Mine Warfare	Mine Warfare					
Underwater Mi	Underwater Mine Countermeasure Raise, Tow, Beach and Exploitation Operations					
Military	Ingestible Material:	Military	Mine shapes (non-explosive)			
Expended	None	Recoverable				
Material		Material				
	Non-Ingestible Material:					
	None					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	Physical Disturbance and Strike: (Section 5.3.4)					
Mitigation	Vessel movement					
Measures						
Assumptions	Exercises primarily conducted in W-50 in \	/irginia Capes Rar	nge Complex and beaches at Dam Neck			
Used for	Annex.					
Analysis	Mine shapes are recovered as part of the	exercise.				

A.2.9 SURFACE WARFARE TRAINING

Surface warfare is a type of naval warfare in which aircraft, surface ships, and submarines employ weapons and sensors in operations directed against enemy surface ships or small boats. Aircraft-to-surface warfare is conducted by long-range attacks using air-launched cruise missiles, precision-guided munitions, or aircraft cannon. Surface warfare also is conducted by warships employing torpedoes, naval guns, and surface-to-surface missiles. Submarines attack surface ships using torpedoes or submarine-launched, anti-ship cruise missiles. Training in surface warfare includes surface-to-surface gunnery and missile exercises, air-to-surface gunnery and missile exercises, and submarine missile or torpedo launch events. Gunnery and missile training generally involves expenditure of ordnance against a towed target. A sinking exercise is a specialized training exercise that provides an opportunity for ship, submarine, and aircraft crews to use multiple weapons systems to deliver high-explosive ordnance on a deactivated vessel, which is deliberately sunk.

Surface warfare also encompasses maritime security, that is, the interception of a suspect surface ship by a Navy ship for the purpose of boarding-party inspection or the seizure of the suspect ship. Training in these tasks is conducted in visit, board, search and seizure exercises.

A.2.9.1 Bombing Exercise Air-to-Surface

Surface Warfar	Surface Warfare						
Bombing Exerci	Bombing Exercise Air-to-Surface						
Short Description	Fixed-wing aircrews deliver targets.	bombs against surface	Typical Duration 1 hour				
Long Description	Fixed-wing aircraft conduct bombing exercises against stationary floating targets (e.g., MK-58 smoke buoy), towed targets, or maneuvering targets. An aircraft clears the area, deploys a smoke buoy, and then delivers high-explosive or non-explosive practice bombs on the target. A range boat may be used to deploy towed or maneuvering targets for an aircraft to attack. Exercises for strike fighters typically involve a flight of two aircraft delivering unguided or guided munitions that may be either high-explosive or non-explosive. The following munitions may be employed by strike fighter aircraft in the course of bombing exercise: Unguided munitions including non-explosive subscale bombs (MK-76 and BDU-45), explosive and non-explosive general purpose bombs (MK-80 series), and MK-20 cluster bombs (explosive, non-explosive). Precision-guided munitions include laser-guided bombs (explosive, non-explosive), laser-guided training rounds (non-explosive), Joint Direct Attack Munitions (explosive, non-explosive).						
Typical Components	Platforms: Fixed-wing aircraft, support craft Targets: Surface targets Systems being Trained/Tested: Bombs, non-explosive practice munitions, aircraft platforms						
Standard Operating Procedures (Section 2.3.3)	Vessel safety Aircraft safety Weapons firing safety Weapons firing safety Weapons firing safety Weapons firing safety Weapons firing safety Weapons firing safety Weapons firing safety Weapons firing safety Aircraft safety Weapons firing safety						

Surface Warfar	e			
Bombing Exerc	ise Air-to-Surface			
Stressors to Biological Resources	Acoustic: Aircraft noise Vessel noise	-	turbance and Str aerial targets	ike: Energy: In-air electromagnetic devices
nesources		Vessels and	in-water devices ended materials	
	Explosives:			Decelerators/parachutes
	Underwater explosives	Ingestion:		
		Military exp munition	ended materials	_
		Military exp	ended materials	– other
		than mu	-	
Stressors to	Air Quality:			Water Quality:
Physical	Criteria air pollutants		Explosives	Metals
Resources	Habitata.			
	Habitats: Physical disturbance and strike	a – military		
	expended material	e — Illilital y		
	Underwater explosives			
Stressors to	None			
Human				
Resources				
Military	Ingestible Material:		Military	Recoverable surface targets
Expended	Decelerators/parachutes, targ		Recoverable	
Material	fragments, bomb (explosive fragments	?)	Material	
	iraginents			
	Non-Ingestible Material:			
	Marine markers, bombs (non-	explosive)		
Sonar and	None			
Other				
Transducer				
Bins				
In-Water	E9 E10	E1	2	
Explosive Bins				
Procedural	Physical Disturbance and Stril	ke: (Section .	5.3.4) Explosi	ve Stressors: (Section 5.3.3)
Mitigation	Vessel movement			ve bombs
Measures	Non-explosive bombs and min	ne shapes	•	
Assumptions	Approximately 90 percent of r	non-explosiv	e bombs are the	sub-scale bombs such as the MK-76 and
Used for	BDU-48.			
Analysis		were not an	alyzed for this ac	tivity since it occurs greater than 12 NM
	from shore.			

A.2.9.2 Fast Attack Craft and Fast Inshore Attack Craft

Surface Warfar	·e				
	ft and Fast Inshore Attack Cra	ıft			
Short	Navy ships and helicopters of	defend agains	st small	Typical Dura	ation
Description	boat attacks.	· · · · · ·			
Long	Navy ships and helicopters of	detect, coord	inate, and d		t multiple high speed small boats
Description				_	eve proper targeting of attack craft.
	–	•			n the open ocean are called Fast
	Attack Craft, while those in		-		
Typical	Platforms: Amphibious war				
Components	Targets: None	-			_
	Systems being Trained/Tes	ted: None			
Standard	Vessel safety	Typical Loca	ations		
Operating	Aircraft safety	Danga Cam	mloves/Test	ing Donges	Inland Motors/Dispoids
Procedures	Weapons firing safety	Jacksonville	-	ing Ranges:	Inland Waters/Pierside:
(Section					Naval Station Mayport basin and
2.3.3)		Virginia Ca _l	pes		piers
Stressors to	Acoustic:	<u>-</u>	sturbance a		Energy:
Biological	Aircraft noise		d in-water d		In-air electromagnetic
Resources	Vessel noise	Aircraft and	d aerial targ	ets	devices
	Weapons noise				_
		Ingestion:			Entanglement:
	Explosives:		pended mat	erials –	Decelerators/parachutes
	None	munitions			
Stressors to	Air Quality:			ts and Water	Quality:
Physical Resources	Criteria air pollutants		Metals		
Resources	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material	ike illilitary			
Stressors to	Cultural Resources:	Socioeco	nomic Resc	urces:	Public Health and Safety:
Human	Physical disturbance and	Accessib		arces.	Physical interactions
Resources	strike		acoustics		In-air energy
		Physical	disturbance	and strike	<i>51</i>
Military	Ingestible Material:	· · · · · · · · · · · · · · · · · · ·	Military	None	
Expended	Small-caliber projectiles (cas	sings only)	Recoveral	ble	
Material	Non-Ingestible Material:		Material		
	None				
Sonar and	None	<u>-</u>			-
Other	There				
Transducer					
Bins					
In-Water	None				
Explosive					
Bins					
Procedural	Physical Disturbance and St	rika. (Castian	5211		
Mitigation	Physical Disturbance and St Vessel movement	rike: (Section	5.5.4)		
Measures	Small-, medium-, and large-o	aliher non			
	explosive practice muniti				
	explosive practice munit	0113			

Surface Warfar	Surface Warfare				
Fast Attack Cra	ft and Fast Inshore Attack Craft				
Assumptions	None				
Used for					
Analysis					

A.2.9.3 Gunnery Exercise Air-to-Surface Medium-Caliber

Surface Warfare	2					
Gunnery Exercis	Gunnery Exercise Air-to-Surface Medium-Caliber					
Short	Fixed-wing and helicopter aircrews fire medium-		Typical Duration			
Description	caliber guns at surface targe	ts.	1 hour			
Long Description	Fighter and helicopter aircrews engage surface targets with medium-caliber guns. Targets simulate enemy ships, boats, swimmers, and floating/near- surface mines. Fighter aircraft descend on a target firing high-explosive or non-explosive practice munitions medium-caliber projectiles. Helicopters will fly a racetrack pattern around an at-sea target. Aircrew will engage the target with medium-caliber weapons. Targets range from a smoke float, or an empty steel drum, to high speed					
	remote controlled boats and	•	,	, , ,		
Typical Components	Platforms: Fixed-wing aircra Targets: Surface targets (e.g controlled boats and jet-skis Systems being Trained/Test	a., MK 58 marine markers		drums, high speed remote		
Standard	Vessel safety	Typical Locations				
Operating Procedures (Section 2.3.3)	Aircraft safety Weapons firing safety	Range Complexes/Tes Gulf of Mexico Jacksonville Navy Cherry Point Virginia Capes	ting Ranges:	Inland Waters/Pierside: None		
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic		
Resources	Vessel noise	Vessels and in-water d Military expended mat		energy		
	Explosives:	De minimis explosives		Entanglement:		
	De minimis explosives	Ingestion: Military expended mat munitions Military expended mat than munitions		Decelerators/parachutes		
Stressors to	Air Quality:	Sedimen	t and Water Q	Quality:		
Physical Resources	Criteria air pollutants	Metals				
	Habitats: Physical disturbance and stri expended material	ke – military				
Stressors to Human Resources	None					

Surface Warfar	Surface Warfare					
Gunnery Exerci	ery Exercise Air-to-Surface Medium-Caliber					
Military Expended Material	Ingestible Material: Decelerators/parachutes, medium- caliber projectiles (non-explosive), medium-caliber casings, target fragments Non-Ingestible Material: Marine markers	Military Recoverable Material	Recoverable surface targets			
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	None					
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Small-, medium-, and large-caliber non-explosive practice munitions Explosive Stressors: (Section 5.3.3) Explosive medium-caliber and large-caliber projectiles					
Assumptions Used for Analysis	Most medium-caliber air-to-surface gunne High-explosive rounds will supplement Fixed-wing projectile casings remain wexpended into the water. Two fixed-wing aircraft (400 rounds each) One target used per exercise; expendable or remote-controlled targets (5 percent De minimis explosives used during this act included under munitions. Stressors to human resources were not an from shore.	when non-explo ith aircraft and ro or one helicopter smoke floats (50 it). ivity are not quar	sive training projectiles are not available. ptary-wing projectile casings are (400 rounds) per activity. percent), stationary targets (45 percent), ntitatively analyzed and, therefore, not			

A.2.9.4 Gunnery Exercise Air-to-Surface Small-Caliber

Surface Warfard	e					
Gunnery Exercis	se Air-to-Surface Small-Calibe	er				
Short	Helicopter and tiltrotor airci	rews, use small	l-caliber Typ	pical Duration		
Description	guns to engage surface targ			nour		
Long	Helicopters and tiltrotor aird	craft, fly a race	track pattern a	round an at-sea target. Targets simulate		
Description	•	pating/near-surface mines. Each gunner will engage the target with si ange from a smoke float, an empty steel drum, to high speed remote				
	caliber weapons. Targets rai					
	controlled boats and jet-skis	5.				
Typical	Platforms: Rotary-wing airc	raft, tiltrotor ai	ircraft			
Components	Targets: Surface targets (e.g	g., MK 58 marin	ne markers, em	pty steel drums, high speed remote		
	controlled boats and jet-skis					
	Systems being Trained/Tes	ted: None				
Standard	Vessel safety	Typical Locat	ions			
Operating	Aircraft safety	Range Comp	lexes/Testing I	Ranges: Inland Waters/Pierside:		
Procedures	Weapons firing safety	Jacksonville	nexes, resting i	None		
(Section 2.3.3)		Navy Cherry	Point	None		
		Virginia Cape				
Stressors to	Acoustic:	•	turbance and S	Strike: Energy:		
Biological	Aircraft noise	-	aerial targets	In-air electromagnetic		
Resources	Vessel noise		in-water device			
		Military expe	ended material	ls		
	Explosives:	, .		Entanglement:		
	None	Ingestion:		Decelerators/parachutes		
		Military expe	ended material	ls –		
		munitions Military expended materials – other				
		than mur	nitions			
Stressors to	Air Quality:		Sediments an	nd Water Quality:		
Physical	Criteria air pollutants		Metals			
Resources						
	Habitats:					
	Physical disturbance and stri	ike – military				
	expended material					
Stressors to	Cultural Resources:		nomic Resource			
Human	Physical disturbance and	Accessibili	-	Physical interactions		
Resources	strike	Airborne a		In-air energy		
B 4:124	to an arthur Baranical.	Priysical d	isturbance and			
Military	Ingestible Material:	nall calibor	Military Recoverable	Recoverable surface targets		
Expended Material	Decelerators/parachutes, sn projectiles (non-explosive		Material			
Material	caliber casings, target frag		iviateriai			
	camber casings, target mag	ginents				
	Non-Ingestible Material:	l				
	Marine markers	l				
Sonar and	None					
Other	-					
Other						
Transducer						

Surface Warfar	e
Gunnery Exerci	se Air-to-Surface Small-Caliber
Explosive Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	Small-, medium-, and large-caliber non-explosive
	practice munitions
Assumptions	Most exercises will occur proximate to naval stations where MH-60 helicopters are home based and
Used for	target services are available.
Analysis	

A.2.9.5 Gunnery Exercise Surface-to-Surface Boat Medium-Caliber

Surface Warfard	e				
Gunnery Exercis	se Surface-to-Surface Boat M	edium-Caliber			
Short	Small boat crews fire mediu	m-caliber guns at Ty	oical Duration		
Description	surface targets.		our		
Long Description	Small boat crews fire medium-caliber guns at surface targets. Boat crews may use high or low speeds to approach and engage targets simulating other boats, floating mines, or nearshore land targets with medium-caliber (up to and including 40 mm) weapons. A commonly used target is an empty steel drum.				
	mission. Boats are most use carriers, nuclear submarines well as to conduct riverine oby these units include small patrol craft, and many other	of boats are used depending d to protect ships in harbors as, liquid natural gas tankers, experations and various naval sunit river craft, combat rubber versions of these types of booth eith either propeller or water jets.	and high value units, suctor, while entering and I pecial warfare operation or raiding craft, rigid-hulats. These boats use inl	ch as: aircraft eaving ports, as ns. The boats used I inflatable boats,	
Typical	Platforms: Small boats	<u> </u>			
Components	Targets: Surface targets (e.g	., empty steel drums)			
		ted: Medium-caliber gun syst	ems		
Standard	Vessel safety	Typical Locations			
Operating	Weapons firing safety	Range Complexes/Testing	Pangas: Inland Wate	ers/Pierside:	
Procedures		Gulf of Mexico	None	ers/ Pierside.	
(Section 2.3.3)		Jacksonville	None		
		Navy Cherry Point			
		Northeast			
		Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance and S	trike: Energy:		
Biological	Vessel noise	Underwater explosives	None		
Resources	Weapons noise	Vessels and in-water device	S		
		Military expended material	Entangle	ment:	
	Explosives:		None		
	Underwater explosives	Ingestion:			
		Military expended material	– other		
		than munitions	<u>.</u>		
Stressors to	Air Quality:	Sediments ar	d Water Quality:		
Physical	Criteria air pollutants	Explosives	Metals		
Resources					
	Habitats:	L			
	Physical disturbance and stri	ke – military			
	expended materials				
Chungag to	Underwater explosives	Socioeconomic Resource	D.:h!:a.111	h and Cafet	
Stressors to	Cultural Resources:			h and Safety:	
Human Resources	Physical disturbance and strike	Accessibility Airborne acoustics	Physical inte Underwater		
Resources	Explosives	Physical disturbance and		energy	
	LAPIUSIVES	i flysical disturbance and	JUINE		

Surface Warfar	Surface Warfare				
Gunnery Exerci	se Surface-to-Surface Boat Medium-Calibe	r			
Military Expended Material	Ingestible Material: Medium-caliber projectile (explosive) fragments, medium-caliber casings, target fragments Non-Ingestible Material:	Military Recoverable Material	None		
	Expendable targets				
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	E1				
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section Vessel movement Small-, medium-, and large-caliber non-expractice munitions	Explosi	ive Stressors: (Section 5.3.3) ve medium-caliber and large-caliber jectiles		
Assumptions Used for Analysis	Approximately 500 rounds expended per One target used per exercise, typically a s		uch as a 50-liter steel drum.		

A.2.9.6 Gunnery Exercise Surface-to-Surface Boat Small-Caliber

Surface Warfard	e					
	se Surface-to-Surface Boat Sn	nall-Caliber				
Short	Small boat crews fire small-	caliber guns a	t surface	Typi	cal Dura	tion
Description	targets.	same a		1 ho		
Long		caliber guns a	caliber guns at surface targets. Boat crev			ws may use high or low speeds to
Description	approach and engage target	ts simulating o	ther boats,	swim	mers, flo	ating mines, or nearshore land s. A commonly used target is an
	empty steel drum. A number of different types of boats are used depending on the unit using the boat and their					
				_		
	mission. Boats are most use					
		-	_			entering and leaving ports, as rfare operations. The boats used
		•		-		craft, rigid-hull inflatable boats,
	•				_	boats use inboard or outboard,
	diesel or gasoline engines w					
Typical	Platforms: Small boats	•				
Components	Targets: Surface targets (e.g	g., empty stee	l drums)			
	Systems being Trained/Tes	ted: None				
Standard	Vessel safety	Typical Loca	tions			
Operating	Weapons firing safety	Range Com	plexes/Test	ing Ra	nges:	Inland Waters/Pierside:
Procedures		Gulf of Mex	-	6		None
(Section 2.3.3)		Jacksonville				
		Navy Cherry	y Point			
		Northeast				
		Virginia Cap	es			
Stressors to	Acoustic:	Physical Dis			ike:	Energy:
Biological	Vessel noise	Vessels and				None
Resources	Weapons noise	Military exp	ended mat	erials		Futou along out.
	Explosives:	Ingestion:				Entanglement: None
	None	Military exp	nended mat	erials :	_	None
	110110	munition		Ci iuis		
Stressors to	Air Quality:		Sedimen	ts and	Water (Quality:
Physical	Criteria air pollutants		Metals	a u		
Resources						
	Habitats:					
	Physical disturbance and stri	ike – military				
	expended material					
Stressors to	Cultural Resources:		nomic Reso	urces	•	Public Health and Safety:
Human	Physical disturbance and	Accessibi	•			Physical interactions
Resources	strike		acoustics disturbance	and c	triko	
Military	Ingestible Material:	riiysical (Military	anu s	None	
Expended	Small-caliber (non-explosive	·)	Recovera	ble	NONE	
Material	projectiles, small-caliber of	•	Material			
	, , , , , , , , , , , , , , , , , , , ,	J				
	Non-Ingestible Material:					
	Expendable targets					

Surface Warfar	e
Gunnery Exerci	se Surface-to-Surface Boat Small-Caliber
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	Small-, medium-, and large-caliber non-explosive
	practice munitions
Assumptions	The majority of exercises will occur proximate to naval stations.
Used for	Exercises will occur relatively nearshore due to short range of boats and safety concerns. Exercises
Analysis	mostly occur within 3 NM of the shoreline, but can occur further from shore.

A.2.9.7 Gunnery Exercise Surface-to-Surface Ship Large-Caliber

Surface Warfare						
Gunnery Exercise Su	rface-to-Surface Ship – La	arge-Caliber				
Short Sur	face ship crews fire large-	-caliber guns at	Typical Dura	tion		
Description surf	face targets.	_	Up to 3 hours			
Long This	s exercise involves ships'	gun crews engaging surfa	ace targets at s	sea with their main battery large-		
				35 seaborne powered target, high		
			_	te controlled watercraft. Some		
targ	targets are expended during the exercise and are not recovered.					
trac	cked by radar and when v	vithin a predetermined ra	ange, it is enga	t 10-NM distance. The target is aged first with large-caliber		
"Wa	arning shots." As threats ϱ	get closer all weapons ma	ay be used to	disable the threat.		
	s exercise may involve a s ercise involving multiple sl			ne context of a coordinated larger e.		
	ge-caliber guns will also b apon maintenance.	e fired during weapon ce	ertification eve	ents and in conjunction with		
rou	During all exercises, either high-explosive or non-explosive rounds may be used. High-explosive rounds can either be fused for detonation on impact (with water surface or targets), or for proximity to the target (in air detonation).					
Typical Plat	tforms: Surface combata	nts				
				igh speed maneuverable surface		
	gets, or specially configur					
	stems being Trained/Test		tems			
	sel safety apons firing safety	Typical Locations				
Procedures	apons ming sarety	Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:		
(Section 2.3.3)		Gulf of Mexico		None		
		Jacksonville Navy Cherry Point				
		Virginia Capes				
		Other AFTT Areas				
Stressors to Aco	oustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological Vess	ssel noise	Underwater explosives		In-air electromagnetic		
Resources Wea	apons noise	Vessels and in-water de		devices		
_		Military expended mat	erials			
	losives:	Ingostion		Entanglement:		
Und	derwater explosives	Ingestion: Military expended mate	erials –	None		
		munitions	Citais			
		Military expended mat	erials – other			
		than munitions				
	Air Quality: Sediments and Water Quality:					
	=	Criteria air pollutants Explosives Metals				
=	=	Explosive	s M	etals		
Resources	eria air pollutants	Explosive	s M	etals		
Resources Hab	eria air pollutants	·	s M	etals		
Resources Hab	eria air pollutants pitats: vsical disturbance and stril	·	s M	etals		
Resources Hab Phy	eria air pollutants	·	s M	etals		

Surface Warfar	e				
Gunnery Exerci	se Surface-to-Surface Ship – Large-Caliber				
Human Resources					
Military	Ingestible Material:	Military	Recoverable surface targets		
Expended	Target fragments, large-caliber	Recoverable			
Material	projectile (explosive) fragments	Material			
	Non-Ingestible Material:				
	Large-caliber projectiles (non-				
	explosive), large-caliber casings				
Sonar and	None				
Other					
Transducer					
Bins		<u>-</u>			
In-Water	E3 E5				
Explosive					
Bins	A .: 6: (6 /: 5.2.2)		(6. 11. 5.2.2)		
Procedural	Acoustic Stressors: (Section 5.3.2)		ve Stressors: (Section 5.3.3)		
Mitigation Measures	Weapons firing noise		ve medium-caliber and large-caliber jectiles		
Wicasares	Physical Disturbance and Strike: (Section)		cettes		
	Vessel movement	,			
	Small-, medium-, and large-caliber non-ex	plosive			
	practice munitions				
Assumptions		plosive rounds ar	e fused to detonate upon impact with the		
Used for	water surface or target.				
Analysis	After impacting the water, the high-explosive rounds and free				
	surface. Non-explosive rounds and fragments from the high-explosive rounds will sink to the bottom of the ocean. Non-explosive rounds and fragments from the high-explosive rounds will				
	sink to the bottom of the ocean.	and magnic			
	Assume each non-explosive projectile will	be up to 5 in. in o	diameter and 30 in. in length, and each		
	firing will also expend a metallic sleeve	•	=		
	Stressors to human resources were not an	alyzed for this ac	tivity since it occurs greater than 12 NM		
	from shore.				

A.2.9.8 Gunnery Exercise Surface-to-Surface Ship Medium-Caliber

Surface Warfar	e					
	se Surface-to-Surface Ship Mo	edium-Caliber				
Short	Surface ship crews fire med		Typical Dura	tion		
Description	surface targets.	ann camber gans at	2-3 hours			
Long	Surface ship crews fire med	ium-caliber guns at surfac				
Description	•	_	_			
	Ships use medium-caliber w					
	stationary floating target (a 10 ft. diameter red balloon [Killer Tomato]) and high-speed mobile targets. Some targets are expended during the exercise and are not recovered.					
	targets. Some targets are ex	spended during the exerci	se and are no	t recovered.		
	Shipboard protection syster	ns (Close-In Weapon Syste	em) utilizing n	nedium-caliber projectiles would		
	train against high speed mo	bile targets.				
Typical	Platforms: Patrol combatan	ts, surface combatants				
Components	Targets: Surface targets (e.g			d mobile targets)		
	Systems being Trained/Tes	ted: Medium-caliber gun	systems			
Standard	Vessel safety	Typical Locations				
Operating	Weapons firing safety	Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:		
Procedures		Virginia Capes		None		
(Section 2.3.3)		Navy Cherry Point				
		Jacksonville				
		Gulf of Mexico				
		Other AFTT Areas				
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological	Vessel noise	Underwater explosives		In-air electromagnetic		
Resources	Weapons noise	Vessels and in-water de		devices		
		Military expended mate	erials			
	Explosives:			Entanglement:		
	Underwater explosives	Ingestion:		None		
		Military expended mate	erials –			
		munitions	سمطف مامنس			
		Military expended mate than munitions	eriais – otner			
Stressors to	Air Quality:		s and Water	Quality		
Physical	Criteria air pollutants	Explosive		etals		
Resources	Criteria dii poliatarits	Explosive	3 141	ctuis		
Resources	Habitats:					
	Physical disturbance and str	ike – military				
	expended material	,				
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeconomic Reso	urces:	Public Health and Safety:		
Human	Explosives	Accessibility		Physical interactions		
Resources	Physical disturbance and	Airborne acoustics		In-air energy		
	strike	Physical disturbance	and strike	Underwater energy		
	Explosives					

Surface Warfar	e		
Gunnery Exerci	se Surface-to-Surface Ship Medium-Caliber		
Military Expended Material	Ingestible Material: Target fragments, medium-caliber projectile (explosive) fragments, medium-caliber casings Non-Ingestible Material: None	Military Recoverable Material	Recoverable surface targets
Sonar and Other Transducer Bins In-Water	None E1		
Explosive Bins			
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Large-caliber weapons firing Physical Disturbance and Strike: (Section Vessel movement	Explosi pro	ve Stressors: (Section 5.3.3) ve medium-caliber and large-caliber jectiles
Assumptions Used for Analysis		are high-speed m re other stationar	naneuvering targets, which are recovered. Ty targets such as a steel drum that are

A.2.9.9 Gunnery Exercise Surface-to-Surface Ship Small-Caliber

Surface Warfar	e					
Gunnery Exerci	se Surface-to-Surface Ship Sm	nall-Caliber				
Short	Surface ship crews fire smal	l-caliber guns	at	Typica	l Durat	ion
Description	surface targets.			2-3 ho	urs	
Long	Surface ship crews fire smal	l-caliber guns	at surface t	argets.		
Description	floating targets. The target r 50 gallon steel drum, or oth	Ships use small-caliber weapons to practice defensive marksmanship, typically against stationary floating targets. The target may be a 10 ft. diameter red balloon (Killer Tomato, see Figure A.2-4), a 50 gallon steel drum, or other available target, such as a cardboard box. Some targets are expended during the exercise and are not recovered.				
	Ship crew qualifications con projectiles fired during these			-	_	
	targets.	ns utilizing sm	all-caliber p	rojectil	es will t	rain against high speed mobile
Typical	Platforms: Navy ships					
Components	Targets: Surface targets (e.g		_		ei drums	s, cardboard boxes)
Standard	Systems being Trained/Test			tems		
Operating	Vessel safety Weapons firing safety	Typical Loca	tions			
Procedures	weapons ming salety	Range Com		ing Ran	iges:	Inland Waters/Pierside:
(Section		Gulf of Mex	ico			None
2.3.3)		Jacksonville	. Dallat			
		Navy Cherry Virginia Cap				
		Other AFTT				
Stressors to	Acoustic:	Physical Dis		nd Strik	e:	Energy:
Biological	Vessel noise	Vessels and				In-air electromagnetic
Resources		Military exp	ended mat	erials		devices
	Explosives:					
	None	Ingestion:				Entanglement:
		Military exp		erials –		None
		munition				
Stressors to Physical	Air Quality: Criteria air pollutants		Sedimen Metals	ts and v	vater u	quality:
Resources	Criteria ali poliutarits		ivictais			
nesoures	Habitats: Physical disturbance and stri expended material	strike – military				
Stressors to	Cultural Resources:		nomic Resc	urces:		Public Health and Safety:
Human	Physical disturbance and	Accessibility Physical interactions				
Resources	strike	Airborne		and sta	iko	In-air energy
Military	Ingestible Material:	Physical c	listurbance Military		None	
Expended	Small-caliber projectiles (no	n-	Recovera		NOILE	
Material	explosive), small-caliber calliber callibrates callibrates callibrates callibrates callibrate		Material			
	Non-Ingestible Material: None					

Surface Warfar	e
Gunnery Exerci	se Surface-to-Surface Ship Small-Caliber
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	Small-, medium-, and large-caliber non-explosive
	practice munitions
Assumptions	Small-caliber gun rounds per exercise: 1,000 to 3,000 non-explosive practice munitions. The majority
Used for	of the activities will occur proximate to Navy homeports in Jacksonville, Florida and Norfolk,
Analysis	Virginia.

Figure A.2-4: "Killer Tomato" Stationary Floating Target

Figure A.2-5: QST-35 Seaborne Powered Target (on Left) and High-Speed Maneuvering Surface Target (on Right)

A.2.9.10 Integrated Live Fire

Surface Warfard	<u> </u>					
Integrated Live						
Short	Naval forces defend against	a swarm of surface	Typical Durat	ion		
Description	threats (ships or small boats		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	rockets, and small-, medium					
	guns.					
Long	Naval forces use coordinated tactics and deliver high-explosive ordnance against a swarm of surface					
Description		_	•	rike fighters typically involve a		
	flight of two to four aircraft	delivering unguided or g	uided munitions	s that may be either high-		
	explosive or non-explosive bombs against surface targets. The bombs may be surface detonating or					
	designed to detonate as an	air-burst bomb; strike fig	hter aircraft, he	licopter aircrews, and ship		
	crews fire high-explosive pre	ecision-guided missiles ag	gainst surface ta	argets. If explosive, helicopter		
	launched missiles (including	rockets) typically detona	ate at or just bel	low the water's surface; fighter		
	and helicopter aircrew enga	ge surface targets with s	mall- and mediւ	um-caliber guns. Ships' gun		
			-	d 5-inch) guns; this exercise may		
			ontext of a coord	dinated larger exercise involving		
	multiple ships, including a m					
Typical	Platforms: Fixed-wing aircra	•				
Components	Targets: Surface targets (e.g		_	= :		
	Systems being Trained/Test	ted: In-air low energy las	er, medium- an	d large-caliber gun systems,		
	aircraft platforms					
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
Procedures		Jacksonville	. 0 . 0	None		
(Section 2.3.3)	Weapons firing safety	Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic		
Resources	Vessel noise	Underwater explosives	5	devices		
	Weapons noise	In-air explosives		Lasers		
		Vessels and in-water d	evices			
	Explosives:	Military expended mat	terials	Entanglement:		
	Underwater explosives			None		
	In-air explosives	Ingestion:				
		Military expended mat	erials –			
		munitions				
		Military expended mat	erials – other			
		than munitions				
Stressors to	Air Quality:		ts and Water Q	•		
Physical	Criteria air pollutants	Explosive	es Me	tals		
Resources	Habitata.					
	Habitats:	ka militany				
	Physical disturbance and stri	ke – military				
	expended material Underwater explosives					
Strongers to	·	-	.			
Stressors to	None					
Human Resources						
nesources						

Surface Warfar	e		
Integrated Live	Fire		
Military Expended Material	Ingestible Material: Bomb (explosive) fragments, missile (explosive) fragments, medium- caliber projectiles (non-explosive), medium-caliber and large-caliber projectile (explosive) fragments, medium-caliber casings, rocket fragments, target fragments Non-Ingestible Material: Bombs (non-explosive), rockets (non- explosive), missiles (non-explosive), large-caliber casings	Military Recoverable Material	Recoverable surface targets
Sonar and Other Transducer Bins	None		
In-Water Explosive Bins	E1 E3 E6		E10
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Weapons firing Physical Disturbance and Strike: (Section 5.2) Vessel movement Small-, medium-, and large-caliber non-ex practice munitions Non-explosive missiles and rockets Non-explosive bombs	Explosi pro 5.3.4) Explosi Explosi	ve Stressors: (Section 5.3.3) ve medium-caliber and large-caliber jectiles ve missiles and rockets ve bombs
Assumptions Used for Analysis	Stressors to human resources were not an from shore.	alyzed for this ac	tivity since it occurs greater than 12 NM

A.2.9.11 Laser Targeting – Aircraft

Surface Warfare	2					
Laser Targeting						
Short	Fixed-wing and helicopter ai	ircrews illuminate	e 1	Typical Dura	tion	
Description	enemy targets with lasers.			1-2 hours		
Long	Fixed-winged and helicopter aircrew illuminate enemy targets with lasers for engagement by				lasers for engagement by	
Description	aircraft with laser guided bo			-		
					ns, such as surface missiles and	
	guided rockets. Exercises where weapons are fired are addressed in the appropriate activity (e.g.,					
	air-to-surface missile exercise). Lower powered lasers may also be used as non-lethal deterrents during maritime security operations (force protection).					
	during mantime security operations (force protection).					
		<u> </u>				
Typical Components	Platforms: Fixed-wing aircra Targets: Surface targets	ift, rotary-wing a	ircraft, unr	nanned aeria	al systems	
Components	Systems being Trained/Test	ted: Aircraft platt	forms			
Standard	Aircraft safety	Typical Locatio				
Operating	Unmanned aerial, surface,					
Procedures	and subsurface vehicle	Range Comple Jacksonville	xes/Testin	g Ranges:	Inland Waters/Pierside: None	
(Section 2.3.3)	safety	Virginia Capes			None	
		<u></u>			 _	
Stressors to	Acoustic: Aircraft noise	Physical Distu			Energy: In-air electromagnetic	
Biological Resources	All Craft Hoise	Aircraft and ae	ilai taiget	>	devices	
nesources	Explosives:	Ingestion:			Lasers	
	None	None				
					Entanglement:	
		 			None	
Stressors to	Air Quality:			and Water (Quality:	
Physical Resources	Criteria air pollutants	יו	None			
Resources	Habitats:					
	None					
Stressors to	None					
Human						
Resources		· ·				
Military	Ingestible Material:		1ilitary	None		
Expended Material	None		ecoverable 1aterial	2		
Waterial	Non-Ingestible Material:	l V	iateriai			
	None					
Sonar and	None			.		
Other						
Transducer						
Bins	News					
In-Water Explosive	None					
Bins						
Procedural	None	<u>.</u>	-	-	-	
Mitigation						
Measures						

Surface Warfar	Surface Warfare				
Laser Targeting	- Aircraft				
Assumptions	Laser targeting for missile/rocket guidance will occur in areas where these exercises also occur.				
Used for Analysis	Use of lasers as force protection non-lethal deterrents will primarily occur proximate to Navy homeports (Norfolk, Virginia and Jacksonville, Florida).				
	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore.				

A.2.9.12 Laser Targeting – Ship

Surface Warfare						
Laser Targeting -						
Short	Surface ship crews illuminate	e air and surface	Typical Dura	ation		
Description	targets with high-energy lase		1-2 hours			
Long				to create critical failures in		
Description		wer energy laser systems that are used to create critical failures in ss. System directs a directed energy beam that can penetrate thin layers				
2 coon paron	_	ances (less than 1 nautical mile) that can render air and surface targets				
	-			as non-lethal deterrent during		
	maritime security operation			9		
	against manned platforms d	•		,		
Typical			s, combat logi	istics, specialized high-speed		
Components	vehicles, support craft, surfa		,	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	Targets: Air targets, surface					
	Systems being Trained/Test	=	m			
Standard	High-powered laser safety	Typical Locations				
Operating	Unmanned aerial, surface,					
Procedures	and subsurface vehicle	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
(Section 2.3.3)	safety	Jacksonville		None		
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a	and Strike:	Energy:		
Biological	Vessel noise	Military expended ma	terials	Lasers		
Resources	Weapons noise	Vessels and in-water d	evices	In-air electromagnetic		
				devices		
	Explosives:	Ingestion:				
	None	Military expended ma	terials – other	Entanglement:		
		than munitions		None		
Stressors to	Air Quality:	Sedimer	its and Water	Quality:		
Physical	Criteria air pollutants	None				
Resources						
	Habitats:					
	Physical disturbance and stri	ke – military				
_	expended material					
Stressors to	None					
Human						
_						
Resources			T			
Military	Ingestible Material:	Military	None			
Military Expended	Ingestible Material: Target fragments	Recovera				
Military	=	=				
Military Expended	Target fragments	Recovera				
Military Expended Material	Target fragments Non-Ingestible Material:	Recovera				
Military Expended Material	Target fragments Non-Ingestible Material: Aerial drones (expendable)	Recovera				
Military Expended Material Sonar and	Target fragments Non-Ingestible Material: Aerial drones (expendable)	Recovera				
Military Expended Material Sonar and Other	Target fragments Non-Ingestible Material: Aerial drones (expendable)	Recovera		_		
Military Expended Material Sonar and Other Transducer	Target fragments Non-Ingestible Material: Aerial drones (expendable)	Recovera				
Military Expended Material Sonar and Other Transducer Bins	Target fragments Non-Ingestible Material: Aerial drones (expendable) None	Recovera				
Military Expended Material Sonar and Other Transducer Bins In-Water	Target fragments Non-Ingestible Material: Aerial drones (expendable) None None	Recovera Material				
Military Expended Material Sonar and Other Transducer Bins In-Water Explosive Bins	Target fragments Non-Ingestible Material: Aerial drones (expendable) None	Recovera Material		_		

Surface Warfare	Surface Warfare				
Laser Targeting	Laser Targeting – Ship				
Assumptions	Laser targeting for missile/rocket guidance will occur in areas where these exercises also occur.				
Used for	Use of lasers as force protection non-lethal deterrents will primarily occur proximate to Navy				
Analysis	homeports (Norfolk, Virginia and Jacksonville, Florida).				
	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM				
	from shore.				

A.2.9.13 Maritime Security Operations

Surface Warfare	Surface Warfare				
Maritime Securi	ity Operations				
Short	Helicopter, surface ship, and	l small boat crews	Typical Duration		
Description	conduct a suite of maritime				
	sea, to include visit, board, s		Up to 3 hours		
	maritime interdiction operat	tions; force protection;	op to 3 hours		
	and anti-piracy operations.				
Long	-		f maritime security operations (e.g., visit, board,		
Description			s, force protection, and anti-piracy operations). delivered by helicopters and surface ships to		
		•	search and seizure operations. Various training		
			s with non-explosive blanks and surveillance or		
		•	es. The entire exercise may last two to three		
	hours.		ost the characterist may have the terminate		
	Vessel Visit, Board, Search, a	and Seizure: Military pers	sonnel from ships and aircraft board suspect		
	vessels, potentially under ho	stile conditions.			
		tions: Ships and aircraft	train in pursuing, intercepting, and ultimately		
	detaining suspect vessels.				
			ense: Naval personnel train to defend oil		
	platforms, similar at sea stru				
	threatening small boats (typ	•	n the use of weapons to force fleeing or		
	= : : : : :		nultiple approaching, circling small craft,		
	·	•	ngst crewmates and other vessels to ensure		
	ships are protected against a	_			
	Anti-Piracy Training: Naval p	ersonnel train in deterri	ing and interrupting piracy activity. Training		
			nultiple small, maneuverable, and fast craft.		
Typical		are ships, rotary-wing ai	ircraft, surface combatants, small boats		
Components	Targets: Surface targets	tad. Nono			
Standard	Systems being Trained/Test Vessel safety				
Operating	Aircraft safety	Typical Locations			
Procedures	All clair Salety	Range Complexes/Tes			
(Section 2.3.3)		Gulf of Mexico	James River and tributaries		
(Jacksonville	Lower Chesapeake Bay		
		Navy Cherry Point	Joint Expeditionary Base Little		
		Northeast	Creek harbor Naval Station Norfolk pier		
		Virginia Capes	Broad Bay		
			Naval Station Mayport basin		
			and pier		
			Naval Station Newport		
			Port Canaveral		
Stressors to	Acoustic:	Physical Disturbance a	and Strike: Energy:		
Biological	Aircraft noise	Aircraft and aerial targ	-		
Resources	Vessel noise	Vessels and in-water d	devices devices		
	Explosives:	Ingestion:	Entanglement:		
	None	None	None		
Stressors to	Air Quality:	-	nts and Water Quality:		

Surface Warfar	Surface Warfare					
Maritime Secur	Maritime Security Operations					
Physical Resources	Criteria air pollutants Habitats:		None			
Stressors to Human Resources	None Cultural Resources: Physical disturbance and strike Ingestible Material:	Accessibi Airborne	nomic Resources lity acoustics disturbance and s		Public Health and Safety: Physical interactions In-air energy	
Expended Material	None Non-Ingestible Material: None		Recoverable Material	None		
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	None					
Procedural Mitigation Measures	Physical Disturbance and Strik Vessel movement	e: (Section	5.3.4)			
Assumptions Used for Analysis	in the skills necessary to properations (maritime interces) when the properations (e.g. oil properations) and if the properations exercises involved maneuvering to overtake security Operations exercises around naval vessels), and security Operations training	otect naval diction oper platforms). The to tailor the estypically revessel mouspect vessione events exercises orida includises.	vessels from smarations and visit, I Maritime security raining exercises do not involve lively evement, someting el and/or small be tinvolve helicopte are conducted proding during times s accounted for in	all boat and board, seed operation to respond to respon	to naval homeports in Norfolk, t into and out of port, as well as y exercises, surface-to-surface	

A.2.9.14 Missile Exercise Air-to-Surface

Short Sixed-wing and helicopter aircrews fire air-to- Typical Duration Surface missiles at surface targets. Thour Surface targets. Aircraft involved may be unmanned. Fixed-wing aircraft (fighters or maritime patrol aircraft) approach an at-sea surface target from high altitude, and launch high-explosive precision guided missiles. Helicopters designate at-sea surface targets with a laser or optics for a precision guided high-explosive or non-explosive practice munitions missile. Helicopter launched missiles typically pass through the target's "sail," and, if explosive, detonate at or just below, the water's surface. Platforms: fixed-wing aircraft, rotary-wing aircraft Systems being Trained/Tested: Aircraft platforms, missile systems Standard Operating Procedures (Section 2.3.3) Aircraft safety Weapons firing safety Weapons firing safety Weapons firing safety Range Complexes/Testing Ranges: Inland Waters/Pierside: None None None None None None None None Stressors to Biological Aircraft noise Aircraft and aerial targets In-air electromagnetic Underwater explosives Military expended materials Lasers Stressors to Military expended materials None Military expended materials None Military expended materials None Military expended materials Sediments and Water Quality: Criteria air pollutants Explosives Chemicals Metals Chemicals None No	Surface Warfard	e				
Description Surface missiles at surface targets.	Missile Exercise	Air-to-Surface				
Description Surface missiles at surface targets.	Short	Fixed-wing and helicopter a	ircrews fire air	r-to- T	ypical Dura	tion
Stressors to Biological Resources Accustic: Aircraft noise Aircraft and aerial targets Lasers	Description	_				
Fixed-wing aircraft (fighters or maritime patrol aircraft) approach an at-sea surface target from high altitude, and launch high-explosive precision guided missiles. Helicopters designate at-sea surface targets with a laser or optics for a precision guided high-explosive or non-explosive practice munitions missile. Helicopter launched missiles typically pass through the target's "sail," and, if explosive, detonate at or just below, the water's surface. Typical Components Typical Components Standard Operating Procedures (Section 2.3.3) Aircraft safety Weapons firing safety None None None None None Military expended materials Underwater explosives Military expended materials – other than munitions Stressors to Physical disturbance and strike – military expended material Underwater explosives None Meanurity Sediments and Water Quality: Criteria air pollutants Explosives Chemicals Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives	_	Fighter, maritime patrol airc	craft, and helic		s fire precis	ion-guided missiles against
altitude, and launch high-explosive precision guided missiles. Helicopters designate at-sea surface targets with a laser or optics for a precision guided high-explosive or non-explosive practice munitions missile. Helicopter launched missiles typically pass through the target's "sail," and, if explosive, detonate at or just below, the water's surface. Typical Components Typical Components Standard Operating Procedures (Section 2.3.3) Aircraft safety Weapons firing safety Weapons firing safety Weapons firing safety Fire Components Acoustic: Aprical Locations Range Complexes/Testing Ranges: Inland Waters/Pierside: None None None Range Complexes/Testing Ranges: Inland Waters/Pierside: None None None None None None Aircraft noise Aircraft and aerial targets Underwater explosives devices Explosives: Military expended materials Lasers Underwater explosives Ingestion: Entanglement: None Military expended materials – other than munitions Stressors to Physical Resources Air Quality: Sediments and Water Quality: Criteria air pollutants Explosives Chemicals Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human None Stressors to Human None	Description	surface targets. Aircraft invo	olved may be i	unmanned.		
Helicopters designate at-sea surface targets with a laser or optics for a precision guided high-explosive or non-explosive practice munitions missile. Helicopter launched missiles typically pass through the target's "sail," and, if explosive, detonate at or just below, the water's surface. Typical Components Platforms: Fixed-wing aircraft, rotary-wing aircraft Targets: Surface targets Systems being Trained/Tested: Aircraft platforms, missile systems Standard Operating Procedures (Section 2.3.3) Aircraft safety Weapons firing safety Weapons firing safety Typical Locations Range Complexes/Testing Ranges: Inland Waters/Pierside: None None Range Complexes/Testing Ranges: Inland Waters/Pierside: None Aircraft noise Aircraft and aerial targets In-air electromagnetic devices Lasers Underwater explosives Ingestion: Entanglement: Military expended materials — None munitions Military expended materials — other than munitions Stressors to Physical disturbance and strike — military expended materials Physical disturbance and strike — military expended material Underwater explosives Stressors to Human None None		Fixed-wing aircraft (fighters	or maritime p	atrol aircraft)	approach a	n at-sea surface target from high
explosive or non-explosive practice munitions missile. Helicopter launched missiles typically pass through the target's "sail," and, if explosive, detonate at or just below, the water's surface. Platforms: Fixed-wing aircraft, rotary-wing aircraft Targets: Surface targets Systems being Trained/Tested: Aircraft platforms, missile systems Standard Operating Procedures (Section 2.3.3) Aircraft safety Weapons firing safety Weapons firing safety None None None Inland Waters/Pierside: None None Inland Waters/Pierside: None None Miltary expended materials None Military expended materials – other than munitions Metals Habitats: Physical disturbance and strike – milit		altitude, and launch high-ex	plosive precis	ion guided mi	ssiles.	
Typical Components Typical Components Standard Operating Procedures (Section 2.3.3) Stressors to Physical Resources Stressors to Physical Resources Habitats: Physical disturbance and strike — military expended materials — One Metals Stressors to Physical disturbance and strike — Flysical disturbance and strike — military expended material Underwater explosives Stressors to Physical disturbance and strike — military expended material Underwater explosives Stressors to Physical disturbance and strike — military expended materials — One Metals Habitats: Physical disturbance and strike — military expended material or them the man of the military expended material or them them are provided material or them are provided material or them them are provided material or them are provided mat		Helicopters designate at-sea	a surface targe	ets with a lase	r or optics fo	or a precision guided high-
Platforms: Fixed-wing aircraft, rotary-wing aircraft Targets: Surface targets Systems being Trained/Tested: Aircraft platforms, missile systems		explosive or non-explosive p	ractice munit	ions missile. F	lelicopter la	unched missiles typically pass
Targets: Surface targets Systems being Trained/Tested: Aircraft platforms, missile systems Standard Operating Procedures (Section 2.3.3) Stressors to Biological Resources Family Trained Physical Disturbance and Strike: Energy: Aircraft noise Aircraft and aerial targets Underwater explosives In-air electromagnetic devices Explosives: Military expended materials Lasers Underwater explosives Ingestion: Entanglement: None Military expended materials – other than munitions Stressors to Physical Resources Air Quality: Sediments and Water Quality: Criteria air pollutants Familitary expended materials – military expended materials — munitions Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human None					t or just bel	ow, the water's surface.
Systems being Trained/Test Aircraft platforms, missile systems Standard Operating Procedures (Section 2.3.3) Stressors to Biological Resources Underwater explosives Stressors to Physical Disturbance and Strike: Energy: Aircraft noise Aircraft and aerial targets Underwater explosives Ingestion: Military expended materials — wilitary expended materials — other than munitions Stressors to Physical Resources Air Quality: Sediments and Water Quality: Criteria air pollutants Stressors to Physical disturbance and strike — military expended materials Habitats: Physical disturbance and strike — military expended materials Underwater explosives None Stressors to Physical disturbance and strike — military expended materials Habitats: Physical disturbance and strike — military expended materials Underwater explosives None		_	oft, rotary-win	g aircraft		
Standard Operating Procedures (Section 2.3.3) Weapons firing safety Weapons firing safety Weapons firing safety Range Complexes/Testing Ranges: Inland Waters/Pierside: None None None	Components	_	had. Aireraft m	la tf a	مصمعات ماك	
None Stressors to Physical Resources Air Quality: Criteria air pollutants Stressors to Physical Resources Habitats: Physical disturbance and strike Explosives Air Quality: Criteria air pollutants Explosives Chemicals Metals	Ctondord				sile systems	
Range Complexes/Testing Ranges: Inland Waters/Pierside: None None		• · · · · · · · · · · · · · · · · · · ·	турісаї цоса	tions		
Jacksonville None		weapons ming salety	_		g Ranges:	Inland Waters/Pierside:
Stressors to Biological Resources Aircraft noise Aircraft and aerial targets Underwater explosives Ingestion: Military expended materials — None munitions Military expended materials — other than munitions Military expended materials — Other than munitions Stressors to Physical Resources Habitats: Physical disturbance and strike — military expended material Underwater explosives Stressors to Human None						None
Acoustic:						
Biological Resources Aircraft noise Aircraft and aerial targets Underwater explosives Explosives: Underwater explosives Ingestion: Military expended materials — None Military expended materials — Other than munitions Military expended materials — Other than munitions Air Quality: Criteria air pollutants Air Quality: Criteria air pollutants Habitats: Physical disturbance and strike — military expended material Underwater explosives None Air Carl t noise Military expended materials — None Sediments and Water Quality: Criteria air pollutants Explosives Chemicals Metals Habitats: Physical disturbance and strike — military expended material Underwater explosives None	Stressors to	Acoustic			l Strika:	Fnergy:
Resources Explosives: Military expended materials Lasers Underwater explosives Ingestion: Entanglement: Military expended materials — None munitions Military expended materials — other than munitions Stressors to Physical Resources Habitats: Physical disturbance and strike — military expended material Underwater explosives None Sediments and Water Quality: Explosives Chemicals Metals Habitats: Physical disturbance and strike — military expended material Underwater explosives None Stressors to Human			-			<u> </u>
Underwater explosives Ingestion: Military expended materials — None munitions Military expended materials — other than munitions Stressors to Physical Resources Habitats: Physical disturbance and strike — military expended material Underwater explosives None Stressors to Human	_	7 6. 4. 7. 7. 6. 6. 6		_		•
Ingestion: Military expended materials — None munitions Military expended materials — other than munitions Stressors to Physical Resources Habitats: Physical disturbance and strike — military expended material Underwater explosives None None Entanglement: None Metals — None Metals — Chemicals Metals Habitats: Physical disturbance and strike — military expended material Underwater explosives None				-	ials	Lasers
Military expended materials — None munitions Military expended materials — other than munitions Stressors to Physical Resources Habitats: Physical disturbance and strike — military expended material Underwater explosives None Metals Sediments and Water Quality: Explosives Metals Metals Habitats: Physical disturbance and strike — military expended material Underwater explosives None		Underwater explosives				
Military expended materials – other than munitions Stressors to Physical Criteria air pollutants Explosives Chemicals Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human Military expended materials – other than munitions Sediments and Water Quality: Explosives Chemicals Metals Metals None			_			-
Military expended materials – other than munitions Stressors to Physical Criteria air pollutants Explosives Chemicals Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human Military expended materials – other than munitions Sediments and Water Quality: Explosives Chemicals Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives					ais –	None
Stressors to Physical Resources Habitats: Physical disturbance and strike – military expended material Underwater explosives Human Habitats: Physical disturbance and strike – military expended material Underwater explosives				_	als – other	
Physical Criteria air pollutants Explosives Metals Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human Criteria air pollutants Explosives Chemicals Metals Metals Stressors to Human						
Resources Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human Metals Metals None	Stressors to	Air Quality:		Sediments	and Water	Quality:
Habitats: Physical disturbance and strike – military expended material Underwater explosives Stressors to Human Habitats: Physical disturbance and strike – military expended material Underwater explosives	Physical	Criteria air pollutants		-	Cł	nemicals
Physical disturbance and strike – military expended material Underwater explosives Stressors to Human	Resources			Metals		
expended material Underwater explosives Stressors to Human			iko militany			
Underwater explosives Stressors to Human Underwater explosives		·	strike – military			
Human		<u>.</u>				
	Stressors to	,				
	Human					
	Resources				_	
Military Ingestible Material: Military Recoverable surface targets	=	_		_		erable surface targets
Expended Missile (explosive) fragments, target Recoverable Material Material	-		s, target			
Material fragments Material	iviaterial	inaginienits		iviateriai		
Non-Ingestible Material:		Non-Ingestible Material:				
Missiles (non-explosive)		_				

Surface Warfar	e				
Missile Exercise	Air-to-Surface				
Sonar and	None				
Other					
Transducer					
Bins					
In-Water	E6 E8 E10				
Explosive					
Bins					
Procedural	Physical Disturbance and Strike: (Section 5.3.4) Explosive Stressors: (Section 5.3.3)				
Mitigation	Non-explosive missiles and rockets Explosive missiles and rockets				
Measures					
Assumptions	Assume one missile and one target are used per exercise.				
Used for	While missiles could explode above the water's surface after contacting targets, analysis assumes				
Analysis	that all warheads explode at or just below the water's surface.				
	Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM				
	from shore.				

A.2.9.15 Missile Exercise Air-to-Surface – Rocket

Surface Warfar	e					
	e Air-to-Surface—Rocket					
Short		n precision-quided	and	Typical Du	ration	
Description	Helicopter aircrews fire both precision-guided and unguided rockets at surface targets.			1 hour		
-	-				ics for procision guidad high	
Long Description	Helicopters designate an at-sea surface target with a laser or optics for precision-guided high explosive or non-explosive practice munitions rockets.					•
Typical						
Components	Platforms: Rotary-wing aircraft, unmanned aerial systems Targets: Surface targets					
Components	Systems being Trained/Test	t ed : Aircraft platfo	rms mis	sile systen	ns	
Standard	Aircraft safety	Typical Location		Sile System	13	
Operating	Weapons firing safety	Typical Location	.			
Procedures	Swimmer defense activity	Range Complex	es/Testir	ng Ranges:	Inland Waters/Pierside	:
(Section 2.3.3)	safety	Gulf of Mexico			None	
(30001011 2.3.3)	Unmanned aerial, surface,	Jacksonville				
	and subsurface vehicle	Navy Cherry Poi	nt			
	safety	Virginia Capes				
	Towed in-water device					
	safety					
Stressors to	Acoustic:	Physical Disturb	ance an	d Strike:	Energy:	
Biological	Aircraft noise	Aircraft and aeri	ial target	:S	In-air electromagneti	ic
Resources		Underwater exp	olosives		devices	
	Explosives:	Military expend	ed mate	rials	Lasers	
	Underwater explosives					
		Ingestion:			Entanglement:	
		Military expend	ed mate	rials –	None	
		munitions				
		Military expend		rials – othe	er	
Ch	Alia Occalitacio	than munitio			012	
Stressors to	Air Quality:			and Wate		
Physical	Criteria air pollutants		cplosives etals		Chemicals	
Resources	Habitats:	IVI	etais			
	Physical disturbance and stri	ike – military				
	expended material	ike – Illilitary				
	Underwater explosives					
Stressors to	None	-			•	
Human	. Tone					
Resources						
Military	Ingestible Material:	Mi	litary	Reco	overable surface targets	
Expended	Rocket (explosive) fragment		coverabl			
Material	fragments	. •	aterial			
	Non-Ingestible Material:					
	Rockets (non-explosive)					
Sonar and	None					
Other						
Transducer						
Bins						

Surface Warfar	
Missile Exercise	Air-to-Surface—Rocket
In-Water Explosive	E3
Bins	
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Non-explosive missiles and rockets Explosive Stressors: (Section 5.3.3) Explosive missiles and rockets
Assumptions Used for Analysis	Assume all explosive rockets detonate in the water. Rockets may be used in conjunction with force protection events. Stressors to human resources were not analyzed for this activity since it occurs greater than 12 NM from shore. Assume 5 percent of non-explosive practice munitions are flechette rockets.

A.2.9.16 Missile Exercise Surface-to-Surface

Surface Warfar	e			
Missile Exercise	Surface-to-Surface			
Short	Surface ship crews defend a	gainst surface threats	Typical Durat	ion
Description	(ships or small boats) and er missiles.	ngage them with	2-5 hours	
Long Description	Surface ships launch missiles enemy ships or boats. After detecting and confirm		_	al of destroying or disabling recision guided surface missile.
	surface missiles. While past	Harpoon exercises occur se events to certify ship o	red during sinki	horizon) Harpoon (or similar) ng exercises, the requirement ng exercise target is unavailable,
	such as Hellfire and Griffin. I certify ship's crew to defend	Events with littoral comb I against "close-in" (less t meaning that a missile is	at and patrol co han 10 miles) s s fired down rar	· · · · · · · · · · · · · · · · · · ·
Typical	Platforms: Surface combata	nts		
Components	Targets: Surface targets			
	Systems being Trained/Test	ted: None		
Standard	Vessel safety	Typical Locations		
Operating	Weapons firing safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:
Procedures		Jacksonville		None
(Section 2.3.3)		Virginia Capes		
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:
Biological	Vessel noise	Underwater explosives		In-air electromagnetic
Resources	Weapons noise	Vessels and in-water d		devices
	·	Military expended mat	erials	
	Explosives:			Entanglement:
	Underwater explosives	Ingestion:		None
		Military expended mat	erials –	
		munitions Military expended mat	orials other	
		than munitions	eriais – otilei	
Stressors to	Air Quality:	 	ts and Water Q	mality:
Physical	Criteria air pollutants	Explosive		emicals
Resources	C	Metals	Circ	
	Habitats:			
	Physical disturbance and stri	ke – military		
	expended material			
	Underwater explosives			
Stressors to	None	-		
Human				
Resources				

Surface Warfar	Surface Warfare						
Missile Exercise	Missile Exercise Surface-to-Surface						
Military Expended Material	Ingestible Material: Missile (explosive) fragments, target fragments Non-Ingestible Material:	Military Recoverable Material	Recoverable surface targets				
	Missile (non-explosive)						
Sonar and Other Transducer Bins	None						
In-Water Explosive Bins	E6 E10						
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement						
Assumptions Used for Analysis	Assume one missile and one target used while missile could explode above the was warheads explode at or just below the Stressors to human resources were not a from shore.	ater's surface afte e surface.					

A.2.9.17 Sinking Exercise

Surface Warfar	e			
Sinking Exercise				
Short	Aircraft, ship, and submarine	e crews deliberately	Typical Durat	tion
Description	sink a seaborne target, usua ship made environmentally according to U.S. Environme	Ily a decommissioned safe for sinking ntal Protection Agency		ossibly over 1-2 days
	standards, with a variety of			
Long Description		deliberately sunk using aft, surface vessels, and s	multiple weapo ubmarines in o	aborne target, (large on systems. A sinking exercise is order to take advantage of the
		on Agency standards. The		y safe for sinking according to eater than 50 NM from shore
	Ship, aircraft, and submarine ordnance to sink the target. to extend target life. Typical however it is unpredictable	Non-explosive practice r ly, the exercise lasts for 4	nunitions may l I to 8 hours and	be used during the initial stages d possibly over 1 to 2 days,
Typical	Platforms: Fixed-wing aircra	ft, submarines, surface c	ombatants	
Components	Targets: Ship hulks			
	Systems being Trained/Test	t ed: Large-caliber gun sys	stems, missile s	systems, bombs, torpedoes,
a	small-caliber gun systems			
Standard	Vessel safety	Typical Locations		
Operating Procedures	Aircraft safety Weapons firing safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:
(Section 2.3.3)	Weapons ming sarety	Virginia Capes sinking	exercise box	None
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:
Biological	Sonar and other	Aircraft and aerial targ		In-air electromagnetic
Resources	transducers	Underwater explosives	i	devices
	Aircraft noise	Vessels and in-water d	evices	
	Vessel noise	Military expended mat	erials	Entanglement:
	Weapons noise	Seafloor devices		Wires and cables
	Explosives:	Ingestion:		
	Underwater explosives	Military expended mat munitions	erials –	
		Military expended mat	erials – other	
		than munitions		
Stressors to	Air Quality:		ts and Water C	
Physical	Criteria air pollutants	Explosive	es Ch	emicals
Resources	Habitats:	Metals		
	Physical disturbance and stri	ke – military		
	expended materials	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Physical disturbance and stri	ke – seafloor		
	devices			
	Underwater explosives		-	-
Stressors to	None			
Human				

	Surface Warfare					
Sinking Exercise						
Resources						
Military Expended Material	Ingestible Material: Bomb (explosive) fragments, missile (explosive) fragments, medium caliber and large-caliber projectiles (explosive) fragments, small-caliber and medium-caliber projectiles (non- explosive), small-caliber casings, medium-caliber casings, heavyweight torpedo (explosive) fragments, heavyweight torpedo accessories	Military Recoverable Material	None			
	Non-Ingestible Material: Large-caliber projectiles (non-explosive), large-caliber casings, guidance wires					
Sonar and Other Transducer Bins	Torpedoes: TORP2					
In-Water Explosive Bins	E5 E8 E9		E10 E11			
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Weapons firing noise Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Small-, medium-, and large-caliber non-explosive practice munitions Explosive Stressors: (Section 5.3.3) Explosive medium-caliber and large-caliber projectiles Explosive missiles and rockets Explosive bombs Sinking exercises					
	Non-explosive missiles and rockets Non-explosive bombs Explosives torpedoes					
Assumptions Used for Analysis	Exercises occur greater than 50 NM from some daylight hours only. Due to the distance analyzed for this activity. The participants and assets typically included the participants and the participants and the participants are participants. 1-10 F/A-18, or maritime patrol aircraft and 2 aircraft for Command and Control 1 submarine aircraft are participants. 1-2 aircraft for Command and Control 1 submarine aircraft are participants. 1-2 Harpoon surface-to-surface or aircraft are participants. 2-12 MK-80 series general purpose bor 200 rounds large-caliber projectiles are projectiles are participants. 1-2 MK-48 heavyweight submarine-lauded are participants.	e from shore, str de: t ol co-surface missile missiles mbs nched torpedo mm	essors to human resources were not			

A.2.10 OTHER TRAINING EXERCISES

A.2.10.1 Elevated Causeway System

Other Training	Exercises						
Elevated Cause							
Short				Typical Dura	ition		
Description	A temporary pier is constru			Up to 20 days for construction and up to 10			
	Supporting pilings are drive	en into the sand	and I	days for removal (the pier can be in place for			
	then later removed.			ıp to 60 day			
Long	A temporary pier, termed t	he "Elevated Ca		-	structed off of the beach. The pier		
Description		oading materials and equipment from supply ships. Support pilings are					
	driven into the sand with a	n impact hamm	er. Causewa	y platforms	are then hoisted and secured		
	onto the piles with hydraul	ic jacks and crar	nes. The pie	r is assemble	ed by joining standard causeway		
	sections together and can be	oe assembled in	20 days. Th	e pier, inclu	ding associated piles, is removed		
	at the conclusion of training	g. The Elevated	Causeway S	ystem can b	e constructed as an individual		
	training event, or construct	ted during the Jo	oint Logistic	s Over-the-S	Shore training event, which can		
	last up to 30 days.						
Typical	Platforms: Combat logistics	s ships, fleet sup	port ships,	support craf	ft		
Components	Targets: None						
	Systems being Trained/Tes	sted: Elevated C	Causeway Sy	stem, includ	ling impact hammer and vibratory		
	extractor						
Standard	Pile driving safety	Typical Locat	ions				
Operating		Range Comp	lexes/Testir	g Ranges:	Inland Waters/Pierside:		
Procedures		Navy Cherry		ig manges.	Lower Chesapeake Bay		
(Section		navy enerry	TOTAL		Lower chesapeake bay		
2.3.3)							
Stressors to	Acoustic:	Physical Dist			Energy:		
Biological	Vessel noise	Vessels and i	n-water dev	rices	In-air electromagnetic		
Resources	Pile driving				devices		
		Ingestion:					
	Explosives:	None			Entanglement:		
	None				None		
Stressors to	Air Quality:		Sediments	and Water	Quality:		
Physical	Criteria air pollutants		None				
Resources							
	Habitats:						
	Physical disturbance and st	rike – pile					
	driving						
Stressors to	Cultural Resources:		omic Resou	rces:	Public Health and Safety:		
Human	Physical disturbance and	Accessibilit	-		Physical interactions		
Resources	strike	Airborne a			In-air energy		
		-	sturbance a		_		
Military	Ingestible Material:		Military	None			
Expended	None	Recoverable					
Material]		Material				
	Non-Ingestible Material:						
	None						
Sonar and	Pile driving and removal						
Other							
Transducer							
Bins							

Other Training	Other Training Exercises						
Elevated Cause	Elevated Causeway System						
In-Water	None						
Explosive							
Bins							
Procedural	Physical Disturbance and Strike: (Section 5.3.4)	Acoustic Stressors: (Section 5.3.2)					
Mitigation	Vessel movement	Pile driving					
Measures							
Assumptions	None	•					
Used for							
Analysis							

A.2.10.2 Precision Anchoring

Other Training	Exercises							
Precision Ancho	oring							
Short				Typical	Dura	tion		
Description	Releasing of anchors in design	gnated location	ons. $-$	Up to 1				
Long	Ship crews choose the best	available anch		•		all means available to determine		
Description						I plotting the anchor's position		
p	within 100 yards of center of					. p		
Typical	Platforms: Navy ships							
Components	Targets: None							
	Systems being Trained/Tes	ted: None						
Standard	Vessel safety	Typical Loca	tions					
Operating	,							
Procedures			plexes/Testir	ng Rang	ges:	Inland Waters/Pierside:		
(Section 2.3.3)		Gulf of Mex				Naval Station Mayport basin		
		Jacksonville				and pier		
		Virginia Cap				James River and tributaries		
Stressors to	Acoustic:	-	turbance and		e:	Energy:		
Biological	Vessel noise		in-water dev	/ices		In-air electromagnetic		
Resources		Seafloor de	vices			devices		
	Explosives:							
	None	Ingestion:				Entanglement:		
		None				None		
Stressors to	Air Quality:		Sediments	and W	ater (Quality:		
Physical	Criteria air pollutants		None					
Resources	Habitana.							
	Habitats:	:						
	Physical disturbance and stri devices	ike – Sealloor						
Stressors to	Cultural Resources:	Socioeco	nomic Resou	irces.		Public Health and Safety:		
Human	Physical disturbance and	Accessibi				Physical interactions		
Resources	strike		disturbance a	nd strik	ce	In-air energy		
Military	Ingestible Material:	,	Military		lone			
Expended	None		Recoverabl		10110			
Material			Material					
	Non-Ingestible Material:							
	None							
Sonar and	None	<u>-</u>		-		-		
Other	-							
Transducer								
Bins								
In-Water	None							
Explosive								
Bins								
Procedural	Physical Disturbance and St	rike: (Section	5.3.4)	-		·		
Mitigation	Vessel movement	•	,					
Measures								
Assumptions	None		-					
Used for	-							
Analysis								
,								

A.2.10.3 Search and Rescue

Other Training	Exercises						
Search and Res							
Short	Helicopter and ship crews re	escue military		Typica	al Durati	ion	
Description	personnel at sea.	·			Up to 2 hours		
Long Description	Helicopter, ship, and submarine crews practice the skills required to recover personnel lost at sea. Helicopters locate survivors and deploy rescue swimmer and rescue basket. Survivors are winched up to the hovering helicopter. Surface ships would conduct man overboard drills and deploy a dummy figure in the water. Ship crews would launch a small boat, direct the recovery of the dummy, and recover the small boat. Submarine crews would maneuver submarine to effect recovery of personnel.						
Typical Components	Platforms: Rotary-wing airc submarines, small boats Targets: None Systems being Trained/Tes	craft, surface combatants, aircraft carriers, amphibious warfare ships, sted: None					
Standard	Vessel safety	Typical Locat	ions				
Operating Procedures (Section 2.3.3)	Aircraft safety	Range Comp Jacksonville Virginia Capo		ing Ran	nges:	Inland Waters/Pierside: Naval Station Mayport basin and piers Naval Submarine Base Kings Bay (St. Mary's Inlet jetties) St. Johns River (Talbot Island) James River and tributaries Willoughby Bay Naval Station Norfolk basin and piers	
Stressors to	Acoustic:	Physical Dis			œ:	Energy:	
Biological Resources	Vessel noise Aircraft noise	Vessels and Aircraft and				In-air electromagnetic devices	
	Explosives: None	Ingestion: None				Entanglement: None	
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: None		Sediment None	ts and V	Water Q	uality:	
Stressors to	Cultural Resources:	Socioecor	omic Reso	urces:		Public Health and Safety:	
Human Resources	Physical disturbance and strike	Accessibility Airborne acoustics Physical disturbance and strike			ike	Physical interactions In-air energy	
Military Expended Material	Ingestible Material: None Non-Ingestible Material:		Military Recoveral Material		None		
	None						

Other Training	Other Training Exercises					
Search and Rescue						
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	Physical Disturbance and Strike: (Section 5.3.4)					
Mitigation	Vessel movement					
Measures						
Assumptions	All material, including dummy figure, is recovered. Locations are typical, but ships may conduct man					
Used for	overboard training throughout the Study Area.					
Analysis						

A.2.10.4 Submarine Navigation

Other Training	Fyercises							
Submarine Nav								
Short	Submarine crews operate so	nar for navigation	n and	Typical Dura	tion			
Description	detection while transiting in	_						
	during reduced visibility.			Up to 2 hour	S			
Long	Submarine crews train to op	erate sonar for na	vigation	. The ability t	o navigate using sonar is critical			
Description	for detection while transitin	for detection while transiting into and out of port during periods of reduced visibility. During this						
	activity the submarine will b	e surfaced.						
Typical	Platforms: Submarines							
Components	Targets: None							
	Systems being Trained/Test	ted: Sonar system	S					
Standard	Vessel safety	Typical Location	S					
Operating		Range Complex	es/Testii	ng Ranges:	Inland Waters/Pierside:			
Procedures		None	co, . cou	.8800.	Groton, Connecticut			
(Section 2.3.3)					Kings Bay, Georgia			
					Naval Station Mayport, Florida			
					Naval Base Norfolk, Virginia			
					Port Canaveral, Florida			
Stressors to	Acoustic:	Physical Disturk	oance an	d Strike:	Energy:			
Biological	Sonar and other	Vessels and in-v	vater dev	/ices	None			
Resources	transducers							
	Vessel noise	Ingestion:			Entanglement:			
		None			None			
	Explosives:							
Chungana ta	None		- di	and Matau	Overellan.			
Stressors to Physical	Air Quality: None		one	and Water (quanty:			
Resources	None	IN	one					
Resources	Habitats:							
	None							
Stressors to	Cultural Resources:	Socioeconom	nic Resou	irces:	Public Health and Safety:			
Human	Physical disturbance and	Accessibility			Physical interactions			
Resources	strike	Physical distu	rbance a	nd strike	Underwater energy			
Military	Ingestible Material:	Mi	ilitary	None				
Expended	None	Re	coverabl	le				
Material	Non-Ingestible Material:	Ma	aterial					
	None							
Sonar and	Mid-Frequency:	High-Freque	ncy:					
Other	MF3	HF1	-					
Transducer								
Bins								
In-Water	None							
Explosive								
Bins								
Procedural	Acoustic Stressors: (Section	5.3.2)		=	pance and Strike: (Section 5.3.4)			
Mitigation	Active sonar		Ve	ssel moveme	nt			
Measures								

Other Training Exercises						
Submarine Navigation						
Assumptions	For biological resource analysis, vessel noise and vessel strike are only analyzed for the periods while					
Used for	the submarines are surfaced, typically brief in nature. Mitigation measures related to vessel					
Analysis	movement are only considered during the period of surfacing as well.					
	For human resource stressor analysis, physical disturbance and strike and physical interactions are					
	only analyzed for the periods while the submarine are surfaced, typically brief in nature.					

A.2.10.5 Submarine Sonar Maintenance and Systems Checks

Other Training	Exercises							
Submarine Son	ar Maintenance and Systems	Checks						
Short	Maintenance of submarine	sonar and oth	er	Typical Dura	ation			
Description	system checks are conducte	ed pierside or a	at sea.	Up to 1 hour				
Long	A submarine performs perio	odic maintenar	nce on the A	AN/BQQ-10 a	nd submarine high-frequency			
Description	sonar systems while in port	or at sea. Sub	marines cor	nduct mainte	nance to their sonar systems in			
	shallow water near their ho	omeport, however, sonar maintenance could occur anywhere as the						
	system's performance may	warrant.						
Typical	Platforms: Submarines							
Components	Targets: None							
	Systems being Trained/Tes							
Standard	Vessel safety	Typical Loca	tions					
Operating		Range Com	olexes/Test	ing Ranges:	Inland Waters/Pierside:			
Procedures		Jacksonville	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Groton, Connecticut			
(Section 2.3.3)		Northeast			Kings Bay, Georgia			
		Virginia Cap	es		Norfolk, Virginia			
		Other AFTT	Areas		Port Canaveral, Florida			
Stressors to	Acoustic:	Physical Dis	turbance a	nd Strike:	Energy:			
Biological	Sonar and other	Vessels and	in-water de	evices	None			
Resources	transducers							
		Ingestion:			Entanglement:			
	Explosives:	None			None			
	None		- II		- "			
Stressors to	Air Quality:			ts and Water	Quality:			
Physical Resources	None		None					
Resources	Habitats:							
	None							
Stressors to	Cultural Resources:	Socioeco	nomic Reso	urces:	Public Health and Safety:			
Human	Physical disturbance and	Accessibi			Physical interactions			
Resources	strike	Physical o	disturbance	and strike	,			
Military	Ingestible Material:	-	Military	None	-			
Expended	None		Recoveral	ble				
Material	Non-Ingestible Material:		Material					
	None							
Sonar and	Mid-Frequency:	<u>-</u>			•			
Other	MF3							
Transducer								
Bins								
In-Water	None							
Explosive								
Bins					<u>-</u>			
Procedural	Acoustic Stressors: (Section	5.3.2)		=	bance and Strike: (Section 5.3.4)			
Mitigation	Active sonar		V	essel movem	ent			
Measures	((O)) A STT : " C							
Assumptions	"Other AFTT Areas" refers to	o areas outside	e of existing	range compl	exes and testing ranges.			
Used for								
Analysis								

A.2.10.6 Submarine Under Ice Certification

Other Training	Exercises						
	ler Ice Certification						
Short	Submarine crews operate so	nar while tra	nsiting	Typica	al Dura	tion	
Description	under ice. Ice conditions are	simulated du	ıring	Up to 6 hours per day over 5 days			
	training and certification evo	ents.		Up to	6 nour	s per day over 5 days	
Long	Submarine crews train to op	erate under i	ce. Ice cond	litions a	re simi	ulated during training ar	nd
Description	certification exercises. A sin	gle exercise is	comprised	of 30 h	ours of	f training, spread out ove	er 5 days
	in 6-hour training sessions.						
Typical	Platforms: Submarines						
Components	Targets: None						
	Systems being Trained/Tes	ted: Sonar sys	tems				
Standard	Vessel safety	Typical Loca	tions				
Operating		Range Com	nloves/Test	ting Pan	acc.	Inland Waters/Piersion	lo:
Procedures		Jacksonville	-	ung ivan	iges.	None	ic.
(Section		Navy Cherry				None	
2.3.3)		Northeast	y i Ollic				
		Virginia Cap	nes				
Stressors to	Acoustic:	Physical Dis		nd Strik	(B.	Energy:	
Biological	Sonar and other	Vessels and			·C·	None	
Resources	transducers	vessels arra	iii watei a	CVICCS		None	
Resources	transducers	Ingestion:				Entanglement:	
	Explosives:	None				None	
	None						
Stressors to	Air Quality:	-	Sedimen	ts and V	Nater (Ouality:	
Physical	None		None			~,·	
Resources							
	Habitats:						
	None						
Stressors to	None						
Human							
Resources							
Military	Ingestible Material:	-	Military		None	_	
Expended	None		Recovera	ble			
Material			Material				
	Non-Ingestible Material:						
	None						
Sonar and	High-Frequency:	-	=	-		-	
Other	HF1						
Transducer							
Bins							
In-Water	None						
Explosive							
Bins		-				<u>.</u>	
Procedural	Acoustic Stressors: (Section	5.3.2)	P	hysical	Disturl	bance and Strike: (Section	on 5.3.4)
Mitigation	Active sonar		V	essel m	oveme	ent	
Measures							
Assumptions	Stressors to human resource	es were not ar	nalyzed for	this acti	vity sin	ice it occurs greater thai	12 NM
Used for	from shore.						
Analysis							
Anaiysis	<u> </u>						

A.2.10.7 Surface Ship Object Detection

Mine Warfare							
Surface Ship Ob	ject Detection						
Short	Ship crews detect and avoid	mines while		Турі	cal Duration		
Description	navigating restricted areas c sonar.	or channels usir	ng active		Up to 2 hours		
Long Description	Surface ship crews detect and avoid mines or other underwater hazardous objects while navigating restricted areas or channels using active sonar. A Littoral Combat Ship utilizes unmanned surface vehicles and remotely operated vehicles to tow mine detection (hunting) equipment. Systems will operate from a shallow zone greater than 40 ft. to deep water. Exercises could be embedded within major training exercises.						
Typical Components	Platforms: Surface combatants, unmanned surface vehicles Targets: Mine shapes Systems being Trained/Tested: Sonar systems						
Standard	Vessel safety	Typical Locat					
Operating Procedures (Section 2.3.3)	Unmanned aerial, surface, and subsurface vehicle safety Towed in-water device	Range Complexes/Testing Ranges: None			Na	and Waters/Pierside: val Station Mayport, Florida rfolk, Virginia	
	safety			10.			
Stressors to Biological Resources	Acoustic: Sonar and other transducers	Physical Disturbance and Strike: Vessels and in-water devices Seafloor devices				Energy: In-air electromagnetic devices	
	Vessel noise Explosives:	Ingestion: None				Entanglement: None	
	None	-					
Stressors to Physical Resources	Air Quality: Criteria air pollutants		None	ts and	Water Quali	ty:	
	Habitats: Physical disturbance and stri devices	ke – seafloor					
Stressors to	Cultural Resources:	Socioecon	omic Reso	ources	: Pul	olic Health and Safety:	
Human	Physical disturbance and	Accessibili	-			sical interactions	
Resources	strike	Physical di	isturbance	and s		air energy derwater energy	
Military Expended Material	Ingestible Material: None Non-Ingestible Material: None		Military Recovera Material	ble	Recoverabl shapes)	e Training Targets (mine	
Sonar and Other Transducer Bins	Mid-Frequency: MF1K	High-Freq HF8	quency:				
In-Water Explosive Bins	None			_	-		

Mine Warfare	Mine Warfare						
Surface Ship Object Detection							
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)					
Mitigation	Active sonar	Vessel movement					
Measures		Towed in-water devices					
Assumptions	None						
Used for							
Analysis							

A.2.10.8 Surface Ship Sonar Maintenance and Systems Checks

Other Training I	Exercises							
	nar Maintenance and System	s Checks						
Short	Maintenance of surface ship	sonar and oth	her	Typica	al Dura	tion		
Description	system checks are conducte				4 hours			
Long	This scenario consists of sur	his scenario consists of surface ships performing periodic maintenance to the AN/SQS-53 sonar and						
Description	other ship systems while in		• •			-		
·	T = T	ve sonar systems for maintenance while in shallow water near their homeport,						
	however, sonar maintenand	e could occur	anywhere a	s the s	ystem's	s performance may warrant.		
Typical	Platforms: Surface combata	ints						
Components	Targets: None							
	Systems being Trained/Tes	ted: Sonar syst	tems					
Standard	Vessel safety	Typical Locat	tions					
Operating		Range Comp	alovos/Tosti	ing Rar	1995.	Inland Waters/Pierside:		
Procedures		Jacksonville	JIEKES/ IESU	iiig ivai	iges.	Naval Station Mayport, Florida		
(Section 2.3.3)		Navy Cherry	Point			Naval Station Norfolk, Virginia		
		Virginia Cap				a.a. Granen rienen, riiginia		
		Other AFTT						
Stressors to	Acoustic:	Physical Dis	turbance ar	nd Stril	ke:	Energy:		
Biological	Sonar and other	Vessels and				In-air electromagnetic		
Resources	transducers				devices			
	Vessel noise	Ingestion:						
		None				Entanglement:		
	Explosives:					None		
	None	-	_					
Stressors to	Air Quality:		Sediment	s and \	Water (Quality:		
Physical	Criteria air pollutants		None					
Resources	Habitana.							
	Habitats: None							
Stressors to	Cultural Resources:	Socioocor	nomic Resor	urcoci		Public Health and Safety:		
Human	Physical disturbance and	Accessibil		uices.		Physical interactions		
Resources	strike		listurbance a	and str	rike	In-air energy		
nessures	Serince .	i iiyalcai a	iistai baiitee i	arra 5ti	c	Underwater energy		
Military	Ingestible Material:	-	Military		None			
Expended	None		Recoverab	ole				
Material			Material					
	Non-Ingestible Material: None							
Sonar and	Mid-Frequency:	High Erg	auonov					
Other	MF1	High-Fred HF8	quency.					
Transducer	1411 1	111 6						
Bins								
In-Water	None							
Bins								
Procedural	Acoustic Stressors: (Section	5.3.2)	Ph	nysical	Disturb	pance and Strike: (Section 5.3.4)		
Mitigation	Active sonar	-		-	oveme			
Measures								
Explosive Bins Procedural Mitigation	·	5.3.2)		-				

Other Training Exercises				
Surface Ship Sonar Maintenance and Systems Checks				
Assumptions	"Other AFTT Areas" refers to areas outside of existing range complexes and testing ranges.			
Used for				
Analysis				

A.2.10.9 Waterborne Training

Other Training I	Exercises			
Waterborne Tra				
Short	Personnel launch, operate,	and recover a vari	ety Typ i	ical Duration
Description	of small boats to achieve ce		,	
	coxswain, crewman, and safety observer.			to 12 hours
Long	Waterborne Training may in	nclude qualification	n and certific	cation as safety observer, safety swimmer
Description				o include but not limited to rigid hull
				oards, kayaks, and jet skis. Boat crews
		moor to buoys, a	nchor, and o	perate a variety of missions in shallow
	waters.			
Typical	Platforms: Small boats			
Components	Targets: None Systems being Trained/Tes	tad. Nono		
Chandand	Systems being Trained/Tes		-	
Standard Operating	Vessel safety	Typical Location	S	
Procedures		Range Complex	es/Testing R	langes: Inland Waters/Pierside:
(Section 2.3.3)		Northeast		Naval Station Newport
(0000:0::: =:0::0)		Jacksonville		Cooper River
		Virginia Capes		St. Johns River
				Broad Bay
				York River James River and tributaries
				Joint Expeditionary Base Little
				Creek harbor
				Joint Expeditionary Base Fort
				Story
				South Gate Annex
				Cheatham Annex
				Broad Bay
Stressors to	Acoustic:	Physical Disturb	oance and St	rike: Energy:
Biological	Vessel noise	Vessels and in-v	vater devices	s None
Resources				
	Explosives:	Ingestion:		Entanglement:
	None	None		None
Stressors to	Air Quality:			d Water Quality:
Physical	Criteria air pollutants	N	one	
Resources	Habitata.			
	Habitats: None			
Stressors to	Cultural Resources:	Sociooconom	is Bosourson	s: Public Health and Safety:
Human	None	Socioeconomic Resources: Accessibility		Physical interactions
Resources	HOLIC	Physical distu	rbance and s	
Military	Ingestible Material:		litary	None
Expended	None		coverable	13.10
Material			aterial	
	Non-Ingestible Material:			

Other Training	Other Training Exercises				
Waterborne Tra	Waterborne Training				
Sonar and	None				
Other					
Transducer					
Bins					
In-Water	None				
Explosive					
Bins					
Procedural	Physical Disturbance and Strike: (Section 5.3.4)				
Mitigation	Vessel movement				
Measures					
Assumptions	None				
Used for					
Analysis					

A.3 TESTING ACTIVITIES

A.3.1 Naval Air Systems Command Testing Activities

Naval Air Systems Command activities will generally fall under fleet primary mission areas, such as the testing of airborne mine warfare and anti-submarine warfare weapons and systems. Naval Air Systems Command activities include, but are not limited to, the testing of new aircraft platforms (e.g., the F-35 Joint Strike Fighter aircraft), weapons, and systems (e.g., newly developed sonobuoys) that will ultimately be integrated into fleet training activities. In addition to testing new platforms, weapons, and systems, Naval Air Systems Command also conducts lot acceptance testing of sonobuoys and follow-on testing and evaluation of updated systems in support of fleet operational units. In general, the potential environmental effects from most Naval Air Systems Command testing events are similar to the associated fleet training exercises.

While many of these systems tested by Naval Air Systems Command will ultimately be used by the fleet, testing activities involving the same or similar systems may be conducted in different locations and manners than when conducted by the fleet. Because of these differences, the results of the analysis for testing activities may differ from the results for training activities.

A.3.1.1 Air Warfare

A.3.1.1.1 Air Combat Maneuver Test

Air Warfare					
Air Combat Ma	neuver Test				
Short	Aircrews engage in flight man	euvers designed to	Typical Dura	tion	
Description	gain a tactical advantage duri	ng combat.	Up to 2 flight	hours per aircraft per event	
Long		general term used to describe an air-to-air test event involving two or			
Description	more aircraft, each engaged i				
	altitude, and airspeed. No we	<u> </u>	air combat mar	neuver activities.	
Typical	Platforms: Fixed-wing aircraft	t			
Components	Targets: Air targets	_			
	Systems being Trained/Te	sted: Aircraft platforms			
Standard	Aircraft safety	Typical Locations			
Operating		Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures		Virginia Capes		None	
(Section 2.3.3)	<u> </u>		10. "		
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological Resources	Aircraft noise	Aircraft and aerial targ	ets	In-air electromagnetic devices	
Resources	Explosives:	Ingestion:		devices	
	None	Military expended mat	erials – other	Entanglement:	
	None	than munitions	eriais other	None	
Stressors to	Air Quality:	-	t and Water Q		
Physical	Criteria air pollutants	Metals	Other ma	•	
Resources					
	Habitats:				
	Physical disturbance and strik	Physical disturbance and strike – military			
	expended material				
Stressors to	Cultural Resources:	Socioeconomic Re	sources:	Public Health and Safety:	
Human	Physical disturbance and strik	e Accessibility		Physical interactions	
Resources		Airborne acoustics	<u> </u>	In-air energy	

Air Warfare	Air Warfare						
Air Combat Ma	Air Combat Maneuver Test						
	Physical disturbance and strike						
Military	Ingestible Material:	Military	None				
Expended	Per chaff-air: one chaff-air cartridge,	Recoverable					
Material	one plastic endcap, one compression pad or one plastic piston, chaff fibers Per flare: one casing, one compression pad (closed cell foam) or one plastic piston, one plastic end cap, one Oring (rubber, nitrile) Non-Ingestible Material: None	Material					
Sonar and Other Transducer Bins	None						
In-Water Explosive Bins	None						
Procedural Mitigation Measures	None						
Assumptions Used for Analysis	All combustible material in flares is assum water.	ed to be consum	ed before contact of the casing with the				

A.3.1.1.2 Air Platform – Vehicle Test

Air Warfare					
Air Platform - V	ehicle Test				
Short	Testing performed to quantit	fy the flying qualities,	Typical Dura	ntion	
Description	handling, airworthiness, stability, controllability, and integrity of an air platform or vehicle. No explosive weapons are released during an air platform/vehicle test.		2-8 flight hours per event		
Long Description	The air platform/vehicle test describes the testing performed to quantify the flying qualities, handling, airworthiness, stability, controllability, and integrity of an air platform/vehicle. Integration of non-weapons system including-flight refueling tests are also conducted as part of an air platform/vehicle test. Test results are compared against design and performance specifications for compliance. The test results are also used to define stability and controllability characteristics and limitations and to improve and update existing analytical and predictive models. A wide variety of fixed-wing and rotary-wing aircraft, including unmanned aerial systems would undergo air platform/vehicle testing. No weapons are released during an Air Platform/Vehicle Test. Aircraft may employ laser detection for targeting systems and trailing antenna. Events may involve two or more fighter jet aircraft and a towed target tractor by a contracted aircraft (e.g., Learjet for laser targeting tests).				
Typical	Platforms: Fixed-wing aircraft	ft, unmanned aerial systo	ems		
Components	Targets: None	,			
	Systems being Trained/Test	ed: Aircraft platforms			
Standard	Aircraft safety	Typical Locations			
Operating Procedures (Section 2.3.3)	, and the second	Range Complexes/Test Gulf of Mexico Jacksonville Key West Navy Cherry Point Virginia Capes	ting Ranges:	Inland Waters/Pierside: None	
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:	
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic	
Resources	7 in crare moise	Military expended mat		devices	
110000111000	Explosives:	······································		Lasers	
	None	Ingestion:			
		Military expended mat	erials – other	Entanglement:	
		than munitions		None	
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:	
Physical	Criteria air pollutants		Other materia		
Resources	'				
	Habitats:				
	Physical disturbance and strik	ke – military			
	expended material				
Stressors to	Cultural Resources:	Socioeconomic Re	sources:	Public Health and Safety:	
Human	Physical disturbance and strik	ke Accessibility		Physical interactions	
Resources		Airborne acoustics	i	In-air energy	
		Physical disturban	ce and strike		

Air Warfare	Air Warfare					
Air Platform - V	Air Platform - Vehicle Test					
Military Expended Material	Ingestible Material: Per one chaff-air: one chaff-air cartridge, one plastic endcap, one compression pad or one plastic piston Per one flare: one compression pad (closed cell foam) or one plastic piston, one plastic end cap, one O- ring (rubber, nitrile)	Military Recoverable Material	None			
	Non-Ingestible Material: Non-explosive practice munitions					
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	None					
Procedural Mitigation Measures	None					
Assumptions Used for Analysis	None					

A.3.1.1.3 Air Platform Weapons Integration Test

Air Warfare					
Air Platform Weapo	ns Integration Test				
Short Description	Testing performed to q	uantify the	Typical Dura	ation	
	compatibility of weapo	ns with the aircraft			
	from which they would		Un to 2.5 flig	ght hours per aircraft per event	
	released. Non-explosive	e weapons or shapes	Op to 2.5 mg	gnt nours per ancrait per event	
	are used.				
Long Description	•	ons integration test describes the testing performed to quantify the ons with the aircraft from which they would be released. Tests evalu			
			-	and launch equipment with the	
	•			ircraft. Additional tests assess the	
		_	_	craft at combat velocities,	
	including at supersonic	speeds. Test results a	re compared aga	inst design specifications for	
			-	nce characteristics and to improve	
	and update existing and				
Typical	Platforms: Fixed-wing a	aircraft, unmanned aei	rial systems		
Components	Targets: None	/Tostod: Naunitians fir	ing/launching co	stoms	
Standard	Systems being Trained		ing/launching sys	stems	
Operating	Aircraft safety Unmanned aerial,	Typical Locations Range Complexes/T	ostina Pangası	Inland Waters/Pierside:	
Procedures	surface, and	Virginia Capes	esting Kanges:	None	
(Section 2.3.3)	subsurface vehicle	Virginia Capes		None	
	safety				
Stressors to	Acoustic:	Physical Disturbance		Energy:	
Biological	Aircraft noise	Aircraft and aerial tar	_	In-air electromagnetic	
Resources		Military expended ma	aterials	devices	
	Explosives: None	Ingestion:		Entanglement:	
	None	Military expended ma	aterials – munitic	_	
Stressors to	Air Quality:		ents and Water		
Physical	Criteria air pollutants	Metal		Quanty.	
Resources	,				
	Habitats:				
	Physical disturbance an				
	military expended m				
Stressors to	Cultural Resources:	Socioeconomic R	esources:	Public Health and Safety:	
Human Resources	Physical disturbance an strike	d Accessibility Airborne acoustic		Physical interactions In-air energy	
	Strike	Physical disturbar	-	m-an energy	
Military	Ingestible Material:	Militar		-	
Expended	None	Recove	•		
Material		Mater	ial		
	Non-Ingestible Materia				
	Non-explosive practice	munitions			
Sonar and Other	None				
Transducer Bins		<u>.</u>	-		
In-Water	None				
Explosive Bins					

Air Warfare		
Air Platform Weapons Integration Test		
Procedural	Physical Disturbance and Strike: (Section	
Mitigation	5.3.4)	
Measures	Non-explosive bombs and mine shapes	
Assumptions	None	
Used for Analysis		

A.3.1.1.4 Air-to-Air Weapons System Test

Air Warfare					
	oons System Test				
Short	Test to evaluate the effectiv	reness of air-launc	hed Typ	ical Dura	ition
Description	weapons against designated				urs per aircraft per event
Long					
Description		ems test evaluates the performance of air-launched weapons system he BQM-34, a high-performance target simulating a strike fighter			
Description	_	weapons systems test, a strike fighter aircraft locates, tracks, and, in			
	=	arget used to simulate another strike fighter aircraft using non-explosivolosive weapons is planned.			
Typical	Platforms: Fixed-wing aircra				
Components	Targets: Air targets	sted: Munitions firing/launching systems			
Components					
Standard	Aircraft safety	Typical Location		g system.	5
Operating	Aircraft safety				Inland Mateur / Dispoids
Procedures	,	Range Complex Gulf of Mexico	es/ resting F	tanges:	Inland Waters/Pierside:
(Section 2.3.3)	,	Guil of Mexico			None
Stressors to	Acoustic:	Physical Disturk	annee and Ci	rika	Enormy
Biological	Aircraft noise	Aircraft and aer		irike.	Energy:
Resources	Weapons noise	Military expend			In-air electromagnetic devices
Resources	Weapons noise	wiiitary experiu	eu matemais	•	devices
	Explosives:	Ingestion:			Entanglement:
	None	Military expend	ad matarials	· _	None
	None	munitions	eu materiais	•	None
Stressors to	Air Quality:		ediment and	Water C	Quality:
Physical	Criteria air pollutants		letals	water e	county.
Resources	Criteria dii poliutarits	141	ictais		
ness united	Habitats:				
	Physical disturbance and stri	ike – militarv			
	expended material	,			
Stressors to	Cultural Resources:	Socioeconom	nic Resource	s:	Public Health and Safety:
Human	Physical disturbance and	Accessibility			Physical interactions
Resources	strike	Airborne acou	ustics		In-air energy
		Physical distu	rbance and	strike	5,
Military	Ingestible Material:		ilitary	None	
Expended	None		coverable		
Material		Ma	aterial		
	Non-Ingestible Material:				
	Missiles (non-explosive)				
Sonar and	None				
Other	None				
Transducer					
Bins					
In-Water	None	<u> </u>		-	<u> </u>
Explosive	None				
Bins					
Procedural	Physical Disturbance and St	rika: (Saction E.2)	1)		
Mitigation	Non-explosive missiles and r		† /		
Measures	ivon-explosive illissiles dila i	OCKELS			
ivieasures					

Air Warfare	Air Warfare				
Air-to-Air Wear	oons System Test				
Assumptions	None				
Used for					
Analysis					

A.3.1.1.5 Air-to-Air Gunnery Test – Medium-Caliber

Air Warfare							
Air-to-Air Gun	nery Test – Medium-Caliber						
Short	Test performed to evaluate	the effectiveness of	Typical Dura	ation			
Description	air-to-air guns against desigi	nated airborne		s nor aircraft nor avant			
	targets. Fixed-wing aircraft r	may be used.	2 Hight hour	s per aircraft per event			
Long			aining event gunnery exercise air-to-air. An air-to-air gunnery test				
Description		rom fixed-wing aircraft against a towed aerial banner that serves as the					
		s are fired, and the targets fired upon are typically towed aerial banners.					
Typical	Platforms: Fixed-wing aircra	ift					
Components	Targets: Air targets Systems being Trained/Test	ted: Medium-caliber gu	ın systems				
Standard	Aircraft safety	Typical Locations	an systems				
Operating	Aircraft safety	Range Complexes/Te	eting	Inland Waters/Pierside:			
Procedures		Ranges:	esting	None			
(Section		Virginia Capes		None			
2.3.3)		Ba capes					
Stressors to	Acoustic:	Physical Disturbance	and Strike:	Energy:			
Biological	Aircraft noise	Aircraft and aerial tar	_	In-air electromagnetic devices			
Resources	Weapons noise	Military expended ma	aterials	Entanglement:			
		Ingestion: Military expended materials –		None			
	Explosives:						
	None	munitions					
Stressors to	Air Quality:		Sediments a	nd Water Quality:			
Physical	Criteria air pollutants		Metals				
Resources							
	Habitats:	ika militaru					
	Physical disturbance and stri expended material	ike – Illilitary					
Stressors to	Cultural Resources:	Socioeconomic Reso	urces:	Public Health and Safety:			
Human	Physical disturbance and	Airborne acoustics		Physical interactions			
Resources	strike	Physical disturbance	and strike	In-air energy			
		Accessibility					
Military	Ingestible Material:		Military	None			
Expended	Medium-caliber projectiles (non-explosive),	Recoverab				
Material	medium-caliber casings		le Material				
	Non-Ingestible Material:						
	None						
Sonar and	None						
Other							
Transducer							
Bins	Nene						
In-Water Explosive	None						
Explosive Bins							
Procedural	Physical Disturbance and St	rike· (Section 5 3 4)	-	.			
Mitigation	Small-, medium-, and large-o						
Measures	practice munitions						
ivieasures	practice munitions						

Air Warfare				
Air-to-Air Gunnery Test – Medium-Caliber				
Assumptions	None			
Used for				
Analysis				

A.3.1.1.6 Air-to-Air Missile Test

Air Warfare						
Air-to-Air Missil	e Test					
Short	Test performed to evaluate	the effectivenes	ss of	Typical D	uration	
Description	air-launched missiles agains	st designated air	borne	2 5 flight	hours per aircraft per event	
	targets. Fixed-wing aircraft			2.5 flight hours per aircraft per event		
Long		_			-air). Tests are a type of air-to-air	
Description	weapons system test in which air-to-air missiles (non-explosive) are fired from fixed-wing aircraft					
	<u> </u>	rones such as BQM-34 and BQM-74.				
Typical	Platforms: Fixed-wing aircra	_				
Components	Targets: Air targets Systems being Trained/Tos					
Standard				ig systems	5	
Operating Standard	Aircraft safety Weapons firing safety	Typical Locati		D	and Indoord Materia / Disposidos	
Procedures	weapons ning salety	Range Compl		ng Kanges		
(Section 2.3.3)		Virginia Cape	5		None	
Stressors to	Acoustic:	Physical Distu	urbance ar	nd Strike	Energy:	
Biological	Aircraft noise	Aircraft and a			In-air electromagnetic	
Resources	Weapons noise	Military expe	J		devices	
	·					
	Explosives:	Ingestion:			Entanglement:	
	None	None			None	
Stressors to	Air Quality:		Sediment	and Wate	er Quality:	
Physical	Criteria air pollutants		Metals			
Resources						
	Habitats:	. سحفالتم سنا				
	Physical disturbance and str expended material	ike – military				
Stressors to	Cultural Resources:	Socioecono	nmic Resou	irces.	Public Health and Safety:	
Human	Physical disturbance and	Accessibilit		urces.	Physical interactions	
Resources	strike	Airborne a	•		In-air energy	
		Physical dis	sturbance a	and strike	S,	
Military	Ingestible Material:		Military	Noi	ne	
Expended	None		Recoverab	le		
Material			Material			
	Non-Ingestible Material:					
0 1	Missiles (non-explosive)					
Sonar and	None					
Other Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	None	-	<u>.</u>	-	.	
Mitigation						
Measures						

Air Warfare	
Air-to-Air Missi	ile Test
Assumptions	None
Used for	
Analysis	

A.3.1.1.7 Intelligence, Surveillance, and Reconnaissance Test

Air Warfare					
	eillance, and Reconnaissance	Test			
Short		nsors to collect data on threat	Typical Duration		
Description	vessels.	ilsors to collect data on tilleat	2-20 flight hours per event		
-					
Long Description	An air warfare intelligence, surveillance, and reconnaissance (ISR) test involves evaluating communications capabilities of aircraft, including unmanned aerial systems that can carry cameras, sensors, communications equipment, or other payloads. New systems are tested at set to ensure proper communications between aircraft and ships.				
	ISR aircraft systems act as eyes in the sky, relaying raw imagery back to military personnel on the ground or to ships at-sea. The data is processed, analyzed, and shared with U.S. Navy or other U.S. military aircraft or vessels. New ISR technology systems provide combat identification (friend or foe) and are used for aircraft and ship-based communications.				
Typical Components	Platforms: Fixed-wing aircra Targets: Air targets, surface Systems being Trained/Tes	=	nmanned aerial systems		
Standard	Aircraft safety	Typical Locations			
Operating	Unmanned aerial, surface,	Range Complexes/Testing	Inland Waters/Pierside:		
Procedures	and subsurface vehicle	Ranges:	None		
(Section 2.3.3)	safety	Jacksonville Navy Cherry Point Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance and Strike:	Energy:		
Biological Resources	Aircraft noise	Aircraft and aerial targets	In-air electromagnetic devices		
	Explosives: None	Ingestion: None	Entanglement: None		
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: None	Sediments and Water Quality: None			
Stressors to	Cultural Resources:	Socioeconomic Resources:	Public Health and Safety:		
Human	None	Accessibility I	Physical interactions		
Resources		Airborne acoustics I Physical disturbance and strike	n-air energy		
Military Expended Material	Ingestible Material: None Non-Ingestible Material: None	Military Recoverable Material	None		
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	None				
Procedural Mitigation Measures	None				

Air Warfare			
Intelligence, Surveillance, and Reconnaissance Test			
Assumptions	None		
Used for			
Analysis			

A.3.1.2 Anti-Submarine Warfare

Anti-submarine warfare activities involve helicopter and maritime patrol aircraft, ships, and submarines, conducting operations alone or in combination, to enhance or evaluate the ability to locate, track, and neutralize submarines. Anti-submarine warfare tests are intended to evaluate the capabilities of a variety of active and passive sonar systems. Some systems are used to characterize the environment by measuring water depth, for example, whereas others are designed to locate mines and identify, track, and target submarines. Passive sonar systems "listen" for sound by using underwater microphones, called hydrophones, which receive, filter, amplify, and process underwater sound in search of certain acoustic signatures. No sound is introduced into the water when using passive sonar. Passive sonar can indicate the presence, character, and movement of a submarine, to the extent that the submarine generates noise.

Active sonar is the most effective means for locating quiet, modern submarines because active sonar is not dependent on the sound being generated by the submarine. Active sonar transmits pulses of sound that travel through the water, reflect off objects, and return to a receiver. By knowing the speed of sound in water and the time taken for the sound wave to travel to the object and back, active sonar systems can quickly calculate direction and distance from the sonar platform to the underwater object. Being able to accurately track moving submarines is essential to U.S. ship survivability.

Advanced, large-scale anti-submarine warfare events (i.e., anti-submarine warfare coordinated events) involving active sonar are conducted in coordinated, at-sea activities during multidimensional fleet training events involving submarines, ships, fixed-wing aircraft, and helicopters. These integrated training events offer opportunities to conduct testing activities and to train aircrews in the use of new or newly enhanced systems during a large-scale, complex exercise. Coordinated anti-submarine warfare events often involve the full anti-submarine warfare continuum from detecting and tracking a submarine to attacking a target using either exercise torpedoes or simulated weapons. Training events include detection and tracking exercises against "enemy" submarine contacts, torpedo employment exercises against the target, and exercising command and control tasks in a multidimensional battlespace.

The torpedoes released during a torpedo employment exercise are non-explosive. No other weapons are fired during Naval Air Systems Command anti-submarine warfare tests. Anti-submarine warfare sonar systems are deployed from certain classes of surface ships, submarines, helicopters, and fixed-wing patrol aircraft. Helicopters equipped with dipping sonar or sonobuoys are utilized to locate suspect submarines or submarine targets within the training or testing area. In addition, fixed-wing patrol aircrafts are used to deploy both active and passive sonobuoys to assist in locating and tracking submarines during the duration of the test.

Anti-submarine warfare tests include sonobuoy lot acceptance tests, which evaluate the integrity of a series, or lot, of sonobuoys before the lot is turned over to the fleet; dipping sonar tests in both shallow and deep water; torpedo tests (non-explosive warhead); and sonobuoy tests with both coherent (acoustic) and incoherent (explosive) sonobuoys. The types of sound sources tested by Naval Air Systems Command during anti-submarine warfare sonar tests in the Study Area are identified in Table A.1-1, and descriptions of anti-submarine warfare tests are provided in the sections below.

A.3.1.2.1 Anti-Submarine Warfare Torpedo Test

Anti-Submarine	e Warfare				
Anti-Submarine	Warfare Torpedo Test				
Short	This event is similar to the tr	raining event torpedo	Typical Durat	tion	
Description	exercise. Test evaluates anti	-submarine warfare			
	systems onboard rotary-win	•			
	aircraft and the ability to sea		2-6 flight hou	ırs per event	
	classify, localize, track, and a	attack a submarine or			
	similar target.				
Long Description	Similar to a torpedo exercise, an anti-submarine warfare torpedo test evaluates anti-submarine warfare systems onboard rotary-wing (e.g., MH-60R helicopter) and fixed-wing (maritime patrol aircraft P-8) aircraft and the ability to search for, detect, classify, localize, track, and attack a submarine or similar target (e.g., MK-39 EMATT, or MK-30). Both sonobuoys and torpedoes (using the High Altitude Anti-Submarine Warfare Weapon Capability kit) may be delivered at high altitudes to remain clear of high threat areas. The focus of the anti-submarine warfare torpedo test is the operation of non-explosive torpedoes (e.g., MK-46 or MK-54), but other anti-submarine warfare systems are often used during the test. MK-39 (EMATT) or MK-30 targets simulate a submarine threat and are deployed at varying depths and speeds. If available, tests may be conducted using an actual submarine as the target. This activity can be conducted in shallow or deep waters and aircraft can originate from a land base or from a surface ship. The torpedo test culminates with the release of an exercise torpedo against the target and is intended to evaluate the targeting, release, and tracking process of deploying torpedoes from aircraft. All exercise torpedoes used in testing are either running (EXTORP) or non-running (REXTORP) and are non-explosive. Eighty five percent of torpedoes are recovered. A parachute assembly used for aircraft-launched torpedoes is jettisoned and sinks. Ballast (typically lead weights) may be released from the torpedoes to allow for recovery, leaving the ballast				
	to sink to the bottom.				
Typical	Platforms: Fixed-wing aircra				
Components	Targets: Sub-surface targets				
0. 1.1	Systems being Trained/Test		launching syste	ems	
Standard	Aircraft safety	Typical Locations			
Operating Procedures	Weapons firing safety	Range Complexes/Test	ting Ranges:	Inland Waters/Pierside:	
(Section 2.3.3)		Jacksonville		None	
	A	Virginia Capes		F	
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological Resources	Sonar and other transducers	Aircraft and aerial targ Vessels and in-water d		In-air electromagnetic	
Resources	Aircraft noise	Military expended mat		devices	
	Aircraft Hoise	Seafloor devices	Cilais	Entanglement:	
	Explosives:	Scanoor devices		Wires and cables	
	None	Ingestion:		Decelerators/parachutes	
		Military expended mat	erials –	2 000.0. 000.0, par 00.1000	
		munitions			
		Military expended mat	erials – other		
		than munitions			
Stressors to	Air Quality:	Sedimen	ts and Water (Quality:	
Physical	Criteria air pollutants	Metals		emicals	
Resources		Other ma	aterials		
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
	Physical disturbance and stri	ke – seafloor			

Anti-Submarine				
Anti-Submarine	Warfare Torpedo Test			
	devices			
Stressors to Human	Cultural Resources: Physical disturbance and	Accessibi	•	Physical interactions
Resources	strike		acoustics disturbance and s	In-air energy trike Underwater energy
Military Expended Material	Ingestible Material: Small decelerators/parachutes, parachutes – medium, ballast Non-Ingestible Material: Expendable bathythermographs expendable bathythermographs wires, sonobuoys (non-exploses sonobuoy wires, expendable surface targets, lightweight to accessories	s, oh sive), sub-	Military Recoverable Material	Lightweight torpedoes (non-explosive), recoverable sub-surface targets
Sonar and Other Transducer Bins	Mid-Frequency: MF5	Torpedo TORP1	es:	
Explosive Bins	None	-		
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3. Active sonar	2)		·
Assumptions Used for Analysis	Assume one torpedo accessory Assume one target per torpedo.		parachute, ballast) per torpedo.

A.3.1.2.2 Anti-Submarine Warfare Tracking Test – Helicopter

Anti-Submarine	e Warfare					
Anti-Submarine	Warfare Tracking Test – Hel	icopter				
Short	This event is similar to the t	raining event anti- Typical D	uration			
Description	submarine tracking exercise					
	evaluates the sensors and s	ystems used to detect				
	and track submarines and t	o ensure that 2 flight ho	ours per event			
	helicopter systems used to	deploy the tracking				
	systems perform to specific	ms perform to specifications.				
Long		e tracking exercise–helicopter, an An	_			
Description	 helicopter evaluates the sensors and systems used to detect and track submarines and to ensure 					
		to deploy the tracking systems perfo				
		nducts anti-submarine warfare testin				
		e sonobuoys (e.g., AN/SSQ-62), passi	· · · · ·			
	-	., mini sound-source seeker buoys).				
		during an anti-submarine warfare tra	_			
		actual submarine as the target. This could initiate from a land base or from				
		e intended to evaluate the sensors ar				
		hat platform systems used to deploy	-			
		Ibmarine helicopter tracking tests co	= :			
	• · · · · · · · · · · · · · · · · · · ·	ated event with fleet training activiti				
Typical	Platforms: Rotary-wing airc					
Components	Targets: Sub-surface target					
•		ted: Sonobuoys, dipping sonar system	ms			
Standard	Aircraft safety	Typical Locations				
Operating		Range Complexes/Testing Ranges	: Inland Waters/Pierside:			
Procedures		Gulf of Mexico	None			
(Section 2.3.3)		Jacksonville				
		Key West				
		Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance and Strike:	Energy:			
Biological	Sonar and other	Aircraft and aerial targets	In-air electromagnetic			
Resources		Military expended materials devices				
	transducers	Military expended materials	_			
.100041 003	transducers Aircraft noise	Military expended materials Underwater explosives	devices			
	Aircraft noise	Underwater explosives	devices Entanglement:			
- TOO WITCO	Aircraft noise Explosives:	Underwater explosives Ingestion:	devices Entanglement: Wires and cables			
	Aircraft noise	Underwater explosives Ingestion: Military expended materials – oth	devices Entanglement: Wires and cables			
	Aircraft noise Explosives: Underwater explosives	Underwater explosives Ingestion: Military expended materials – oth than munitions	devices Entanglement: Wires and cables Decelerators/parachutes			
Stressors to	Aircraft noise Explosives: Underwater explosives Air Quality:	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wat	devices Entanglement: Wires and cables er Decelerators/parachutes Decelerators/parachutes			
Stressors to Physical	Aircraft noise Explosives: Underwater explosives	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wat Explosives	devices Entanglement: Wires and cables er Decelerators/parachutes er Quality: Chemicals			
Stressors to	Aircraft noise Explosives: Underwater explosives Air Quality:	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wat	devices Entanglement: Wires and cables er Decelerators/parachutes Decelerators/parachutes			
Stressors to Physical	Aircraft noise Explosives: Underwater explosives Air Quality: Criteria air pollutants Habitats:	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wate Explosives Metals	devices Entanglement: Wires and cables er Decelerators/parachutes er Quality: Chemicals			
Stressors to Physical	Aircraft noise Explosives: Underwater explosives Air Quality: Criteria air pollutants	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wate Explosives Metals	devices Entanglement: Wires and cables er Decelerators/parachutes er Quality: Chemicals			
Stressors to Physical	Aircraft noise Explosives: Underwater explosives Air Quality: Criteria air pollutants Habitats: Physical disturbance and str	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wate Explosives Metals	devices Entanglement: Wires and cables er Decelerators/parachutes er Quality: Chemicals			
Stressors to Physical	Aircraft noise Explosives: Underwater explosives Air Quality: Criteria air pollutants Habitats: Physical disturbance and strexpended material	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wate Explosives Metals	devices Entanglement: Wires and cables er Decelerators/parachutes er Quality: Chemicals			
Stressors to Physical Resources	Aircraft noise Explosives: Underwater explosives Air Quality: Criteria air pollutants Habitats: Physical disturbance and strexpended material Underwater explosives	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wate Explosives Metals ike – military Socioeconomic Resources: Accessibility	devices Entanglement: Wires and cables er Decelerators/parachutes er Quality: Chemicals Other materials			
Stressors to Physical Resources	Aircraft noise Explosives: Underwater explosives Air Quality: Criteria air pollutants Habitats: Physical disturbance and strexpended material Underwater explosives	Underwater explosives Ingestion: Military expended materials – oth than munitions Sediments and Wate Explosives Metals ike – military Socioeconomic Resources:	Entanglement: Wires and cables Decelerators/parachutes er Quality: Chemicals Other materials Public Health and Safety:			

Anti-Submarin	Anti-Submarine Warfare					
Anti-Submarine Warfare Tracking Test – Helicopter						
	Explosives					
Military Expended Material	Ingestible Material: Small decelerators/parachutes, sonobuoy (explosive) fragments Non-Ingestible Material: Sonobuoys (non-explosive), sonobuoy wires	Military Recoverable Material	Recoverable sub-surface targets			
Sonar and Other Transducer Bins	Mid-Frequency: MF4 MF5					
In-Water Explosive Bins	E3					
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Active sonar	=	ve Stressors: (Section 5.3.3) ve sonobuoys			
Assumptions Used for Analysis	None					

A.3.1.2.3 Anti-Submarine Warfare Tracking Test – Maritime Patrol Aircraft

Anti-Submarine	· Warfare					
Anti-Submarine	Warfare Tracking Test – Ma	ritime Patrol Aircraft				
Short	The test evaluates the senso	ors and systems used	Typical Du	ration		
Description	by maritime patrol aircraft t	o detect and track				
	submarines and to ensure t	hat aircraft systems	1 6 flight h	ours per event		
	used to deploy the tracking	systems perform to	4-6 flight hours per event			
	specifications and meet ope	eet operational requirements.				
Long		_		Patrol Aircraft, an Anti-Submarine		
Description	<u> </u>	Test—Maritime Patrol Aircraft evaluates the sensors and systems used to detect nes and to ensure that platform systems used to deploy the tracking systems				
				3 or P-8 fixed-wing aircraft conduct		
				e.g., AN/SSQ-62 DICASS), explosive		
				B DIFAR), and smoke devices (e.g.,		
				ng an anti-submarine warfare		
		-		marine as the target. This activity		
	would be conducted in deep		•	of a coordinated event with fleet		
	training activities.	King tests could be condi-	icteu as part	or a coordinated event with neet		
Typical	Platforms: Fixed-wing aircra	oft				
Typical Components	Targets: Sub-surface targets					
Components	_		v launching	systems, data transmission systems		
Standard	Aircraft safety	Typical Locations	y lauricining	systems, data transmission systems		
Operating	All clair salety	Range Complexes/Test	ing Pangos:	Inland Waters/Pierside:		
Procedures		Gulf of Mexico	illig hallges.	None		
(Section 2.3.3)		Jacksonville		None		
,		Key West				
		Navy Cherry Point				
		Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological	Sonar and other	Aircraft and aerial targ	ets	In-air electromagnetic		
Resources	transducers	Vessels and in-water de	evices	devices		
	Aircraft noise	Military expended mat				
		Underwater explosives	i	Entanglement:		
	Explosives:			Wires and cables		
	Underwater explosives	Ingestion:		Decelerators/parachutes		
		Military expended mat	erials – othe	er .		
Character	Ata Occality	than munitions	A 14/-A-			
Stressors to	Air Quality:		ts and Wate			
Physical Resources	Criteria air pollutants	Explosive Metals		Chemicals Other materials		
Resources	Habitats:	ivietais	,	Other materials		
	Physical disturbance and str	ike – military				
	expended material					
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:		
Human		Accessibility		Physical interactions		
Resources	Physical disturbance and	Airborne acoustics		In-air energy		
	strike	Physical disturbance	and strike	Underwater energy		
	Explosives					
	strike	Airborne acoustics	and strike	In-air energy		

Anti-Submarine Warfare							
	Anti-Submarine Warfare Tracking Test – Maritime Patrol Aircraft						
Military	Ingestible Material: Military Exercise torpedoes, recoverable sub-						
Expended	Small decelerators/parachutes,	Recoverable	surface targets				
Material	sonobuoy (explosive) fragments	Material	surface targets				
Waterial	Soliobdoy (explosive) fragments	Wiaterial					
	Non-Ingestible Material:						
	Sonobuoys (non-explosive), expendable						
	sub-surface targets, sonobuoy wires						
Sonar and		marine Warfare:					
Other	MF5 MF6 ASW2	ASW5					
Transducer							
Bins							
In-Water	E1 E3						
Explosive							
Bins							
Procedural	None						
Mitigation							
Measures							
Assumptions	None						
Used for							
Analysis							

A.3.1.2.4 Kilo Dip

Anti-Submarine	Warfare					
Kilo Dip						
Short	Functional check of a helico	nter deployed dipping	Typica	l Duration		
Description	sonar system (e.g., AN/AQS		7,0.00			
2 000	conducting a testing or train	· ·	1.5 flis	ght hours per	event	
	dipping sonar system.	0 0				
Long	A kilo dip is the operational	term used to describe	a function	al check of a	helicopter deployed	
Description		ng a functional check, a single helicopter (e.g., MH-60) would transit to an				
	area designated for dipping	sonar testing (i.e., a di	p point us	ually close to	shore) and would deploy	
	the sonar transducer assem	ably via a reel mechanism to a predetermined depth or series of depths over the dip point. Once at the desired depth, the sonar transducer				
	would be activated and wou					
	systems are functioning pro	E1	-			
	would be reeled in, and in s		-			
	the procedure is repeated. A		r to more o	comprehensiv	e testing.	
Typical	Platforms: Rotary-wing airc	raft				
Components	Targets: None Systems being Trained/Test	tad. Dinning sames sur	toms			
C: 1 1	Systems being Trained/Tes		tems			
Standard Operating	Aircraft safety	Typical Locations			. d 144-4 /Diid	
Procedures		Range Complexes/T Gulf of Mexico	esting Kar	_	d Waters/Pierside:	
(Section 2.3.3)		Jacksonville		None	-	
(300000112.3.3)		Key West				
		Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbanc	e and Stril	ke: Er	nergy:	
Biological	Sonar and other	Aircraft and aerial to			-air electromagnetic	
Resources	transducers				devices	
	Aircraft noise	Ingestion:				
		None				
	Explosives:					
	None					
Stressors to	Air Quality:		ents and \	Vater Quality	<i>t</i> :	
Physical	Criteria air pollutants	None				
Resources						
	Habitats:					
Chungana ta	None Cultural Resources:	Socioeconomic	Dagayyaa	. D. bi	is Haalth and Cafatur	
Stressors to Human	None	Accessibility	Resources		ic Health and Safety: ical interactions	
Resources	None	Airborne acoust	tics	•	r energy	
Resources		Physical disturb			erwater energy	
Military	Ingestible Material:	Militar		None	indica chergy	
Expended	None	Recove	-			
Material		Materi	al			
	Non-Ingestible Material:					
	None					
Sonar and	Mid-Frequency:	<u> </u>				
Other	MF4					
Transducer						
Bins						
Sonar and Other Transducer	Non-Ingestible Material: None Mid-Frequency:					

Anti-Submarine	e Warfare
Kilo Dip	
In-Water	None
Explosive	
Bins	
Procedural	Acoustic Stressors: (Section 5.3.2)
Mitigation	Active sonar
Measures	
Assumptions	None
Used for	
Analysis	

A.3.1.2.5 Sonobuoy Lot Acceptance Test

Anti-Submarine	Anti-Submarine Warfare					
Sonobuoy Lot A	Acceptance Test					
Short	Sonobuoys are deployed fro	m surface ves	sels and	Турі	cal Durat	tion
Description	aircraft to verify the integrit	y and perform	nance of			
	a lot or group of sonobuoys	in advance of	delivery	6 flig	ht hours	per event
	to the fleet for operational ι	ıse.				
Long	Sonobuoys are deployed fro	m surface ves	sels and ai	rcraft t	o verify t	the integrity and performance of
Description	a lot or group of sonobuoys	s in advance of delivery to the fleet for operational use. Lot acceptance				
	testing would occur for mult	iple types of s	sonobuoys	includ	ing non-i	mpulsive (e.g., AN/SSQ-62
	DICASS) and explosive (e.g.,					
Typical	Platforms: Fixed-wing aircra	ft, Navy ships				
Components	Targets: None					
	Systems being Trained/Test					
Standard	Vessel safety	Typical Loca	tions			
Operating	Aircraft safety	Range Com	plexes/Tes	ting Ra	anges:	Inland Waters/Pierside:
Procedures		Key West				None
(Section 2.3.3)						-
Stressors to	Acoustic:	Physical Dis			ike:	Energy:
Biological	Sonar and other	Aircraft and	_			In-air electromagnetic
Resources	transducers	Vessels and				devices
	Aircraft noise	Military exp				
	Vessel noise	Underwate	r explosives	5		Entanglement:
						Wires and cables
	Explosives:	Ingestion:				Decelerators/parachutes
	Underwater explosives	Military exp		eriais	– otner	
Stressors to	Air Quality:	than mu	Sedimen	tc and	Mator C	Quality
Physical	Criteria air pollutants		Explosive			emicals
Resources	Criteria an ponutants		Metals	-3		her materials
nesources	Habitats:		Wictais			Tel materials
	Physical disturbance and stri	ke – militarv				
	expended material	,				
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeco	nomic Reso	ources	:	Public Health and Safety:
Human		Accessibi	lity			Physical interactions
Resources	Physical disturbance and	Airborne	acoustics			In-energy
	strike	Physical o	disturbance	and s	trike	Underwater energy
	Explosives					
Military	Ingestible Material:		Military		None	
Expended	Small decelerators/parachut	es,	Recovera	ble		
Material	sonobuoy (explosive) frag	ments	Material			
	Non-Ingestible Material:					
	Sonobuoys (non-explosive),	sonobuoy				
	wires					
Sonar and	Low-Frequency:	High-Fre				
Other	LF4	HF5	HF6)		
Transducer	Mid Froguesia	Aust C. I.	marine W			
Bins	Mid-Frequency:		marine Wa			
	MF5 MF6	ASW2	ASV	VO		

Anti-Submarine	Anti-Submarine Warfare					
Sonobuoy Lot A	Sonobuoy Lot Acceptance Test					
In-Water	E1	E3	E4			
Explosive						
Bins						
Procedural	Acoustic Stre	essors: (Section 5.3.	2)	Explosive Stressors: (Section 5.3.3)		
Mitigation	Active sonar			Explosive sonobuoys		
Measures	Physical Dist	urbance and Strike	: (Section 5.3.4)			
	Vessel move	ment				
Assumptions	Assume one	parachute per sond	buoy			
Used for						
Analysis						

A.3.1.3 Electronic Warfare

A.3.1.3.1 Chaff Test

Electronic Warf	are				
Chaff Test					
Short	This event is similar to the tr	raining event chaff	Typical Durat	ion	
Description	exercise. Chaff tests evaluate enhanced chaff, chaff disper modified aircraft systems ag deployment. Tests may also aircrews in the use of new cl equipment. Chaff tests are of flare tests and air combat m	e newly developed or nsing equipment, or gainst chaff train pilots and haff dispensing often conducted with aneuver events, as	2-4 flight hou		
Long Description	well as other test events, and are not typically conducted as standalone tests. Chaff tests are conducted to evaluate newly developed or enhanced chaff dispensing equipment, to ensure other newly developed or modified aircraft systems are compatible with chaff deployment, and to train pilots and aircrew in the use of new chaff dispensing equipment. Fixed-wing, rotary-wing, and tiltrotor aircraft deploy chaff to disrupt threat targeting and missile guidance radars and to defend against an attack (Electronic Protect deployment). Chaff tests are often conducted with flare tests or air combat maneuver events, as well as other tests, rather than as a standalone test. Weapons are not typically fired during chaff tests. Chaff is employed for a number of different tactical reasons, but the end goal is to create a target that will distract enemy radar and weapon systems away from the friendly platform. Chaff may also be employed offensively (Electronic Attack deployment), such as before a major strike to "hide" inbound striking aircraft. Different chaff types (e.g., RR-129A/AL, RR-144A/AL, and RR-170A/AL) are used by a variety of different Navy aircraft; however all chaff consists of a radar reflector material made of thin, narrow, metallic strips cut in various lengths, and is intended to elicit frequency responses which deceive enemy radars. Defensive chaff tests are the most common type of chaff test. In most cases, the chaff test is conducted to evaluate systems on the aircraft deploying the chaff, but it is also critical to view the effect of the chaff from the "enemy" perspective so that radar system operators may practice corrective procedures to overcome the chaff jamming effect. Chaff tests are often designed to gain experience and data from both perspectives. Chaff is typically deployed from an aircraft as the aircraft makes evasive maneuvers to defeat a simulated threat missile or threat aircraft. The chaff				
Typical	missile, allowing the aircraft to escape the threat. Platforms: Fixed-wing aircraft, rotary-wing aircraft, tiltrotor aircraft				
Components	Targets: None	nt, rotary-wing antialt, ti	in otor antialt		
	Systems being Trained/Test	ted: Chaff, chaff dispensi	ng systems		
Standard	Aircraft safety	Typical Locations			
Operating		Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:	
Procedures (Section 2.3.3)		Gulf of Mexico Jacksonville Virginia Capes		None	
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:	
Biological Resources	Aircraft noise	Aircraft and aerial targe Military expended mat		In-air electromagnetic devices	
	Explosives: None	Ingestion: Military expended mat than munitions	erials – other	Entanglement: None	

Electronic Warf	are				
Chaff Test					
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and strike – r expended material	military	Sediments and Metals	Water (Other ma	-
Stressors to Human Resources	Physical disturbance and A strike A	ccessibil irborne	nomic Resources ity acoustics listurbance and si		Public Health and Safety: Physical interactions In-air energy
Military Expended Material	Ingestible Material: For chaff: one chaff-air cartridge, plastic endcap, one compression or one plastic piston For flares: one compression pad (cell foam) or one plastic piston, plastic endcap, one O-ring (rubb nitrile) Non-Ingestible Material: None	one n pad closed one	Military Recoverable Material	None	
Sonar and Other Transducer Bins In-Water Explosive	None	•			
Bins Procedural Mitigation Measures	None				·
Assumptions Used for Analysis	None				

A.3.1.3.2 Electronic System Evaluation

Electronic Warf	Electronic Warfare						
Electronic Syste	ms Evaluation						
Short	Test that evaluates the effect	ctiveness of electronic	Typical Dura	ntion			
Description	systems to control, deny, or portions of the electromagn general, electronic warfare t performance of three types systems: electronic attack, e electronic support.	etic spectrum. In esting will assess the of electronic warfare	2-6 flight ho	urs per event			
Long Description	Electronic systems evaluations are performed to determine the effectiveness of designated electronic warfare systems to control, deny, or monitor critical portions of the electromagnetic spectrum. In general, electronic warfare testing will assess the performance of three types of electronic warfare systems; specifically, electronic attack, electronic protect, and electronic support. Aircraft electronic attack systems are designed to confuse the enemy or deny the enemy the use of						
	its electronically-targeted weapons systems. The suppression of enemy air defenses and active jamming against hostile aircraft and surface combatant radars are examples of the application of electronic attack. Aircraft electronic protect systems are designed to intercept, identify, categorize, and defeat threat weapons systems that are already targeting that or other friendly aircraft. Aircraft electronic support systems employ passive tactics to intercept, exploit, locate (target), collect, collate, and decipher information from the radio frequency spectrum for the purpose of determining the intentions of the radiating source. Test results are compared against design specifications to evaluate the performance of the actually electronic warfare system. The test results are also used to define performance characteristics and to improve and update existing analytical and predictive models.						
Typical	Platforms: Fixed-wing aircra						
Components	Targets: Air targets, electror						
·	Systems being Trained/Test	_	stems, radar s	systems			
Standard	Aircraft safety	Typical Locations					
Operating Procedures (Section 2.3.3)	·	Range Complexes/Test Jacksonville Virginia Capes	ting Ranges:	Inland Waters/Pierside: None			
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:			
Biological Resources	Aircraft noise	Aircraft and aerial targ	ets	In-air electromagnetic devices			
	Explosives:	Ingestion:					
	None	None		Entanglement:			
Strossors to	Air Quality:	Codimon	ts and Water	None			
Stressors to Physical	Criteria air pollutants	None	is allu water	Quanty.			
Resources	Citiena an poliutants	None					
	Habitats:						
	None			-			
Stressors to	Cultural Resources:	Socioeconomic Re		Public Health and Safety:			
Human	None	Airborne acoustics		Physical interactions			
Resources		Physical disturban	ce and strike	In-air energy			

Electronic Warf	Electronic Warfare			
Electronic Syste	Electronic Systems Evaluation			
Military	Ingestible Material:	Military	None	
Expended	None	Recoverable		
Material		Material		
	Non-Ingestible Material:			
	None			
Sonar and	None		 -	
Other				
Transducer				
Bins				
In-Water	None		 -	
Explosive				
Bins				
Procedural	None		 -	
Mitigation				
Measures				
Assumptions	None		 -	
Used for				
Analysis				

A.3.1.3.3 Flare Test

Electronic Warf	are				
Flare Test					
Short	This event is similar to the t	raining event flare	Typical Durat	ion	
Description	exercise. Flare tests evaluate enhanced flares, flare disper modified aircraft systems ag	e newly developed or nsing equipment, or ainst flare			
	deployment. Tests may also aircrew in the use of newly of flare deployment systems. F conducted with chaff tests a	developed or modified lare tests are often	2 flight hours	per event	
	maneuver events, as well as are not typically conducted	other test events, and			
Long Description	Flare tests are conducted to evaluate new flares, newly developed or modified flare deployment systems, to ensure that other newly enhanced aircraft systems are compatible with flare deployment, and to train pilots and aircrew in the use of newly developed or modified flare deployment systems. Flare tests are often conducted with chaff tests and air combat maneuver events, as well as other test events, and are not typically conducted as stand-alone tests. During a flare test, flares (and in some cases chaff) are deployed, but no weapons are typically fired. Flare dispensers may also be jettisoned during a flare test intended to assess the safe release of the dispenser in the event of an emergency.				
	Rotary-wing and tiltrotor aircraft deploy flares as a defensive tactic (electronic protect deployment) to disrupt the infrared missile guidance systems used by heat-seeking missiles, thereby causing the missile to lock onto the flare instead of onto the aircraft and enabling the aircraft to avoid the threat. In a typical scenario, an aircraft may detect the electronic targeting signals emitted from threat radars or missiles, or aircrew may visually identify a threat missile plume when a missile is launched. At a strategically appropriate time, the pilot dispenses flares and immediately maneuvers the aircraft to distract and defeat the threat. During a typical flare test, an aircraft will dispense flares 3,000 ft. above mean sea level and flares are completely consumed while in the air. Aircraft flares use a magnesium extruded flare grain. Flare types commonly deployed during Naval Air Systems Command testing activities include but are not limited to: MJU-57, MJU-49, and MJU-38 for high speed aircraft and MJU-32 for low speed aircraft.				
Typical	Platforms: Rotary-wing airc	raft, tiltrotor aircraft			
Components	Targets: None				
	Systems being Trained/Tes		ng systems		
Standard	Aircraft safety	Typical Locations			
Operating		Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:	
Procedures		Gulf of Mexico		None	
(Section 2.3.3)		Virginia Capes	10. "		
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological Resources	Aircraft noise	Aircraft and aerial targe		In-air electromagnetic	
kesources	Explosives:	Military expended mat	eriais	devices	
	None	Ingestion:		Entanglement:	
	None	Military expended mat than munitions	erials – other	None	
Stressors to	Air Quality:	-	t and Water Qu	uality:	
Physical Resources	Criteria air pollutants	Other ma		uuy.	
	Habitats:				

Electronic War	are				
Flare Test					
	Physical disturbance and strike – military expended material				
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike	Accessibi Airborne	nomic Resources lity acoustics disturbance and s		Public Health and Safety: Physical interactions In-air energy
Military Expended Material	Ingestible Material: Per flare: one casing, one con pad (closed cell foam) or or piston, one plastic endcap, (rubber, nitrile) Non-Ingestible Material: None	ne plastic	Military Recoverable Material	None	
Sonar and Other Transducer Bins	None	•			
Explosive Bins	None				
Procedural Mitigation Measures	None				
Assumptions Used for Analysis	None				

A.3.1.4 Mine Warfare

Mine warfare involves the detection, avoidance, and neutralization of mines to protect Navy ships and submarines and offensive mine laying in naval operations. A naval mine is a self-contained, explosive device placed in the water at predetermined depths to destroy ships or submarines. Naval mines are deposited and left in place until triggered by the approach of or contact with an enemy ship or until removed or otherwise destroyed. Naval mines can be laid by minelayers, other ships, submarines, and aircraft. Naval Air Systems Command mine warfare testing events include airborne mine countermeasures events, mine-laying events (similar to mine exercises), and mine neutralization events. The AN/ASQ-235 airborne mine neutralization system was developed to destroy mines or otherwise rendering them non-functional. The airborne laser mine detection system test, airborne dipping sonar minehunting test, and airborne sonobuoy minehunting test evaluate the capabilities of mine warfare systems to detect, classify, and fix the location of floating, near-surface moored, and bottom moored mines.

A.3.1.4.1 Airborne Dipping Sonar Minehunting Test

Mine Warfare	Mine Warfare					
Airborne Dippir	ng Sonar Minehunting Test					
Short Description	A mine-hunting dipping son deployed from a helicopter frequency sonar for the detection classification of bottom and	and uses high- ection and	2 flight hours per event			
Long Description Typical Components	Tests of a mine-hunting dipping sonar system to evaluate the search capabilities of this helicopter-deployed, mine hunting, detection, and classification system. The sonar identifies mine-like objects. Platforms: Rotary-wing aircraft Targets: Mine shapes (on established mine warfare training range) Systems being Trained/Tested: Dipping sonar systems					
Standard Operating Procedures (Section 2.3.3)	Aircraft safety	Typical Locations Range Complexes/Testing Ranges: Virginia Capes Naval Surface Warfare Center,		Inland Waters/Pierside: None		
Stressors to Biological Resources	Acoustic: Sonar and other transducers Aircraft noise	Panama City Division Physical Disturbance and Strike: Aircraft and aerial targets Ingestion: None		Energy: In-air electromagnetic devices Entanglement: None		
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: None	Sedimen None	t and Water C			
Stressors to Human Resources	Cultural Resources: None	Socioeconomic Re Airborne acoustics Physical disturband		Public Health and Safety: Physical interactions In-air energy Underwater energy		

Mine Warfare					
Airborne Dippir	Airborne Dipping Sonar Minehunting Test				
Military	Ingestible Material:	Military	None		
Expended	None	Recoverable			
Material		Material			
	Non-Ingestible Material:				
	None				
Sonar and	High-Frequency:				
Other	HF4				
Transducer					
Bins					
In-Water	None				
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section 5.3.2)				
Mitigation	Active sonar				
Measures					
Assumptions	None	-			
Used for					
Analysis					

A.3.1.4.2 Airborne Laser Based Mine Detection System Test

Mine Warfare	Mine Warfare						
Airborne Laser-	Based Mine Detection System	n Test					
Short	An airborne mine hunting te	est of a laser-based	Typical Dura	tion			
Description	mine detection system, that	is operated from a					
	helicopter (e.g., MH-60) and	evaluates the					
	system's ability to detect, cla	assify, and fix the	2.5 flight hours per event				
	location of floating and near		2.5 Hight hot	ars per event			
	mines. The system uses a lov	w energy laser to					
	locate mines.						
Long	During an airborne mine det						
Description	capabilities of the AN/AES-1		-				
	Detection System is a mine hunting system designed to detect, classify, and localize floating and near-surface, moored sea mines using a laser system. The Airborne Laser Mine Detection System						
				reconnaissance and assessment			
				amphibious objective areas for			
	Carrier and Expeditionary St		ke points, and	ampiniblous objective areas for			
		•					
			_	o image the entire near-surface			
				on System is capable of day or			
	night operations without sto equipment in the water. Wit						
		•		ata negating the requirement for			
	_	_	_	. Airborne Laser Mine Detection			
	System also provides accura						
	detected mines.	te target geo recation to	0.0000.0.000				
Typical	Platforms: Rotary-wing aircr	aft					
Components	Targets: Mine shapes (on es	tablished mine warfare t	raining range)				
	Systems being Trained/Test	t ed: Low-energy laser sys	tems				
Standard	Aircraft safety	Typical Locations					
Operating		Range Complexes/Test	ting Ranges:	Inland Waters/Pierside:			
Procedures		Virginia Capes		None			
(Section 2.3.3)		Naval Surface Warfare	Center,				
		Panama City Divisio	n				
Stressors to	Acoustic:	Physical Disturbance a		Energy:			
Biological	Aircraft noise	Aircraft and aerial targ	ets	In-air electromagnetic			
Resources				devices			
	Explosives:	Ingestion:		Lasers			
	None	None		Futuralous out.			
				Entanglement: None			
Stressors to	Air Quality:	Sadiman	ts and Water				
Physical	Criteria air pollutants	None	is and water	Quanty.			
Resources	Citeria dii poliutulita	None					
	Habitats:						
	None						
Stressors to	Cultural Resources:	Socioeconomic Re	sources:	Public Health and Safety:			
Human	None	Accessibility		Physical interactions			
Resources		Airborne acoustics	;	In-air energy			
		Physical disturban	ce and strike				
		•					

Mine Warfare	Mine Warfare				
Airborne Laser-	Airborne Laser-Based Mine Detection System Test				
Military	Ingestible Material:	Military	None		
Expended	None	Recoverable			
Material		Material			
	Non-Ingestible Material:				
	None				
Sonar and	None				
Other					
Transducer					
Bins					
In-Water	None				
Explosive					
Bins					
Procedural	None				
Mitigation					
Measures					
Assumptions	The activity uses an established mine warf	are training range	e and does not require the placement of		
Used for	moored mines.				
Analysis					

A.3.1.4.3 Airborne Mine Neutralization Systems Test

Mine Warfare						
Airborne Mine Neutralization System Test						
Short	A test of the airborne mine	neutralization system	Typical Duration			
Description	evaluates the system's abilit		Typical Duration			
Description	destroy mines from an airbo	-				
	countermeasures capable h					
	The airborne mine neutralize		2.5 flight hours per event			
	to four unmanned underwa	-	213 mg/m modro per event			
	with high-frequency sonar, v					
	explosive and non-explosive					
Long			ft systems intended to neutralize or otherwise			
Description			munitions. For most neutralization tests, mine			
·	-		new or enhanced mine neutralization systems.			
	-		our unmanned underwater vehicles equipped			
	with high-frequency sonar a	nd video cameras to relo	cate previously detected submerged mines.			
	The unmanned underwater	vehicles are also equippe	ed with explosives to neutralize the mines after			
	they are located. Data from	unmanned underwater v	ehicles are relayed to the operator in the			
	helicopter through a fiber-o	ptic cable enabling the or	perator to position the neutralizing charge onto			
		•	charge is then detonated to neutralize the			
	T	•	tralizers are used. A mine shape, rather than an			
			port vessel recovers the non-explosive			
			sting scenarios include a non-explosive			
			ve neutralizer against an explosive mine.			
Typical	Platforms: Rotary-wing aircr	aft, support boats, unma	nned underwater vehicles			
Components	Targets: Mine shapes					
	Systems being Trained/Test		systems			
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety	Range Complexes/Test	ting Ranges: Inland Waters/Pierside:			
Procedures	Unmanned aerial, surface,	Virginia Capes	None			
(Section 2.3.3)	and subsurface vehicle	Naval Surface Warfare	Center,			
	safety	Panama City Division	<u></u>			
Stressors to	Acoustic:	Physical Disturbance a	<u> </u>			
Biological	Aircraft noise	Aircraft and aerial targ				
Resources	Vessel noise	Underwater explosives				
		Vessels and in-water de				
	Explosives:	Military expended mat	_			
	Underwater explosives	Seafloor devices	Wires and cables			
		Ingestions				
		Ingestion: Military expended mat	orials –			
		munitions	eriais –			
Stressors to	Air Quality:		ts and Water Quality:			
Physical	Criteria air pollutants	Explosive				
Resources	Criteria dii polidiants	Metals	Other materials			
. teseurces	Habitats:	ivictais	otici materiais			
	Physical disturbance and stri	ke – military				
	expended material					
	Physical disturbance and stri	ke – seafloor				
	devices					
	Underwater explosives					

Mine Warfare					
Airborne Mine	Neutralization System Test				
Stressors to	Cultural Resources:	Socioeco	nomic Resources	: Public Health and Safety:	
Human	Physical disturbance and	Accessibi	lity	Physical interactions	
Resources	strike		acoustics	In-air energy	
	Explosives	Physical o	disturbance and s	trike Underwater energy	
Military	Ingestible Material:		Military	Neutralizers (non-explosive), mine	
Expended Material	Mine (explosive) fragments (no preferred alternative only), ne (explosive) fragments		Recoverable Material	shapes (non-explosive)	
	Non-Ingestible Material:				
	Fiber optic cans, fiber optic cab	les			
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	E4 E11 (non-preferred alt	ernative)			
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Explosive Stressors: (Section 5.3.3) Explosive mine countermeasure and neutralization activities				
Assumptions Used for Analysis	No explosive mines would be used under the preferred alternative. Explosive mines are proposed and analyzed under the non-preferred alternative.				

A.3.1.4.4 Airborne Sonobuoy Minehunting Test

Mine Warfare						
	ouoy Minehunting Test					
Short	A mine-hunting system mad	le un of sonoh	uovs is T	ypical Dura	tion	
Description	deployed from a helicopter.	•		ypicai Daia		
Description	using high-frequency sonar,			2 flight hours per event		
	and classification of bottom			. mgm mour.	s per event	
Long		Tests of mine-hunting sonobuoys to evaluate the search capabilities of this helicopter-deployed,				
Description	mine hunting, detection, an					
Typical	Platforms: Rotary-wing airc				eeeee	
Components	Targets: Mine shapes (on es		e warfare tra	ining range		
Components	Systems being Trained/Tes				•	
Standard	Aircraft safety	Typical Loca				
Operating	All craft safety		olexes/Testin	a Panges:	Inland Waters/Pierside:	
Procedures		Virginia Cap		g Nanges.	None	
(Section			ce Warfare Ce	antar	None	
2.3.3)			City Division	enter,		
Stressors to	Acoustic:		turbance and	l Strika:	Energy:	
Biological	Sonar and other		aerial targets		In-air electromagnetic	
Resources	transducers		ended mater		devices	
Resources	Aircraft noise	wiiitary exp	ended mater	iais	devices	
	All craft Hoise	Ingestion:			Entanglement:	
	Explosives:	•	ended mater	ials – other	Wires and cables	
	None	than mur		idio otilici	Decelerators/parachutes	
					2 doctor acces, paraemates	
Stressors to	Air Quality:	-	Sediment a	nd Water C	Quality:	
Physical	Criteria air pollutants		Metals Che		•	
Resources	·		Other mate	erials		
	Habitats:					
	Physical disturbance and str	ike – military				
	expended material					
Stressors to	Cultural Resources:	Socioed	onomic Reso	urces:	Public Health and Safety:	
Human	Physical disturbance and str	ike Accessil	oility		Physical interactions	
Resources			e acoustics		In-air energy	
		Physica	disturbance	and strike	Underwater energy	
Military	Ingestible Material:		Military	None		
Expended	Small decelerators/parachus	tes	Recoverable	9		
Material			Material			
	Non-Ingestible Material:					
	Sonobuoys (non-explosive),	sonobuoy				
	wires				_	
Sonar and	High-Frequency:					
Other	HF6					
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						

Mine Warfare	Mine Warfare				
Airborne Sonol	Airborne Sonobuoy Minehunting Test				
Procedural	Acoustic Stressors: (Section 5.3.2)				
Mitigation	Active sonar				
Measures					
Assumptions	None				
Used for					
Analysis					

A.3.1.4.5 Mine-Laying Test

Mine Warfare	. •					
	.ct					
Mine Laying Te						
Short	Fixed-winged aircraft evaluate	-		cal Duration		
Description	mine laying equipment and so	-	-			
	mines. A mine test may also t		- 1) tilo	ght hours per event		
	mines using a new or enhance	ed mine deploym	ent	5 · · · · p · · · ·		
	system.					
Long		-		e performance of aircraft mine laying		
Description	equipment or associated software systems to lay mines using non-explosive mine shapes. A mine test					
				in using a new or enhanced mine		
		• • • • • • • • • • • • • • • • • • • •		four non-explosive mine shapes (i.e.,		
				e flight pattern and dropping one or m		
	-	kplosive mine sha	pes are exper	ndable and are typically not recovered		
	after the test.					
Typical	Platforms: Fixed-wing aircraft	t				
Components	Targets: Mine shapes					
	Systems being Trained/Teste					
Standard	Aircraft safety	Typical Location				
Operating		Range Complex	es/Testing Ra	anges: Inland Waters/Pierside:		
Procedures		Jacksonville		None		
(Section		Virginia Capes				
2.3.3)		-		<u>.</u>		
Stressors to	Acoustic:	Physical Distur				
Biological	Aircraft noise	Aircraft and aer	_	In-air electromagnetic		
Resources		Military expend	led materials	devices		
	Explosives:					
	None	Ingestion:		Entanglement:		
		None		None		
Stressors to	Air Quality:	S	ediment and '	Water Quality:		
Physical	Criteria air pollutants	N	letals			
Resources						
	Habitats:					
	Physical disturbance and strik	e – military				
	expended material					
Stressors to	Cultural Resources:	Socioeconon	nic Resources			
Human	Physical disturbance and strik	-		Physical interactions		
Resources		Airborne aco		In-air energy		
		Physical distu	irbance and s	trike		
Military	Ingestible Material:		ilitary	None		
Expended	None		coverable			
Material		M	aterial			
	Non-Ingestible Material:					
	Non-Ingestible Material: Mine shapes (non-explosive)					
Sonar and	_					
Sonar and Other	Mine shapes (non-explosive)	_				
	Mine shapes (non-explosive)					
Other	Mine shapes (non-explosive)					
Other Transducer	Mine shapes (non-explosive)					
Other Transducer Bins	Mine shapes (non-explosive) None					

Mine Warfare	Mine Warfare					
Mine Laying To	est					
Procedural	Physical Disturbance and Strike: (Section 5.3.4)					
Mitigation	Non-explosive bombs and mine shapes					
Measures						
Assumptions	When a test event occurs and aircrew receives training, the event will be analyzed as a testing event.					
Used for						
Analysis						

A.3.1.5 Surface Warfare

Surface warfare is a type of naval warfare in which aircraft, surface ships, and submarines employ weapons, sensors, and operations directed against enemy surface vessels. Naval Air Systems Command surface warfare tests include air-to-surface missile, gunnery, and bombing tests, rocket tests, laser targeting tests, and high-energy laser weapons tests.

A sinking exercise is a specialized fleet training event that provides an opportunity for Naval Air Systems Command aircrew along with ship and submarine crews to deliver explosive ordnance on a deactivated vessel that has been cleaned and environmentally remediated. The vessel is deliberately sunk using multiple weapons systems. A Naval Air Systems Command testing event may take place in conjunction with a sinking exercise to test aircraft or aircraft systems in the delivery of explosive ordnance on a surface target.

A.3.1.5.1 Air-to-Surface Bombing Test

Surface Warfare							
Air-to-Surface Bombing Test							
Short Description	This event is similar to the training event bombing exercise air-to-surface. Fixed-wing aircraft test the delivery of bombs against surface maritime targets with the goal of evaluating the bomb, the bomb carry and delivery system, and any associated systems that may have been newly developed or enhanced.		Typical Duration 2 flight hours per event				
Long Description	Fixed-wing aircraft test the delivery of bombs against surface maritime targets with the goal of evaluating the bomb, the bomb carry and delivery system, and any associated systems that may have been newly developed or enhanced. Both explosive and non-explosive bombs will be released during this type of test; however, the vast majority of releases will be non-explosive bombs and typically include non-explosive general purpose bombs (e.g., MK 82 and MK 83) and guided bomb units (e.g., GBU-12 and GBU-32) of various sizes. Surface targets may also be used.						
Typical Components	Platforms: Fixed-wing aircraft, unmanned aerial systems Targets: Surface targets Systems being Trained/Tested: Bomb releasing systems						
Standard	Aircraft safety	Typical Locations					
Operating Procedures (Section 2.3.3)	Unmanned aerial, surface, and subsurface vehicle safety	Range Complexes/Test Virginia Capes	ing Ranges:	Inland Waters/Pierside: None			
Stressors to Biological Resources	Acoustic: Aircraft noise Explosives: Underwater explosives	Physical Disturbance a Aircraft and aerial targ Underwater explosives Military expended mat Ingestion:	ets erials	Energy: In-air electromagnetic devices Entanglement: None			
		Military expended mat munitions Military expended mat than munitions	erials – other				
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats:	Sedimen Explosive	ts and Water es N	Quality: letals			
	המטונמנט:						

Surface Warfar	·e				
Air-to-Surface	Bombing Test				
	Physical disturbance and strike expended material Underwater explosives	e – military			
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike Explosives	Accessibi Airborne	acoustics disturbance and s		Public Health and Safety: Physical interactions In-air energy Underwater energy
Military Expended Material	Ingestible Material: Bomb (explosive) fragments, t fragments Non-Ingestible Material: Bombs (non-explosive)	arget	Military Recoverable Material	None	
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	E9				
Procedural Mitigation Measures	Physical Disturbance and Strik Non-explosive bombs and min		· · · · ·	ve Stress ve bomb	sors: (Section 5.3.3) s
Assumptions Used for Analysis	None		-		

A.3.1.5.2 Air-to-Surface Gunnery Test

Surface Warfard	e				
Air-to-Surface 0	Sunnery Test				
Short	This event is similar to the tr	raining event gunnery	Typical Dura	ntion	
Description	exercise air-to-surface. Fixed				
	aircrews evaluate new or en				
	against surface maritime tar	_			
	gun, gun ammunition, or ass	sociated systems meet	2-2.5 flight r	nours per event	
	required specifications or to	train aircrew in the			
	operation of a new or enhar	nced weapons system.			
Long	Fixed-wing and rotary-wing	aircrews evaluate new o	r enhanced air	craft guns against surface	
Description	maritime targets to test that	t the gun, gun ammunitio	on, or associate	ed systems meet required	
	specifications or to train aird	crew in the operation of a	a new or enha	nced weapons system. Non-	
	explosive practice munitions	s are typically used during	g this type of t	est; however, a small number of	
	high explosive rounds may b	oe used during final testir	ng. Rounds tha	it may be used include 7.62 mm,	
	20 mm, 30 mm, 0.30-caliber	r, and 0.50-caliber gun an	nmunition.		
Typical	Platforms: Rotary-wing aircr	raft, fixed-wing aircraft, t	iltrotor aircraf	t	
Components	Targets: Surface targets				
	Systems being Trained/Test	ted: Gun systems			
Standard	Aircraft safety	Typical Locations			
Operating	Weapons firing safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures		Jacksonville		None	
(Section 2.3.3)		Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance a	ind Strike:	Energy:	
Biological	Aircraft noise	Aircraft and aerial targ	ets	In-air electromagnetic	
Resources	Weapons noise	Underwater explosives		devices	
		Military expended mat	terials		
	Explosives:			Entanglement:	
	Underwater explosives	Ingestion:		None	
		Military expended mat	erials –		
		munitions			
		Military expended mat	erials – other		
		than munitions			
Stressors to	Air Quality:		ts and Water	-	
Physical	Criteria air pollutants	Explosive	es iv	letals	
Resources	Habitats:				
	Physical disturbance and stri	ika militany			
	expended material	ike – Illilitary			
	Underwater explosives				
Stressors to	Cultural Resources:	Socioeconomic Reso	ources.	Public Health and Safety:	
Human	Caitarai Nescurces.	Accessibility	Juites.	Physical interactions	
Resources	Physical disturbance and	Airborne acoustics		In-air energy	
	strike	Physical disturbance	and strike	Underwater energy	
	Explosives	i iliyələdi diətdi ballet	. and same	chack mater energy	

Surface Warfar	Surface Warfare					
Air-to-Surface Gunnery Test						
Military Expended Material	Ingestible Material: Medium-caliber projectile (explosive) fragments, target fragments, smalland medium-caliber projectiles (nonexplosive), small-caliber casings, medium-caliber casings Non-Ingestible Material: None	Military Recoverable Material	Recoverable surface targets			
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	E1					
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section Small-, medium-, and large-caliber non-ex practice munitions	plosive Explosi	ve Stressors: (Section 5.3.3) ve medium-caliber and large-caliber jectiles			
Assumptions Used for Analysis	None					

A.3.1.5.3 Air-to-Surface Missile Test

Surface Warfar	۵					
Air-to-Surface N						
			esissils	Turnia	al Doughian	
Short	This event is similar to the to	_		Туріса	al Duration	
Description	exercise air-to-surface. Test	•				
	fixed-wing and rotary-wing		_			
	missiles at surface maritime	-		2-4 fli	ight hours per event	
	the weapons system or as p	art of another	r systems			
	integration test.					
Long					missile test may involve both fixed-wing	
Description		_			me targets to evaluate the weapons	
	system or as part of another systems integration test. Air-to-surface missile tests can include high					
	-		-	_	nissile) weapons. Laser targeting systems	
	may also be used. Both stati					
Typical	Platforms: Fixed-wing aircra	ift, rotary-win	g aircraft, tilt	trotor	aircraft	
Components	Targets: Surface targets					
	Systems being Trained/Test	ted: Missile fir	ring/launchin	ig syst	ems	
Standard	Aircraft safety	Typical Loca	itions			
Operating	Weapons firing safety	Range Com	plexes/Testii	ng Rar	nges: Inland Waters/Pierside:	
Procedures		Gulf of Mex	(ico		None	
(Section 2.3.3)		Jacksonville	?			
		Virginia Capes				
Stressors to	Acoustic:	Physical Dis	sturbance an	d Stril	ke: Energy:	
Biological	Aircraft noise	Aircraft and	l aerial target	ts	In-air electromagnetic	
Resources		Underwate	r explosives	devices		
	Explosives:	Military expended materials Lasers				
	Underwater explosives					
		Ingestion:			Entanglement:	
		Military expended materials – None				
		munition	-			
			ended mate	rials –	- other	
		than munitions				
Stressors to	Air Quality:				Vater Quality:	
Physical	Criteria air pollutants		Explosives	i	Chemicals	
Resources			Metals		Other materials	
	Habitats:					
	Physical disturbance and stri	ike – military				
	expended material					
	Underwater explosives					
Stressors to	Cultural Resources:		nomic Resou	ırces:	Public Health and Safety:	
Human	BL - 1 12 1	Accessibility Physical interactions Airborne acoustics In-air energy			•	
Resources	Physical disturbance and		In-air energy			
	strike	Physical (disturbance a	and Str	rike Underwater energy	
Militory	Explosives		NA:1:+		Decoverable surface to rest	
Military Expended	Ingestible Material: Missile (explosive) fragment	s target	Military	lo	Recoverable surface targets	
Expended Material	, , ,	·				
iviateriai	fragments		Material			
	Non-Ingestible Material:					
	Missiles (non-explosive)					
	iviissiles (Holl-explosive)					

Surface Warfar	Surface Warfare					
Air-to-Surface I	Air-to-Surface Missile Test					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	E6 E9 E10					
Explosive						
Bins						
Procedural	Physical Disturbance and Strike: (Section 5.3.4) Explosive Stressors: (Section 5.3.3)					
Mitigation	Non-explosive missiles and rockets Explosive missiles and rockets					
Measures						
Assumptions	None					
Used for						
Analysis						

A.3.1.5.4 High-Energy Laser Weapons Test

Surface Warfar						
	ser Weapons Test					
Short	High-energy laser weapons		_	Typic	cal Dura	tion
Description	the specifications, integration	•				
	of an aircraft mounted, app	•		2 5 fl	light hou	ırs per event
	high-energy laser. The laser	is intended to	be used	2.5 11	iigiit iiot	irs per event
	as a weapon to disable sma	II surface vess	els.			
Long	During a high-energy laser v	weapons test,	aircrew wou	uld ev	aluate tl	he specifications, integration,
Description	and performance of an airc	raft mounted,	approximat	tely 25	5 kilowat	tt high-energy laser that is
	intended to be used as a we	eapon against	stationary a	and m	obile, ur	nmanned surface targets. The
	high-energy laser would be	employed fro	m a helicop	ter (e.	.g., MH-6	60) either hovering or in forward
	flight, and is designed to dis	sable the surfa	ice vessel, re	ender	ing it im	mobile. The high-energy laser
	would have a range of up to	six kilometer	s. Unmanne	ed sur	face targ	gets would be used during the
	high-energy laser test.					3
Typical	Platforms: Rotary-wing airc	raft				
Components	Targets: Surface targets (sm					
	Systems being Trained/Tes		rgy lasers			
Standard	Aircraft safety	Typical Loca				
Operating	Laser safety	-		D-		Inland Waters/Dispelder
Procedures	Laser sarety	Range Com	-	ing Ka	inges:	Inland Waters/Pierside:
		Virginia Cap	es			None
(Section						
2.3.3)						
Stressors to	Acoustic:	Physical Dis			ike:	Energy:
Biological	Aircraft noise	Aircraft and	aerial targe	ets		In-air electromagnetic
Resources	Vessel noise					devices
		Ingestion:				Lasers
	Explosives:	Military exp		erials -	– other	
	None	than mu	nitions			Entanglement:
						None
Stressors to	Air Quality:		Sediment	s and	Water 0	Quality:
Physical	Criteria air pollutants		Metals	C	Other ma	aterials
Resources						
	Habitats:					
	Physical disturbance and str	ike –				
	military expended mater	rial				
Stressors to	Cultural Resources:	Socioe	conomic Res	source	es:	Public Health and Safety:
Human	Physical disturbance and str					Physical interactions
Resources	,		e acoustics			In-air energy
			l disturbanc	e and	strike	a ee.,
Military	Ingestible Material:	,5700	Military	330		e-controlled surface targets
Expended	Target fragments		Recoverab	ole		a controlled surface targets
Material	Tarbet Haginents		Material			
wiaterial	Non-Ingestible Material:		wiaterial			
	None					
Conon cond					<u> </u>	-
Sonar and	None					
Other						
Transducer						
Bins						

Surface Warfar	Surface Warfare		
High-Energy La	ser Weapons Test		
In-Water	None		
Explosive			
Bins			
Procedural	None		
Mitigation			
Measures			
Assumptions	None		
Used for			
Analysis			

A.3.1.5.5 Laser Targeting Test

Surface Warfar	Α					
Laser Targeting						
Short			Typical Dura	ation		
Description	Aircrews illuminate enemy to	argets with lasers.	4 flight hour			
Long	During a lacer targeting test	aircrows uso laser targe	_			
Description	During a laser targeting test, aircrews use laser targeting devices integrated into aircraft or weapons systems to evaluate targeting accuracy and precision and to train aircrew in the use of					
Description	newly developed or enhanced laser targeting devices designed to illuminate designated targeting devices device					
	engagement with laser-guide		_			
	targeting test.					
Typical	Platforms: Fixed-wing aircraft	ft, rotary-wing aircraft, t	ilt-rotor aircraf	t, unmanned aerial systems		
Components	Targets: Surface targets					
	Systems being Trained/Test	ed: Laser targeting syste	ems			
Standard	Aircraft safety	Typical Locations				
Operating		Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
Procedures		Virginia Capes		None		
(Section 2.3.3)		·				
Stressors to	Acoustic:	Physical Disturbance	and Strike:	Energy:		
Biological	Aircraft noise	Aircraft and aerial targ	gets	In-air electromagnetic		
Resources		Military expended ma	terials	devices		
	Explosives:			Lasers		
	None	Ingestion:				
		None		Entanglement:		
_				None		
Stressors to	Air Quality:		nts and Water	Quality:		
Physical	Criteria air pollutants	Metals				
Resources	Habitate:					
	Habitats: Physical disturbance and strike – military					
	Physical disturbance and strike – military expended material					
Stressors to	Cultural Resources:	Socioeconomic R	esources:	Public Health and Safety:		
Human	Physical disturbance and stril		coour cco.	Physical interactions		
Resources	,	Airborne acoustic	S	In-air energy		
		Physical disturbar		<i>51</i>		
Military	Ingestible Material:	Military		erable surface targets		
Expended	None	Recovera	able	_		
Material	Non-Ingestible Material:	Material				
	Bombs (non-explosive)					
Sonar and	None					
Other	None					
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	Physical Disturbance and Str	ike: (Section 5.3.4)				
Mitigation	Non-explosive bombs and mi					
Measures						

Surface Warfare			
Laser Targeting Test			
Assumptions	Military expended material may be non-explosive bombs or other guided munitions.		
Used for			
Analysis			

A.3.1.5.6 Rocket Test

Surface Warfar	e					
Rocket Test						
Short	Rocket tests are conducted t	o evaluate the	Typical Dura	ation		
Description	integration, accuracy, perfor		. , p			
	separation of guided and un					
	rockets fired from a hovering		1.5-2.5 hour	s per event		
	helicopter or tiltrotor aircraf	- ' -				
Long	Rocket tests are conducted to evaluate the integration, accuracy, performance, and safe separation					
Description	of laser-guided and unguide	d 2.75-inch rockets fired	from a hoveri	ng or forward flying helicopter.		
	Rocket tests would involve t	he release of primarily liv	e motor/non-	explosive warhead rockets. Some		
	explosive warhead rockets w	ould be tested, and duri	ng a jettison t	est, rockets with a non-explosive		
	motor and non-explosive wa	rhead would be jettison	ed along with	the rocket launcher. Rocket tests		
	are also conducted to train a	ircrew on the use of nev	v or enhanced	weapons systems. Rocket types		
	may include variations of the	e Hydra-70 rocket develo	ped under the	e Advanced Precision Kill		
			•	ow-cost Guided Imaging Rocket		
		•		et types also include flechette		
	· ·	=		e rocket tests may be conducted		
		_	Forward Look	ring Infrared targeting system.		
Typical	Platforms: Rotary-wing aircr	aft, tiltrotor aircraft				
Components	Targets: Surface targets					
	Systems being Trained/Test	_	ng systems			
Standard	Aircraft safety	Typical Locations				
Operating	Weapons firing safety	Range Complexes/Testing Ranges:		Inland Waters/Pierside:		
Procedures		Jacksonville None				
(Section 2.3.3)		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a		Energy:		
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic		
Resources		Underwater explosives		devices		
	Explosives:	Military expended mat	eriais	Futanalanant		
	Underwater explosives	la sa ati a sa		Entanglement:		
		Ingestion:	orials	None		
		Military expended mat munitions	eriais –			
Stressors to	Air Quality:	 	ts and Water	Quality		
	=					
	Criteria ali poliutarits	•				
Resources	Hahitats:	Wictais	J	ther materials		
		ke – militarv				
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safetv:		
Human						
Resources	Physical disturbance and	Airborne acoustics	In-air energy			
	strike	Physical disturbance	and strike	Underwater energy		
	Explosives	-		<u> </u>		
Human	Physical disturbance and strike	Socioeconomic Reso Accessibility Airborne acoustics	Ources:			

Surface Warfar	e		
Rocket Test			
Military Expended Material	Ingestible Material: Rocket (explosive) fragments, target fragments, flechettes Non-Ingestible Material: Rockets (non-explosive)	Military Recoverable Material	Remote controlled surface targets, stationary surface targets
Sonar and Other Transducer Bins	None		
In-Water Explosive Bins	E3		
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section Non-explosive missiles and rockets		ve Stressors: (Section 5.3.3) ve missiles and rockets
Assumptions Used for Analysis	Assume 25 percent of non-explosive pract	ice munitions are	flechette rockets.

A.3.1.6 Other Testing Activities

A.3.1.6.1 Acoustic and Oceanographic Research

Other Testing	Activities						
	Oceanographic Research						
Short	Active transmissions within	the band 10 he	ertz	Турі	cal Dura	ation	
Description	(Hz)-100 kilohertz (kHz) fro						
,	from ships and aircraft.			8 flig	ght hour	s per event	
Long	Active acoustic transmissions within the band 10 Hz-100 kHz used for engineering tests of						
Description	acoustic sources, validation	n of ocean acou	stic model	s, cha	racteriza	ation of acoustic interactio	ns
	with the ocean bottom and	d ocean surface.	•				
Typical	Platforms: Fixed-wing aircr	aft, small boats	;				
Component	Targets: Sub-surface target						
S	Systems being Trained/Te			de mir	imis sor	nar systems	
Standard	Vessel safety	Typical Locati	ons				
Operating	Aircraft safety	Range Compl	exes/Testi	ing Ra	nges:	Inland Waters/Pierside:	
Procedures		Gulf of Mexic	0			None	
(Section		Jacksonville					
2.3.3)		Key West					
		Northeast					
		Virginia Cape					
Stressors to	Acoustic:	Physical Dist			rike:	Energy:	
Biological	Aircraft noise	Aircraft and	_			In-air electromagnetic	;
Resources	Vessel noise	Vessel and in-water devices devices					
	Fordards and	Ingestion: None				Lasers	
	Explosives: None					Entanglement:	
	None				None		
Stressors to	Air Quality:	Sediments and Water Quality: None					
Physical	Criteria air pollutants						
Resources							
	Habitats:						
	None						
Stressors to	Cultural Resources:		onomic Re	sourc	es:	Public Health and Safety	/:
Human	None	Accessib	,			Physical interactions	
Resources			acoustics		Ī	In-air energy	
		•	disturband	ce and			
N4:lito	Ingostible Matarial:	strik			Ness		
Military Expended	Ingestible Material: None		Military Recovera	hlo	None		
Material			Material				
Material	Non-Ingestible Material:		wiaterial				
	None						
Sonar and	None						
Other							
Transducer							
Bins	<u>-</u>			-	-	<u> </u>	
In-Water	None						
Explosive							
Bins							

Other Testing	Other Testing Activities		
Acoustic and	Acoustic and Oceanographic Research		
Procedural	Physical Disturbance and Strike: (Section 5.3.4)		
Mitigation	Vessel movement		
Measures			
Assumption	Lasers used are in-water, low-energy lasers.		
s Used for			
Analysis			

A.3.1.6.2 Air Platform Shipboard Integration Test

Air Platform Shipboard Integration Test						
t						
an aircraft						
and to						
s an						
co ency.						
ency.						
ide:						
uc.						
tic						
- I : A						
ality:						
ety:						
i = 1						

Other Testing Activities			
Air Platform Shipboard Integration Test			
Assumptions	None		
Used for			
Analysis			

A.3.1.6.3 Maritime Security

C ()4/ (-					
Surface Warfar						
Maritime Secur						
Short	Maritime patrol aircraft par	-		Typical Dura	ation	
Description	security activities and fleet	-				
	identify, track, and monitor	foreign merch	ant			
	vessels suspected of non-co	mpliance with	United 2	2-8 flight ho	urs per event	
	Nations-allied sanctions or o	conflict rules o	f			
	engagement.					
Long	Crews from Navy fixed-wing	g aircraft identify, track, and monitor foreign merchant vessels suspected				
Description	-		-		ules of engagement. This training	
	event is non-firing. Naval Ai	r Systems Com	ımand maritii	me patrol ai	ircraft may participate in maritime	
	security activities and traini	-		·		
Typical	Platforms: Fixed-wing aircra					
Components	Targets: Mobile surface ves					
Components	Systems being Trained/Tes		tems			
Standard	Vessel safety	-				
Operating	Aircraft safety	Typical Locations				
Procedures	All Clait Salety	Range Comp	olexes/Testin	g Ranges:	Bays/Estuaries/Pierside:	
(Section 2.3.3)		Jacksonville			None	
(3600011 2.3.3)		Navy Cherry Point				
		Virginia Capes				
Stressors to	Acoustic:				Energy:	
Biological	Aircraft noise	-	aerial targets		In-air electromagnetic	
Resources	Vessel noise		n-water devi		devices	
	Explosives:	Ingestion:			Entanglement:	
	None	None			None	
Stressors to	Air Quality:		Sediments	and Water	Quality:	
Physical	Criteria air pollutants		None		,	
Resources	•					
	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioeco	nomic Resou	rces:	Public Health and Safety:	
Human	Physical disturbance and	Accessibil			Physical interactions	
Resources	strike	Airborne	•		In-air energy	
110000	ou me		listurbance ai	nd strike		
Military	Ingestible Material:	,3.55.7	Military	None		
Expended	None		Recoverable			
Material			Material			
Widteria.	Non-Ingestible Material:					
	None	_				
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None	-				
Explosive						
Bins						
2.113						

Surface Warfar	Surface Warfare				
Maritime Secur	Maritime Security Operations				
Procedural	None				
Mitigation					
Measures					
Assumptions	None				
Used for					
Analysis					

A.3.1.6.4 Shipboard Electronic Systems Evaluation

Other Testing Activities						
	tronic Systems Evaluation					
Short	Tests measure ship antenna	radiation patterns and	Typical Dura	tion		
Description	test communication systems with a variety of aircraft.		2-20 flight hours per event			
Long Description	Shipboard electronic systems evaluation tests measure ship antenna radiation patterns and evaluate communication systems linking vessels and aircraft. Aircraft capable of landing on a ship (e.g., aircraft carrier or littoral combat ship) temporarily deploy to a nearshore ship and conduct a variety of tests over a period of days to test newly installed or modified systems onboard the aircraft for compatibility with shipboard electronic systems. Follow-on test and evaluation of unmanned aerial systems would consist of dynamic interface testing, shipboard electromagnetic testing, and envelope expansion tests intended to evaluate capability of aircraft to conduct launch and recovery operations from a ship at sea as well as perform missions in a maritime environment. Altitudes would range from mean seal level to 15,000 ft. above mean sea level with the majority of flights occurring between mean sea level and 3,000 ft. Shipboard testing of new technology systems to provide precision guidance to aircraft landing on air capable ships. At-sea flight test of the aircraft would consist of shipboard compatibility (dynamic interface/envelope expansion) and, during Operational Evaluation, amphibious assault scenarios. Shipboard electronic systems evaluation tests of aircraft would also involve flight and wind envelope expansion interface testing with Amphibious Assault Ships, Amphibious Transport Dock, and Dock Landing Ship class vessels.					
Typical Components	Platforms: Rotary-wing aircr Targets: None Systems being Trained/Test					
Standard	Aircraft safety	Typical Locations				
Operating Procedures (Section 2.3.3)	Unmanned aerial, surface, and subsurface vehicle safety	Range Complexes/Tes Gulf of Mexico Jacksonville Key West Virginia Capes	ting Ranges:	Inland Waters/Pierside: None		
Stressors to Biological Resources	Acoustic: Aircraft noise Explosives:	Physical Disturbance a Aircraft and aerial targ Ingestion:		Energy: In-air electromagnetic devices		
	None	None		Entanglement: None		
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: None	Sedimen None	ts and Water (Quality:		
Stressors to Human Resources	Cultural Resources: None	Socioeconomic Re Accessibility Airborne acoustics Physical disturban	5	Public Health and Safety: Physical interactions In-air energy		

Other Testing Activities						
Shipboard Elect	Shipboard Electronic Systems Evaluation					
Military	Ingestible Material:	Military	None			
Expended	None	Recoverable				
Material		Material				
	Non-Ingestible Material:					
	None					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	None					
Mitigation						
Measures						
Assumptions	None	-				
Used for						
Analysis						

A.3.1.6.1 Undersea Range System Test

Other Testing A	Other Testing Activities					
Undersea Range	e System Test					
Short	Following installation of a N	avy undersea w	varfare	Typic	cal Durat	tion
Description	training and testing range, tests of the nodes (components of the range) are conducted to include node surveys and testing of node transmission functionality.			8 hours		
Long Description	The bottom-mounted bi-directional nodes are surveyed post-installation utilizing a range pinger and tested to establish system parameters and baseline hearing ranges. Each acoustic projector is activated at full power while listening is occurring on adjacent hydrophones. The nodes may also be activated during periodic operational and maintenance checks and following significant weather events to confirm that nodes are located correctly and functioning properly prior to ongoing training or testing.					
Typical	Platforms: Surface vessels					
Components	Targets: None Systems being Trained/Test	ted: Undersea r	ange instri	ument	ation	
Standard	Systems being Trained/Tested: Undersea range instrumentation Vessel safety Typical Locations					
Operating Procedures (Section 2.3.3)		Range Comp Jacksonville		ing Ra	nges:	Inland Waters/Pierside: None
Stressors to Biological Resources	Acoustic: Sonar and other transducers Vessel noise	Physical Disturbance and Strike: Vessels and in-water devices Ingestion: None		ike:	Energy: In-air electromagnetic devices Entanglement:	
	Explosives: None					None
Stressors to	Air Quality:		Sediment	ts and	Water C	Quality:
Physical	Criteria air pollutants		None			
Resources	Habitats: None					
Stressors to Human Resources	None	-				
Military Expended Material	Ingestible Material: None Non-Ingestible Material: None		Military Recoverak Material	ble	None	
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	None					

Other Testing A	Other Testing Activities				
Undersea Rang	Undersea Range System Test				
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement	Acoustic Stressors: (Section 5.3.2) Active sonar			
Assumptions Used for Analysis	The duration of the node survey varies.				

A.3.2 NAVAL SEA SYSTEMS COMMAND TESTING ACTIVITIES

A.3.2.1 Anti-Submarine Warfare

A.3.2.1.1 Anti-Submarine Warfare Mission Package Testing

Anti-Submarine	· Warfare				
Anti-Submarine	Warfare Mission Package Te	sting			
Short	Ships and their supporting p	latforms (rotary-wing	Typical Dura	ration	
Description	aircraft and unmanned aerial systems) detect,		1-2 weeks, w	vith 4-8 hours of active sonar use	
	localize, and prosecute subr	narines.	with interval	s of non-activity in between	
Long	Littoral combat ships condu		_		
Description	_			ed and unmanned). Active and	
	passive acoustic systems are			argets, culminating in the	
	deployment of lightweight t		hreat.		
Typical	Platforms: Rotary-wing airci				
Components	Targets: Sub-surface targets				
	Systems being Trained/Test	ted: Sonar systems, coun	termeasure sy	stems, torpedo systems,	
a	sonobuoys				
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Test	ting Ranges:	Inland Waters/Pierside:	
Procedures (Section 2.3.3)	Towed in-water device	Jacksonville		Newport, Rhode Island	
(Section 2.3.3)	safety	Virginia Capes			
		Naval Undersea Warfa	re Center		
Ct	A	Division, Newport		F	
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological Resources	Sonar and other transducers	Aircraft and aerial targ Vessels and in-water d		In-air electromagnetic devices	
Resources	Aircraft noise	Military expended mat		devices	
	Vessel noise	wiiitary expended mat	eriais	Entanglement:	
	vesser noise	Ingestion:		Wires and cables	
	Explosives:	Military expended mat	erials – other	Decelerators/parachutes	
	None	than munitions	eriais other	Decererators, paraerrates	
Stressors to	Air Quality:		ts and Water (Ouality:	
Physical	Criteria air pollutants	Chemical		letals	
Resources	•	Other ma	aterials		
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:	
Human	Physical disturbance and	Accessibility		Physical interactions	
Resources	strike	Airborne acoustics		In-air energy	
		Physical disturbance	and strike	Underwater energy	

Anti-Submarine	Anti-Submarine Warfare					
Anti-Submarine	Warfare Missi	ion Package T	esting			
Military	Ingestible Ma	aterial:		Military	Lightweight torpedoes (non-explosive),	
Expended	Small deceler	ators/parachu	ıtes,	Recoverable	recoverable sub-surface targets	
Material	parachutes	-medium		Material		
Sonar and	targets, exp bathytherm	on-explosive) endable sub-subendable nographs, exp nograph wires cessories	urface endable , lightweight	omarine Warfare:	Torpedoes:	
Other	MF1	MF5	ASW1	ASW3	TORP1	
Transducer	MF4	MF12	ASW2	ASW5		
Bins		-	 			
In-Water Explosive Bins	None					
Procedural	Acoustic Stressors: (Section 5.3.2) Physical Disturbance and Strike: (Section 5.3.4)				l Disturbance and Strike: (Section 5.3.4)	
Mitigation	1			movement		
Measures	Towed in-water devices					
Assumptions	All sonobuoys	have parachi	utes unless oth	erwise noted.		
Used for						
Analysis						

A.3.2.1.2 At-Sea Sonar Testing

Anti-Submarine	e Warfare				
At-Sea Sonar Te	esting				
Short	At-sea testing to ensure syst	ems are fully	Typical Dura	tion	
Description	functional in an open ocean		From 4 hours		
Long	At-sea sonar testing is requi	At-sea sonar testing is required to calibrate or document the functionality of sonar and torpedo			
Description	systems while the ship or su conducted to verify the ship	bmarine is in an open oc	ean environme	ent. At-sea sonar testing is	
	characteristics of the ship, d	= -			
	characteristics, and provide technical background necessary to initiate development of design				
	improvements to reduce noi	ise. Tests also consist of	electronic supp	port measurement, photonics,	
	and sonar sensor accuracy to	esting. In some instances	s, a submarine's	s passive detection capability is	
				ped with a noise augmentation	
	system in order to replicate	acoustic or electromagn	etic signatures	of other vessel types or classes.	
Typical	Platforms: Submarines, surfa	ace combatants, surface	support craft		
Components	Targets: Sub-surface targets	_			
	Systems being Trained/Tested: Sonar systems, acoustic countermeasures, sonobuoys, acoustic				
	modems, torpedo systems, underwater communication systems, electromagnetic devices				
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures	Towed in-water device	Gulf of Mexico		None	
(Section 2.3.3)	safety	Jacksonville			
		Navy Cherry Point			
		Northeast			
		Virginia Capes			
		Naval Undersea Warfa	re Center		
		Division, Newport			
		South Florida Ocean M	leasurement		
		Facility Officials of Fort Diagram	Llorido		
Church	A	Offshore of Fort Pierce		F	
Stressors to	Acoustic: Sonar and other	Physical Disturbance a		Energy:	
Biological Resources	transducers	Aircraft and aerial targ Vessels and in-water d		In-water electromagnetic devices	
Resources	Aircraft noise	Military expended mat		In-air electromagnetic	
	Vessel noise	willitary experided mai	lei iais	devices	
	Vessermoise	Ingestion:		acvices	
	Explosives:	Military expended mat	erials – other	Entanglement:	
	None	than munitions		Wires and cables	
				Decelerators/parachutes	
Stressors to	Air Quality:	Sedimen	ts and Water (· · · · · · · · · · · · · · · · · · ·	
Physical	Criteria air pollutants	Metals		nicals	
Resources	·	Other materials			
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material	·			
Stressors to	Cultural Resources:	Socioeconomic Re	esources:	Public Health and Safety:	
Human	Physical disturbance and stri	ke Accessibility		Physical interactions	
Resources		Physical disturban	ce and strike	In-air energy	
				Underwater energy	

Anti-Submarine	Warfare					
At-Sea Sonar To	esting					
Military	Ingestible	Material:	Military		Acoustic countermea	sures,
Expended	Small dece	elerators/parachu	utes	Recoverable	electromagnetic de	evices, heavyweight
Material				Material	torpedoes (non-ex	olosive)
	Non-Inges	tible Material:				
		le bathythermogr	•			
		able bathythermo				
	heavywe	eight torpedo acc	cessories,			
	sonobuo	oys (non-explosiv	e), sonobuoy			
	wires, m	notorized autono	mous targets			
Sonar and	Mid-Frequ	iency:	Low-Fre	quency:	Anti-Submar	ine Warfare:
Other	MF1	MF5	LF5		ASW3	ASW4
Transducer	MF1K	MF9				
Bins	MF3		High-Fre	quency:	Acoustic Modems:	
			HF1		M3	
	Torpedoes	5:				
	TORP2					
In-Water	None					
Explosive						
Bins						
Procedural	Acoustic S	tressors: (Section	n 5.3.2)	Phys	ical Disturbance and Stri	ke: (Section 5.3.4)
Mitigation	Active sonar		Vesse	Vessel movement		
Measures				Towe	ed in-water devices	
Assumptions	Active son	ar use is intermit	tent throughou	ıt the duration	of the event.	
Used for						
Analysis						

A.3.2.1.3 Countermeasure Testing

Anti-Submarine	· Warfare				
Countermeasur					
Short	Countermeasure testing inv	olves the testing of	Typical Dura	tion	
Description	systems that will detect, loc incoming weapons, includin targets. Testing includes sur defense systems and marine payloads.	alize, and track g marine vessel face ship torpedo	From 4 hours to 6 days, depending on the countermeasure being tested		
Long	Countermeasure testing involves the testing of systems that will detect, localize, and track incoming				
Description	weapons, including marine vessel targets. At-sea testing of the Surface Ship Torpedo Defense systems includes towed acoustic systems, torpedo warning systems, and countermeasure anti-torpedo subsystems. Some countermeasure scenarios would employ non-explosive torpedoes against targets released by secondary platforms (helicopter or submarine). While surface vessels are in transit, countermeasure systems may be used to identify false alert rates. Testing of the Maritime Vessel Stopping payloads will deliver the appropriate measure(s) to affect a target vessel's propulsion and associated control surfaces to significantly slow and potentially stop the advance of the vessel.				
Typical	Platforms: Aircraft carriers, support craft, surface combatants				
Components	Targets: Sub-surface targets, surface targets Systems being Trained/Tested: Sonar systems, countermeasures, torpedo systems				
Standard	Vessel safety	Typical Locations			
Operating Procedures (Section 2.3.3)	Towed in-water device safety	Range Complexes/Test Key West Gulf of Mexico Jacksonville Northeast	ting Ranges:	Inland Waters/Pierside: None	
		Virginia Capes Naval Undersea Warfa Division, Newport	re Center		
Stressors to Biological Resources	Acoustic: Sonar and other transducers Vessel noise	Physical Disturbance a Vessels and in-water d Military expended mat	evices	Energy: In-air electromagnetic devices	
	Explosives: None	Military expended materials – other than munitions Wires and calculate the because of the desired than munitions the because of the because o		Entanglement: Wires and cables Decelerators/parachutes Biodegradable polymer	
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:	
Physical	Criteria air pollutants	Metals	Chem	icals	
Resources		Other ma	aterials		
	Habitats: Physical disturbance and strievended material	ke – military			
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike	Socioeconomic Reso Accessibility Physical disturbance		Public Health and Safety: Physical interactions In-air energy Underwater energy	

Anti-Submarine	Anti-Submarine Warfare					
Countermeasu	re Testing					
Military Expended Material	Ingestible Material: Biodegradable polymer Non-Ingestible Material: Acoustic countermeasures, heavyweight torpedo accessories, lightweight torpedo accessories	Military Recoverable Material	Heavyweight torpedoes (non- explosive), lightweight torpedoes (non-explosive)			
Sonar and Other Transducer Bins	High-Frequency: Anti-Suk HF5 ASW3	omarine Warfare:	Torpedoes: TORP1 TORP2			
In-Water Explosive Bins	None					
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Active sonar	Vessel r	I Disturbance and Strike: (Section 5.3.4) movement in-water devices			
Assumptions Used for Analysis	Not all events will include the use of sonar	and other transd	ucers.			

A.3.2.1.4 Pierside Sonar Testing

Anti-Submarine	e Warfare					
Pierside Sonar	Testing					
Short			Ty	ypical Dura	tion	
Description	Pierside testing to ensure sy		у 🗔		ks total per ship, with each source	
	functional in a controlled pi		ment	•	dently and not continuously	
	prior to at-sea test activities).	dı	uring this ti	me	
Long	Ships and submarines would	d activate mid-	and high-freq	uency tacti	cal sonars, underwater	
Description	communications systems, a	nd navigational devices to ensure they are fully functional prior to at-sea				
		also include the firing of inert torpedo shapes.				
	-	-			e sonar used intermittently over	
	2 days during the total even	t duration. Th	is also includes	s pierside so	onar testing during surface	
	combatant sea trials.					
Typical	Platforms: Moored platform	ns, submarine:	s, surface coml	batants		
Components	Targets: None					
	Systems being Trained/Tes	tea: Sonar sys	tems, acoustic	: moaems, t	inderwater communication	
Standard	systems	Typical Loca	tions			
Operating	None	Typical Loca		. D	Indeed Meters / Disposides	
Procedures		None	plexes/Testing	g Kanges:	Inland Waters/Pierside: Bath, Maine	
(Section 2.3.3)		None			Groton, Connecticut	
(0000.0.11 =10.0)					Kings Bay, Georgia	
					Newport, Rhode Island	
					Norfolk, Virginia	
					Pascagoula, Mississippi	
					Port Canaveral, Florida	
					Portsmouth, New Hampshire	
Stressors to	Acoustic:	Physical Dis	turbance and	Strike:	Energy:	
Biological	Sonar and other	None			None	
Resources	transducers					
		Ingestion:			Entanglement:	
	Explosives:	None			None	
	None					
Stressors to	Air Quality:		Sediments a	and Water (Quality:	
Physical	None		None			
Resources	Habitata.					
	Habitats:					
Chuasaana ta	None Cultural Resources:	Cosisses	nomic Resourc		Public Health and Safety:	
Stressors to Human	None	None	nomic Resourc	ces:	Underwater energy	
Resources	None	None			Officer water effergy	
Military	Ingestible Material:		Military	None		
Expended	None		Recoverable			
Material			Material			
1	Non-Ingestible Material:					
	None					

Anti-Submarine	Warfare					
Pierside Sonar	Pierside Sonar Testing					
Sonar and	Mid-Freq	uency:	High-Fred	luency:	Acoustic Modems:	
Other	MF1	MF9	HF1	HF8	M3	
Transducer	MF1K	MF10	HF3			
Bins	MF3				Anti-Submarine Warfare:	
					ASW3	
In-Water	None					
Explosive						
Bins						
Procedural	Acoustic S	Stressors: (Section	n 5.3.2)		•	
Mitigation	Active sor	nar				
Measures						
Assumptions	Event dur	ation is 3 weeks v	vith active sonar	used intermittent	tly.	
Used for	The facilit	y platform may b	e a dock or othe	r structure.		
Analysis						

A.3.2.1.5 Submarine Sonar Testing/Maintenance

Anti-Submarine	e Warfare				
	ar Testing/Maintenance				
Short	Pierside testing of submarin	ne systems occ	urs	Typical Dura	ation
Description	periodically following major		_	Up to three weeks, with intermittent use of	
	and for routine maintenance			active sonar	
Long	Following major and routing	e maintenance	periods, pi	erside and a	t-sea testing and maintenance is
Description					es such as navigation systems,
	fathometers, underwater co	ommunication	s systems, ι	underwater d	listress beacons, range finders, and
	other similar systems, will b	e tested.			
Typical	Platforms: Submarines				
Components	Targets: None				
	Systems being Trained/Tes	ted: Sonar sys	tems, acous	stic modems	
Standard	Vessel safety	Typical Locat	tions		
Operating		Range Comp	olexes/Test	ing Ranges:	Inland Waters/Pierside:
Procedures		None			Norfolk, Virginia
(Section					Portsmouth, New Hampshire
2.3.3)					
Stressors to	Acoustic:	Physical Dis			Energy:
Biological	Sonar and other	Vessels and	in-water de	evices	None
Resources	transducers				
	Vessel noise	Ingestion:			Entanglement:
	Explosives:	None			None
	None				
Stressors to	Air Quality:		Sediment	s and Water	Quality:
Physical	None		None		Z
Resources					
	Habitats:				
	None				
Stressors to	Cultural Resources:	Socioed	onomic Re	sources:	Public Health and Safety:
Human	None	Physica	l disturbanc	e and strike	Underwater energy
Resources					Physical interactions
Military	Ingestible Material:		Military	None	
Expended	None		Recoverab	ole	
Material	Non largetible Metaviel.		Material		
	Non-Ingestible Material:				
Sonar and	Mid-Frequency:	High-Fre	anoncu		Acoustic Modems:
Other	MF3	•	HF3		M3
Transducer	1411.3	1	3		1413
Bins					
In-Water	None				
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section	5.3.2)	Ph	ysical Distur	bance and Strike: (Section 5.3.4)
Mitigation	Active sonar		Ve	essel moveme	ent
Measures					

Anti-Submarine	Anti-Submarine Warfare				
Submarine Son	Submarine Sonar Testing/Maintenance				
Assumptions	Sonar would not be used continuously throughout the duration of the test.				
Used for	For biological resource analysis, vessel noise and vessel strike are only analyzed for the periods while				
Analysis	the submarines are surfaced, typically brief in nature. Mitigation measures related to vessel movement are only considered during the period of surfacing as well.				
	For human resource stressor analysis, physical disturbance and strike and physical interactions are only analyzed for the periods while the submarine are surfaced, typically brief in nature.				

A.3.2.1.6 Surface Ship Sonar Testing/Maintenance

Anti-Submarin	e Warfare	-				
	onar Testing/Maintenance					
Short	Pierside and at-sea testing	of ship system	c	Tyni	cal Dura	tion
Description	occurs periodically following	• •				ks, with intermittent use of
Description	periods and for routine ma	•	CHarice	•	e sonar	ks, with intermittent use of
Long	·		noriodo			at-sea testing and maintenance
Description			-	-		urces such as tactical sonar,
Description			-			ystems, underwater distress
	beacons, range finders, and					
Typical	Platforms: Surface combat		3,3001113,	Will D	c tested	•
Components	Targets: None	tarits				
Components	Systems being Trained/Te	sted. Sonar sys	tems ac	oustic	counter	measures underwater
	communication systems	Secur Sonar sys	icinis, ac	oustic	counter	medsures, under water
Standard	Vessel safety	Typical Locati	ions			
Operating	resser surecy	Range Comp		sting	•	Inland Waters/Pierside:
Procedures		Ranges:	ickes, ic	Julia		Mayport, Florida
(Section		Jacksonville				Norfolk, Virginia
2.3.3)		Virginia Cape	25			rterrem, trigima
Stressors to	Acoustic:	Physical Dist		and S	trike:	Energy:
Biological	Sonar and other	Vessels and i				In-air electromagnetic
Resources	transducers	vessels and r	water	uc 1100	.5	devices
nesources	Vessel noise	Ingestion:				actices
		None				Entanglement:
	Explosives:					None
	None					
Stressors to	Air Quality:	-	Sedimer	nts and	d Water	Quality:
Physical	Criteria air pollutants		None			-
Resources						
	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioecon	omic Res	ource	es:	Public Health and Safety:
Human	Physical disturbance and	Accessibilit	ty			Physical interactions
Resources	strike	Physical di	sturbanc	e and	strike	In-air energy
						Underwater energy
Military	Ingestible Material:	1	Military		None	
Expended	None		Recovera	ble		
Material		1	Material			
	Non-Ingestible Material:					
	None	_				
Sonar and	Mid-Frequency:	Anti-Subn	narine W	arfare	e:	
Other	MF1 MF9	ASW3				
Transducer	MF1K MF10					
Bins						
In-Water	None					
Explosive						
Bins						

Anti-Submarin	Anti-Submarine Warfare				
Surface Ship So	onar Testing/Maintenance				
Procedural Mitigation Measures	Active sonar	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement			
Assumptions Used for Analysis	Sonar will not be continuously active for	the duration of the test.			

A.3.2.1.7 Torpedo (Explosive) Testing

Anti-Submarine	: Warfare				
Torpedo (Explo					
Short	Air, surface, or submarine cr	ews employ explosive	Typical Du	ration	
Description	and non-explosive torpedoe targets.		1-2 days during daylight hours		
Long Description	Non-explosive and explosive			be launched at a suspended target patants. Event duration is 1 to 2	
Description	days during daylight hours.	r rotary wing ancrart or s	dirace come	dutation is 1 to 2	
Typical		oft moored platforms ro	tary-wing air	rcraft, submarines, support craft,	
Components	surface combatants				
		gets: Sub-surface targets, surface targets			
	Systems being Trained/Tested: Sonar systems, acoustic countermeasures, sonobuoys, torpedo				
	systems	•		, , ,	
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures	Weapons firing safety	Gulf of Mexico None Jacksonville			
(Section 2.3.3)					
		Key West			
		Navy Cherry Point			
		Northeast			
		Virginia Capes			
		Offshore of Fort Pierce	e, Florida		
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological	Sonar and other	Aircraft and aerial targ		In-air electromagnetic	
Resources	transducers	Underwater explosives		devices	
	Aircraft noise	Vessels and in-water d			
	Vessel noise	Military expended mat	terials	Entanglement:	
				Wires and cables	
	Explosives:	Ingestion:		Wires and cables Decelerators/parachutes	
	Explosives: Underwater explosives	Military expended mat	cerials –		
	•	Military expended mat munitions		Decelerators/parachutes	
	•	Military expended mat munitions Military expended mat		Decelerators/parachutes	
Chance to	Underwater explosives	Military expended mat munitions Military expended mat than munitions	erials – othe	Decelerators/parachutes	
Stressors to	Underwater explosives Air Quality:	Military expended mat munitions Military expended mat than munitions Sedimen	erials – othe	Decelerators/parachutes	
Physical	Underwater explosives	Military expended mat munitions Military expended mat than munitions Sedimen Explosive	erials – othe	Decelerators/parachutes er Quality: Chemicals	
	Underwater explosives Air Quality: Criteria air pollutants	Military expended mat munitions Military expended mat than munitions Sedimen	erials – othe	Decelerators/parachutes	
Physical	Underwater explosives Air Quality: Criteria air pollutants Habitats:	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals	erials – othe	Decelerators/parachutes er Quality: Chemicals	
Physical	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stri	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals	erials – othe	Decelerators/parachutes er Quality: Chemicals	
Physical	Air Quality: Criteria air pollutants Habitats: Physical disturbance and striexpended material	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals	erials – othe	Decelerators/parachutes er Quality: Chemicals	
Physical	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stries expended material Underwater explosives	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals	erials – othe I t and Water es	Decelerators/parachutes Per Quality: Chemicals Other materials	
Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and striexpended material	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals ike – military Socioeconomic Rese	erials – othe I t and Water es	Decelerators/parachutes Public Health and Safety:	
Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and striexpended material Underwater explosives Cultural Resources:	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals	erials – othe I t and Water es	Decelerators/parachutes Public Health and Safety: Physical interactions	
Physical Resources Stressors to Human	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stries expended material Underwater explosives	Military expended mat munitions Military expended mat than munitions Sedimen Explosive Metals ike – military Socioeconomic Reso	erials – other	Decelerators/parachutes Public Health and Safety:	

Anti-Submarine	e Warfare				
Torpedo (Explo	sive) Testing				
Military Expended Material	Ingestible Material: Small decelerators/parachutes, parachutes-medium, target fragments, heavyweight and lightweight torpedo (explosive) fragments	Militar Recove Materi	rable	Heavyweight torpedo explosive), lightwei (non-explosive)	•
Sonar and Other Transducer	MF1 MF5 HI MF3 MF6 H	ters igh-Frequency:	F6	Torpedoes: TORP1	TORP2
Bins	MF4	nti-Submarine \	Narfare:		
	AS	SW3			
In-Water Explosive Bins	E8 E11	·			
Procedural Mitigation Measures	Active sonar Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Explosive Stressors: (Section 5.3.3) Explosive torpedoes				
Assumptions Used for Analysis	All sonobuoys have parachutes unle Only one heavyweight torpedo test on consecutive days. Two lightw All non-explosive torpedoes are rec	could occur in tweight torpedo to	1 day; tw		

A.3.2.1.8 Torpedo (Non-Explosive) Testing

Anti-Submarine	e Warfare					
Torpedo (Non-	Explosive) Testing					
Short	Air, surface, or submarine c	rews employ non-	Typical Dura	tion		
Description	explosive torpedoes against		Up to 2 weeks			
	vessels.		•			
Long				st surface or subsurface targets		
Description		·		orpedo testing evaluates the		
	performance and the effect					
		torpedoes. It also includes testing of experimental torpedoes. Not all torpedo tests ustics. Exercise torpedoes are recovered, typically from surface ships and helicopters				
		-		ent duration is dependent on		
	number of torpedoes fired.	and outfitted for torped	o recovery. Eve	int duration is dependent on		
Typical	'	ol aircraft moored platfo	rms rotary-wir	ng aircraft, submarines, support		
Components	craft, surface combatants	or all craft, moored plation	ins, rotary wir	ig anciart, sabinarines, support		
Components	Targets: Sub-surface targets, surface targets					
	Systems being Trained/Tested: Sonar systems, acoustic countermeasures, sonobuoys, torpedoes					
Standard	Vessel safety	Typical Locations				
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
Procedures	Weapons firing safety	Gulf of Mexico		None		
(Section 2.3.3)		Navy Cherry Point				
		Northeast				
		Virginia Capes				
		Naval Undersea Warfa	re Center			
		Division, Newport	- 1 · 1			
		Offshore of Fort Pierce				
Stressors to	Acoustic:	Physical Disturbance a		Energy:		
Biological Resources	Sonar and other	Aircraft and aerial targ Vessels and in-water d		In-air electromagnetic devices		
Resources	transducers Aircraft noise	Military expended mat		devices		
	Vessel noise	willitary experided mai	lei iais	Entanglement:		
	Vesserrioise	Ingestion:		Wires and cables		
	Explosives:	Military expended mat	erials – other	Decelerators/parachutes		
	None	than munitions		,,		
Stressors to	Air Quality:	Sedimen	t and Water Q	uality:		
Physical	Criteria air pollutants	Metals	_	nemicals		
Resources		Other m	aterials			
	Habitats:					
	Physical disturbance and str	•				
	expended materials					
Stressors to	Cultural Resources:	Socioeconomic Res	ources:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility		Physical interactions		
Resources	strike	Airborne acoustics	and stalls	In-air energy		
		Physical disturbance	e and strike	Underwater energy		

Anti-Submarine	· Warfare		
Torpedo (Non-	Explosive) Testing		
Military Expended Material	Ingestible Material: Small decelerators/parachutes, parachutes-medium Non-Ingestible Material: Expendable acoustic countermeasures expendable bathythermographs, expendable bathythermograph, wires, heavyweight torpedo accessories, lightweight torpedo accessories, sonobuoys (non- explosive), sonobuoy wires, canister motorized autonomous targets,		Heavyweight and lightweight torpedoes (non-explosive), acoustic countermeasures
Sonar and Other Transducer Bins	MF1 MF5 HF1 MF3 MF6 MF4 Anti-	Frequency: HF6 Submarine Warfare	Torpedoes: TORP1 TORP2
In-Water Explosive Bins	None ASW3	ASW4	
Procedural Mitigation Measures	Active sonar		al Disturbance and Strike: (Section 5.3.4) movement
Assumptions Used for Analysis	All torpedoes are recovered. Events can last up to two weeks and us torpedoes are fired per day during	·	es. Typically, no more than eight

A.3.2.2 Electronic Warfare

A.3.2.2.1 Radar and Other System Testing

Electronic Warf	are				
	er System Testing	C 1111			
Short	Test may include radiation of	· · · · · · · · · · · · · · · · · · ·	Typical Dura	ition	
Description	commercial radar, communi				
	simulators), or high-energy l		12 hours ner	day over a 7-day period	
	occur aboard a ship against		12 110013 pc	day over a 7 day period	
	rockets, missiles, or other ta	irgets.			
Long	At-sea and docked testing m	nay include radiation of n	nilitary or com	mercial radar, communication	
Description	systems (or simulators), or h	high-energy lasers. No subsurface transmission will occur during this			
	testing. Testing of various ai	ir and surface targets may include unmanned aerial vehicles, missiles, or			
	small craft (floating cardboa	rd triwalls, towed, ancho	red, or self-pr	opelled vessels). High-energy	
	laser testing may include tra	acking, scoring, and neutr	alization runs	with single or multiple targets.	
Typical	Platforms: Combat logistics	ships, rotary-wing aircra	ft, small boats	, submarines, surface combatants	
Components	Targets: Air targets, surface			•	
	Systems being Trained/Test	_	asers		
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Tes	ting Pangası	Inland Waters/Diersides	
Procedures	High-energy laser safety	Gulf of Mexico	ung Kanges:	Inland Waters/Pierside: Groton, Connecticut	
(Section 2.3.3)	Towed in-water device	Jacksonville		Joint Expeditionary Base Little	
(30001011 2.3.3)	safety				
	Salety	Key West Creek, Virginia			
		Navy Cherry Point Norfolk, Virginia			
		Northeast			
		Virginia Capes			
		Naval Surface Warfare	-		
		Panama City Divisio			
		Naval Undersea Warfa	re Center		
		Division, Newport			
		South Florida Ocean M	leasurement		
		Facility			
Stressors to	Acoustic:	Physical Disturbance a	ınd Strike:	Energy:	
Biological	Aircraft noise	Aircraft and aerial targ	ets	In-air electromagnetic	
Resources	Vessel noise	Vessels and in-water d	evices	devices	
		Military expended mat	erials	In-water electromagnetic	
	Explosives:			devices	
	None	Ingestion:		Lasers	
		Military expended mat	erials –		
		munitions		Entanglement:	
		Military expended mat	erials – other	None	
		than munitions			
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:	
Physical	Criteria air pollutants	Metals	Other mat		
Resources	·				
	Habitats:				
	Physical disturbance and stri	ike – militarv			
	expended material	/			
Stressors to	Cultural Resources:	Socioeconomic Re	sources.	Public Health and Safety:	
Human	Physical disturbance and stri		.55u16E3.	Physical interactions	
Resources	i nysicai aistai bance ana stil	Airborne acoustics	:	In-air energy	
ivesonices		All bottle acoustics)	m-an energy	

Electronic Warf	are				
Radar and Othe	Radar and Other System Testing				
	Physica	l disturbance and	d strike Underwater energy		
Military	Ingestible Material:	Military	Recoverable surface targets,		
Expended Material	Per chaff: one chaff-air cartridge, one plastic endcap, one compression pad or one plastic piston, chaff fibers; missile (explosive) fragments; target fragments Non-Ingestible Material:	Recoverable Material	recoverable aerial drones		
	Missiles (non-explosive), kinetic energy rounds, sabots, expendable aerial drones, expendable surface targets				
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	None				
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Non-explosive missiles and rockets				
Assumptions Used for Analysis	All explosive missiles detonate in air during High-energy lasers will not be tested piers				

A.3.2.3 Mine Warfare

A.3.2.3.1 Mine Countermeasure and Neutralization Testing

Short Air, surface, and subsurface vessels neutralize threat mines and mine-like objects. Typical Duration 1-10 days, with intermittent use of countermeasure/neutralization systems during this period 1-10 days, with intermittent use of countermeasure/neutralization systems during this period Ships, period Mine countermeasure-neutralization and mine system testing is required to ensure systems can effectively neutralize threat (live or inert) mines that will otherwise restrict passage through an area and to ensure U.S. Navy mines remain effective against enemy ships. These systems may be deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Standard Operating Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None None Naval Surface Warfare Center, Panama City Division
Typical Duration
Air, surface, and subsurface vessels neutralize threat mines and mine-like objects. 1-10 days, with intermittent use of countermeasure/neutralization systems during this period
threat mines and mine-like objects. Countermeasure/neutralization systems during this period Mine countermeasure-neutralization and mine system testing is required to ensure systems can effectively neutralize threat (live or inert) mines that will otherwise restrict passage through an area and to ensure U.S. Navy mines remain effective against enemy ships. These systems may be deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Standard Operating Procedures (Section and subsurface, and subsurface, and subsurface vehicle safety Unmanned aerial, surface, and subsurface vehicle safety Diriginia Capes None None
Mine countermeasure-neutralization and mine system testing is required to ensure systems can effectively neutralize threat (live or inert) mines that will otherwise restrict passage through an area and to ensure U.S. Navy mines remain effective against enemy ships. These systems may be deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Standard Operating Procedures (Section 2.3.3) Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None None Naval Surface Warfare Center, Panama City Division
Mine countermeasure-neutralization and mine system testing is required to ensure systems can effectively neutralize threat (live or inert) mines that will otherwise restrict passage through an area and to ensure U.S. Navy mines remain effective against enemy ships. These systems may be deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Vessel safety Unmanned aerial, surface, and subsurface vehicle safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None None None Naval Surface Warfare Center, Panama City Division
effectively neutralize threat (live or inert) mines that will otherwise restrict passage through an area and to ensure U.S. Navy mines remain effective against enemy ships. These systems may be deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Vessel safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None None Naval Surface Warfare Center, Panama City Division
and to ensure U.S. Navy mines remain effective against enemy ships. These systems may be deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None Naval Surface Warfare Center, Panama City Division
deployed with a variety of ships, aircraft, submarines, or unmanned autonomous vehicles and operate in water depths up to 6,000 feet. Mines are neutralized by cutting mooring cables of buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Vessel safety Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None Naval Surface Warfare Center, Panama City Division
buoyant mines, producing acoustic energy that fires acoustic-influence mines, employing radar or laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None Naval Surface Warfare Center, Panama City Division
laser fields, producing electrical energy to replicate the magnetic signatures of surface ships in order to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Standard Operating Procedures (Section and subsurface, and subsurface vehicle safety Unmanned aerial, surface, and subsurface vehicle safety Panama City Division
to detonate threat mines, detonation of mines using remotely-operated vehicles, and using explosive charges to destroy threat mines. Typical Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Typical Locations Vessel safety Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Virginia Capes None Naval Surface Warfare Center, Panama City Division
explosive charges to destroy threat mines. Typical Platforms: moored platforms, rotary-wing aircraft Components Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Standard Vessel safety Vessel safety Aircraft safety Unmanned aerial, surface, (Section and subsurface vehicle safety Safety None Naval Surface Warfare Center, Panama City Division
Typical Components Platforms: moored platforms, rotary-wing aircraft Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Yessel safety Aircraft safety Unmanned aerial, surface, (Section and subsurface vehicle safety 1 Typical Locations Range Complexes/Testing Ranges: Inland Waters/Pierside: Virginia Capes None Naval Surface Warfare Center, Panama City Division
Components Targets: Air targets, mine shapes Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Aircraft safety Procedures (Section 2.3.3) Typical Locations Range Complexes/Testing Ranges: Inland Waters/Pierside: Virginia Capes None Naval Surface Warfare Center, Panama City Division
Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Vessel safety Aircraft safety Procedures (Section and subsurface vehicle safety 3.3.3) Systems being Trained/Tested: Electromagnetic devices, radar, low energy lasers Typical Locations Range Complexes/Testing Ranges: Inland Waters/Pierside: Virginia Capes None Naval Surface Warfare Center, Panama City Division
Standard Operating Procedures (Section 2.3.3) Vessel safety Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Procedures (Section 2.3.3) Vessel safety Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Panama City Division Typical Locations Range Complexes/Testing Ranges: Inland Waters/Pierside: Virginia Capes None Naval Surface Warfare Center, Panama City Division
Operating Procedures (Section and subsurface vehicle 2.3.3) Aircraft safety Unmanned aerial, surface, and subsurface vehicle safety Range Complexes/Testing Ranges: Inland Waters/Pierside: Virginia Capes Naval Surface Warfare Center, Panama City Division
ProceduresUnmanned aerial, surface, (SectionVirginia CapesNone(Sectionand subsurface vehicle safetyNaval Surface Warfare Center, Panama City Division
(Section and subsurface vehicle Naval Surface Warfare Center, Panama City Division
2.3.3) safety Panama City Division
Towed in-water device South Florida Ocean Measurement
safety Facility
Stressors to Acoustic: Physical Disturbance and Strike: Energy:
Biological Sonar and other Aircraft and aerial targets In-water electromagnetic
Resources Underwater explosives devices
Aircraft noise Vessels and in-water devices In-air electromagnetic
Vessel noise Military expended materials devices
Seafloor devices Lasers
Explosives:
Underwater explosives Ingestion: Entanglement:
Military expended materials – Wires and cables munitions
Stressors toAir Quality:Sediment and Water Quality:PhysicalCriteria air pollutantsExplosivesMetals
Physical Criteria air pollutants Explosives Metals Resources Other materials
Habitats:
Physical disturbance and strike – military
expended material
Physical disturbance and strike –
seafloor devices
Underwater explosives
Stressors to Cultural Resources: Socioeconomic Resources: Public Health and Safety:
Human Accessibility Physical interactions
Resources Physical disturbance and Airborne acoustics In-air energy
strike Physical disturbance and strike Underwater energy

Mine Warfare			
Mine Countern	neasure and Neutralization Testing		
	Explosives		
Military Expended Material	Ingestible Material: Neutralizer (explosive) fragments Non-Ingestible Material: Fiber optic cables, fiber optic cans, mine shapes (non-explosive)	Military Recoverable Material	Mine shapes (non-explosive)
Sonar and Other Transducer Bins	None		
In-Water Explosive Bins	E4 E11		
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section Vessel movement Towed in-water devices	Explosi	ive Stressors: (Section 5.3.3) ive mine countermeasure and utralization activities
Assumptions Used for Analysis	None		

A.3.2.3.2 Mine Countermeasure Mission Package Testing

Mine Warfare					
Mine Counterm	easure Mission Package Test	ing			
Short			Typical Dura	ation	
Description	Vessels and associated aircr	aft conduct mine		rith intervals of mine	
	countermeasure operations			sure mission package use during	
			this time	ear e masser passage are arming	
Long	Littoral Combat Ships condu	ct mine detection using	ct mine detection using unmanned submersible and aerial vehicles,		
Description	_	or systems deployed by vessel or support helicopters, and laser systems.			
·	Mines are then neutralized using magnetic, acoustic, and supercavitating systems.				
Typical	Platforms: Rotary-wing airc	raft, surface combatants,	unmanned ae	erial systems, unmanned	
Components	underwater vehicles, unmar	nned surface vehicles			
	Targets: Mine shapes				
	Systems being Trained/Tes	ted: Sonar systems			
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures	Unmanned aerial, surface,	Gulf of Mexico		None	
(Section 2.3.3)	and subsurface vehicle	Jacksonville			
	safety	Virginia Capes			
	Towed in-water device	Naval Surface Warfare	Center,		
	safety	Panama City Divisio			
		South Florida Ocean M	leasurement		
		Facility			
Stressors to	Acoustic:	Physical Disturbance and Strike: Energy:			
Biological	Sonar and other	Aircraft and aerial targets		In-air electromagnetic	
Resources	transducers	Underwater explosives		devices	
	Aircraft noise	Vessels and in-water d		Lasers	
	Vessel noise	Military expended mat	teriais	Furta u al a us a urt.	
	- Fymlosiyos	Seafloor devices		Entanglement: Wires and cables	
	Explosives: Underwater explosives	Ingestion:		wires and cables	
	Officer water explosives	Military expended mat	erials —		
		munitions	criais		
Stressors to	Air Quality:		ts and water (Ouality:	
Physical	Criteria air pollutants	Explosive			
Resources	Circona an ponatanto	_//p/00/11			
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
	Physical disturbance and stri	ke – seafloor			
	devices				
	Underwater explosives				
Stressors to	Cultural Resources:	Socioeconomic Re	esources:	Public Health and Safety:	
Human		Accessibility		Physical interactions	
Resources	Physical disturbance and stri			In-air energy	
	Explosives	Physical disturban	ce and strike	Underwater energy	

Mine Warfare	Mine Warfare				
Mine Countern	neasure Mission Package Testing				
Military	Ingestible Material:	Military	Mine shapes (non-explosive)		
Expended	Neutralizer (explosive) fragments	Recoverable			
Material		Material			
	Non-Ingestible Material:				
	Fiber optic cables, mine shapes (non-				
	explosive)				
Sonar and		High-Frequency: Synthetic Aperture Sonars:			
Other	HF4 SAS2				
Transducer					
Bins					
In-Water	E4				
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section 5.3.2)	Explosi	ve Stressors: (Section 5.3.3)		
Mitigation	Active sonar Explosive mine countermeasure and				
Measures		neu	tralization activities		
	Physical Disturbance and Strike: (Section	5.3.4)			
	Vessel movement				
	Towed in-water devices				
Assumptions	8 charges per event				
Used for	The in-air low-energy laser stressor was u	sed in analysis of	potential impacts on human resources.		
Analysis					

A.3.2.3.3 Mine Detection and Classification Testing

Mine Warfare					
	and Classification Testing				
Short	Air, surface, and subsurface	vessels detect and	Typical Dura	ation	
Description			Typical Dula	stion	
Description	classify mines and mine-like objects. Vessels also assess their potential susceptibility to mines and			ys, with up to 12 hours of acoustic	
	mine-like objects.	tibility to milies and	activity each	n day	
Long		ation systems require to	ting to evalua	te the canability of generating	
Description	Mine detection and classification systems require testing to eva				
2000	underwater magnetic and acoustic signature fields as well as sonar systems that can detect, and classify a wide range of threat mines at tactically different water depths. Surface craft may deploy				
	an underwater sensor system that uses ship signature to develop a susceptibility profile ago				
	mine-like objects. In order to		-		
	_			mines including a laser airborne	
	mine detection system that i	uses laser illumination co	oupled with se	ensitive electro-optic receivers to	
	find mines in the upper part	of the water column. Th	is type of equi	pment has traditionally been	
	designed for operation from	a manned helicopter; he	owever, the Na	avy is developing the capability to	
	operate from unmanned aer	ial systems.			
Typical	Platforms: Moored platform	s, rotary-wing aircraft, s	ea basing ship	s, small boats, submarines,	
Components	support craft, surface comba	atants, remotely operate	ed vehicles, un	manned aerial systems,	
	unmanned underwater vehic	cles			
	Targets: Mine shapes				
	Systems being Trained/Test		energy lasers		
Standard	Vessel safety	Typical Locations			
Operating	Aircraft safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:	
Procedures		Gulf of Mexico		None	
(Section 2.3.3)	Unmanned aerial, surface,	Jacksonville			
	and subsurface vehicle	Navy Cherry Point			
	safety	Virginia Capes	•		
		Naval Surface Warfare	•		
		Panama City Divisio			
		South Florida Ocean M	leasurement		
		Facility Offshore of Piviora Ros	ach Florida		
Chunnana un ha	Acquatic	Offshore of Riviera Bea		Fig. 2. m. v.	
Stressors to	Acoustic:	Physical Disturbance a		Energy:	
Biological Resources	Sonar and other transducers	Aircraft and aerial targ Vessels and in-water d		In-air electromagnetic devices	
Resources	Aircraft noise	Seafloor devices	levices	In-water electromagnetic	
	Vessel noise	Scanoor acvices		devices	
	Vessel Holse	Ingestion:		Lasers	
	Explosives:	None			
	None			Entanglement:	
				None	
Stressors to	Air Quality:	Sedimen	its and Water	Quality:	
Physical	Criteria air pollutants	Metals	_	•	
Resources	·				
	Habitats:				
	Physical disturbance and stri	ke – seafloor			
	devices				
Stressors to	Cultural resources:	Socioeconomic Re	esources:	Public Health and Safety:	
Human	Physical disturbance and stril	ke Accessibility		Physical interactions	
		Airborne acoustics		In-air energy	

Mine Warfare			
	n and Classification Testing		
		turbance and	strike Underwater energy
Military Expended	I -	litary coverable	Mine shapes (non-explosive)
Material		aterial	
	Non-Ingestible Material: Mine shapes (non-explosive)		
Sonar and	Mid-Frequency: High-Freque	ncy:	•
Other	MF1 MF5 HF1 HF8		
Transducer	MF1K HF4		
Bins			
In-Water	None		
Explosive			
Bins		<u> </u>	
Procedural	Acoustic Stressors: (Section 5.3.2)	-	l Disturbance and Strike: (Section 5.3.4)
Mitigation	Active sonar	Vessel ı	novement
Measures			
Assumptions	Some mine shapes could be deployed for a spe		
Used for	some mine shapes are left in place so that	multiple ever	nts can use the same shapes without
Analysis	needing to redeploy.		
	The in-air low-energy laser stressor was used i	n analysis of	potential impacts on human resources.

A.3.2.4 Surface Warfare

A.3.2.4.1 Gun Testing – Large-Caliber

Surface Warfard	9				
Gun Testing – L	arge-Caliber				
Short	Surface crews test large-cali	ber guns to defe	end	Typical Dura	tion
Description	against surface targets with	_	_	1-2 weeks	
Long	Surface combatants conduct surface warfare by detecting, tracking, and prosecuting small-boat				, and prosecuting small-boat
Description	threats. Gun testing may also include the surface warfare mission package for the Littoral Combat				
	Ship, which provides a layered strike-defensive capability by use of its embarked support aircraft,				
	medium range surface-to-surface missiles, and 57 millimeter gun weapon system.				
Typical	Platforms: Surface combata	nts			
Components	Targets: Surface targets				
	Systems being Trained/Test	ted: None			
Standard	Vessel safety	Typical Location	ons		
Operating	Weapons firing safety	Range Comple	exes/Testin	g Ranges:	Inland Waters/Pierside:
Procedures	Towed in-water device	Gulf of Mexico	0		None
(Section 2.3.3)	safety	Jacksonville			
		Key West			
		Navy Cherry P	Point		
		Northeast			
		Virginia Capes			
		Naval Surface		enter,	
		Panama Cit	•		
Stressors to	Acoustic:	Physical Distu		d Strike:	Energy:
Biological	Vessel noise	Underwater e	•		In-air electromagnetic
Resources	Weapons noise	In-air explosiv			devices
	Fundadisas	Vessels and in-water devices Military expended materials Entanglement:			Fotos element.
	Explosives: Underwater explosives	Military exper	idea mater	iais	Entanglement:
	In-air explosives	None Ingestion:			None
	iii-aii explosives	Yes			
Stressors to	Air Quality:		Sediments	and Water	Quality:
Physical	Criteria air pollutants		Explosives		etals
Resources	от ротония				
	Habitats:				
	Physical disturbance and stri	ke – military			
	expended material				
	Underwater explosives				
Stressors to	Cultural Resources:	Socioecono	mic Resou	rces:	Public Health and Safety:
Human	Explosives	Accessibility	-		Physical interactions
Resources	Physical disturbance and	Airborne ac			In-air energy
	strike	Physical dis			Underwater energy
Military	Ingestible Material:		Military		te controlled surface targets,
Expended	Large-caliber projectile (expl		Recoverable	e tow	ed surface targets
Material	fragments, target fragmer	nts N	Material		
	Non Ingostible 84-4				
	Non-Ingestible Material:	large			
	Expendable surface targets, caliber (non-explosive) pro	_			
	large-caliber casings	ojectiles,			
	iaige-caimei casiligs				

Surface Warfar	e	
Gun Testing – L	arge-Caliber	
Sonar and	None	
Other		
Transducer		
Bins		
In-Water	E3 E5	
Explosive		
Bins		
Procedural	Acoustic Stressors: (Section 5.3.2)	Explosive Stressors: (Section 5.3.3)
Mitigation	Weapons firing	Explosive medium- and large-caliber munitions
Measures		
	Physical Disturbance and Strike: (Section 5.3.4)	
	Vessel movement	
	Small-, medium-, and large-caliber non-explosive	
	practice munitions	
Assumptions	None	
Used for		
Analysis		

A.3.2.4.2 Gun Testing – Medium-Caliber

Surface Warfard	e					
Gun Testing – N						
Short			Typical Dura	ation		
Description	Surface crews defend against surface targets with		1-2 weeks, with intervals of surface warfare			
	medium-caliber guns.		mission package use during this time			
Long	Surface combatants conduct	surface warfare by detecting, tracking, and prosecuting small-boat				
Description	threats. Gun testing may als	o include the surface wa	rfare mission	package on the Littoral Combat		
	Ship, which provides a layer	nip, which provides a layered strike-defensive capability by use of its embarked support aircraft				
	medium range surface-to-su	ırface missiles, and 30 m	m gun weapor	n system.		
Typical	Platforms: Surface combata	nts, rotary-wing aircraft,	support craft			
Components	Targets: Surface targets					
	Systems being Trained/Test	ted: None				
Standard	Vessel safety	Typical Locations				
Operating	Weapons firing safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
Procedures	Towed in-water device	Gulf of Mexico		None		
(Section 2.3.3)	safety	Jacksonville				
		Key West				
		Navy Cherry Point				
		Northeast				
		Virginia Capes	6 .			
		Naval Surface Warfare Center,				
		Panama City Divisio				
Stressors to	Acoustic:	Physical Disturbance a		Energy:		
Biological Resources	Vessel noise	Underwater explosives		In-air electromagnetic		
Resources	Weapons noise	In-air explosives devices Vessels and in-water devices				
	Explosives:	Military expended ma		Entanglement:		
	Underwater explosives	willitary experided ma	teriais	None		
	Grider Water expressives	Ingestion:		. Tone		
		Military expended ma	terials –			
		munitions				
		Military expended ma	terials – other			
		than munitions				
Stressors to	Air Quality:	Sedimer	ts and Water	Quality:		
Physical	Criteria air pollutants	Explosive	es M	1etals		
Resources						
	Habitats:					
	Physical disturbance and stri	ke – military				
	expended material					
_	Underwater explosives					
Stressors to	Cultural Resources:	Socioeconomic Res	ources:	Public Health and Safety:		
Human	Dhuainal diatuud	Accessibility		Physical interactions		
Resources	Physical disturbance and	Airborne acoustics	and stalls	In-air energy		
	strike	Physical disturbance	e and strike	Underwater energy		
	Explosives					

Surface Warfar	Surface Warfare				
Gun Testing – N	Лedium-Caliber				
Military Expended Material	Ingestible Material: Medium-caliber projectile (explosive) fragments, target fragments, medium-caliber (non-explosive) projectiles, medium-caliber projectile casings Non-Ingestible Material: Expendable surface targets	Military Recoverable Material	Remote controlled surface targets, towed surface targets		
Sonar and Other Transducer Bins	None				
In-Water Explosive Bins	E1				
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Small-, medium-, and large-caliber non-explosive practice munitions Explosive Stressors: (Section 5.3.3) Explosive medium-caliber and large-caliber projectiles				
Assumptions Used for Analysis	50 or 1,400 rounds are expended per ever Events with 1,400 rounds have 700 explos		explosive rounds per event.		

A.3.2.4.3 Gun Testing – Small-Caliber

Surface Warfar	e				
Gun Testing – S					
Short	Surface crews defend agains	st surface targets w	vith T	ypical Dura	ation
Description	small-caliber guns	J		day-2 wee	
Long Description	Small-caliber guns are fired from surface vessels. This testing also includes anti-terrorism/force protection. During this event, surface craft surface targets will make threat profile approaches to the ship. Ship will demonstrate small-caliber gun testing with non-explosive rounds against the threat target. Small-caliber gun testing includes other class ship sea trials and surface warfare mission package testing.				se threat profile approaches to explosive rounds against the
Typical	Platforms: Sea basing ships,	surface combatan	ts, small l	oats, rota	ry-wing aircraft
Components	Targets: Surface targets Systems being Trained/Test				
Standard	Vessel safety	Typical Locations	S		
Operating Procedures (Section 2.3.3)	Weapons firing safety Towed in-water device safety	Range Complexe Gulf of Mexico Jacksonville Key West Navy Cherry Poir Northeast Virginia Capes	es/Testing	· · ·	Inland Waters/Pierside: None
_		Naval Surface W Panama City I	Division		
Stressors to Biological Resources	Acoustic: Vessel noise Weapons noise	Physical Disturb Vessels and in-w Military expende	ater devi	ces	Energy: In-air electromagnetic devices
	Explosives: None	Ingestion: Military expende munitions	ed materia	als –	Entanglement: None
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stri expended material	Me	diments a etals	and Water	Quality:
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike	Socioeconomi Accessibility Airborne acou Physical distur	ıstics		Public Health and Safety: Physical interactions In-air energy
Military Expended Material	Ingestible Material: Small-caliber projectiles (not explosive), small-caliber proasings Non-Ingestible Material: Expendable surface targets	Mil n- Rec	itary coverable terial	Remo	te controlled surface targets, red surface targets

Surface Warfar	е
Gun Testing – S	mall-Caliber
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	Small-, medium-, and large-caliber non-explosive
	practice munitions
Assumptions	500-1,000 rounds are expended per event.
Used for	Ships may not be conducting tests consistently for the duration of the event.
Analysis	

A.3.2.4.4 Kinetic Energy Weapon Testing

Surface Warfar	Δ	-				
	Weapon Testing					
			I = · 15			
Short	A kinetic energy weapon use		Typical Dura	ation		
Description .	released in a burst to accelerate a projectile. 1 day					
Long	A kinetic energy weapon uses stored energy released in a burst to accelerate a projectile to more than seven times the speed of sound to a range of up to 200 miles.					
Description	·		p to 200 miles	•		
Typical	Platforms: Surface combata					
Components		rgets: Air targets, surface targets stems being Trained/Tested: Kinetic energy weapon				
Chanaland			JOH			
Standard	Vessel safety	Typical Locations				
Operating Procedures	Weapons firing safety	Range Complexes/Tes	sting Ranges:	Inland Waters/Pierside:		
		Gulf of Mexico		None		
(Section 2.3.3)		Jacksonville				
		Key West				
		Navy Cherry Point				
		Northeast				
<u> </u>		Virginia Capes	10. "			
Stressors to	Acoustic:	Physical Disturbance		Energy:		
Biological	Vessel noise	Aircraft and aerial tar	gets	In-air electromagnetic		
Resources	Weapons noise	In-air explosives Vessels and in-water of	d a: a a a	devices		
	- Francisco			Fotos alomost.		
	Explosives: In-air explosives	Military expended ma	iteriais	Entanglement: None		
	ili-ali explosives	Ingestion:		None		
		Military expended ma	tarials — other			
		than munitions	iteriais – Other			
Stressors to	Air Quality:		nts and Water	Quality:		
Physical	Criteria air pollutants	Metals	iits and water	Quanty.		
Resources	Criteria dii poliatarits	Wictais				
1103041303	Habitats:					
	Physical disturbance and stri	ke – militarv				
	expended material	, ,				
Stressors to	Cultural Resources:	Socioeconomic Res	ources:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility		Physical interactions		
Resources	strike	Airborne acoustics		In-air energy		
		Physical disturbanc	e and strike	•		
Military	Ingestible Material:	Military	None			
Expended	Target fragments	Recover	able			
Material		Material				
	Non-Ingestible Material:					
	Expendable aerial drones, ex	•				
	kinetic energy rounds, sab	ots,				
	stationary surface targets					
Sonar and	None					
Other						
Transducer						
Bins						

Surface Warfar	Surface Warfare				
Kinetic Energy	Weapon Testing				
In-Water Explosive Bins	None				
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Small-, medium-, and large-caliber non-explosive practice munitions				
Assumptions Used for Analysis	Assume one target is expended per event. Explosive rounds are designed to detonate above the surface target.				

A.3.2.4.5 Missile and Rocket Testing

Surface Warfard	e					
Missile and Roc	ket Testing					
Short	Missile and rocket testing in	cludes various missiles	Typical Dura	ition		
Description	or rockets fired from subma		тургост 2 ста			
2 000 ii puloii	combatants. Testing of the I		ks			
	ship defense is performed.	aunering system and				
Long	·	Missile and rocket testing includes various missiles or rockets (standard missiles, Water Piercing				
Description	_	ubmarines and surface combatants. Testing may occur during surface				
Description	-	combatant sea trials and surface warfare mission package testing. This activity includes both air				
	warfare and surface warfare	· · · · · · · · · · · · · · · · · · ·	situge testing.			
Typical	Platforms: Submarines, surf					
Components	Targets: Air targets, land tar					
Components	Systems being Trained/Test	_	ring systems			
Standard	Vessel safety	Typical Locations	1116 3 y 3 t 2 1 1 3			
Operating	Weapons firing safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:		
Procedures	Towed in-water device	Gulf of Mexico	0 1 011	None		
(Section 2.3.3)	safety	Jacksonville				
		Key West				
		Navy Cherry Point				
		Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological	Vessel noise	Aircraft and aerial targ	ets	In-air electromagnetic		
Resources	Weapons noise	Underwater explosives	5	devices		
		In-air explosives				
	Explosives:	Vessels and in-water d		Entanglement:		
	Underwater explosives	Military expended mat	erials	None		
	In-air explosives					
		Ingestion:				
		Military expended mat	erials –			
		munitions				
		Military expended mat	eriais – otner			
Strossors to	Air Qualitu	than munitions	to and Mater	Ouglitur		
Stressors to	Air Quality:		ts and Water	Quality: letals		
Physical Resources	Criteria air pollutants	Explosive Chemica		ictais		
Resources	Habitats:	Chemica	1.5			
	Physical disturbance and stri	ke – military				
	expended material					
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:		
Human		Accessibility		Physical interactions		
Resources	Physical disturbance and	Airborne acoustics		In-air energy		
	strike	Physical disturbance	and strike	Underwater energy		
	Explosives	,		5,		
	•					

Surface Warfar	Surface Warfare					
Missile and Rocket Testing						
Military Expended Material	Ingestible Material: Missile (explosive) fragments, rocket (explosive) fragments, target fragments	Military Recoverable Material	Recoverable air and surface targets, towed surface targets			
	Non-Ingestible Material: Expendable aerial drones, missiles and rockets (non-explosive)					
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	E6 E10					
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement Non-explosive missiles and rockets Explosive Stressors: (Section 5.3.3) Explosive missiles and rockets					
Assumptions Used for Analysis	Targets used during non-explosive tests will be recovered. Explosive missiles will detonate either in the air or at the water's surface. Ships will not be conducting test constantly for the duration of the allotted time.					
Aildiyələ	This activity includes both air warfare and warfare Protective Measures Assessm	surface warfare	events, but it captured under the Surface			

A.3.2.4 Unmanned Systems

A.3.2.4.6 Underwater Search, Deployment, and Recovery

Other Testing A	Activities					
	arch, Deployment, and Recov	ery				
Short	Various underwater, botton	n crawling, robotic,	Typical Duration			
Description	vehicles are utilized in unde	rwater search,				
	recovery, installation, and so	canning activities.	1 day			
Long	Subsurface activities include	a variety of underwater vehicles, robotic or autonomous systems, and				
Description	items placed on the seafloo	oor. Diving activities and special operations training also occu				
			d underwater vehicles. All subsurface vehicles			
			n-explosive mines) remain for a period of time			
	to be used as testing fixture					
Typical	Platforms: Moored platform	ns, remotely operated v	rehicles			
Components	Targets: Mine shapes					
	Systems being Trained/Tes					
Standard	Vessel safety	Typical Locations				
Operating	Unmanned aerial, surface,	Range Complexes/Te				
Procedures	and subsurface vehicle	South Florida Ocean I	Measurement None			
(Section	safety	Facility				
2.3.3)	Acoustic:	Dhusiaal Distuubanaa	and Stuiker Engage			
Stressors to Biological	None	Physical Disturbance Vessels and in-water				
Resources	None	Seafloor devices	devices None			
nesources	Explosives: Entanglement:					
	None	Ingestion:	None			
		None				
Stressors to	Air Quality:	Sedime	nts and Water Quality:			
Physical	Criteria air pollutants	None	•			
Resources						
	Habitats:					
	Physical disturbance and str	ike –				
	seafloor devices	<u>.</u>				
Stressors to	Cultural Resources:	Socioeconomic R	,			
Human	Physical disturbance and str	ike Physical disturba	nce and strike Physical interactions			
Resources						
Military	Ingestible Material:	Military	Mine shapes (non-explosive)			
Expended	None	Recover				
Material	Non-Ingestible Material:	Materia				
	None					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins		.				
Procedural	Physical Disturbance and St	rike: (Section 5.3.4)				
Mitigation	Vessel movement					
Measures	1					

Other Testing A	Other Testing Activities				
Underwater Se	Underwater Search, Deployment, and Recovery				
Assumptions	Mines and other objects may be placed on the bottom where they may remain for a period of time.				
Used for	They will eventually be retrieved.				
Analysis	Any acoustic sources used during this activity would be de minimis and not quantitatively analyzed				
	and, therefore, are not included under systems.				

A.3.2.4.7 Unmanned Aerial System Testing

Unmanned Sys	tems					
_	face Aerial System Testing					
Short	Unmanned aerial systems a	re launched from a	Typical Duration			
Description	platform (e.g., fixed platform		Typical Datation			
2 000.160.011	submarine) to test the capability to extend the					
	surveillance and communications range of 1-12 hours					
	unmanned underwater vehi	_	1-12 110013			
	unmanned surface vehicles,					
Long		anned aerial systems are reusable, uncrewed vehicles capable of controlled, sustained,				
Description	•		n testing include both unmanned aerial	vc1		
2000.150.0	-		stems to extend the surveillance and			
	_		ned underwater vehicles, manned and			
	_		nmanned aerial system launcher system	s a		
			testing, a negatively buoyant capsule is	3, u		
		-	depth. The capsule then drops a weight,	_		
		· -	ches an unmanned aerial system. Persor			
			ommunicate with the unmanned aerial			
	• · · · · · · · · · · · · · · · · · · ·		mmunications test, an aerostat (helium	filled		
			r an unmanned surface vehicle to test th			
	extended range of commun					
Typical			raft, unmanned aerial systems			
Components	Targets: Land targets, surfa					
	Systems being Trained/Tested: None					
Standard	Vessel safety	Typical Locations				
Operating	Unmanned aerial, surface,	Range Complexes/Testin	g Ranges: Inland Waters/Pierside:			
Procedures	and subsurface vehicle	Northeast	None			
(Section	safety	Virginia Capes	Hone			
2.3.3)	,	Naval Undersea Warfare	Center			
ŕ		Division, Newport				
Stressors to	Acoustic:	Physical Disturbance and	d Strike: Energy:			
Biological	Vessel noise	Vessels and in-water devi				
Resources	1 33331 113.33	Aircraft and aerial target				
	Explosives:	Military expended mater				
	None	,	None			
		Ingestion:				
		Military expended mater	ials – other			
		than munitions				
Stressors to	Air Quality:		and Water Quality:			
Physical	Criteria air pollutants	Metals	Other materials			
Resources	The table of the final control					
	Habitats:					
	Physical disturbance and str	ike – military				
	expended material	,				
Stressors to	Cultural Resources:	Socioeconomic Resour	rces: Public Health and Safety:			
Human						
nulliali	Physical disturbance and					
Resources	Physical disturbance and strike	Airborne acoustics	rilysical interactions			

Unmanned Sys	Unmanned Systems					
	Unmanned Surface Aerial System Testing					
Military Expended	Ingestible Material: Endcaps and pistons (non-chaff and	Military Recoverable	None			
Material	flare)	Material				
	Non-Ingestible Material: Ballast weights, canisters, sabots, expendable capsules					
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	None					
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement					
Assumptions Used for Analysis	None					

A.3.2.4.8 Unmanned Surface Vehicle System Testing

Unmanned Syst	tems						
Unmanned Sur	face Vehicle System Testing						
Short	Testing involves the product	ion or upgrad	le of	Турі	ical Duration		
Description	unmanned surface vehicles.	This may incl	ude				
	testing of mine detection ca	sting of mine detection capabilities, evaluating e basic functions of individual platforms, or mplex events with multiple vehicles.			Up to 10 days. Some propulsion systems (gilders) could operate continuously for multiple months.		
	the basic functions of individ						
	complex events with multip				rupie months.		
Long					single-vehicle and multi-vehicle technical		
Description	T 1		-		Most unmanned vehicle mission		
	· ·		•		on, and recovery operations. Unmanned		
	•	•	-		tonomous, modular, multi-mission		
	· ·		_		flatable boats, cooperative autonomous rolled jet skis. Unmanned surface vehicles		
					e launched, the vehicles may be towed or		
	-	-			s may deploy, tow, operate, or recover		
					tion sensors. Systems on the unmanned		
			_		o-frequency transmissions or provide laser		
	illumination for electro-opti	•	J.				
Typical	Platforms: Unmanned surfa		upport boat	:S			
Components	Targets: None						
	Systems being Trained/Test	ted: Unmanne	ed surface v	ehicle/	es		
Standard	Vessel safety	Typical Loca	tions				
Operating	Unmanned aerial, surface,	Range Com	plexes/Test	ting Ra	anges: Inland Waters/Pierside:		
Procedures	and subsurface vehicle	Naval Unde	rsea Warfa	re Cer	nter None		
(Section 2.3.3)	safety	Division,	Newport				
Stressors to	Acoustic:	Dhysical Die	turbanca a	nd C+	riko. Enorgy		
Biological	Vessel noise	Physical Dis					
Resources	vesser noise	vessels allo	ili-water u	evices	devices		
nesourees	Explosives:	Ingestion:			devices		
	None	None			Entanglement:		
					None		
Stressors to	Air Quality:		Sedimen	ts and	d Water Quality:		
Physical	Criteria air pollutants		None				
Resources							
	Habitats:						
	None						
Stressors to	Cultural Resources:		nomic Reso	ources	•		
Human	Physical disturbance and	Accessibi	•		Physical interactions		
Resources	strike	Pnysical	disturbance	and s	•		
Military	Ingestible Material: None		Military Recovera	hla	Surface targets		
Expended Material	None		Material	bie			
Muterial	Non-Ingestible Material:		iviaterial				
	None						
Sonar and	None						
Other	-						
Transducer							
Bins							
In-Water	None						

Unmanned Sys	Unmanned Systems			
Unmanned Sur	face Vehicle System Testing			
Explosive Bins				
Procedural	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation Measures	Vessel movement			
Assumptions	None			
Used for				
Analysis				

A.3.2.4.9 Unmanned Underwater Vehicle Testing

Unmanned Syst	Unmanned Systems					
	Unmanned Underwater Vehicle Testing					
Short	Testing involves the product	tion or ungrade of	Typical Durat	ion		
Description	unmanned underwater vehi	cles. This may include	Up to 35 days. Some propulsion systems			
	testing of mine detection ca the basic functions of individ		(gliders) could operate continuously for			
		•	multiple mon	ths.		
Long Description	Unmanned underwater vehicle testing ranges from single-vehicle tests to evaluate hydrodynamic parameters, to full mission, multiple vehicle functionality assessments. Most unmanned underwater vehicle operations include a launch, transit, mission profile execution, and recovery operations. Unmanned underwater vehicles include modular, multi-mission platforms and their payloads, and anti-submarine warfare targets. Unmanned underwater vehicles may be launched from aircraft, surface craft, submarines, piers, or land. Once launched, the vehicles are either towed or self-propelled to the test area. Unmanned underwater vehicles may also deploy, tow, operate, or recover remote sensors and payload systems. Systems on or towed by the unmanned vehicle may be acoustically active, produce radio-frequency transmissions or provide laser illumination for electro-optical detection. Vehicle development involves the production and upgrade of new unmanned platforms on which to attach various payloads used for different purposes. Platforms can include unmanned underwater vehicles, unmanned surface vehicles, and unmanned aerial systems. Payload testing assesses various systems that can be incorporated onto unmanned platforms for mine warfare, bottom mapping, and other missions. This type of test can also include multiple vehicles interacting in formations or acting as individual units and includes tests and demonstrations					
				-like or other buried objects.		
Typical			port craft, surf	face combatants, unmanned		
Components	underwater vehicles, moore Targets: Mine warfare targe	•	irface targets			
	_	_	_	nication systems, unmanned		
	underwater vehicles	, ,		,		
Standard	Vessel safety	Typical Locations				
Operating	Unmanned aerial, surface,	Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:		
Procedures	and subsurface vehicle	Gulf of Mexico		None		
(Section 2.3.3)	safety	Jacksonville				
	Towed in-water device	Naval Surface Warfare	Center,			
	safety	Panama City Division				
		Naval Undersea Warfar	e Center			
		Division, Newport				
		South Florida Ocean Me	easurement			
		Facility				
		Offshore of Riviera Bea				
Stressors to	Acoustic:	Physical Disturbance a		Energy:		
Biological	Sonar and other	Vessels and in-water de	evices	In-air electromagnetic		
Resources	transducers	Seafloor devices		devices		
	Vessel noise	Underwater explosives		Lasers		
	Explosives:	Ingestion of Expended	Material:	Entanglement:		
	Underwater explosives	Military expended mate		Decelerators/parachutes		
		munitions				
		Military expended mate	erials – other			
		than munitions				

Unmanned Systems						
Unmanned Und	Unmanned Underwater Vehicle Testing					
Stressors to	Air Quality:		Sediments and	Water Quality:		
Physical	Criteria air pollutants		Explosives	Metals		
Resources			Chemical	Other materials		
	Habitats:					
	Physical disturbance and strike – mili	tary				
	expended material					
	Physical disturbance and strike seaflo	oor				
	devices					
	Underwater explosives					
Stressors to			nomic Resources	· · · · · · · · · · · · · · · · · · ·		
Human	I	essibil	•	Physical interactions		
Resources	-	sical d	isturbance and st	= -		
	Explosives			Underwater energy		
Military	Ingestible Material:		Military	Recoverable stationary artificial targets,		
Expended	Target fragments, lightweight torped	do	Recoverable	acoustic countermeasures, bottom-		
Material	(explosive) fragments, small		Material	placed instruments, mine shapes,		
	parachutes/decelerators			stationary surface targets		
	Non-Ingestible Material:	,				
	Anchors, mine shapes (non-explosive expendable motorized autonomou					
	targets, expendable stationary	15				
	artificial targets, lightweight torped	do				
	(non-explosive) accessories,	uo				
	sonobuoys (non-explosive)					
Sonar and		h-Fred	quency:			
Other	MF9 HF4		40.0			
Transducer						
Bins						
In-Water	E8					
Explosive						
Bins						
Procedural	Acoustic Stressors: (Section 5.3.2)		Physica	l Disturbance and Strike: (Section 5.3.4)		
Mitigation	Active sonar			novement		
Measures				in-water devices		
Assumptions				nd then retrieved afterwards. However,		
Used for	•	e so tl	hat multiple ever	nts can use the same shapes without		
Analysis	needing to redeploy.					
	Multiple vehicles may operate simultaneously in one or multiple areas.					

A.3.2.5 Vessel Evaluation

A.3.2.5.1 Aircraft Carrier Sea Trials - Propulsion Testing

Vessel Evaluati	on					
Aircraft Carrier	Sea Trials – Propulsion Testi	ng				
Short	Ship is run at high speeds ir	various formations	Typica	al Duration		
Description	(e.g., straight-line and recip		1-2 da	ays		
Long	Propulsion testing is one pa	ort of the total aircraft		trial activity. Propulsion testing includes		
Description				ess of 30 knots) and endurance runs in		
	both straight line and recip			·		
Typical	Platforms: Aircraft carriers					
Components	Targets: None					
	Systems being Trained/Tes	sted: None				
Standard	Vessel safety	Typical Locations				
Operating		Range Complexes/Testing Ranges: Inland Waters/Pierside:				
Procedures		Virginia Capes	J	None		
(Section						
2.3.3)						
Stressors to	Acoustic:	Physical Disturband		e: Energy:		
Biological	Vessel noise	Vessels and in-wate	r devices	In-air electromagnetic		
Resources				devices		
	Explosives:	Ingestion:				
	None	None		Entanglement:		
		None				
Stressors to	Air Quality:	Sedir	nents and \	Water Quality:		
Physical	Criteria air pollutants	None				
Resources						
	Habitats:					
	None		-	2.19.44.12.64		
Stressors to	Cultural Resources:	Socioeconomic I	Resources:	Public Health and Safety:		
Human	Physical disturbance and strike	Accessibility		Physical interactions		
Resources	Strike	Physical disturba	nce and su	rike In-air energy		
Military	Ingestible Material:	Milita	rv	None		
Expended	None		erable			
Material		Mate	ial			
	Non-Ingestible Material:					
	None					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	Physical Disturbance and S	trike: (Section 5.3.4)				
Mitigation	Vessel movement					
Measures			_			
Assumptions	Ships may not be traveling i	_				
Used for	Ships will operate across the		-			
Analysis	Ships will not be conducting	test constantly for th	e duration	of the allotted time.		

A.3.2.5.2 Large Ship Shock Trial

Vessel Evaluation	nn						
Large Ship Shoo							
			- i	T	! D#:		
Short	Underwater detonations ag		_	Typical Duration			
Description	carrier or surface combatan	ι.			Typically over 4 weeks, with one detonation		
				-		ever, smaller charges may be	
•						onsecutive days.	
Long	_ · · · · · · · · · · · · · · · · · · ·			-		for the Navy may undergo an ions that sends a shock wave	
Description	through the ship's hull to sir						
					-	rom the ship (charges are set	
	closer to the ship as the tria			inous	distances	Tom the ship (charges are set	
Typical	Platforms: Aircraft carriers,			wing	aircraft ro	stary-wing aircraft	
Components	Targets: None	заррог	t crart, fixea	wiiig	anciait, ic	reary wing an erare	
oomponone.	Systems being Trained/Test	t ed: No	ne				
Standard	Vessel safety		al Locations				
Operating	Aircraft safety		e Complexes	/Test	ting Ir	nland Waters/Pierside:	
Procedures	,	Range	-	,	_	one	
(Section 2.3.3)		Gulf of Mexico					
		Jacksonville					
		Virgir	nia Capes				
Stressors to	Acoustic:	Physic	al Disturban	ice ar	nd Strike:	Energy:	
Biological	Vessel noise					In-air electromagnetic	
Resources	Aircraft noise	Aircra	ft and aerial	targe	ets	devices	
			water explos				
	Explosives:	Milita	ry expended	mate	erials	Entanglement:	
	Underwater explosives	_				None	
		Ingest					
			ry expended				
6.	A' 0 "	otr	ner than mun			1	
Stressors to	Air Quality:				Water Qua	=	
Physical Resources	Criteria air pollutants		Explosives Other mat			iicais	
Resources	Habitats:		Other mat	.errars	•		
	Physical disturbance and stri	ke –					
	military expended mater						
	Underwater explosives						
Stressors to	None						
Human							
Resources							
Military	Ingestible Material:		Military		None		
Expended	Ship shock charge fragments	5	Recoverab	le			
Material			Material				
	Non-Ingestible Material:						
	None				 		
Sonar and	None						
Other							
Transducer							
Bins							

Vessel Evaluation	Vessel Evaluation					
Large Ship Shoo	Large Ship Shock Trial					
In-Water	E17					
Explosive						
Bins						
Procedural	Physical Disturbance and Strike: (Section	Explosive Stressors: (Section 5.3.3)				
Mitigation	5.3.4)	Ship shock trials				
Measures	Vessel movement					
Assumptions	Four charges are used per event.					
Used for	Only one event will occur per 5-year period.					
Analysis	Ship shock trials will occur in waters deeper than 650 ft.					
	Modeling scenario: Four 40,000-lb. charges					
	Stressors to human resources were not ana	yzed for this activity since it occurs greater than				
	12 NM from shore.					

A.3.2.5.3 Air Defense Testing

Vessel Evaluation	on							
Air Defense Tes	ting							
Short	Tests the ship's capability to	detect, identify, track,	Typical Dura	tion				
Description	and successfully engage live	and simulated targets.						
	Gun systems are tested usin	g non-explosive and	7 days					
	explosive rounds.							
Long				ck environments, using a mix of				
Description	= -		•	, and successfully engage live and				
	_	_		n the presence of debris, long				
		•		g, track load in the presence of				
	electronic attack and chaff, a	•						
	5000000000 inch 0.62-calib		ly include a 15	5 millimeter gun.				
Typical	Platforms: Surface combata	nts						
Components	•	Targets: Air targets Systems being Trained/Tested: Radar systems, gun systems						
Chandand		-	systems					
Standard	Vessel safety Aircraft safety	Typical Locations	–					
Operating Procedures	Weapons firing safety	Range Complexes/Tes	ting Ranges:	Inland Waters/Pierside:				
(Section 2.3.3)	weapons ming salety	Jacksonville		None				
	Assusting	Virginia Capes	and Chailes.					
Stressors to	Acoustic: Aircraft noise	Physical Disturbance a		Energy:				
Biological Resources	Vessel noise	Aircraft and aerial targ In-air explosives	eis	In-air electromagnetic devices				
Resources	Weapons noise	Vessels and in-water d	ovices	uevices				
	weapons noise	Military expended mat		Entanglement:				
	Explosives:	winter y experieda mat	.criais	None				
	In-air explosives	Ingestion:						
	·	Military expended mat	erials –					
		munitions						
		Military expended mat	erials – other					
		than munitions						
Stressors to	Air Quality:	Sedimen	ts and Water	Quality:				
Physical	Criteria air pollutants	Metals	Ot	ther materials				
Resources								
	Habitats:							
	Physical disturbance and stri	ike – military						
-	expended material							
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:				
Human	Physical disturbance and	Accessibility		Physical interactions				
Resources	strike	Airborne acoustics	and strike	In-air energy				
		Physical disturbance	anu strike					

Vessel Evaluati	on		
Air Defense Tes	sting		
Military Expended Material	Ingestible Material: Per chaff: one chaff-air cartridge, one plastic endcap, one compression pad or one plastic piston, chaff fibers; missile (explosive) fragments; large-caliber projectile (explosive) fragments,; target fragments; medium-caliber (non-explosive) projectiles Non-Ingestible Material: Large-caliber projectiles (non-explosive), missiles (non-explosive),	Military Recoverable Material	None
Sonar and Other Transducer Bins	expendable aerial drones, canisters, large-caliber projectile casings None		
In-Water Explosive Bins	None		
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Weapons firing Explosive Stressors: (Section 5.3.3) Explosive medium-caliber and large-calibe projectiles	Vessel I Small-, r prac	movement medium-, and large-caliber non-explosive ctice munitions plosive missiles and rockets
Assumptions Used for Analysis	Ships will not be conducting test constant! This activity incorporates components of b	-	

A.3.2.5.4 Hydrodynamic and Maneuverability Testing

	ivities						
Hydrodynamic an	d Maneuverability Testing						
Short	Submarines maneuver in th	ne submerged	operating	Typical [Duration		
	environment.		- 1 0	10 days			
•		nuired to valid	late the con	the control and maneuverability of a submarine in			
_	the submerged operating e	•	ace the con	cror and m	idired verticality of a submarine in		
-	Platforms: Submarines	iiivii oiiiiileiiti.					
	Targets: None						
Components	Systems being Trained/Tes	stad: Submara	ihloc				
Standard	Vessel safety						
0 00.111 0.1011 0.1	vesser sarety	Typical Loca					
Operating Procedures		Range Comp		ng Kanges			
(Section 2.3.3)		Gulf of Mex			None		
(36(11011 2.3.3)		Jacksonville					
		Key West					
		Navy Cherry	Point				
		Northeast	00				
Character	A	Virginia Cap		10. "	F		
	Acoustic:	Physical Dis			Energy:		
	Vessel noise	Vessels and	in-water de	vices	None		
Resources							
	Explosives:	Ingestion:			Entanglement:		
	None	None			None		
	Air Quality:			and Wat	er Quality:		
	None		None				
Resources	11-b2						
	Habitats:						
	None						
	Cultural Resources:		nomic Resou	ırces:	Public Health and Safety:		
	None	Accessibil	-	منائسهم اممت	Physical interactions		
Resources		Priysical d	listurbance a		-		
-	Ingestible Material:		Military	. Nor	ne ne		
	None		Recoverab	ie			
Material	Nam Importible Bacterial.		Material				
	Non-Ingestible Material:						
	None						
Sonar and Other	None						
Transducer Bins							
_	NI	-		-	-		
	None						
Explosive Bins	Dhusiaal Disturbance - 10	huilaa. /C+:					
	Physical Disturbance and S	trike: (Section	1				
Mitigation	5.3.4)						
	Vessel movement			1	na anh anah na 16 ni na anh		
•	_	•			re only analyzed for the periods		
Used for			-		Mitigation measures related to		
Analysis	vessel movement are or	ily considered	auring the	period of s	surracing as well.		
	For human resource stresso	or analysis, ph	ysical disturl	bance and	strike and physical interactions are		
					aced, typically brief in nature.		

A.3.2.5.5 In-Port Maintenance Testing

Vessel Evaluation	on									
In-Port Mainter										
			T T	inal Dumai	No.					
Short	Each combat system is teste	· · · · · · · · · · · · · · · · · · ·	Турі	ical Durat	tion					
Description	are functioning in a technica	-								
	manner and are operational support at-sea Combat Systo	•	3 we	eeks						
	Qualification Trial events.	em smp								
Long		Led to ensure they are functioning in a technically acceptable								
Description		-		_	at System Ship Qualification Trial					
Description					epair/Requirements Cards, and					
		•			olishing testing standards for					
	each system and pieces of e	-								
	experts, complete all actions			-						
	Observation Reports are wri			_						
Typical	Platforms: Amphibious war									
Components	Targets: None	.a. c opo, oa. raoc								
	Systems being Trained/Test	ted: Radar. low-ei	nergy la	asers						
Standard	Vessel safety	Typical Location								
Operating	,	Range Complex		ting	Inland Waters/Pierside:					
Procedures		Ranges:		чв	Mayport, Florida					
(Section 2.3.3)		None			Norfolk, Virginia					
Stressors to	Acoustic:									
Biological	None	None			In-air electromagnetic					
Resources					devices					
	Explosives:	Ingestion:			Lasers					
	None	None								
				Entanglement:						
					None					
Stressors to	Air Quality:	Sedime	nts and	l Water (Quality:					
Physical	None	None								
Resources										
	Habitats:									
	None									
Stressors to	Cultural Resources:	Socioeconon	ic Res	ources:	Public Health and Safety:					
Human	None	None			In-air energy					
Resources					Underwater energy					
Military	Ingestible Material:	Military		None						
Expended	None	Recover								
Material		Material								
	Non-Ingestible Material:									
Computered	None			L						
Sonar and	None									
Other Transducer										
Bins										
In-Water	None	_								
Explosive	NOTE									
Bins										
פוווט										

Vessel Evaluation	Vessel Evaluation			
In-Port Mainter	nance Testing			
Procedural	None			
Mitigation				
Measures				
Assumptions	None			
Used for				
Analysis				

A.3.2.5.6 Propulsion Testing

Vessel Evaluation	on					
Propulsion Test	ing					
Short	Ship is run at high speeds in	various formation	ons Typi	cal Dura	tion	
Description	(straight-line and reciprocal p		1 da			
Long	Propulsion testing is one part of the total sea trial activity. During				his event the shin is tested for	
Description	maneuverability, including fu				ms event, the simp is tested for	
Typical	Platforms: Amphibious warfare ships, fleet support ships, sea basing ships, surface combatants,					
Components	small boats, specialized high	•	apport sinps,	Jea basii	ig simps, surface compatants,	
	Targets: None	opeca removes				
	Systems being Trained/Test	ed: None				
Standard	Vessel safety	Typical Locatio	ns			
Operating	·	Range Comple		anges:	Inland Waters/Pierside:	
Procedures		Gulf of Mexico		Ü	None	
(Section		Jacksonville				
2.3.3)		Key West				
		Navy Cherry P	oint			
		Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Distu	rbance and St	rike:	Energy:	
Biological	Vessel noise	Vessels and in-water devices			In-air electromagnetic	
Resources					devices	
	Explosives:	Ingestion:				
	None	None			Entanglement:	
					None	
Stressors to	Air Quality:		Sediments and	l Water (Quality:	
Physical	Criteria air pollutants	Γ	None			
Resources	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioocor	omic Resourc	oc:	Public Health and Safety:	
Human	Physical disturbance and strik			es.	Physical interactions	
Resources	Friysical disturbance and strin		isturbance and	l strika	In-air energy	
Military	Ingestible Material:	·	lilitary	None	m-an energy	
Expended	None		ecoverable	None		
Material	None		laterial			
	Non-Ingestible Material:					
	None					
Sonar and	None	-		<u>.</u>		
Other	-					
Transducer						
Bins						
In-Water	None	-		,	-	
Explosive						
Bins						
Procedural	Physical Disturbance and Str	ike: (Section 5.3	3.4)		-	
Mitigation	Vessel movement					

Vessel Evaluation					
Propulsion Testing					
Assumptions	Ships will not be conducting test constantly for the duration of the allotted time.				
Used for	Ships may not be traveling in a straight line.				
Analysis	Ships will operate across the full spectrum of capable speeds.				
	During surface combatant sea trials full-power runs are conducted for a total of 4 hours, and				
	endurance runs are conducted for a total of 2 hours.				
	Testing may occur near Pascagoula, Mississippi when in the Gulf of Mexico.				

A.3.2.5.7 Signature Analysis Operations

Other Testing A	Activities					
	ysis Operations					
Short	Surface ship and submarine	testing of		Typic	al Durati	ion
Description	electromagnetic, acoustic, optical, and radar			Periodically over multiple days		
Long	signature measurements.	include electr	romagnetic	300118	tic ontic	cal and radar signature
Description	- ·	nature analysis activities include electromagnetic, acoustic, optical, and radar signature assurements, recording, and post-run analyses of data of Navy surface and subsurface vessels.				
Description	_	ude electromagnetic signature measurement, calibration, and detection of				
	submarines, acoustic and m	_	_			
	surface ships, radar, and op	-				
	surveillance, reconnaissance	e missions.				
Typical	Platforms: Moored platform	ns, submarine	s, support	craft, s	hore bas	ed facility
Components	Targets: None					
	Systems being Trained/Tes	ted: Electrom	agnetic dev	vices, a	icoustic n	nodems, optical and radar
	systems, sonar systems					
Standard	Vessel safety	Typical Loca				
Operating		Range Complexes/Testing Ranges: Inland Waters/Pierside:				-
Procedures (Section		South Florida Ocean Measurement None				
2.3.3)		Facility				
Stressors to	Acoustic:	Physical Dis	sturbance a	and Str	ike:	Energy:
Biological	Sonar and other	Vessels and			iic.	In-air electromagnetic
Resources	transducers					devices
	Vessel noise	Ingestion:				
		Military exp	ended mat	terials -	– other	Entanglement:
	Explosives:	than mu	nitions			Small
	None					decelerators/parachutes
						Cables and wires
Stressors to	Air Quality:		Sedimen	ts and		-
Physical Resources	Criteria air pollutants		Metals Other ma	atoriale	Chemic	cals
Resources	Habitats:		Otherma	ateriais	•	
	Physical disturbance and str	ike – militarv				
	expended material	,				
Stressors to	Cultural Resources:	Socioe	conomic Re	source	es:	Public Health and Safety:
Human	Physical disturbance and str	ike Accessi	bility			Physical interactions
Resources		Physica	ıl disturban	ce and	strike	In-air energy
						Underwater energy
Military	Ingestible Material:		Military		Anchors	s,
Expended	Small decelerators/parachu	tes	Recovera	ble		
Material	Non-Ingestible Material:		Material			
	Anchors, expendable					
	bathythermographs, expe					
	bathythermograph wires,	sonobuoys				
	(non-explosive)					

Other Testing A	ctivities				
Signature Analy	ysis Opera	tions			
Sonar and	Mid-Free	quency:	High-Frequ	iency:	Acoustic Modems:
Other	MF9	MF10	HF1		M3
Transducer					
Bins	Low-Fre	quency:	Anti-Subm	arine Warfare:	
	LF4	LF6	ASW2		
	LF5				
In-Water	None	-	-	-	-
Explosive					
Bins					
Procedural	Acoustic	Stressors: (Section	on 5.3.2)	Physical Di	sturbance and Strike: (Section 5.3.4)
Mitigation	Active so	onar		Vessel mov	vement
Measures					
Assumptions	None		_	_	
Used for					
Analysis					

A.3.2.5.8 Surface Warfare Testing

Vessel Evaluation	on					
Surface Warfard						
	-		- · · · ·			
Short	Tests the capabilities of ship		Typical Dura	ation		
Description	detect, track, and engage su	•				
	may include ships defending					
	targets using explosive and	· · · · · · · · · · · · · · · · · · ·	7 4			
	gun system structural test fi	_	7 days			
	demonstration of the respon against land based targets (s					
	locations).	·				
Long	Surface warfare events are §					
Description	•	· · · · · · · · · · · · · · · · · · ·		sensors to detect and track surface		
		-		ge targets with simulated and live		
	_		-	arfare gun capability to receive		
				nd aimpoint corrections (spots),		
	generate gun orders, select ammunition properly for targets at differing ranges, and deliver surface direct fire on the surface or land based targets. Testing can also include structural test firing.					
			ng can also in	clude structural test firing.		
Typical	Platforms: Support craft, su					
Components	Targets: Air targets, electronic warfare targets, surface targets Systems being Trained/Tested: Gun systems, electronic warfare systems					
		·	onic warfare s	ystems		
Standard	Vessel safety	Typical Locations				
Operating	Weapons firing safety	Range Complexes/Test	ting Ranges:	Inland Waters/Pierside:		
Procedures		Gulf of Mexico		None		
(Section 2.3.3)		Jacksonville				
		Key West				
		Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance a		Energy:		
Biological	Aircraft noise	Aircraft and aerial targ		In-air electromagnetic		
Resources	Vessel noise	Underwater explosives	;	devices		
	Weapons noise	In-air explosives				
	Familia altera a	Vessels and in-water de		Entanglement:		
	Explosives:	Military expended mat	eriais	Wires and cables		
	Underwater explosives	lu mastiau.				
	In-air explosives	Ingestion:	oriala			
		Military expended mat munitions	eriais –			
		Military expended mat	orials — othor			
		than munitions	eriais – otilei			
Strossors to	Air Quality		ts and Water	Quality		
Stressors to Physical	Air Quality: Criteria air pollutants	Sedimen Metals	ts and Water			
Resources	Criteria an poliutarits	Metals Other materials				
Resources	Habitats:					
	Physical disturbance and stri	ke – military				
	expended materials	inc minitary				
	Underwater explosives					
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility	/u16C3.	Physical interactions		
Resources	strike	Airborne acoustics		In-air energy		
	Explosives	Physical disturbance	and strike	Underwater energy		
	EXPIOSIVES	i ilysical distarbance	and June	Shaci water energy		

Vessel Evaluati	on		
Surface Warfar	e Testing		
Military Expended Material	Ingestible Material: Large- and medium-caliber projectile (explosive) fragments, medium- caliber projectiles (non-explosive), missile (explosive) fragments, target fragments Non-Ingestible Material: Large-caliber projectiles (non- explosive), missiles (non-explosive)	Military Recoverable Material	Remote controlled surface targets, stationary surface targets, towed air targets
Sonar and Other Transducer Bins	None		
In-Water Explosive Bins	E1 E5 E8		
Procedural Mitigation Measures	Acoustic Stressors: (Section 5.3.2) Weapons firing Physical Disturbance and Strike: (Section Vessel movement Small-, medium-, and large-caliber non-ex practice munitions Non-explosive missiles and rockets	Explosi pro 5.3.4) Explosi	ve Stressors: (Section 5.3.3) ve medium-caliber and large-caliber jectiles ve missiles and rockets
Assumptions Used for Analysis	Ships will not be conducting tests constant	tly for the duration	on of the allotted time.

A.3.2.5.9 Undersea Warfare Testing

Vessel Evaluation	on					
Undersea Warf						
Short	Ships demonstrate capabilit	v of countermeasure	Typical Durat	ion		
Description	systems and underwater su engagement and communic tests ships ability to detect, undersea targets.	rveillance, weapons ations systems. This	Up to 10 days			
Long Description	Undersea warfare events may be comprised of tracking and firing events or tests of hull-mounted sonar system capabilities to detect and avoid torpedo type targets. Tracking and firing events ensure the operability of the undersea warfare suite and its interface with the rotary wing helicopter. Tests include demonstrating the ability of the ship to search, detect and track a target and conduct attacks with exercise torpedoes. Detection and avoidance events may use surface craft and underwater platforms to test the capability of mid- and high-frequency acoustic sources. Subsurface moving targets, rocket and air-dropped weapons, sonobuoys, towed arrays and sub-surface torpedo-like devices may be used. Approximately 1 week of in-port training may precede the event.					
	Platforms: Rotary-wing airc		craft, surface c	compatants		
Components	Targets: Sub-surface targets	_				
	Systems being Trained/Tes		asures, sonar sy	stems, sonobuoys		
Standard	Vessel safety	Typical Locations				
Operating Procedures (Section 2.3.3)	Aircraft safety	Range Complexes/Test Gulf of Mexico Jacksonville Navy Cherry Point Northeast Virginia Capes South Florida Ocean M		Inland Waters/Pierside: None		
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:		
Biological	Sonar and other	Aircraft and aerial targ		In-air electromagnetic		
Resources	transducers	Vessels and in-water d		devices		
	Aircraft noise	Military expended mat				
	Vessel noise	, . ,		Entanglement:		
		Ingestion:		Wires and cables		
	Explosives:	Military expended mat	erials – other	Decelerators/parachutes		
	None	than munitions				
Stressors to	Air Quality:	Sedimen	ts and Water Q	Quality:		
Physical	Criteria air pollutants	Metals Chemicals				
Resources	·	Other materials				
	Habitats: Physical disturbance and str expended material	ike – military				
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility		Physical interactions		
Resources	strike	Airborne acoustics		In-air energy		
		Physical disturbance	and strike			

Vessel Evaluation	on					
Undersea Warf	are Testing					
Military	Ingestible Materia	ıl:	Military	Heavyweight torpedoes (non-		
Expended	Small decelerators/parachutes,		Recoverable	explosive), lightweight torpedoes		
Material	parachutes-med	lium	Material	(explosive), miscellaneous surface		
				targets, recoverable motorized		
	Non-Ingestible Ma	aterial:		autonomous targets		
	Acoustic counterm	Acoustic countermeasures,				
	heavyweight tor	pedo accessories,				
	guidance wires,	lightweight torpedo				
	accessories, son	obuoys (non-				
	explosive), sono	•				
	expendable mot	orized autonomous				
	targets					
Sonar and	Mid-Frequency:	High-Fre	quency:	Torpedoes:		
Other	MF1 MF	F5 HF4	HF8	TORP1 TORP2		
Transducer	MF1K MF	-				
Bins	MF4	Anti-Sub	marine Warfare:			
		ASW3	ASW4			
In-Water	None					
Explosive						
Bins						
Procedural	Acoustic Stressors	: (Section 5.3.2)	Physica	I Disturbance and Strike: (Section 5.3.	4)	
Mitigation	Active sonar		Vessel r	movement		
Measures						
Assumptions	Five targets are uti	Five targets are utilized per event.				
Used for	All sonobuoys have	e a parachute unless oth	nerwise noted.			
Analysis	Ships will not be co	onducting test constantl	y during the dura	tion of the allotted time.		

A.3.2.5.10 Small Ship Shock Trial

Vessel Evaluation	nn					
Small Ship Shoo						
Short	Underwater detonations are	usad t	o test	Typi	cal Durat	ion
Description	new ships or major upgrades		.o test			4 weeks, with one detonation
					-	wever, smaller charges may be
				•		consecutive days.
Long	Each new class (or major upgrade) of surface ships constructed for the Navy may undergo an					
Description	at-sea shock trial. A shock trial is a series of underwater detonations that sends a shock wave through the ship's hull to simulate near misses during combat. A series of up to four					
					-	•
	-	underwater detonations per event will be conducted at various distances from the ship (charges are set closer to the ship as the trial progressives).				
Typical	Platforms: Support craft, surface combatants, fixed-wing aircraft , rotary-wing aircraft					
Components	Targets: None	race ee	Jiiibataiits, ii	ixea v	wing and	are, rotary wing aircraft
·	Systems being Trained/Test	ed: No	ne			
Standard	Vessel safety	Typica	al Locations			
Operating	Aircraft safety	_	e Complexes	/Test	ting	Inland Waters/Pierside:
Procedures		Range				None
(Section 2.3.3)		Jacksonville				
Stressors to	Acoustic:	Virginia Capes Physical Disturbance and Strike: Energy:			Energy:	
Biological	Vessel noise	-	ls and in-wat			In-air electromagnetic
Resources	Aircraft noise		ft and aerial			devices
		Under	water explo	sives		
	Explosives:	Milita	ry expended	mate	erials	Entanglement:
	Underwater explosives	1	.•			None
		Ingest	ry expended	mate	rials —	
			ner than mur			
Stressors to	Air Quality:		Sediment	s and	Water Q	Quality:
Physical	Criteria air pollutants		Explosives	5	Che	emicals
Resources			Other mat	terials	5	
	Habitats:	l				
	Physical disturbance and stril military expended materi					
Stressors to	Cultural Resources:	<u> </u>			_	
Human	None					
Resources						
Military	Ingestible Material:	-	Military		None	
Expended	Ship shock charge fragments		Recoverab	le		
Material	Non-Ingestible Material:	Material				
	None					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	E16					
Explosive Bins						
כוווט						

Vessel Evaluation	Vessel Evaluation					
Small Ship Shoo	Small Ship Shock Trial					
Procedural	Physical Disturbance and Strike: (Section	Explosive Stressors: (Section 5.3.3)				
Mitigation	5.3.4)	Ship shock trials				
Measures	Vessel Movement					
Assumptions	Four charges are utilized per event					
Used for	Three events will occur during the 5-year pe	riod.				
Analysis	Will occur in waters deeper than 650 ft.					
	Modeling scenario: Four 10,000-lb. charges					
	Stressors to human resources were not anal	yzed for this activity since it occurs greater than				
	12 NM from shore.					

A.3.2.5.11 Submarine Sea Trials – Propulsion Testing

Vessel Evaluat	ion						
Submarine Sea	Trials - Propulsion Testing						
Short	Submarine is run at high sp	peeds in vario	us Ty ı	oical Dura	ation		
Description	formations, and at various			to 5 days			
Long				ne sea trial activity. During this activity,			
Description					gency surfacing, full-power		
Description	operations, high speed tur	-	· · · · · · · · · · · · · · · · · · ·	-	gency surfacing, fair power		
Typical	Platforms: Submarines	iis, and extrei	ne depth chang	503.			
Components		Targets: None					
a	Systems being Trained/Te						
Standard	Vessel safety	Typical Loca					
Operating		_	plexes/Testing		Inland Waters/Pierside:		
Procedures		Ranges:			None		
(Section		Jacksonville	<u> </u>				
2.3.3)		Northeast					
		Virginia Capes					
Stressors to	Acoustic:	Physical Disturbance and Strike: Energy:					
Biological	Vessel noise	Vessels and in-water devices None			None		
Resources							
	Explosives:	Ingestion:			Entanglement:		
	None	None	None				
Stressors to	Air Quality:	-	Sediments a	nd Water	Quality:		
Physical	None		None		.,		
Resources							
	Habitats:						
	None						
Stressors to	Cultural Resources:	Socioe	conomic Resou	rces:	Public Health and Safety:		
Human	None	Accessi	bility		Physical interactions		
Resources			ıl disturbance a	nd	,		
		stri					
Military	Ingestible Material:	-	Military	None	-		
Expended	None		Recoverable	110116			
Material			Material				
	Non-Ingestible Material:						
	None						
Sonar and	None						
Other	. Tone						
Transducer							
Bins							
In-Water	None			-	-		
Explosive	110110						
Bins							
Procedural	Physical Disturbance and G	Strike: /Section	n				
Mitigation	Physical Disturbance and Strike: (Section						
Measures	5.3.4) Vessel movement						
ivicasuies	vessermovement						
Assumptions	Subs will not be conducting	tact conctan	tly for the dura	tion of th	ne allotted time		
Used for	Subs may not be traveling i		-	נוטוו טו נו	ie anotteu tiirie.		
Analysis	Subs may not be traveling i	_		aads			
Allalysis	Jubs will operate across the	e run spectrul	ii oi capable sp	ceus.			

Vessel Evaluation

Submarine Sea Trials – Propulsion Testing

- For biological resource analysis, vessel noise and vessel strike are only analyzed for the periods while the submarines are surfaced, typically brief in nature. Mitigation measures related to vessel movement are only considered during the period of surfacing as well.
- For human resource stressor analysis, physical disturbance and strike and physical interactions are only analyzed for the periods while the submarine are surfaced, typically brief in nature.

A.3.2.6 Submarine Sea Trials – Weapons System Testing

Vessel Evaluation	on				
Submarine Sea	Trials – Weapons System Tes	ting			
Short	Submarine weapons and so	nar systems are	e tested	Typic	cal Duration
Description	at-sea to meet the integrate	ed combat syste	em	lln t	a 7 days
	certification requirements.			Up to	o 7 days
Long	Submarine weapons and so	nar systems are	e tested at	-sea to	o meet the integrated combat system
Description	-		-	_	e integrated combat system through
		ists of passive a	and active s	sonar a	activities, launching "water slugs" and
	exercise torpedoes.				
Typical	Platforms: Moored platforn		, support c	raft	
Components	Targets: Sub-surface targets		andoms so		ustams, undamustar communication
	systems being Trained/Tes	tea: Acoustic II	nodems, sc	onar sy	ystems, underwater communication
Standard	Vessel safety	Typical Locat	ions		
Operating	Weapons firing safety	Range Comp		ing Ra	anges: Inland Waters/Pierside:
Procedures	, ,	Gulf of Mexic		6	None
(Section 2.3.3)		Jacksonville			
		Northeast			
		Virginia Cape	es		
		South Florida	a Ocean M	easure	ement
		Facility			
		Offshore of Fort Pierce, Florida			
Stressors to	Acoustic:	Physical Dist			
Biological	Sonar and other	Vessels and i	in-water d	evices	J
Resources	transducers				devices
	Vessel noise	Ingestion: None			Entanglement:
	Explosives:	None			Wires and cables
	None				wifes and cables
Stressors to	Air Quality:	-	Sedimen	ts and	l Water Quality:
Physical	Criteria air pollutants		Explosive		Chemicals
Resources			Metals		Other materials
	Habitats:				
	Physical disturbance and str	ike – military			
	expended material				
Stressors to	Cultural Resources:		nomic Reso	urces	•
Human Resources	Physical disturbance and strike	Accessibili Physical di	•	and ct	Physical interactions trike In-air energy
Resources	SUIKE	Filysical di	isturbance	anu si	Underwater energy
Military	Ingestible Material:		Military		Expendable training targets,
Expended	None				heavyweight torpedoes (non-
Material		Material explosive)			
	Non-Ingestible Material:				
	Heavyweight torpedo access				
Sonar and	Mid-Frequency:	High-Fred	quency:		Torpedoes:
Other	MF3 MF10	HF1			TORP2
Transducer	MF9				
Bins					Acoustic Modems:
					M3

Vessel Evaluati	Vessel Evaluation					
Submarine Sea	Submarine Sea Trials – Weapons System Testing					
In-Water	None					
Explosive						
Bins						
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)				
Mitigation	Active sonar	Vessel movement				
Measures						
Assumptions	Submarines will not be conducting test co	nstantly for the duration of the allotted time.				
Used for						
Analysis						

A.3.2.6.1 Total Ship Survivability Trials

Vessel Evaluati	on					
Total Ship Surv	ivability Trials					
Short	Series of simulated "realisti	c" weapon hit	. 1	Гуріса	l Dura	tion
Description	scenarios with resulting dar	-				
	recoverability exercises aga	inst an aircraf	t carrier.	days,	, happe	ening once over a 5-year period.
Long	Each new class (or major up	grade) of surf	face ships cor	struct	ted for	the Navy will undergo an at-sea
Description	Total Ship Survivability Trial	(TSST). A TSS	T is a series o	f realis	stic we	eapon hit scenarios. Each
	scenario simulates a weapo	n hit, resultin	g damage, an	d a su	bsequ	ent tactical threat during which
				-		containing and controlling the
	_	ulated damage, treat crew casualties, and continues to fight. The TSST has been described as				
	=			_		ne TSST is to demonstrate that
		-	•			ity to realign, repair, and contain
	damage following a simulat	-	-			
	assessment. It does not eva	luate crew pr	oficiency or ti	raınıng	g nor d	loes it qualify equipment.
Typical	Platforms: Aircraft carriers					
Components	Targets: None					
a. l l	Systems being Trained/Tested: None					
Standard	Vessel safety	Typical Locations				
Operating Procedures		Range Complexes/Testing Ranges: Inland Waters/Pierside:				
(Section		Jacksonville None				
2.3.3)		Virginia Capes				
Stressors to	Acoustic:	Physical Dis	sturbance and	d Strik	۵٠	Energy:
Biological	Vessel noise	•	in-water dev			In-air electromagnetic
Resources	1 20021 112.00	7 0000.0 0.110	mater act			devices
	Explosives:	Ingestion:				
	None	None				Entanglement:
						None
Stressors to	Air Quality:		Sediments	and V	Vater (Quality:
Physical	Criteria air pollutants		None			
Resources						
	Habitats:					
	None	-	-			
Stressors to	Cultural Resources:		nomic Resou	rces:		Public Health and Safety:
Human	Physical disturbance and	Accessibi	-			Physical interactions
Resources	strike	Physical o	disturbance a			In-air energy
Military	Ingestible Material:		Military		None	
Expended	None		Recoverable	е		
Material	Non-Ingestible Material:	Material				
	None					
Sonar and	None					
Other						
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						

Vessel Evaluati	Vessel Evaluation			
Total Ship Survivability Trials				
Procedural	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Vessel movement			
Measures				
Assumptions	None			
Used for				
Analysis				

A.3.2.6.2 Vessel Signature Evaluation

Vessel Evaluation	nn .				
Vessel Signatur					
Short	Surface ship, submarine and	l auviliary system	Typical Duration		
Description	signature assessments. This electronic, radar, acoustic, i signatures.	may include	Typically 1-5 days, up to 20 days depending on the test being conducted		
Long	-	g of surface ships and sub	bmarines is accomplished on new ships and		
Description	periodically throughout a ship's life cycle to measure how detectable the ship is to radar. For example, Assessment Identification of Mine Susceptibility assessments are passive electromagnetic and acoustic measurements performed on mine countermeasure ships and on the Littoral Combat Ship mine countermeasure modules (i.e., auxiliary systems) to determine their mine susceptibility using seafloor deployed magnetometers and hydrophones, and a ship-board global positioning sensor tracking system. Signature testing of all surface ships and submarines verifies that each vessel's signature is within specifications, and may include the use of helicopter-deployed instrumentation, ship-mounted safety and navigation systems, fathometers, tracking devices, radar systems, and underwater communications equipment. Also included in this activity is the Shipboard Electronic Systems Evaluation Facility which conducts measurements of antenna radiation patterns, Federal Aviation Administration identification of Friend or Foe systems, and Tactical Air Navigation				
Typical	Systems. Platforms: Aircraft carriers	amnhihious warfare shin	os combat logistics shins fixed wing aircraft		
Components	Platforms: Aircraft carriers, amphibious warfare ships, combat logistics ships, fixed wing aircraft, fleet support ships, mine warfare, patrol boats, rotary-wing aircraft, sea basing ships, small boats, special mission ships, specialized high speed vehicles, submarines, support craft, surface combatants Targets: None Systems being Trained/Tested: Radar systems, electromagnetic devices				
Standard	Vessel safety	Typical Locations			
Operating Procedures (Section 2.3.3)	Aircraft safety	Range Complexes/Test Gulf of Mexico Jacksonville Virginia Capes	iting Ranges: Inland Waters/Pierside: Joint Expeditionary Base Little Creek, Virginia		
Stressors to Biological Resources	Acoustic: Sonar and other transducers Aircraft noise Vessel noise Explosives: None	Physical Disturbance a Aircraft and aerial targ Vessels and in-water d Ingestion: None	gets In-water electromagnetic		
Stressors to Physical Resources	Air Quality: Sediments and Water Quality: Criteria air pollutants None Habitats: None				
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike	Socioeconomic Reso Accessibility Physical disturbance	Physical interactions		

Vessel Evaluation	Vessel Evaluation				
Vessel Signatur	Vessel Signature Evaluation				
Military	Ingestible Material:	Military	None		
Expended	None	Recoverable			
Material		Material			
	Non-Ingestible Material:				
	None				
Sonar and	None				
Other					
Transducer					
Bins					
In-Water	None				
Explosive					
Bins					
Procedural	Physical Disturbance and Strike: (Section 5.3.4)				
Mitigation	Vessel movement				
Measures					
Assumptions	None	<u>-</u>			
Used for					
Analysis					

A.3.2.7 Other Testing

A.3.2.7.1 Chemical and Biological Simulant Testing

Other Testing	Activities					
Chemical and I	Biological Simulant Testing					
Short	Chemical-biological agent sim	ulants are der	oloved T	ypical Dura	tion	
Description	against surface ships.			3 days		
Long	Chemical or biological agent simulants are deployed					
Description	ship's defense system including installed detection, protection, and decontamination systems.					
	Methods of simulant delivery include aerial dispersal and hand-held spray.					
Typical	Platforms: Fixed-wing aircraf		•		Sp. 51.	
Components	Targets: None	,				
	Systems being Trained/Teste	ed: None				
Standard	Vessel safety	Typical Loca	tions			
Operating	Aircraft safety		olexes/Testing	g Ranges:	Inland Waters/Pierside:	
Procedures	•	Jacksonville		P	None	
(Section		Navy Cherry			None	
2.3.3)		Northeast				
,		Virginia Cap	es			
Stressors to	Acoustic:		turbance and	Strike:	Energy:	
Biological	Aircraft noise		aerial targets		In-air electromagnetic	
Resources	Vessel noise		in-water devi		devices	
	Explosives:	Ingestion:			Entanglement:	
	None	None			None	
Stressors to	Air Quality:		Sediments a	and Water (Quality:	
Physical	Criteria air pollutants		Chemicals		ther materials	
Resources	·					
	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioe	conomic Res	ources:	Public Health and Safety:	
Human	Physical disturbance and strik	e Access	sibility		Physical interactions	
Resources			ne acoustics		In-air energy	
		Physic	al disturbance	e and		
		str	ike			
Military	Ingestible Material:	-	Military	None	•	
Expended	None		Recoverable	9		
Material	Non-Ingestible Material:		Material			
	None					
Sonar and	None				-	
Other	None					
Transducer						
Bins						
In-Water	None					
Explosive	None					
Bins						
Procedural	Physical Disturbance and Stri	ke · (Section 5	3 4)	<u> </u>		
Mitigation	Vessel movement	Re. (Section S.	.5.4)			
Measures	v C33CI IIIOVEIIIEIIL					
ivicasui es						

Other Testing Activities				
Chemical and Biological Simulant Testing				
Assumptions	Examples of chemical simulants include glacial acetic acid and triethyl phosphate.			
Used for	Examples of biological simulants are spore-forming bacteria, non-spore-forming bacteria, the protein			
Analysis	ovalbumin, MS2 bacteriophages, and the fungus Aspergillus niger.			

A.3.2.7.2 Insertion/Extraction

Other Testing A	ctivities					
Insertion/Extra						
Short	Testing of submersibles capa	able of inserti	ng and	Typical Dura	ntion	
Description	extracting personnel and pa		nied	Unite 20 days		
	areas from strategic distanc	es.	'	Up to 30 day	/S	
Long	Testing of submersibles capable of inserting and extra			ting personr	nel and payloads into denied	
Description	areas from strategic distanc	es. Testing co	uld include th	e use of ford	ces deployed from submerged	
	submarines while at sea.					
Typical	Platforms: Submarines					
Components	Targets: None					
	Systems being Trained/Tes	ted: Submersi	bles, sonar sy	stems, acou	istic modems	
Standard	Vessel safety	Typical Loca	tions			
Operating		Range Com	plexes/Testin	g Ranges:	Inland Waters/Pierside:	
Procedures		Key West			None	
(Section 2.3.3)			ce Warfare Co	enter,		
		Panama	City Division			
Stressors to	Acoustic:	=	sturbance and		Energy:	
Biological	Sonar and other	Vessels and	in-water dev	ices	None	
Resources	transducers					
	Vessel noise	Ingestion:			Entanglement:	
	l _ . .	None			None	
	Explosives:					
	None					
Stressors to	Air Quality:			and Water	Quality:	
Physical	Criteria air pollutants		None			
Resources	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioeco	nomic Resou	rcoc:	Public Health and Safety:	
Human	Physical disturbance and	Accessibi		ices.	Physical interactions	
Resources	strike		disturbance a	nd strike	Underwater energy	
Military	Ingestible Material:	Titysical c	Military	None	- Chackwater energy	
Expended	None		Recoverable			
Material			Material			
	Non-Ingestible Material:					
	None					
Sonar and	Mid-Frequency:	Acoustic	Modems:	•		
Other	MF9	M3				
Transducer						
Bins						
In-Water	None					
Explosive						
Bins						
Procedural	None					
Mitigation						
Measures						
Assumptions	Test will not occur constant					
Used for					nly analyzed for the periods while	
Analysis	the submarines are surfa	iced, typically	brief in natur	e. Mitigation	n measures related to vessel	

Other Testing Activities						
Insertion/Extra	ction					
	movement are only considered during the period of surfacing as well.					
	For human resource stressor analysis, physical disturbance and strike and physical interactions are					
	only analyzed for the periods while the submarine are surfaced, typically brief in nature.					

A.3.2.7.3 Line Charge Testing

Other Testing A	Activities					
Line Charge Tes						
Short	Surface vessels deploy line of	charges to tost t	he T.	mical Dura	tion	
Description	capability to safely clear an a forces.		ionary	1 day		
Long Description	Line charges are tested to verify the capability to safely clear surf zone areas for sea-based expeditionary operations. Testing is performed on various surf zone clearing systems that use either line charges or explosive arrays to neutralize mine threats. This is a systems development test and only assesses the in-water components of testing. Line charges consist of a 350-ft. detonation cord with explosives lined from one end to the other end in a series of 5-lb. increments.					
Typical Components	Platforms: Moored platform Targets: None Systems being Trained/Test					
Standard	Vessel safety	Typical Location				
Operating Procedures (Section 2.3.3)		Range Comple Naval Surface Panama Cir	exes/Testing Warfare Ce	_	Inland Waters/Pierside: None	
Stressors to Biological Resources	Acoustic: Vessel noise	Physical Disturbance and Strike: Vessels and in-water devices Underwater explosives			Energy: None Entanglement:	
	Explosives: Underwater explosives	Military exper Ingestion: Military exper munitions		None		
Stressors to Physical Resources	Air Quality: Criteria air pollutants Habitats: Physical disturbance and stri	Sediments and Water Quality: Explosives				
	expended material					
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike Explosives	Socioeconomic Resources: Accessibility Airborne acoustics Physical disturbance and strike			Public Health and Safety: Physical interactions Underwater energy	
Military Expended Material	Ingestible Material: Line charge fragments Non-Ingestible Material: None	Military Recoverable Material		None		
Sonar and Other Transducer Bins	None					
In-Water Explosive Bins	E14				-	

Other Testing A	Other Testing Activities					
Line Charge Tes	sting					
Procedural Mitigation Measures	Physical Disturbance and Strike: (Section 5.3.4) Vessel movement	Explosive Stressors: (Section 5.3.3) Line charge testing				
Assumptions Used for Analysis	Test will not occur constantly over the duration o	f the allotted time.				

A.3.2.7.4 Acoustic Component Testing

Other Testing A	ctivities					
Acoustic Compo						
Short	Various surface vessels, mod	ored equipmen	t, and T	ypical Dura	ntion	
Description		re tested to evaluate performance in			tiple months	
Long Description	Various surface activities utilizing the marine environment for testing and evaluation. Sample projects include buoy deployments, vessel entanglement systems, materials testing, and renewable energy devices. Other surface operations involve manned and unmanned surface vehicles. Miscellaneous types of equipment are deployed, including temperature, humidity, magnetic, acoustic, optical, and air quality instrumentation to measure, record, and analyze system effectiveness, dependability, operational parameters, and durability. Surface operations utilize a variety of vessels for deployment of test equipment and for the monitoring of the air, surface, subsurface.					
Typical		l systems, unm	anned surfac	ce vehicles,	unmanned underwater vehicles	
Components	Targets: None Systems being Trained/Tost	tadı Canar ayatı	ome undom	ator comm	unication systems	
Standard	Systems being Trained/Test Unmanned aerial, surface,			ater comm	unication systems	
Operating Procedures (Section 2.3.3)	and subsurface vehicle safety	Typical Locations Range Complexes/Testing Ranges: South Florida Ocean Measurement Facility			Inland Waters/Pierside: None	
Stressors to Biological Resources	Acoustic: Sonar and other transducers Vessel noise Explosives:	Physical Disturbance and Strike: Aircraft and aerial targets Vessels and in-water devices Ingestion: None		5	Energy: None Entanglement: None	
Stressors to Physical Resources	None Air Quality: Criteria air pollutants Habitats: None		Sediments None	and Water	Quality:	
Stressors to Human Resources	Cultural Resources: Physical disturbance and strike	Socioeconomic Resources: Accessibility Physical disturbance and strike		Public Health and Safety: Physical interactions Underwater energy		
Military Expended Material	Ingestible Material: None Non-Ingestible Material: None		Military Recoverable Material	None		
Sonar and Other Transducer Bins	Low-Frequency: LF5 Mid-Frequency:	FLS2 High-Freq	Looking Sona	ar:	Synthetic Aperture Sonars: SAS2	
	MF9	HF5 HF7				

Other Testing A	Other Testing Activities				
Acoustic Comp	onent Testing				
In-Water	None				
Explosive					
Bins					
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Active sonar	Vessel movement			
Measures					
Assumptions	None	•			
Used for					
Analysis					

A.3.2.7.5 Non-Acoustic Component Testing

Other Testing Ac	ctivities					
	mponent Testing					
Short	Testing of towed or floating	buoys for	Ту	pical Dura	ation	
Description	communications through ra	dio-frequencie	es or			
	two-way optical communica	ations betweer	etween an 3 days (4 hours per day for 3 days)			
	aircraft and underwater syst	tem(s).				
Long		io frequency communications could occur from towed antennas from				
Description	surface vessels, from single-	•			•	
		ommunication. Optical communications tests may include communications				
	•	_	ed underwater systems, and may			
	also include ground truth se					
Typical		l boats, rotary	-wing aircraft (ınmanned	underwater vehicles, manned	
Components	underwater vehicles					
	Targets: None			_		
Chandand	Systems being Trained/Test			5		
Standard Operating	Vessel safety Aircraft safety	Typical Loca		Danes	Inland Materia /Diamatala	
Procedures	Unmanned aerial, surface,	Gulf of Mex	plexes/Testing	Ranges:	Inland Waters/Pierside: None	
(Section 2.3.3)	and subsurface vehicle	Virginia Cap			None	
(3000001 2.3.3)	safety	Virginia Cap	162			
Stressors to	Acoustic:	Physical Dis	turbance and	Strike:	Energy:	
Biological	Aircraft noise	-	aerial targets		In-air electromagnetic	
Resources	Vessel noise		in-water device	ces	devices	
		Ingostion			Entanglament	
	Explosives:	Ingestion: None			Entanglement: None	
	None	None	_		None	
Stressors to	Air Quality:		Sediments a	nd Water	Quality:	
Physical	Criteria air pollutants		None			
Resources						
	Habitats:					
<u> </u>	None				2.11	
Stressors to	Cultural Resources:		nomic Resourc	es:	Public Health and Safety:	
Human Resources	Physical disturbance and	Accessibil Airborne	-		Physical interactions	
Resources	strike		acoustics listurbance an	d ctriko	In-air energy	
Military	Ingestible Material:	Filysical C	Military		-	
Expended	None		Recoverable	None		
Material			Material			
	Non-Ingestible Material:	Waterial				
	None					
Sonar and	None					
Other						
Transducer						
Bins	None					
In-Water	None					
Explosive Bins	Dhusiaal Distructures - 100		T 2 4)	_		
Procedural	Physical Disturbance and St Vessel Movement	rike: (Section .	5.3.4)			
Mitigation	vessei ivioveitietit					
Measures	1					

Other Testing A	Other Testing Activities			
Non-Acoustic Component Testing				
Assumptions	None			
Used for				
Analysis				

A.3.2.7.6 Payload Deployer Testing

Other Testing A	ctivities			
Payload Deploy				
Short	Launcher systems are tested	l to evaluate	Typical Duration	
Description	performance.		1-5 days	
Long	Testing is conducted to eval	uate the performance of	current or future launchers, which are used to	
Description	_		sures, sensors, unmanned underwater vehicles,	
	and unmanned aerial vehicle	es). These tests may be p	erformed from a fixed location or a mobile	
	platform. The objects deplo	yed may be operational e	equipment or mock equipment that is	
		•	ıncher system. Various methods may be	
			pically recovered after the test and are usually	
	equipped with an acoustic lo			
Typical			ed vehicles, support craft, surface combatants,	
Components	unmanned surface vehicles,	unmanned underwater	vehicles	
	Targets: None	had. None		
Chandand	Systems being Trained/Tes			
Standard	Vessel safety Unmanned aerial, surface,	Typical Locations		
Operating Procedures	and subsurface vehicle	Range Complexes/Tes		
(Section 2.3.3)	safety	Gulf of Mexico Jacksonville	None	
(30001011 2.3.3)	Surcey	Northeast		
		Virginia Capes		
		Naval Undersea Warfa	re Center	
		Division, Newport		
Stressors to	Acoustic:	Physical Disturbance a	and Strike: Energy:	
Biological	Vessel noise	Vessels and in-water d	<u> </u>	
Resources		Military expended mat	terials	
	Explosives:		Entanglement:	
	None	Ingestion:	Wires and cables	
		Military expended mat	erials – other	
		than munitions		
Stressors to	Air Quality:		ts and Water Quality:	
Physical Resources	Criteria air pollutants	Metals	Other materials	
Resources	Habitats:			
	Physical disturbance and stri	ke – military		
	expended material			
Stressors to	Cultural Resources:	Socioeconomic Re	esources: Public Health and Safety:	
Human	Physical disturbance and strike Accessibility Physical interactions			
Resources	Physical disturbance and strike			
Military	Ingestible Material:	Military	Heavyweight torpedoes (non-	
Expended	End caps and pistons	Recovera	, ,, ,,	
Material		Material	(non-explosive)	
	Non-Ingestible Material:			
	Concrete slugs, heavyweight			
	accessories, lightweight to	orpedo		
	accessories, sabots			

Other Testing A	ctivities
Payload Deploy	rer Testing
Sonar and	None
Other	
Transducer	
Bins	
In-Water	None
Explosive	
Bins	
Procedural	Physical Disturbance and Strike: (Section 5.3.4)
Mitigation	Vessel movement
Measures	<u>_</u>
Assumptions	Instrumented operational equipment or mock equipment will be recovered.
Used for	Ships will not be conducting test constantly for the duration of the allotted time.
Analysis	Any acoustic sources used during this activity would be de minimis and not quantitatively analyzed
	and, therefore, are not included under systems.
	When chaff is used, 36 concrete slugs per event are expended.

A.3.2.7.7 Semi-Stationary Equipment Testing

Other Testing A	ctivities				
	y Equipment Testing				
Short	, , , <u>, , , , , , , , , , , , , , , , </u>	/a a budranh	anas) is	Typical Dur	ation
Description	Semi-stationary equipment (deployed to determine func		ones) is	Typical Dura	
•	' '	•			nutes to multiple days
Long Description	Semi-stationary equipment testing is performed from a fixed site, suspended over the side of a boat, moored to the bottom, suspended in the water column, or on the surface. Examples of semi-stationary equipment include moored hydrophones (i.e., devices to listen to underwater sound), line arrays (i.e., multiple hydrophones) deployed on the ocean bottom, acoustic countermeasures, a moored oceanographic sensor that moves vertically through the water column, and sonobuoys (i.e., expendable sonar systems). Some units produce sound in the water (e.g., acoustic countermeasures), while others only listen (e.g., passive sonobuoys, vector sensors that measure particle motion). Some tests could require deployment in an area that provides opportunistic data collection (e.g., placing a hydrophone near a shipping lane to collect shipping noise data), or with specific geographic or oceanographic requirements.				
Typical	Platforms: : In-water structu	-			
Components	_		_	_	urface targets, surface targets
	Systems being Trained/Test		stems, acou	ıstic counteri	measures, sonar systems,
	underwater communication	•			
Standard	Vessel safety	Typical Loca			
Operating	Towed in-water device	Range Comp	-		Inland Waters/Pierside:
Procedures	safety	Naval Surface Warfare Center, Newport, Rhode Island			
(Section 2.3.3)	Panama City Division				
	Naval Undersea Warfare Center				
		Division,	Newport		
Stressors to	Acoustic:	Physical Dis			Energy:
Biological	Vessel noise	Vessels and in-water devices Lasers			
Resources	Sonar and other				
	transducers	Ingestion:			Entanglement:
	l _ . .	None			None
	Explosives:				
	None				
Stressors to	Air Quality:			s and Water	
Physical	Criteria air pollutants		Metals	Other	materials
Resources					
	Habitats:				
	Physical disturbance and strike – military				
Character	expended material				Bubba Hadab a 10 ft
Stressors to	Cultural Resources:		conomic Re	sources:	Public Health and Safety:
Human	Physical disturbance and stri		bility e acoustics		Physical interactions
Resources				e and strike	In-air energy Underwater energy
Military	Ingostible Material:	FIIYSICA	Military		- -
Expended	Ingestible Material: None		Recoverab		d surface targets
Material	None		Material	ne e	
iviaterial	Non-Ingestible Material:		iviaterial		
	Acoustic countermeasures, 6	electronic			
	warfare targets, surface ta				
	stationary artificial targets	_			
	Stationary artificial targets	,			

Other Testing A	ctivities					
Semi-Stationary	y Equipment	t Testing				
Sonar and	Low-Frequency:		Anti-Subm	Anti-Submarine Warfare:		Defense:
Other	LF4	LF5	ASW3	ASW4	SD1	SD2
Transducer						
Bins	Mid-Frequ	iency:	High-Frequ	iency:	Airgun:	
	MF9	MF10	HF5	HF6	AG	
In-Water	None	-		<u>-</u>	-	·
Explosive						
Bins						
Procedural	Acoustic S	tressors: (Section	5.3.2)	Physical Dis	turbance and S	trike: (Section 5.3.4)
Mitigation	Active son	ar		Vessel move	ement	
Measures	Air guns					
Assumptions	None					
Used for						
Analysis						

A.3.2.7.8 Towed Equipment Testing

Other Testing	Activities						
Towed Equipm							
Short	Surface vessels or unmanned	surface vehic	les Tv	pical Dura	tion		
Description	deploy and tow equipment to				2-8 hours		
·	functionality of towed system		Ту	pically 2-8			
Long	Testing is conducted on equip		uate hydrodyna	mic charac	teristics and control of a tow		
Description	body, test fully functional iten						
·	functional item. A typical test operation for towed equipment testing involves a deployment, use, a						
	recover scenario that requires	s range or con	nmercial craft s	upport. Th	is equipment may be deployed		
	from and towed by range craft or unmanned surface vehicles. The towed item may be underwater or						
	floating on the surface. Equip	ment may be	acoustically act	ive or prod	duce radio frequency		
	transmissions.						
Typical	Platforms: Support craft, unm	nanned surfac	e vehicles				
Components	Targets: Sub-surface targets						
	Systems being Trained/Teste	d: Sonar syste	ems, underwate	r commun	ication systems		
Standard	Vessel safety	Typical Loca	tions				
Operating	Unmanned aerial, surface,	Range Com	plexes/Testing	Ranges:	Inland Waters/Pierside:		
Procedures	and subsurface vehicle		rsea Warfare C		None		
(Section	safety	Division,	Newport				
2.3.3)	Towed in-water device						
	safety						
Stressors to	Acoustic:	·=	sturbance and S		Energy:		
Biological	Sonar and other transducers		in-water devic	es	Lasers		
Resources	Vessel noise Seafloor devices				_		
	l ₋				Entanglement:		
	Explosives:	Ingestion:			None		
	None	None					
Stressors to	Air Quality:		Sediments a	nd Water (Quality:		
Physical	Criteria air pollutants		Metals				
Resources	Habitats:						
	Physical disturbance and strike	e – seafloor					
	devices	e – seanooi					
Stressors to	Cultural Resources:	Socioe	conomic Resou	rcoc:	Public Health and Safety:		
Human	Physical disturbance and strike		al disturbance a		Physical interactions		
Resources	Thysical distarbance and strike	Accessi		iiu strike	In-air energy		
		71000331	Sincy .		Underwater energy		
Military	Ingestible Material:		Military	None			
Expended	None		Recoverable	None			
Material			Material				
	Non-Ingestible Material:						
	Mines (non-explosive), station	nary					
	artificial targets						
Sonar and	Low-Frequency:	Mid-Fre	quency:		High-Frequency:		
Other	LF4	MF9			HF6		
Transducer							
Bins	Name						
In-Water	None						
Explosive							
Bins							

Other Testing A	Other Testing Activities				
Towed Equipm	Towed Equipment Testing				
Procedural	Acoustic Stressors: (Section 5.3.2)	Physical Disturbance and Strike: (Section 5.3.4)			
Mitigation	Active sonar	Vessel movement			
Measures		Towed in-water devices			
Assumptions	None				
Used for					
Analysis					

A.3.3 OFFICE OF NAVAL RESEARCH TESTING ACTIVITIES

A.3.3.1 Acoustic and Oceanographic Science and Technology

A.3.3.1.1 Acoustic and Oceanographic Research

Acoustic and O	ceanographic Science and Tec	hnology			
Acoustic and O	ceanographic Research				
Short	Research using active transr	nissions from sources	Typical Dura	tion	
Description	deployed from ships, aircraf	t, and unmanned			
	underwater vehicles. Reseai	rch sources can be	Up to 14 days		
	used as proxies for current a	and future Navy			
	systems.				
Long	Active acoustic transmission	is used for engineering te	sts of acoustic	sources, validation of ocean	
Description	acoustic models, tests of sig	nal processing algorithms	s, and characte	erization of acoustic interactions	
			_	aphic research sensing (acoustic	
	Doppler current profiler, fat	hometer-like systems) als	so to be emplo	oyed.	
Typical	Platforms: Special mission s	hips, unmanned underwa	ater vehicles		
Components	Targets: Sub-surface targets				
		ted: Airguns, sonar syster	ms, sonobuoys	s, underwater communication	
	systems, low-power lasers	-			
Standard	Vessel safety	Typical Locations			
Operating	Unmanned aerial, surface,	Range Complexes/Test	ing Ranges:	Inland Waters/Pierside:	
Procedures	and subsurface vehicle	Gulf of Mexico		None	
(Section 2.3.3)	safety	Northeast	Northeast		
		Virginia Capes			
Stressors to	Acoustic:	Physical Disturbance a	nd Strike:	Energy:	
Biological	Sonar and other	Aircraft and aerial targe	ets	In-air electromagnetic	
Resources	transducers	Vessels and in-water do	evices	devices	
	Vessel noise	Military expended mat	erials	Lasers	
	Aircraft noise	Seafloor devices			
				Entanglement:	
	Explosives:	Ingestion:		Small	
	Underwater explosives	Military expended mat	erials – other	decelerators/parachutes	
		than munitions		Wires and cables	
Stressors to	Air Quality:		ts and Water	-	
Physical	Criteria air pollutants	Explosive			
Resources		Chemical	S	Other materials	
	Habitats:				
	Physical disturbance and stri	ike – military			
	expended material	:!			
	Physical disturbance and stri devices	ike – Seanoor			
Stressors to	Cultural Resources:	Socioeconomic Reso	ources:	Public Health and Safety:	
Human	Physical disturbance and	Accessibility		Physical interactions	
Resources	strike	Physical disturbance	and strike	In-air energy	
	Explosives			Underwater energy	

Acoustic and O	ceanographic Science and Technol	logy		
Acoustic and O	ceanographic Research			
Military	Ingestible Material:		Military	Anchors, mine shapes (non-explosive),
Expended	Small decelerators/parachutes		Recoverable	target fragments (recovered)
Material	Non-Ingestible Material: Mine shapes (non-explosive), sonobuoys (non-explosive), so wires, stationary artificial targe		Material	
Sonar and	Low-Frequency:	Mid-Free	quency:	Airgun:
Other	LF3 LF5	MF8	MF9	AG
Transducer	LF4			
Bins			marine Warfare:	
		ASW2		BB4
In-Water	E3			
Explosive Bins				
Procedural	Acoustic Stressors: (Section 5.3.2	2)	Physica	l Disturbance and Strike: (Section 5.3.4)
Mitigation	Active sonar		Vessel ı	movement
Measures	Airguns			
			=	ve Stressors: (Section 5.3.3)
			•	ve mine countermeasure and
			neu	tralization activities
Assumptions	None			
Used for				
Analysis				

A.3.3.1.2 Emerging Mine Countermeasure Technology Research

Acoustic and O	ceanographic Science and Tec	hnology				
	Countermeasure Technology					
Short	Test involves the use of broa		Typical Du	ration		
Description	sources on unmanned unde			Up to 14 days		
-				•		
Long Description	Mine countermeasure system testing on unmanned underwater vehicles to take place offshore an in coastal waters. Broadband acoustic sources on unmanned underwater vehicles will use					
Description				cean bottom. Inert objects will be		
			icterize the or	cean bottom. Mert objects will be		
Trustant	placed on the bottom to tes Platforms: Special mission s			_		
Typical	•	nips, unmanned under	water venicles	S		
Components	Targets: Mine shapes Systems being Trained/Tested: Sonar systems					
Chandond						
Standard	Vessel safety	Typical Locations				
Operating	Unmanned aerial, surface, and subsurface vehicle	Range Complexes/To	esting Ranges			
Procedures		Jacksonville		None		
(Section 2.3.3)	safety	Northeast				
		Virginia Capes				
Stressors to	Acoustic:	Physical Disturbance		Energy:		
Biological	Sonar and other	Vessels and in-water	devices	In-air electromagnetic		
Resources	transducers			devices		
	Vessel noise	Ingestion:				
	Family after a	None		Entanglement:		
	Explosives:			None		
	None					
Stressors to	Air Quality:		ents and Wate	er Quality:		
Physical Resources	Criteria air pollutants	None				
Resources	Habitats:					
	None					
Stressors to	Cultural Resources:	Socioeconomic Re	conrect:	Public Health and Safety:		
Human	Physical disturbance and	Accessibility	sources.	Physical interactions		
Resources	strike	Physical disturban	re and strike	In-air energy		
Resources	Strike	i iiysicai aistai baii	ce and strike	Underwater energy		
Military	Ingestible Material:	Military	Min	e shapes (non-explosive)		
Expended	None	Recove		ic shapes (non explosive)		
Material		Materia				
	Non-Ingestible Material:					
	None					
Sonar and	Broadband:	-		-		
Other	BB1 BB2					
Transducer						
Bins						
In-Water	None	-	-	· ·		
Explosive						
Bins						
Procedural	Physical Disturbance and St	rike: (Section 5.3.4)	•	·		
Mitigation	Vessel movement	,				
Measures						
ivicusui es						

Acoustic and Oceanographic Science and Technology				
Emerging Mine Countermeasure Technology Research				
Assumptions	None			
Used for				
Analysis				

A.3.3.1.3 Large Displacement Unmanned Underwater Vehicle Testing

Acoustic and O	ceanographic Science and Tec	chnology					
	ment Unmanned Undersea Ve						
Short	Autonomy testing and envir	onmental data	a 1	ypical Dura	tion		
Description	collection with Large Displac		nned				
	Undersea Vehicles (Innovati		I lin to 60 days nor donloyment				
Long	Large Displacement Unmanned Undersea Vehicle Innovative Navy Prototype (LDUUV INP) testing						
Description				-			
	includes launch, autonomous transit (up to 60 days), environmental data collection (e.g., bathymetry, water column properties, ocean surface properties) and retrieval. LDUUV INP testing						
	throughout the study area will include de minimis acoustic sources (modems, imaging sonars and						
	fathometers) for safe navigation and data collection.						
Typical	Platforms: Unmanned unde						
Components	Targets: Sub-surface targets	5					
•	Systems being Trained/Test		vehicles, en	vironmental	data collection systems		
Standard	Vessel safety	Typical Locat					
Operating	Unmanned aerial, surface,		olexes/Testin	g Ranges:	Inland Waters/Pierside:		
Procedures	and subsurface vehicle	Gulf of Mexi		B	None		
(Section	safety	Jacksonville			. Tone		
2.3.3)	,	Navy Cherry					
ŕ		Northeast					
	Virginia Capes						
Stressors to	Acoustic:		turbance and	Strike:	Energy:		
Biological	Vessel noise	•	in-water dev		None		
Resources	1 33301 113.30		mater det				
	Explosives:	Ingestion:			Entanglement:		
	None	None			None		
Stressors to	Air Quality:	y: Sediments and Water Quality:					
Physical	Criteria air pollutants	None					
Resources	112.12						
	Habitats:						
	Physical disturbance and strike – military						
	expended material						
Stressors to	Cultural Resources:	Socioecor	nomic Resou	rces:	Public Health and Safety:		
Human	Physical disturbance and	Accessibil	ity		Physical interactions		
Resources	strike	Physical d	listurbance a	nd strike			
Military	Ingestible Material:	$\overline{}$	Military	None			
Expended	None		Recoverable	•			
Material	Non-Ingestible Material:		Material				
	Stationary artificial targets						
Sonar and	None						
Other	None						
Transducer							
Bins							
In-Water	None	 		<u> </u>	-		
Explosive							
Bins							
Procedural	Physical Disturbance and St	rike: (Section	5.3.4)				
Mitigation	Vessel movement		,				
Measures	31 - · · · · · · · · · · · · · · · · · ·						

Acoustic and O	Acoustic and Oceanographic Science and Technology				
Large Displacement Unmanned Undersea Vehicle Testing					
Assumptions	Any acoustic sources used during this activity would be de minimis and not quantitatively analyzed				
Used for	and therefore are not included under systems.				
Analysis					

APPENDIX B Activity Stressor Matrices

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

APPENDIX B	ACTIVITY STRESSO	OR MATRICES	B-′
APPENDIX B	ACTIVITY STRESSO)K MATRICES	B-

List of Figures

This section does not contain figures.

List of Tables

Table B-1: Stressors by Training Activity	B-1
Table B-2: Stressors by Testing Activity	B-7
Table B-3: Stressors by Resource	B-13

Table B-1: Stressors by Training Activity

									Biolo	gical Re	esources	;							F	Physical F	Resourc	es				Hum	nan Re	sources	, 3	
	Acous	stic Sti	ressor	S	-	losive ssors		Energy Stresso		-	ical Dist Strike S	urbance tressors	and		tanglem Stressors		Inge: Stres		Air Quality Stressors	Sedim	ent Wa Stress		ality	Culti Reso Stres	urce		oecon tresso	omic	& Sc	Health afety essors
Atlantic Fleet Training Activity	Sonar & Other Transducers Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic		High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Devices	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials²	Explosives 4	Physical Disturbance & Strikes ⁵	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance and Strikes ⁵	water E	In-Air Energy ⁹ Physical Interactions ¹⁰
Composite Training Unit Exercise	ARGE INTI	EGRAT ✓	ED AI	NTI-SU	BMARI	NE WAI	RFARE			√	✓	· ·			./				4		✓	-/							T	
	AEDILINA IN			ANITI	CLIDBAA	NOINIE VA		DE .																						
MAJOR TRAINING EXERCISES – N Fleet Exercise / Sustainment Exercise	√	VIEGR ✓	ATED ✓	ANII-	SUBIVIE	AKINE W	/AKFA	KE ✓		✓	✓	✓		✓	✓			✓	✓		✓	✓								
INTEGRATED/COORDINATED TRA	AINING – S	MALL	INTE	GRATE	D ANT	I-SUBM	ARINE	WARF	ARE TR	AINING	ì						<u>l</u>							ı	ı			l	l	
Navy Undersea Warfare Training Assessment Course	✓	✓	✓				✓	✓		✓	✓	✓		✓	✓			✓	✓		✓	✓								
Surface Warfare Advanced Tactical Training	✓	✓	✓				✓	✓		✓	✓	✓		✓	✓			✓	✓		✓	✓								
INTEGRATED/COORDINATED TRA	AINING – I	MEDIL	ЈМ СС	ORDII	NATED	ANTI-SU	JBMA	RINE W	/ARFAF	RE TRAI	NING	1 1	<u> </u>				I I				1		 	T	T	1			<u> </u>	
Tactical Development Exercise	✓	✓	✓				✓	✓		✓	✓	✓		✓	✓			✓	✓		✓	✓								
INTEGRATED/COORDINATED TRA	AINING – S	MALL	_ COO	RDINA	TED AN	NTI-SUB	MARII	NE WAI	RFARE	TRAINII	NG	1	1				, , , , , , , , , , , , , , , , , , ,				1		1 1	1	ı	1			<u> </u>	
Amphibious Ready Group Marine Expeditionary Unit Exercise	✓	✓	✓				✓	✓		✓	✓	✓		✓	✓			✓	✓		✓	✓								
Group Sail	✓	✓	✓				✓	✓		✓	✓	✓		✓	✓			✓	✓		✓	✓								
AIR WARFARE																														
Air Combat Maneuver			✓				✓				✓								✓						✓	✓	✓	✓	,	✓
Air Defense Exercise		✓	✓				✓			✓	✓								✓						✓	✓	✓	✓	,	✓ ✓
Gunnery Exercise Air-to-Air – Medium-Caliber			✓	✓			✓				✓	✓					✓		✓		✓									
Gunnery Exercise Surface-to-Air – Large-Caliber		✓	✓	✓			✓			✓	✓	✓						✓	✓		✓									
Gunnery Exercise Surface-to-Air – Medium-Caliber		✓	✓	✓			✓			✓	✓	✓					✓	✓	✓		✓									

Table B-1: Stressors by Training Activity (continued)

										Biolo	ogical Re	esource:	s							F	Physical	Resour	ces				Hum	nan Reso	ource	s ³	
	Explosi Acoustic Stressors Stresso								Energy Stressor		-	ical Dist Strike Si				anglem Stressor		_	estion essors	Air Quality Stressors	Sedin	nent W	ater Qu	ality	Cult Reso Stres	urce		econor ressors		Public I & Saj Stres	fety
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic Devices	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes ⁵	Accessibility ⁶	Acoustics 7	Pnysical Disturbance and Strikes ⁵	Underwater Energy 8	m-An energy Physical Interactions ¹⁰
Missile Exercise Air-to-Air				✓	✓	✓		✓				✓	✓			✓		✓	✓	✓	✓	✓	✓								
Missile Exercise Man-Portable Air Defense System			✓	✓	✓	✓					✓	✓	✓					✓	✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	· •
Missile Exercise Surface-to-Air			✓	✓	✓	✓		✓			✓	✓	✓			✓		✓	✓	✓	✓	✓	✓								
AMPHIBIOUS WARFARE																												I			
Amphibious Assault			✓	✓				✓			✓	✓								✓						✓	✓		✓	✓	· •
Amphibious Marine Expeditionary Unit Integration Exercise			✓	✓				✓			✓	✓								✓						✓	✓		✓	✓	· •
Amphibious Raid			✓	✓				✓			✓	✓								✓						✓	✓		✓	✓	· •
Amphibious Vehicle Maneuvers			✓								✓									✓						✓	✓		✓	✓	·
Humanitarian Assistance Operations			✓	✓				✓			✓	✓								✓						✓	✓		✓	✓	· •
Marine Expeditionary Unit Certification Exercise			✓	✓				✓			✓	✓								✓						✓	✓		✓	✓	·
Naval Surface Fire Support Exercise – At Sea			✓		✓			~			✓		✓							✓		✓	✓	~							
Naval Surface Fire Support Exercise – Land-Based Target			✓		✓			~			✓		✓							✓						✓	✓	✓		~	· 🗸
ANTI-SUBMARINE WARFARE								•																				•			
Anti-Submarine Warfare Torpedo Exercise – Helicopter	✓		✓	✓				✓			✓	✓	✓			✓	✓			✓	✓	✓	✓								
Anti-Submarine Warfare Torpedo Exercise – Maritime Patrol Aircraft	✓		✓	✓				✓			✓	✓	✓			✓	✓			✓	✓	✓	✓								
Anti-Submarine Warfare Torpedo Exercise – Ship	✓		✓	✓				~			✓	✓	~			✓	✓			✓	✓										

Table B-1: Stressors by Training Activity (continued)

										Biol	logical R	esource	S								Physical	Resour	ces				Hum	nan Resour	ces ³	
						Explo	nciv <i>e</i>		Energy	,	Phys	ical Dist	urhanc	e and	Fn	tanglem	ont	Inge	estion	Air Quality	Sedin	ont W	ater Qu	ality	Cult Reso		Socia	peconomic		Health afety
	,	Acoustic	Str	essors	s	Stres			Stresso		1	Strike S				Stressor		_	essors	Stressors	Jeann	Stres		uncy	Stres			ressors		ssors
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes ⁵	Accessibility ⁶	Airborne Acoustics 7 Physical Disturbance and	Underwater Energy 8	In-Air Energy ^y Physical Interactions ¹⁰
Anti-Submarine Warfare Torpedo Exercise – Submarine	✓	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		✓							✓	✓	✓		✓					✓		✓								
Anti-Submarine Warfare Tracking Exercise – Helicopter	✓			✓	✓						✓	✓	✓		✓	✓			✓	✓		✓	✓	~						
Anti-Submarine Warfare Tracking Exercise – Maritime Patrol Aircraft	✓			✓	✓						✓	✓	✓		✓	✓			✓	✓		✓	✓	✓						
Anti-Submarine Warfare Tracking Exercise – Ship	~	•	/		✓						1		✓		✓	✓			✓	✓		✓	✓	✓						
Anti-Submarine Warfare Tracking Exercise – Submarine	1	,	/								✓		✓		✓	✓						✓								
ELECTRONIC WARFARE																														
Counter Targeting Chaff Exercise – Aircraft				✓	✓			✓				✓	✓						✓	✓										
Counter Targeting Chaff Exercise – Ship		v	/		✓			1			1		✓						✓	✓										
Counter Targeting Flare Exercise				✓	✓			✓				✓	✓						✓	✓			✓							
Electronic Warfare Operations		v	/	✓				✓			✓	✓							✓	✓		√	✓	✓	✓		✓	✓	•	/ /
High-Speed anti-Radiation Missile Exercise		•	/	✓	✓	✓		✓			✓	✓	✓					✓	✓	✓		✓	✓	✓						
EXPEDITIONARY WARFARE																														
Dive and Salvage Operations		•	/								✓			~						✓						✓	✓	✓		✓
Maritime Security Operations- Anti-Swimmer Grenades			/		✓		✓				✓		✓					√		✓	✓				✓	✓	✓	✓		✓
Personnel Insertion/Extraction – Air			/	✓							√	✓								✓						✓	✓			✓
Personnel Insertion/Extraction – Surface and Subsurface		v	/								✓			✓						✓						✓	✓	✓	✓	✓

Table B-1: Stressors by Training Activity (continued)

		Fl. of								Biol	ogical R	esource.	s							ŀ	Physical	Resour	ces				Humo	an Re:	source	?s ³		
	Acc	<i>a</i> <i>a</i> <i>a</i>					losive essors		Energy Stresso		_	ical Dist Strike S				tanglem Stressor		_	estion essors	Air Quality Stressors	Sedin	nent W	ater Que	ality	Cult Reso Stres	urce	Socio Sti	econo ressor		&	lic Heal Safety tressors	,
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes ⁵	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance and Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Personnel Insertion/Extraction Training – Swimmer/Diver			✓								✓									✓							✓					
Underwater Construction Team Training			✓								✓			✓	✓					✓							✓			✓		
MINE WARFARE																												L				
Airborne Mine Countermeasure – Mine Detection	✓			✓				✓	✓		✓	✓		✓	✓					✓						✓	✓		✓	✓	✓	✓
Airborne Mine Countermeasure – Towed Mine Neutralization				✓					✓		✓	✓		✓	✓					✓						✓	✓		✓	✓		✓
Civilian Port Defense – Homeland Security Anti-Terrorism/Force Protection Exercise	~		✓	✓	✓		✓	~	√		✓	✓	✓	✓	√			✓	✓	1	✓				√	✓	✓		~	✓	✓	✓
Coordinated Unit Level Helicopter Airborne Mine Countermeasure Exercises	~			✓				~	~		✓	✓		✓	~					~						✓	✓		✓	✓	✓	✓
Mine Countermeasures – Mine Neutralization – Remotely Operated Vehicles	✓		✓	✓			✓		✓		✓	✓	✓	✓	<			✓	✓	✓	√	✓			✓	✓	✓		✓	✓	✓	✓
Mine Countermeasure Exercise – Ship Sonar	√		✓	✓				✓	✓		√	✓	✓	✓	✓					✓	√	✓			✓	✓	✓		✓	✓	✓	✓
Mine Laying				✓				~				✓	✓	✓		✓		✓		✓		✓										
Mine Neutralization – Explosive Ordnance Disposal			✓				√				✓		✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓
Underwater Mine Countermeasures Raise, Town, Beach, and Exploitation Operations			✓								✓			√						✓						✓	✓		✓			✓
SURFACE WARFARE																																
Bombing Exercise (Air-to-Surface)			✓	✓	✓	✓	✓	✓			✓	✓	✓			✓		✓	✓	✓												

Table B-1: Stressors by Training Activity (continued)

										Biol	ogical R	esource.	s							ı	Physical	Resour	ces				Hun	nan Re	esourc			
		Acoust	ic Stı	essor	'S	Explo Stres	osive ssors		Energy Stressor		_	ical Dist Strike S				anglem Stressor		_	estion essors	Air Quality Stressors	Sedin	nent Wo Stres	ater Qui	ality	Cult Reso Stres	ource		oecon tresso		& 5	ic Hea Safety ressor:	y
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic Devices	r Electromagnetic	nergy Lasers	Vessel & In-water Device Strike	ft & Aerial Target	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes 5	bility ⁶	Airborne Acoustics 7	Physical Disturbance and Strikes ⁵	vater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Fast Attack Craft & Fast Inshore Attack Craft			✓	✓	✓			✓			✓	✓	✓						✓	✓		✓				✓	✓	✓	✓		✓	
Gunnery Exercise Air-to-Surface – Medium-Caliber			✓	✓	✓			~			✓	✓	~					✓	✓	✓		✓										
Gunnery Exercise Air-to-Surface – Small-Caliber			✓	✓	✓			✓			✓	✓	√					✓	✓	✓		✓				✓	✓	✓	✓		✓	✓
Gunnery Exercise Surface-to- Surface Boat – Medium-Caliber			✓		✓		✓				✓		✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓	✓	✓
Gunnery Exercise Surface-to- Surface Boat – Small-Caliber			✓		✓						✓		✓					✓	✓	✓		✓				✓	✓	✓	✓		✓	✓
Gunnery Exercise Surface-to- Surface Ship –Large Caliber			✓		✓	✓	✓	✓			✓		✓					✓	✓	✓	✓	✓										
Gunnery Exercise Surface-to- Surface Ship – Medium			✓		✓		✓	✓			✓		✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓		✓
Gunnery Exercise Surface-to- Surface Ship – Small-Caliber			✓		✓			✓			✓		√					√	✓	✓		✓				✓	✓	✓	✓			✓
Integrated Live Fire			✓	✓	✓	✓	✓	✓			✓	✓	√					✓	✓	✓	✓	✓										
Laser Targeting - Aircraft			✓	✓				✓			✓	✓	✓							✓												
Laser Targeting – Ship			✓		✓			1		✓	✓	✓	✓						✓	✓												
Maritime Security Operations			✓	✓				1			✓	✓								✓							✓	✓			✓	✓
Missile Exercise Air-to-Surface			✓	✓	✓		✓	1			✓	✓	✓					✓	1	✓	✓	✓	✓									
Missile Exercise Air-to-Surface Rocket			✓	✓	✓	✓	✓	1			✓	✓	✓					√	✓	✓	✓	✓	✓									
Missile Exercise Surface-to-Surface			✓		✓		✓	1			✓		~					✓	✓	✓	✓	✓	✓									

Table B-1: Stressors by Training Activity (continued)

									Biolo	ogical R	esource	s							ı	Physical	Resour	ces			Hun	nan R	esourc	es ³		
	Acou	ustic .	Stress	sors		plosive ressors		Energy Stresso		-	ical Dist Strike S				tanglem Stressor		_	estion essors	Air Quality Stressors	Sedin	nent W Stres	ater Qu ssors	ality	Cultural Resource Stressors		oecon tresso	omic ors	&	lic Hed Safet ressoi	ty
Atlantic Fleet Training Activity	Sonar & Other Transducers		Vessel Noise	Alfordat Noise	eveupons noise Explosions in Air	Explosions in Water	In-Air Electromagnetic	Devices In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives ⁴ Physical Disturbance & Strikes ⁵	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance and Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Sinking Exercise	✓	✓	′ •	· •	· 🗸	✓	✓	✓			✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓		✓ ✓	✓	✓	✓	✓		✓
OTHER TRAINING EXERCISES																														
Elevated Causeway System	 	·								✓									✓					✓	✓		✓	✓	✓	✓
Precision Anchoring		~	,				✓			✓			✓						✓					✓	✓		✓		✓	✓
Search and Rescue		~	′ •	,			✓			✓	✓	✓						✓	✓		✓	✓		✓	✓	✓	✓		✓	✓
Submarine Navigation	✓	~	,							✓															✓					✓
Submarine Sonar Maintenance and System Checks	✓	~	,							✓																		✓		
Submarine Under Ice Certification	✓	~	•							✓																				
Surface Ship Object Detection	✓	~	,				✓			✓			✓						✓					✓	✓		✓	✓	✓	✓
Surface Ship Sonar Maintenance and Systems Checks	✓	~					✓			✓									✓									✓		
Waterborne Training 1 Testing Activities Only		~								✓									✓					✓	✓	✓	✓		✓	

¹ Testing Activities Only

Note: A check indicates events that take place for Alternative 1 and Alternative 2.

² Other Materials include marine markers and flares, chaff, towed and stationary targets, and miscellaneous components of other expended objects

³ Area of interest is U.S. Territorial Waters (seaward of the mean high water line to 12 nautical miles and any inshore waters)

⁴ Vibration and shock waves from underwater explosions.

⁵ Physical disturbance and strike stressors resulting from in-water devices, military expended materials, seafloor devices, pile driving, and vibration from sonic booms in U.S. territorial waters (seaward of the mean high water line to 12 nautical miles).

⁶ Availability of access on the ocean and in the air

⁷ Loud Noises from weapons firing, in-air explosions, and sonic booms

⁸ Active sonar, underwater explosions, air guns, vessel movements, mine warfare training devices, and unmanned underwater systems

⁹ Sources or electromagnetic energy and lasers

¹⁰ Interaction of Navy or Marine Corps aircraft, vessels, and equipment with general public

Table B-2: Stressors by Testing Activity

										Biolo	ogical R	esources								F	Physical F	Resourc	es				Hum	nan Re	source			
	,	Explosive Acoustic Stressors Stressors							Energ Stresso	-	_	ical Dist Strike S				tanglem Stressor		_	estion essors	Air Quality Stressors	Sedim	ent Wa Stress		ality	Resc	tural ource ssors		econ resso		&	lic Hea Safety tressor	y
Atlantic Fleet Training Activity AIR WARFARE	Sonar & Other Transducers	Woise Stressors Stressors Stressors ons Noise in Mir ions in Air				Explosions in Water	In-Air Electromagnetic	Devices Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials²	Explosives ⁴	Physical Disturbance & Strikes 5	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance & Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰	
Air Combat Maneuver Test				✓				✓				✓							√	✓		✓		✓		✓	✓	✓	✓		✓	✓
Air Platform-Vehicle Test				✓				✓				✓	✓						✓	✓		✓		✓		✓	✓	✓	✓		✓	✓
Air Platform Weapons Integration Test				1				✓				✓	✓					✓		✓		✓				1	✓	✓	✓		✓	✓
Air to Air Weapons System Test				✓	✓			✓				✓	✓							✓						✓	✓	✓	✓		✓	✓
Air to Air Gunnery Test – Medium-Caliber				✓	✓			✓				✓	✓					✓		✓		~										
Air to Air Missile Test				✓	✓			✓				✓	✓							✓		✓				✓	✓	✓	✓		✓	✓
Intelligence, Surveillance, and Reconnaissance Test				1				✓				✓								✓							✓	✓	✓		~	✓
Anti-Submarine Warfare Torpedo Test	✓			✓				✓			✓	✓	✓	✓	✓	✓		✓	✓	✓		✓	✓	✓		✓	✓	✓	✓	✓	✓	✓
Anti-Submarine Tracking Test – Helicopter	✓			✓			✓	✓			✓	✓	✓		✓	✓			✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	~	✓
Anti-Submarine Warfare Tracking Test – Maritime Patrol Aircraft	✓			✓			✓				✓	✓	✓		✓	✓			✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	✓	✓
Kilo Dip	✓			✓				~				✓								✓							✓	✓	✓	✓	✓	✓
Sonobuoy Lot Acceptance Test	✓		✓	✓			✓	✓			✓	✓	✓		✓	✓			✓	✓	✓	✓	√	1	✓	✓	✓	✓	✓	✓	✓	✓

Table B-2: Stressors by Testing Activity (continued)

										Biolo	ogical R	esources	1							F	Physical F	Resourc	es				Hum	an Re	source	es ³		
		Acous	tic Stı	ressor	s	-	losive essors		Energ Stress		_	ical Dist Strike S				tanglem Stressor		_	estion essors	Air Quality Stressors	Sedim	ent Wa Stress		ality	Cult Reso Stres	urce	Socio Sti	econo		&	lic Health Safety ressors)
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic	In-Water Electromagnetic	Devices High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes [§]	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance & Strikes ⁵	Underwater Energy ⁸	In-Air Energy 9	Physical Interactions **
ELECTRONIC WARFARE						l																		.			.		. 1			
Chaff Test				✓				√				✓	✓						✓	✓		✓		✓		✓	✓	✓	✓		✓ ✓	
Radar and Other System Testing			✓	✓		✓		✓	✓	✓	✓	✓	✓						✓	✓	✓	✓	✓			✓			✓		✓ ✓	,
Electronic System Evaluation				1				1				✓								✓								✓	✓		✓ ✓	,
Flare Test				✓				✓				✓	✓							✓				✓		✓	✓	✓	✓		✓ ✓	,
ANTI-SUBMARINE WARFARE									1	1												l								ı		
Anti-Submarine Warfare Mission Package Testing	✓		✓	✓				✓			✓	✓	✓		✓	✓			✓	✓		✓		✓	✓	✓	✓	✓	✓	✓	✓	,
At-Sea Sonar Testing	✓		✓	✓				✓	✓		✓	✓	✓		✓	✓				✓									✓	✓	✓	,
Countermeasure Testing	✓		✓					✓			✓		✓		✓		✓		✓	✓							✓	✓	✓	✓	✓	,
Pierside Sonar Testing	✓																													✓		
Submarine Sonar Testing/Maintenance	✓																													✓		
Surface Ship Sonar Testing/Maintenance	✓		✓					✓																		✓			✓	✓	✓	,
Torpedo (Explosive) Testing	*		✓	✓			✓	✓			✓	✓	✓		✓	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	,
Torpedo (Non-Explosive Testing)	✓		✓	✓				✓			✓	✓	✓		✓	✓			✓	✓						✓	✓	✓	✓	✓	✓	,
MINE WARFARE					1	ī					Ī	1	ı		1	Ī						1										
Airborne Dipping Sonar Minehunting Test	✓			✓				✓				✓								✓						✓		✓		✓	✓	,

Table B-2: Stressors by Testing Activity (continued)

										Biolo	ogical Re	sources	;								Physical I	Resourc	es				Hun	nan Re	esourc	es ³		
		Acous	tic Str	essor	s	Explo Stres			Energ Stresso	-	_	cal Dist Strike S				tanglen Stressoi		_	gestion ressors	Air Quality Stressors	Sedim	ent Wa		ality	Reso	tural ource ssors		oecono tresso		&	lic Hed Safet tresso	y
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic Devices	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes 5	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance & Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Airborne Laser Based Mine Detection System Test				✓				✓		✓		✓															✓	✓	✓		✓	✓
Airborne Mine Neutralization System Test			✓	✓			✓	✓			✓	✓	✓	✓	✓			✓		✓	✓	✓	✓	✓	✓	~	\	~	✓	~	✓	✓
Airborne Sonobuoy Minehunting Test	1			✓				~				✓	✓		✓	1			√	✓		1		1		✓	✓	✓	✓	*	1	✓
Mine Laying Test				✓				✓				✓	✓							✓		✓				✓	✓	✓	✓		✓	✓
Mine Countermeasure and Neutralization Testing			✓	✓			✓	~	>		✓	✓	✓	✓	✓				✓	✓	✓	1	1	1	✓		✓	✓	✓	✓		✓
Mine Countermeasure Mission Package Testing	✓		✓	✓			✓	✓			✓	✓	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓		✓
Mine Detection and Classification Testing	✓		✓	✓				~			✓	✓	✓	✓	✓	✓											✓	✓	✓	✓		✓
SURFACE WARFARE	T	T		ı						ı	T				1		1	T		ı	T	T	ı	T	ı	T						
Air-to-Surface Bombing Test				✓			✓	✓				✓	✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓	✓	✓
Air-to-Surface Gunnery Test				✓	✓		✓	✓				✓	✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓	✓	✓
Air-to-Surface Missile Test				✓			✓	✓		✓		✓	✓					✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
High Energy Laser Weapons Test			✓	✓				✓		✓		✓	✓						✓	✓		✓		✓		✓	✓	✓	✓		✓	✓
Laser Targeting Test				✓				✓		✓		✓	✓							✓		✓				✓	✓	✓	✓		✓	✓
Rocket Test				✓			✓	~				✓	✓					✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Gun Testing – Large-Caliber			✓		✓	✓	✓	~			✓		✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓		✓

Table B-2: Stressors by Testing Activity (continued)

										Biolo	gical Re	esources								ŀ	Physical F	Resourc	es				Hum	nan Re	source	es³		
	,	Acous	tic Str	ressors	s	_	losive essors		Energ Stresso	-	-	ical Dist Strike St				tanglem Stressors		_	estion essors	Air Quality Stressors	Sedim	ent Wa Stress		ality	Resc	tural ource ssors		econo		&	lic Heal Safety tressors	,
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes 5	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance & Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Gun Testing – Medium-Caliber			✓		✓	✓	✓	✓			✓		✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓	<u> </u>	✓
Gun Testing – Small-Caliber			✓		1			✓			✓		✓					✓	✓	✓	✓	✓			✓	✓	✓	✓	✓			✓
Kinetic Energy Weapon Testing			✓		✓	✓		✓			✓	✓	✓						✓	✓		✓			✓	✓	✓	✓	✓		✓	✓
Missile and Rocket Testing			✓	1	1	✓	✓	~			✓	✓	✓						✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	1	✓
UNMANNED SYSTEMS																						1			L		l		l			
Underwater Search, Deployment, and Recovery											✓			✓						✓						✓			✓	✓		✓
Unmanned Aerial System Testing			✓					~			✓	✓	✓						✓	✓						✓	✓		✓			✓
Unmanned Surface Vehicle System Testing	✓		✓					✓			✓															✓	✓		✓			✓
Unmanned Underwater Vehicle Testing	✓		✓				✓	✓			✓		✓						✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓
VESSEL EVALUATION							•								•							•										
Aircraft Carrier Sea Trials – Propulsion Testing			✓					~			✓									✓								✓				✓
Air Defense Testing			✓	~	✓	✓		~			✓	✓	✓						✓	✓	✓	✓	✓	✓								
Hydrodynamic and Maneuverability Testing			✓								✓																✓		✓			✓
In-Port Maintenance Testing																														✓		
Large Ship Shock Trial			✓	✓			✓	✓			✓	✓	✓						✓		✓		✓	✓								
Propulsion Testing			✓					✓			✓									✓							✓		✓			✓

Table B-2: Stressors by Testing Activity (continued)

										Biolo	gical R	esources	1							F	hysical F	Resourc	es				Hum	an Re	esource			
		Acous	tic Str	essor:	s	-	losive essors		Energ Stress	-		ical Dist Strike Si				tanglem Stressor		_	estion essors	Air Quality Stressors	Sedim	ent Wa Stress		ality	Resc	tural ource ssors		econo resso		&	olic Hea & Safety tressor:	y
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic	Devices In-Water Electromagnetic	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes 5	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance & Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Small Ship Shock Trial			✓	✓			✓	✓			✓	✓	✓						✓	✓	✓	✓		✓								
Submarine Sea Trials - Propulsion Testing																											✓		✓			✓
Submarine Sea Trials - Weapons Testing	√			✓				✓			✓		✓		✓											✓	✓		✓	✓		✓
Surface Warfare Testing			✓	✓	✓	✓	✓	~			✓	✓	✓		✓			✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓		✓
Total Ship Survivability Trails			✓					✓			✓									✓						✓			✓			✓
Undersea Warfare Testing	✓		✓	✓				~				✓	✓		✓	✓			✓	✓						✓	✓		✓	~		✓
Vessel Signature Evaluation	✓		✓	✓				✓	✓		✓	✓														4			✓			✓
OTHER TESTING ACTIVITIES				ı				<u> </u>		1					•	•							l.									
Acoustic and Oceanographic Research (NAVAIR)			✓	✓				~		✓	✓	✓								✓							✓	✓	✓		✓	✓
Acoustic and Oceanographic Research (ONR)	~		✓	✓			1	~	1	1	1	✓	✓	✓	✓	✓			✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓	1	✓	✓
Air Platform Shipboard Integrate Test				✓								✓								✓							✓	✓	✓		1	✓
Signature Analysis Operations	✓		✓					✓			✓									✓									✓			✓
Maritime Security			✓	✓				✓			✓	✓								✓						✓	✓	✓	✓		✓	✓
Shipboard Electronic Systems Evaluation				✓				✓			✓	✓								✓							✓	✓	✓		1	✓
Undersea Range System Test	✓		✓																	✓												

Table B-2: Stressors by Testing Activity (continued)

										Biolo	ogical Re	esources								P	Physical F	Resourc	ces				Hum	an Re	sourc	es³		
	,	Acous	tic St	ressor	s	•	losive essors		Energ Stresso	-	_	ical Dist Strike Si				tanglem Stressors		_	estion essors	Air Quality Stressors	Sedim	ent Wa Stress		ality		ural ource ssors	Socio Sti	econo		&	lic Heal Safety tressors	,
Atlantic Fleet Training Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer ¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials ²	Explosives 4	Physical Disturbance & Strikes ⁵	Accessibility ⁶	Airborne Acoustics 7	Physical Disturbance & Strikes ⁵	Underwater Energy ⁸	In-Air Energy ⁹	Physical Interactions ¹⁰
Acoustic Component Testing	✓		✓								✓	✓								✓						√	✓		✓	✓		✓
Chemical and Biological Simulant Testing			✓	✓				✓			✓	✓	✓							✓			✓				✓	✓	✓			✓
Insertion/Extraction	✓																			✓												
Line Charge Testing			✓				✓				✓		✓						✓		✓	1	1	✓			✓	✓		✓		✓
Non-Acoustic Component Testing			✓	~				1			✓	✓								✓						✓			✓			✓
Payload Deployer Testing			✓					✓			✓								✓	✓												
Semi-Stationary Equipment Testing	✓		✓				✓				✓		✓							✓						✓			✓	✓		✓
Submarine Sea Trials - Propulsion Testing																														✓		✓
Towed Equipment Testing	✓		✓					~			✓									✓									✓	✓		✓
Emerging Mine Countermeasure Technology Research	✓		✓					✓			√									✓						√	✓		✓	✓	√	✓
Large Displacement Unmanned Underwater Vehicle Testing 1 Testing Activities Only			✓								✓									✓						✓	✓		✓			✓

¹ Testing Activities Only

Note: A check indicates events that take place for Alternative 1 and Alternative 2.

² Other Materials include marine markers and flares, chaff, towed and stationary targets, and miscellaneous components of other expended objects

³ Area of interest is U.S. Territorial Waters (seaward of the mean high water line to 12 nautical miles and any inshore waters)

⁴ Vibration and shock waves from underwater explosions.

⁵ Physical disturbance and strike stressors resulting from in-water devices, military expended materials, seafloor devices, pile driving, and vibration from sonic booms in U.S. territorial waters (seaward of the mean high water line to 12 nautical miles).

⁶ Availability of access on the ocean and in the air

⁷ Loud Noises from weapons firing, in-air explosions, and sonic booms

⁸ Active sonar, underwater explosions, air guns, vessel movements, mine warfare training devices, and unmanned underwater systems

⁹ Sources or electromagnetic energy and lasers

 $^{^{\}rm 10}$ Interaction of Navy or Marine Corps aircraft, vessels, and equipment with general public

Table B-3: Stressors by Resource

											Biol	ogical R	esources	1							F	Physical I	Resourc	es				Hum	nan Resourc	ces ³	
			Acous	tic Str	ressor:	s	Explo Stres			Energ Stresso	-		ical Dist Strike S				tanglem Stressor		_	gestion ressors	Air Quality Stressors	Sedim	ent Wa Stress		ality	Cult Reso Stres	ource		peconomic tressors	Public H & Saf Stress	ety
	tlantic Fleet raining Activity	Sonar & Other Transducers	Pile Driving	Vessel Noise	Aircraft Noise	Weapons Noise	Explosions in Air	Explosions in Water	In-Air Electromagnetic Devices	In-Water Electromagnetic Devices	High-Energy Lasers	Vessel & In-water Device Strike	Aircraft & Aerial Target Strike	Military Expended Material	Seafloor Device	Wires & Cables	Decelerators / Parachutes	Biodegradable Polymer¹	Military Expended Materials – Munitions	Military Expended Materials – Other than Munitions	Criteria Air Pollutants	Explosives	Metals	Chemicals	Other Materials²	Explosives 4	Physical Disturbance & Strikes ⁵	Accessibility ⁶	Airborne Acoustics 7 Physical Disturbance &	Underwater Energy ⁸ In-Air Energy ⁹	Physical Interactions ¹⁰
Cal	Air Quality																				✓										
Phvsi	Sediments and Water Quality																					✓	✓	✓	✓						
	Vegetation							✓				✓		✓	✓							✓	✓	✓	✓						
	Invertebrates	✓	✓					✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓						
	Habitats						✓	✓				✓		✓	✓																
logica	Fishes	~	✓	✓		✓		✓		✓	✓	✓		✓	✓	✓	✓		✓	✓		✓	1	1	✓						
Bic	Marine Mammals	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓	1	1	✓						
	Reptiles	1	✓	✓	✓	✓	✓	✓		✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓	✓	1	✓						
	Birds and Bats	✓		✓	✓	✓	√	✓	✓			✓	✓	✓					✓	✓	✓										
	Cultural Resources				✓			✓						✓	✓											✓	✓				
uman	Socioeconomic	✓		✓	✓	√	✓	✓				✓	✓	✓		✓	✓					✓	✓	✓	~			✓	✓ ✓		
Ĩ	Public Health and Safety	✓				✓	√	✓			✓	✓	✓	✓	✓															✓ ✓	✓

¹ Testing Activities Only

² Other Materials include marine markers and flares, chaff, towed and stationary targets, and miscellaneous components of other expended objects

³ Area of interest is U.S. Territorial Waters (seaward of the mean high water line to 12 nautical miles and any inshore waters)

⁴ Vibration and shock waves from underwater explosions.

⁵ Physical disturbance and strike stressors resulting from in-water devices, military expended materials, seafloor devices, pile driving, and vibration from sonic booms in U.S. territorial waters (seaward of the mean high water line to 12 nautical miles).

⁶ Availability of access on the ocean and in the air

⁷ Loud Noises from weapons firing, in-air explosions, and sonic booms

⁸ Active sonar, underwater explosions, air guns, vessel movements, mine warfare training devices, and unmanned underwater systems

⁹ Sources or electromagnetic energy and lasers

¹⁰ Interaction of Navy or Marine Corps aircraft, vessels, and equipment with general public

Note: A check indicates the stressors can impact the resource.

APPENDIX C Air Quality Emissions Calculations and Record of NonApplicability

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

APPENDIX C		R QUALITY EMISSIONS CALCULATIONS AND RECORD OF NON- PPLICABILITY	C-1
C.1		uality Example Calculations	
	C.1.1	Surface Activities Emissions	C-1
	C.1.2	Air Activities Emissions	
	C.1.3	Ordnance and Munitions Emissions	C-2
	C.1.4	Record of Non-Applicability	C-2
	C.1.5	Emissions Estimates Spreadsheets	C-3
C.2	Recor	d of Non-Applicability for Clean Air Act Conformity	C-35

List of Figures

This section does not contain figures.

List of Tables

This section does not contain tables.

Atlantic Fleet	
Training and Test	ting Draft EIS/OEIS

APPENDIX C AIR QUALITY EMISSIONS CALCULATIONS AND RECORD OF NON-APPLICABILITY

This appendix discusses emission factor development and calculations including assumptions employed in the analyses presented in the Air Quality section of Chapter 3 (Section 3.1).

C.1 AIR QUALITY EXAMPLE CALCULATIONS

C.1.1 SURFACE ACTIVITIES EMISSIONS

Surface activities consist of activities associated with boat and vessel traffic. Fleet training activities incorporate a variety of marine vessels including cruisers, destroyers, frigates, carriers, riverine vessels, and rigid hull inflatable boats. Larger vessels also have generators operating onboard to provide electricity for non-propulsion functions. Each of these vessels incorporates different propulsion methods such as marine outboard engines, diesel engines, and gas turbines. Calculations are based on the combustion of fossil fuels (primarily diesel) in these engines and the time they run.

C.1.1.1.1 Marine Outboard Engines

The U.S. Environmental Protection Agency (USEPA) has published emissions factors for air pollutants produced by several types of two-stroke and four-stroke outboard engines. These engines are operated on a variety of small boats and vessels involved in nearshore training and testing activities. Emission factors were obtained from USEPA NONROAD documentation for Compression Ignition and Spark Ignition engines.

Emissions estimates for surface craft utilizing outboard engines were calculated using USEPA NONROAD factors multiplied by the engine horsepower and hours of operation.

Emissions = HP×HR/YR×EF×ENG
Where:
Emissions = Surface craft Emissions (pound per year)
HP = Horsepower (reflective of a particular load factor/engine power setting)
HR/YR = Hours per year
EF = Emission factor for specific engine type ENG = Number of engine

To determine the entire project emissions, a calculation was conducted for each surface vessel type and for each pollutant and converted to tons, then compared to the baseline Study Area emissions. The baseline is defined as the training and testing identified as the Preferred Alternative in the Atlantic Fleet Forces Training and Testing Final Environmental Impact Statement/Overseas Environmental Impact Statement released in August 2013. These values were summed according to the appropriate pollutant to provide the cumulative emissions associated with surface vessel emissions activities.

C.1.1.1.2 Diesel Engines

Large vessel emissions were calculated in a similar fashion using emission factors from the Naval Sea Systems Command Navy and Military Sealift Command Marine Engine Fuel Consumption and Emission Calculator for the propulsion system and the supplemental ship service generator(s).

Diesel engine emission factors were multiplied by the engine horsepower and annual hours of operation to calculate the pounds of pollutant emissions per year. This value was then converted to a tons per year value for comparison with the Study Area total summed emissions on an individual pollutant basis.

C.1.2 AIR ACTIVITIES EMISSIONS

Fleet training and Naval Air Systems Command testing consists of various activities associated with airplanes or helicopters. Aircraft activities of concern are those that occur from ground level up to 3,000 feet (ft.) above ground level. The 3,000 ft. above ground level ceiling is the default atmospheric mixing height above which any pollutant generated would not contribute to increased pollutant concentrations at ground level (known as the mixing zone). All pollutant emissions from aircraft generated greater than 3,000 ft. (914 m) above ground level are excluded from this analysis. The pollutant emission rate is a function of the engine's operating mode, the fuel flow rate, and the engine's overall efficiency. Emissions for one complete flight for a particular aircraft are calculated by knowing the specific engine pollutant emission factors for each mode of operation.

For this EIS/OEIS, emission factors for most military engines were obtained from Navy's Aircraft Environmental Support Office (AESO) memoranda. For those aircraft for which engine data from AESO was unavailable, applicable data from other reputable data sources was used. Emissions factors vary depending on engine power mode, time in each mode, and fuel flow. Using these data, as well as information on hours of cruise time and number of landing/takeoff activities on a vessel, pollutant emissions for each aircraft and activity were calculated by applying the equation below.

Emissions = TIM×FF×EF×ENG×CF
Where:
Emissions = Aircraft Emissions (lb. per activity) (for EF in lb./1000 gallon fuel) TIM = Time-in-mode at a specified power setting (hr/activity).
FF = Fuel flow at a specified power setting (gallons/hr/engine)
EF = Emission factor for specific engine type and power setting (lb./1000 gallons of fuel used) ENG = Number of engines on aircraft

As the equation indicates, emissions were estimated by first calculating total fuel used in each of the different modes with the appropriate emission factor.

C.1.3 Ordnance and Munitions Emissions

Available emissions factors (AP-42, Compilation of Air Pollutant Emission Factors) were utilized. These factors were then multiplied by the net weight of the explosive (or a conversion factor for pounds per item) and the number of times that the munition was used during a designated time frame. This calculation provided annual pounds per year of emissions, which were converted to tons per year for comparison purposes.

Emissions = EXP/YR×EF Where: Emissions = Ordnance Emissions (lb. per year) EXP/YR = Explosives, propellants, and pyrotechnics used per year EF = Emissions factor

C.1.4 RECORD OF NON-APPLICABILITY

A Record of Non-Applicability For Clean Air Act Conformity has been prepared in accordance with the Navy Guidance for Compliance with the Clean Air Act General Conformity Rule (30 July 2013) and is included on the following page.

C.1.5 EMISSIONS ESTIMATES SPREADSHEETS

The following spreadsheets (Tabs A - P) contain data used for the emissions calculations for vessels, aircraft, and munitions, respectively.

TAB A: Appendix C: Air Quality Emissions Estimates

Appendix Organi	zation	Acronym	s
Tab A	Appendix C Introduction	A/C	aircraft
Tab B	Baseline (Preferred Alternative from V2)	AESO	Aircraft Environmental Support Office
Tab C	Emissions Summary	CO	Carbon monoxide
Tab D	Ship Emissions	gal	gallon
Tab E	Training in State Waters	GPH	gallons per hour
Tab F	Aircraft Emissions	HC	hydrocarbons
Tab G	Munition Emissions	hp	horsepower
Tab H	Ship and Boat Emission Factors	hr	hour
Tab I	Munition Emission Factors	lb	pound
Tab J	Aircraft Engine Emissions Factors and Profiles	NM	nautical mile
Tab K	Aircraft Activity - Testing	NOx	Nitrogen oxides
Tab L	Aircraft Activity - Training	PM	Particulate matter
Tab M	Aircraft Activity by Region	SOx	Sulfur dioxide
Tab N	Aircraft Engine Emission Factor Sources	VOC	Volatile organic compounds
Tab O	Munition Activity Data	yr	year
Tab P	Baseline (V2 Preferred Alternative) Munition Summary		

Data Organization

Designation ^a	Relationsh	ip to EPA Region (coastal states)
Northeast OPAREA	Region 1:	Maine, New Hampshire, Massachusets, Rhode Island and Connecticut
	Region 2:	New York and New Jersey
VACAPES OPAREA	Region 3:	Delaware, Virginia
Cherry Pt OPAREA	Region 4:	North Carolina, South Carolina, Georgia
JAX OPAREA	Region 4:	Florida
Key West OPAREA	Region 4:	Florida
GOMEX OPAREA	Region 4:	Florida and Alabama
	Region 6:	Louisiana, Texas
Outside Range		
Complexes	Other locat	tions within the Study Area that are not in the OPAREA boundaries

^a the OPAREA designation includes adjacent state waters. These are also separately delineated in the calculations.

TAB B: Baseline (Preferred Alternative in the Atlantic Fleet Forces Training and Testing Final Environmental Impact Statement/Overseas Environmental Impact Statement released in August 2013)

	E	missions by	Criteria Air P	ollutant (TP	Y)	
Source	lω	NO.	voc	so.		PM _{2.5}
	lange Compl			1	11120	2.5
State water						
Aircraft	0.04	0.17	0.01	0.01	0.04	0.04
Vessel	0.24	0.25	0.10	0.05	0.01	0.01
Ordnance	0.00	0.00	0.10 0.00	0.00	0.00	0.00 0.00
Total	0.27	0.42	0.11	0.06	0.05	0.05
	ne U.S. (3-12					
Aircraft	0.02	0.07	0.00	0.00	0.02	0.02
Vessel	0.52	0.63	0.00 0.28	0.12	0.01	0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.54	0.71	0.29	0.12	0.03	0.03
Internation			0.29			
Aircraft	0.76	2 nm)		0.15	0.76	0.70
Allcrait	0.76	3.13 6.38	0.16 0.51 0.00	0.13	0.14	0.76 0.14 0.00
Vessel	5.84 0.04	6.38	0.51	1.28 0.00	0.14	
Ordnance		0.00	0.00		0.03	0.00
Total	6.64	9.50	0.68	1.43	0.92	0.90
Total for No	rtheast Rang	e Complex 3.37				
Aircraft	0.81	3.37	0.17	0.16	0.81	0.81
Vessel	6.60	7.26	0.90 0.00	1.45 0.00	0.16	0.16 0.01
Ordnance	0.04	0.00	0.00		0.03	0.01
Total	7.46	10.63	1.07	1.61	1.00	0.98
	l	L		Percent In-9	tate	0.04
Source	∞	NO,	voc	SO,	PM ₁₀	PM _{2.5}
Virginia Cap	es Range Co	mplex				
State water						
Aircraft	24.43	25.29	2.16	1.58	8.27	8.27
Vessel	1.49	30.89	2.92	1.58 3.37	0.20	0.20
Ordnance	0.00	0.00	2.16 2.92 0.00	0.00	0.00	8.27 0.20 0.00
Total	25.92	56.18	5.08	4.94	8.47	8.47
Waters of th		• • • • • • • • • • • • • • • • • • • •				
Aircraft	1.98	nm) 2.14	0.18	0.13	0.69	0.69 2.35 0.09
Vessel	124.12	81.21	19.50	25.76	2.35	2.00
O-d	2.27	0.09	15.30	0.00	0.13	
Ordnance Total	128.38	83.45	0.00 19.68	25.89	3.17	0.00
	120.50	85.45	19.08	23.69	3.17	3.13
Internation	waters (>1	2 (11/1)			13.35	
Aircraft	22.81 593.25	52.66	2.70 56.02	2.19 182.75	16.80	13.35 16.80
Vessel	593.25 20.47	390.35	0.00			16.80
Ordnance		0.82	0.00	0.00	1.21	0.79
Total	636.53	443.84	58.72	184.94	31.37	30.94
Total for Vir	ginia Capes F		ex			
Aircraft	49.22	80.10	5.04	3.90	22.31 19.36	22.31
Vessel	718.86	502.46	5.04 78.43	211.87	19.36	22.31 19.36 0.87
Ordnance	22.75	0.91	0.00	0.00	1.35	0.87
Total	790.82	583.47	83.48	215.77	43.01	42.54
				Percent In-9	tate	0.06
	[
Source	∞	NO,	voc	SO.	PM ₁₀	PM _{2.5}
Cherry Poin	t Range Com	plex				
State water	s (0-3 nm)	İ				
Aircraft	5.74	5.82	0.52	0.36	1.85	1.85
Vessel	5.74 16.35	34.36	3.46	35.46	3.09	3.00
Ordnance	0.00	0.00	0.00	0.00	0.00	1.85 3.09 0.00 4.94
Total	22.09	40.18	0.52 3.46 0.00 3.98	35.82	4.94	
Material		nml			4,94	
	ne U.S. (3-12 0.86	nm) 0.89	0.07	0,05	0.30	0.30
Aircraft					0.30	0.30
Vessel	41.97	46.86	4.88	39.63	3.48	3,48
Ordnance	0.56	0.01	0.00	0.00	0.01	0.01
Total	43.39	47.76	4.95	39.69	3.79	3,78
Internation	al waters (>1:	2 nm)				
Aircraft	19.72	187.44	2.59	5.56	42.85	42.85
Vessel	858.49	472.22	72.86	191.08	14.90	14.90

	Е	missions by	Criteria Air F	ollutant (TP	Y)	
Source		NO.	voc	Iso.		PM _{2.5}
	ange Comple					
State waters						
Aircraft	0.01	0.03	0.00	0.00	0.01	0.0
Vessel	0.98	3,60	0.08	0.39	0.06	0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0 0.0
Total	0.99	3.62	0.08	0.39	0.08	0.0
Waters of th		om)				
Aircraft	0.26	0.28 3.25	0.02	0.02	0.09	0.0
Vessel	3.34	3 25	0.02 0.30	0.02 0.78	0.08	0.0
Ordnance	0.00	0.00	0,00	0.00	0.00	0.0
Total	3.61	3.52	0.32	0.80	0.17	0.1
Internationa						
Aircraft	1 27	1.76	0.14	0.11	0.54	0.5 1.7
Vessel	1.27 62.53	40.17	575	19.02	1.70	1 7
Ordnance	0.02	0.00	5.75	0.00	0.01	0.0
Total	63.83	41.93	5.89	19.12	2.25	2.2
Total for No Aircraft	1.54	2.06	0.16 6.12 0.00	0.12	0.64	0.6
Vessel	66.86	47.02	6.13		1.85	
Ordnance	0.02	0.00		20.19	0.01	1.8 0.0
Total	68.42	49.08	6.29	20.31		2.4
IOLAI	00,42	45.00	0.29			0.0
				Percent In-S	late	0.0
Source	ω	NO _x	VOC	SO _x	PM ₁₀	PM _{2.5}
Virginia Cap		тріех				
State waters	(0-3 nm) 1.29 1.91	1.34		0.08	0.44	0.4
Aircraft	1.29	1.34	0.11			0.0
Vessel	0.00	3.02 0.00	0.11 0.16 0.00	0.48 0.00	0.06	0.0
Ordnance		4.36	0.00			
Total	3.20	4.36	0.27	0.57	0.50	0.5
Waters of th	e U.S. (3-12	nm) 1.86		0.12	0.61	
Aircraft	1.90	1.86	0.16 1.75	4.08	0.39	0.6
Vessel	18.91	0.02	1.75	0.00	0.06	0.3
Ordnance	0.41		0.00			0.0
Total	21.11	15.72	1.91	4.19	1.06	1.0
Internationa	waters (>12				4.96	
Aircraft	12.15	17.10	1.15 25.43	0.88		4.9 5.7
Vessel	289.14 3.65	171.98	25.43	67.95	5.71	0.3
Ordnance		0.17		0.00	0.52	
Total	304.94	189.24	26.58	68.83	11.19	11.0
Total for Vir	ginia Capes R		ex		L	
Aircraft	15.23	20.30	1.42	1.07 72.51	6.01	6.0 6.1
Vessel	309.96	188.84	ex 1.42 27.34 0.00		6.16	6.1
Ordnance	4.06	0.19	0.00	0.00	0.58	0.3
Total	329.25	209.32	28.76	73.59	12.74	12.5
				Percent In-S	tate	0.0
Source	ω	NO _x	VOC	SO _x	PM ₁₀	PM _{2.5}
	Range Com	plex				
State waters			0.00			
Aircraft	0.00 0.52	0.01	0.04	0.00	0.00	0.0
Vessel		2.20	u.04	0.23		0.0
Ordnance	0.00	0.00	0.00 0.04	0.00	0.00	0.0 0.0
Total	0.53	2.22	0.04	0.23	0.04	0.0
Waters of th	e U.S. (3-12		l			
Aircraft	0.09	0.09	0.01	0.01	0.03	0.0
Vessel	0.73	1.30	0.08	0.26	0.03	0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0
Total	0.82	1.40	0.09	0.26	0.06	0.0
Internationa	waters (>12	2 nm)			L	
nicematoria						
Aircraft Vessel	3.99 32.86	4,33	0.36 3.25	0.27	1.39	1.3 1.2

Ordnance	5,00	0.13	0,00	0.00	0.13	0.07
Ordnance Total	5.00 883.21	0.13 659. 7 9	0.00 7 5.44	196.63	57.88	57.82
	erny Point Ra	nge Complex				
Aircraft	26.32	194.15	3.18 81.20 0.00 84.37	5.97	45.00	45.00
Vessel	26.32 916.81	553.44	81.20	266.17	21.47	21.47
Ordnance	5.56	0.15	0.00	0.00	0.14	21.47
Total	948.69	747.73	84.37	272.14	66.61	66.54
					tate	0.05
Source	∞	NO _x	VOC	SO,	PM ₁₀	PM _{2.5}
Jacksonville		plex				
State water:						
Aircraft	5.07	5.97 9.78	0.48 3.02 0.00 3.49	0.36 6.38	1.86 0.56	1.86 0.56
Vessel Ordnance	4.79 0.00	0.00	3,02	0.00	0.00	0.00
Total	9.85	15.76	2.40	6.74	2.41	2.41
Waters of th		nm)				
Aircraft	1.98	2.36 50.01 0.05	0.19	0.14	0.74	0.74 1.68 0.08
Vessel Ordnance	1.98 73.59 1.24	50.01	14.31	19.36 0.00	1.68 0.13	1.68
Ordnance	1.24	0.05	0.00	0.00	0.13	0.08
Total	76.81	52.43	0.19 14.31 0.00 14.50	19.50	2.55	2.49
Internationa	waters (>1. 31.55	2 nm)				
	31.55	214.14	4.32	6.83	49.42	49.42
Vessel	758.55	440.02	4.32 65.39 0.00 69.72	182.69	15.09	15.09 0.68 65.19
Ordnance	11.18 801.28	0.49 654.64	0.00	0.00	1.15	0.68
Total	801.28	654.64	69.72	189.53	65.66	65.19
Total for Jac	ksonville Rar 38.60	nge Complex 222.48	4.99 82.72		52.02	
Aircraft	836,93	499.81	4.99	7.33 208.44	1722	52.02 17.33 0.75
Vessel Ordnance	12.42		02.72	0.00	1,28	17.55
Total	887.95	0.54 722.83	0.00 87.71	215.77	70.62	70.10
					tate	0.02
Source	ω	NO _x	voc	so,	PM ₁₀	PM _{2.5}
Key West R	ange Comple	K				
Key West Ra State water	ange Comple s (0-3 nm)					
State water: Aircraft	s (0-3 nm) 0.00	0.00	0.00	0.00	0.00	0.00
State water: Aircraft Vessel	s (0-3 nm) 0.00 0.01	0.00	0.00	0.04	0.00	0.00
State water: Aircraft Vessel Ordnance	s (0-3 nm) 0.00 0.01 0.00	0.00 0.34 0.00	0.00	0.04 0.00	0.00	0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total	s (0-3 nm) 0.00 0.01 0.00 0.01	0.00 0.34 0.00 0.34	0.00 0.00 0.00	0.04	0.00	0.00 0.00 0.00
State water Aircraft Vessel Ordnance Total Waters of th	s (0-3 nm) 0.00 0.01 0.00 0.01 ne U.S. (3-12	0.00 0.34 0.00 0.34	0.00 0.00 0.00	0.04 0.00 0.04	0.00 0.00 0.00	0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total Waters of the Aircraft	s (0-3 nm) 0.00 0.01 0.00 0.01 ne U.S. (3-12	0.00 0.34 0.00 0.34 nm)	0.00 0.00 0.00	0.04 0.00 0.04	0.00 0.00 0.00	0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance	s (0-3 nm) 0.00 0.01 0.00 0.01 ne U.S. (3-12 0.00 0.00	0,00 0,34 0,00 0,34 nm) 0,00 0,00	0.00 0.00 0.00	0.04 0.00 0.04 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total	s (0-3 nm) 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.0	0.00 0.34 0.00 0.34 nm) 0.00 0.00	0.00 0.00 0.00	0.04 0.00 0.04 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total International	s (0-3 nm) 0.00 0.01 0.00 0.01 eU.S. (3-12 0.00 0.00 0.09	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.04 0.00 0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total Total Aircraft Aircraft Aircraft Aircraft	s (0-3 nm) 0.00 0.01 0.00 0.01 e U.S. (3-12 0.00 0.09 0.09 0.09 sl waters (>1.	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 0.00 0.00 2 nm)	0.00 0.00 0.00 0.00 0.00 0.00	0.04 0.00 0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
State water: Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total International International Vessel	s (0-3 nm) 0.00 0.01 0.00 0.01 0.01 e U.S. (3-12 0.00 0.09 0.09 bl waters (>1) 10.07	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 0.00 2 nm) 10.37	0.00 0.00 0.00 0.00 0.00 0.00	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40	0.00 0.00 0.00 0.00 0.00 0.00 0.00
State water: Aircraft Vessel Ordinance Total Waters of th Aircraft Vessel Ordinance Total Internations Aircraft Vessel Ordinance Total Internations Aircraft Vessel Vessel Vessel Ordinance	(0-3 nm) 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.09 0.09 0.09 0.09	0.00 0.34 0.00 0.34 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.65 0.65	0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
State water: Aircraft Vessel Ordinance Total Waters of th Aircraft Vessel Ordinance Total Internations Aircraft Vessel Ordinance Total Ordinance Total	s (0-3 nm) 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.09 9 waters (>1 10.07 0.03 10.90	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 2 nm) 10.37 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water: Alicraft Vessel Ordinance Total Waters of th Alicraft Vessel Ordinance Total Internations Alicraft Vessel Ordinance Total Total Total Total	s (0-3 nm) 0.00 0.01 0.00 0.01 e U.S. (3-12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 2 nm) 10.37 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total Total Total Total Total Total Total Ordnance Total Total Aircraft Vessel Aircraft Vessel	s (0-3 nm) 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.0	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 2 nm) 10.37 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.65 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total Total Total Total Total Total Total Ordnance Total Total Aircraft Vessel Aircraft Vessel	(0.3 nm) 0.00 0.01 0.01 0.01 0.02 0.02 0.00 0.00	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 2 nm) 10.37 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Internationa Aircraft Vessel Total T	s (0-3 nm) 0.00 0.01 0.01 0.01 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.34 0.00 0.34 nm) 0.00 0.00 0.00 2 nm) 10.37 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Total Total Total Total Total Total Total Ordnance Total Total Aircraft Vessel Aircraft Vessel	(0.3 nm) 0.00 0.01 0.01 0.01 0.02 0.02 0.00 0.00	0.00 0.34 0.00 0.34 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Internationa Aircraft Vessel Total T	s (0-3 nm) (0-0 nm) (0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.64 0.00 0.00 0.00 0.00 0.00 0.65 0.65 0.65	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Afroat Vessel Ordnance Total Waters of th Afroat Vessel Ordnance Total Internation Vessel Ordnance Total Internation Internation Afroat Internation Afroat Internation Afroat Internation Vessel Ordnance Total Internation Total Internation Total Internation Source Source	s (0-3 nm) 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.09 0.09 0.09 0.09 0.09 0.03 10.07 0.00 0.03 10.07 0.00 0.03 10.07 0.00 0.03 10.07 0.00 0.03 10.07 0.00 0.03 10.00 0.	0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water All conft Vessel Ordnance Total Waters of th Alroaft Vessel Ordnance Total International Alroaft Vessel Ordnance Total	s (0-3 nm)	0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.64 0.00 0.00 0.00 0.00 0.00 0.65 0.65 0.65	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Alroads Vessel Ordinance Total Waters of the Alroads Vessel Ordinance Total Vessel Ordinance Total Alroads Vessel Ordinance Total Internationa Alroads Vessel Ordinance Total Ordinance Total Vessel Ordinance Total Source Gulf of Mex Source Gulf of Mex State water	s (0-3 mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.34 0.00 0.34 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Africant Vessel Ordinance Total Waters of th Africant Vessel Ordinance Total International International Africant Vessel Ordinance Total International Total Total Total Total Total Total Total Total Total Source Gulf of Mex State water	(0-3 mm) (0-0 mm) (0-	0.00 0.34 0.00 0.34 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Africant Vessel Ordinance Total Waters of th Africant Vessel Ordinance Total International International Africant Vessel Ordinance Total International Total Total Total Total Total Total Total Total Total Source Gulf of Mex State water	s (0-3 mm) (0-20	0.00 0.34 0.00 0.34 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Africant Vessel Ordnance Total Waters of th Africant Vessel Ordnance Total Ordnance Total Ordnance Total Total Ordnance Total Total Ordnance Total Ordnance Total Source Source Gulf of Mex State water Africant Vessel Ordnance Total Ord	s (0-3 mm). 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.34 0.34 0.00 0.34 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water. Alroraft Vessel Ordinance Total Waters of the Alroraft Vessel Ordinance Total	s (0-3 nm) 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.009 10.007 10	0.00 0.34 0.34 0.34 0.39 0.30 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Ordnance Ordnance Ordnance Total Waters of th Waters of th Waters of th Waters of th	s (0-3 nm)	0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water. Alroraft Vessel October State Waters of the Alroraft Vessel Alroraft Vessel Ordinance Total International Total Total or Kee Alroraft Vessel State water Total or Kee Alroraft Vessel State water Alroraft Vessel State water Alroraft Vessel State water Alroraft Vessel Ordinance Total	s (0-3 nm) 0.00	0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel Ordnance Ordnance Ordnance Ordnance Total Waters of th Waters of th Waters of th Waters of th	s (0-3 nm)	0.00 0.34 0.34 0.34 0.39 0.30 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Ordnance Total	0.00 36.86	0.00 27.19	0.00 3.61	0.00 13.13	0.00 2.61	0.0 2.6
Total for Ch	erry Point Ra	nge Complex		15.15	Z-D1	
Total for Cr	4.08	4.43	0.37 3.37 0.00	0.27	1.42	1.4 1.2 0.0
Aircraft	4.08	26.36	U.3/	0.27 13.35 0.00	1.42	1.4
Vessel	34.12		3.37	13.35	1.29	1.2
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0
Total	38.20	30,80	3,74	13.62	2.72	2.7
	L	L		Percent In-S	tate	0.0
Source	∞	NO,	VOC	SO,	PM ₁₀	PM _{2.5}
Jacksonville	Range Com	plex				
State water						
Aircraft	0.01	0.03	0.00	0.00	0.01	0.0
Vessel	0.72	2.32	0.06	0.26	0.04	0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0
Total	0.72	2.35	0.06	0.27	0.05	0.0
Waters of t	he U.S. (3-12	nm)				
Aircraft	0.43	0.45	0.04	0.03	0.15	0.1 0.2
Allualu	10.27	9.28	1.06	1.97	0.23	
Vessel		9.28	1.06	0.00		
Ordnance	0.17	0.00	0.00		0.02	0.0
Total	10.86 al waters (>1 5.77	9.73	1.10	2.00	0.39	0.3
Internation	ai waters (>1:	2 nm)				
Aircraft	5.77	6.90	0.54	0.40	2.14	2.1
Vessel		74.89	9.56	28.51	2.90	2.9
Ordnance	1.52 100.39	0.04	9.56 0.00	0.00 28.91	0.16	2.1 2.9 0.1 5.1
Total	100.39	81.83	10.09	28.91	5.21	5.1
Total for Ja	ksonville Rar	nge Complex				1
Aircraft	6.21	7.37	0.58 10.67	0.43	2.30	2.3
Vessel	104.09	86.49	10.67	0.43 30.75	3.17	3.1
Ordnance	1.69	0.05	0.00	0.00	0.18	2.3 3.1 0.1
Total	111.98	93.91	11.25	31.18	5.65	5.5
i otal				Percent In-S		0.0
				reiteiltiirt	uate	
Source		NO.				
	ω		VOC	SO,	PM ₁₀	PM _{2.5}
	ange Comple	x				
State water	s (0-3 nm)	L				
Aircraft	0.00	0.00	0.00	0.00	0.00	0.0
Vessel	0.05	0.07	0.00	0.01	0.00	0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0
Total			0.00	0.01	0.00	0.0
	0.05	0.07	0.00	0.01		
	0.05	nm)	0.00	0.01	0.00	1
Waters of t	0.05 he U.S. (3-12	nm)				
Waters of t Aircraft	0.05 he U.S. (3-12 0.10	nm) 0.11		0.01	0.03	
Waters of t Aircraft Vessel	0.05 he U.S. (3-12 0.10 1.11	nm) 0.11 0.89	0.01 0.11	0.01 0.29	0.03	0.0
Waters of t Aircraft Vessel Ordnance	0.05 he U.S. (3-12 0.10 1.11 0.01	nm) 0.11 0.89 0.00	0.01 0.11 0.00	0.01 0.29 0.00	0.03 0.03 0.00	0.0 0.0 0.0
Waters of t Aircraft Vessel Ordnance Total	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23	nm) 0.11 0.89 0.00 1.00	0.01 0.11	0.01 0.29	0.03	0.0 0.0 0.0
Waters of t Aircraft Vessel Ordnance Total Internation	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1	nm) 0.11 0.89 0.00 1.00	0.01 0.11 0.00 0.12	0.01 0.29 0.00 0.30	0.03 0.03 0.00 0.06	0.0 0.0 0.0 0.0
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1	nm) 0.11 0.89 0.00 1.00 2 nm)	0.01 0.11 0.00 0.12	0.01 0.29 0.00 0.30	0.03 0.03 0.00 0.06	0.0 0.0 0.0
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 0.42 7.85	nm) 0.11 0.89 0.00 1.00 2 nm) 0.48	0.01 0.11 0.00 0.12	0.01 0.29 0.00 0.30 0.03 1.91	0.03 0.03 0.00 0.06 0.15	0.0 0.0 0.0
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 0.42 7.85 0.11	nm) 0,11 0,89 0,00 1,00 2 nm) 0,48 5,89 0,03	0.01 0.11 0.00 0.12 0.04 0.74	0.01 0.29 0.00 0.30 0.03 1.91 0.00	0.03 0.03 0.00 0.06 0.15 0.18	0.0 0.0 0.0 0.0 0.1 0.1
Waters of the Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 0.42 7.85 0.11 8.38	nm) 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40	0.01 0.11 0.00 0.12	0.01 0.29 0.00 0.30 0.03 1.91	0.03 0.03 0.00 0.06 0.15	0.0 0.0 0.0 0.0 0.1 0.1
Waters of the Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Total for Ke	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 0.42 7.85 0.11 8.38 y West Range	nm) 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78	0.01 0.29 0.00 0.30 0.03 1.91 0.00	0.03 0.03 0.00 0.06 0.15 0.18 0.00	0.0 0.0 0.0 0.0 0.1 0.1 0.0
Waters of the Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 7.85 0.11 8.38 v West Rang	nm) 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40 e Complex 0.59	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94	0.03 0.03 0.00 0.06 0.15 0.18 0.00 0.34	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Vessel Vessel	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 0.42 7.85 0.11 8.38 v West Rang	nm) 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40 9 Complex 0.59 6.85	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94	0.03 0.03 0.00 0.06 0.15 0.18 0.00 0.34	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Vessel Vessel	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 0.42 7.85 0.11 8.38 v West Rang	0.11 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40 e Complex 0.59 6.85	0.01 0.01 0.00 0.12 0.04 0.74 0.00 0.78 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94 0.04 2.22	0.03 0.03 0.00 0.06 0.15 0.18 0.00 0.34 0.19 0.21	0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.3 0.1 0.2
Waters of the Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Total for Ke Aircraft	0.05 he U.S. (3-12 0.10 1.11 0.01 1.23 al waters (>1 7.85 0.11 8.38 v West Rang	nm) 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40 9 Complex 0.59 6.85	0.01 0.01 0.00 0.12 0.04 0.74 0.00 0.78 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94	0.03 0.03 0.00 0.06 0.15 0.18 0.00 0.34 0.19 0.21	0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.3 0.1 0.2
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Ordnance	0.05 he U.S. (3.12 0.10 1.11 0.01 1.23 al waters (>1. 0.42 7.85 0.11 8.38 v West Range 0.52 9.02 0.12	0.11 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40 e Complex 0.59 6.85	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94 2.22 0.00 0.00	0.03 0.03 0.00 0.06 0.05 0.15 0.18 0.34 0.19 0.21 0.00 0.00	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 0.3
Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total for Ke Aircraft Vessel Ordnance	0.05 he U.S. (3.12 0.10 1.11 0.01 1.23 al waters (>1. 0.42 7.85 0.11 8.38 v West Range 0.52 9.02 0.12	0.11 0.11 0.89 0.00 1.00 2 nm) 0.48 5.89 0.03 6.40 e Complex 0.59 6.85	0.01 0.01 0.00 0.12 0.04 0.74 0.00 0.78 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94 0.04 2.22	0.03 0.03 0.00 0.06 0.05 0.15 0.18 0.34 0.19 0.21 0.00 0.00	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 0.3
Waters of the Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Total Total Total Total Vessel Ordnance Total Tota	0.05 ne U.S. 3-12 0.10 0.10 0.11 0.01 1.11 0.01 1.23 al water \$\frac{1}{2}\$. 7.85 7.85 8.38 w West Rang 0.52 9.02 9.06	om) 0.11 0.19 0.00 0.00 1.00 2.nm) 0.48 5.89 0.03 6.40 6.00 6.85 0.03 7.47	0.01 0.11 0.00 0.12 0.04 0.04 0.74 0.00 0.78 0.05 0.05	0.01 0.29 0.00 0.30 0.30 0.03 1.91 0.00 1.94 0.04 2.22 0.00 2.25 Percent in S	0.03 0.003 0.006 0.006 0.015 0.18 0.000 0.34 0.19 0.21 0.000 0.41	0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wasters of a Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Ordnance Total or Ke Aircraft Vessel	0.05 ne U.S. (3-12 0.00 0.10 0.10 1.22 al waters (-1 0.42 7.85 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35	om) 0.11 0.89 0.00 1.00 2.mm) 0.48 5.89 0.03 6.40 Complex 0.59 0.03 7.47	0.01 0.01 0.00 0.12 0.04 0.74 0.00 0.78 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94 2.22 0.00 0.00	0.03 0.03 0.00 0.06 0.05 0.15 0.18 0.34 0.19 0.21 0.00 0.00	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 0.3
Waters of It Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total for Ke Aircraft Vessel Ordnance Total for Ke Aircraft Source Gulf of Mes	0.05 eU.S. (3-12 0.10 1.11 0.00 1.23 a) waters (3-1 0.42 0.42 0.42 0.42 0.43 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	om) 0.11 0.89 0.00 1.00 2.mm) 0.48 5.89 0.03 6.40 Complex 0.59 0.03 7.47	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.30 0.03 1.91 0.00 1.94 0.04 2.22 0.00 2.25 Percent in S	0.03 0.003 0.006 0.006 0.015 0.18 0.000 0.34 0.19 0.21 0.000 0.41	0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.3 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waters of a Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Ordnance Total Total Source Gulf of Me State water	0.05 he U.S. (3-12 0.10 0.10 0.10 1.23 a) waters (>1 0.42 7.85 0.11 8.33 v West Range 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	0.11 0.19 0.00 0.00 1.00 1.00 2.00 0.48 5.89 6.40 6.40 6.40 0.77 7.47	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.03 1.91 0.00 1.94 2.22 0.00 0.00 0.00 5.00 0.00 0.00 0.00	0.03 0.03 0.00 0.06 0.15 0.18 0.18 0.19 0.19 0.21 0.00 0.41 tate	0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.3 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waters of a Aircraft Vessel Ordname Total Internation Aircraft Vessel Ordname Total Total Total Total Total Source Gulf of Mes Scate water Aircraft	0.05 0.12 0.10 1.11 0.00 1.23 a) waters (*1. 0.24 0.24 0.24 0.24 0.25 0.11 0.00 0.10 0.00 0.10 0.00 0.00 0.0	om) 0.11 0.89 0.00 0.00 1.00 2.mn) 0.48 5.89 0.03 6.40 6.09 6.85 0.03 7.47 NO	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.00 0.05 0.05 0.05 0.00 0.00	0.01 0.29 0.30 0.30 0.30 0.03 0.00 1.91 0.00 0.00 0.00 0.00 0.00 0.00	0.03 0.03 0.00 0.06 0.15 0.18 0.00 0.04 0.19 0.21 0.00 0.41 tate	0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waters of a Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Ordnance Total Source Gulf of Mes State water Aircraft Vessel	0.05 0.00 0.10 0.10 1.11 0.01 1.23 0.02 7.85 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02	om) 0.11 0.89 0.00 0.00 1.00 2.mn) 0.48 5.89 0.03 6.40 6.09 6.85 0.03 7.47 NO	0.01 0.11 0.00 0.12 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.29 0.30 0.30 0.30 0.03 0.00 1.91 0.00 0.00 0.00 0.00 0.00 0.00	0.03 0.03 0.00 0.06 0.18 0.18 0.00 0.34 0.19 0.01 0.01 0.41 tate	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Waters of I Aircraft Vessel Ordinance Total Internation Aircraft Vessel Ordinance Total Total for Ke Aircraft Vessel Ordinance Total Source Gulf of Mes State water Aircraft Vessel	0.05 0.05 0.10 1.11 0.00 1.22 0.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	om) 0.11 0.89 0.00 1.00 2 nm) 0.48 0.48 0.03 6.40 0.03 6.40 0.59 6.85 0.03 7.47 NO, mplex 3.66 2.76	0.00 0.11 0.00 0.02 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.29 0.00 0.30 0.00 0.00 1.94 0.00 2.22 0.00 0.00 50,00 50,00 0.25 50,00 0.38	0.03 0.03 0.00 0.06 0.06 0.15 0.18 0.00 0.344 0.19 0.21 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Waters of I Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Ordnance Total Total Ordnance Total	0.05 0.00 0.10 0.10 1.11 0.01 1.23 0.02 7.85 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03	om) 0.89 0.00 1.00 0.89 0.00 0.00 0.00 0.48 5.89 0.03 6.40 6.20 6.20 6.20 6.30 7.47 NO, mplex 3.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.11 0.00 0.02 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.29 0.30 0.30 0.30 0.03 0.00 1.91 0.00 0.00 0.00 0.00 0.00 0.00	0.03 0.03 0.00 0.06 0.06 0.15 0.18 0.00 0.344 0.19 0.21 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Waters of I Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Source Source Source Gulf of Mes State water Aircraft Vessel Ordnance Total Vessel Ordnance Total Vessel Ordnance Total Ordnance Total Waters of Total	0.05 he U.S. (3-12) 0.10 0.10 1.11 1.11 0.01 0.01 0.02 0.02	om) 0.011 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.11 0.00 0.12 0.04 0.74 0.00 0.78 0.85 0.85 0.85 0.90 0.90 0.90 0.11 0.00 0.11 0.00 0.34	0.01 0.29 0.30 0.30 0.30 1.91 0.00 1.94 2.22 2.25 50,	0.03 0.03 0.00 0.06 0.06 0.15 0.18 0.00 0.34 0.19 0.21 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.00	0.00 0.00 0.00 0.00 0.10 0.11 0.11 0.12 0.00 0.00
Waters of I Aircraft Vessel Ordinance Total Internation Aircraft Vessel Ordinance Total Total for Ke Aircraft Vessel Ordinance Total Source Gulf of Mes State water Aircraft Vessel		om) 0.11 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.11 0.11 0.12 0.04 0.74 0.05 0.88 0.05 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.29 0.29 0.30 0.30 0.30 0.03 1.91 0.04 1.94 2.22 0.00 0.05 50, 0.05 0.05 0.05 0.05 0.05	003 003 000 000 000 015 018 003 000 000 004 019 041 000 000 000 000 000 000 000 000 000	0.00 0.00 0.00 0.00 0.01 0.11 0.12 0.02 0.44 0.00 0.44 0.00 0.00 0.00 0.0
Waters of I Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Ke Aircraft Vessel Source Source Source Gulf of Mes State water Aircraft Vessel Ordnance Total Vessel Ordnance Total Vessel Ordnance Total Ordnance Total Waters of Total	0.05 0.00 0.10 0.10 1.11 0.01 1.23 0.02 7.85 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03	om) 0.89 0.00 1.00 0.89 0.00 0.00 0.00 0.48 5.89 0.03 6.40 6.20 6.20 6.20 6.30 7.47 NO, mplex 3.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.11 0.00 0.02 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.29 0.30 0.30 0.30 1.91 0.00 1.94 2.22 2.25 50,	0.03 0.03 0.00 0.06 0.06 0.15 0.18 0.00 0.34 0.19 0.21 0.00 0.41 0.00 0.41 0.00 0.41 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.04 0.00 0.04 0.00 0.00 0.00

Vessel 0.13 0.11 0.13 0.03 0.00 0.00 Ordinghee 0.00							
International waters (c.) 2 mm). Alforaft 3.57	Total	2.62	1 74	0.59	0.57	0.08	0.08
Aircraft 6.57 6.98 0.32 1.91 1.95 Vessel 6.18 0.08 6.72 18.34 1.58 1.59 Total 74.23 4.78 6.57 18.66 3.59 3.57 Total 6.74.23 4.78 6.57 18.66 3.59 3.57 Total 6.74.23 4.78 6.57 18.66 3.59 3.57 Total 74.23 4.78 6.57 18.66 3.59 3.58 Total 6.76 0.00 0.00 0.00 0.00 0.00 Total 7.95 11.47 0.73 0.60 3.38 3.38 Vessel 7.68 4.583 6.96 19.26 1.65 1.65 Ordnance 1.64 0.03 0.00 0.00 0.01 1.00 Total 81.27 57.33 7.69 19.65 5.15 5.15 Source 0 NO VOC SQ PM, PM, PM, SC Ordnance 1.64 0.03 0.00 0.00 0.01 1.00 Total 81.27 57.33 7.69 19.65 5.15 5.15 Sate waters (0.3 mm) Search waters (0.3 mm) Source 0 0 NO VOC SQ PM, PM, SC Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.							
Aircraft 6.57 6.98 0.32 1.91 1.95 Vessel 6.18 0.08 6.72 18.34 1.58 1.59 Total 74.23 4.78 6.57 18.66 3.59 3.57 Total 6.74.23 4.78 6.57 18.66 3.59 3.57 Total 6.74.23 4.78 6.57 18.66 3.59 3.57 Total 74.23 4.78 6.57 18.66 3.59 3.58 Total 6.76 0.00 0.00 0.00 0.00 0.00 Total 7.95 11.47 0.73 0.60 3.38 3.38 Vessel 7.68 4.583 6.96 19.26 1.65 1.65 Ordnance 1.64 0.03 0.00 0.00 0.01 1.00 Total 81.27 57.33 7.69 19.65 5.15 5.15 Source 0 NO VOC SQ PM, PM, PM, SC Ordnance 1.64 0.03 0.00 0.00 0.01 1.00 Total 81.27 57.33 7.69 19.65 5.15 5.15 Sate waters (0.3 mm) Search waters (0.3 mm) Source 0 0 NO VOC SQ PM, PM, SC Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		ii waters (>1.	2 nm)				
Ordinarize 1.42	Aircraft	3.57	6.98	0.34	0.32		1.91
Ordinarize 1.42	Vessel	69.18	40.81	6.23	18.34	1.58	1.58
Total for COMEX Range Complex Aircraft 7.95 11.47 0.73 0.60 3.38						0.10	
Total for COMEX Range Complex Aircraft 7.95 11.47 0.73 0.60 3.38	Ordinance			0.00		0.10	
Total for COMEX Hange Complex Aircraft			47.82	6.57	18.66	3.59	3.55
Aircraft 7.95 11.47 0.73 0.60 3.38 3.3 3.3	Total for GO	MEX Range	Complex				
Total			11.47	0.73	0.60	3 38	3 38
Total							
Total				0.96		1.65	1.65
Total	Ordnance	1.64	0.03	0.00	0.00	0.11	0.07
Percent In-State	Total	81.27	57.33	7.69	19.85	5.15	5.11
Source							
Other AFTT Areas (Outside Range Complexes) State waters (0.3 mm) Afficient (0.4 mm) A					Percent III-3	uate	0.09
Other AFTT Areas (Outside Range Complexes) State waters (0.3 mm) Afficient (0.4 mm) A		L	L			L	
Other AFTT Areas (Outside Range Complexes) State waters (0.3 mm) Afficient (0.4 mm) A	Source	ω	NO.	voc	SO.	PM ₁₀	PM _{2.5}
State waters (0.3 mm)	Other ACT	Annua (Outo)	de Denes Co	mand av and		20	2.0
Aircraft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.			ue Kange Co	mprexes			
Vessel 0.13 0.11 0.13 0.03 0.00 0.00 Ordinance 0.00				l			
Vessel 0.13 0.11 0.13 0.03 0.00 0.00 Ordnarses 0.00 0.00 0.00 0.00 0.00 0.00 Total 0.13 0.13 0.13 0.03 0.00 0.00 Wasers of Net 0.05 0.07 0.01 0.00 0.02 0.00 Vessel 0.44 4.61 0.85 1.41 0.13 0.15 Ordnarce 0.05 9.01 0.00 0.00 0.00 0.00 Ordnarce 0.05 9.01 0.05 0.00 0.00 0.00 Interandonal waters (>1.2 mm) 4.00 0.05 1.41 0.15 0.11 Aircraft 0.42 0.45 0.05 0.02 0.03 0.13 0.11 Vessel 2.50 0.19/9 2.37 7.75 0.73 0.7 0.00 0.02 0.00 Total or Other AFT Areas (Outside Range Complexes) 1.01 0.01 0.01 0.02 0.06	Aircraft	0.00	0.00	0.00	0.00	0.00	0.00
Waters of the U.S. (3-12 nm) Aircraft 0.065 0.07 0.01 0.00 0.02 0.00 Vessel 6.44 4.61 0.95 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.15 0.15 Vessel 7.20 0.45 0.05 0.00 0.33 0.11 Vessel 7.20 0.45 0.05 0.00 0.33 0.10 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.09 0.03 0.15 0.15 Vessel 2.257 2.451 4.45 9.18 0.86 0.05 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.42 0.17 0.05 0.58 0.34 1.78 1.78 Aircraft 0.58.90 0.74 0.56 0.34 1.78 1.78 Ordnance 0.42 0.07 0.08 0.38 0.38 0.44 0.25 Ordnance 0.75 1.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.13	0.11	0.13	0.03	0.00	0.00
Waters of the U.S. (3-12 nm) Aircraft 0.065 0.07 0.01 0.00 0.02 0.00 Vessel 6.44 4.61 0.95 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.15 0.15 Vessel 7.20 0.45 0.05 0.00 0.33 0.11 Vessel 7.20 0.45 0.05 0.00 0.33 0.10 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.09 0.03 0.15 0.15 Vessel 2.257 2.451 4.45 9.18 0.86 0.05 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.42 0.17 0.05 0.58 0.34 1.78 1.78 Aircraft 0.58.90 0.74 0.56 0.34 1.78 1.78 Ordnance 0.42 0.07 0.08 0.38 0.38 0.44 0.25 Ordnance 0.75 1.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00							
Waters of the U.S. (3-12 nm) Aircraft 0.065 0.07 0.01 0.00 0.02 0.00 Vessel 6.44 4.61 0.95 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.15 0.15 Vessel 7.20 0.45 0.05 0.00 0.33 0.11 Vessel 7.20 0.45 0.05 0.00 0.33 0.10 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.09 0.03 0.15 0.15 Vessel 2.257 2.451 4.45 9.18 0.86 0.05 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.42 0.17 0.05 0.58 0.34 1.78 1.78 Aircraft 0.58.90 0.74 0.56 0.34 1.78 1.78 Ordnance 0.42 0.07 0.08 0.38 0.38 0.44 0.25 Ordnance 0.75 1.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00				U.00			u.00
Waters of the U.S. (3-12 nm) Aircraft 0.065 0.07 0.01 0.00 0.02 0.00 Vessel 6.44 4.61 0.95 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.13 0.11 Ordnance 0.09 0.01 0.00 0.00 0.00 0.00 Total 5.59 4.69 0.96 1.41 0.15 0.15 Vessel 7.20 0.45 0.05 0.00 0.33 0.11 Vessel 7.20 0.45 0.05 0.00 0.33 0.10 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.78 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.79 0.07 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.09 0.03 0.15 0.15 Vessel 2.257 2.451 4.45 9.18 0.86 0.05 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.02 Ordnance 0.87 0.08 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ordnance 0.42 0.17 0.05 0.58 0.34 1.78 1.78 Aircraft 0.58.90 0.74 0.56 0.34 1.78 1.78 Ordnance 0.42 0.07 0.08 0.38 0.38 0.44 0.25 Ordnance 0.75 1.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.07 0.00 0.00 0.00 0.00 0.00 Ordnance 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total	0.13	0.11	0.13	0.03	0.00	0.00
Aircraft 0.05 0.07 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00	Waters of th	e U.S. (3-12					
Total							
Total				0.01			U.U.Z
Total				0.95			0.13
Total	Ordnance	0.09	0.01	0.00	0.00	0.00	0.00
International waters (2) 2 hm)	Total	6 50	460	0.06	1 /1	0.16	0.16
Aircraft 0.42 0.45 0.05 0.02 0.03 0.13 0.11 Visse 2.601 19.79 2.77 7.75 0.73 0.71 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75							
Ordinaries 0.72 0.72 0.00							
Ordinaries 0.72 0.72 0.00	Aircraft	0.42	0.45	0.05	0.02	0.13	0.13
Ordinaries 0.72 0.72 0.00	Vessel	26.∩1	1979	2 37	7 75	0.73	∩ 73
Total for Other AFTT Areas (Notice Françe Complexes)							
Total for Other AFTT Areas (Notice Françe Complexes)				0.00			0.01
Total for Other AFT Areas (Outside Range Complexes) Aricraeft 0.48 0.52 0.06 0.03 0.15 0.11 Vessel 22.57 24.51 3.45 9.18 0.96 0.80 Ordnance 0.87 0.08 0.00 0.00 0.02 0.00 Total 33.93 25.12 3.51 9.21 1.03 1.00 Forester 1.00 1.00 0.00 0.00 0.00 Total 33.93 25.12 5.51 9.21 1.03 1.00 Forester 1.00 0.00 0.00 0.00 0.00 Total 33.93 25.12 5.51 9.21 1.03 1.00 Total 33.62 41.70 3.55 2.58 13.47 13.4 Aircraft 33.62 41.70 3.55 2.58 13.47 13.4 Aircraft 33.62 41.70 3.55 2.58 13.47 13.4 Vessel 23.08 79.06 9.77 45.66 3.39 3.8 Ordnance 0.00 0.00 0.00 0.00 0.00 Total 62.70 120.76 13.32 48.26 17.35 17.3 Aircraft 4.94 5.58 0.45 0.34 1.78 1.77 Vessel 24.00 15.50 46.51 5.83 4.7.71 7.70 Ordnance 4.42 0.17 0.00 0.00 0.09 0.00 Ordnance 3.57 1.56 3.58 43.24 4.72 1.75 Vessel 23.13.1 136.57 20.38 53.88 42.24 4.25 Ordnance 3.57 1.56 0.00 0.00 0.00 0.00 Ordnance 3.57 1.56 0.00 0.00 0.00 0.00 Ordnance 25.81 19.77 20.38 53.88 42.24 4.25 Ordnance 3.57 1.56 0.00 0.00 0.00 16.26 Total 53.47 52.244 15.06 18.64 127.06 18.67 Vessel 283.45 163.86 255.66 15.40 60.88 60.88 Ordnance 4.42 1.79 0.00 0.00 0.24 1.88			20.32	2.42		0.87	0.87
Aircraft 0.49 0.52 0.06 0.03 0.15 0.15 0.15 0.25 0.05 0.25 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	Total for Oth	ner AFTT Are	as (Outside F	Range Comple	exes!		
Vessel 22,57 24,51 3,45 9,18 0.86 0.8 Ordnance 0,87 0,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 PM_□ PM_□ DM_□		0.40		0.08	0.02	0.15	0.15
Total 33.98 25.12 3.51 9.21 1.03 1.03 1.03					0.00		
Total 33.98 25.12 3.51 9.21 1.03 1.03 1.03				3.45		0.86	
Total 33.98 25.12 3.51 9.21 1.03 1.03 1.03	Ordnance	0.87	0.08	0.00	0.00	0.02	0.02
Percent In-State 0.00 Course Co		33.93	25.12	3.51	9.21	1.03	1.03
Source						toto	
Total for AFT Study Area (Training, Rel atked Emissions)					reitentiira	uate	0.01
Total for AFT Study Area (Training, Rel atked Emissions)							
Total for AFT Study Area (Training, Rel atked Emissions)	Source	lω	NO.	lvoc	SO.	PM ₁₀	PM ₂ c
State waters (0.3 mm) Aircraft 39.62 41.70 3.55 2.58 13.47 13.47 Aircraft 39.62 41.70 3.55 2.58 13.47 13.47 Vessel 22.08 75.00 5.77 45.66 3.99 3.88 Ordrance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.35 17.33 Waters of the U.S. (3-12 mm) 1.78 1.78 1.77 7.77 1.77 7.77 </td <td></td> <td>TT Study Are</td> <td>a (Training l</td> <td>Palated Emic</td> <td>cionel</td> <td></td> <td></td>		TT Study Are	a (Training l	Palated Emic	cionel		
Aircraft 99.6.2 41.70 5.55 2.58 13.47 13.4.4 Vissel 23.06 0.00 0.00 0.00 0.00 0.00 0.00 10.1 10.			a trianing.	Leigten Lillio	I		
Total G2.70 120.76 13.32 48.26 17.35 17.							
Total G2.70 120.76 13.32 48.26 17.35 17.	Aircraft	39.62	41.70	3.55	2.58	13.47	13.47
Total G2.70 120.76 13.32 48.26 17.35 17.		23 ∩8	79.06	9 77	45.68	3.89	3.89
Total G2.70 120.76 13.32 48.26 17.35 17.							
Waters of the U.S. (3-12 nm) Aircraft 4.94 5.58 0.45 0.34 1.78 1.77 Vessel 240.06 185.02 40.51 86.82 7.71 7.7 Cordinates 4.42 0.72 0.00 0.00 0.09 0.11 Total 258.42 190.77 40.96 87.10 3.76 9.6 International waters (2.1 nm) Aircraft 88.90 475.16 11.06 15.77 111.81 111.8 Vessel 2,311.32 1,369.57 00.38 583.89 49.24 49.2 Ordinates 93.79 1.56 0.00 0.00 0.02 2.65 1.8 Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Total for Study Area Complexes Aircraft 133.47 52.244 15.06 18.64 127.06 Vessel 2583.48 1633.66 255.66 71.640 66.83 66.88 Vessel 2583.48 1633.66 255.66 71.640 60.83 66.88							
Waters of the U.S. (3-12 nm) Aircraft 4.94 5.58 0.45 0.34 1.78 1.77 Vessel 240.06 185.02 40.51 86.82 7.71 7.7 Cordinates 4.42 0.72 0.00 0.00 0.09 0.11 Total 258.42 190.77 40.96 87.10 3.76 9.6 International waters (2.1 nm) Aircraft 88.90 475.16 11.06 15.77 111.81 111.8 Vessel 2,311.32 1,369.57 00.38 583.89 49.24 49.2 Ordinates 93.79 1.56 0.00 0.00 0.02 2.65 1.8 Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Total for Study Area Complexes Aircraft 133.47 52.244 15.06 18.64 127.06 Vessel 2583.48 1633.66 255.66 71.640 66.83 66.88 Vessel 2583.48 1633.66 255.66 71.640 60.83 66.88				13.32	48.26	1/.35	17.35
Aircraft 4.94 5.58 0.45 0.34 1.78 1.77 Vessel 249.06 155.02 40.51 68.34 7.71 7.70 Crimance 4.42 0.17 0.00 0.00 0.09 0.19 Total 256.41 10.07 40.66 87.16 9.75 International vaces (2.2 nm) Aircraft 86.90 47.51 10.66 15.77 111.81 11.82 Vessel 2.311.32 13.69.57 20.38 583.88 49.24 49.2 Ordinance 3.77 1.56 0.00 0.00 2.5 1.6. Total 240.01 1846.29 214.44 599.61 163.70 162.61 Total 76.75 133.47 522.44 15.06 18.64 127.06 127.06 Vessel 2583.45 1633.66 255.66 716.40 60.88 60.88 Vessel 2583.45 1633.66 255.66 716.40 60.88 60.88 Ordnance 44.21 1.79 0.00 0.00 2.24 1.8	Waters of th	ne U.S. (3-12	nm)				
Ordnarce 4.4? 0.17 0.00 0.00 0.29 0.11 Total 2.256.42 1.90.77 40.96 87.18 9.78 9.6 International waters (c1.2 nm) 1.11.05 15.72 111.83 111.83 Alcreaft 88.90 475.16 11.06 15.72 111.83 111.83 Vessel 2.311.32 1.369.37 203.38 583.89 49.44 49.2 Ordnarce 3.79 1.55 0.00 0.00 2.55 15.7 Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Alcreaft 1.33.47 522.44 15.06 18.64 127.06 127.06 Vessel 2583.45 1633.66 253.66 75.40 60.38 60.8 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8				0.45	0.34	1 78	1 79
Ordnarce 4.4? 0.17 0.00 0.00 0.29 0.11 Total 2.256.42 1.90.77 40.96 87.18 9.78 9.6 International waters (c1.2 nm) 1.11.05 15.72 111.83 111.83 Alcreaft 88.90 475.16 11.06 15.72 111.83 111.83 Vessel 2.311.32 1.369.37 203.38 583.89 49.44 49.2 Ordnarce 3.79 1.55 0.00 0.00 2.55 15.7 Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Alcreaft 1.33.47 522.44 15.06 18.64 127.06 127.06 Vessel 2583.45 1633.66 253.66 75.40 60.38 60.8 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8				40.54			
Ordnarce 4.4? 0.17 0.00 0.00 0.29 0.11 Total 2.256.42 1.90.77 40.96 87.18 9.78 9.6 International waters (c1.2 nm) 1.11.05 15.72 111.83 111.83 Alcreaft 88.90 475.16 11.06 15.72 111.83 111.83 Vessel 2.311.32 1.369.37 203.38 583.89 49.44 49.2 Ordnarce 3.79 1.55 0.00 0.00 2.55 15.7 Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Alcreaft 1.33.47 522.44 15.06 18.64 127.06 127.06 Vessel 2583.45 1633.66 253.66 75.40 60.38 60.8 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8				40.51			/./1
Total 258.42 190.77 40.96 87.18 9.78 9.65 101 101 101 102 10	Ordnance	4.42	0.17	0.00	0.00	0.29	0.18
International waters (4.2 nm) Alforest E. 89.9		258.42		40.96	87.18	9.78	9.67
Aircerit 88,90 475,16 11,06 15,77 11,121 11,32 Vessel 2,311,32 1,369,57 205,38 583,68 49,24 49,24 Grofmarce 33,79 1,56 0,00 0,00 2,55 1,5 Total 2440,00 1846,29 214,44 599,61 163,70 162,61 Total for Study Area Complexes Aircraft 133,47 522,44 15,06 18,64 127,06 127,00 Vessel 2833,48 1633,66 253,66 71,640 60,83 60,83 60,83 Grofmarce 44,21 1,73 0,00 0,00 2,94 1.8		Juntore (51)		I			
Vessel 2.311.32 1.369.57 203.38 583.89 49.24 49.25 Ordnance 30.79 1.55 0.00 0.00 2.65 1.55 Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Total for Study Area Complexes 34.176.24 15.06 18.64 127.06 127.00 Aircraft 1133.47 522.44 15.06 18.64 127.06 127.00 Vessel 2583.45 1633.66 255.66 716.40 60.88 60.8 Ordnance 44.21 1.79 0.00 0.00 2.94 1.8							
Ordnance 39.75 1.56 0.00 0.00 2.65 1.67 Total 2440.01 1886.29 214.44 599.61 163.70 162.61 Total for Study Area Complexes 34.70 32.24 15.06 18.64 127.06 127.06 Vessel 2583.45 1633.66 253.66 716.40 60.83 60.83 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8			4/5.16	11.06			111.81
Ordnance 39.75 1.56 0.00 0.00 2.65 1.67 Total 2440.01 1886.29 214.44 599.61 163.70 162.61 Total for Study Area Complexes 34.70 32.24 15.06 18.64 127.06 127.06 Vessel 2583.45 1633.66 253.66 716.40 60.83 60.83 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8		2,311.32		203.38	583.89	49.24	
Total 2440.01 1846.29 214.44 599.61 163.70 162.61 Total for Study Area Complexes 133.47 522.44 15.06 18.64 127.06 127.00 Vessel 2583.45 1633.66 255.66 75.40 60.83 60.8 Ordnance 44.21 1.79 0.00 0.00 2.94 1.8	Ordnance		1.56		0.00	2.65	1.62
Total for Study Area Complexes Aircraft 133.47 522.44 15.06 18.64 127.06 127.0 Vessel 2583.45 1638.66 253.66 716.40 60.83 60.83 Ordnance 44.21 1.79 0.00 0.00 2.94 1.8	ITotal						
Aircraft 133.47 522.44 15.06 18.64 127.06 127.00 Vessel 2583.45 1633.66 253.66 716.40 60.83 60.83 Ordnance 44.21 1.73 0.00 0.00 2.94 1.83				214.44	333.01	103.70	102.02
Vessel 2583.45 1633.66 253.66 716.40 60.83 60.8 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8				L			L
Vessel 2583.45 1633.66 253.66 716.40 60.83 60.8 Ordnance 44.21 1.73 0.00 0.00 2.94 1.8	Aircraft	133.47	522.44	15.06		127.06	127.06
Ordnance 44.21 1.73 0.00 0.00 2.94 1.80				253 66	716.40	60 83	60 83
Total 2/61.13 2157.83 268.72 735.04 190.84 189.70							
	III otal	1 2761 13	2157.83	1 268.72	735.04		189.70
	, otal	2,01.10	2200	200172	, , ,	15	200170

Total	5.54		0.58	2.60	0.73	0.7
	l waters (>1: 1.12		0.11			
Aircraft Vessel	23.88	1.43 20.61		0.09 14.08	0.45 1.36	0.4
			2.62 0.00	0.00	0.00	1.3 0.0 1.8
Ordnance	0.00	22.05	2.73			
Total Total for GO	25.00	Complex		14.16	1.81	1.0
Aircraft		6.87	0.58 3.18 0.00 3.76	0.43	2.23	
Vessel	6.42 29.30	27.60	2 4 6	16.96	1.67	2.2 1.6
Ordnance	0.00	0.00	2.10	0.00	0.00	1.0
		34.47	9.76		3,89	0.0 3.8
Total	35.72	34,47	3.70	17.39 Percent In-S		0.1
				reiteileilire	lace	
Source	8	NO _x	VOC	SO,	PM ₁₀	PM _{2.5}
		de Range Co	mplexes)			
State water:						
Aircraft	0.01	0.02	0.00	0.00	0.01	0.0
Vessel	0.04	0.04	0.00 0.00 0.00	0.01	0.00	0.0 0.0 0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0
Total	0.04	0.06	0.00	0.01	0.01	0.0
Waters of th					L	
Aircraft	0.00	0.01	0.00	0.00	0.00	0.0
Vessel	0.65	0.65	0.07	0.20	0.02	0.0
Ordnance	0.00	0.00	0.00	0.00	0.00	0.0
Total	0.65	0.66	0.07	0.20	0.03	0.0
Internationa	l waters (>1	2 nm)				
Aircraft	0.10	0.49	0.02	0.02	0.11	0.1
Vessel	4.84	4.37	0.51	1.35 0.00	0.15	0.1
Ordnance	0.00	0.00	0.00	0.00	0.00	0.1 0.1 0.0
Total	4.95	4.85	0.54	1.37	0.26	0.2
Total for Ot	ner AFTT Are		lange Compl	exes)	L	
Aircraft						
minualt	0.11	0.52	0.03	0.02	0.12	0.1
Vessel	0.11 5.53	5.05	0.59	1.56	0.17	0.1
Vessel Ordnance	0.11 5.53 0.00	0.52 5.05 0.00	0.59 0.00	1.56 0.00	0.17 0.01	0.0
Vessel Ordnance	0.11 5.53 0.00 5.64	5.05	0.59	1.56	0.17 0.01	0.0
Vessel	5.53 0.00	5.05 0.00	0.59 0.00	1.56 0.00	0.17 0.01 0.30	0.1 0.1 0.0 0.2 0.0
Vessel Ordnance Total	5.53 0.00 5.64	5.05 0.00 5.57	0,59 0,00 0,61	1.56 0.00 1.58 Percent In-S	0.17 0.01 0.30 itate	0.0 0.2 0.0
Vessel Ordnance Total Source	5.53 0.00 5.64	5.05 0.00 5.57 NO ₄	0.59 0.00 0.61 VOC	1.56 0.00 1.58 Percent In-S	0.17 0.01 0.30	0.0 0. 2
Vessel Ordnance Total Source Total for AF	5,53 0.00 5,64 CO TT Study Are	5.05 0.00 5.57 NO ₄	0,59 0,00 0,61	1.56 0.00 1.58 Percent In-S	0.17 0.01 0.30 itate	0.0 0.2 0.0 PM _{2.5}
Vessel Ordnance Total Source	5.53 0.00 5.64 00 TT Study Are s (0-3 nm)	5.05 0.00 5.57 NO ₄	0.59 0.00 0.61 VOC Related Emis	1.56 0.00 1.58 Percent In-S SO, sions)	0.17 0.01 0.30 itate	0.0 0.2 0.0 PM _{2.5}
Vessel Ordnance Total Source Total for AF State water Aircraft	5.53 0.00 5.64 CO TT Study Are 5 (0-3 nm)	5.05 0.00 5.57 NO _s a (Training-l	0.59 0.00 0.61 VOC Related Emis	1.56 0.00 1.58 Percent In-S SO, sions)	0.17 0.01 0.30 state PM ₁₀	0.0 0.2 0.0 PM _{2.5}
Vessel Ordnance Total Source Total for AF State water: Alroraft Vessel Ordnance	5.53 0.00 5.64 T Study Are (0-3 nm) 5.16 5.55	5.05 0.00 5.57 NO ₄ a (Training-F	0.59 0.00 0.61 VOC Related Emis	1.56 0.00 1.58 Percent In-S SO, sions)	0.17 0.01 0.30 tate PM ₁₀	0.0 0.2 0.0 PM _{2.5}
Vessel Ordnance Total Source Total for AF State water: Alroraft Vessel Ordnance	5.53 0.00 5.64 T Study Are (0-3 nm) 5.16 5.55	5.05 0.00 5.57 NO ₄ a (Training-F	0.59 0.00 0.61 VOC Related Emis 0.46 0.45	1.56 0.00 1.58 Percentin-S SO, sions) 0.34 1.77 0.00	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26	0.0 0.2 0.0 PM _{2.5}
Vessel Ordnance Total Source Total for AF State water: Alroraft Vessel Ordnance	5.53 0.00 5.64 T Study Are (0-3 nm) 5.16 5.55	5.05 0.00 5.57 NO ₄ a (Training-F	0.59 0.00 0.61 VOC Related Emis 0.46 0.45 0.00	1.56 0.00 1.58 Percent In-S SO, sions)	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26	0.0 0.2 0.0
Vessel Ordnance Total Source Total for AF State water: Alroraft Vessel Ordnance	5.53 0.00 5.64 T Study Are (0-3 nm) 5.16 5.55	5.05 0.00 5.57 NO ₄ a (Training-F	0,59 0,00 0,61 VOC Related Emis 0,46 0,45 0,00 0,91	1.56 0.00 1.58 Percent In-S SO, sions) 0.34 1.77 0.00 2.10	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26 0.00 2.02	0.0 0.2 0.0 PM _{2.5} 1.7 0.2 0.0 2.0
Vessel Or driance Total Source Total for AF State water Aircraft Vessel Ordnance Total Waters of th	5.53 0.00 5.64 CO TT Study Are \$(0-3 nm) 5.16 5.55 0.00 10.71 re U.S. (3-12	5.05 0.00 5.57 NO. a (Training-I 5.40 14.00 0.00 19.40 nm) 4.28	0.59 0.00 0.61 VOC Related Emis 0.45 0.00 0.91	1.56 0.00 1.58 Percentin-5 SO, sions) 0.34 1.77 0.00 2.10	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26 0.00 2.02	0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Vessel Ordnance Total Source Total for AF State water Aircraft Vessel Ordnance Total Waters of th Aircraft Vessel	5.53 0.00 5.64 TT Study Ars (0-3 nm) 5.16 5.55 0.00 10.71 eU.S. (3-12 4.11 39.12	5.05 0.00 5.57 NO. a (Training-I 5.40 14.00 0.00 19.40 nm) 4.28 33.43	0.59 0.00 0.61 VOC Related Emis 0.45 0.00 0.91	1.56 0.00 1.58 Percent In-S SO, sions) 0.34 1.77 0.00 2.10	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26 0.00 2.02 1.40 1.03	0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Vessel Dridnance Total Source Total for AF State water Africalt Vessel Ordnance Total Waters of th Africalt Vessel Ordnance Total Ordnance Total Ordnance Total Ordnance Total Ordnance Ordnance	5.53 0.00 5.64 CO T Study Are \$ (0-3 nm) 5.16 5.55 0.00 10.71 eU.S. (3-12 4.11 39.12	5.05 0.00 5.57 NO ₄ a (Training-I 14.00 0.00 19.40 mm) 4.28 33.43 0.03	0,59 0.00 0.61 VOC Related Emis 0,46 0.45 0.00 0.91 0.37 3.83	1.56 0.00 1.58 Percentin-S SO, sions) 0.34 1.77 0.00 2.10 0.27 1.0.08 0.00	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26 0.00 2.02 1.40 1.40	0.0 0.2 0.0 0.0 0.0 1.7 0.0 0.0 0.0 1.4 1.0 0.0
Vessel Dridnance Total Source Total for AF State water Africraft Vessel Waters of th Africraft Vessel Ordnance Total Ordnance Total	5.53 0.00 5.64 00 00 01 Study Are (0-3 nm) 5.16 5.55 0.00 10.71 12.11 33.12 0.59 43.82	5.05 0.00 5.57 NO. 24 (Training-1 14.00 0.00 19.44 nm) 4.28 3.3.43 3.7.74	0.59 0.00 0.61 VOC Related Emis 0.46 0.45 0.05 0.91 0.37 3.83 3.83 0.000 4.19	1.56 0.00 1.58 Percent In-S SO, sions) 0.34 1.77 0.00 2.10	0.17 0.01 0.30 tate PM ₁₀ 1.76 0.26 0.00 2.02 1.40 1.03	0.0 0.2 0.0 0.0 0.0 1.7 0.0 0.0 0.0 1.4 1.0 0.0
Vessel Ordnance Total	5.53 0.00 5.64 5.64 TT Study Ares (0-3 mm) 5.16 0.00 10.71 10.71 39.12 0.59 0.59	5,05 0,00 5,57 NO. 14,00 14,00 0,00 19,40 4,28 33,43 0,03 37,74 2,nm)	0.59 0.00 0.61 VOC Related Emis 0.46 0.45 0.05 0.91 0.37 3.83 3.83 0.000 4.19	1.55 0.00 1.58 Percentin-S SO. 33ions) 0.34 1.77 0.00 2.10 0.27 10.08 0.00 10.35	0.17 0.01 0.80 0.80 PM ₁₀ 1.76 0.26 0.00 0.00 1.03 0.00 0.00 0.00 0.00 0.00	PM _{2.5}
Vessel Ordnance Total Total for AF State water Africaft Vessel Total for AF Ordnance Total Waters of th Africaft Vessel Ordnance Total Urbane Total Africaft Vessel Ordnance Total Africaft Africaft Africaft Africaft	5.53 0.00 5.64 S.64 T Study Ard (0-3 mm) 5.16 5.55 5.00 10.71 14.11 4.11 4.12 4.3.62	5.05 0.00 5.57 NO. 14.00 0.00 19.40 nm) 4.28 3.343 3.744 2.7m) 32.48	0.59 0.00 0.61 VOC Related Emis 0.46 0.45 0.05 0.91 0.37 3.83 3.83 0.000 4.19	1.56 0.00 1.588 Percentin-S SO, sions) 0.04 1.777 0.00 2.10 0.07 10.08 0.00 10.05 10.35	0.17 0.01 0.30 tate PM _{In} 1.76 0.26 0.00 2.02 1.40 1.40 0.03 0.08 2.51	PM _{2.5}
Vessel Ordnance Total To	5.53 0.00 5.64 5.64 TI Study Are (0-3 nm) 5.16 5.55 5.00 0.00 10.71 eU.S. (3-12 4.11 39.12 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.3	5,05 0,00 5,57 NO. 14,00 14,00 0,00 19,40	0.59 0.00 0.6i 0.6i 0.6i 0.6i 0.6i 0.6i 0.64 0.46 0.05 0.00 0.9i 0.9i 0.37 3.83 0.00 4.19 2.256 47.86	1.56 0.00 1.58 Percentin-5 SO sions 0.34 1.77 0.00 2.10 0.02 1.08 0.02 1.05 1.79 145.69	0.17 0.01 0.30 late PM ₁₀ 1.76 0.26 0.00 0.00 1.03 1.03 0.08 2.51	PM_s 1.7 0.2 0.0 0.0 1.7 0.2 0.0 0.0 1.2 1.2 0.0 0.0 0.0 1.2 2.1 9.7
Vessel Ordnance Total Total Source Total for AF Africraft Vessel Ordnance Total Waters of th Africraft Vessel Ordnance Total Africraft Vessel Ordnance Total Ordnance Total Ordnance Total Ordnance Total Ordnance Total Ordnance Total	5.53 5.64 CO 11 Study Are 13 Study Are 5.16 5.55 6.00 10.71 10.71 10.71 24.84 24.84 5.34 5.34 5.34 5.34 6.35 6.36	5,05 5,67 NO, 14,00 14,00 19,40	0.59 0.00 0.6i Voc clated Enis 0.46 0.00 0.37 3.88 0.00 4.19 2.36 4.7,36	1.56 0.00 1.58 Percentin: 5 SO. 3009 0.34 1.77 1.00 2.10 0.00 1.05 1.05 1.05 1.05 1.05 1.05 1	0.17 0.001 0.001 0.80 tare PM ₁₀ 1.76 0.00 0.00 0.00 1.40 1.03 0.08 2.51 1.32 1.32 1.32 1.32	PM _{2S} 1. 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vessel Ordnance Total Source Total for AF State water Afroraft Vessel Ordnance Total Waters of the Afroraft Vessel Ordnance Total Ordnance Total Ordnance Total	5.53 5.64 Ti Study Are (0-3 nm) 5.16 5.55 0.00 10.71 eUS: 31-2 4.11 39.12 39.12 4.52 4.12 4.52 4.12 5.55 5.55 1.0.10 5.55 5.55 5.55 5.55 5.	5.05 5.57 NO. 100 100 100 100 100 100 100 10	0.59 0.00 0.6i 0.6i 0.6i 0.6i 0.6i 0.6i 0.64 0.46 0.05 0.00 0.9i 0.9i 0.37 3.83 0.00 4.19 2.256 47.86	1.56 0.00 1.58 Percentin-5 SO sions 0.34 1.77 0.00 2.10 0.02 1.08 0.02 1.05 1.79 145.69	0.17 0.01 0.30 late PM ₁₀ 1.76 0.26 0.00 0.00 1.03 1.03 0.08 2.51	PM _{2S} 1. 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vessel Ordnance Total Source Total Source Total for AF State water Aircraft Vessel Ordnance Total Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Total Total Total Total Total Total	5.53 5.64 CO TT Study Ares (O-3 mr) 5.55 0.00 0.00 10.71 89.12 4.11 39.12 4.32 4.32 2.43 2.43 2.43 2.43 2.43 2.4	5.05 5.67 NO, a (Training-1 14.00 19.40	0.59 0.6i 0.6i 0.6i 0.6i 0.6i 0.6i 0.46 0.45 0.05 0.45 0.05 0.45 0.45 0.45 0.45	1.56 0.00 1.58 Percentin-5 50, sions 0.34 1.77 1.77 1.000 0.00 0.00 10.35 10.35 145.69 0.00 147.48	0.17 0.01 0.80 1.76 0.26 0.26 0.00 0.00 0.00 0.00 1.03 0.08 2.51 1.32 2.51 1.3.22 0.70 2.3.67	0.00 0.00 0.00 0.00 0.00 1.7 0.00 0.00 0
Vessel Ordnance Total Source Total for AF State water Afroraft Vessel Waters of th Arcraft Vessel Total Ordnance Total Ordnance Total Ordnance Total Ordnance Total Afroraft Vessel Afroraft A	5.53 0.00 5.64 0.00 00 011 Study Are (0-3 mn) 5.16 5.25 0.00 0.00 4.11 38.12 38.12 24.84 51.4.21 5.30 544.34 dy Area Cor 34.11	5.05 5.57 NO. 10.00 5.40 14.00 19.40 19.40 19.40 19.42 33.43 37.74 27.71 32.48 340.77 0.03 340.77 0.04 373.49 773.49 783.49 791.40 791.4	0.59 0.6i 0.6i 0.6i 0.6i 0.6i 0.6i 0.46 0.45 0.05 0.45 0.05 0.45 0.45 0.45 0.45	1.56 0.00 1.58 Percent in-S SO 0.34 1.77 0.00 2.10 0.27 10.08 0.00 10.35 1.79 145.69 0.00 147.48	0.17 0.001 0.001 0.001 1.76 0.26 0.26 0.00 0.00 0.00 1.03 0.08 2.51 9.75 13.22 0.70 0.70 0.70 12.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Vessel Ordnance Total To	5.53 5.64 TStudy Are \$(0-3 nm) 5.16 5.55 0.00 10.77 eU.S. (3-12 4.11 39.12 0.59 4.22 4.24 1.25	5.05 5.07 NO, a (Training land) 14.00 0.00 19.40 0.00 19.40 0.03 37.74 2.nm) 2.2.83 34.07 0.24 373.49 applexes 42.15	0.59 0.00 0.61 VOC (alsted Emis 0.46 0.45 0.00 0.91 0.37 3.88 3.88 0.00 4.19 2.36 4.78 0.00 50.22	1.56 1.58 Percent in-5 SO, sions) 0.344 1.777 0.00 2.10 0.27 1.0.88 0.00 147.48 157.54	0.17 0.001 0.001 0.001 1.776 0.26 0.000 0.000 1.40 1.03 0.08 2.51 1.32 0.70 23.67	0.000
Vessel Ordnance Total Source Total for AF State water Afroraft Vessel Waters of th Arcraft Vessel Total Ordnance Total Ordnance Total Ordnance Total Ordnance Total Afroraft Vessel Afroraft A	5.53 0.00 5.64 0.00 00 011 Study Are (0-3 mn) 5.16 5.25 0.00 0.00 4.11 38.12 38.12 24.84 51.4.21 5.30 544.34 dy Area Cor 34.11	5.05 5.57 NO. 10.00 5.40 14.00 19.40 19.40 19.40 19.42 33.43 37.74 27.71 32.48 340.77 0.03 340.77 0.04 373.49 773.49 783.49 791.40 791.4	0.59 0.6i 0.6i 0.6i 0.6i 0.6i 0.6i 0.46 0.45 0.05 0.45 0.05 0.45 0.45 0.45 0.45	1.56 0.00 1.58 Percent in-S 0.34 0.34 1.77 0.00 0.27 10.08 0.00 10.35 1.79 145.69 0.00 147.48	0.17 0.001 0.001 0.001 1.76 0.26 0.26 0.00 0.00 0.00 1.03 0.08 2.51 9.75 13.22 0.70 0.70 0.70 12.91	0.000

Waters of t	he U.S. (3-12	nm)	I		l	T
Aircraft	0.06	0.07	0.01	0.00	0.02	0.0
Vessel	6.44	4.61	0.95	1.41	0.13	0.1
Ordnance	0.09	0.01	0.00	0.00	0.00	0.0
Total	6.59	4.69	0.96	1.41	0.16	0.1
Internation	al waters (>12					
Aircraft	0.42	0.45	0.05	0.02	0.13	0.1
Vessel	26.01	19.79	2.37	7.75	0.73	0.7
Ordnance	0.78	0.07	0.00	0.00	0.02	0.0
Total	27.22	20.32	2.42	7.77	0.87	0.8
Total for Ot	her AFTT Are	as (Outside F	lange Comple	exes)		
Aircraft	0.49	0.52	0.06	0.03	0.15	0.1
Vessel	32.57	24.51	3.45	9.18	0.86	0.8
Ordnance	0.87	0.08	0.00	0.00	0.02	0.0
Total	33.93	25.12	3.51	9.21	1.03	1.0
				Percent In-S	tate	0.0
Source	СО	NOx	voc	SOx	PM10	PM2.5
	FTT Study Are				LIMITO	I FIVIZ.3
State water			reidica Eiiiis	10113)		
		Δ1 7N	3 5 5	2 58	13.47	13.4
Aircraft	39.62	41.70 79.06	3,55 9,77	2.58 45.68	13.47 3.89	
Aircraft Vessel	39.62 23.08	79.06	9.77	45.68	3.89	3.8
Aircraft Vessel Ordnance	39.62 23.08 0.00	79.06 0.00	9.77 0.00	45.68 0.00	3.89 0.00	3.8 0.0
Aircraft Vessel Ordnance Total	39.62 23.08 0.00 62.70	79.06 0.00 120.76	9.77	45.68	3.89	3.8 0.0
Aircraft Vessel Ordnance Total	39.62 23.08 0.00	79.06 0.00 120.76	9.77 0.00	45.68 0.00 48.26	3.89 0.00	3.8 0.0 17.3
Aircraft Vessel Ordnance Total Waters of t	39.62 23.08 0.00 62.70 he U.S. (3-12	79.06 0.00 120.76 nm)	9.77 0.00 13.32	45.68 0.00	3.89 0.00 17.35 1.78	13.4 3.8 0.0 17.3 1.7
Aircraft Vessel Ordnance Total Waters of t Aircraft	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94	79.06 0.00 120.76 nm) 5.58	9.77 0.00 13.32 0.45	45.68 0.00 48.26 0.34	3,89 0.00 17.35	3.8 0.0 17.3 1.7 7.7
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel	39,62 23,08 0,00 62,70 he U.S. (3-12 4,94 249,06	79.06 0.00 120.76 nm) 5.58 185.02	9,77 0,00 13,32 0,45 40,51	45.68 0.00 48.26 0.34 86.84	3.89 0.00 17.35 1.78 7.71	3.8 0.0 17.3 1.7 7.7 0.1
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total	39,62 23,08 0,00 62,70 he U.S. (3-12 4,94 249,06 4,42 258,42	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77	9.77 0.00 13.32 0.45 40.51 0.00	45,68 0.00 48,26 0.34 86,84 0.00	3,89 0,00 17,35 1,78 7,71 0,29	3.8 0.0 17.3 1.7 7.7 0.1
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total	39,62 23,08 0,00 62,70 he U.S. (3-12 4,94 249,06 4,42	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77	9.77 0.00 13.32 0.45 40.51 0.00	45,68 0.00 48,26 0.34 86,84 0.00	3,89 0,00 17,35 1,78 7,71 0,29	3,8 0,0 17,3 1.7 7,7 0,1 9,6
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation	39,62 23,08 0,00 62,70 he U.S. (3-12 4,94 249,06 4,42 258,42 al waters (>1.	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77 2 nm)	9.77 0.00 13.32 0.45 40.51 0.00 40.96	45.68 0.00 48.26 0.34 86.84 0.00 87.18	3,89 0,00 17,35 1,78 7,71 0,29 9,78	3,8 0,0 17,3 1.7 7,7 0,1 9,6
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation Aircraft	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94 249.06 4.42 258.42 al waters (>1.	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77 2 nm) 475.16	9,77 0.00 13.32 0.45 40.51 0.00 40.96	45.68 0.00 48.26 0.34 86.84 0.00 87.18	3.89 0.00 17.35 1.78 7.71 0.29 9.78	3,8 0,0 17,3 1,7 7,7 0,1 9,6 111.8 49,2
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94 249.06 4.42 258.42 al waters (>1 88.90 2,311.32	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77 2 nm) 475.16 1,369.57	9,77 0,00 13,32 0,45 40,51 0,00 40,96 11,06 203,38	45.68 0.00 48.26 0.34 86.84 0.00 87.18 15.72 583.89	3.89 0.00 17.35 1.78 7.71 0.29 9.78 111.81	3,8 0.0 17,3 1,7 7,7 0,1 9,6 111,8 49,2
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Ordnance Total	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94 249.06 4.42 258.42 al waters (>1.1 88.90 2,311.32	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77 2 nm) 475.16 1.369.57 1.56	9,77 0.00 13,32 0.45 40,51 0.00 40,96 11,06 203,38	45.68 0.00 48.26 0.34 86.84 0.00 87.18 15.72 583.89 0.00	3.89 0.00 17:35 1.78 7.71 0.29 9.78 111.81 49:24 2.65	3,8 0.0 17,3 1,7 7,7 0,1 9,6 111,8 49,2
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Ordnance Total	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94 249.06 4.42 258.42 a waters (>1 88.90 2,311.32 39.79 2440.01	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77 2 nm) 475.16 1.369.57 1.56	9,77 0.00 13,32 0.45 40,51 0.00 40,96 11,06 203,38	45.68 0.00 48.26 0.34 86.84 0.00 87.18 15.72 583.89 0.00	3.89 0.00 17:35 1.78 7.71 0.29 9.78 111.81 49:24 2.65	3.8 0.0 17.3 1.7 7.7 0.1 9.6 111.8 49.2 1.6 162.6
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Total Total	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94 249.06 4.42 258.42 al waters (>1. 88.90 2,311.32 39.79 2440.01	79.06 0.00 120.76 nm) 5.58 185.02 0.17 190.77 2 nm) 475.16 1,369.57 1,56 1846.29 nplexes	9.77 0.00 13.32 0.45 40.51 0.00 40.96 11.06 203.38 0.00 214.44	45.68 0.00 48.26 0.34 86.84 0.00 87.18 15.72 15.72 583.89 0.00 599.61	3.89 0.00 17.35 1.78 7.71 0.29 9.78 111.81 49.24 2.65 163.70	3.8. 0.0 17.3 1.7. 7.7. 0.1 9.6 111.8 49.2 1.6 162.6
Aircraft Vessel Ordnance Total Waters of t Aircraft Vessel Ordnance Total Internation Aircraft Vessel Ordnance Total Total Total Total for St Aircraft	39.62 23.08 0.00 62.70 he U.S. (3-12 4.94 249.06 4.42 258.42 al waters (>1. 8.89 2,311.32 39.79 2440.01 udy Area Con	79.06 0.00 120.76 nm) 5.58 185.02 0.17 2 nm) 475.16 1.369.57 1.56 1846.29 nplexes 522.44	9.77 0.00 13.32 0.45 40.51 0.00 40.96 11.06 203.38 0.00 214.44	45.68 0.00 48.26 0.34 86.84 0.00 87.18 15.72 583.89 0.00 599.61	3.89 0.00 17.35 1.78 7.71 0.29 9.78 111.81 49.24 2.65 163.70	3,8 0,0 17,3

Waters of th	he U.S. (3-12	nm)				
Aircraft	0.00	0.01	0.00	0.00	0.00	0.00
Vessel	0.65	0.65	0.07	0.20	0.02	0.02
Ordnance	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.65	0.66	0.07	0.20	0.03	0.03
Internation	al waters (>12	2 nm)				
Aircraft	0.10	0.49	0.02	0.02	0.11	0.11
Vessel	4.84	4.37	0.51	1.35	0.15	0.15
Ordnance	0.00	0.00	0.00	0.00	0.00	0.00
Total	4.95	4.85	0.54	1.37	0.26	0.26
Total for Ot	her AFTT Are	as (Outside R	ange Comple			
Aircraft	0.11	0.52	0.03	0.02	0.12	0.12
Vessel	5.53	5.05	0.59	1.56	0.17	0.17
Ordnance	0.00	0.00	0.00	0.00	0.01	0.00
Total	5.64	5.57	0.61	1.58	0.30	0.29
				Percent In-S	tate	0.01
Source	CO	NOx	voc	SOx	PM10	PM2.5
	-TT Study Are	a (Testing-R	elated Emiss	ions)		
State water		.				
Aircraft	5.16	5.40	0.46	0.34	1.76	1.76
Vessel	5.55	14.00	0.45	1.77	0.26	0.26
Ordnance	0.00	0.00	0.00	0.00	0.00	0.00
Total	10.71	19.40	0.91	2.10	2.02	2.01
	he U.S. (3-12	nm)				
Aircraft						
	4.11	4.28	0.37	0.27	1.40	1.40
Vessel	39.12	4.28 33.43	3.83	10.08	1.03	1.03
Ordnance	39.12 0.59	4.28 33.43 0.03	3.83 0.00	10.08 0.00	1.03 0.08	1.03 0.05
Ordnance Total	39.12 0.59 43.82	4.28 33.43 0.03 37.74	3.83	10.08	1.03	1.03
Ordnance Total Internationa	39.12 0.59 43.82 al waters (>1.	4.28 33.43 0.03 37.74 2 nm)	3.83 0.00 4.19	10.08 0.00 10.35	1.03 0.08 2.51	1.03 0.05 2.48
Ordnance Total Internationa Aircraft	39.12 0.59 43.82 al waters (>12	4.28 33.43 0.03 37.74 2 nm) 32.48	3.83 0.00 4.19 2.36	10.08 0.00 10.35 1.79	1.03 0.08 2.51 9.75	1.03 0.05 2.48 9.75
Ordnance Total Internationa Aircraft Vessel	39.12 0.59 43.82 al waters (>12 24.84 514.21	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77	3.83 0.00 4.19 2.36 47.86	10.08 0.00 10.35 1.79 145.69	1.03 0.08 2.51 9.75 13.22	1.03 0.05 2.48 9.75 13.22
Ordnance Total Internationa Aircraft Vessel Ordnance	39.12 0.59 43.82 al waters (>1. 24.84 514.21 5.30	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77 0.24	3.83 0.00 4.19 2.36 47.86 0.00	10.08 0.00 10.35 1.79 145.69 0.00	1.03 0.08 2.51 9.75 13.22 0.70	1.03 0.05 2.48 9.75 13.22 0.47
Ordnance Total Internationa Aircraft Vessel Ordnance Total	39,12 0.59 43.82 al waters (>1. 24.84 514.21 5.30 544.34	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77 0.24 373.49	3.83 0.00 4.19 2.36 47.86	10.08 0.00 10.35 1.79 145.69	1.03 0.08 2.51 9.75 13.22	1.03 0.05 2.48 9.75 13.22
Ordnance Total Internationa Aircraft Vessel Ordnance Total Total for Str	39.12 0.59 43.82 al waters (>1. 24.84 514.21 5.30 544.34 udy Area Con	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77 0.24 373.49 nplexes	3.83 0.00 4.19 2.36 47.86 0.00 50.22	10.08 0.00 10.35 1.79 145.69 0.00	1.03 0.08 2.51 9.75 13.22 0.70 23.67	1.03 0.05 2.48 9.75 13.22 0.47 23.44
Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Str Aircraft	39.12 0.59 43.82 al waters (>1. 24.84 514.21 5.30 544.34 udy Area Con	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77 0.24 373.49 nplexes 42.15	3.83 0.00 4.19 2.36 47.86 0.00 50.22	10.08 0.00 10.35 1.79 145.69 0.00 147.48	1.03 0.08 2.51 9.75 13.22 0.70 23.67	1.03 0.05 2.48 9.75 13.22 0.47 23.44
Ordnance Total Internationa Aircraft Vessel Ordnance Total Total for Str Aircraft Vessel	39.12 0.59 43.82 al waters (>1. 24.84 514.21 5.30 544.34 udy Area Con 34.11 558.87	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77 0.24 373.49 nplexes 42.15 388.21	3.83 0.00 4.19 2.36 47.86 0.00 50.22 3.18 52.14	10.08 0.00 10.35 1.79 145.69 0.00 147.48 2.39 157.54	1.03 0.08 2.51 9.75 13.22 0.70 23.67 12.91	1.03 0.05 2.48 9.75 13.22 0.47 23.44 12.90
Ordnance Total Internation Aircraft Vessel Ordnance Total Total for Str Aircraft	39.12 0.59 43.82 al waters (>1. 24.84 514.21 5.30 544.34 udy Area Con	4.28 33.43 0.03 37.74 2 nm) 32.48 340.77 0.24 373.49 nplexes 42.15	3.83 0.00 4.19 2.36 47.86 0.00 50.22	10.08 0.00 10.35 1.79 145.69 0.00 147.48	1.03 0.08 2.51 9.75 13.22 0.70 23.67	1.03 0.05 2.48 9.75 13.22 0.47 23.44

ABC: SUMMAR

Table:	 Vessel Emissions by 	OPAREA - 6	out side of st	ate waters									
		Annual To	itals in Tons	per Year for	Alternative		Annual Totals in Tons per Year for Alternative 2						
		VOCs	co	NO _x	SO ₂	PM	CO ₂	VOCs	со	NO _x	SO _x	PM	CO ₂
	Northeast	1.16	6.40	31.88	10.44	1.49	5,562	0.09	2.11	4.10	0.62	0.20	299
	VACAPES	108.16	755.43	3404.96	932.48	107.62	502,660	101.79	727.45	3648.89	1,011.04	118.40	520,979
	Cherry Pt	34.68	284.43	802.71	155.70	24.96	71,511	23.99	121.50	705.50	177.83	27.17	82,978
	JAX	33.10	348.88	972.25	291.31	26.82	156,452	44.41	460.49	1,887.41	522.95	54.12	273,108
	Key West	2.63	8.28	75.07	12.32	1.65	6,222	0.59	8.18	26.22	9.29	0.83	4,858
	GOMEX	7.28	106.70	404.08	104.66	14.44	54,137	0.68	11.73	47.31	15.77	1.75	9,388
	Outside RCs	52.75	222.52	1672.05	270 07	49.14	215 402	150.76	520.00	4 000 00	641.55	90.41	225 174

Table 2. Vessel Emissions by OPAREA - inside of state waters

	Annual Totals in Tonsper Year for Alternative 1							Annual Tot	als in Tonsp	er Year for .	Alternative 2	2
	VOCs	co	NO _x	SO ₂	PM	CO ₂	VOCs	co	NO _s	SO _x	PM	CO ₂
Northeast	0.03	0.09	0.92	0.19	0.02	99	0.01	0.02	0.27	0.02	0.00	8
VACAPES	2.26	12.79	71.24	18.94	2.21	11,587	2.48	15.19	75.27	19.35	2.43	11,601
Cherry Pt	0.08	0.27	2.17	0.46	0.06	237	0.05	0.17	1.47	0.29	0.03	151
JAX	0.33	2.61	11.08	2.97	0.35	1,889	0.51	5.56	17.11	4.16	0.66	2,555
Key West	0.02	0.07	0.62	0.20	0.03	102	0.01	0.03	0.37	0.06	0.01	31
GOMEX	0.06	0.43	1.43	0.24	0.05	112	0.01	0.03	0.31	0.03	0.00	14
Outside RCs	0.10	0.42	2.38	0.49	0.07	273	2.60	28.36	66.05	11.62	2.61	6,833

. Small Boat and River	ine Vessels	by OPAREA		Alt 1 & Alt 2				
	VOCs	co	NO _x	SO ₂	PM	co		
Northeast	5.0	30.7	230.1	42.6	4.4	18,51		
VACAPES	10.5	210.4	325.6	100.8	10.5	51,56		
Chesapeake Bay	51.9	393.7	2,318.4	496.9	49.1	209,78		
Charleston	0.4	2.2	57.8	9.1	0.9	7,36		
IAX	1.5	5.1	51.3	8.2	1.2	4,03		
Cape Canaveral/SE								
FL	5.1	35.9	226.4	44.6	4.2	16,62		
Key West	0.0	0.1	0.9	0.1	0.0			
Panama City	0.1	0.5	3.3	0.7	0.1	2		
COMEY	1.4	4.7	47.1	7.4	1.1	2 5		

Table 4. Aircraft Emissions by OPAREA

		Annual To	otals in Tons per Year for Alternative 1 Annual Totals in Tons per Year for Alternative 2				1 Annual Totals in Tons per Year for Alternative :					
Area	VOCs	co	NO _x	SO ₂	PM	CO ₂	VOCs	co	NO _x	SO _x	PM	CO ₂
Northeast	0.70	7.67	12.15	3.00	4.72	4,339	1.22	13.19	17.80	4.96	8.43	7,184
VACAPES	7.16	88.40	160.03	22.83	39.55	47,181	9.17	110.02	182.16	30.51	54.07	58,321
Cherry Pt	5.00	39.17	28.83	3.72	4.88	7,696	5.00	39.17	28.83	3.72	4.88	7,696
JAX	13.86	95.80	74.68	10.54	12.83	18,966	14.09	98.28	77.22	11.42	14.49	20,241
Key West	0.09	0.92	0.98	0.34	0.65	496	0.29	3.07	3.18	1.11	2.09	1,603
GOMEX	0.91	11.76	11.14	3.71	6.65	5,408	0.93	11.94	11.32	3.78	6.77	5,501
Panama City	0.79	8.44	8,65	3.00	5.67	4,352	0.93	9,99	10.23	3,55	6.71	5,148

Table 5. Aircraft Emissions within state waters boundaries by OPAREA

		Annual To	tals in Tons į	per Year for	Alternative	1	Annual Totals in Tons per Year for Alternative 2					
Area	VOCs	co	NO _x	SO ₂	PM	CO ⁵	VOCs	co	NO _x	SO _x	PM	CO ₂
Northeast	0	0	0	0	0	0	0	0	0	0	0	0
VACAPES	0.27	3.77	20.41	0.70	1.45	3,998	0.27	3.77	20.41	0.70	1.45	3,998
Cherry Pt	10.90	193.57	101.93	40.77	77.14	59,064	10.90	193.57	101.93	40.77	77.14	59,064
JAX	0.06	0.60	0.61	0.21	0.40	307	0.06	0.60	0.61	0.21	0.40	307
Key West	0	0	0	0	0	0	0	0	0	0	0	0
GOMEX	0.0	0.1	0.1	0.0	0.1	39	0.0	0.1	0.1	0.0	0.1	39
Panama City	0.79	8.44	8.65	3.00	5.67	4,352	0.93	9.99	10.23	3.55	6.71	5,148

Table 6. Munition Emissions by OPAREA

				Alternative :	1							native 1 Alternative 2				
Location	voc	co	NO _x	SO _x	PM ₁₀	PM _{2S}	CO ₂	Pb	VOC	co	NO,	SO _x	PM ₁₀	PM _{2.5}	CO2	Pb
Northeast / NUWC																
Newport	0.00	0.76	0.01	0.00	3,90	2.98	0.51	0.00	0.00	0.76	0.01	0.00	3.89	2.98	0.51	0.00
Virginia Capes	0.13	61.20	1.05	0.02	168.56	129.34	49.35	0.31	0.13	61.20	1.05	0.02	168.55	129.33	49.35	0.31
Cherry Pt.	0.00	17.80	0.32	0.00	5.79	4.27	10.88	0.03	0.00	17.80	0.32	0.00	5.78	4.26	10.87	0.03
Jacksonville	0.01	37.80	0.66	0.01	22.18	16.66	33.91	0.21	0.01	37.80	0.66	0.00	22.17	16.66	33.91	0.21
Key West GOMEX / Panama""	0.00	3.96	80.0	0.00	0.23	0.13	2.57	0.00	0.00	3,96	0.08	0.00	0.22	0.12	2.57	0.00
City	0.00	3.65	0.07	0.00	4.86	3.69	3.61	0.02	0.00	3.65	0.07	0.00	4.85	3.68	3.61	0.02
Other AFTT	0.00	1.35	0.02	0.00	0.43		0.70		0.00	1.35	0.02	0.00	0.42	0.31		0.00
Study Area Total	0.15	126.53	2.20	0.05	205.96	157.40	101.54	0.58	0.15	126.53	2.20	0.02	205.88	157.34	101.52	0.58

Table 7. Emissions within State Water Boundaries

	All Emissions in State Waters, Alternative 1 All Emissions in State Waters, A						s, Alternativ	e 2		
Area	VOCs	co	NO _x	SO ₂	PM	VOCs	co	NO,	SO,	PM
Northeast	5.12	30.77	231.02	42.84	5.38	5.09	30.69	230.37	42.67	5.36
VACAPES	13.01	226.95	417.25	120.42	14.16	13.23	229.35	421.27	120.83	14.38
Chesapeake Bay	52.48	393.70	2318.42	496.89	60.52	52.48	393.70	2318.42	496.89	60.52
Cherry Pt	0.08	0.27	2.17	0.46	0.06	10.95	193.74	103.40	41.06	77.17
Charleston	0.38	2.15	57.82	9.11	0.95	0.38	2.15	57.82	9.11	0.95
JAX	1.85	8.34	63.03	11.39	1.91	2.04	11.29	69.05	12.58	2.21
Cape Canaveral/SE										
FL	5.1	35.9	226.4	44.6	5.1	5.1	35.9	226.4	44.6	5.1
Key West	0.06	0.16	1.52	0.33	0.05	0.05	0.12	1.28	0.20	0.04
Panama City	0.84	8.99	11.98	3.68	5.73	0.99	10.53	13.56	4.23	6.77
GOMEX	1.49	5.21	48.59	7.71	1.18	1.44	4.81	47.47	7.50	1.13
Outside RCs	0.10	0.42	2.38	0.49	0.07	2.60	28.36	66.05	11.62	2.61
			3380.60							

. Grand Total Emissio	ns Summar	7										
		Alternative 1						Alternative 2				
Area	VOCs	co	NO _x	SO ₂	PM	CO ₂	VOCs	co	NO _x	SO _x	PM	co
Northeast	6.94	45.59	275.06	56.28	14.52	28,513	6.37	46.75	252.28	48.26	16.90	26,00
VACAPES	128.06	1,128.22	3,961.83	1,075.04	209.23	612,995	124.05	1,124.25	4,232.97	1,161.70	353.96	642,51
Cherry Pt	40.13	343.83	891.52	169.00	41.72	86,806	29.41	180.79	793.93	190.95	38.81	98,198
AX	48.76	490.23	1,109.36	313.03	75.06	181,340	60.49	607.27	2,033.74	546.75	92.58	299,970
Cey West	2.78	13.32	77.58	12.99	4.92	6,872	0.92	15.32	30.75	10.59	3.18	6,547
SOMEX	9.67	127.25	463.74	116.05	25.83	63,235	3.04	32.06	106.10	27.02	14.44	18,485
Outside RCs	53.64	332.74	1,683.07	383.46	55.59	220,027	162.29	569.59	4,160.17	656.71	90.15	337,15
	290	2,481	8,462	2,126	427	1,088,429	387	2,576	11,610	2,642	610	1,296,256

Area	VOCs	co	NO _x	SO,	PM	co
Northeast	10.29	139.13	116.51	27.02	5.39	17,55
VACAPES	112.24	1,120.07	792.79	289.36	55.75	426,00
Cherry Pt	88.12	986.89	778.53	285.77	69.33	345,6
JAX	100.39	1,041.06	829.90	250.44	76.92	350,1
Key West	1.80	20.66	18.19	2.94	3.82	283,6
GOMEX	14.38	164.65	149.11	41.98	11.53	68,9
Outside RCs	4.12	39.57	30.69	10.79	1.33	8,1

Table 10. Emissions Summar	y for the Ba	seline - Stat	e Waters			
Area	VOCs	co	NO _x	SO ₂	PM	CO ₂
Northeast	3.12	64.51	60.84	5.55	2.02	6.19
VACAPES	5.35	29.12	60.54	5.51	8.97	118.45
Cherry Pt	4.02	22.62	42.40	36.05	4.98	115.05
JAX	4.98	51.70	31.26	10.50	3.11	44.16
Key West	0.01	0.06	0.41	0.05	0.00	0.54
GOMEX	2.98	48.64	56.95	4.62	4.24	31.99
Outside RCs	0.13	0.17	0.17	0.04	0.01	0.53

11. Net Change for Sta	te Water En	nissions									
	Annua	al Totals in 1	ons per Yea	r for Altern	ative 1	Annual Totals in Tons per Year for Alternative 2					
Area	VOCs	co	NO _x	SO ₂	PM	VOCs	co	NO,	SO,	PN	
Northeast	2.00	-33.74	170.18	37.29	3.37	1.97	-33.82	169.53	37.12	3.3	
VACAPES	60.14	591.53	2675.13	611.80	65.72	60.36	593.93	2,679.15	612.21	65.9	
Cherry Pt	-3.56	-20.20	17.58	-26.48	-3.97	6.93	171.12	61.00	5.01	72.1	
JAX	-3.13	-43.36	31.76	0.89	-1.20	-2.94	-40.41	37.79	2.09	-0.9	
Key West	0.05	0.10	1.11	0.28	0.05	0.04	0.06	0.87	0.15	0.0	
GOMEX	-0.65	-34.44	3.62	6.77	2.67	-0.55	-33.30	4.09	7.11	3.6	
Outside RCs	-0.04	0.25	2.21	0.45	0.06	2.47	28.19	65.88	11.58	2.6	

	Annual Totals in Tons per Year for Alternative 1					1	Annual Totals in Tons per Year for Alternative 2					
Area	VOCs	co	NO _x	SO _E	PM	CO ₂	VOCs	co	NO _x	SO _x	PM	CO ₂
Northeast	-3.35	-93.54	158.55	29.26	9.13	10,954	-3.92	-92.38	135.78	21.23	11.51	8,444
VACAPES	15.82	8.15	3,169.04	785.68	153.48	186,933	11.81	4.18	3,440.18	872.35	298.21	216,455
Cherry Pt	-47.99	-643.06	113.00	-116.77	-27.61	-258,837	-58.70	-806.10	15.40	-94.82	-30.52	-247,445
JAX	-51.63	-550.83	279.45	62.59	-1.85	-168,778	-39.89	-433.79	1,203.84	296.31	15.67	-50,147
Key West	0.98	-7.34	59.38	10.06	1.10	-276,733	-0.87	-5.34	12.56	7.66	-0.65	-277,058
GOMEX	-4.71	-37.40	314.62	74.07	14.29	-5,683	-11.34	-132.59	-43.02	-14.96	2.91	-50,433
Outside RCs	49.51	293.17	1,652.39	372.66	54.26	211,914	158.17	530.02	4,129.49	645.92	88.82	329,042

TAB D: SHIP EMISSIONS																								
Vessel Steaming Hours by State vs International N Alternativ			ative 2			Alten	native 1		ı	i		Alterna	ative 1			Alte	rnative 2		I			Alternativ	e 2	
Steaming Hrs ¹ Ste	eaming Hrs ¹	Steaming Hrs ¹	Steaming Hrs ¹			Annual Emi	ssions in Ton					aters Only A	Annual Emission			Annual En	nissions in Tons					ers Only Ann	ual Emissions in	
Open Water State CVN Northeast 0	ate Waters	Open Water 0	State Waters	CO 0.00	NOx 0.00	HC 0.00	SOx 0.00	PM10 0.00	CO2	0.00	0.00	HC 0.00	90x 0.00	PM10 CO2 0.00	0 0.0	NOx HC 00 0.00 0.00	5Ox 0.00	PM10 0.00	CO2 0	0.00	0.00	HC 0.00	0.00	VI10 CO2 0.00 0
VACAPES 2,761 Cherry Pt 46		1728 0	35 0	1.70 0.03	23.14 0.39	0.43 0.01	1.92 0.03	0.17 0.00	946 16	0.00	0.05	0.00	0.00 0.00	0.00	2 1.0 0 0.0		1.20 0.00	0.10 0.00	592 0	0.00	0.03 0.00	0.00	0.00 0.00	0.00 1 0.00 0
JAX 1,207	13	1032	10	0.74	10.11	0.19	0.84	0.07	413	0.00	0.01	0.00	0.00	0.00	0.0	64 8.64 0.16	0.72	0.06	353	0.00	0.01	0.00	0.00	0.00 0
Key West 86 GOMEX 0	1	96 0	0	0.05 0.00	0.72 0.00	0.01 0.00	0.06 0.00	0.01 0.00	29	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0 0.0		0.07 0.00	0.01 0.00	33	0.00	0.00	0.00	0.00	0.00 0 0.00 0
Outside RCs 551	1	792	1	0.34 2.81	4.61	0.09	0.38	0.03	188	0.00	0.00	0.00	0.00	0.00	0 0.4		0.55	0.05	271	0.00	0.00	0.00	0.00	0.00 0
CG Northeast 91 VACAPES 5,699	137	4032	81	207.93	3.76 286.11	0.20 14.64	2.53 190.08	0.11 8.22	1,136 85,811	0.01 1.90	0.14 19.56	0.00 0.17	0.05 7.53	0.69 4,78	5 0.0 4 125.:		0.00 114.33	0.00 4.94	51,597	0.00 1.12	0.00 11.56	0.00 0.10	0.00 4.45	0.00 0 0.41 2,828
Cherry Pt	28	552 33 8 4	1 34	34.53 85.15	44.93 113.66	2.43 5.99	30.68 76.64	1.27 3.24	13,641 34,313	0.03	0.29 4.00	0.00	0.11 1.54	0.01 7 0.14 97	0 16.9 8 104.		15.10 94.08	0.63 3.98	6,712 42,118	0.01	0.14 4.85	0.00	0.05 1.87	0.01 35 0.17 1,187
Key West 47	1	120	0.1	1.46	2.01	0.10	1.34	0.06	603	0.01	0.14	0.00	0.05	0.01	5 3.0	69 4.79 0.26	3.28	0.14	1,455	0.00	0.01	0.00	0.01	0.00 3
GOMEX 0 Outside RCs 551	1	0 1704		0.00 16.96	0.00 22.07	0.00 1.19	0.00 15.07	0.00 0.62	6,699	0.00 0.01	0.00 0.14	0.00 0.00	0.00 0.05	0.00	0 0.0		0.00 46.54	0.00 1.93	20,680	0.00 0.03	0.00 0.29	0.00	0.00 0.11	0.00 0 0.01 70
DDG -1000 Northeast 110 VACAPES 15,326	1	0 16272	0 325	1.86 263.47		0.11 15.01	3.30 462.62	0.32 44.70	2,051 287,865	0.02 7.14	0.03 10.14	0.00 0.45	0.01 4.68	0.00 1 0.63 3,76	.2 0.0 64 279.		0.00 491.07	0.00 47.44	0 305,545	0.00 7.42	0.00 10.53	0.00	0.00 4.86	0.00 0 0.66 3,908
Cherry Pt 47	1	1368	323	0.81	3.76	0.05	1.42	0.14	883	0.02	0.03	0.00	0.01	0.00 1	.2 22.9	90 108.56 1.30	40.89	3.94	25,371	0.02	0.03	0.00	0.01	0.00 12
JAX 4,875 Key West 86	50 1	5400 96	54 0.1	82.68 1.46	388.38 6.86	4.70 0.08	146.41 2.58	14.12 0.25	90,970 1,606	1.14 0.02	1.62 0.03	0.07	0.75 0.01	0.10 60 0.00 1	91.		162.16 2.87	15.63 0.28	100,750 1,781	1.23 0.00	0.00	0.08	0.81 0.00	0.11 649 0.00 1
GOMEX 148 Outside RCs 7,466	1	408 2976	0.4 264	2.50	11.77	0.14	4.44	0.43	2,756	0.02	0.03	0.00	0.01	0.00 1	2 6.1 6 55.1	83 32.38 0.39	12.20	1.17	7,568	0.01 6.03	0.01 8.55	0.00	0.01	0.00 5 0.53 3.175
Outside RCs 7,466 LCS Northeast 0	0	2976	264	125.05 0.00	592.57 0.00	7.10 0.00	223.20 0.00	21.48 0.00	138,495	0.18 0	0.26 0	0.01	0.12 0	0.02	0 0.0		92.87 0.00	9.09 0.00	58,341 0.0	0.00	0.00	0.38 0.00	3.95 0.00	0.53 3,175 0.00 0
VACAPES 0 Cherry Pt 0	0	32 4 0 696	65 1	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0 77. 0 16.		81.16 17.28	11.05 2.32	41,691 8,884	2.57 0.04	4.96 0.08	0.20	0.76 0.01	0.24 361 0.00 6
JAX 756	14	9000	90	17.99	71.67	1.25	18.92	2.57	9,723	0.55	1.06	0.04	0.16	0.05	7 211.:	19 847.33 14.63	224.38	30.35	115,306	3.56	6.87	0.28	1.05	0.33 500
Key West 25 GOMEX 3,858	0 7	120 120	0	0.58 89.28	2.33 360.81	0.04 6.17	0.62 95.82	0.08 12.89	319 49,253	0.00 0.28	0.00 0.53	0.00 0.02	0.00	0.00	0 2.		2.98 2.98	0.40 0.40	1,531 1,531	0.00	0.00	0.00	0.00	0.00 0 0.00 0
Outside RCs 314	1	8592	536	7.28	29.41	0.50	7.81	1.05	4,014	0.02	0.04	0.00	0.01	0.00	3 219.	42 843.26 15.34	219.45	30.64	112,580	21.20	40.90	1.64	6.24	1.98 2,979
LSD Northeast 57 VACAPES 2,756	1 57	2 4 00	48	0.63 30.42		0.32 15.52	0.72 35.19	0.06 3.05	474 23,014	0.02 1.14	0.30 17.22	0.01 0.58	0.02 1.29	0.06 60	.1 0.0	46 415.91 13.50	0.00 30.61	0.00 2.66	20,024	0.00 0.96	0.00 14.50	0.00 0.49	0.00 1.09	0.00 0 0.05 507
Cherry Pt	2	84 0	1	11.65 0.17	183.41 2.64	5.94 0.09	13.49 0.19	1.19 0.02	8,909 124	0.04 0.02	0.60	0.02 0.01	0.05 0.02	0.00 2 0.00 1	1 8.9		10.35 0.00	0.91 0.00	6,841	0.02	0.30 0.00	0.01	0.02 0.00	0.00 11 0.00 0
Key West 0	Ö	Ŏ	o	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.0	00.0 00.00	0.00	0.00	Ŏ	0.00	0.00	0.00	0.00	0.00
GOMEX 19 Outside RCs 1,088	1	0 1128	0 50	0.22 11.60	3.48 182.58	0.11 5.92	0.26 13.43	0.02 1.18	165 8,869	0.02 0.04	0.30	0.01 0.02	0.02 0.05	0.00 1	.1 0.0 !1 12.9		0.00 15.01	0.00 1.28	9,701	0.00 1.00	0.00 15.11	0.00 0.51	0.00 1.13	0.00 0 0.05 528
LHA Northeast 0 VACAPES 0	0	0	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0 0.0	00 0.00 0.00 07 2.22 0.12	0.00 0.53	0.00 0.07	0 287	0.00	0.00	0.00	0.00	0.00 0 0.00 0
Cherry Pt 0	0	0	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0 0.0	0.00 0.00	0.00	0.00	207 0	0.00	0.00	0.00	0.00	0.00
JAX 0 Key West 0	0	0	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0	0.00	0.00	0.00	0.00	0.00 0
GOMEX 0	Ö	2	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0 0.0	0.28 0.01	0.00 0.07	0.01	36 401	0.00	0.00	0.00	0.00	0.00
Outside RCs 62 LHD Northeast 57	1	0	0	0.26 0.23	8.75 1.38	0.46 0.17	2.11 2.77	0.26 0.83	1,132 1,381	0.00	0.14 0.02	0.01 0.00	0.03	0.00 1	.8 0.0 !4 0.0		0.75 0.00	0.09 0.00	401 0	0.00	0.00	0.00	0.00	0.00 0
VACAPES 1,957 Cherry Pt 1,155	40	2328 1056	47	8.06 4.67	47.60 27.66	5.75 3.34	95.49 55.05	28.44 16.52		0.15 0.01	0.80 0.04	0.10 0.01	2.41 0.12	0.48 95 0.02 4	50 9. 17 4.		113.56 50.28	33.82 15.10	56,560 25,174	0.18 0.00	0.94 0.02	0.12 0.00	2.84 0.06	0.57 1,116 0.01 24
JAX 28	1		0	0.12	0.69	0.08	1.39	0.41	691	0.00	0.02	0.00	0.06	0.01 2	4 0.0	00.0 00.00 00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00
Key West 47 GOMEX 14	1		0	0.19 0.06	1.14 0.35	0.14 0.04	2.30 0.73	0.68 0.21	1,143 357	0.00	0.02	0.00	0.06	0.01 2 0.01 2	.4 0.1 4 0.1		0.00	0.00	0	0.00	0.00	0.00	0.00 0.00	0.00 0
Outside RCs 892	1	960	1	3.61	21.35	2.58	42.48	12.75	21,268	0.00	0.02	0.00	0.06	0.01 2	4 3.1		45.72	13.73	22,887	0.00	0.02	0.00	0.06	0.01 24
LPD Northeast 67 VACAPES 1,839	38	3216	64	1.07 29.60	9.25 255.37	15.79	35.14	0.11 3.08	15,703	0.53	0.13 5.01	0.01 0.28	0.02 0.63	0.05 28	8 0.0 5 51.		0.00 61.42	0.00 5.38	27,442	0.90	0.00 8.44	0.00 0.48	1.06	0.00 0 0.09 481
Cherry Pt	1	888	1	11.99 2.51	103.33 21.64	6.40 1.34	14.24 2.98	1.25 0.26	6,362 1,331	0.01 0.03	0.13	0.01 0.01	0.02 0.03	0.00	8 14.0 .5 0.		16.68 0.91	1.46 0.08	7,452 406	0.01	0.13	0.01	0.02	0.00 8 0.00 4
Key West 0	Ö	0	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.0	00.0 00.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00
GOMEX 86 Outside RCs 1,160	1	168 1800	0.2	1.37 18.36	11.84 158.19	0.73 9.79	1.63 21.81	0.14 1.91	729 9,740	0.01 0.03	0.13 0.26	0.01 0.01	0.02 0.03	0.00 0.00 1	8 2.6 .5 28.4		3.16 33.84	0.28 2.97	1,410 15,113	0.00	0.03 0.40	0.00 0.02	0.00 0.05	0.00 2 0.00 23
PC Northeast 0 VACAPES 122	0	0.0	0	0.00 20.64	0.00 4.64	0.00	0.00	0.00 0.14	0 480	0.00	0.00	0.00 0.01	0.00	0.00 0.00 1	0 0.0 .2 1.		0.00	0.00 0.01	0	0.00	0.00	0.00 0.01	0.00	0.00 0
Cherry Pt 1,088	2	5	0	183.57	40.43	3.28	8.96	1.22	4,184	0.04	0.08	0.01	0.03	0.00	8 0.		0.04	0.01	18	0.00	0.00	0.00	0.02	0.00
JAX 622 Key West 0	7	44 0	5	105.07 0.00	23.34 0.00	1.90 0.00	5.17	0.70	2,416	0.15 0.00	0.27	0.03	0.06 0.00	0.01 2	0 0.0	60 1.84 0.15 00 0.00 0.00	0.41	0.06	190	0.11	0.19	0.02	0.04	0.01 20 0.00 0
GOMEX 33	1	2	0	5.59 52 .4 8	1.26	0.10 0.94	0.28	0.04	131	0.02	0.04	0.00	0.01 0.01	0.00	4 0.	39 0.09 0.01	0.00 0.02 0.18	0.00	9	0.00	0.00	0.00	0.00	0.00 0
Outside RCs 311 JHSV Northeast 0	0	11	0	0.00	11.57 0.00	0.94	2.56 0.00	0.00	1,198 0	0.02 0.00	0.04	0.00	0.00	0.00	0 2.:			0.02	299	0.00	0.00	0.00	0.00	0.00 0
VACAPES 621 Cherry Pt 9	13	23 1	6 ∩	119.97 1.78	232.82 3.46	5.35 0.08	35.45 0.53	11.31 0.17	16,951 252	0.66	1.30 0.10	0.03 0.00	0.20 0.02	0.06	7 0.		0.62 1.38 0.06	0.44 0.02	658 27	0.29	0.57	0.01	0.09	0.03 41 0.00 0
JAX 123	2	8	1	23.73	46.06	1.06	7.01	2.24		0.05 0.10	0.20	0.00	0.03	0.01 1	.5 1.0	67 3.25 0.07	0.49	0.16	236	0.05	0.09	0.00	0.01	0.00 7
Key West 0 GOMEX 43	0 1	 9	0	0.00 8.31	0.00 16.13	0.00 0.37	0.00 2.46	0.00 0. 7 8	0	0.00 0.05	0.00	0.00	0.00 0.02	0.00	0 0.0 7 1.	73 3.36 0.08	0.00 0.51	0.00 0.16	244	0.00	0.00	0.00	0.00	0.00 0 0.00 0
Outside RCs 311	1	45	0	59.80	116.05	2.67	17.67	5.64	8,449	0.05	0.10	0.00	0.02	0.00	7 8.	64 16.76 0.39	0.51 2.55	0.16	1,221	0.00	0.00	0.00	0.00	0.00
MV Northeast 0 VACAPES 231	5	0	0	0.00 0.80		0.00 0.44	0.00 1.43	0.00 0.26	631	0.00 0.01	0.00	0.00 0.01	0.00 0.09	0.00 0.03 4	0 0.1 6 0.1	00.00 0.00	0.00 0.00	0.00	0	0.00	0.00	0.00	0.00	0.00 0
Cherry Pt 0 JAX 0	Ö	0	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00 0.00	0.00	0 0.0	00.00 0.00	0.00	0.00	0	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0 0.00 0
Key West 1,026	2	22.56	2	3.50	68.70	1.92	5.99	1.06	2,621	0.00	0.09	0.00	0.04	0.01 1	.8 7.	70 150.95 4.21	13.12	2.31	5,740	0.00	0.09	0.00	0.04	0.01 18
GOMEX 0 Outside RCs 451	0	0 312	0.3	0.00 1.54	0.00 30.20	0.00 0.84	0.00 2.63	0.00 0.47	0 1,153	0.00	0.00	0.00	0.00 0.02	0.00	0 0.0		0.00 1.82	0.00 0.32	0 794	0.00	0.00	0.00	0.00 0.01	0.00 0 0.00 3

SSGN Northeast 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0.00
VACAPES 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00	0 0.00 0.00 0.00 0.00
Cherry Pt 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00
AX 204 3 1920 19 0.01 0.41 0.01 0.02 0.00 14 0.00 0.00 0.00 0.00 0.00 0.01 3.89 0.07 0.22 0.02 0.07 0.00 0.0	
COMEX 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0
Outside RCs 148 1 240 0.2 0.01 0.30 0.01 0.02 0.00 10 0.00 0.00 0.00 0.00	16 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0.00
VACAPES 3,871 80 6888 138 0.23 1.76 0.10 0.33 0.06 158 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
	281 0.00 0.01 0.00 0.00 0.00 1 0 0.00 0.00
JAX 1,397 15 1920 19 0.08 0.64 0.03 0.12 0.02 57 0.00 0.00 0.00 0.00 0.00 0 0.12 0.87 0.05 0.16 0.03 (key West 129 1 0 0 0.01 0.06 0.00 0.01 0.06 0.00 5 0.00 0.00 0.00 0.00 0.00 0.	78 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0.00
GOMEX 23 1 0 0 0.00 0.01 0.00 0.00 1 0.00 0.00	0 0,00 0,00 0,00 0,00 0
Outside RCs 11,458 12 20424 7340 0.69 5.21 0.29 0.97 0.17 467 0.00 0.00 0.00 0.00 0.00 0 1.26 9.62 0.51 1.81 0.31 T-AH Northeast 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	861 0.04 0.33 0.00 0.07 0.00 29
VACAPES 38 1 72 1 0.27 2.02 0.13 1.41 0.40 598 0.01 0.05 0.00 0.04 0.01 18 0.50 3.79 0.25 2.64 0.74	0 0.00 0.00 0.00 0.00 0.00 0 1,306 0.01 0.05 0.00 0.04 0.01 18
Cherry Pt 0 0 0 0,00 0.00	0 0.00 0.00 0.00 0.00 0.00
DAX	0 0,00 0,00 0,00 0,00 0,00 0,00 0 0 0,00 0,00 0,00 0,00 0,00 0
GOMEX 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 0.00 0.00 0.00 0.00 0.00
T-AKE Northeast 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0.00 0 5,203 0.03 0.52 0.07 0.07 0.01 32
Cherry Pt 331 1 144 0.1 1.70 50.08 4.93 6.09 0.77 2,855 0.00 0.04 0.01 0.01 0.00 3 0.74 21.77 2.14 2.65 0.34	1,241 0.00 0.00 0.00 0.00 0.00 0
JAX 395 4 192 2 2.04 59.88 5.90 7.28 0.92 3,415 0.01 0.17 0.02 0.02 0.00 11 0.99 29.11 2.87 3.54 0.45 Key West 19 1 0 0 0.10 2.92 0.29 0.35 0.04 156 0.00 0.04 0.01 0.01 0.00 3 0.00 0.00 0.00 0.00	1,660 0.01 0.09 0.01 0.01 0.00 5 0 0.00 0.00 0.00 0.00 0.00 0
Key West 19 1 0 0 0.10 2.92 0.29 0.35 0.04 166 0.00 0.04 0.01 0.01 0.00 3 0.00	0 0.00 0.00 0.00 0.00
Outside RCs 892 1 3888 4 4.59 134.88 13.27 16.40 2.08 7,690 0.00 0.04 0.01 0.01 0.00 3 19.99 587.88 57.82 71.46 9.08	33,518 0.01 0.17 0.02 0.02 0.00 11
T-AO Northeast 9 1 0 0 0.25 3.48 0.11 0.23 0.02 102 0.02 0.27 0.01 0.02 0.00 8 0.00 0.00 0.00 0.00 0.00 0.	0 0.02 0.27 0.01 0.02 0.00 8 24,669 0.75 11.31 0.38 0.82 0.07 325 6,522 0.04 0.54 0.02 0.04 0.00 15
[Cherry Pt 1,098] 2 624 1 28.31 392.04 12.79 25.95 2.30 11,479 0.04 0.54 0.02 0.04 0.00 15 16.09 222.76 7.27 14.74 1.31	
JAX 955 10 1056 11 24.78 343.20 11.20 22.73 2.01 10,048 0.18 2.69 0.09 0.20 0.02 77 27.39 379.48 12.38 25.13 2.23 Key West 139 1 0 0 3.60 49.83 1.63 3.30 0.29 1,459 0.02 0.02 0.00 8 0.00<	11,110 0.18 2.69 0.09 0.20 0.02 77 0 0.02 0.27 0.01 0.02 0.00 8
GOMEX 28 1 0 0 0.74 10.25 0.33 0.68 0.06 300 0.02 0.27 0.01 0.02 0.00 8 0.00 0.00 0.00 0.00 0.00	0 0.02 0.27 0.01 0.02 0.00 8
T-ACE Northeast 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0.00 0 9,766 0.82 10.46 0.14 3.15 0.29 1,915
Cherry Pt 283 1 624 1 15.55 44.27 1.50 11.99 1.18 995 0.02 0.22 0.00 0.07 0.01 41 34.26 97.35 3.31 26.35 2.60	2.145 0.02 0.22 0.00 0.07 0.01 41
JAX 76 1 264 3 4.19 12.05 0.41 3.27 0.32 297 0.02 0.22 0.00 0.07 0.01 41 14.54 41.76 1.41 11.32 1.12 Key West 0 0 0 0.00	1,013 0.05 0.67 0.01 0.20 0.02 122 0 0.00 0.00 0.00 0.00 0.00 0.00
GOMEX 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00	0 0.00 0.00 0.00 0.00 0.00
	0 0.00 0.00 0.00 0.00 0
TARS Northeast 4 1 0 0 0.01 0.08 0.00 0.02 0.00 9 0.00 0.02 0.00 0.00 2 0.00 0.00	0 0 0 0 0 0 0 1,255 0.02 0.27 0.01 0.06 0.00 28
VACAPES 555 12 720 14 0.91 9.17 0.36 1.93 0.25 970 0.02 0.23 0.00 0.05 0.00 24 1.18 11.86 0.46 2.49 0.33 Oherry Pt 268 1 0 0 0.43 4.34 0.17 0.91 0.02 459 0.00 0.00 0.00 2 0.00	0 0.00 0.00 0.00 0.00 0
JAX 142 2 96 1 0.23 2.33 0.09 0.49 0.06 246 0.00 0.04 0.00 0.01 0.00 4 0.16 1.57 0.06 0.33 0.04 Key West 499 1 0 0 0.80 8.06 0.32 1.69 0.22 853 0.00 0	166 0.00 0.02 0.00 0.00 0.00 2 0 0.00 0.00
GOMEX 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0.0
Outside RCs 758 1 2784 3 1.21 12.23 0.48 2.57 0.34 1,295 0.00 0.02 0.00 0.00 0.00 2 4.46 44.89 1.77 9.44 1.24	4,754 0.01 0.06 0.00 0.01 0.00 6
T-ATF Northeast 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0.00 0 1,505 0.11 1.12 0.02 0.08 0.01 39
Cherry Pt 148 1 24 0 1.37 7.79 0.16 0.58 0.07 268 0.01 0.07 0.00 0.01 0.00 2 0.22 1.25 0.03 0.09 0.01	43 0.00 0.00 0.00 0.00 0.00 0
JAX 204 3 0 0 1.90 10.85 0.22 0.81 0.09 374 0.02 0.21 0.00 0.00 0.00 7 0.00 0.00 0.00 0.00 0	0 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0.0
GOMEX 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00	0 0.00 0.00 0.00 0.00 0.00
Outside RCs 57 1 0 0 0 0.53 3.04 0.06 0.23 0.03 105 0.01 0.07 0.00 0.01 0.00 2 0.00 0.00 0.00 0.00 0.	0 0.00 0.00 0.00 0.00 0

1 Steaming hours provided by the US Navy, AFTT Gray Ship Steaming Hours for Air Analysis.docx, 12 September, 2016.

TAB E: Training in State Waters

State Waters Activities¹

State Waters Activities									
				Т	otal Annual Ho	urs			
						Cape			GOMEX/
	NE -		Ches Bay+		JAX /St Johns/	Canaveral/			Corpus
Vessel Type	Naragansett	VACAPES	Trib	Charleston	Mayport	SE FL	Panama City	Key West	Christie
RCB	5,458	124	35,051	0	2,226	4,952	20	66	2,226
LCAC	0	3,198	5,979	0	0	0	0	0	0
DDG	0	780	0	0	0	0	0	0	0
LCU/LCM	0	1,160	1,426	0	0	0	0	0	0
RIB (Zodiac)	8,472	3,202	20,074	12,651	2,734	600	75	0	2,202
Mark V	3,232	390	36,770	0	200	4,352	75	0	152
CRRC	2,202	228	3,072	0	2,402	600	75	0	2,202
PC	0	780	50	0	0	0	0	0	0
TATE	0	170	795	0	0	0	0	0	0
TARS	0	218	795	0	0	0	0	0	0
HSMST	0		36	0	0	0	0	0	0

EMISSIONS BY AREA

Vessel Type NE - Naragansett Bay, RI	Voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
Riverine Command - RC MPDE	3.07	7.67	74.78	11.13	1.80	4342
LCAC (SSGTG/MPGT)(80/3955)	0	0	0	0	0	0
DDG (SSGTG/MPGT)	0	0	0	0	0	0
LCU/LCM	0	0	0	0	0	0
RIB (Zodiac)	0.25	1.44	38.72	6.10	0.64	4,930
Mark V	1.70	21.36	115.51	25.29	1.86	9,144
CRRC	0.03	0.20	1.09	0.13	0.09	96
PC	0	0	0	0	0	0
TATF	0	0	0	0	0	0
TARS	0	0	0	0	0	0
HSMST	0	0	0	0	0	0
Total Emissions in Tons	5.0	30.7	230.1	42.6	4.4	18,513

Vessel Type VA Capes	voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	0.07	0.17	1.70	0.25	0.04	98.65
LCAC	5.58	29.30	183.17	61.31	6.87	33,094
DDG	1.56	23.29	44.66	24.24	1.15	10,750
LCU/LCM	0.30	21.00	26.07	1.80	0.91	977
RIB (Zodiac)	0.10	0.54	14.63	2.31	0.24	1,863
Mark V	0.20	2.58	13.94	3.05	0.22	1,103
CRRC	0.00	0.02	0.11	0.01	0.01	10
PC	2.35	131.57	28.93	6.41	0.87	2,994
TATE	0.18	1.56	8.87	0.66	0.08	306
TARS	0.14	0.35	3.51	0.74	0.10	372
HSMST	0	0	0	0	0	0
Total Emissions in Tons	10.5	210.4	325.6	100.8	10.5	51,568

Chesapeake Bay & Tributaries	voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	19.71	49.27	480.23	71.48	11.57	27,886
LCAC	10.43	54.78	342.46	114.62	12.85	61,873
DDG	0	0	0	0	0	0
LCU/LCM	0.37	25.82	32.05	2.22	1.12	1,201
RIB (Zodiac)	0.60	3.41	91.74	14.45	1.51	11,682
Mark V	19.30	243.05	1,314.16	287.73	21.14	104,030
CRRC	0.04	0.28	1.53	0.18	0.12	134
PC	0.15	8.43	1.85	0.41	0.06	192
TATE	0.84	7.32	41.47	3.11	0.36	1,429

TARS	0.50	1.27	12.80	2.69	0.35	1,356
HSMST	0.00	0.03	0.12	0.00	0.00	4
Total Emissions in Tons	51.9	393.7	2,318.4	496.9	49.1	209,787

Vessel Type Charleston	voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	0	0	0	0	0	0
LCAC	0	0	0	0	0	0
DDG	0	0	0	0	0	0
LCU/LCM	0	0	0	0	0	0
RIB (Zodiac)	0.38	2.15	57.82	9.11	0.95	7,362
Mark V	0	0	0	0	0	0
CRRC	0	0	0	0	0	0
PC	0	0	0	0	0	0
TATF	0	0	0	0	0	0
TARS	0	0	0	0	0	0
HSMST	0	0	0	0	0	0
Total Emissions in Tons	0.4	2.2	57.8	9.1	0.9	7,362

Vessel Type JAX/ St John/ Mayport	voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	1.25	3.13	30.50	4.54	0.74	1,771
LCAC	0	0	0	0	0	(
DDG	0	0	0	0	0	(
LCU/LCM	0	0	0	0	0	(
RIB (Zodiac)	0.08	0.46	12.49	1.97	0.21	1,591
Mark V	0.11	1.32	7.15	1.57	0.12	566
CRRC	0.03	0.22	1.19	0.14	0.10	105
PC	0	0	0	0	0	(
TATF	0	0	0	0	0	(
TARS	0	0	0	0	0	(
HSMST	0	0	0	0	0	(
Total Emissions in Tons	1.5	5.1	51.3	8.2	1.2	4,033

Vessel Type Cape Canaveral / SE FL	VOC	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	2.78	6.96	67.85	10.10	1.64	3,940
LCAC	0	0	0	0	0	0
DDG	0	0	0	0	0	0
LCU/LCM	0	0	0	0	0	0
RIB (Zodiac)	0.02	0.10	2.74	0.43	0.05	349
Mark V	2.28	28.77	155.54	34.05	2.50	12,313
CRRC	0.01	0.05	0.30	0.03	0.02	26
PC	0	0	0	0	0	0
TATF	0	0	0	0	0	0
TARS	0	0	0	0	0	0
HSMST	0	0	0	0	0	0
Total Emissions in Tons	5.09	35.88	226.43	44.62	4.21	16,628

Vessel Type Panama City	voc	co	NO _x	so _x	PM10/PM2.5	CO ₂
RCB	0.01	0.03	0.27	0.04	0.01	16
LCAC	0	0	0	0	0	0
DDG	0	0	0	0	0	0
LCU/LCM	0	0	0	0	0	0
RIB (Zodiac)	0.00	0.01	0.34	0.05	0.01	44
Mark V	0.04	0.50	2.68	0.59	0.04	212
CRRC	0.00	0.01	0.04	0.00	0.00	3
PC	0	0	0	0	0	0
TATE	0	0	0	0	0	0

TARS	0	0	0	0	0	0
HSMST	0	0	0	0	0	0
Total Emissions in Tons	0.1	0.5	3.3	0.7	0.1	275

Vessel Type Key West	voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	0.04	0.09	0.90	0.13	0.02	53
LCAC	0	0	0	0	0	0
DDG	0	0	0	0	0	0
LCU/LCM	0	0	0	0	0	0
RIB (Zodiac)	0	0	0	0	0	0
Mark V	0	0	0	0	0	0
CRRC	0	0	0	0	0	0
PC	0	0	0	0	0	0
TATE	0	0	0	0	0	0
TARS	0	0	0	0	0	0
HSMST	0	0	0	0	0	0
Total Emissions in Tons	0.0	0.1	0.9	0.1	0.0	53

Vessel Type GOMEX/ Corpus Christie	voc	co	NO _x	SO _x	PM10/PM2.5	CO ₂
RCB	1.25	3.13	30.50	4.54	0.74	1,771
LCAC	0	0	0	0	0	0
DDG	0	0	0	0	0	0
LCU/LCM	0	0	0	0	0	0
RIB (Zodiac)	0.07	0.37	10.06	1.59	0.17	1,281
Mark V	0.08	1.00	5.43	1.19	0.09	430
CRRC	0.03	0.20	1.09	0.13	0.09	96
PC	0	0	0	0	0	0
TATF	0	0	0	0	0	0
TARS	0	0	0	0	0	0
HSMST	0	0	0	0	0	0
Total Emissions in Tons	1.4	4.7	47.1	7.4	1.1	3,579

¹ State water activities provided by US Navy, AFTT Inshore Events_08Feb2017_NAEMO WEB.xlsx

TAB F: AIRCRAFT EMISSIONS

		Altern		Aiteri	native 2			Alterna	invei					Aitem	ative 2		
			Cruise ¹		Cruise ¹			Annual Emis	ions in Tons	3				Annual Emiss	ions in Tons		
		LTOs (#) ¹	(Hrs)	LTOs (#)	(Hrs)	voc	со	NOx	SO2	PM _{10/2.5}	CO2e	voc	со	NOx	SO2	PM _{10/2.5}	CO2
8/EA-18G	VACAPES	58	37	58	37	1.45	6.76	2.67	0.42	1.20	587	1.45	6.76	2.67	0.42	1.20	_
	GOMEX				5	0.00	0.01	0.24	0.04	0.11	52	0.00	0.01	0.24	0.04	0.11	
	JAX	491	41	491	41	12.24	56.84	9.34	1.53	4.28	2097	12.24	56.84	9.34	1.53	4.28	- 7
	Key West	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Northeast	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Cherry Pt	157	24	157	24	3.92	18.20	3.54	0.57	1.61	790	3.92	18.20	3.54	0.57	1.61	
	Panama City	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
	VACAPES	58	37	58	37	0.22	18.61	9.22	2.36	1.30	3713	0.22	18.61	9.22	2.36	1.30	
5	GOMEX				5	0.03	2.43	1.11	0.31	0.17	467	0.03	2.43	1.11	0.31	0.17	
	JAX	491	41	491	41	0.33	24.13	17.01	3.10	1.47	5759	0.33	24.13	17.01	3.10	1.47	
	Key West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Northeast	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Cherry Pt	157	24	157	24	0.17	13.24	7.97	1.69	0.87	2905	0.17	13.24	7.97	1.69	0.87	
	Panama City	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	VACAPES	0		0	0	0	0	0	0	0	0	0	0	0	0		
!2	GOMEX	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	JAX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Key West	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Northeast	0	C		0	0	0	0	0	0	0	0	0	0	0	0	
	Cherry Pt	110		110		0.00	0.17	0.39	0.11	0.07	163.4	0.00	0.17	0.39	0.11	0.07	1
	Panama City	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	VACAPES		15		15	0.02	0.07	0.31	0.08	0.15	119	0.02	0.07	0.31	0.08	0.15	
	GOMEX		15		15	0.02	0.07	0.31	0.08	0.15	119	0.02	0.07	0.31	0.08	0.15	
	JAX		53		53	0.06	0.23	1.07	0.28	0.51	410	0.06	0.23	1.07	0.28	0.51	
	Key West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Northeast		8		8	0.01	0.03	0.16	0.04	0.08	61	0.01	0.03	0.16	0.04	0.08	
	Cherry Pt		4		4	0.00	0.02	0.08	0.02	0.04	31	0.00	0.02	0.08	0.02	0.04	
	Panama City	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	
	VACAPES		64	4	64	0.07	1.10	7.45	0.77		1088	0.07	1.10	7.45	0.77	0.00	
3	GOMEX	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	JAX		185		185	0.21	3.17	21.40	2.20		3124	0.21	3.17	21.40	2.20	0.00	
	Key West	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Northeast		42		42	0.05	0.73	4.91	0.51		718	0.05	0.73	4.91	0.51	0.00	
	Cherry Pt		16	i	16	0.02	0.28	1.89	0.19		276	0.02	0.28	1.89	0.19	0.00	
	Panama City	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	VACAPES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
'-8B	GOMEX	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	JAX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	Key West	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
	Northeast	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Cherry Pt	107	3	107	3	0.46	2.64	0.49	0.15	0.41	211	0.46	2.64	0.49	0.15	0.41	
	Panama City	0		0		0	0	0	0	0	0	0	0	0	0	0	
	VACAPES	64	14,149	64	19,914	4.99	53.36	54.41	18.88	35.70	27395	7.01	74.97	76.54	26.56	50.23	38
50	GOMEX		2,469		2,517	0.86	9.25	9.48	3.29	6.22	4770	0.88	9.43	9.66	3.35	6.34	-
	JAX	129	2,447	129		0.94	9.80	9.57	3.33	6.28	4836	1.17	12.28	12.10	4.21	7.94	
	Key West	1	243		816	0.08	0.91	0.93	0.32	0.61	470	0.29	3.06	3.13	1.09	2.06	
	Northeast		1,843		3,315	0.64	6.91	7.07	2.45	4.64	3561	1.16	12.43	12.73	4.41	8.35	
	Cherry Pt	234	612	234	612	0.37	3.43	2.67	0.95	1.75	1377	0.37	3.43	2.67	0.95	1.75	
	Panama City		2,252		2,664	0.79	8.44	8.65	3,00	5,67	4352	0.93	9,99	10.23	3,55	6,71	
	VACAPES		1,812		2,004	0.39	8.35	85.02	0.00	0.61	13807	0.39	8.35	85.02	0.00	0.71	1
3	GOMEX	0	1,812			0.39	0.33	65.02	0.00	0.01	13607	0.39	8,35 0	03.02	0.00	0.61	
3	JAX	U	342	· ·	U	0.07	1.58	16.05	0.00	0.12	2607	0.07	1.58	16.05	0.00	0.12	
	Key West	0	342			0.07	1.58	10.05	0.00	0.12	2007	0.07	1.58	10.05	0.00	0.12	
	Northeast	0	1	1 "	0	0	0	0	0	0	0	0	0	0	0		
	Cherry Pt	- ·	250	·	0	0.05	1.15	11.73	0.00	0.08	1905	0.05	1.15	11.73	0.00	0.08	
		 	230		 	0.03	1,13	11./3		0.08	1503	0.03		11./3	0.00	0.08	
	Panama City	0		0	0	0	0	0	0	0	0	0	0	0	0	. 0	
	VACAPES		398			0.02	0.14	0.80	0.31	0.58	442	0.02	0.14	0.80	0.31	0.58	

UH-1	GOMEX	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
	JAX		118			0.01	0.04	0.24	0.09	0.17	131	0.01	0.04	0.24	0.09	0.17	131
	Key West		24			0.00	0.01	0.05	0.02	0.03	27	0.00	0.01	0.05	0.02	0.03	27
	Northeast	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cherry Pt		27			0.00	0.01	0.05	0.02	0.04	30	0.00	0.01	0.05	0.02	0.04	30
	Panama City	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
	VACAPES	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
AH-1	GOMEX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	JAX		2			0.00	0.01	0.00	0.00	0.00	3	0.00	0.01	0.00	0.00	0.00	3
	Key West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Northeast	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
	Cherry Pt		.5			0.00	0.02	0.01	0.00	0.01	7	0.00	0.02	0.01	0.00	0.01	7
	Panama City	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	VACAPES		13			0.00	0.02	0.15	0.02	0.00	31	0.00	0.02	0.15	0.02	0.00	31
Learjet	GOMEX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	JAX	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
	Key West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Northeast	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cherry Pt	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
	Panama City	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0

					rnative 1	·			Ι.			Alternative 2			
		Cruise ¹		Ai	nnual Emissions	in Tons			Cruise			Annual Emiss	sions in Tons		
		(Hrs)	voc	со	NOx	SO2	PM _{10/2.5}	CO2e	(Hrs)	VOC	СО	NOx	SO2	PM _{30/2.5}	CO2e
H-60	Northeast	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	VACAPES	523 0.18 1.96 2.01 0.70 1.32 1011							523	0.18	1.96		0.70	1.32	1,011
	Cherry Pt	2	0.00	0.01	0.01	0.00	0.01	5	2	0.00	0.01	0.01	0.00	0.01	5
	JAX	159	159 0.06 0.60 0.61 0.21 0.40 307					159	0.06	0.60	0.61	0.21	0.40	307	
	Key West	20 004 007 009 009 20							0.00	0.00	0.00	0.00	0.00	0	
	GOMEX	20	0.01	0.07	80.0	0.03	0.05	39	20	0.01	0.07	0.08	0.03	0.05	39
	Panama City	2,252	0.79	8.44	8.65	3.00	5.67	4352	2,664	0.93	9.99	10.23	3.55	6.71	5,148
H-53	Northeast	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	VACAPES	392	80.0	1.81	18.40	0.00	0.13	2988	392	0.08	1.81	18.40	0.00	0.13	2,988
	Cherry Pt	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	JAX	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Key West	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	GOMEX	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Panama City	0	0	0	0	0	0	C	0	0	0	0	0	0	0
UH-1	Northeast	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	VACAPES	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Cherry Pt	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	JAX	0	0	0	0	0	0	C	0	0	0	0	0	0	
	Key West	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	GOMEX	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Panama City	0	0	0	0	0	0	C	0	0	0	0	0	0	0
AH-1	Northeast	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	VACAPES	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Cherry Pt	22	10.90	193.56	101.92	40.77	77.13	59060	22	10.90	193.56	101.92	40.77	77.13	59,060
	JAX	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Key West	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	GOMEX	0	0	0	0	0	0	C	0	0	0	0	0	0	0
	Panama City	0	0	0	0	0	0		0	0	0		0	0	C

¹ Data on LTOs and Cruise time provided by USNavy, NAVAIR Assumptions.docx, Marine Corps Training Cycle.xlsx, C2X sorties hours.xlsx, IKE C2X.xlsx. AFTT Training Air Analysis.xlsx.

Atlantic Fleet			
Training and Testing	Draft	EIS/OEI	S

This page intentionally left blank.

TABG:	MUNITION EM	IISSIONS																																								
MUNITION EMISSIO	NS ESTIMATES -	TESTING AND TRA	Number of																																							
Category	Location – Ran Complex	- resting	I) Items (Annua & for Training & Testing	1) k		Emission fa	actors (lb/ite	em)							ons (lb/year) ernative 1								sions (TPY rnative 1							Emissions Altern	(lb/year) ative 2							Emission Alterna				
	Compiex	Activities Alternative	Activities Atternative 2	co	NO x	УОС	50 x	PM10	PM2.5	5 CO2	Pb	ω	NO x	voc	SOx	PM 10	PM2.5	coa	2 PI	СО	NO:	и мос	so	x PM10	PM2.5	CØ 2	Pb	ω	NOx	лос	50 x	PM 10	PM2.5	C02	Pb	co	NOx	уос	SOx	PM 10	PM2.5	CO2 Pb
Bombs Bombs (High Explosive)	North east / NU Newport	Jwd	Τ.	61,0000	0.0000	0.000	0.0000	0.000	0.00	0.00	0.000	00	0.00	0.00 0.	.00 0.0	0.0	00 0	.00	0.00	0.00	0.0	0.0	0.0	0.0 0	0.0	.0 0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.	00 0)	0.0	0.0	0.0	0.0	0.0	0.0
	Virginia Capes Cherry Pt. Jacksonville	78 0 50	78 0 50	61,0000 61,0000		0.000	0.0000	0.000		0.00		00	0.00	0.00 0. 0.00 0. 0.00 0.	0.0 0.0 0.0 0.0		00 0	.00	0.00	0.00	2.4 0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	4758.00 0.00 3050.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00	0.00 00.0	0.00 00.0		0)	00 2 00 0	4 0.0 0 0.0	0.0 0.0	0.0	0.0	0.0	0.0
	Key West	0	- î	61,0000	0.0000	0.0000	0.0000	0.000	0.00	0.00	0.000	00	0.00	0.00 0.	.00 0.0	0.0	00 0	.00	0.00	0.00	0.0	0.0	0.0	0.0 0	0.000	0.0	0.0	244.00	0.00	0.00	0.00	0.00	0.00	0.00	0)	00 0	0.0	0.0	0.0	0.0	0.0	0.0
	GOMEX / NSW Panarna City Other AFTT	4 12	4 12 144			0.0000								0.00 0.			00 0		0.00	0.00	0.4	0.0 (0.0 0	0.0 0	0 0.0	0.0	732.00	0.00			0.00	0.00		0)	00 0.		0.0				0.0
Projectiles Small Caliber	North east / Nu	JWC	T	0.00	280E-05	5 0.01	0 0.0	0 9.80E-0	05 8.80E	E-05 0	.00 1.206-0	05 7	4.5 2	1.16 0.	.00 0.0	0 4.0	06 3	3.64	86.94	0.50	0.0	0.0	0.0	0.0 0		0.0	0.0	7452	1.16	0.00	0.00	4.06	3.64	86.94	0.5		0.0	0.0	0.0	0.0	0.0	0.0
	Newport Virginia Capes Cherry Pt.	8 38,475	41,400 3,887,550 838,475	0.00	0 280E-05	5 0.01	0.0	0 9.80E-0 0 9.80E-0	05 8.80E	E-05 0	.00 1.20E-0	05 699 05 150	7.59 10 9.26 2	8.85 O. 3.48 O.	0.0 0.0	0 380.9 0 82.3		2.10 81 3.79 17	63.86	46.65 10.06	3.5 0.8	0.1 0	0.0	0.0 0	0.2 0	.2 4.1	0.0	1509.26	108.85 23.48	0.00	0.00	380.98 82.17	342.10 73.79	1760.80	46)	65 3.1 06 0.1	5 0.1 8 0.0	0.0	0.0	0.2	0.2	4.1 0.9
	Jacksonville Key West	1,442,075 4,800	1,442,075 4,800	0.00	280E-05 280E-05	5 0.01	0.01	9.80E-0 9.80E-0	05 8.80E	E-05 0	.00 1.20E-0	05	8.64	0.38 0. 0.13 0.	0.0	0 141.	32 126 47 C	1.42	28.36 10.08	17.30 0.06	0.0	0.0	0.0	0.0 0	0.1 0	.1 1.5	0.0	2595.74 8.64		0.00	0.00	141.32 0.47	126.90 0.42	30 28.36 10.08	17.	30 1. 06 0.	3 0.0	0.0	0.0	0.1	0.1	1.5 0.0
	GOMEX / NSW Panarna City Other AFTT	C 262,300	262,300 0	0.00	280E-05	5 0.01	0.0	0 9.80E-0 0 9.80E-0			.00 1.20 6-0			7.34 0. 0.00 0.	0.0 0.0		71 23		0.00	3.15	0.2	0.0	0.0	0.0 0	0.0	.0 0.0	0.0	472.14	7.34	0.00	0.00	25.71	23.08	550.83	3.	15 O. 00 O.	2 0.0	0.0	0.0	0.0	0.0	0.3
Medium Caliber (High Explosive)	North east / NU	otal 6,476,600	6,476,600	0.085	5 0.0019	0.000	0.000	0 0.003	33 0.00	017 0.0	143 0.00004	49 32	8.10	5.79 0.	.00 0.0	0 12	74 6	.56 1	65.98	0.19	0.2	0.1 (0.0	0.0 0	0.0 0	.0 0.1	0.0	328.10	5.79	0.00	0.00	12.74	6.56	165.98	0.	19 0.	8 0.3 2 0.0	0.0	0.0	0.3	0.3	0.1
(rigin Expressive)	Newport Virginia Capes Cherry Pt.	3,860 82,582 26,560 73,812	3,860 82,582 26,560 73,812	0.085	0.0019	0.0000	0.000.0		33 0.00 33 0.00	0.04	30 0.00004	49 701 49 225 49 627	9.47 12 7.60 3	9.84 0.	0.0 0.0	0 87.6	55 49	.15 11	51.03 42.08	4.05 1.30	3.5 1.1	0.1 0	0.0	0.0 0	0.1 0	.1 18 .0 0.6	0.0	70 19.47 225 7.60	123.87 39.84 110.72	0.00	0.00	272.52 87.65	140.39 45.19 125.48	3551.03 1142.08	4)	05 33 30 1.	5 0.1 1 0.0	0.0	0.0	0.1	0.1 0.0	1.8 0.6
	Jacksonville Key West	73,812 3,360	73,812 3,360	0.0850	0.0015	0.0000	0.0000	0 0.003	33 0.00 33 0.00	0.017 0.0- 0017 0.0-	130 0.00004 130 0.00004	49 28	5.60	0.72 0. 5.04 0.	0.0 00.	0 2435	58 129	.48 31 .71 1	73.92 44.48	3.6.2 0.16	3.1 0.1	0.0 0	0.0	0.0 0	0.0 0	.1 1.6 0 0.1	0.0	285.60	5.04	0.00	0.00	243.58 11.09	5.71	144.48	3) 0.	62 3. 16 0.	1 0.1	0.0	0.0	0.1	0.1	1.6 0.1
	GOMEX / NSW Panarna City Other AFTT	c 9,610 1,350	9,610 1,350	0.0850	0.0019	0.0000	0.000.0		33 0.00				6.85 1 4.75	4.42 0. 2.03 0.	0.0 00.		71 16		13.23	0.47	0.4	0.0	0.0	0.0 0	0 0.0	0 0.2	0.0	816.85	14.42	0.00	0.00	31.71	16.34	413.23 58.05	0.	47 0.	4 0.0	0.0	0.0	0.0	0.0	0.2
Medium Caliber (No Explosive Practice	n Northeast / Nu Newport	otal 201,134 JWC 10.060	201,134	0.0850	0.0015	0.000	0 0.000	0 0.003	33 0.00					5.09 0.	.00 0.0	0 33.	20 17		32.58	0.49	0.4	0.0	0.0	0.0 0	0.0 0	.2 4.3	0.0	855.10		0.00	0.00	33.20	17.10	432.58	0.	49 0.	5 0.2	0.0	0.0	0.3	0.2	4.3 0.2
Munitions)	Virginia Capes Cherry Pt. Jacksonville		1,0 40,429 366,734	0.0850		5 0.000 5 0.000 5 0.000		0.003	33 0.00 33 0.00 33 0.00	0.0	30 0.000	3117	6.47 156 2.39 55 0.49 101		0.0	0 1210.	22 623	3.45 157	38.45 69.56 93.54	50.98 17.97	44.2 15.6	0.8 0 0.3 0	0.0	0.0 1 0.0 0	L.7 0 0.6 0	9 22.4 .3 7.9	0.0	88436.47 31172.39 57510.49	1560.64 550.10 1014.89	0.00	0.00	3433.42 1210.22 2232.76	1768.73 623.45 1150.21	15 769.56	50 : 17 :		2 0.8 5 0.3	0.0	0.0	1.7 0.6	0.9 0.3	22.4 7.9
	Key West	88,660	88,660	0.0850	0.0019	0.0000	0.0000	0 0.003	3 0.00	0.0	0.000	00 753	6.10 13	2.99 0. 9.94 0.	.00 0.0	0 2925	58 150	.72 38	12.38 78.28	4.34	3.8	0.1	0.0	0.0 0	0.1 0	1 19	0.0	75 36.10 5096.60	132.99	0.00	0.00	292.58	150.72	3812.38	4.	34 33	0.1	0.0	0.0	0.1	0.1	19
	Panama City Other AFTT	59,960		0.0850	0.001	0.0000	0.0000	0 0.003	33 0.00	017 0.0	30 0.000				.00 0.0	0 70.:	13 36		13.75	1.04	0.9	0.0	0.0	0.0 0	0.0 0	.0 0.5	0.0	1806.25			0.00	70.13	35.13		1)	04 05	9 0.0	0.0	0.0	0.0	0.0	0.5
Large Caliber (High Explosive)	Northeast / NU Newport		132	0.0970	0.0160	0.000	0.0000	0 0.170	0.09	930 1.4	0.000	07 1	2.80	2.11 0.	.00 0.0	1		2.28 1	8 4.80	0.09	0.0	0.0	0.0	0.0 0	0.0	.0 0.1	0.0	1280	2.11	0.00	0.00	22.44	12.28	184.80	0.	09 0.	0.0	0.0	0.0	0.0	0.0	0.1
	Virginia Capes Cherry Pt. Jacksonville	888 7,436	6,261 888 7,436	0.0970 0.0970 0.0970	0.0160	0.0000	0.0000 0.0000 0.0000	0 0.170 0 0.170	0.09	930 1.40 930 1.40	0.000	D7 8	6.14 1 1.29 11	4.21 0. 8.98 0.			96 82	2.58 12 .55 104	65.40 43.20 10.40	4.32 0.61 5.13	0.3 0.0 0.4	0.1 0 0.0 0 0.1 0	0.0	0.0 0 0.0 0 0.0 0	0.5 0 0.1 0 0.6 0	.3 4.4 .0 0.6 .3 5.2	0.0	607.32 86.14 721.29	14.21		0.00 0.00 0.00	1054.37 150.96 1254.12	582.23 82.58 691.55	1243.20 10410.40	4. 0) 5.	32 0. 61 0. 13 0.	3 0.1 0 0.0 4 0.1	0.0	0.0 0.0 0.0	0.5 0.1 0.6	0.3 0.0 0.3	4.4 0.6 5.2
	Key West	832 C	832	0.0970		0.000				\neg	1			3.31 0. 0.53 0.	-	1	1		64.80 96.20	0.57	0.0	0.0	0.0	0.0 0	0.1 0	.1 0.9	0.0	80.70 124.49	13.31	0.00	0.00	141.44 218.11	77.38 119.32		0:	57 0. 89 0.	1 0.0	0.0	0.0	0.1	0.0	0.6
	Panama City Other AFTT	1,283 296 otal 17,128			0.0160	0.0000	0.0000	0 0.170	0.09	930 1.40	0.000	07 2	8.71	4.74 0.	.00 0.0	0 50.	32 23	.53 4	14.40	0.20				0.0 0	0.0 0 L5 0	.0 0.2	. 0.0	28.71	4.74	0.00	0.00	50.32	27.53	414.40	0.	20 0.				0.0	0.0	0.2 12.0
Large Caliber (Non- Explosive Practice Munition)	Northeast / NU Newport	JW0 1,761	1,761	0.0000	0.0000	0.000	0.0000	0.000	0.00	0.00	0.000	00	0.00	0.00 0.	.00 0.0	0.0	00 0	.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	.0 0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.	00 0.	0.0	0.0	0.0	0.0	0.0	0.0
	Virginia Capes Cherry Pt. Jacksonville	3,534 15,912	3,534 15,912	0.0000		0.0000					0.000	00	0.00	0.00 0.	0.0 00. 0.0 00. 0.0 00.			.00 .00	0.00 0.00 0.00	0.00 0.00 0.00	0.0	0.0 0 0.0 0	0.0 0.0 0.0	0.0 0 0.0 0	0.0	0.0 0.0 0.0 0.0	0.0	0.00 00.0	0.00		0.00 0.00	00.0 00.0 00.0	00.0 00.0 00.0	0.00	0) 0)	00 0.0 00 0.0	0.0	0.0 0.0		0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0
	Key West	3,190 C	3,190	0.0000	0.0000	0.0000		0.000						0.00 0.	.00 0.0		00 0	.00	0.00	0.00	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	00.0		0)	00 0)	0.0	0.0	0.0	0.0	0.0	0.0
	Panama City Other AFTT To	3,69 2 196 otal 40,234	3,692 196 40,234	0.0000	0.0000	0.0000	0.0000	0.000	0.00	0.00	0.000	00	0.00	0.00 0.	.00 0.0	0 0.0	00 0	.00	0.00	0.00	0.0	0.0 0	0.0	0.0 0	0.0 0	0 0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0)	00 0	0.0	0.0		0.0	0.0	0.0
Rockets (High Explosive)	Northeast / NU Newport	0	0	1.5000	0.0260									0.00 0.	1	1	00 0		0.00	0.00	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0)	00 0.	0.0	0.0	0.0	0.0	0.0	0.0
	Virginia Capes Cherry Pt. Jacksonville	1,460 76 1,530	1,460 76 1,530	1.5000	0.0260 0.0260 0.0260	0.0000	0.000.0	0 0.110 0 0.110	0.10	1000 2.40	0.051	10 11	4.00 5.00 3	1.98 0. 9.78 0.	3.0 00. 3.0 00. 3.0 00.	0 83	36 7	7.60 1	04.00 8 2.40 72.00	74.46 3.88 78.03	1.1 0.1 1.1	0.0 0	0.0	0.0 0 0.0 0 0.0 0	0.1 0 0.0 0 0.1 0	.1 1.8 .0 0.1 .1 1.8	0.0	2190.00 114.00 2295.00	1.98 39.78	0.00	0.00	160.60 8.36 168.30	7.60 153.00	182.40	74. 3) 78)	88 0.	1 0.0 1 0.0 1 0.0	0.0 0.0 0.0	0.0	0.1 0.0 0.1	0.1 0.0 0.1	1.8 0.1 1.8
	Key West	c	1 0	1.5000	0.0260					1000 2.40	100 0.051	10 11		0.00 0. 1.98 0.			36 3	7.60 1	82.40	3.88	0.0	0.0	0.0	0.0 0	0.0	.0 0.0	0.0	114.00	1.98	0.00	0.00	8.36	7.60	182.40	3:	88 0.	1 0.0	0.0	0.0	0.0	0.0	0.0
	Panama City Other AFTT To	76 0 otal 3,142	76 0 3,142	1.5000	0.0260	0.000	0.0000	0 0.110	00 0.10	1000 2.40	100 0.051	10	0.00	0.00 0.	0.0 00.	0 0.0	00 0	.00	0.00	0.00		0.0 0			0.0 0	.0 0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0)	00 0.	0.0			0.0		0.0
Rockets (Non- Explosive)	Northeast / NU Newport	JWC 0	0	0.5300	0.0000	0.000	0.0000	0 0.160	0.1	1700 4.80	0.070	00	0.00	0.00 0.	0.0 00.	0.0	00 0	.00	0.00	0.00	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.	00 0.	0.0	0.0	0.0	0.0	0.0	0.0
	Cherry Pt. Jacksonville	3,846 304 3,695	3,8 46 30 4 3,6 95	0.5300 0.5300 0.5300	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0 0.0000 0 0.0000 0 0.0000	0 0.160 0 0.160 0 0.160	00 0.1 00 0.1 00 0.1	1700 4.80 1700 4.80 1700 4.80	100 0.070 100 0.070 100 0.070	00 203 00 16 00 195	8.38 1.12 8.35	0.00 0. 0.00 0. 0.00 0.	0.0 0.0 0.0 0.0	0 615.: 0 48.6 0 591.:	36 653 54 51 20 628			21.28 258.65			0.0	0.0 0 0.0 0		.3 9.2 .0 0.7 .3 8.9	0.1 0.0 0.1		0.00	0.00	0.00	615.36 48.64 591.20	653.82 51.68 628.19	18 460.80 1 459.20 17736.00	269. 21. 258.	22 1.0 28 0. 65 1.0	0.0 1 0.0 0 0.0	0.0 0.0	0.0 0.0 0.0	0.3 0.0 0.3	0.3 0.0 0.3	9.2 0.7 8.9
	Key West	С	0	0.5300										0.00 0.					59.20	21.28		0.0		0.0 0	0 0.0	.0 0.7	0.0	161.12				0.00 48.64			21.		1	0.0	0.0	0.0	0.0	0.0
	Panarna City Other AFTT	304 0 otal 8,149	304 0 8,149	0.5300	0.0000	0.0000	0.0000	0 0.160	0 0.1	1700 4.80	100 0.070	00	0.00	0.00 0.	0.0	0 0.0	00 0	.00	0.00	0.00		0.0 0	0.0	0.0 0	0.0 0	.0 0.0 .7 19.6		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0)	00 0)	0.0	0.0	0.0	0.0	0.0	0.0
Pyrotechnic Buoys (e.g. MK-58 Marine Marker)	recw port	JWC 192		0.0000	0.0028	0.0220	0.003	2 30.000	00 23.00	0000 0.5	100 0.016			0.54 4.					I		0.1		0.0	0.0 2	2.9 2	.2 0.0		170.88				5 760.00				07 0.	1 0.0	0.0	0.0	2.9	2.2	0.0
Ī,	Virginia Capes Cherry Pt. Jacksonville	332 1,263	332 1,263	0.8900 0.8900	0 0.0028 0 0.0028 0 0.0028	0.0220 0.0220 0.0220	0.003 0 0.003 0 0.003	2 30,000 2 30,000 2 30,000	23.00 00 23.00 00 23.00	0.55 0000 0.55 0000 0.55	100 0.016 100 0.016 100 0.016	50 29	4.44 2 5.48 4.07 0.00	8.55 224. 0.93 7. 3.54 27.	30 1.0 30 4.0	3 305880.0 6 9960.0 4 37890.0 0 0.0	234508 00 7636 00 29049	.00 51 .00 1	69.32 44.13	5.31 20.21			0.0	0.0 152 0.0 5 0.0 18 0.0 0	2.9 117 5.0 3 3.9 14	.5 0.3	0.0	90 74.44 295.48 1124.07	28.55 0.93 3.54	7.30 27.79	3263 106 4.04	9960.00 37890.00	234508.00 7636.00 29049.00 0.00	5199.96 169.32 644.13	163. 5. 20.	31 0.	1 0.0 5 0.0	0.0	0.0	15 2.9 5.0 18.9	117.3 3.8 14.5	0.1 0.3
	Key West		 '	0.8900	0.0028	8 0.0220	0.003.	2 30.000	10 23.00	000 0.5.	0.016		- 1	0.00 0.	1	1			5 4.53	4.85	0.0	0.0 (1.5 3		0.0	269.67			0.00	0.00		ı		85 O.				4.5	3.5	0.1
	Panama City Other AFTT To	303 24 otal 12,310	303 24 12,310	0.8900	0.0028	0.0220	0.003	2 30.000	00 23.00	0000 0.5	100 0.016	50 2	1.36	0.07 0.	53 0.0	8 720.0	00 552	2.00	12.24					0.0 0 0.0 184					0.07	0.53	0.08	720.00	552.00	12.24	0.	38 0.				0.4 184.7		0.0 3.1
Gren ades	Northeast / NU Newport Virginia Capes	56	56 70	0.0008	B 0.0007	7 0.0000	0.0260	0 0.070	0.0	1490 0.0	10 0 000	00	0.24	0.20 0. 0.20 0.	00 7.8	8 21.3 8 21	21 1 ⁴ 21 1 ⁴	1.85	3.33	0.00	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.00	0.00	0.00	0.03	0.07 0.07	0.05	0.01	0)	00	1		0.0	0.0	0.0	0.0
	Virginia Capes Cherry Pt. Jacksonville Key West	28 28 0	28 28 0	8000.0 8000.0	8 0.0007 8 0.0007	7 0.0000 7 0.0000 7 0.0000	0 0.0260 0 0.0260 0 0.0260	0 0.070	0.0 0 0.0 0 0.0	0.00 0490 0.00 0490 0.00	110 0.000 110 0.000 110 0.000	00 00	0.24 0.24 0.24 0.24 0.24	0.20 0. 0.20 0. 0.20 0. 0.20 0.	.00 7.8 .00 7.8	8 21: 8 21: 8 21:	21 14 21 14 21 14 21 14	1.85 1.85	3.33 3.33 3.33 3.33		0.0	0.0	0.0	0.0 0 0.0 0 0.0 0	0 0.0	0.00	0.0	00.0	0.00	0.00 0.00 0.00	0.03	0.07 0.07 0.07	0.09	0.01	0) 0) 0)	00 0.0 00 0.0 00 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0
1	key West	0		0.0008	0.0003	/ 0.0000	U 0.0260	u <u>j</u> 0.070	JU 0.0-	145U 0.0	0.000 Jul	uuj	U.24	u.20 0.	.uJ 7.8	a 21.	ZI 14	C8.	5.33	J.UU	0.0	U.U] (1.0	U.U] 0		.u 0.0	0.0	0.00	0.00	0.00	0.03	0.07	0.05	0.01	0)	UU ()	0.0	0.0	0.0	0.0	0.0	0.0

_																																															
																																													Г,		
	GOMEX / NSWC													0.24	0.	20 0	.00	.88	21.21	14.85	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0			1 1							0.0	0.0	0.0	0.0	0.0	0.0	- 0/	0.0
	Panarna City	28		28	0.0008	0.0007	0.0000	0.0260	0.07	700 0	0.0490	0.0110	0.0000																		0.01	0.00	0.00	0.03	0.07	0	.05	0.01	0.00							—	
	Other AFTT	0	_	0	8000.0	0.0007	0.0000	0.0260	0.07	700 0	0.0490	0.0110	0.0000	0.24	0.	20 0	.00 7	.88	21.21	14.85	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.01	0.00	0.00	0.03	0.07	0.	.05	0.01	0.00	0.0	0.0	0.0	0.0	1 0.0	0.0	0.0	0.0
	Tot	tal 210		210													_						0.0	0.0	0.	0.0	0.1	0.1	0.0	0.0										0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0
Flares	Northeast / NUW	VC													l					1													1 1				- 1			0.0	0.0	d na	0.0	al nr	ol oe'	ıl n	0 00
	Newport	0		0	0.0013	0.0001	0.0004	0.0000	0.00	62 0	0.0062	0.0110	0.0000	0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	1	0.0	0.0	1,		
	Virginia Capes	1,00		1,000	0.0013	0.0001	0.0004	0.0000	0.00	062 0	0.0062	0.0110	0.0000	0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.01	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	0.0	0.0	3.0	J 0.0	0/	0.0
	Virginia Capes Cherry Pt.	22,30		22,300	0.0013	0.0001	0.0004	0.0000	0.00	62 0	0.0062	0.0110	0.0000	0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	J 0.0	0.0	J 0.0
	Jacksonville	38,00	0	38,000	0.0013	0.0001	0.0004	0.0000	0.00		0.0062	0.0110	0.0000	0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.01	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	0.0	0.0	J 0.0	0.0	0/	0.0
	Key West	31,00	0	31,000	0.0013	0.0001	0.0004	0.0000	0.00	062 0	0.0062	0.0110	0.0000	0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.01	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	0.0	0.0	J 0.0	0.0	. 0/	0.0
															l					1													1 1				- 1			- 1		l .			1 '		. ,
	GOMEX / NSWC													0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0			1 1							0.0	0.0	0.0	0.0	0.0	0.0	0/	0.0
	Panarna City	1,84)	1,840	0.0013	0.0001	0.0004		0.00	62 0	0.0062	0.0110	0.0000																		0.0	0.00	0.00	0.00	0.00	0	.00	0.00	0.00								
	Other AFTT	0		0	0.0013	0.0001	0.0004	0.0000	0.00	62 0	0.0062	0.0110	0.0000	0.39	0.	04 0	.12 0	.00	1.88	1.88	3.33	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.01	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	0.0	0.0	J 0.0	0.0	0/	. 0.0
	Tot	bi 94,14	10	94,140																			0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0										0.0	0.0	0.0	9.8	0.0	0.0	0/	0.0
Illumination Flares	North east / NUW	vo																																						0.0	0.0						
	Newport	0		0	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	0.00	0.	00 0	.00 0	.00	0.00	0.00	0.00	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	1 0.0	0.0	0.0	1 0.01	0.0	0.0
	Newport Virginia Capes	20,23	5	20,235	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	222.59	62.	73 6	.68 1	.48 2	2428.20	2428.20	2832.90	0.0	5 0.3	0.0	0.	0.0	1.2	1.2	1.4	0.0	222.59	62.73	6.68	1.48	2428.20	2428.	.20 28	32.90	0.05	0.1	0.0	0.0	0.0	J 13	2 1.2	4 1	4 0.0
	Cherry Pt.	48		48	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	0.53	0.	15 0	.02 0	.00	5.76	5.76	6.72	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.5	3 0.15	0.02	0.00	5.76	5	.76	6.72	0.00	0.0	0.0	0.0	0.0	J 0.0	J 0.0	0:	J 0.0
	Jacksonville	48		48	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	0.53	0.	15 0	.02 0	.00	5.76	5.76	6.72	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.5	3 0.15	0.02	0.00	5.76	5	.76	6.72	0.00	0.0	0.0	0.0	0.0	0.0	J 0.0	0/	J 0.0
	Key West	0		0	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	0.00	0.	00 0	.00	.00	0.00	0.00	0.00	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.01	0.00	0.00	0.00	0.00	0	.00	0.00	0.00	0.0	0.0	0.0	0.0	3.0	J 0.0	0/	0.0
1																							1																						1 7		1 7
	GOMEX / NSWC														l					1													1 1				- 1			0.0	0.0	0.0	0.0	3.0	J 0.0	0/	J 0.0
		628		628	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	6.91	1	95 0	.21 0	.05	75.36	75.36	87.92	0.0	0.0	0.0	o l	0.0	0.0	0.0	0.0	0.0	6.9	1 199	0.21	0.05	75.36	75	.36	87.92	0.00			l	l	1	1 '	1	1 1
1	Panarna City Other AFTT	0		0	0.0110	0.0031	0.0003	0.0001	0.12	200 0	0.1200	0.1400	0.0000	0.00	0.	00 0	.00	.00	0.00	0.00	0.00	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.	.00	0.00	0.00	0.0	0.0	0.0	0.0	0.r	0.0	0	0.0
	Tot	tal 20,95	Q	20 959																			0.	1 0 0	1 0	1 0.0	13	13	15	0.0										0.1	0.0	0.0	0.0	0 1.3	3 12	1 1	5 0.0

MUNITION EMISSIO	N ESTIMATES - STAT	TE WATERS																																									_
Category	Location – Range Complex	Testing) Items (Annual) for Training & Testing			Emission F	actors (lb/ite	:m)						Emission Alterr	i (lb/year) ative 1							Emissions Alternat								Emissions Altern								Emissions Alternat					
		Activities	Activities Alternative 2		No.	L was	I 60 :-	PM10	I DMA	L con	I 04		I No.	I was	I co-	0.8410	PM2.5	L 603	D.	- 00	No.	wac I	SO x	05430 I	DMA C I	600 I	05	co I	No. I	wac I	60 × 1	D1430	BM25 I	con I	n.	- 60	No.	уос	co. I r	00410 L r	Mar I	con I na	4
Small Caliber		Afternative 1	Afternative 2	co	NO x	Aoc	50 x	PENTO	PM2.5	CO2	Pb	w	NO x	voc	SOx	שנותויי	PM2.5	C02	Pb	co	NOx	Aoc	501	PEALU	PM2.5	002	PD	co	NOx	Aoc	50 x	PMIU	PM2.5	CO2	Pb	CO	NOX	70C	SUE I	78A 10 P	m2.5	CO2 Pb	Я.
	North east / NUWC											14.98	0.23	0.00	0.00	0.82	0.73	17.47	0.1	0							- 1	14.98	0.23	0.00	0.00	0.82	0.73	17.47	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Newport	8,32	0 8,320	1.80E-03	280E-0	5 0.00E+0	0.006+00	9.80E-05	8.80E-05	2.10E-0	3 1.20E-05									0.0075	0.0001	0.0000	0.0000	0.0004	0.0004	0.0087	0.0000																- 1
	Virginia Capes/											235.44	366	0.00	0.00	1282	11 51	274.68	15	7								235.44	366	0.00	0.00	12.82	11.51	274 68	15	7 0.1	0.0	0.0	0.0	0.0	0.0	0.1 0	00
	Ches Bay + Trib	130,80	130,800	1.80E-03	2.80 E-0	5 0.00E+0	0.00E+00	9.80E-0	8.80E-05	2.10E-0	3 1.20E-05		1	1						0.1177	0.0018	0.0000	0.0000	0.0064	0.0058	0.1373	8000.0									1				\rightarrow			7
	Pt./Charleston	5,10	5,100	1.80E-03	280E-0	5 0.00E+0	0.005+00	9.80E-05	8.80E-05	2.10E-0	3 1.206-05	9.18	0.14	0.00	0.00	0.50	0.45	10.71	0.0	0.0046	0.0001	0.0000	0.0000	0.0002	0.0002	0.0054	0.0000	9.18	0.14	0.00	0.00	0.50	0.45	10.71	0.0	6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	J.0
	Jacksonville/ C											23.0	0.30	0.00	0.00	1.20	1.12	26.88	0.1	c								23.04	0.26	0.00	0.00	1.26	1 19	20.00	0.1	5 00	0.0	0.0	0.0	0.0	0.0	00 0	
	Canaveral	12,80	12,800	1.80E-03	280E-0							25.0	0.30	0.00	0.00	1.23	1.10		0.1	0.0115	0.0002	0.0000	0.0000	0.0006	0.0006	0.0134	0.0001	200	0.50	0.00	0.00	1.2	1.15	20.00	0.3		0.0	0.0	0.0	0.0	0.0	0.0	
	Key West	<u> </u>	0 0	1.80E-03	2.80 E-0	5 0.00E+0	0.00E+00	9.80E-0	8.80E-05	2.10E-0	3 1.20E-05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	1.0
	GDMEX / NSWC											0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0							- 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Panama City		0 0	1.80E-03		5 0.00E+0		9.80E-0	8.80E-05	2.10E-0	3 1.20E-05									0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000																_
	Other AFTT	157,02	0 157,020		280E-0	5 0.00E+0	0 0.00E+00	9.80E-0	8.80E-05	2.10E-0	3 1.20E-05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	40
Pyrotechnic Buoys	1020	157,02	157,020	,		1	1	1	1	I	1		1	1	1 1	1		ı		0.3	ı "	I 0.0	0.0	0.0	0.0	0.2	0.0		- 1	- 1			- 1	- 1		0.1	0.0	0.0	0.0	0.0	0.0	1	
(e.g. MK-58 Marine	Northeast / NUWC Newport	1 .	5 69	0.8900	0.002	8 0.022	0 0.0033	20,000	28,000	0.510	0.0160	57.85	0.18	1.43	0.21	1950.00	1495.00	33.15	1.0	0.0289	0.0001	0.0007	0.0001	0.9750	0.7475	0.0166	0.0005	57.85	0.18	1.43	0.21	1950.00	1495.00	33.15	1.0	0.0289	0.0001	0.0007	0.0001	0.9750	0.7475	0.0166 0.000	105
Marker)	Virginia Capes/				0.002		0.000			0.020		605.20	1.00	1400	2.10	20400.00	15640.00	346.80	10.0	0.0200	0.0000	0.0007	0.0002	0.07.00	0.7.770	0.0200	0.0000	605.20	100	14.05	210	20 400.00	15640.00	346.80	10.0	0.0200	0.0002	0.0007	0.0002	0.07.00			_
	ChesBay + Trib	68	680	0.8900	0.002	8 0.022	0.0032	20.000	23.0000	0.510	0.0160	005.2	1.50	14.50	2.10	20400.00	15040.00	346.60	10.0	0.3026	0.0010	0.0075	0.0011	10.2000	7.8200	0.1734	0.0054	805.20	1.90	14.96	2.10	20400.00	12040.00	340.00	10.0	0.3026	0.0010	0.0075	0.0011	10.2000	7.8200	0.1734 0.005	54
	Pt./Charleston	I .	0	0.8900	0.002	8 0.022	0.0032	20,000	23,000	0.510	0.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0 00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.000	100
	Jacksonville/ C											53.40	0.13	1 1 2	0.19	1800.00	1380.00	30.60	0.0									53.40	0.17	1 22	0.19	1800.00	1380.00	30.60	0.0	c							
	Canaveral Key West	6	0 60	0.8900			0.0032		23,0000			33.40		1.5	0.13	1500.00	1360.00	30.00	0.5	0.0267	0.0001		0.0001	0.9000	0.6900	0.0153	0.0005	0.00	0.17	2.02	0.19		1380.00	0.00	0.5	0.0267	0.0001	0.0007	0.0001			0.0153 0.000	
	Key West	<u> </u>		0.8900	0.002	8 0.022	0.0032	2 30,000	23,000	0.510	0.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.000	30
	GOMEX / NSWC		1									0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0							- 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0							- 1
	Panama City		0 0	0.8900	0.002	8 0.022	0.0032	20.000	23.0000	0.510	0.0160									0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000									0.0000	0.0000	0.0000				0.0000 0.000	.00
	Other AFTT	90	0 0	0.8900	0.002	8 0.022	0.0032	2 30.000	23.0000	0.510	0.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000		0.000.0			0.0000			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000		0.0000		0.0000	0.0000 0.000	00
Flares (Illumin at ion)	10181	•	805	2									1	1		1		ı		0.4	I 0.0	I 0.0	0.0	12.1	9.3	0.2	0.0									0.4	0.0	0.0	0.0	12.1	9.3	0.2	
	North east / NUWC	1						0.120			0.0000		0.00	0.00	0.00	0.00																											
	Newport Vinginia Capes/	-	0	0.0110	0.003	1 0.000	3 0.0001	0.120	0.120	0.140	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.000	30
	Ches Bay + Trib	20,40	0 20,400	0.0110	0.003	1. 0.000	3 0.0001	0.120	0.120	0.140	0.0000	224.40	63.24	6.73	1.49	2448.00	2448.00	2856.00	0.0	0.1122	0.0316	0.0034	0.0007	1.2240	1.2240	1.4280	0.0000	224.4000	63.2400	6.7320	1.4892	2448.0000	2448.0000	2856.0000	0.046	9 0.1122	0.0316	0.0034	0.0007	1.2240	1.2240	1.4280 0.000	/00
	Cherry							I					I		I																												
1	Pt./Charleston Jacksonville/ C	 	0	0.0110	0.003	0.000	3 0.0001	0.120	0.120	0.140	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	U.U000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.000	30
	Canaveral		0	0.0110	0.003	1 0.000		0.120		0.140		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000 0.000	
1	Key West		0 0	0.0110	0.003	1 0.000	3 0.0001	0.120	0.120	0.140	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.000	.00
1	GDMEX / NSWC	l	1	1	l		1			1			1							I							- 1															- 1	- 1
	Panama City		0	0.0110	0.003							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000				0.0000 0.000	
1	Other AFTT		0 0	0.0110	0.003	1 0.000	3 0.0001	0.120	0.120	0.140	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0			0.0000						0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000				0.0000			0.0000 0.000	-00
	Total																			0.1		0.0		1.2	1.2	1.4	0.0												0.0	1.2	1.2	141 0	

Munitions Usage Estimates provided by US Navy, AFTT Training Air Analysis.xisx (March 29), AFTT Inshare Events_08Feb 2017_NAEMO Web.xisx, Appendix F, Draft AFTT ElS May 2017

| Cherry Pt. | 178 | 0.3 | 0.0

Ship/Boat Type	Vessel Mode			Emission Propulsion E	ns Factors (I Ingines + Ge				221	
pp book 14pe	Lozimode	HC	co	NOx		PM10/2.5	CO2	Engine model ¹	Engines	Use ¹
Nuclear Aircraft Carrier - Nimitz Class	CVN-1	0.31	1.23	16.73	1.39	0.12	683.62			
Carrier - Nimitz Class	CVN-R	0.03	0.12	1.65	0.14	0.01	67.61	16-645E5	4	Emergency Diesel Generator
Guided Missile									_	Shire Conductor Con Turking Consented
Cruiser - Ticonderoga	CG-68	4.32	61.51	79.58	54.5	2.25	24,190.71	501-K17 LM2500	4	Ship Service Gas Turbine Generator Gas Turbines
Guided Missile	CG-R	2.46	27.73	285.54	109.99	10.04	69,838.52			
Destroyer - Arleigh	DDG-51	4.01	59.72	114.52	62.15	2.96	27,564.55	501-K34	Ι.	Chia Carriar Car Turkiar Carranta
Burk Class	DDG-51R	2.39	30.57	374.80	134.53	12.27	85141	LM2500	4	Ship Service Gas Turbine Generator Gas Turbines
Guided Missile Destroyer - Zumwalt	DDG-1000	1.90	33.45	158.67	59.76	5.75	37,074.37	C-18 MT-5	2	Emergency Diesel Generator Auxiliary Turbine Generator Main
Class	DDG-1000R	2.86	45.65	64.80	29.91	4.05	24,051.17	MT-30	2	Turbine Generator
								16PA6B-STC	1 2	Main Propulsion Diesel Engine
Littoral Combat Ship	LCS-1	3.19	46.14	186.77	49.63	6.67	25,512.41	MT-30 V1708	4	Main Turbine Generator Ship Service Diesel Generator
Torpdeo Retrieval	LCS-1R	6.12	79.12	152.6	23.27	7.40	11,115.68			
Boats Replaced by	LSD 44	10.84	21.25	334.51	24.6	2.17	16,263.96	38D8-1/8	4	Ship Service Diesel Generator
Dock Landing Ship	LSD 44R	20.43	40.02	604.28	45.39	2.17	21,126.47	PC2.5V	4	Main Propulsion Diesel Engine
Amphibious Assault Ship - America Class	LHA-6	14.48	8.38	277.87	66.87	8.38	35,922.07	12PA6B	6	Ship Service Diesel Generator
snip- America class					47.97		28/5916	LM2500+	2	Main Turbine Generator
Amphibious Assault	LHA-6R LHD-5	15.15 5.77	18.73	199.99 47.83	47.97 95.12	5.84 28.57	28,05 9.16 47,632.68	Boiler	_	
Ship - Wasp	LHD-5R	5.10	7.66	47.63	120.70	24.23	47,490.25	16-251C	2	Emergency Diesel Generator
Landing Transport	LPD-19	16.86	31.61	272.28	37.54	3.29	16,767.15	3608 (Tier I)		Ship Service Diesel Generator
Dock - San Antonio Class								PC25STC	4	Main Propulsion Diesel Engine
Patrol Coastal	LPD-19R	14.95	28.08	263.75	32.98	2.81	15,025.58		4	Main Propulsion Diesel Engine Ship
	PC-14 PC-14R	6.02 7.22	43.15	74.18 78.36	16.43 17.51	2.24	7,676.62 8,054.32	16RP200M 3306B	2	Service Diesel Generator
Joint High Speed	POIAN	1.22	45.15	76.30	17.31	2.37	0,004.32			
Vessel (JHSV) or Expeditionary Fast	JHSV-1	17.13	384.26	745.63	113.53	36.23	54,28750		4	Main Propulsion Diesel Engine
Transport (FRF)	JHSV-1R	4.65	100.83	200.57	30.32	9.80	14,530.65	20V8000M71L 3406	4	Ship Service Diesel Generator
Amphibious Combat	LCC 20				36.49	10.96		Boiler 3808-		
Command (LCC)		2.23	2.96	19.10			20,27 2.00	1/8	2	Emergency Diesel Generator
MV Deloros Chouest	LCC 20R	2.19	2.96	17.38	36.40	10.95	18,217.39	3306	- 2	Ship Service Diesel Generator
	MV DC	3.73 2.64	6.82 4.95	133.74 86.92	11.60 36.40	2.04	5,072.73 18.217.39	3608TA	2	Main Propulsion Diesel Engine
SS GN	SS GN-728	0.07	0.11	4.05	0.23	0.02	132.35	38D8-1/8	1	Emergency Diesel Generator
SSN	SSGN-728R SSN-774	0.01	0.01	0.40	0.02	0.00	12.98 81.42	35128 (Tier I)	1	Emergency Diesel Generator
T-AH	SSN-774R	0.00	0.01	0.09	0.02	0.00	8.00	Boiler		
I-AH	AH-19	6.82	13.73	103.87	72.21	20.28	35,773.75	12V 25/30	a	Ship Service Diesel Generator
	AH-19R	6.83	13.71	101.56	71.91	20.05	35,663.29	18V 20/27 3508	1	Auxiliary Diesel Generator
TAKE	T-AKE-5	29.73	10.28	302.32	36.75	4.67	17,236.10	35168 HD 8L48/60 9L	1 2	Emergency Diesel Generator
	T-AKE-5R	12.00	5.31	86.45	11.23	0.99	5,368.46	48/60	2	IPG
TAO	. , , , , , , , , , , , , , , , , , , ,		0.00			0.00		16V-92IA 8163-7305	1	Emergency Diesel Generator
	T-AO-189	23.26	51.51	713.11	47.19	4.18	20,880.33	18-251F PC4.2V	2 2	Ship Service Diesel Generator Main Propulsion Diesel Engine
TAGE	T-AO-189R	17.96	35.91	538.70	39.08	3.45	15,482.22	3608	-	Ship Service Diesel Generator
IAOL	T-AOE-8	10.60	109.76	311.32	84.23	8.32	6,744.69	LM2500	4	Main Propulsion Gas Turbine
TARS	T-AOE-8R T-ARS-52	5.85 1.27	35.08	445.24 32.21	134.08	12.22	81,478.38 3,410.91	D399(M)	4	Main Propulsion Diesel Engine
	T-ARS-52R	0.82	3.20	38.12	8.10	0.69	3,975.10	D399(S)	3	Ship Service Diesel Generator
TATF	T-ATF-172	2.11	18.41	104.32	7.82	0.91	3,594.48	16V-71T 7163-7305	3	Ship Service Diesel Generator
	T-ATF-1.72R	259	13.35	139.75	10.24	1.07	4,845.75	20-645E7	2	Main Propulsion Diesel Engine
Landing Craft Air	LCAC	3.49	18.32	11455	38.34	4.30	20697	Legacy: 4- Allied-Signal	TF-40 gas ti	urbines (2 propulsion / 2 lift); 16,000 h
Cushion Landing Craft Utility	LCU	0.52	36.21	44.95	3.11	1.57	1,683.91			win shaft, 690 hp sustained,
Amphibious Assault Vehicle	AAV-2	0.82	0.76	6.22	1.25	0.26				ins VT 400 903 (P-7A1)
Mark V Rigid Inflatable Boat	MK V-3	1.05	13.22	71.48	15.65	1.15	5,658.42	2x 2285 HP MTU 12V3		
(zodiac)	RIB-4	0.06	0.34	9.14	1.44	0.15	1,163.88	Dual Caterpillar 31260	OITA, 6 in-lin	e cylinder diesel, turbocharged, after
Combat Rubber Raiding Craft	CRRC	0.0244	0.1808	0.9945	0.1166	0.0814	87.23	55	HP 2-stroke	engine gas diesel
Ulah Encod			_					1		-

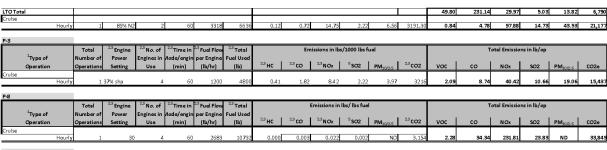
GPH = specific fuel consumption constant X HP/ Fuel specific weight

SFC diesel = 0.4

SFC gas = 0.5

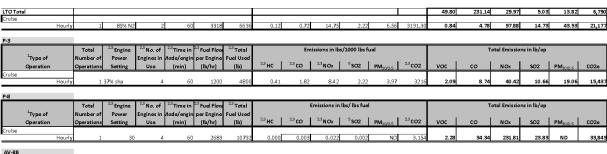
FSW diesel = 7.2

FSW gas = 6.1

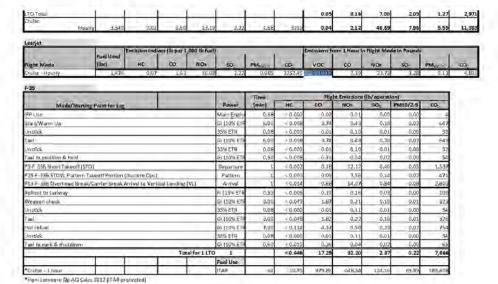

0.138 MM8tu/gal diesel 161.5 lb/MM8tU 22.287 lb CO2/gal diesel

Ship/Boat Type	Vessel Mode				ns Factors (II Engines + Ge				# ¹	
		HC	co	NOx	SOx	PM10/2.5	CO2	Engine model ¹	Engines	Use ¹
LCU	76	GPH								
										I
MKV	254	GPH								
MK V RIB		GPH GPH								
		GPH	lb/hp-hr							
RIB	52	GPH		\$02	PM	002				
RIB EFs for small craft ²	52	GPH CO	NOx			002 1.0654218				

TAB I: MUNITION EMISSION FACTORS¹


	Study Area					Emission Facto	r (lb/item)			
Туре	Category	DODEC ID	CO ₂	со	NO _x	voc	SO ₂	PM ₁₀	PM _{2.5}	Pb
.50 CAL Blank	Small cal	A557	0.0021	0.0018	0.000028	0	0	0.000098	0.000088	0.000012
25 MM	medium cal	M793	0.043	0.085	0.0015	0	0	0.0033	0.0017	0.000049
81 MM HE Cartridge	large cal	C256	1.4	0.097	0.016	0	0	0.17	0.093	0.00069
2.75 In Rocket HE	rocket	H163	0.7	0.4	0.0056	0	0	0.24	0.12	0.0006
2.75 in Rocket (Practice)	rocket	H974	4.8	0.53	0	0	0	0.16	0.17	0.07
Floating Smoke Pot	for marine marker	K867	0.51	0.89	0.0028	0.022	0.0032	30	23	0.016
Grenade	grenade	G900	0.021	0.0008	0.00067	0.00000032	0.026	0.07	0.049	0.011
Flare	CM flare	L410	0.011	0.0013	0.00013	0.0004	0.0000079	0.0062	0.0062	0
Flare	III. Flare	L311	0.14	0.011	0.0031	0.00033	0.000073	0.12	0.12	0.0000023
2.75 In Rocket fleschette	rocket	H459	2.4	1.5	0.026	0	0	0.11	0.1	0.051

¹Emission Factors from USEPA AP-42 Section 15 (various dates)


AV-8B																		
	Total	² Engine	² No. of	² Time in	² Fuel Flow	² Total		Emission	s in lbs/100	lbs fuel				Te	otal Emissio	nsin Ib/op		
³ Type of	Number of	Power	Engines in	/lode/engin	per Engine	Fuel Used												
Operation	Operations	Setting	Use	(min)	(lb/hr)	(IЬ)	2HC	² co	² NOx	4 SO2	PM _{10/2.5}	³co2	voc	co	NOx	SO2	PM _{10/2.5}	CO2e
Short Takeoff																		
APU Use		ON	1	. 5	197	16.4	0.25	2	6.25	2.22	0.22	3170	0.0	0.0	0.1	0.0	0.0	53
Start/Warm-up	1	26% RPM	1	10	1137	189.5	19.66	106.3	1.8	2.22	11.1	2919	3.7	20.1	0.3	0.4	2.1	55
Unstick		40% RPM	1	0.3	1786	8.9	3.67	65.7	2.5	2.22	9.1	3040	0.0	0.6	0.0	0.0	0.1	2
Taxi Out	1	26% RPM	1	. 5	1137	94.8	19.66	106.3	1.8	2.22	11.1	2919	1.9	10.1	0.2	0.2	1.1	27
Engine Run-up	1	59% RPM	1	0.5	3321	27.7	1.26	25.5	4.5	2.22	6.4	3114.5	0.0	0.7	0.1	0.1	0.2	8
Takeof	1	91% RPM	1	0.5	9441	78.7	0.35	3.6	12.7	2.22	2.5	3151.8	0.0	0.3	1.0	0.2	0.2	24
Climbout	. 1	95% RPM	1	0.5	7037	58.6	0.49	6.4	9.5	2.22	3.5	3153.6	0.0	0.4	0.6	0.1	0.2	18.
Vertical Landing Straight In														0.0				
Approach	1	79% RPM	1	2.5	6381	265.9	0.54	7.7	8.6	2.22	3.8	3144	0.1	2.0	2.3	0.6	1.0	836
Set up for VL	. 1	84% RPM	1	1.5	5785	144.6	0.61	9.3	7.8	2.22	4.2	3141.2	0.1	1.3	1.1	0.3	0.6	454
VL Landing	1	99% RPM	1	0.75	12258	153.2	0.26	2.2	16.5	2.22	1.9	3155	0.0	0.3	2.5	0.3	0.3	483
On Runway	1	26% RPM	1	0.3	1137	5.7	19.66	106.3	1.8	2.22	11.1	2919	0.1	0.6	0.0	0.0	0.1	17
Unstick	1	40% RPM	1	0.3	1786	8.9	3.67	65.7	2.5	2.22	9.1	3040	0.0	0.6	0.0	0.0	0.1	27
Taxi In/Shut down	1	26% RPM	1	. 5	1137	94.8	19.66	106.3	1.8	2.22	11.1	2919	1.9	10.1	0.2	0.2	1.1	27
LTO Total													8.5	47.2	8.5	2.5	6.9	3,522
Cruise																		
Hourly	1	67% RPM	1	60	4313	4313.0	0.88	16	5.9	2.22	5.3	3130	4.0	69.0	25.4	9.6	22.9	13,499

MV-22													
		Emission Indi	ices (lb per 1	,000 lb fuel)				Total	Emissions in	lb/op			
	Fuel Used												
Flight Mode	(lbs)	HC	co	NOx	SO ₂	PM _{10/2.5}	CO ₂	VOC	co	N Ox	SO ₂	PM _{10/2.5}	CO ₂
Short Take Off													
APU	103.3	0.19	5.89	5.95	2.22	0.22	3,235	0.02	0.61	0.61	0.23	0.02	334
Start/Warm up	60	0.1	8.9	4.09	2.22	1.58	3,221	0.01	0.53	0.25	0.13	0.09	193
Warm up	220	0.02	3.33	6.02	2.22	1.58	3,219	0.00	0.73	1.32	0.49	0.35	708
Taxi Out	110	0.02	3.33	6.02	2.22	1.58	3,219	0.00	0.37	0.66	0.24	0.17	354
Engine Run up	17.2	0.02	1.58	8.41	2.22	1.58	3,216	0.00	0.03	0.14	0.04	0.03	55
Takeoff	68.7	0.01	0.45	15.06	2.22	1.58	3,208	0.00	0.03	1.03	0.15	0.11	220
FW Climbout	54.7	0.01	0.69	12.35	2.22	1.58	3,211	0.00	0.04	0.68	0.12	0.09	176
Vertical Landing													
FW Approach	121.0	0.02	1.20	9.57	2.22	1.58	3,215	0.00	0.15	1.16	0.27	0.19	389
Transition (90°) Landing	43.7	0.02	1.04	10.22	2.22	1.58	3,214	0.00	0.05	0.45	0.10	0.07	140
Taxi to apron	66.0	0.02	3.33	6.02	2.22	1.58	3,219	0.00	0.22	0.40	0.15	0.10	212
Cool/Shut down	24.0	0.1	8.90	4.09	2.22	1.58	3,221	0.00	0.21	0.10	0.05	0.04	77
APU	34.4	0.19	5.89	5.95	2.22	0.22	3,235	0.01	0.20	0.20	0.08	0.01	111

AV-8B																		
	Total	² Engine	² No. of	² Time in	² Fuel Flow	² Total		Emission	s in lbs/100) lbs fuel				Т	otal Emissio	ns in Ib/op		
¹ Type of	Number of	Power	Engines in	/lode/engin	per Engine	Fuel Used												
Operation	Operations	Setting	Use	(min)	(lb/hr)	(ІЬ)	² HC	² co	² NOx	4 SO2	PM _{10/2.5}	³co2	voc	co	NOx	SO2	PM _{10/2.5}	CO2e
Short Takeoff																		
APU Use	1	ON	1	5	197	16.4	0.25	2	6.25	2.22	0.22	3170	0.0	0.0	0.1	0.0	0.0	52
Start/Warm-up		26% RPM	1	10	1137	189.5	19.66	106.3	1.8	2.22	11.1	2919	3.7	20.1	0.3	0.4	2.1	553
Unstick		40% RPM	1	0.3	1786	8.9	3.67	65.7	2.5	2.22	9.1	3040	0.0	0.6	0.0	0.0	0.1	27
Taxi Out		26% RPM	1	5	1137	94.8	19.66	106.3		2.22	11.1	2919	1.9	10.1	0.2	0.2	1.1	277
Engine Run-up		59% RPM	1	0.5	3321	27.7	1.26	25.5	4.5	2.22	6.4	3114.5	0.0	0.7	0.1	0.1	0.2	86
Takeoft		91% RPM	1	0.5	9441	78.7	0.35	3.6	12.7	2.22	2.5	3151.8	0.0	0.3	1.0	0.2	0.2	248
Gimbout Company Compan	1	95% RPM	1	0.5	7037	58.6	0.49	6.4	9.5	2.22	3.5	3153.6	0.0	0.4	0.6	0.1	0.2	185
Vertical Landing Straight In														0.0				
Approach		79% RPM	1	2.5	6381	265.9	0.54	7.7		2.22	3.8	3144	0.1	2.0	2.3	0.6	1.0	836
Set up for VL		84% RPM	1	1.5	5785		0.61	9.3		2.22	4.2	3141.2	0.1	1.3	1.1	0.3	0.6	454
VL Landing		99% RPM	1	0.75	12258		0.26	2.2		2.22	1.9	3155	0.0	0.3	2.5	0.3	0.3	483
On Runway		26% RPM	1	0.3		5.7	19.66	106.3	1.8	2.22	11.1	2919	0.1	0.6	0.0	0.0	0.1	17
Unstick		40% RPM	1	0.3	1786	8.9	3.67	65.7	2.5	2.22	9.1	3040	0.0	0.6	0.0	0.0	0.1	27
Taxi In/Shut down	1	26% RPM	1	5	1137	94.8	19.66	106.3	1.8	2.22	11.1	2919	1.9	10.1	0.2	0.2	1.1	277
LTO Total													8.5	47.2	8.5	2.5	6.9	3,522
Cruise																		
Hourly	1	67% RPM	1	60	4313	4313.0	0.88	16	5.9	2.22	5.3	3130	4.0	69.0	25.4	9.6	22.9	13,499

MV-22													
		Emission Indi	ces (lb per 1	,000 lb fuel)				Total	Emissions in	lb/op			
Flight Mode	Fuel Used (lbs)	нс	со	NOx	SO ₂	PM _{10/2.5}	CO ₂	voc	со	NOx	SO ₂	PM _{10/2.5}	CO ₂
Short Take Off													
APU	103.3	0.19	5.89	5.95	2.22	0.22	3,235	0.02	0.61	0.61	0.23	0.02	33-
Start/Warm up	60	0.1	8.9	4.09	2.22	1.58	3,221	0.01	0.53	0.25	0.13	0.09	19
Warm up	220	0.02	3.33	6.02	2.22	1.58	3,219	0.00	0.73	1.32	0.49	0.35	708
Taxi Out	110	0.02	3.33	6.02	2.22	1.58	3,219	0.00	0.37	0.66	0.24	0.17	354
Engine Run up	17.2	0.02	1.58	8.41	2.22	1.58	3,216	0.00	0.03	0.14	0.04	0.03	5.
Takeoff	68.7	0.01	0.45	15.06	2.22	1.58	3,208	0.00	0.03	1.03	0.15	0.11	220
FW Climbout	54.7	0.01	0.69	12.35	2.22	1.58	3,211	0.00	0.04	0.68	0.12	0.09	176
Vertical Landing													
FW Approach	121.0	0.02	1.20	9.57	2.22	1.58	3,215	0.00	0.15	1.16	0.27	0.19	389
Transition (90°) Landing	43.7	0.02	1.04	10.22	2.22	1.58	3,214	0.00	0.05	0.45	0.10	0.07	140
Taxi to apron	66.0	0.02	3.33	6.02	2.22	1.58	3,219	0.00	0.22	0.40	0.15	0.10	213
Cool/Shut down	24.0	0.1	8.90	4.09	2.22	1.58	3,221	0.00	0.21	0.10	0.05	0.04	7.
APLI	34.4	0.19	5.89	5.95	2.22	0.22	3.235	0.01	0.20	0.20	0.08	0.01	111

UH-1 Flight	Funlused		_	Emissions	n lhs/1000 l	the fuel				Flip	ht Emissions	(lb/source	ioni	
Descrition	15	HC:	00	NCI	50-	PM.	PMG.	co,	VOC	00	NO	50.	PM	COZ
Departure:									5-10					
Warm-up	74.0	6.21	25,36	3.13	2,32	4.20	4.20	3,145	0.49	2.50	0.23	0.16	0.35	23
Taxl Quit	33,8	0.13	1.1.1	5.67	2.22	4,20	4,20	3,207	0,00	0,04	0.19	0,08	07,34	10
Hover	23.1	0.13	1.04	5.79	2.22	4.20	4.25	3,207	0.00	0.02	9.15	42,03	0.10	7
Climitaur	96.9	0.19	0.88	5.02	2,22	4,20	4.20	3,207	0.01	E0.0	0.22	0.09	0.15	121
Arrival:														
Descent	24.0	0,28	5,76	4,3	2.22	4,20	4.20	3,202	10,0	0.34	0.10	0.05	05,330	7.
Apprinach	25.8	0.26	4.22	4.54	2,22	4,20	4.70	3,264	5.01	0.11	0.12	0.02	0.11	8
Taxi ta 5dim	22.5	0.18	- 131	5.67	2.32	4.20	4.20	3,207	0,00	0,02	9,13	0,05	0,09	7.
Bhut Down	4.9	6.21	28,36	3.13	2,22	4,20	4,20	3,145	6,0,9	0,24	0.02	0.01	0,02	2.0
	-						Total	in Pounds	0,53	2,60	1.14	0.54	1,03	77.
1- hr Cruice:	692	0,13	1.01	5,79	2.32	4,20	4.20	3,207	0,00	0.70	4.01	1.50	2.91	2,22

Flight	Fuel used			Emissionsi	n lbs/1000	the Fuel				File	ht Emissions	(lb/sperst	ion)	
Operation	16	HC:	00	NOr	50.	PM.	PM-c	CO	VOC	co	NO	80,	PMmm	COZ
Departure:	100													
Warm Up	79.5	0,98	21,49	4.29	2.32	4,20	4.20	3,162	0,08	1.79	0.38	0.18	0,33	253
and Quit	39,32	9,57	21.7	5.37	- 2,72	4,26	4.20	3,213	0,82	0,46	0.21	0.09	9,17	1.36
lover	13.11	0.57	11.7	5.37	2.22	4.20	4.20	3,213	0.01	0.15	0.07	0.03	30.0	- 42
Climbart.	29,19	0.56	10.13	5.61	2.22	4,20	4,20	3,217	0,02	0.30	0.16	0.05	0.12	94
Arrival				-										-
Approact	113.8	0,61	34,04	5.07	2,22	4,20	4.20	3,205	0,07	1,60	0.59	0.25	0.46	363
asl to Scimi	39.3	0.57	11.7	5.37	2.22	4.20	4.70	3,713	0.02	0.40	0.71	0.09	0.17	131
Shut Dayer	10.9	2.54	19,81	3.26	- 2.22	4,20	4.20	3,060	0,03	0,34	0.04	0.02	0,05	33
							Total	in Pounds	0,2,6	3,29	1.63	0,72	1,37	1,038
1- hr Cruico:	850	0.56	10.54	5.55	2.33	4.20	4.20	3,216	0,50	5.96	4.72	1.89	3.57	2,736

⁵ for information on afrotalt references, see Lab N, Aircraft References

TAB K: AIRCRAFT ACTIVITY - TESTING¹

H-60								Alt	emative 1 T	otal Hrs						Panama							Alternati	ve 2 Total H	Irs					Panama
	#a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	кw	# Events	NE	# Events	CHERRY PT	# Events	City	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events	City
Anti-Submarine Warfare Torpedo Test	1	. 3	.0) 2	9 870	72	2,160	0	C) (0	C) (C		0 0	43	3 1,290	121	3,630			0 0) c		0	0	0
Anti-Submarine Warfare Tracking Test — Helicopter	1	. 3	.0	5 15	0	6 180	190	5,700	9	240	6:	1,830	C		0	C) 6	18	12	2 360	280	8,400	27	810	110	3,300			0	0
Kilo Dip	1		1	3	3	3 3	30	30	3	9	1	2	C) (C) 6	5 6	5 6	5 6	40	40	6	5	5 4	4		0	0	0
Chaff Test	3	3	.0 2	1,80	0 -	4 360	24	2,160	0	C)	0	C) (C	20	1,800) 4	4 360	24	2,160) (0		D	0	0
Flare Test	1	. 3	.0 1	.0 30	0	0 0	20	600	0	C) (0	C		0	C	10	300		0 0	20	600) с		0	0	0
Airborne Dipping Sonar Minehunting Test	1	. 3	.0	0)	0 0	8	240	0	C) (0	C		19	570				0 0	18	540				0		0	0 3	9 2ز
Airborne Laser Based Mine Detection System Test	1		2	0	0	0 0	50	100	0	C) (0	C		40	80	0) (0 0	50	100) (0		D	0 4	1 0
Airborne Mine Neutralization System Test	1		2	0	0	0 0	29	58	0	C) (0	C		21	42	2			0 0	50	100) с		0	0 3	; 2
Airborne Sonobuoy Minehunting Test	1	. 3	.0	0)	0 0	24	720	0	C) (0	C		52	1,560				0 0	24	720				0		0	0 5	2 1,5
Air-to-Surface Gunnery Test	1		2	0) 4	3 86	128	256	0	C) (0	C) (C	0) (55	5 110	280	560) (0		D	0	0
Air-to-Surface Missile Test	1		3	5 1	5 3	3 99	133	399	0	C) (0	C		0	C	10	30	38	3 114	444	1,332) с		0	0	0
High-Energy Laser Weapons Test	1		2	0	0	0 0	108	216	0	C) (0	C		0	C				0 0	108	216				0		0	0	0
Laser Tangeting Test	3	0.	.5	0	0	0 0	8	12	. 0	C)	0	C		0	C) (0	0 0	8	12				0)	0	0	0
Rocket Test	1		3	0	5	1 153	33	99	0			0) (C			5.	7 171	35	105				0			0	0
Maritime Security	1		4	0	1	2 48	3 20	80	0	0) (0	12	2 48		0) (12	2 48	20	80				0	1	2 4	18	0
	Alternat	tive 1 Tota	ls	2,26	8	1,799	9	12,830		243	3	1,832		41	3	2,252	Alt ernativ	€ 2,310	5	2,459		18,595		81	5	3,304		1 4	.8I	2,60

¹ Provided by US Navy, NAVAIR Assumptions.docx, March 30, 2017

This page intentionally left blank.

TAB L: AIRCRAFT ACTIVITY - TRAINING1

5 yrs presented annually

UH-1								A	Iternative To	tal Hrs					
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Missile Exercise Air-to-Air	15	5 1	0	0	2	24	- 8	120	2	24	0	0	2	24	
Missile Exercise Surface-to-Air	15	5 1	0	0	0	C	0.4	6	0	0	0	0	0	0	
Antitsubmarine Warfare Torpedo Exercise - Ship	8	3 2	0	0	3	51	8	128	0	0	0	0	0	0	
Anti submarine Warfare Torpedo Exerci se - Submarine	(5 3	0	0	2	43	8	144	. 0	0	1	. 22	0	0	
Gunnery Exercise Air-to-Surface Small Caliber	1	. 1	0	0	0	C	0	0	0	0	0	0	3	3	
	Alteri	native Totals		C		118		398		24		22		27	

Learjet								А	Iternative To	ital Hrs					
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Gunnery Exercise Surface-to-Air Medium Caliber	1	. 1	0	0	0	C	1	. 1	0	0	0	0	(0) 0
Gunnery Exercise Surface-to-Air Large Caliber	1	. 1	0	C	0	C	5	5	0	0	0	0	(0) 0
Gunnery Exercise Surface-to-Air Medium Caliber	1	. 1	0	C	0	C	7	7	0	0	0	0	(0) 0
	Altern	ative Totals						13		0				C	1

H-60								А	Iternative To	tal Hrs					
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Gunnery Exercise Air-to-Surface Small Caliber	1	1	. (0	40	40	112	112	. 0	0	C	0	24	24	0
Missile Exercise Air-to-Surface - Rocket	1	1	. 2	. 2	20	20	20	20	0	0	C	0		0	0
Missile Exercise Air-to-Surface	1	1	. (0	18	18	14	14	. 0	0	C	0	3	3	0
Laser Targeting - Aircraft	1	1	. (0	55	55	27	27	0	0	0	0		0	0
Antisubmarine Warfare Tracking Exercise - Helicopter	1	3	1	. 2	74	222	2	5	0	0	C	0	2	7	0
Antisubmarine Warfare Torpedo Exercise - Helicopter	1	3		0	3	8	1	2	. 0	0	(0	0	0	0
Antisubmarine Warfare Torpedo Exercise - Submarine	3	3	. (0	0	0	0	0	0	0	1	11		0	0
Airborne Mine Countermeasures - Mine Detection	1	2	62	124	63	127	308	616	0	0	C	0	74	148	0
Mine Countermeasure Mine Neutralization Remotely	1	2	. 26	53	14	28	126	252	. 0	0	C	0	14	28	0
Search and Rescue	1	1	. (0	125	125	200	200	0	0	C	0	0	0	0
Personnel Insertion/Extraction - Air	1	2	10	20	2	4	36	71	. 0	0	C	0	0	0	0
PMINT	1	63.8	(0	0	0	0	0	0	0	C	0	1	64	0
ARGMEUEX	1	149.3	. (0	0	0	0	0	0	0	C	0	1	149	
CERTEX	1	139.4	. (0	0	0	0	0	0	0	0	0	1	139	0
	Alterna	rtive Totals		201		648		1,319		0		11		564	

H-53				Alternative Total Hrs											
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Airborne Mine Countermeasures - Towed Mine															
Neutralization	1	. 2	0	0	31	62	176	352	0	0	0	0	37	73	0
Airborne Mine Countermeasures - Mine Detection	1	. 2	0	0	63	127	308	616	0	0	0	0	74	148	0
Mine Countermeasure Mine Neutralization Remotely	1	. 2	0	0	14	28	126	252	0	0	0	0	14	28	0
Search and Rescue	1	. 1	0	0	125	125	200	200	0	0	0	0		0	0
		C		342		1,420		0		0		250			

F-18 E/F				Alternative Total Hrs											
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Gunnery Exercise Air-to-Surface Medium Caliber	2.5	0.33	6	5	49	40	44	36	0	0	0	(29	24	0
Mine Laying	2.5	0.33	0	0	0.2	0.2	1	1	0	0	0	(0.4	0.3	0
	Altern	ative Totals		5		41		37		0				24	

F-35								β	Iternative To	otal Hrs					
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Gunnery Exercise Air-to-Surface Medium Caliber	2.5		6		5 49		0 44	36	6 (0	0	0	29		
Mine Laying	2.5				0.2	_		. 1	. (0		0	0.4		
	Alterr	native Totals			5		1	37	7					24	
P-3									lternative T						
	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES	# Events	KW	# Events	NE	# Events	CHERRY PT	# Events
Antisubmarine Warfare Tracking Exercise - Maritime															
Patrol Aircraft Anti submarine Warfare Torpedo Exerci se - Maritime	2.5	1	0		0 18		6 6	15	6	0	3	8	2	4	0
										Ι.		Ι.			
Patrol Aircraft	2.5		-		0 3 0		3	15	,	0		8	0	- 0	U
	Alteri	native Totals			U .		3	15	PI		1			4	
P-8								В	Iternative To	ntal Hrs					
7-6	#a/c	Hr/event	# Events	Ідомех	# Events	IIAX	# Events	IVACAPES			# Events	INF	# Events	CHERRY PT	# Events
Anti submarine Warfare Tracking Exercise - Maritime	,.	,													
Patrol Aircraft	2.5	1	0		0 74	18	4 25	62	2 () c	13	32	6	16	0
Anti submarine Warfare Torpedo Exerci se - Maritime															
Patrol Aircraft	2.5	1	0		o o		0 1	. 2	2 () c) 0	0	0	0	0
Anti submarine Warfare Torpedo Exercise - Submarine	3	3	0		0 0		0 0				1	11	. 0	0	0
Mine Laying	2.5	0.33	0		0 0	0	.2 1	. 1	. (0	0	0	0.4	0.3	0
	Alterr	native Totals			0	18	:5	64	1			42		16	
***									h 2 =						
AV-8B	# 0/6	Hr/event	# Events	Ідомех	# Events	JAX	# Events		lternative To		# Events	INE	# Events	ICHERRY PT	# Events
Gunnery Exercise Air-to-Surface Medium Caliber	# a/c				0 # Events 5	JAX	# Events	VACAPES	# Events) C		IVE	# Events	CHERRY PT	# Events
duffilery Exercise All-to-surface Medium Caliber		native Totals			0 S		4 (,	, ,			4	3	U
	Aiteii	lative i Otals			<u> </u>		4	,	1		1		1		
AH-1								В	Iternative To	ntal Hrs					
,	# a/c	Hr/event	# Events	GOMEX	# Events	JAX	# Events	VACAPES			# Events	INE	# Events	CHERRY PT	# Events
Gunnery Exercise Air-to-Surface Small Caliber	1	. 1	0		0 0		0 ((0		0	2	2	0
Missile Exercise Air-to-Surface - Rocket	1	. 1	0		0 2		2 ((0	0	0	2	2	0
Missile Exercise Air-to-Surface	1	. 1	0		0 0		0 (() (0	0	0	3	3	0
	Alterr	native Totals			0		2			C		C		5	
1 Provided by US Navy, AFTT Training Air Analysis.xlsx	March 30	2017: IKE C2	Cxisx Marc	h 29 2017:	C2X Sorties be	ours visv. I	Aarch 13 201	: Marine Co	ros trainina	cvcle.xlsx . M	larch 29 201	7.			

¹ Provided by US Navy, AFTT Training Air Analysis.xlsx, March 30 2017; IKE C2X.xlsx, March 29 2017; C2X Sorties hours.xlsx, March 13 2017; Marine Corps training cycle.xlsx, March 29 2017

TAB M	:	AIRCRAFT	ACTIVITY BY REG	SION ¹									
VA CAF	PES A	nnual Hou	rs Flight Below 3,	,000 Ft.									
UH-1		Learjet	Alt 1 H-60	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
VA CAF	398		3 14,149	19,914	1,42	.0	37	37	15	64 0		0	0
UH-1	ESL	Learjet	H-60	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
02	0		0 64			0	58	58	0	0	0	0	0
VA CAF	PES A	nnual Hou	rs Flight Below 3,	,000 Ft - State \	Vaters								
UH-1	0	Learjet	H-60 0 523	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
	U	1	U 523	1	1 39	2	Ч	υĮ	U	U	ų	υ	U
	X Anr		Flight Below 3,0		I==	1					Taxa an	T	1
UH-1	0	Learjet	Alt 1 H-60 0 2,469	Alt 2 H-60 2.517	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
GOME	XLTC)s	-, -,	_,		-1			-	-		٧,	· ·
UH-1		Learjet	H-60	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
	0		0 0		1	0	0	0	0	0	0	0	0
	X Anr		Flight Below 3,0 H-60		H-53	F-18	F-35	P-3	P-8	E-2C	laur on	Tau a	Inn. oo
UH-1	0	Learjet	0 20	Alt 2 H-60		0 L-19	0	0	0	0	AV-8B	AH-1 0	MV-22 0
		•											
IAY A-	احديدا	Hours Elf-	nt Below 3,000 Fi										
UH-1	ııual	Learjet	Alt 1 H-60	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
Ë	118		0 2,447				41	41	53	185 0	74.00	4 4	2
JAX LT	Os												
UH-1	0	Learjet	H-60 0 129	Alt 2 H-60	H-53	F-18	F-35 491	P-3 491	P-8	E-2C	AV-8B	AH-1 0	MV-22
IAX An			nt Below 3,000 F			υ	491	491	υ	U	ų	υĮ	U
UH-1	iiiuu	Learjet	H-60	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
	0		0 159			0	0	0	0	0	0	0	0
UH-1	nual 24	Learjet	Alt 1 H-60 0 243	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
KW LT						0	0	0	0	0 0		0	0
	Os		<u>'</u>	•									
UH-1	Os O	Learjet	H-60	Alt 2 H-60	H-53	F-18	F-35	P-3	P-8	E-2C	AV-8B	AH-1	MV-22
UH-1	0		H-60 0 0	Alt 2 H-60	H-53						AV-8B		
UH-1	0	Hours Fligh Learjet	H-60 0 0 nt Below 3,000 Ft	Alt 2 H-60 C t - State Waters Alt 2 H-60	H-53 H-53	F-18 0 F-18	F-35	P-3 0	P-8 0	E-2C 0	0 AV-8B	AH-1	MV-22
UH-1 KW An	0	Hours Fligh Learjet	H-60 0 0 nt Below 3,000 F1	Alt 2 H-60 C t - State Waters Alt 2 H-60	H-53 H-53	F-18 0	F-35 0	P-3 0	P-8 0	E-2C 0	0	AH-1 0	MV-22 0
UH-1 KW An UH-1	0 nual 0	Hours Fligh Learjet Hours Fligh	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0	Alt 2 H-60 Control of the state waters Alt 2 H-60 Control of the state waters Control of the state waters	H-53	F-18 0 F-18	F-35 0	P-3 0 P-3 0	P-8 0	E-2C 0 E-2C	AV-8B	AH-1 0 AH-1	MV-22 0 MV-22 0
UH-1 KW An UH-1	0 nual 0	Hours Fligh Learjet Hours Fligh	H-60 0 0 0 nt Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft.	Alt 2 H-60 C t - State Waters Alt 2 H-60 C	H-53	F-18 0 F-18	F-35 0 F-35	P-3 O P-3 O	P-8 0 P-8 0	E-2C 0 E-2C 0	0 AV-8B	AH-1 0 AH-1	MV-22 0
UH-1 KW An UH-1 NE Anr	0 nual 0 nual I	Hours Fligh Learjet Hours Fligh	H-60 0 0 0 nt Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft.	Alt 2 H-60 C t - State Waters Alt 2 H-60 C	H-53	F-18 0 F-18	F-35 0 F-35	P-3 0 P-3 0	P-8 0	E-2C 0 E-2C 0	AV-8B	AH-1 0 AH-1 0	MV-22 0 MV-22 0
UH-1 KW An UH-1 NE Anr	0 nual 0 nual l	Hours Fligh Learjet Hours Fligh Learjet Learjet	H-60 0 0 0 0 nt Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft. Alt 1 H-60 0 1,843	Alt 2 H-60 C - State Waters Alt 2 H-60 Alt 2 H-60 3,315	H-53	F-18 0 F-18 0	F-35 0 F-35 0	P-3 O O	P-8 0 P-8 0	E-2C 0 E-2C 0 E-2C 42 0	AV-8B 0 AV-8B	AH-1 0 AH-1 0 AH-1	MV-22 0 MV-22 0 MV-22
NE Ann UH-1 NE LTC	0 nual 0 nual l	Hours Fligh Learjet Hours Fligh Learjet Learjet	H-60 0 0 0 0 tt Below 3,000 Pt H-60 0 0 tt Below 3,000 Pt Alt 1 H-60 0 1,843 H-60 0 0 0 0	Alt 2 H-60	H-53	F-18 0 F-18 0	F-35 0 F-35 0	P-3 0 P-3 0	P-8 0 P-8 0	E-2C 0 E-2C 0 E-2C 42 0	AV-8B 0	AH-1 0 AH-1 0	MIV-22 0 MIV-22 0
NE Anr UH-1 NE LTC UH-1 NE Anr	0 nual 0 nual l	Hours Fligh Learjet Learjet Learjet Learjet Learjet	H-60 0 0 0 0 t Below 3,000 Ft Below 3,000 Ft Alt 1 H-60 1,843 H-60 0 0 t Below 3,000 Ft	Alt 2 H-60 C - State Waters Alt 2 H-60 Alt 2 H-60 3,315 Alt 2 H-60 - State Waters	H-53	F-18 0 F-18 0 F-18 0	F-35 0 F-35 0 F-35	P-3 O P-3 O P-3 O P-3 O P-3 O	P-8 0 P-8 0 P-8 0	E-2C 0 E-2C 0 E-2C 42 0	AV-8B AV-8B AV-8B	AH-1 0 AH-1 0 AH-1 0	MV-22 0 MV-22 0 MV-22 0
NE Ann UH-1 NE Ann UH-1 NE LTC	0 nual 0 nual l	Hours Fligh Learjet Hours Fligh Learjet Learjet Learjet Learjet	H-60 0 0 0 0 tt Below 3,000 Pt H-60 0 0 tt Below 3,000 Pt Alt 1 H-60 0 1,843 H-60 0 0 0 0	Alt 2 H-60 - State Waters Alt 2 H-60 - State Waters Alt 2 H-60	H-53 H-53 H-53	F-18 0 F-18 0	F-35 0 F-35 0	P-3 O O	P-8 0 P-8 0	E-2C 0 E-2C 0 E-2C 42 0	AV-8B 0 AV-8B	AH-1 0 AH-1 0 AH-1	MV-22 0 MV-22 0 MV-22
NE Anr UH-1 NE LTC UH-1 NE LTC UH-1 NE LTC	0 nual F 0 s 0 nual F 0	Hours Fligh Learjet Hours Fligh Learjet Learjet Hours Fligh Learjet	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0 t Below 3,000 Ft Alt 1H-60 0 1,843 H-60 0 0 0 t Below 3,000 Ft H-60 0 0	Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 3,315 Alt 2 H-60 - State Waters Alt 2 H-60 C	H-53 H-53 H-53	F-18 0 F-18 0 F-18 0	F-35 0 F-35 0 F-35	P-3 0 P-3 0 P-3 0	P-8 0 P-8 0	E-2C O	AV-8B AV-8B AV-8B	AH-1 0	MV-22 0 MV-22 0 MV-22 0 MV-22
NE Ann UH-1 NE LTC UH-1 NE LTC UH-1 NE LTC	0 nual i	Hours Fligh Learjet Learjet Learjet Learjet Learjet Learjet Annual Ho	H-60 0 0 0 18 Below 3,000 Ft H-60 0 0 1,843 H-60 0 1,843 H-60 0 0 0 18 Below 3,000 Ft Alt 1 H-60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alt 2 H-60 1 - State Waters Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 C - State Waters Alt 2 H-60 C - State Waters Alt 2 H-60 C 3,000 Ft.	H-53	F-18 0 F-18 0 F-18 0	F-35 0 F-35 0 F-35 0	P-3 0 P-3 0 P-3 0	P-8 0 P-8 0	E-2C	AV-8B AV-8B AV-8B AV-8B O	AH-1 O AH-	MV-22 0 MV-22 0 0 MV-22 0 MV-22 0
NE Anr UH-1 NE LTC UH-1 NE LTC UH-1 CHERR UH-1	0 nual F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hours Fligh Learjet Learjet Learjet Learjet Hours Fligh Learjet Learjet Learjet	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0 t Below 3,000 Ft Alt 1H-60 0 1,843 H-60 0 0 0 t Below 3,000 Ft H-60 0 0	Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 3,315 Alt 2 H-60 - State Waters Alt 2 H-60 C	H-53	F-18 0 F-18 0 F-18 0 F-18 0	F-35 0 F-35 0 F-35	P-3 0 P-3 0 P-3 0	P-8 O O P-8 O O P-8 O O	E-2C O	AV-8B AV-8B AV-8B	AH-1 0	MV-22 0 MV-22 0 MV-22 0 MV-22
UH-1 NE Anr UH-1 NE LTC UH-1 NE Anr UH-1 CHERR	0 nual F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hours Fligh Learjet Learjet Learjet Learjet Annual Ho Learjet LTOs	H-60	Alt 2 H-60 1 - State Waters Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 C - State Waters Alt 2 H-60 3,315 C - State Waters Alt 2 H-60 3,000 Ft. Alt 2 H-60 612	H-53 H-53 H-53 H-53 H-53	F-18 0	F-35 0 F-35 0 F-35 0 F-35 0	P-3 0 P-3 0 P-3 0 P-3 0 P-3 24	P-8 O P-8 S P-8 O O P-8 O O O O O O O O O	E-2C O E-2C	AV-8B AV-8B AV-8B AV-8B AV-8B	AH-1 O O AH-1 O O	MV-22 0 MV-22 0 MV-22 0 MV-22 0
NE Anr UH-1 NE LTC UH-1 NE LTC UH-1 CHERR UH-1	0 nual F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hours Fligh Learjet Learjet Learjet Learjet Hours Fligh Learjet Learjet Learjet	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft Alt 1 H-60 0 1,843 H-60 0 0 0 t Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft H-60 0 0 0	Alt 2 H-60 C - State Waters Alt 2 H-60 Source Alt 2 H-60	H-53	F-18 0 F-18 0 F-18 0 F-18 0	F-35 0 F-35 0 F-35 0 F-35 0 F-35	P-3 0 P-3 24	P-8 O P-8 8 P-8 O P-8 O P-8 4 P-8 4 P-8 P-8 C P-8 P-8 C P-8 P-	E-2C	AV-8B	AH-1 O AH-1 O AH-1 O AH-1 O AH-1 O AH-1 O AH-1 AH-1	MIV-22 M
UH-1 KW An UH-1 UH-1 NE Anr UH-1 NE Anr UH-1 CHERR UH-1	0 nual F	Hours Fligh Learjet Learjet Learjet Hours Fligh Learjet Learjet Learjet Learjet Learjet Learjet Learjet	H-60 0 0 0 0 11 Below 3,000 Ft H-60 0 0 0 1 Below 3,000 Ft Alt 1 H-60 0 0 0 1,843 H-60 0	Alt 2 H-60 1 - State Waters Alt 2 H-60 Alt 2 H-60 3,315 Alt 2 H-60 - State Waters Alt 2 H-60 6 3,000 Ft. Alt 2 H-60 612 Alt 2 H-60	H-53 H-53 H-53 H-53 H-53	F-18 0	F-35 0 F-35 0 F-35 0 F-35 0	P-3 0 P-3 0 P-3 0 P-3 0 P-3 24	P-8 O P-8 8 P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O P-8 O	E-2C O E-2C	AV-8B	AH-1 O O AH-1 O O	MIV-22 M
UH-1 KW An UH-1 UH-1 NE Anr UH-1 NE Anr UH-1 CHERR UH-1	0 nual F	Hours Fligh Learjet Learjet Learjet Hours Fligh Learjet Learjet Learjet Learjet Learjet Learjet Learjet	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft Alt 1 H-60 0 1,843 H-60 0 0 0 t Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft H-60 0 0 0	Alt 2 H-60 1 - State Waters Alt 2 H-60 Alt 2 H-60 3,315 Alt 2 H-60 - State Waters Alt 2 H-60 6 3,000 Ft. Alt 2 H-60 612 Alt 2 H-60	H-53 H-53 H-53 H-53 H-53	F-18 0	F-35 0 F-35 0 F-35 0 F-35 0 F-35	P-3 0 P-3 24	P-8 O P-8 8 P-8 O P-8 O P-8 4 P-8 4 P-8 P-8 C P-8 P-8 C P-8 P-	E-2C	AV-8B	AH-1 O AH-1 O AH-1 O AH-1 O AH-1 O AH-1 O AH-1 AH-1	MIV-22 M
UH-1 NE ANT UH-1 NE ANT UH-1 NE ANT UH-1 CHERR UH-1 CHERR UH-1 CHERR	0 nual F	Hours Fligh Learjet Learjet Learjet Hours Fligh Learjet Learjet Learjet Learjet Learjet Annual Ho Learjet Annual Ho Learjet	H-60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alt 2 H-60 Alt 2 H-60 Alt 3 H-60 Alt 4 H-60 Alt 5 H-60 Alt 5 H-60 Alt 6 H-60 Alt 7 H-60 Alt 7 H-60 Alt 8 H-60 Alt 8 H-60 Alt 9 H	H-53 H-53 H-53 H-53 H-53 H-53 H-53 H-53	F-18 0 F-18 0 F-18 0 F-18 0 F-18 0 F-18 0	F-35 0 F-35 0 F-35 0 F-35 0 F-35 1 7	P-3 0 P-3 0 P-3 0 P-3 1 0 P-3 1 157	P-8 O P-8 S P-8 O O O O O O O O O	E-2C O E-2C O	AV-8B	AH-1 AH-1 O	MIV-22 0 MIV-22 0 MIV-22 0 MIV-22 5 MIV-22 0
WH-1 KW An UH-1 NE Anr UH-1 NE ITG UH-1 CHERR UH-1 CHERR UH-1 CHERR UH-1 CHERR UH-1 CHERR UH-1	0 nual F 0 oos 0 nual F 0 Y PT 0 Y PT 0 Y PT	Hours Fligh Learjet Learjet Learjet Learjet Hours Fligh Learjet Learjet Annual Ho Learjet Annual Ho Learjet Larjet Annual Ho Learjet Learjet	H-60 0 0 0 1 H-60 0 0 0 1 H-60 0 0 0 1 H-60 0 1 H-60 0 0 1 H-60 0 0 0 0 0 0 0 0 0	Alt 2 H-60 1 - State Waters Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 - State Waters Alt 2 H-60 (3,000 Ft. Alt 2 H-60 Alt 2 H-60 (612 Alt 2 H-60 (7) Alt 2 H-60 (8) Alt 2 H-60 (9) Alt 2 H-60 (10)	H-53 H-53 H-53 H-53 H-53 H-53 Uwaters H-53	F-18 0 F-18 F-18 F-18 F-18 F-18 F-18 F-18 F-18	F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35 24 F-35 0 F-35	P-3 0 P-3 0 P-3 0 P-3 10 P-3 0 P-3 0 P-3 0 P-3 0 P-3 0 P-3	P-8	E-2C O E-2C O	AV-8B	AH-1 O	MV-22 0 MV-22 0 MV-22 0 MV-22 5 MV-22 5 MV-22 22
UH-1 KW An UH-1 NE An UH-1 NE LTC UH-1 NE An UH-1 CHERR UH-1 CHERR UH-1 CHERR UH-1	0 nual F 0 oos 0 nual F 0 Y PT 0 Y PT 0 Y PT	Hours Fligh Learjet	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0 1,843 H-60 0 0 1,843 H-60 0 0 0 t Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft H-60 0 0 233.5 H-60 0 233.5 H-60 0 2.4	Alt 2 H-60 C - State Waters Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 C - State Waters Alt 2 H-60	H-53 H-53 H-53 H-53 H-53 H-53 H-53 H-53	F-18 0 F-18	F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35 157 F-35	P-3 0 P-3 0 P-3 0 P-3 0 P-3 0 P-3 0 P-3 157 P-3	P-8	E-2C O E-2C O	AV-8B	AH-1 0 AH-1 0 AH-1 0 AH-1 0 AH-1 0	MIV-22 O
UH-1 NE ANT UH-1 NE ITC UH-1 NE ANT UH-1 CHERR UH-1 CHERR UH-1 CHERR UH-1 CHERR UH-1	0 nual F 0 os 0 rual F 0 oy PT 0 oy PT 0 oy PT 0 o	Hours Fligh Learjet Hours Fligh Learjet Learjet Learjet Learjet Annual Ho Learjet Annual Ho Learjet Annual Ho Learjet Learjet Learjet Learjet	H-60 0 0 0 1 H-60 0 0 0 1 H-60 0 0 0 1 H-60 0 1 H-60 0 0 1 H-60 0 0 0 0 0 0 0 0 0	Alt 2 H-60 C - State Waters Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 C - State Waters Alt 2 H-60	H-53 H-53 H-53 H-53 H-53 H-53 H-53 H-53	F-18 0 F-18 F-18 F-18 F-18 F-18 F-18 F-18 F-18	F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35 24 F-35 0 F-35	P-3 0 P-3 0 P-3 0 P-3 10 P-3 0 P-3 0 P-3 0 P-3 0 P-3 0 P-3	P-8	E-2C O E-2C O	AV-8B	AH-1 O	MV-22 0 0 MV-22 0 MV-22 0 MV-22 5 MV-22 5 MV-22 22
UH-1 NE Ann UH-1 NE Ann UH-1 NE LTG UH-1 NE LTG UH-1 CHERR UH-1 CHERR UH-1 OTHER	0 nual F	Hours Fligh Learjet Hours Fligh Learjet Learjet Learjet Learjet Annual Ho Learjet Annual Ho Learjet Annual Ho Learjet Learjet Learjet Learjet	H-60 0 0 0 1t Below 3,000 Ft H-60 0 0 1,843 H-60 0 0 1,843 H-60 0 0 0 t Below 3,000 Ft H-60 0 0 0 t Below 3,000 Ft H-60 0 0 233.5 H-60 0 233.5 H-60 0 2.4	Alt 2 H-60 C - State Waters Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 Alt 2 H-60 C - State Waters Alt 2 H-60	H-53 H-53 H-53 H-53 H-53 H-53 H-53 H-53	F-18 0 F-18	F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35 157 F-35	P-3 0 P-3 0 P-3 0 P-3 0 P-3 0 P-3 0 P-3 157 P-3	P-8	E-2C O E-2C O	AV-8B	AH-1 0 AH-1 0 AH-1 0 AH-1 0 AH-1 0	MV-22 0 MV-22 0 MV-22 0 MV-22 0 MV-22 0 MV-22 1 MV-22 1 MV-22 1 MV-22
WH-1 NE Ann UH-1 NE Ann UH-1 NE Ann UH-1 CHERR UH-1 CHERR UH-1 OTHER UH-1 OTHER UH-1 OTHER UH-1	0 nual F 0 0 o o o o o o o o o o o o o o o o o o	Hours Fligh Learjet Hours Fligh Learjet Learjet Learjet Learjet Annual Ho Learjet Annual Ho Learjet Annual Ho Learjet Learjet Learjet Learjet	H-60 0 0 1 H-60 0 0 0 1 H-60 0 0 0 1 H-60 0 1 H-60 0 0 1 H-60 0 0 0 1 H-60 0 0 0 0 0 0 0 0 0	Alt 2 H-60 C 3,000 Ft. Alt 2 H-60	H-53 H-53 H-53 H-53 H-53 H-53 H-53 H-53	F-18 0 F-18	F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35 0 F-35	P-3 0 P-3	P-8	E-2C O E-2C O	AV-8B	AH-1 O O AH-1 O O AH-1 O O O O O O O O O	MIV-22

1 Provided by US Navy, AFTT Training Air Analysis.xisx , March 30 2017; IKE C2X.xisx , March 29 2017; C2X Sorties hours .xisx , March 13 2017; Marine Corps training cycle.xisx , March 29 2017, IVAVAIR Assumptions.docx , March 30 2017.

TAB N: AIRCRAFT ENGINE EMISSION FACTOR SOURCES AH-1W AESO Memorandum Report No. 9824, Revision C. November 2015. AESO Memorandum Report No. 9913, Revision D, November 2009. AESO Memorandum Report No. 9963, Revision C, November 2009. AV-8B - Cruise CH-53 - LTO AESO Memorandum Report No. 2015-01 Revision B, September 2015. CH-53 - cruise E-2 / E-2C - Cruise AESO Memorandum Report No. 9920, Revision E. September 2015. Engine Datasheet 8CM051, ICAO Engine Exhaust Emissions Data Bank (ICAO, 2013) P-8 - Cruise F-35B - LTO JSF Emissions Package_2011-12-28.xls from Flint Webb, 2013. F-35B Cruise From "Demonstration Sortie Cruise" from F-35 West-Coast Basing EIS, 2014 FA-18E/F & EA-18G - LTO AESO Memorandum Report No. 9815, Revision H. November 2015 FA-18E/F & EA-18G Cruise AESO Memorandum Report No. 9933, Revision E. November 2015 Learjet Air Emissions Guide for Air Force Mobile Sources, Air Force Civil Engineer Center, August 2013 HH-60-LTO AESO Memorandum Report No. 9929 Revision C. January 2016 HH-60 - cruise AESO Memorandum Report No. 9911, Revision C, Feb 2010. V-22 - LTO AESO Memorandum Report No. 9946, Revision G, April 2016 V-22 - Cruise UH-1N - LTO AESO Memorandum Report No. 9904, Revision A, May 1999 UH-1N - Cruise AESO Memorandum Report No. 9962, Rev A November 2009 PM2.5 = PM10 emissions, in accordance with AESO Memorandum Report No. 2013-04 Revision A, January 2014. PM2.5 to PM10 Ratio for Aircraft Emitted Particles AESO Report 2012-01D, December 2014. Sulfur Dioxide Emission Index Using JP-5 and JP-8 Fuel. Received updated Memoranda too late to update for this version, will incorporate for Final EIS.

TAB O: MUNITION ACTIVITY DATA

-	Men	vilinas/64ato	dah	
	Projec	dilet	Country medium	
Location	Smail Caliber (Nan- HSplasher)	Marine Marier	Flare	
	Number	Muniter	Humber	
Boston, MA	0	- 0		
Nerroe ansett Bay, RI	9,320	+65		
Exite_III				
Desaware Bay, DE	0	0		
Wilmington, DE	10	.0		
Hampton Roads, VA	. 0	- 0		
James River and Trigutaries, VA	102,000	680	30,40	
rark River, VA	, D	-30		
Lower Chesapeske Bay	28/300	0		
Morehead City, NC	0			
Cooper Toyery 50	5,100	. 0		
Savarinah, GA	0	. 0		
Sinus Buy, QA	- 0	- 0		
Mayport_FL	- 0	0	-	
Part Canwers, TL	12800	15/0		
Tampa, FL	0	0		
Begumpnt, CK	0	- 0		
Corpus Christi, TX	- 9	.0		

Wunition's for Lise During Training in a Single Year under Alternative: 1 and 7-Reyand State Waters

				Range i	Conquer			
Samultisen/Samerhuls	wortheast	WICHES	Cherry Paint	MA	Key West	GOMER	Other RC	SWAEK TO
	Number	Number	Number	Number	Number	Wienber	Number	Number
Boords			-					
earths (Exphanne)	0	76	- 5	50	-0	- 4	- 0	1
Formbi (Non-Explorate)	0	3,346	596	1,700	0	330	- 0	
Projectiles			7 Y					
Small-Caliber (Non-Explosive)	9,6300	9,806,350	638,675	1,636,275	· D	297,500	200,000	
Small-Califor (Cashe Only)	0	3,400	0	1,000	- 0	0	- 0	
Medium Caliber (Explosive)	- 0	05,312	23,300	56,962	-0	6,20	1,360	
Medium Caliber (Non-Explosive)	1/000	1930, 705	.08,574	435,234	56,000	32,000	21,250	
Large Caliber (Explosive)	- 0	2,996	756	1,160	- 0	300	90	20
Large Calibia (Non-Explosive)		3,802	1,130	1,389	-0	fi300	138	
Large Caliber (Casing only)	10	- 0	360	0	- 0	0	-0	
Missies			100					
Wrasies (Explosive)	- 4	155	106	196		d	- 6	
Rockets (Explanes)	, O	1,,54	76	1,330	- 0	75	- 0	
Rockets (Nov-Explosive)	. 0	2,616	239	2/396	9	700	- 0	
Rockets (Non-Explosive): Rischerte	- 0	349	15	158	- 0	15	- 0	
Countermensures			-					
PARE	.0	1,000	22,300	38,000	31,000	1,840	- 0	
Ottor					-			4
Crevinces (Explosive)	56	70	28	26	. 0	28	C	
Humination Flure	- 0	4.0	4-9	4.6		- 0		
Marine Marker	1/92	30,100	992	1,269	-0	200	- 24	
1007	37,882	4,309,341	3.80,843	2,754,749	276,062	285,862	222,016	21

fortibons for the During Testing in a Single Year under Alternatives 1 and 2 - Beyond State Weters.

-			Ramps 0	omph K			70	Hog Ranges	
Munitions/Materials	Northwest	VACAPID:	Chiny Polic	ini.	Key West	GOMEX	NOWC Neveport	SFOME	Panama Enty
	Winder	Number	Huniber:	Wanter:	Number	Wamber.	Wimber	Humber	Humber
Annés .									
Sowita (Englishire)	0	- 2	0		. 0	9		0	0
Borrin (Non-Emissive) Projectives	0	964	- 0	1.2	- 0	d	- 0	-0	0
Small Caliber (Nen-Explosive)	4,300	77,800	4,800	4,800	4,800	17,800	- 0	0	7,000
Medium-Caliber (Explotoral	3.360	17:270	3.350	14,860	3,360	3.300	-0	- 0	
Medium Coliber (Non-Explosive)	9,000	233,660	8,160	237,901	32,660	22,960	- d	-0	5,400
Large Califfus (Excelosive)	192	3,768	192	6,276	830	203	-0	-4	-100
Large Custrer (Non-Explosive)	1,761	8,247	1,440	14,524	3,130	2,774	- 0	- 0	7390
Attacher	V								
Missiles (Explasive)	I 10	176	1 0	- 70	0	2.2	d	0	
Missiks (Nan Explosive)	24	899	24	136	31,		-0	- 0	- 0
Rockets (Explosive)	- 0	306	0	7350	-0	- 0	0	0	-0
Sockets (Non-Explosive)	. 0	746	- 0	406	- 0	- 0	0	. 0	-0
Rockets (Non-Explosive): Finchette Countemneosures	1 0	349	0	198	0	0	9	0	
Flarts	10	20,1%	Ö	10	-0	-500	-0	/0	- 0

Attraction to agree timities arounded by us N any, 4-FT Training an Analysia of March 25), AFT makers because the control of the Arms (Match 25), AFT makers because the control

TAB P. BASELINE (V2 PREFERRED ALTERNATIVE) MUNITION SUMMARY¹

TOTALS BY		СО	NOx	VOC	SOx	PM10	PM2.5
COITH EEN TOI	Northeast / NUWC Newport	0.0685	0.0018	0.0000	0.0000	0.0344	0.0063
TESTING	Virginia Capes	26.8013	1.1019	0.0000	0.0000	1.9281	1.2623
COMBINED (TPY)	Navy Cherry Pt.	5.5601	0.1465	0.0000	0.0000	0.1426	0.0755
1	Jacksonville	14.1096	0.5870	0.0000	0.0001	1.4573	0.8805
1	Key West	1.0447	0.0405	0.0000	0.0000	0.0221	0.0155
	GOMEX / Panama City	1.9943	0.0437	0.0000	0.0000	0.1222	0.0739
	Other AFTT	0.8713	0.0820	0.0000	0.0000	0.0262	0.0159
	Grand Total for ALT 2	50.4497	2.0034	0.0000	0.0001	3.7328	2.3300

¹Atlantic Fleet Forces Training and Testing Final Environmental Impact Statement/Overseas Environmental Impact Statement, August 2013

RECORD OF NON-APPLICABILITY FOR CLEAN AIR ACT CONFORMITY

The proposed action falls under the Record of Non-Applicability (RONA) category and is documented with this RONA.

Proposed Action.

Action Proponent: US Navy, Fleet Forces

Location: Jacksonville, FL and surrounding area Atlantic Fleet Testing and Training Proposed Action Name:

Proposed Action & Emissions Summary:

The action involves operation of military aircraft, vessels, and small boats in order to achieve requisite training and testing requirements. Small boats and vessels would be operational in the riverine environment in the Jacksonville Florida locality. These nearshore activities generate emissions primarily through fossil fuel combustion from engine operation. Part of Nassau County, which is adjacent to Jacksonville, is nonattainment for sulfur dioxide. As a result, proposed action emissions were evaluated to assess compliance with the General Conformity Rule de minimis thresholds. Table C.C.2-1 provides a summary of the evaluation.

Table C.C.2-1: Proposed Action Sulfur Dioxide Emissions Compared to General Conformity Rule de Minimis Thresholds

Annual Emissions	SO ²
Alternative 1	11.39
Baseline	10.50
Net Change	0.89
de minimis thresholds	100
Potential Exceedance	No
Alternative 2	12.58
Baseline	10.50
Net Change	2.08
de minimis thresholds	100
Potential Exceedance	No

Included with this RONA is a summary of the calculations and data used. The U.S. Navy concludes that de minimis thresholds for sulfur dioxide would not be exceeded as a result of implementation of the proposed action. Formal Conformity Determination procedures are not required, resulting in this RONA. The emissions data supporting that conclusion is shown in Table C.C.2-1, which is a summary of the calculations, methodology, and data attached to this RONA.

Control Region

Affected Air Basin(s):	Jacksonville (Florida)-Brunswick (Georgia) Interstate Air Quality
Date RONA prepare	ed:
RONA prepared by	:
RONA Approval:	
Signature:	
Name/Rank:	Date:
Position:	

This page intentionally left blank.

APPENDIX D Acoustic and Explosive Concepts

This page intentionally left blank.

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

APPENDIX D	ACO	D-1		
D.1	Termir	nology		D-1
	D.1.1	Sound		D-1
	D.1.2	Signal ve	rsus Noise	D-1
	D.1.3	Frequen	cy and Wavelength	D-2
	D.1.4	Sound A	mplitude	D-2
	D.1.5	Impulsiv	e versus Non-Impulsive Sounds	D-3
	D.1.6	Acoustic	Impedance	D-3
	D.1.7	Duty Cyc	le	D-3
	D.1.8	Resonan	ce	D-3
D.2	Sound	Metrics		D-4
	D.2.1	Pressure		D-4
	D.2.2	Sound Pr	essure Level	D-4
	D.2.3	Sound Ex	posure Level	D-5
	D.2.4	Particle I	Motion	D-7
	D.2.5	Impulse.		D-7
D.3	Predic	ting How S	Sound Travels	D-7
	D.3.1	Speed of	Sound	D-8
	D.3.2	Source D	irectivity	D-9
	D.3.3	Sound At	tenuation	D-9
		D.3.3.1	Geometrical Spreading Loss	D-10
		D.3.3.2	Absorption	D-11
		D.3.3.3	Refraction	D-11
		D.3.3.4	Reflection and Multipath Propagation	
		D.3.3.5	Diffraction, Scattering, and Reverberation	
		D.3.3.6	Surface and Bottom Effects	D-13
		D.3.3.7	Air-Water Interface	D-14
D.4	Audito	ry Percep	tion	D-15
D.5	Explos	ives		D-17
	D.5.1	Explosio	ns in Air	D-18
		D.5.1.1	Fragmentation	D-19
	D.5.2	Explosio	ns in Water	D-19

List of Figures

Figure D-1: Various Sound Pressure Metrics for a Hypothetical (a) Pure Tone (Non- Impulsive) and (b) Impulsive Sound	D-4
Figure D-2: Summation of Acoustic Energy from a Hypothetical, Intermittently Pinging, Stationary Sound Source	D-6
Figure D-3: Cumulative Sound Exposure Level under Realistic Conditions with a Moving, Intermittently Pinging Sound Source	D-7
Figure D-4: Sound Velocity Profile (Sound Speed) Is Related to Temperature, Salinity, and Hydrostatic Pressure of Seawater	D-9
Figure D-5: Graphical Representation of the Inverse Square Relationship in Spherical Spreading	D-10
Figure D-6: Sound Propagation Showing Multipath Propagation and Conditions for Surface Duct	D-12
Figure D-7: Characteristics of Sound Transmission Through the Air-Water Interface	D-15
Figure D-8: A-weighting for Human Hearing of Sounds in Air (OSHA)	D-16
Figure D-9: Impulse Shown as a Function of Pressure over Duration at a Specific Location	D-18

List of Tables

This section does not contain tables.

APPENDIX D ACOUSTIC AND EXPLOSIVE CONCEPTS

This section introduces basic principles and terminology for acoustics and explosives to help the reader understand the analyses presented in this Environmental Impact Statement/Overseas Environmental Impact Statement Draft (EIS/OEIS). This section briefly explains the transmission of sound and explosive energy; introduces some of the basic mathematical formulas used to describe propagation; and defines acoustical terms, abbreviations, and units of measurement. The difference between transmission of sound in water and in air is also discussed. Finally, it discusses methods used to analyze what animals may hear.

A number of other sources provide a more extensive background on acoustics and explosives than presented in this overview and are recommended for further inquiry. These include, but are not limited to:

- Marine Mammals and Noise (Richardson, Greene, Malme, & Thomson, 1995) for a general overview
- Principles of Underwater Sound (Urick, 1983), Fundamentals of Acoustical Oceanography (Medwin & Clay, 1998), and Principles of Marine Bioacoustics (Au & Hastings, 2008) for comprehensive explanations of underwater acoustics

D.1 TERMINOLOGY

The following terms are used in this document when discussing sound and the attributes of a sound source.

D.1.1 SOUND

Sound is produced when an elastic medium (such as air or water) is set into motion, typically by a vibrating object within the medium. As the object vibrates, its motion is transmitted to adjacent "particles" of the medium. The motion of these particles is transmitted to adjacent particles, and so on. The result is a mechanical disturbance (the "sound wave") that moves away from the source and propagates at a medium-dependent speed (the "sound speed"). As the sound wave travels through the medium, the individual particles of the medium oscillate about their original positions but do not actually move with the sound wave. As the particles of the medium move back and forth they create small changes about the original values of the medium density, pressure, and temperature.

Sound may be described by both physical and subjective attributes. Physical attributes, such as sound amplitude (Section D.1.4) and frequency (Section D.1.3), may be directly measured. Subjective (or sensory) attributes like loudness and pitch depend on an animal's perception of a sound. Physical attributes of a sound at a particular point are usually obtained by measuring pressure changes as sound waves pass.

D.1.2 SIGNAL VERSUS NOISE

When sound is purposely created to convey information, communicate, or obtain information about the environment, it is often referred to as a signal. Examples of sounds that could be considered signals are sonar pings, marine mammal vocalizations and echolocation clicks, tones used in hearing experiments, and small sonobuoy explosions used for submarine detection.

Noise is undesired sound (American National Standards Institute, 1994). Sounds produced by naval aircraft and vessel propulsion are considered noise because they represent possible inefficiencies and

increased detectability. Whether a sound is perceived as noise often depends on the receiver (i.e., the animal or system that detects the sound). For example, small explosives and sonar used to generate sounds that can locate an enemy submarine produce signals that are useful to sailors engaged in antisubmarine warfare, but are assumed to be noise when detected by marine mammals.

The combination of all sounds at a particular location, whether these sources are located near or far, is ambient noise (American National Standards Institute, 1994). Ambient noise includes natural sources, such as sound from crashing waves, rain, and animals (e.g., snapping shrimp), and anthropogenic sources, such as seismic surveys and vessel noise.

D.1.3 FREQUENCY AND WAVELENGTH

Frequency is the physical attribute most closely associated with the subjective attribute "pitch"; the higher the frequency, the higher the pitch. Frequency is defined by the number of oscillations in the sound pressure or particle motion per second. One hertz (Hz) is equal to one oscillation per second, and one kilohertz (kHz) is equal to 1,000 oscillations per second. Human hearing generally spans the frequency range from 20 Hz to 20 kHz. The frequency range of a sound is called its bandwidth.

Pure tones have energy at a constant, single frequency. Complex tones contain energy at multiple, discrete frequencies, rather than a single frequency. A harmonic of a sound at a particular frequency is a multiple of that frequency (e.g., harmonic frequencies of a 2 kHz tone are 4 kHz, 6 kHz, 8 kHz, etc.). A source operating at a nominal frequency may emit several harmonic frequencies, but at lower amplitudes. Some sources may also emit subharmonics; however, these are typically many orders of magnitude less powerful than at the center frequency. Sounds with large bandwidth ("broadband" sounds) have energy spread across many frequencies.

In this document, sounds are generally described as either low- (less than 1 kHz), mid- (1 kHz–10 kHz), high- (10 kHz–100 kHz), or very high- (greater than 100 kHz) frequency. Hearing ranges of marine animals (e.g., fish, birds, sea turtles, and marine mammals) are quite varied and are species-dependent. For example, some fish can hear sounds below 100 Hz and some species of marine mammals have hearing capabilities that extend above 100 kHz. Acoustic impact analyses must therefore focus not only on the sound amplitude (i.e., pressure or particle motion, see Section D.1.4), but on the sound frequency and the hearing capabilities of the species being considered.

The wavelength of a sound is the distance between wave peaks. Wavelength decreases as frequency increases. The frequency multiplied by the wavelength equals the speed of sound in a medium, as shown in this equation:

Frequency (s^{-1}) x wavelength (m) = sound speed (m/s)

The approximate speed of sound in sea water is 1500 m/s and in air is 340 m/s, although speed varies depending on environmental conditions [e.g., pressure, temperature, and, in the case of sea water, salinity; see Section D.3.1 (Speed of Sound)].

D.1.4 SOUND AMPLITUDE

Sound amplitude is the physical attribute most closely associated with the subjective attribute loudness. Amplitude is related to the amount that the medium particles oscillate about their original positions and can be thought of as the "strength" of a sound (as the amplitude increases, the loudness also increases). As the sound wave travels, the particles of the medium oscillate but do not actually travel with the

wave. The result is a mechanical disturbance (i.e., the sound wave) that propagates away from the sound source.

Sound amplitude is typically characterized by measuring the acoustic pressure or particle motion (see Section D.2, Sound Metrics).

D.1.5 IMPULSIVE VERSUS NON-IMPULSIVE SOUNDS

Although no standard definitions exist, sounds may be broadly categorized as impulsive or non-impulsive. Impulsive sounds have short durations, rapid rise-times, broad frequency content, and high peak sound pressures. Impulsive sounds are often produced by processes involving a rapid release of energy or mechanical impacts (Hamernik & Hsueh, 1991). Explosions, air guns, weapon firing, and impact pile driving are examples of impulsive sound sources analyzed in this document. In contrast, sonars, vessel operation, vibratory pile driving, and underwater transducers lack the characteristics of impulsive sources and are thus examples of non-impulsive sound sources. Non-impulsive sounds can be essentially continuous, such as machinery noise, or intermittent, such as sonar pings.

D.1.6 ACOUSTIC IMPEDANCE

Acoustic impedance is a property of the propagation medium (air, water, or tissue) that can be simply described as the opposition to flow of a pressure wave. Acoustic impedance is a function of the density and speed of sound in a medium. Sound transmits more readily through materials of similar acoustic impedance, such as water and animal tissue. When sound waves encounter a medium with different acoustic impedance (for example, an air-water interface), they reflect and refract [see Sections D.3.3.3 (Refraction) and D.3.3.4 (Reflection and Multipath Propagation)], creating more complex propagation conditions. For example, sound traveling in air (low impedance) encountering the water surface (high impedance) will be largely reflected, preventing most sound energy in the air from being transmitted into the water. The impedance difference at the tissue-air interface in animals with gas-containing organs also makes these areas susceptible to damage when exposed to the shock wave near an explosion, since the transmission from high-impedance to low-impedance can result in large motion at the boundary.

D.1.7 DUTY CYCLE

Duty cycle describes the portion of time that a sound source actually generates sound. It is defined as the percentage of time during which a sound is generated over a total operational time period. For example, if a sonar source produces a one-second ping once every 10 seconds, the duty cycle is 10 percent. Duty cycles vary among different acoustic sources; in general, a low duty cycle could be considered 20 percent or less and a high duty cycle 80 percent or higher.

D.1.8 RESONANCE

Resonance occurs when an object is vibrated at a frequency near its "natural frequency" or resonant frequency. The resonant frequency can be considered the preferred frequency at which an object will oscillate at a greater magnitude than when exposed to other frequencies. In this document, resonance is considered in relation to the size of an air bubble or air cavity in an animal that is exposed to high pressure waves and the potential for injury. The natural frequencies of dolphin and beluga lungs near the surface are about 36 Hz and 30 Hz, respectively (Finneran, 2003), the natural frequency of lungs of a large whale would be lower, while the natural frequency of small air bubbles would be much higher. Resonant frequencies would tend to increase as an animal dives, since the increased water pressure would compress an air-filled structure and reduce its size.

D.2 SOUND METRICS

The sound metrics described here are used in this document to quantify exposure to a sound or explosion.

D.2.1 PRESSURE

Sound pressure is the incremental variation in a medium's static pressure as a sound wave travels through it. Sound pressure is typically expressed in units of pascals (Pa) (1 Pa = 1 N/m² = 10 μ bar = 1.45×10⁻⁴ psi), although explosive overpressure may also be described in pounds per square inch (psi).

Various sound pressure metrics are illustrated in Figure D-1 for (a) a non-impulsive sound (a pure tone in this illustration) and (b) an impulsive sound. As shown in Figure D-1, the non-impulsive sound has a relatively gradual rise in pressure from static pressure (the ambient pressure without the added sound), while the impulsive sound has a near-instantaneous rise to a high peak pressure. The peak pressure shown on both illustrations is the maximum absolute value of the instantaneous sound pressure during a specified time interval ("zero-to-peak" or "peak"), which accounts for the values of peak pressures below the static (ambient) pressure (American National Standards Institute, 2013). "Peak-to-peak" pressure is the difference between the maximum and minimum sound pressures. The root-mean-square (rms) value is often used to describe the average sound pressure level of sounds, and sound pressure levels provided in this EIS/OEIS are root-mean-square values unless otherwise specified. As the name suggests, this method takes the square root of the average squared sound pressure values over a time interval. The duration of this time interval can have a strong effect on the measured rms sound pressure for a given sound, especially where pressure levels vary significantly, as during an impulsive sound exposure. If the analysis duration includes a significant portion of the waveform after the sound pressure has returned to zero, the rms pressure would be relatively low. If the analysis duration includes only the highest pressures of the impulsive exposure, the rms value would be comparatively high. For this reason, it is important to specify the duration used to calculate the rms pressure for impulsive sounds.

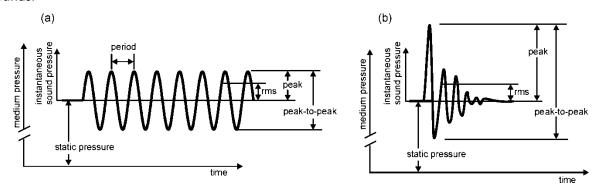


Figure D-1: Various Sound Pressure Metrics for a Hypothetical (a) Pure Tone (Non-Impulsive) and (b) Impulsive Sound

D.2.2 SOUND PRESSURE LEVEL

The most common sound level metric is sound pressure level (SPL). Because many animals can detect very large pressure ranges and judge the relative loudness of sounds by the ratio of the sound pressures (a logarithmic behavior), sound pressure level (SPL) is described by taking the logarithm of the ratio of the sound pressure to a reference pressure. Use of a logarithmic scale compresses the wide range of measured pressure values into a more useful scale.

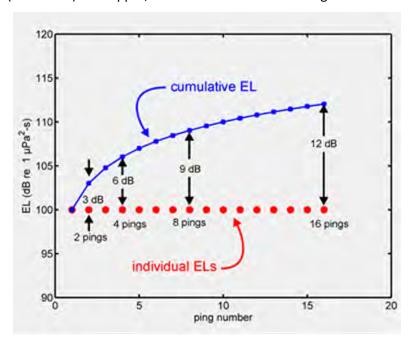
Sound pressure levels are normally expressed in decibels (dB). A dB is 1/10 of a bel, a unit of level when the logarithm is to the base ten and the quantities concerned are proportional to power (American National Standards Institute, 2013). Sound pressure level in dBs is calculated as follows:

$$SPL = 20\log_{10}\left(\frac{P}{P_{ref}}\right)$$

where P is the sound pressure and P_{ref} is the reference pressure. Unless stated otherwise, the pressure P is the rms value of the pressure (American National Standards Institute, 2013). In some situations, SPL is calculated for the peak pressure rather than the rms pressure. On the occasions when rms pressure is not used, the pressure metric will be stated (e.g., peak SPL means an SPL calculated using the peak pressure rather than the rms pressure).

When a value is presented in dBs, it is important to also specify the value and units of the reference quantity. Normally the numeric value is given, followed by the text "re," meaning "with reference to," and the numeric value and unit of the reference quantity. For example, a pressure of 1 Pa, expressed in dBs with a reference of 1 micropascal (μ Pa), is written 120 dB re 1 μ Pa. The standard reference pressures are 1 μ Pa for water and 20 μ Pa for air. The reference pressure for air, 20 μ Pa, is the approximate lowest threshold of human hearing. It is important to note that because of the differences in reference units, the same sound pressures would result in different SPL values for each medium (the same sound pressure measured in water and in air would result in a higher SPL in water than in air, since the in-air reference is larger). Therefore, sound pressure levels in air and in water should never be directly compared.

D.2.3 SOUND EXPOSURE LEVEL

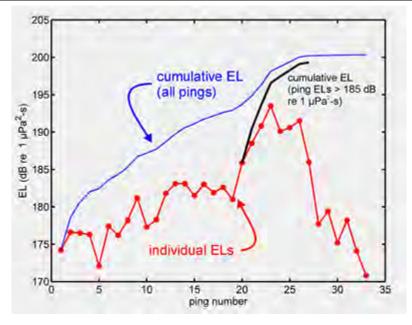

Sound exposure level (SEL) can be thought of as a composite metric that represents both the SPL of a sound and its duration. Individual time-varying noise events (e.g., a series of sonar pings or an impulsive sound) have two main characteristics: (1) a sound pressure that changes throughout the event and (2) a period of time during which the source is exposed to the sound. SEL can be provided for a single exposure (i.e., a single sonar ping or single explosive detonation) or for an entire acoustic event (i.e., multiple sonar pings or multiple explosive detonations). Cumulative SEL provides a measure of the net exposure of the entire acoustic event, but it does not directly represent the sound level heard at any given time. SEL is determined by calculating the dB level of the cumulative sum-of-squared pressures over the duration of a sound, with units of dB re 1 micropascal squared seconds (re 1 μ Pa²-s) for sounds in water and dB re (20 micropascal) squared seconds [dB re (20 μ Pa)²-s] for sounds in air.

Some rules of thumb for SEL are as follows:

- The numeric value of SEL is equal to the SPL of a 1-second sound that has the same total energy as the exposure event. If the sound duration is 1 second, SPL and SEL have the same numeric value (but not the same reference quantities). For example, a 1 second sound with an SPL of 100 dB re 1 μ Pa has a SEL of 100 dB re 1 μ Pa²-s.
- If the sound duration is constant but the SPL changes, SEL will change by the same number of dBs as the SPL.
- If the SPL is held constant and the duration (T) changes, SEL will change as a function of 10log₁₀(T):
 - o $10 \log_{10}(10) = 10$, so increasing duration by a factor of 10 raises SEL by 10 dB.

- \circ 10 log₁₀ (0.1) = -10, so decreasing duration by a factor of 10 lowers SEL by 10 dB.
- Since 10 $\log_{10}(2) \approx 3$, so doubling the duration increases SEL by 3 dB.
- 0 10 $\log_{10}(1/2)$ ≈ -3, so halving the duration lowers SEL by 3 dB.

Figure D-2 illustrates the summation of energy for a succession of sonar pings. In this hypothetical case, each ping has the same duration and SPL. The SEL at a particular location from each individual ping is 100 dB re $1 \mu Pa^2$ -s (red circles). The upper, blue curve shows the running total or cumulative SEL.



(EL = Exposure Level [i.e., Sound Exposure Level])

Figure D-2: Summation of Acoustic Energy from a Hypothetical, Intermittently Pinging, Stationary
Sound Source

After the first ping, the cumulative SEL is 100 dB re 1 μ Pa²-s. Since each ping has the same duration and SPL, receiving two pings is the same as receiving a single ping with twice the duration. The cumulative SEL from two pings is therefore 103 dB re 1 μ Pa²-s. The cumulative SEL from four pings is 3 dB higher than the cumulative SEL from two pings, or 106 dB re 1 μ Pa²-s. Each doubling of the number of pings increases the cumulative SEL by 3 dB.

Figure D-3 shows a more realistic example where the individual pings do not have the same SPL or SEL. These data were recorded from a stationary hydrophone as a sound source approached, passed, and moved away from the hydrophone. As the source approached the hydrophone, the received SPL from each ping increased, causing the SEL of each ping to increase. After the source passed the hydrophone, the received SPL and SEL from each ping decreased as the source moved farther away (downward trend of red line), although the cumulative SEL increased with each additional ping received (slight upward trend of blue line). The main contributions are from those pings with the highest individual SELs. Individual pings with SELs 10 dB or more below the ping with the highest level contribute little (less than 0.5 dB) to the total cumulative SEL. This is shown in Figure D-3, where only a small error is introduced by summing the energy from the eight individual pings with SEL greater than 185 dB re 1 μ Pa²-s (black line), as opposed to including all pings (blue line).

(EL = Exposure Level [i.e., Sound Exposure Level])

Figure D-3: Cumulative Sound Exposure Level under Realistic Conditions with a Moving,
Intermittently Pinging Sound Source

D.2.4 PARTICLE MOTION

The particles of a medium (e.g., water or air) oscillate around their original position as a sound wave passes. This motion is quantified using average displacement (m or dB re 1pm), velocity (m/s or dB re 1 nm/s²), and acceleration (m/s² or dB re 1 μ m/s²) of the particles (Nedelec, Campbell, Radford, Simpson, & Merchant, 2016). Note that particle velocity is not the same as sound speed, which is how fast a sound wave moves through a medium. Particle motion is directional, whereas pressure measurement is not (Nedelec et al., 2016).

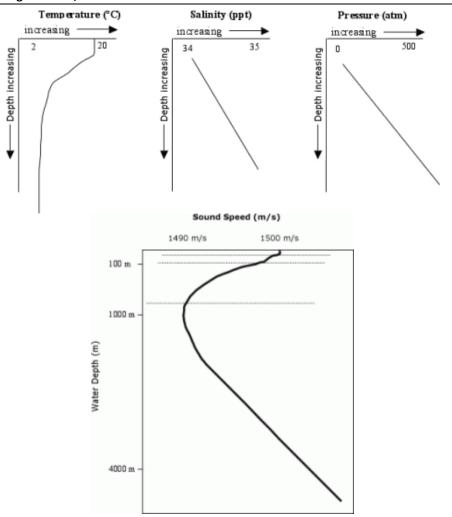
Far from a sound source and without any boundaries that could cause wave interference, particle velocity is directly proportional to sound pressure. Closer to a sound source, particle velocity begins to increase relative to sound pressure. Because this phenomena is related to wavelength, it may be relevant only when very close to sound sources with extremely low frequencies.

D.2.5 IMPULSE

Impulse is a metric used to describe the pressure and time component of a pressure wave. Impulse is typically only considered for high energy exposures to impulsive sources, such as exposures close to explosives. Specifically, positive impulse is the time integral of the initial peak positive pressure with units of Pascal-seconds (Pa-s). Impulse is a measured quantity that is distinct from the term "impulsive," which is not a measurement term, but rather describes a type of sound.

D.3 Predicting How Sound Travels

While the concept of a sound wave traveling from its source to a receptor is relatively simple, sound propagation is quite complex because of the simultaneous presence of numerous sound waves of different frequencies and source levels, and other phenomena such as reflections of sound waves and subsequent constructive (additive) or destructive (cancelling) interferences between reflected and


incident waves. Other factors such as refraction, diffraction, bottom types, and surface conditions also affect sound propagation. While simple examples are provided here for illustration, the Navy Acoustic Effects Model used to quantify acoustic exposures to marine mammals and sea turtles takes into account the influence of multiple factors to predict acoustic propagation [see technical report *Quantitative Analysis for Estimating Acoustic and Explosive Impacts to Marine Mammals and Sea Turtles* (U.S. Department of the Navy, 2017b)].

D.3.1 SPEED OF SOUND

The speed of sound is not affected by the SPL or frequency of the sound, but rather depends wholly on characteristics of the medium through which it is passing (e.g., the density and the compressibility). Sound travels faster through a medium that is harder to compress. For example, water is more difficult to compress than air, and sound travels approximately 340 m/s in air and 1,500 m/s in seawater.

The speed of sound in air is primarily influenced by temperature, relative humidity, and pressure, because these factors affect the density and compressibility of air. Generally, the speed of sound in air increases as air temperature increases.

The speed of sound in seawater also increases with increasing temperature and, to a lesser degree, with increasing hydrostatic pressure and salinity. Figure D-4 shows an example of how these attributes can change with depth. In seawater, temperature has the most important effect on sound speed for depths less than about 300 m. Below 1,500 m, the increasing hydrostatic pressure is the dominant factor because the water temperature is relatively constant. The variation of sound speed with depth in the ocean is called a sound velocity profile.

Source: http://blogs.oregonstate.edu/bioacoustics/2014/10/21/talk-weather/

Figure D-4: Sound Velocity Profile (Sound Speed) Is Related to Temperature, Salinity, and Hydrostatic Pressure of Seawater

D.3.2 SOURCE DIRECTIVITY

Most sonar and other active acoustic sources do not radiate sound in all directions. Rather, they emit sounds over a limited range of angles, in order to focus sound energy on a specific area or object of interest. The specific angles are sometimes given as horizontal or vertical beam width. Some sources can be described qualitatively as "forward-looking," when sound energy is radiated in a limited direction in front of the source, or "downward-looking," when sound energy is directed toward the bottom.

D.3.3 SOUND ATTENUATION

As a sound wave passes through a medium, the sound level decreases with distance from the sound source. This phenomenon is known as attenuation, which is described in terms of transmission loss (TL). The transmission loss is used to relate the source SPL (SL), defined as the SPL produced by a sound source at a distance of one meter, and the received SPL (RL) at a particular location, as follows:

$$RL = SL - TL$$

The main contributors to sound attenuation are as follows (Urick, 1983):

- Geometric spreading of the sound wave as it propagates away from the source
- Sound absorption (conversion of sound energy into heat)
- Scattering, diffraction, multipath interference, and boundary effects

D.3.3.1 Geometrical Spreading Loss

Spreading loss is a geometric effect representing regular weakening of a sound wave as it spreads out from a source. Spreading describes the reduction in sound pressure caused by the increase in surface area as the distance from a sound source increases. Spherical and cylindrical spreading are common types of spreading loss.

In the simple case of sound propagating from a point source without obstruction or reflection, the sound waves take on the shape of an expanding sphere. An example of spherical spreading loss is shown in Figure D-5. As spherical propagation continues, the sound energy is distributed over an ever-larger area following the inverse square law: the pressure of a sound wave decreases inversely with the square of the distance between the source and the receptor. For example, doubling the distance between the receptor and a sound source results in a reduction in the pressure of the sound to one-fourth of its initial value; tripling the distance results in one-ninth of the original pressure, and so on. Since the surface area of a sphere is $4\pi r^2$, where r is the sphere radius, the change in SPL with distance r from the source is proportional to the radius squared. This relationship is known as the spherical spreading law. The transmission loss for spherical spreading between two locations is:

$$TL = 20 \log_{10} (r_2/r_1)$$

where r_1 and r_2 are distances from the source. Spherical spreading results in a 6 dB reduction in SPL for each doubling of distance from the sound source. For example, calculated transmission loss for spherical spreading is 40 dB at 100 m and 46 dB at 200 m.

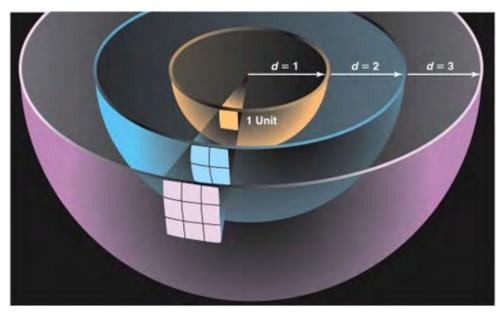


Figure D-5: Graphical Representation of the Inverse Square Relationship in Spherical Spreading

In cylindrical spreading, spherical waves expanding from the source are constrained by the water surface and the seafloor and take on a cylindrical shape. In this case the sound wave expands in the shape of a cylinder rather than a sphere, and the transmission loss is:

$$TL = 10log_{10}(r_2/r_1)$$

Cylindrical spreading is an approximation of sound propagation in a water-filled channel with horizontal dimensions much larger than the depth. Cylindrical spreading predicts a 3 dB reduction in SPL for each doubling of distance from the source. For example, calculated transmission loss for cylindrical spreading is 30 dB at 1,000 m and 33 dB at 2,000 m.

The cylindrical and spherical spreading equations above represent two simple hypothetical cases. In reality, geometric spreading loss is more spherical near a source and more cylindrical with distance, and is better predicted using more complex models that account for environmental variables, such as the Navy Acoustic Effects Model [see technical report *Modeling and Quantitative Analysis of Acoustic and Explosive Impacts to Marine Species due to Navy Training and Testing Activities* (DON 2017)].

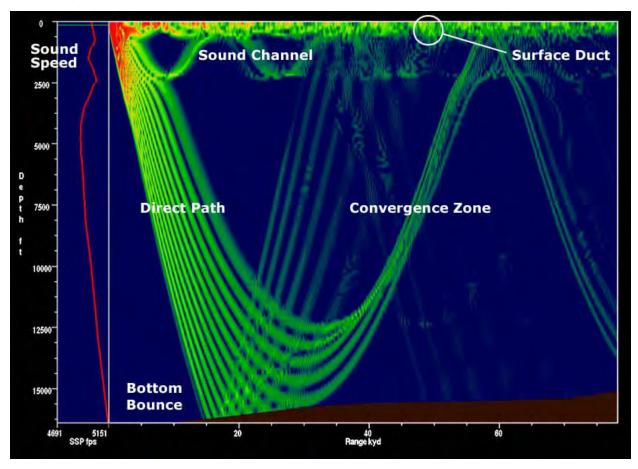
However, when conducting simple spreading loss calculations in near shore environments, "practical spreading loss" can be applied, where:

$$TL = 15log_{10}(r_2/r_1)$$

Practical spreading loss accounts for other realistic losses in the environment, such as absorption and scattering, which are not accounted for in geometrical spreading.

D.3.3.2 Absorption

Absorption is the conversion of acoustic energy to kinetic energy in the particles of the propagation medium (Urick, 1983). Absorption is directly related to sound frequency, with higher frequencies having higher rates of absorption. Absorption rates range from 0.07 dB/km for a 1 kHz sound to about 30 dB/km for a 100 kHz sound. Therefore, absorption is the cause of a significant amount of attenuation for high and very high frequency sound sources, reducing the distance over which these sources may be perceived compared to mid- and low-frequency sound sources with the same source level.


D.3.3.3 Refraction

When a sound wave propagating in a medium encounters a second medium with a different density (e.g., the air-water boundary), part of the incident sound will be reflected back into the first medium and part will be transmitted into the second medium (Kinsler, Frey, Coppens, & Sanders, 1982). The propagation direction will change as the sound wave enters the second medium; this phenomenon is called refraction. Refraction may also occur within a single medium if the properties of the medium change enough to cause a variation in the sound speed. Refraction of sound resulting from spatial variations in the sound speed is one of the most important phenomena that affect sound propagation in water (Urick, 1983).

As discussed in Section D.3.1 (Speed of Sound), the sound speed in the ocean primarily depends on hydrostatic pressure (i.e., depth) and temperature. Although the actual variations in sound speed are small, the existence of sound speed gradients in the ocean has an enormous effect on the propagation of sound in the ocean. If one pictures sound as rays emanating from an underwater source, the propagation of these rays changes as a function of the sound speed profile in the water column. Specifically, the directions of the rays bend toward regions of slower sound speed. This phenomenon creates ducts in which sound becomes "trapped," allowing it to propagate with high efficiency for large

distances within certain depth boundaries. During winter months, the reduced sound speed at the surface due to cooling can create a surface duct that efficiently propagates sound such as commercial shipping noise (Figure D-6). Sources located within this surface duct can have their sounds trapped, but sources located below this layer would have their sounds refracted downward. The deep sound channel, or sound frequency and ranging (SOFAR) channel, is another duct that exists where sound speeds are slowest deeper in the water column (600–1,200 m depth at the mid-latitudes).

Similarly, the path of sound will bend toward regions of lower sound speed in air. Air temperature typically decreases with altitude, meaning sounds produced in air tend to bend skyward. When an atmospheric temperature inversion is present, air is cooler near the earth's surface. In inversion conditions, sound waves near the earth's surface will tend to refract downward.

[1 kiloyard (kyd) = 0.9 km]

Figure D-6: Sound Propagation Showing Multipath Propagation and Conditions for Surface Duct

D.3.3.4 Reflection and Multipath Propagation

In multipath propagation, sound may not only travel a direct path (with no reflection) from a source to a receiver, but also be reflected from the surface or bottom multiple times before reaching the receiver (Urick, 1983). Reflection is shown in Figure D-6 at the seafloor (bottom bounce) and at the water surface. At some distances, the reflected wave will be in phase with the direct wave (their waveforms add together) and at other distances the two waves will be out of phase (their waveforms cancel). The existence of multiple sound paths, or rays, arriving at a single point can result in multipath interference,

a condition that permits the addition and cancellation between sound waves, resulting in the fluctuation of sound levels over short distances.

Reflection plays an important role in the pressures observed at different locations in the water column. Near the bottom, the direct path pressure wave may sum with the bottom-reflected pressure wave, increasing the exposure. Near the surface, however, the surface-reflected pressure wave may destructively interfere with the direct path pressure wave, "cutting off" the wave and reducing exposure (called the Lloyd mirror effect). This can cause the sound level to decrease dramatically within the top few meters of the water column.

D.3.3.5 Diffraction, Scattering, and Reverberation

Diffraction, scattering, and reverberation are examples of what happens when sound waves interact with obstacles in the propagation path.

Diffraction may be thought of as the change of direction of a sound wave as it passes around an obstacle. Diffraction depends on the size of the obstacle and the sound frequency. The wavelength of the sound must be larger than the obstacle for notable diffraction to occur. If the obstacle is larger than the wavelength of sound, an acoustic shadow zone will exist behind the obstacle where the sound is unlikely to be detected. Common examples of diffraction include sound heard from a source around the corner of a building and sound propagating through a small gap in an otherwise closed door or window.

An obstacle or inhomogeneity (e.g., smoke, suspended particles, gas bubbles due to waves, and marine life) in the path of a sound wave causes scattering as these inhomogeneities reradiate incident sound in a variety of directions (Urick, 1983). Reverberation refers to the prolongation of a sound, after the source has stopped emitting, caused by multiple reflections at water boundaries (surface and bottom) and scattering.

D.3.3.6 Surface and Bottom Effects

Because the sea surface reflects and scatters sound, it has a major effect on the propagation of underwater sound in applications where either the source or receiver is at a shallow depth (Urick 1983). If the sea surface is smooth, the reflected sound pressure is nearly equal to the incident sound pressure; however, if the sea surface is rough, the amplitude of the reflected sound wave will be reduced. Sound waves reflected from the sea surface experience a phase reversal. When the surface-reflected waves interact with the direct path waves near the surface, a destructive interference pattern is created in which the received pressure approaches zero.

The sea bottom is also a reflecting and scattering surface, similar to the sea surface. Sound interaction with the sea bottom is more complex, however, primarily because the acoustic properties of the sea bottom are more variable and the bottom is often layered into regions of differing density. As sound travels into the sea floor it reflects off of these different density layers in complex ways. For sources in contact with the bottom, such as during pile driving or bottom-placed explosives, a ground wave is produced that travels through the bottom sediment and may refract back into the water column.

For a hard bottom such as rock, the reflected wave will be approximately in phase with the incident wave. Thus, near the ocean bottom, the incident and reflected sound pressures may add together (constructive interference), resulting in an increased sound pressure near the sea bottom. Soft bottoms such as mud or sediment absorb sound waves and reduce the level in the water column overall.

D.3.3.7 Air-Water Interface

Sound from aerial sources such as aircraft and weapons firing may be transmitted into the water under certain conditions. The most studied of these sources are fixed-wing aircraft and helicopters, which create noise with most energy below 500 Hz. Noise levels in water are highest at the surface and are highly dependent on the altitude of the aircraft and the angle at which the aerial sound encounters the ocean surface. Transmission of the sound once it is in the water is identical to any other sound as described in the sections above.

Transmission of sound from a moving airborne source to a receptor underwater is influenced by numerous factors and has been addressed by Young (1973), Urick (1983), Richardson et al. (1995), Eller and Cavanagh (2000), Laney and Cavanagh (2000), and others. Sound is transmitted from an airborne source to a receptor underwater by four principal means: (1) a direct path, refracted upon passing through the air-water interface; (2) direct-refracted paths reflected from the bottom in shallow water; (3) evanescent transmission in which sound travels laterally close to the water surface; and (4) scattering from interface roughness due to wave motion.

When sound waves in air meet the water surface, the sound can either be transmitted across the airwater boundary or reflected off the water surface. When sound waves meet the water at a perpendicular angle (e.g., straight down from an in-air source to a flat water surface), the sound waves are both transmitted directly across the water surface in the same direction of travel and reflected 180° back toward the original direction of travel. This can creates a localized condition at the water surface where the incident and reflected waves sum, doubling the in-air overpressure (+ 6 dB). As the incident angle of the in-air sound wave changes from perpendicular, this phenomena is reduced, ultimately reaching the angle where sound waves are parallel to the water surface and there is no surface reflection.

The sound that enters the water is refracted due to the difference in sound velocity between air and water, as shown in Figure D-7. As the angle of the in-air incident wave moves away from perpendicular, the direction of travel of the underwater refracted waves becomes closer to parallel to the water surface. When the incident angle is reached where the underwater refracted sound wave is parallel to the water surface, all of the sound is reflected back into the air and no sound enters the water. This occurs at an angle of about 13-14°. As a result, most of the acoustic energy transmitted into the water through a relatively narrow cone extending vertically downward from the in-air source. The width of the footprint would be a function of the source altitude. Lesser amounts of sound may enter the water outside of this cone due to surface scattering (e.g., from water surface waves that can vary the angle of incidence over an area) and as evanescent waves that are only present very near the surface.

If a sound wave is ideally transmitted into water (that is, with no surface transmission loss, such as due to foamy, wave conditions that could decrease sound entering the water), the sound pressure level underwater is calculated by changing the pressure reference unit from 20 μ Pa in air to 1 μ Pa in water. For a sound with the same pressure in air and water, this calculation results in a +26 dB sound pressure level in water compared to air. For this reason, sound pressure levels in water and sound pressure levels in air should never be directly compared.

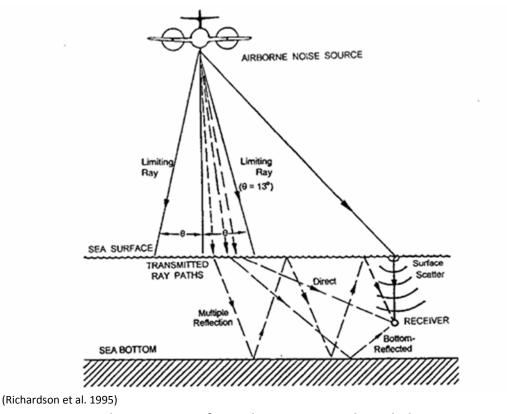


Figure D-7: Characteristics of Sound Transmission Through the Air-Water Interface

D.4 AUDITORY PERCEPTION

Animals with an eardrum or similar structure, including mammals, birds, and reptiles, directly detect the pressure component of sound. Some marine fish also have specializations to detect pressure changes, although most invertebrates and many marine fish do not have anatomical structures that enable them to detect the pressure component of sound and are only sensitive to the particle motion component of sound. This difference in acoustic energy sensing mechanisms limits the range at which these animals can detect most sound sources analyzed in this document. This is because far from a sound source (i.e., in the far field), particle velocity and sound pressure are directly proportional. But close to a source (i.e., in the near field), particle velocity increases relative to sound pressure and may become more detectable to certain animals. As sound frequency increases, the wavelength becomes shorter, resulting in a smaller near field.


Because mammalian ears can detect large pressure ranges and humans judge the relative loudness of sounds by the ratio of the sound pressures (a logarithmic behavior), sound amplitude is described by the SPL, calculated by taking the logarithm of the ratio of the sound pressure to a reference pressure (see Section D.2.2, Sound Pressure Level). Use of a logarithmic scale compresses the wide range of pressure values into a more usable numerical scale. On the dB scale, the smallest audible sound in air (near total silence) to a human is 0 dB re 20 μ Pa. If the sound intensity increases by a factor of 10, the SPL would increase to 10 dB re 20 μ Pa. If the sound intensity increases by a factor of 100, the SPL would increase to 20 dB re 20 μ Pa, and if the sound intensity increases by a factor of 1000, the SPL would be 30 dB re 20

 μ Pa. A quiet conversation has an SPL of about 50 dB re 20 μ Pa, while the threshold of pain is around 120–140 dB re 20 μ Pa.

As described in Section D.2.2 (Sound Pressure Level), SPLs under water differ from those in air because they rely on different reference pressures in their calculation; therefore, the two should never be directly compared.

While sound pressure and frequency are physical measure of the sound, loudness is a subjective attribute that varies with not only sound pressure but also other attributes of the sound, such as frequency. For example, a human listener would perceive a 60 dB re 20 μ Pa sound at 2 kHz to be louder than a 60 dB re 20 μ Pa sound at 50 Hz, even though the SPLs are identical. This effect is most noticeable at lower sound pressure levels; however, at very high sound pressure levels, the difference in perceived loudness at different frequencies becomes smaller.

To account for differences in hearing sensitivity at various frequencies, acoustic risk analyses commonly use auditory weighting functions — mathematical functions that adjust (or "weight") received sound levels across sound frequency based on how the listener's sensitivity or susceptibility to sound changes at different frequencies. For humans, the most common weighting function is called "A-weighting" (see Figure D-8). A-weighted sound levels are specified in units of "dBA" (A-weighted decibels). For example, if the unweighted received level of a 500 Hz tone at a human receiver was 90 dB re 20 μ Pa, the A-weighted sound level would be 90 dB – 3 dB = 87 dBA because the A-weighting function amplitude at 500 Hz is -3 dB. Many measurements of sound in air appear as dBAs in the literature because the intent of the authors is to assess noise impacts on humans.

The Numbers along the Curve Indicate How a Received Sound Level Would Be Adjusted at that Frequency.

Figure D-8: A-weighting for Human Hearing of Sounds in Air (OSHA).

The auditory weighting concept can be applied to other species. When used in analyzing the impacts of sound on an animal, auditory weighting functions adjust received sound levels to emphasize ranges of best hearing and de-emphasize ranges of less or no sensitivity. Auditory weighting functions were developed for marine mammals and sea turtles and are used to assess acoustic impacts. For more information on weighting functions and their derivation for this analysis see technical report *Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis* (U.S. Department of the Navy, 2017a).

D.5 EXPLOSIVES

Explosive materials used in Navy testing and training activities are either (1) "high explosives," sometimes referred to as HE, which means that the explosive material has a very fast rate of detonation (exceeding the speed of sound), or (2) low explosives, which exhibit a relatively slow burn, or deflagration, such as black powder. Because low explosives are typically used in small quantities and have less destructive power, the below discussion focuses on high explosives.

This rate of detonation of a high explosive is highly supersonic, producing a high pressure, steep instantaneous shock wave front travelling through the explosive material. This shock front is produced by the supersonic expansion of the explosive products, but as the shock front travels away from the immediate area of the detonation, it begins to behave as an acoustic wave front travelling at the speed of sound.

The near-instantaneous rise from ambient to an extremely high peak pressure is what makes the explosive shock wave potentially damaging. The area under this positive pressure duration is calculated as the positive impulse.

The positive pressure produced by an explosion is also referred to as the overpressure. As the shock front passes a location, the positive pressure exponentially decays, as shown in Figure D-9. As the shock front travels away from the detonation, the waveform is stretched – the peak pressure decreases while the positive duration increases. The reduction in peak pressure reduces the rate at which the positive impulse is received. Both the reduction in peak pressure and stretching of the positive impulse reduce the potential for injury. In addition, absorption losses of higher frequencies over distance results in a softening of the shock front, such that the rise to peak pressure is no longer near-instantaneous.

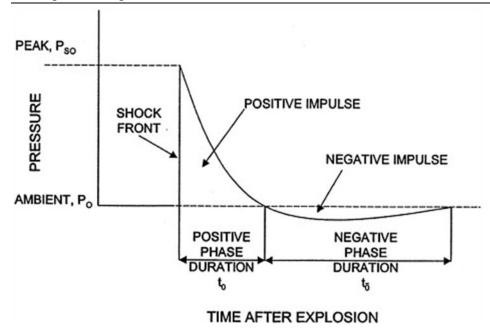


Figure D-9: Impulse Shown as a Function of Pressure over Duration at a Specific Location

The peak pressure experienced by a receptor (i.e., an animal) is a function of the explosive material, the net explosive weight, and the distance from the charge. Net explosive weight (NEW) is a way to classify and compare quantities of different explosive compounds. The net explosive weight for a charge is the energetic equivalent weight of trinitrotoluene (TNT). In general, shock wave effects near an explosive charge increase in proportion to the cube root of the explosive weight (G. A. Young, 1991). For example, shock wave impacts will double when the explosive charge weight is increased by a factor of eight (i.e., cube root of eight equals two). This relationship is known as the similarity principle, and the corresponding similitude equations allow for prediction of various explosive metrics for a given charge weight and material.

The similitude equations allow for a simple prediction of peak pressure in a uniform free field environment, and sources are provided below for using these equations for estimating explosive effects in air and in water. However, at longer distances or in more complex environments with boundaries and variations in the propagation medium, explosive propagation modeling is preferred.

D.5.1 EXPLOSIONS IN AIR

Explosions in air produce an initial blast front that propagates away from the detonation. When pressure waves from an explosion in air meet the water surface, the pressure wave can be transmitted across the air-water boundary and reflected off the water surface. When pressure waves in air meet the water at a perpendicular angle (e.g., straight down from an in-air source to a flat water surface), the sound waves are both transmitted directly across the water surface in the same direction of travel and reflected 180° back toward the original direction of travel. For acoustic waves, this can create a localized condition at the water surface where the incident and reflected waves sum, doubling the in-air overpressure (+ 6 dB). For shock waves with high incident pressures travelling at supersonic speeds, the reflection from the water surface depends on the angle of incidence and the speed of the shock wave, and the reflected shock wave pressure can be greater than the incident shock wave pressure((Kinney & Graham, 1985; Swisdak, 1975).

In certain explosive geometries, depending on the size of the explosive and its height of detonation, a combined shock wave, called a Mach stem, can be created by the summing of the direct and reflected shock waves at larger angles of incidence (Kinney & Graham, 1985). In instances where this specific geometry does not occur, only the direct path wave is experienced because there is no surface reflection (waves are parallel to or angled away from the water surface, such as would occur when an explosive is detonated at the water surface), or separate direct and reflected pressure waves may be experienced.

D.5.1.1 Fragmentation

Missiles, rockets, projectiles, and other cased weapons will produce casing fragments upon detonation. These fragments may be of variable size and are ejected at supersonic speed from the detonation. The casing fragments will be ejected at velocities much greater than debris from any target due to the proximity of the casing to the explosive material. Unlike detonations on land targets, detonations during Navy training and testing would not result in other propelled materials such as crater debris.

Fragment density can be simply assumed to follow an inverse-square law with distance, in which the possibility of fragment strike is reduced by the square of the distance from the original detonation point. The forces of gravity and drag will further reduce the likelihood of strike with increasing distance than is accounted for in the inverse-square relationship (U.S. Department of Defense Explosives Safety Board, 1975). The possible area of strike risk at any given distance from the detonation point is limited to the surface area of produced fragments, with drag and gravity reducing the number of produced fragments that travel to greater distances.

D.5.2 EXPLOSIONS IN WATER

At the instant of explosion underwater, gas byproducts are generated at high pressure and temperature, creating a bubble. The heat causes a certain amount of water to vaporize, adding to the volume of the bubble. This action immediately begins to force the water in contact with the blast front in an outward direction, creating an intense, supersonic pressure shock wave. As the high-pressure wave travels away from the source, it slows to the speed of sound and acts like an acoustic wave similar to other impulsive sources that lack a strong shock wave (e.g., air guns). Explosions have the greatest amount of energy in lower frequencies below 500 Hz, although energy is present in frequencies exceeding 10 kHz (Urick, 1983). The higher frequency components exhibit more attenuation with distance due to absorption [see Section D.3.3.2 (Absorption)].

The shock wave caused by an explosion in deeper water may be followed by several bubble pulses in which the explosive byproduct gases expand and contract, with correlated high and low pressure oscillations. These bubble pulses lack the steep pressure front of the initial explosive pulse, but the first bubble pulse may still contribute to the total energy released at frequencies below 100 Hz (Urick, 1983). Subsequent bubble pulses contribute little to the total energy released during the explosion (Urick, 1983). If the detonation occurs at or just below the surface, a portion of the explosive power is released into the air and a pulsating gas bubble is not formed.

The pressure waves from an explosive can constructively add or destructively cancel each other in ocean environments with multi-path propagation, as described for acoustic waves in Section D.3.3.3 (Refraction) and Section D.3.3.4 (Reflection and Multipath Propagation). The received impulse is affected by the depth of the charge and the depth of the receiving animal. Pressure waves from the detonation may travel directly to the receiver or be reflected off the water surface before arriving at the receiver. If a charge is detonated closer to the surface or if an animal is closer to the surface, the time

between the initial direct path arrival and the following surface-reflected tension wave arrival is reduced, resulting in a steep negative pressure cut-off of the initial direct path positive impulse exposure. Two animals at similar distances from a charge, therefore, may experience the same peak pressure but different levels of impulse at different depths.

References

- American National Standards Institute. (1994). ANSI S1.1-1994 (R 2004) American National Standard Acoustical Terminology. Retrieved 1994, from Acoustical Society of America
- American National Standards Institute. (2013). Acoustical Terminology (pp. 86): Acoustical Society of America.
- Au, W., & Hastings, M. (2008). Principles of Marine Bioacoustics. New York: Springer-Verlag.
- Eller, A. I., & Cavanagh, R. C. (2000). Subsonic Aircraft Noise At and Beneath the Ocean Surface: Estimation of Risk for Effects on Marine Mammals. Retrieved from
- Finneran, J. J. (2003). Whole-lung resonance in a bottlenose dolphin (*Tursiops truncatus*) and white whale (*Delphinapterus leucas*). *Journal of the Acoustical Society of America*, 114(1), 529–535.
- Hamernik, R. P., & Hsueh, K. D. (1991). Impulse noise: some definitions, physical acoustics and other considerations. *The Journal of Acoustical Society of America*, *90*(1), 189–196.
- Kinney, G. F., & Graham, K. J. (1985). Explosive Shocks in Air (2 ed.). New York: Springer-Verlag.
- Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (1982). *Fundamentals of Acoustics* (3rd ed.). New York, NY: John Wiley & Sons.
- Laney, H., & Cavanagh, R. C. (2000). Supersonic Aircraft Noise At and Beneath the Ocean Surface: Estimation of Risk for Effects on Marine Mammals. Retrieved from
- Medwin, H., & Clay, C. (1998). Fundamentals of Acoustical Oceanography. San Diego: Academic Press.
- Nedelec, S. L., Campbell, J., Radford, A. N., Simpson, S. D., & Merchant, N. D. (2016). Particle motion: the missing link in underwater acoustic ecology. *Methods in Ecology and Evolution, 7*(7), 836–842. doi:10.1111/2041-210X.12544
- Richardson, W. J., Greene, C. R., Jr., Malme, C. I., & Thomson, D. H. (1995). Marine Mammals and Noise (pp. 576). San Diego, CA: Academic Press.
- Swisdak, M. M. (1975). Explosion Effects and Properties Part I Explosion Effects in Air. (NSWC/WOL/TR–75–116). White Oak Laboratory, Naval Surface Weapons Center, White Oak, Silver Spring, MD.
- U.S. Department of Defense Explosives Safety Board. (1975). *Fragment and Debris Hazards*. Retrieved from
- U.S. Department of the Navy. (2017a). *Criteria and Thresholds for U.S. Navy Acoustic and Explosive Impacts to Marine Mammals and Sea Turtles*. Space and Naval Warfare System Command, Pacific.
- U.S. Department of the Navy. (2017b). *Quantitative Analysis for Estimating Acoustic and Explosive Impacts to Marine Mammals and Sea Turtles*. Space and Naval Warfare System Command, Pacific and Naval Undersea Warfare Center, Newport.
- Urick, R. J. (1983). *Principles of Underwater Sound, Principles of Underwater Sound for Engineers* (3rd ed.). Los Altos Hills, CA: Peninsula Publishing.
- Young, G. A. (1991). Concise Methods for Predicting the Effects of Underwater Explosions on Marine Life. Silver Spring: Naval Surface Warfare Center.

Young, R. W. (1973). Sound pressure in water from a source in air and vice versa. *The Journal of Acoustical Society of America*, 53(6), 1708–1716.

APPENDIX E

Estimated Marine Mammals and Sea Turtle Impacts from Exposure to Acoustic and Explosive Stressors Under Navy Training and Testing Activities

This page intentionally left blank.

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

APPENDIX E	ESTIMATED MARINE MAMMALS AND SEA TURTLE IMPACTS	
	FROM EXPOSURE TO ACOUSTIC AND EXPLOSIVE STRESSORS	
	UNDER NAVY TRAINING AND TESTING ACTIVITIES	E-1
E.1	Estimated Marine Mammals Impacts from Sonar and Other	
	Transducers Under Navy Training Activities	E-1
E.2	Estimated Marine Mammal Impacts per Five Year Period from Sonar	
	and Other Transducers Under Navy Training Activities	E-8
E.3	Estimated Marine Mammal Impacts from Sonar and Other	
	Transducers Under Navy Testing Activities	E-12
E.4	Estimated Marine Mammal Impacts per Five Year Period from Sonar	
	and Other Transducers Under Navy Testing Activities	E-19
E.5	Estimated Marine Mammal Impacts from Air Guns Under Navy	
	Training Activities	E-23
E.6	Estimated Marine Mammal Impacts from Air Guns Under Navy	
	Testing Activities	E-23
E.7	Estimated Marine Mammal Impacts per Five year Period from Air	
	Guns Under Navy Testing Activities	E- 2 5
E.8	Estimated Marine Mammal Impacts from Pile Driving Under Navy	
	Training Activities	E-25
E.9	Estimated Marine Mammal Impacts per Five year Period from Pile	
	Driving Under Navy Training Activities	E-27
E.10	Estimated Marine Mammal Impacts from Pile Driving Under Navy	
	Testing Activities	E-27
E.11	Estimated Marine Mammal Impacts from Explosives Under Navy	
	Training Activities	E-27
E.12	Estimated Marine Mammal Impacts per Five year Period from	
	Explosives Under Navy Training Activities	E-38
E.13	Estimated Marine Mammal Impacts from Explosives Under Navy	
	Testing Activities (Excluding Ship Shock Trials)	E-46
E.14	Estimated Marine Mammal Impacts per Five Year Period from	
	Explosives Under Navy Testing Activities (Excluding Ship Shock Trials)	E-57
E.15	Estimated Marine Mammal Impacts from Ship Shock Trials Under	
	Navy Testing Activities	E-65

E.16	Estimated Sea Turtle Impacts from Sonar and Other Transducers Under Navy Training and Testing Activities	E-69
E.17	Estimated Sea Turtle Impacts per Five Year Period from Sonar and Other Transducers Under Navy Training and Testing Activities	E-69
E.18	Estimated Sea Turtle Impacts from Air Guns Under Navy Training and Testing Activities	E-70
E.19	Estimated Sea Turtle Impacts from Pile Driving Under Navy Training and Testing Activities	E-70
E.20	Estimated Sea Turtle Impacts from Explosives Under Navy Training and Testing Activities	E-70
E.21	Estimated Sea Turtle Impacts per Five year Period from Explosives Under Navy Training and Testing Activities	E-71
E.22	Estimated Sea Turtle Impacts from Ship Shock Trials Under Navy	
	Testing Activities	E-72
	List of Figures	
This section	does not contain figures.	
	List of Tables	
Table E.1-1:	Estimated Marine Mammal Impacts per Year from Sonar Training Activities	E-2
Table E.2-1:	Estimated Marine Mammal Impacts per 5-Year Period from Sonar Training	
	Activities	E-8
Table E.3-1:	Estimated Marine Mammal Impacts per Year from Sonar Testing Activities	E-13
Table E.4-1:	Estimated Marine Mammal Impacts per 5-Year Period from Sonar Testing	5.40
Table F.C. 4.	Activities	
	Estimated Marine Mammal Impacts per Year for Air Gun Activities	
	Estimated Marine Mammal Impacts per 5-Year Period for Air Guns	
	Estimated Marine Mammal Impacts per Year from Pile Driving Activities	
	Estimated Marine Mammal Impacts per 5-Year Period for Pile Driving Activities	
	: Estimated Marine Mammal Impacts per year for Explosive Training Activities	
	: Estimated Marine Mammal Impacts per Year for Explosive Training Activities	E-39
Table E.13-1	: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials)	F-47
Table E.14-1	: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing	
	Activities (Excluding Ship Shock Trials)	E-58
Table E.15-1	: Estimated Marine Mammal Impacts from Small and Large Ship Shock Trials	
	(Explosive Testing Activity) and per 5-Year Period	E-66

Training and Testing Draft EIS/OEIS	June 201
Training and resting Draft Lis/OLIS	Julie 20

Table E.16-1: Estimated Sea Turtle Impacts per Year from Sonar Training and Testing Activities	E-69
Table E.17-1: Estimated Sea Turtle Impacts per 5-Year Period from Sonar and Other Transducers Training and Testing Activities	E-70
Table E.20-1: Estimated Sea Turtle Impacts per Year from Explosive Training and Testing Activities	E-71
Table E.21-1: Estimated Sea Turtle Impacts per 5-Year Period from Explosive Training and Testing Activities (Excluding Ship Shock Trials)	E-72
Table E.22-1: Estimated Sea Turtle Impacts from Small and Large Ship Shock Trials (Explosive Testing Activity) and per 5-Year Period	E-73

Atlantic Fleet	
Training and Testing D	raft EIS/OEIS

This page intentionally left blank.

APPENDIX E ESTIMATED MARINE MAMMALS AND SEA TURTLE IMPACTS FROM EXPOSURE TO ACOUSTIC AND EXPLOSIVE STRESSORS UNDER NAVY TRAINING AND TESTING ACTIVITIES

Navy training and testing activities would result in the incidental takes of marine mammals and sea turtles within the Study Area. The following appendix provides the estimated number of marine mammal and sea turtle impacts. Specifically, estimated impacts are derived from the quantitative analysis for activities under Alternatives 1 and 2 that involve the use of acoustic or explosive stressors. The quantitative analysis takes into account Navy activities, marine species density layers, acoustic modeling and other environmental parameters. A detailed explanation of the quantitative analysis is provided in the technical report *Quantitative Analysis for Estimating Acoustic and Explosive Impacts to Marine Mammals and Sea Turtles* (U.S. Department of the Navy, 2017c). It is important to note that *impacts*, as discussed in this appendix, represent the estimated instances of take of marine mammals or sea turtles, not necessarily the number of individuals impacted (i.e., some marine mammals or sea turtles could be impacted several times, while others would not experience any impact).

E.1 ESTIMATED MARINE MAMMALS IMPACTS FROM SONAR AND OTHER TRANSDUCERS UNDER NAVY TRAINING ACTIVITIES

Table E.1-1 provides a summary of the estimated number of marine mammal impacts from exposure to sonar and other transducers used during Navy training activities under Alternatives 1 and 2 over the course of a year.

Table E.1-1: Estimated Marine Mammal Impacts per Year from Sonar Training Activities

		Alternative 1	l – Minim	um	Alternative 1	– Maxim	um	Altern	ative 2	
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Suborder Mysticeti (ba	leen whales)									
Family Balaenidae (rigl	ht whales)									
North Atlantic right whale*	Western North Atlantic	64	108	0	79	117	0	81	122	0
Family Balaenopterida	e (roquals)									
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	8	15	0	8	18	0	10	22	0
Bryde's whale	Northern Gulf of Mexico	49	132	0	53	151	0	67	208	0
Minke whale	Canadian East Coast	453	1,670	0	482	1,930	0	571	2,448	1
Fin whale*	Western North Atlantic	517	884	0	532	933	0	680	1,242	0
Humpback whale	Gulf of Maine	63	138	0	67	151	0	75	180	0
Sei whale*	Nova Scotia	84	185	0	87	202	0	111	268	0
Suborder Odontoceti (t	oothed whales)									
Family Physeteridae (s	perm whale)									
Sperm whale*	Gulf of Mexico Oceanic	24	0	0	24	0	0	1,691	40	0
'	North Atlantic	13,240	306	0	13,747	326	0	16,724	395	0
Family Kogiidae (sperm	whales)									
Dwarf sperm whale	Gulf of Mexico Oceanic	4	9	0	4	9	0	303	732	2
Dwait speriii wiidie	Western North Atlantic	2,653	4,942	6	2,789	5,714	7	3,400	7,354	9

Table E.1-1: Estimated Marine Mammal Impacts per Year from Sonar Training Activities (continued)

		Alternative 1	l – Minim	um	Alternative 1 – Maximum			Alternative 2		
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Pygmy sperm whale	Northern Gulf of Mexico	4	9	0	4	9	0	303	732	2
ryginy sperm whate	Western North Atlantic	2,653	4,942	6	2,789	5,714	7	3,400	7,354	9
Family Ziphiidae (beake	ed whales)									
Blainville's beaked	Northern Gulf of Mexico	35	0	0	35	0	0	1,324	18	0
whale Cuvier's beaked whale	Western North Atlantic	11,908	91	0	12,414	102	0	15,333	121	0
Cuvier's beaked whale	Northern Gulf of Mexico	34	0	0	34	0	0	1,316	18	0
	Western North Atlantic	44,095	336	0	45,964	375	0	56,742	445	0
Gervais' beaked whale	Northern Gulf of Mexico	35	0	0	35	0	0	1,324	18	0
Gervais beaked wildie	Western North Atlantic	11,908	91	0	12,414	102	0	1,316 18 56,742 445 1,324 18 15,333 121 1,164 1	0	
Northern bottlenose whale	Western North Atlantic	1,068	1	0	1,071	1	0	1,164	1	0
Sowerby's beaked whale	Western North Atlantic	11,908	91	0	12,414	102	0	15,333	121	0
True's beaked whale	Western North Atlantic	11,908	91	0	12,414	102	0	15,333	121	0
Family Delphinidae (dol	phins)									
Atlantic spotted	Northern Gulf of Mexico	910	10	0	934	11	0	4,482	265	0
Atlantic spotted dolphin	Western North Atlantic	104,567	7,214	0	109,625	7,703	0	128,934	9,171	0
Atlantic white-sided dolphin	Western North Atlantic	13,170	828	0	13,583	900	0	17,039	1,146	0

Table E.1-1: Estimated Marine Mammal Impacts per Year from Sonar Training Activities (continued)

		Alternative 1	l – Minim	um	Alternative 1	– Maxim	um	Alterno	ative 2	
		Behavioral			Behavioral			Behavioral		
Species	Stock	Response	TTS	PTS	Response	TTS	PTS	Response	TTS	PTS
	Choctawatchee Bay	7	0	0	7	0	0	7	0	0
	Gulf of Mexico Eastern Coastal	0	0	0	42	0	0	42	0	0
	Gulf of Mexico Northern Coastal	218	2	0	218	2	0	1,418	68	0
	Gulf of Mexico Western Coastal	0	0	0	3,558	528	0	3,558	528	0
	Indian River Lagoon Estuarine System	185	20	0	185	20	0	185	20	0
	Jacksonville Estuarine System	41	9	0	41	9	0	41	9	0
Bottlenose dolphin	Mississippi Sound, Lake Borgne, Bay Boudreau	0	0	0	0	0	0	0	0	0
Bottlemose dolprim	Northern Gulf of Mexico Continental Shelf	1,582	12	0	1,582	12	0	10,304	495	0
	Northern Gulf of Mexico Oceanic	179	1	0	179	1	0	1,160	56	0
	Northern North Carolina Estuarine System	802	96	0	2,595	456	0	2,595	456	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	757	37	0	828	41	0	1,013	50	0

Table E.1-1: Estimated Marine Mammal Impacts per Year from Sonar Training Activities (continued)

		Alternative 1	l – Minim	um	Alternative 1	Alternative 1 – Maximum			Alternative 2		
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	
	Western North Atlantic Central Florida Coastal	3,585	142	0	3,971	169	0	4,894	211	0	
	Western North Atlantic Northern Migratory Coastal	21,734	1,930	1	21,967	1,951	1	24,358	2,106	1	
	Western North Atlantic South Carolina/Georgia Coastal	3,758	163	0	4,130	189	0	5,206	243	0	
	Western North Atlantic Southern Migratory Coastal	9,544	455	1	11,184	639	1	13,470	757	1	
	Western North Atlantic Offshore	243,161	19,831	9	267,131	22,762	9	300,759	24,687	9	
Clymene dolphin	Northern Gulf of Mexico	96	3	0	96	3	0	5,262	414	0	
Ciymene doipiiii	Western North Atlantic	59,423	3,652	0	65,198	4,228	0	76,179	5,262 414	0	
False killer whale	Northern Gulf of Mexico	40	1	0	40	1	0	1,797	126	0	
raise killer wilale	Western North Atlantic	7,076	394	0	7,781	462	0	9,422	550	0	
Fuerente della him	Northern Gulf of Mexico	59	0	0	59	0	0	965	51	0	
Fraser's dolphin	Western North Atlantic	3,417	174	0	3,735	194	0	4,505	261	0	
Killer whale	Northern Gulf of Mexico	1	0	0	1	0	0	79	4	0	
Killel Wildle	Western North Atlantic	68	3	0	74	3	0	85	4	0	

Table E.1-1: Estimated Marine Mammal Impacts per Year from Sonar Training Activities (continued)

		Alternative 1	l – Minim	um	Alternative 1	– Maxim	um	Alternative 2		
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Long-finned pilot whale	Western North Atlantic	15,535	769	0	16,176	845	0	19,640	1,023	0
Melon-headed whale	Northern Gulf of Mexico	68	2	0	68	2	0	5,675	413	0
Welon-neaded whale	Western North Atlantic	31,757	1,762	0	34,984	2,039	0	41,959	2,427	0
Pantropical spotted	Northern Gulf of Mexico	549	16	0	549	16	0	54,726	4,152	0
dolphin	Western North Atlantic	124,721	7,402	0	136,693	8,382	0	1,247 92 0	0	
Duggay killer whole	Northern Gulf of Mexico	16	0	0	16	0	0	1,247	92	0
Pygmy killer whale	Western North Atlantic	5,589 289 0 6,136	338	0	7,306	408	0			
Diesale dalahin	Northern Gulf of Mexico	38	1	0	38	1	0	1,931	1,931 140	0
Risso's dolphin	Western North Atlantic	18,305	996	0	19,868	1,150	0	24,988	1,440	0
Rough-toothed	Northern Gulf of Mexico	70	1	0	92	5	0	2,426	204	0
dolphin	Western North Atlantic	16,509	1,145	0	18,187	1,321	0	22,068	1,612	0
Short-beaked common dolphin	Western North Atlantic	188,356	14,716	0	200,620	17,303	0	253,333	21,444	0
Short-finned pilot whale	Northern Gulf of Mexico	27,828	1,362	0	29,853	1,528	0	37,290	1,854	0
Cninner delahin	Northern Gulf of Mexico	221	7	0	221	7	0	26,750	2,122	0
Spinner dolphin	Western North Atlantic	62,459	3,929	0	68,930	4,541	0	82,628	5,487	0

Table E.1-1: Estimated Marine Mammal Impacts per Year from Sonar Training Activities (continued)

		Alternative 1	l – Minim	um	Alternative 1	– Maxim	um	Alterno	ative 2	
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Striped dolphin	Northern Gulf of Mexico	65	2	0	65	2	0	4,972	390	0
Striped dolphin	Western North Atlantic	84,521	5,045	0	85,721	5,242	0	102,815	6,427	0
White-beaked dolphin	Western North Atlantic	36	1	0	38	2	0	38	2	0
Family Phocoenidae (po	rpoises)									
Harbor porpoise	Gulf of Maine/Bay of Fundy	21,438	6,957	12	22,032	7,147	11	25,353	8,433	14
Suborder Pinnipedia							•			
Family Phocidae (true so	eals)									
Gray seal	Western North Atlantic	416	1,005	0	437	1,007	0	437	1,011	0
Harbor seal	Western North Atlantic	674	1,630	0	708	1,633	0	708	1,639	0
Harp seal	Western North Atlantic	2,678	5,750	1	2,692	5,752	1	2,692	5,753	1
Hooded seal	Western North Atlantic	39	85	0	42	85	0	43	89	0
Order Sirenia										
Family Trichechidae (mo	anatees)									
West Indian manatee*	Florida, Antillean	9	17	0	11	17	0	11	17	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

PTS: permanent threshold shift; TTS: temporary threshold shift

[†]NSD: No stock designated

E.2 ESTIMATED MARINE MAMMAL IMPACTS PER FIVE YEAR PERIOD FROM SONAR AND OTHER TRANSDUCERS UNDER NAVY TRAINING ACTIVITIES

Table E.2-1 provides a summary of the estimated number of marine mammal impacts from exposure to sonar and other transducers used during Navy training activities under Alternatives 1 and 2 over the course of five years.

Table E.2-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Training Activities

		Alternativ	e 1 – 5-Yea	r	Alternativ	Alternative 2 – 5-Year					
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS				
Suborder Mysticeti	(baleen whales)		•	_		-	-				
Family Balaenidae	(right whales)										
North Atlantic right whale*	Western North Atlantic	365	562	0	403	611	0				
Family Balaenopteridae (roquals)											
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	39	81	0	48	111	0				
Bryde's whale	Northern Gulf of Mexico	254	700	0	334	1,040	0				
Minke whale	Canadian East Coast	2,325	8,871	0	2,854	12,238	3				
Fin whale*	Western North Atlantic	2,617	4,518	0	3,402	6,211	0				
Humpback whale	Gulf of Maine	326	717	0	376	901	0				
Sei whale*	Nova Scotia	428	960	0	553	1,342	0				
Suborder Odontoce	eti (toothed whales)										
Family Physeterida	e (sperm whale)										
Sperm whale*	Gulf of Mexico Oceanic	118	1	0	8,456	202	0				
	North Atlantic	67,213	1,570	0	83,622	1,974	0				
Family Kogiidae (sp	erm whales)										
Dwarf sperm	Gulf of Mexico Oceanic	22	46	0	1,515	3,660	8				
whale	Western North Atlantic	13,537	26,253	33	16,998	36,770	43				
Pygmy sperm	Northern Gulf of Mexico	22	46	0	1,515	3,660	8				
whale	Western North Atlantic	13,537	26,253	33	16,998	36,770	43				

Table E.2-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Training Activities (continued)

		Alternativ	e 1 – 5-Yea	r	Alternative 2 – 5-Year					
Species	Stock			Behavioral Response	TTS	PTS				
Family Ziphiidae (b	eaked whales)		_			_				
Blainville's beaked	Northern Gulf of Mexico	173	0	0	6,621	92	0			
whale	Western North Atlantic	60,552	477	0	76,666	603	0			
Cuvier's beaked	Northern Gulf of Mexico	172	0	0	6,581	92	0			
whale	Western North Atlantic	224,216	1,759	0	283,712	2,226	0			
Gervais' beaked	Northern Gulf of Mexico	173	0	0	6,621	92	0			
whale	Western North Atlantic	60,552	477	0	76,666	603	0			
Northern bottlenose whale	Western North Atlantic	5,346	7	0	5,820	7	0			
Sowerby's beaked whale	Western North Atlantic	60,552	477	0	76,666	603	0			
True's beaked whale	Western North Atlantic	60,552	477	0	76,666	603	0			
Family Delphinidae	(dolphins)									
Atlantic spotted	Northern Gulf of Mexico	4,623	53	0	22,411	1,323	0			
dolphin	Western North Atlantic	533,227	37,062	0	644,672	45,856	0			
Atlantic white- sided dolphin	Western North Atlantic	66,715	4,287	0	85,197	5,730	0			
	Choctawatchee Bay	33	0	0	33	0	0			
	Gulf of Mexico Eastern Coastal	125	0	0	208	0	0			
	Gulf of Mexico Northern Coastal	1,092	8	0	7,088	340	0			
Bottlenose	Gulf of Mexico Western Coastal	10,675	1,585	0	17,791	2,641	0			
dolphin	Indian River Lagoon Estuarine System	925	98	0	925	98	0			
	Jacksonville Estuarine System	203	44	0	203	44	0			
	Mississippi Sound, Lake Borgne, Bay Boudreau	0	0	0	0	0	0			

Table E.2-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Training Activities (continued)

		Alternativ	e 1 – 5-Yea	r	Alternativ	e 2 – 5-Year	r
		Behavioral			Behavioral		
Species	Stock	Response	TTS	PTS	Response	TTS	PTS
	Northern Gulf of Mexico Continental Shelf	7,909	62	0	51,518	2,476	0
	Northern Gulf of Mexico Oceanic	893	7	0	5,799	279	0
	Northern North Carolina Estuarine System	9,389	1,561	0	12,975	2,282	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	3,945	196	0	5,063	248	0
	Western North Atlantic Central Florida Coastal	18,813	779	0	24,471	1,054	0
	Western North Atlantic Northern Migratory Coastal	109,326	9,707	3	121,789	10,532	3
	Western North Atlantic South Carolina/Georgia Coastal	19,638	879	0	26,028	1,216	0
	Western North Atlantic Southern Migratory Coastal	52,116	2,799	3	67,350	3,786	3
	Western North Atlantic Offshore	1,274,819	106,520	44	1,503,796	123,436	44
Clymene dolphin	Northern Gulf of Mexico	480	15	0	26,310	2,068	0
Crymene dorpriin	Western North Atlantic	308,859	19,433	0	380,894	24,276	0
False killer whale	Northern Gulf of Mexico	202	6	0	8,985	632	0
Table Killer Wildle	Western North Atlantic	36,806	2,108	0	47,108	2,750	0
Fraser's dolphin	Northern Gulf of Mexico	296	2	0	4,825	254	0
. ruse. s doipmin	Western North Atlantic	17,721	911	0	22,526	1,307	0
Killer whale	Northern Gulf of Mexico	4	0	0	394	22	0

Table E.2-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Training Activities (continued)

		Alternativ	e 1 – 5-Yea	r	Alternative 2 – 5-Year					
		Behavioral	oral		Behavioral					
Species	Stock	Response	TTS	PTS	Response	TTS	PTS			
	Western North Atlantic	352	16	0	423	21	0			
Long-finned pilot whale	Western North Atlantic	78,957	3,999	0	98,198	5,114	0			
Melon-headed	Northern Gulf of Mexico	342	10	0	28,375	2,063	0			
whale	Western North Atlantic	165,323	9,376	0	209,793	12,136	0			
Pantropical	Northern Gulf of Mexico	2,745	79	0	273,629	20,760	1			
spotted dolphin	Western North Atlantic	647,553	38,972	0	818,890	50,869	0			
Pygmy killer	Northern Gulf of Mexico	82	2	0	6,236	461	0			
whale	Western North Atlantic	29,051	1,544	0	36,531	2,041	0			
Risso's dolphin	Northern Gulf of Mexico	192	5	0	9,657	698	0			
Nisso s doipiiiii	Western North Atlantic	94,653	5,289	0	124,942	7,202	0			
Rough-toothed	Northern Gulf of Mexico	418	16	0	12,131	1,018	0			
dolphin	Western North Atlantic	85,936	6,080	0	110,339	698 7,202	0			
Short-beaked common dolphin	Western North Atlantic	966,328	78,755	0	1,266,663	107,219	0			
Short-finned pilot whale	Northern Gulf of Mexico	143,190	7,142	0	186,450	9,269	0			
Spinner dolphin	Northern Gulf of Mexico	1,103	33	0	133,750	10,609	0			
эрингег иогринг	Western North Atlantic	325,367	20,885	0	413,141	27,437	0			
Striped dolphin	Northern Gulf of Mexico	326	10	0	24,859	1,948	0			
στηρεά αθιμιπι	Western North Atlantic	425,004	25,620	0	514,074	32,134	0			
White-beaked dolphin	Western North Atlantic	184	8	0	189	8	0			
Family Phocoenida	e (porpoises)									
Harbor porpoise	Gulf of Maine/Bay of Fundy	108,906	35,338	58	126,765	42,163	69			

Table E.2-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Training Activities (continued)

		Alternativ	e 1 – 5-Yea	Alternativ	e 2 – 5-Yea	r	
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Suborder Pinnipedi	а	-	•	•	-	•	
Family Phocidae (tr	ue seals)						
Gray seal	Western North Atlantic	2,142	5,030	1	2,184	5,054	1
Harbor seal	Western North Atlantic	3,473	8,158	2	3,542	8,196	2
Harp seal	Western North Atlantic	13,431	28,757	4	13,459	28,764	4
Hooded seal	Western North Atlantic	204	427	0	214	447	0
Order Sirenia							
Family Trichechidae	e (manatees)						
West Indian manatee*	Florida, Antillean	51	86	0	55	86	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

PTS: permanent threshold shift; TTS: temporary threshold shift

E.3 ESTIMATED MARINE MAMMAL IMPACTS FROM SONAR AND OTHER TRANSDUCERS UNDER NAVY TESTING ACTIVITIES

Table E.3-1 provides a summary of the estimated number of marine mammal impacts from exposure to sonar and other transducers used during Navy testing activities under Alternatives 1 and 2 over the course of a year.

[†]NSD: No stock designation

Table E.3-1: Estimated Marine Mammal Impacts per Year from Sonar Testing Activities

		Alternative 2	1 – Minim	um	Alternative 1	– Maxim	um	Altern	ative 2	
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Suborder Mysticeti (ba	leen whales)									
Family Balaenidae (rigl	nt whales)									
North Atlantic right whale*	Western North Atlantic	125	241	0	140	244	0	140	244	0
Family Balaenopterida	e (roquals)									
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	4	16	0	5	16	0	5	16	0
Bryde's whale	Northern Gulf of Mexico	51	126	0	54	126	0	54	126	0
Minke whale	Canadian East Coast	354	1,273	1	381	1,278	1	383	1,279	1
Fin whale*	Western North Atlantic	1,146	2,352	2	1,277	2,378	2	1,282	2,379	2
Humpback whale	Gulf of Maine	210	293	0	225	295	0	225	296	0
Sei whale*	Nova Scotia	150	309	0	167	312	0	168	312	0
Suborder Odontoceti (t	oothed whales)									
Family Physeteridae (sp	perm whale)									
Sperm whale*	Gulf of Mexico Oceanic	1,297	24	0	1,343	24	0	1,343	24	0
	North Atlantic	10,748	330	0	12,013	331	0	12,054	331	0
Family Kogiidae (sperm	whales)									
Dwarf sperm whale	Gulf of Mexico Oceanic	326	472	1	343	473	1	343	473	1
Dwaii speiiii wiidie	Western North Atlantic	1,190	3,424	7	1,324	3,456	7	1,334	3,457	7
Pygmy sperm whale	Northern Gulf of Mexico	326	472	1	343	473	1	343	473	1
i yaniy sperili wilale	Western North Atlantic	1,190	3,424	7	1,324	3,456	7	1,334	3,457	7

Table E.3-1: Estimated Marine Mammal Impacts per Year from Sonar Testing Activities (continued)

		Alternative :	1 – Minim	um	Alternative 1	l – Maxim	um	Altern	ative 2	
		Behavioral			Behavioral			Behavioral		
Species	Stock	Response	TTS	PTS	Response	TTS	PTS	Response	TTS	PTS
Family Ziphiidae (beake	ed whales)									
Blainville's beaked	Northern Gulf of Mexico	1,495	7	0	1,550	7	0	1,550	7	0
whale	Western North Atlantic	9,356	93	0	10,323	93	0	10,374	93	0
Cuvier's beaked whale	Northern Gulf of Mexico	1,486	7	0	1,541	7	0	1,541	7	0
Cuviei 3 beaked Wildle	Western North Atlantic	34,366	345	0	37,914	345	0	38,102	345	0
Gervais' beaked whale	Northern Gulf of Mexico	1,550	7	0	1,495	7	0	1,550	7	0
Gervais beaked wildle	Western North Atlantic	9,356	93	0	10,323	93	0	10,374	93	0
Northern bottlenose whale	Western North Atlantic	882	3	0	784	3	0	889	3	0
Sowerby's beaked whale	Western North Atlantic	9,356	93	0	10,323	93	0	10,374	93	0
True's beaked whale	Western North Atlantic	9,356	93	0	10,323	93	0	10,374	93	0
Family Delphinidae (do	lphins)									
Atlantic spotted	Northern Gulf of Mexico	69,099	3,616	0	68,880	3,616	0	69,099	3,616	0
dolphin	Western North Atlantic	105,993	11,709	0	94,826	11,707	0	104,696	11,709	0
Atlantic white-sided dolphin	Western North Atlantic	33,413	1,375	0	30,507	1,374	0	33,540	1,375	0
	Choctawatchee Bay	933	31	0	932	31	0	933	31	0
Bottlenose dolphin	Gulf of Mexico Eastern Coastal	0	0	0	0	0	0	0	0	0

Table E.3-1: Estimated Marine Mammal Impacts per Year from Sonar Testing Activities (continued)

		Alternative 1	l – Minim	um	Alternative 1	. – Maxim	um	Alterno	ative 2	
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
	Gulf of Mexico Northern Coastal	16,034	824	0	15,983	824	0	16,034	824	0
	Gulf of Mexico Western Coastal	2,150	86	0	2,150	86	0	2,150	86	0
	Indian River Lagoon Estuarine System	0	0	0	0	0	0	0	0	0
	Jacksonville Estuarine System	0	3	0	0	3	0	0	3	0
	Mississippi Sound, Lake Borgne, Bay Boudreau	1	0	0	1	0	0	1	0	0
	Northern Gulf of Mexico Continental Shelf	121,782	6,212	0	122,153	6,212	0	122,153	6,212	0
	Northern Gulf of Mexico Oceanic	13,391	677	0	13,481	677	0	13,481	677	0
	Northern North Carolina Estuarine System	80	26	0	80	26	0	80	26	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	311	47	0	327	47	0	320	47	0
	Western North Atlantic Central Florida Coastal	2,289	232	0	2,366	232	0	2,332	232	0

Table E.3-1: Estimated Marine Mammal Impacts per Year from Sonar Testing Activities (continued)

		Alternative 1 – Minimum			Alternative 1	– Maxim	um	Altern	ative 2	
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
	Western North Atlantic Northern Migratory Coastal	10,400	1,119	1	11,205	1,119	1	11,236	1,119	1
	Western North Atlantic South Carolina/Georgia Coastal	1,556	222	0	1,633	222	0	1,599	222	0
	Western North Atlantic Southern Migratory Coastal	3,897	612	0	4,040	612	0	3,987	612	0
	Western North Atlantic Offshore	108,837	11,415	5	116,088	11,416	5	115,756	11,416	5
Clymene dolphin	Northern Gulf of Mexico	4,828	96	0	4,965	96	0	4,965	96	0
Ciymene doipiiii	Western North Atlantic	33,102	3,585	0	35,438	3,585	0	35,195	3,585	0
False killer whale	Northern Gulf of Mexico	1,997	73	0	2,039	73	0	2,039	73	0
raise killer wildle	Western North Atlantic	3,603	399	0	3,850	400	0	3,826	400	0
Fueroule delabin	Northern Gulf of Mexico	1,149	58	0	1,170	58	0	1,170	58	0
Fraser's dolphin	Western North Atlantic	1,282	97	0	1,367	97	0	1,373	97	0
Killer whale	Northern Gulf of Mexico	35	1	0	36	1	0	36	1	0
Killer whale	Western North Atlantic	39	3	0	45	3	0	44	3	0
Long-finned pilot whale	Western North Atlantic	18,117	823	0	20,015	824	0	20,101	824	0

Table E.3-1: Estimated Marine Mammal Impacts per Year from Sonar Testing Activities (continued)

		Alternative .	1 – Minim	um	Alternative 1	l – Maxim	um	Alternative 2			
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	
Melon-headed whale	Northern Gulf of Mexico	3,547	65	0	3,659	65	0	3,659	65	0	
Meion-neaded whale	Western North Atlantic	15,695	1,745	0	16,777	1,746	0	16,638	1,746	0	
Pantropical spotted	Northern Gulf of Mexico	27,407	596	0	28,197	596	0	28,197	596	0	
dolphin	Western North Atlantic	72,069	6,968	0	79,730	6,971	0	80,083	6,971	0	
Pygmy killer whale	Northern Gulf of Mexico	825	17	0	850	17	0	850	17	0	
ryginy killer whate	Western North Atlantic	2,686	293	0	2,884	293	0	2,867	293	0	
Risso's dolphin	Northern Gulf of Mexico	1,738	44	0	1,789	44	0	1,789	44	0	
Kisso's doiphili	Western North Atlantic	17,494	1,079	0	18,770	1,080	0	18,779	1,080	0	
Rough-toothed	Northern Gulf of Mexico	3,935	173	0	3,994	173	0	3,994	173	0	
dolphin	Western North Atlantic	8,185	1,159	0	8,696	1,159	0	8,644	1,159	0	
Short-beaked common dolphin	Western North Atlantic	299,511	13,446	0	325,626	13,452	0	326,828	13,452	0	
Short-finned pilot whale	Northern Gulf of Mexico	17,713	1,140	0	18,911	1,141	0	18,932	1,141	0	
Cninnar dalahin	Northern Gulf of Mexico	9,517	251	0	9,869	251	0	9,869	251	0	
pinner dolphin	Western North Atlantic	31,344	3,850	0	33,527	3,851	0	33,278	3,851	0	
Striped dolphin	Northern Gulf of Mexico	2,886	68	0	2,978	68	0	2,978	68	0	

Table E.3-1: Estimated Marine Mammal Impacts per Year from Sonar Testing Activities (continued)

		Alternative 1	L – Minim	um	Alternative 1	. – Maxim	um	Alternative 2		
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
	Western North Atlantic	88,085	6,876	0	99,536	6,879	0	100,045	6,879	0
White-beaked dolphin	Western North Atlantic	49	2	0	52	2	0	52	2	0
Family Phocoenidae (po	orpoises)									
Harbor porpoise	Gulf of Maine/Bay of Fundy	101,734	22,202	51	115,355	22,784	51	116,238	22,785	51
Suborder Pinnipedia										
Family Phocidae (true so	eals)									
Gray seal	Western North Atlantic	472	532	2	503	535	2	504	535	2
Harbor seal	Western North Atlantic	765	863	3	816	868	3	817	868	3
Harp seal	Western North Atlantic	5,968	4,359	0	6,391	4,406	0	6,404	4,406	0
Hooded seal	Western North Atlantic	603	393	0	671	399	0	674	399	0
Order Sirenia										
Family Trichechidae (manatees)										
West Indian manatee*	Florida, Antillean	1	6	0	1	6	0	1	6	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

PTS: permanent threshold shift; TTS: temporary threshold shift

[†]NSD: No stock designated

E.4 ESTIMATED MARINE MAMMAL IMPACTS PER FIVE YEAR PERIOD FROM SONAR AND OTHER TRANSDUCERS UNDER NAVY TESTING ACTIVITIES

Table E.4-1 provides a summary of the estimated number of marine mammal impacts from exposure to sonar and other transducers used during Navy testing activities under Alternatives 1 and 2 over the course of five years.

Table E.4-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Testing Activities

		Alternativ	e 1 – 5-Yea	r	Alternative 2 – 5-Year				
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS		
Suborder Mysticeti	(baleen whales)		-	-		-			
Family Balaenidae	(right whales)								
North Atlantic right whale*	Western North Atlantic	655	1,213	0	703	1,222	0		
Family Balaenopte	ily Balaenopteridae (roquals)								
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	22	82	0	23	82	0		
Bryde's whale	Northern Gulf of Mexico	260	630	0	269	632	0		
Minke whale	Canadian East Coast	1,822	6,375	3	1,915	6,394	3		
Fin whale*	Western North Atlantic	5,989	11,812	9	6,413	11,897	9		
Humpback whale	Gulf of Maine	1,078	1,469	0	1,127	1,478	0		
Sei whale*	Nova Scotia	782	1,549	0	838	1,559	0		
Suborder Odontoce	ti (toothed whales)								
Family Physeterida	e (sperm whale)								
Sperm whale*	Gulf of Mexico Oceanic	6,574	120	0	6,716	120	0		
	North Atlantic	56,147	1,652	0	60,260	1,655	0		
Family Kogiidae (sp	erm whales)								
Dwarf sperm	Gulf of Mexico Oceanic	1,653	2,358	6	1,705	2,360	6		
whale	Western North Atlantic	6,160	17,155	35	6,668	17,268	35		
Pygmy sperm	Northern Gulf of Mexico	1,653	2,358	6	1,705	2,360	6		
whale	Western North Atlantic	6,160	17,155	35	6,668	17,268	35		

Table E.4-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Testing Activities (continued)

		Alternativ	e 1 – 5-Yea	r	Alternative 2 – 5-Year				
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS		
Family Ziphiidae (b		Nesponse	113	1775	Response	113	1773		
ranny zipimaac (5	Northern Gulf of								
Blainville's beaked	Mexico	7,581	36	0	7,749	36	0		
whale	Western North	40.000	467		F1 070	467			
	Atlantic	48,669	467	0	51,870	467	0		
	Northern Gulf of	7,535	36	0	7,703	36	0		
Cuvier's beaked	Mexico	7,000			.,				
whale	Western North Atlantic	178,761	1,723	0	190,502	1,724	0		
	Northern Gulf of								
Gervais' beaked	Mexico	7,581	36	0	7,749	36	0		
whale	Western North								
	Atlantic	48,669	467	0	51,870	467	0		
Northern	Western North	4,115	14	0	4,447	14	0		
bottlenose whale	Atlantic	4,113	17		7,777	14			
Sowerby's beaked	Western North	48,669	467	0	51,870	467	0		
whale	Atlantic	-							
True's beaked whale	Western North Atlantic	48,669	467	0	51,870	467	0		
Family Delphinidae									
, ,	Northern Gulf of		T	_			_		
Atlantic spotted	Mexico	321,032	18,080	0	321,824	18,080	0		
dolphin	Western North	494,587	58,539	0	525,496	58,547	0		
	Atlantic	494,387	36,339		323,490	36,347	U		
Atlantic white-	Western North	158,304	6,871	0	167,698	6,873	0		
sided dolphin	Atlantic	•	•		,	,			
	Choctawatchee Bay	4,255	155	0	4,259	155	0		
	Gulf of Mexico	_	_	_	_	_	_		
	Eastern Coastal	0	0	0	0	0	0		
	Gulf of Mexico	75,528	4,118	0	75,703	4,118	0		
	Northern Coastal	73,328	4,110		73,703	4,110	0		
	Gulf of Mexico	10,751	429	0	10,751	429	0		
Bottlenose	Western Coastal	-, -			-, -				
dolphin	Indian River Lagoon Estuarine	1	2	0	1	2	0		
	System	1			<u> </u>	_			
	Jacksonville	4	12	_	4	12	_		
	Estuarine System	1	13	0	1	13	0		
	Mississippi Sound,								
	Lake Borgne, Bay	3	1	0	3	1	0		
	Boudreau					ĺ			

Table E.4-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Testing Activities (continued)

		Alternativ	e 1 – 5-Yea	Alternativ	e 2 – 5-Yea	r	
		Behavioral			Behavioral		
Species	Stock	Response	TTS	PTS	Response	TTS	PTS
	Northern Gulf of Mexico Continental Shelf	577,426	31,061	0	578,691	31,061	0
	Northern Gulf of Mexico Oceanic	63,424	3,387	0	63,751	3,387	0
	Northern North Carolina Estuarine System	402	131	0	402	131	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	1,579	234	0	1,611	234	0
	Western North Atlantic Central Florida Coastal	11,302	1,160	0	11,462	1,160	0
	Western North Atlantic Northern Migratory Coastal	53,565	5,595	3	56,180	5,595	3
	Western North Atlantic South Carolina/Georgia Coastal	7,894	1,110	0	8,054	1,110	0
	Western North Atlantic Southern Migratory Coastal	19,699	3,061	0	20,039	3,061	0
	Western North Atlantic Offshore	553,160	57,074	27	575,669	57,078	27
Clymene dolphin	Northern Gulf of Mexico	24,400	481	0	24,824	481	0
Crymene doipmin	Western North Atlantic	168,921	17,924	0	175,739	17,925	0
False killer whale	Northern Gulf of Mexico	9,840	367	0	9,972	367	0
. dise kiner writing	Western North Atlantic	18,282	1,997	0	19,045	1,998	0
Fraser's dolphin	Northern Gulf of Mexico	5,673	290	0	5,740	290	0
. rase. s doipmin	Western North Atlantic	6,511	484	0	6,829	485	0
Killer whale	Northern Gulf of Mexico	177	3	0	180	3	0

Table E.4-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Testing Activities (continued)

		Alternativ	e 1 – 5-Yea	r	Alternative	e 2 – 5-Yea	r
		Behavioral			Behavioral		
Species	Stock	Response	TTS	PTS	Response	TTS	PTS
	Western North Atlantic	204	16	0	222	16	0
Long-finned pilot whale	Western North Atlantic	94,304	4,117	0	100,497	4,120	0
Melon-headed	Northern Gulf of Mexico	17,946	325	0	18,290	325	0
whale	Western North Atlantic	79,631	8,725	0	82,797	8,728	0
Pantropical	Northern Gulf of Mexico	138,367	2,978	0	140,803	2,978	0
spotted dolphin	Western North Atlantic	372,667	34,844	0	400,025	34,854	0
Pygmy killer	Northern Gulf of Mexico	4,172	84	0	4,247	84	0
whale	Western North Atlantic	13,728	1,466	0	14,341	1,466	0
Disso's dolphin	Northern Gulf of Mexico	8,744	222	0	8,902	222	0
Risso's dolphin	Western North Atlantic	88,913	5,397	0	93,051	5,399	0
Rough-toothed	Northern Gulf of Mexico	19,122	864	0	19,308	864	0
dolphin	Western North Atlantic	41,461	5,795	0	43,038	5,795	0
Short-beaked common dolphin	Western North Atlantic	1,548,800	67,242	0	1,634,172	67,261	0
Short-finned pilot whale	Northern Gulf of Mexico	90,595	5,702	0	94,530	5,705	0
Spinner dolphin	Northern Gulf of Mexico	48,197	1,256	0	49,281	1,256	0
Spiriner dolpriin	Western North Atlantic	159,442	19,252	0	166,126	19,254	0
Striped dolphin	Northern Gulf of Mexico	14,598	342	0	14,879	342	0
Janpea adipinii	Western North Atlantic	462,934	34,385	0	500,229	34,395	0
White-beaked dolphin	Western North Atlantic	251	12	0	261	12	0
Family Phocoenidae	e (porpoises)						
Harbor porpoise	Gulf of Maine/Bay of Fundy	535,838	112,188	254	581,190	113,927	254

Table E.4-1: Estimated Marine Mammal Impacts per 5-Year Period from Sonar Testing Activities (continued)

		Alternativ	e 1 – 5-Yea	Alternativ	e 2 – 5-Yea	r	
		Behavioral			Behavioral		
Species	Stock	Response	TTS	PTS	Response	TTS	PTS
Suborder Pinnipedi	а						
Family Phocidae (tr	ue seals)						
Gray seal	Western North Atlantic	2,419	2,666	9	2,519	2,675	9
Harbor seal	Western North Atlantic	3,923	4,323	14	4,084	4,338	14
Harp seal	Western North Atlantic	30,691	21,892	0	32,018	22,029	0
Hooded seal	Western North Atlantic	3,149	1,978	0	3,372	1,995	0
Order Sirenia							
Family Trichechidae	e (manatees)						
West Indian manatee*	Florida, Antillean	4	32	0	4	32	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

E.5 ESTIMATED MARINE MAMMAL IMPACTS FROM AIR GUNS UNDER NAVY TRAINING ACTIVITIES

There are no air gun activities under training, therefore there are no anticipated takes.

E.6 ESTIMATED MARINE MAMMAL IMPACTS FROM AIR GUNS UNDER NAVY TESTING ACTIVITIES

Table E.6-1 provides a summary of the estimated number of marine mammal impacts from exposure to air guns used during Navy testing activities under Alternatives 1 and 2 over the course of a year. Most species and stocks in the Study Area either do not occur in areas where air gun activities take place, or did not result in any estimated impact based on the quantitative analysis.

[†]NSD: No stock designated

Table E.6-1: Estimated Marine Mammal Impacts per Year for Air Gun Activities

		Alternati	ve 1 –	Minim	um	Alternativ	num	Alternative 2					
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Family Delphinidae (do	1100 p 01100	110	,	,,				,,		7.10		,,	
Bottlenose dolphin	Western North Atlantic Offshore	0	0	0	0	1	0	0	0	1	0	0	0
Clymene dolphin	Western North Atlantic	0	0	0	0	1	0	0	0	1	0	0	0
Suborder Pinnipedia													
Family Phocidae (true s	seals)												
Gray seal	Western North Atlantic	0	0	0	0	1	0	0	0	1	0	0	0
Harbor seal	Western North Atlantic	0	0	0	0	2	0	0	0	2	0	0	0

E.7 ESTIMATED MARINE MAMMAL IMPACTS PER FIVE YEAR PERIOD FROM AIR GUNS UNDER NAVY TESTING ACTIVITIES

Table E.7-1 provides a summary of the estimated number of marine mammal impacts from exposure to air guns used during Navy testing activities under Alternatives 1 and 2 over the course of five years. Most species or stock in the Study Area either do not occur in areas where air gun activities take place, or did not result in any estimated impact based on quantitative analysis.

Table E.7-1: Estimated Marine Mammal Impacts per 5-Year Period for Air Guns

		Alterna	tive 1	– 5-Ye	ar	Alterna	tive 2	– 5-Ye	ar
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Bottlenose dolphin	Western North Atlantic Offshore	5	0	0	0	5	0	0	0
Clymene dolphin	Western North Atlantic	5	0	0	0	5	0	0	0
Suborder Pinniped	ia								
Family Phocidae (t	rue seals)								
Gray seal	Western North Atlantic	5	0	0	0	5	0	0	0
Harbor seal	Western North Atlantic	10	0	0	0	10	0	0	0

PTS: permanent threshold shift; TTS: temporary threshold shift

E.8 ESTIMATED MARINE MAMMAL IMPACTS FROM PILE DRIVING UNDER NAVY TRAINING ACTIVITIES

Table E.8-1 provides a summary of the estimated number of marine mammal impacts from exposure to pile driving used during Navy training activities under Alternatives 1 and 2 over the course of a year. Pile driving only occurs in the Atlantic regions of the Study Area, therefore species or stocks that occur in the Gulf of Mexico would not be impacted. Most species or stocks in the Study Area either do not occur in areas where pile driving activities take place, or did not result in any estimated impact based on quantitative analysis.

Table E.8-1: Estimated Marine Mammal Impacts per Year from Pile Driving Activities

		Alternative 1 –	Minim	um	Alternative 1 –	num	Alternation	ve 2		
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Family Delphinidae (d	olphins)									
Atlantic spotted dolphin	Western North Atlantic	16	0	0	16	0	0	16	0	0
шогриш	Northern North Carolina Estuarine System	2	0	0	2	0	0	2	0	0
Bottlenose dolphin	Western North Atlantic Northern Migratory Coastal	14	0	0	14	0	0	14	0	0
octienose doipiiii	Western North Atlantic Southern Migratory Coastal	86	0	0	86	0	0	86	0	0
	Western North Atlantic Offshore	790	0	0	790	0	0	790	0	0

E.9 ESTIMATED MARINE MAMMAL IMPACTS PER FIVE YEAR PERIOD FROM PILE DRIVING UNDER NAVY TRAINING ACTIVITIES

Table E.9-1 provides a summary of the estimated number of marine mammal impacts from exposure to pile driving used during Navy training activities under Alternatives 1 and 2 over the course of five years. Pile driving only occurs in the Atlantic regions of the Study Area, therefore species or stocks that occur in the Gulf of Mexico would not be impacted. Most species or stocks in the Study Area either do not occur in areas where pile driving activities take place, or did not result in any estimated impact based on quantitative analysis.

Table E.9-1: Estimated Marine Mammal Impacts per 5-Year Period for Pile Driving Activities

		Alternative 1 -	- 5-Yeaı		Alternative 2 –	5-Year	,
Species	Stock	Behavioral Response	TTS	PTS	Behavioral Response	TTS	PTS
Family Delphinidae	(dolphins)					_	
Atlantic spotted dolphin	Western North Atlantic	80	0	0	80	0	0
	Northern North Carolina Estuarine System	10	0	0	10	0	0
Bottlenose	Western North Atlantic Northern Migratory Coastal	70	0	0	70	0	0
dolphin	Western North Atlantic Southern Migratory Coastal	430	0	0	430	0	0
	Western North Atlantic Offshore	3,950	0	0	3,950	0	0

PTS: permanent threshold shift; TTS: temporary threshold shift

E.10 ESTIMATED MARINE MAMMAL IMPACTS FROM PILE DRIVING UNDER NAVY TESTING ACTIVITIES

There are no pile driving activities under testing, therefore there are no anticipated takes.

E.11 ESTIMATED MARINE MAMMAL IMPACTS FROM EXPLOSIVES UNDER NAVY TRAINING ACTIVITIES

Table E.11-1 provides a summary of the estimated number of marine mammal impacts from exposure to explosives used during Navy training activities under Alternatives 1 and 2 over the course of a year.

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities

		Alternati	uo 1 – M	linimum	•	Alternat	ive 1 – I	Mavimu	m	Alternative 2				
		Behavioral		IIIIIIIIIIIII		Behavioral Programme 1	106 1 - 1	VIUXIIIIU		Behavioral Section 1				
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	
-	ticeti (baleen wha	<u>-</u>				, , , , , , , , , , , , , , , , , , ,								
	nidae (right whales													
North Atlantic right whale*	Western North Atlantic	0	8	0	0	0	8	0	0	0	8	0	0	
Family Balaer	nopteridae (roquals	s)												
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	0	0	0	0	0	0	0	0	0	0	0	0	
Bryde's whale	Northern Gulf of Mexico	0	2	0	0	0	2	0	0	0	2	0	0	
Minke whale	Canadian East Coast	0	14	0	0	0	14	0	0	0	14	0	0	
Fin whale*	Western North Atlantic	0	32	3	0	0	32	3	0	0	32	3	0	
Humpback whale	Gulf of Maine	0	14	1	0	0	14	1	0	0	14	1	0	
Sei whale*	Nova Scotia	0	2	0	0	0	2	0	0	0	2	0	0	
Suborder Odo	ntoceti (toothed w	rhales)												
Family Physet	eridae (sperm who	ale)												
Sperm whale*	Gulf of Mexico Oceanic	0	0	0	0	0	0	0	0	0	0	0	0	
wilaie	North Atlantic	2	3	0	0	2	3	0	0	2	3	0	0	

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternative 1 – Minimum				Alternat	ive 1 – I	Maximu	m	Alternative 2				
		Behavioral				Behavioral				Behavioral				
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	
Family Kogiid	lae (sperm whales)													
Dwarf	Gulf of Mexico Oceanic	1	0	0	0	1	0	0	0	1	0	0	0	
sperm whale	Western North Atlantic	10	16	3	0	10	16	3	0	10	16	3	0	
Pygmy	Northern Gulf of Mexico	1	0	0	0	1	0	0	0	1	0	0	0	
sperm whale	Western North Atlantic	10	16	3	0	10	16	3	0	10	16	3	0	
Family Ziphii	dae (beaked whales	5)	•											
Blainville's beaked	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0	
whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0	
Cuvier's	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0	
beaked whale	Western North Atlantic	2	3	0	0	2	3	0	0	2	3	0	0	
Gervais' beaked whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0	

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternative 1 – Minimum				Alternat	ive 1 – I	Maximu	m	Alternative 2			
		Behavioral				Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Northern bottlenose whale	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0
Sowerby's beaked whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
True's beaked whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Family Delphi	inidae (dolphins)												
Atlantic	Northern Gulf of Mexico	1	5	0	0	1	5	0	0	1	5	0	0
spotted dolphin	Western North Atlantic	32	82	8	1	32	82	8	1	32	82	8	1
Atlantic white-sided dolphin	Western North Atlantic	3	7	1	0	3	7	1	0	3	7	1	0
	Choctawatchee Bay	0	0	0	0	0	0	0	0	0	0	0	0
Bottlenose dolphin	Gulf of Mexico Eastern Coastal	0	0	0	0	0	0	0	0	0	0	0	0

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternative 1 – Minimum			Alternat	ive 1 – I	Maximu	m	Alt	ernative	2		
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Gulf of Mexico Northern Coastal	1	3	0	0	1	3	0	0	1	3	0	0
	Gulf of Mexico Western Coastal	0	0	0	0	0	0	0	0	0	0	0	0
	Indian River Lagoon Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Jacksonville Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Mississippi Sound, Lake Borgne, Bay Boudreau	0	0	0	0	0	0	0	0	0	0	0	0
	Northern Gulf of Mexico Continental Shelf	6	24	2	0	6	25	2	0	6	25	2	0
	Northern Gulf of Mexico Oceanic	1	4	0	0	1	4	0	0	1	4	0	0

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternation	ve 1 – M	linimum)	Alternat	ive 1 – I	Maximu	m	Alt	ernative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Northern North Carolina Estuarine System	1	0	0	0	1	0	0	0	1	0	0	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	1	1	0	0	1	1	0	0	1	1	0	0
	Western North Atlantic Central Florida Coastal	3	5	0	0	3	6	0	0	3	6	0	0
	Western North Atlantic Northern Migratory Coastal	13	47	3	0	13	47	3	0	13	47	3	0

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternation	ve 1 – M	linimum	1	Alternat	ive 1 – I	Maximu	m	Alt	ernative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Western North Atlantic South Carolina/Georgi a Coastal	3	5	0	0	3	6	0	0	3	6	0	0
	Western North Atlantic Southern Migratory Coastal	11	19	2	0	11	19	2	0	11	19	2	0
	Western North Atlantic Offshore	93	383	28	3	93	384	28	3	93	384	28	3
Clymene	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
dolphin	Western North Atlantic	7	20	2	0	7	20	2	0	7	20	2	0
False killer	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
whale	Western North Atlantic	1	2	0	0	1	2	0	0	1	2	0	0

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternation	Alternative 1 – Minimum			Alternat	ive 1 – I	Maximu	m	Alt	ernative	2	
		Behavioral				Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
Fraser's	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
dolphin	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0
Will a growh a la	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
Killer whale	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0
Long-finned pilot whale	Western North Atlantic	3	4	0	0	3	4	0	0	3	4	0	0
Melon- headed	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
whale	Western North Atlantic	3	12	1	0	3	12	1	0	3	12	1	0
Pantropical	Northern Gulf of Mexico	0	1	0	0	0	1	0	0	0	1	0	0
spotted dolphin	Western North Atlantic	5	12	2	0	5	12	2	0	5	12	2	0
Pygmy killer whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternati	ve 1 – M	linimum	,	Alternat	ive 1 – I	Maximu	m	Alt	ernative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Risso's	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
dolphin	Western North Atlantic	2	5	0	0	2	5	0	0	2	5	0	0
Rough-	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
toothed dolphin	Western North Atlantic	1	5	0	0	1	5	0	0	1	5	0	0
Short- beaked common dolphin	Western North Atlantic	42	86	13	1	42	86	13	1	42	86	13	1
Short-finned pilot whale	Northern Gulf of Mexico	3	5	0	0	3	5	0	0	3	5	0	0
Spinner	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
dolphin	Western North Atlantic	4	15	1	0	4	15	1	0	4	15	1	0
Striped dolphin	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternativ	ve 1 – M	linimum)	Alternat	ive 1 – I	Maximu	m	Alt	ernative	2		
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	
	Western North Atlantic	7	15	3	1	7	15	3	1	7	15	3	1	
White- beaked dolphin	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0	
Family Phoco	enidae (porpoises)													
Harbor porpoise	Gulf of Maine/Bay of Fundy	114	510	153	0	114	510	153	0	114	510	153	0	
Suborder Pinn	Suborder Pinnipedia													
Family Phocia	lae (true seals)													
Gray seal	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0	
Harbor seal	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0	
Harp seal	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0	
Hooded seal	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0	

Table E.11-1: Estimated Marine Mammal Impacts per year for Explosive Training Activities (continued)

		Alternativ	Alternative 1 – Minimum				ive 1 – I	Maximu	m	Alt	ernative	2	
		Behavioral TTS BTS Injury			Behavioral				Behavioral				
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
Order Sirenia	Order Sirenia												
Family Triched	Family Trichechidae (manatees)												
West Indian	Florida,												
manatee*	Antillean	0	0	0	0	0	0	0	0	0	0	0	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

[†]NSD: No stock designated

E.12 ESTIMATED MARINE MAMMAL IMPACTS PER FIVE YEAR PERIOD FROM EXPLOSIVES UNDER NAVY TRAINING ACTIVITIES

Table E.12-1 provides a summary of the estimated number of marine mammal impacts from exposure to explosives used during Navy training activities under Alternatives 1 and 2 over the course of five years.

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities

		Alterna	tive 1 – 5		Alterna	tive 2 – 5	-Year		
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Suborder Mysticeti (bal	een whales)								
Family Balaenidae (righ	nt whales)								
North Atlantic right whale*	Western North Atlantic	0	41	0	0	0	42	0	0
Family Balaenopteridae	(roquals)								
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	0	0	0	0	0	0	0	0
Bryde's whale	Northern Gulf of Mexico	0	10	0	0	0	10	0	0
Minke whale	Canadian East Coast	0	69	0	0	0	69	0	0
Fin whale*	Western North Atlantic	0	161	14	0	0	161	14	0
Humpback whale	Gulf of Maine	0	69	3	0	0	69	3	0
Sei whale*	Nova Scotia	0	11	0	0	0	11	0	0
Suborder Odontoceti (to	oothed whales)								
Family Physeteridae (sp	-								
Sperm whale*	Gulf of Mexico Oceanic	0	0	0	0	0	0	0	0
Speriii whale	North Atlantic	10	17	0	1	10	17	0	1
Family Kogiidae (sperm	whales)								
Dwarf sperm whale	Gulf of Mexico Oceanic	3	2	0	0	3	2	0	0
Dwart sperm whate	Western North Atlantic	51	82	17	0	51	82	17	0

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Dugmy snorm whole	Northern Gulf of Mexico	3	2	0	0	3	2	0	0
Pygmy sperm whale	Western North Atlantic	51	82	17	0	51	82	17	0
Family Ziphiidae (beake	d whales)		•						
Blainville's beaked	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
whale	Western North Atlantic	3	4	0	0	3	4	0	0
Cuvier's beaked whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
	Western North Atlantic	10	14	0	0	10	14	0	0
Gervais' beaked whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Gervais beaked whale	Western North Atlantic	3	4	0	0	3	4	0	0
Northern bottlenose whale	Western North Atlantic	0	0	0	0	0	0	0	0
Sowerby's beaked whale	Western North Atlantic	3	4	0	0	3	4	0	0
True's beaked whale	Western North Atlantic	3	4	0	0	3	4	0	0
Family Delphinidae (dol	phins)								
Atlantic spotted	Northern Gulf of Mexico	7	27	0	0	7	27	0	0
dolphin	Western North Atlantic	160	411	42	3	160	411	42	3

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities (continued)

		Alterna	tive 1 – 5	-Year		Alternat	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Atlantic white-sided dolphin	Western North Atlantic	15	33	3	0	15	33	3	0
	Choctawatchee Bay	0	0	0	0	0	0	0	0
	Gulf of Mexico Eastern Coastal	0	0	0	0	0	0	0	0
	Gulf of Mexico Northern Coastal	4	17	0	0	4	17	0	0
	Gulf of Mexico Western Coastal	0	0	0	0	0	0	0	0
	Indian River Lagoon Estuarine System	0	0	0	0	0	0	0	0
Bottlenose dolphin	Jacksonville Estuarine System	0	0	0	0	0	0	0	0
	Mississippi Sound, Lake Borgne, Bay Boudreau	0	0	0	0	0	0	0	0
	Northern Gulf of Mexico Continental Shelf	28	122	9	0	29	124	10	0
	Northern Gulf of Mexico Oceanic	5	18	0	0	5	18	0	0
	Northern North Carolina Estuarine System	3	2	0	0	3	2	0	0

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Southern North Carolina Estuarine System	0	0	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	3	6	0	0	3	6	0	0
	Western North Atlantic Central Florida Coastal	13	28	0	0	13	28	0	0
	Western North Atlantic Northern Migratory Coastal	63	234	17	2	63	234	17	2
	Western North Atlantic South Carolina/Georgia Coastal	13	28	0	0	13	28	0	0
	Western North Atlantic Southern Migratory Coastal	55	93	8	0	55	93	8	0
	Western North Atlantic Offshore	464	1,919	140	15	464	1,921	140	15
Characa a dalahin	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Clymene dolphin	Western North Atlantic	37	101	12	0	37	101	12	0
False killer whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
raise killer whale	Western North Atlantic	3	8	0	0	3	8	0	0

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Fracaris dalphin	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Fraser's dolphin	Western North Atlantic	0	1	0	0	0	1	0	0
Killer whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Killer Wildle	Western North Atlantic	0	0	0	0	0	0	0	0
Long-finned pilot whale	Western North Atlantic	13	22	0	0	13	22	0	0
Melon-headed whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Meion-neaded whale	Western North Atlantic	16	59	3	0	16	59	3	0
Pantropical spotted	Northern Gulf of Mexico	1	3	0	0	1	3	0	0
dolphin	Western North Atlantic	26	60	10	1	26	60	10	1
Dugmy killer whole	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Pygmy killer whale	Western North Atlantic	4	6	0	0	4	6	0	0
Dissals dalphin	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Risso's dolphin	Western North Atlantic	8	23	0	0	8	23	0	0
Rough-toothed dolphin	Northern Gulf of Mexico	0	2	0	0	0	2	0	0

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Western North Atlantic	7	24	1	0	7	24	0	0
Short-beaked common dolphin	Western North Atlantic	211	431	66	3	211	431	66	3
Short-finned pilot whale	Northern Gulf of Mexico	14	24	2	0	14	24	2	0
Spinner delphin	Northern Gulf of Mexico	1	1	0	0	1	1	0	0
Spinner dolphin	Western North Atlantic	22	76	6	0	22	76	6	0
Ctringed delahin	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Striped dolphin	Western North Atlantic	34	75	16	3	34	75	16	3
White-beaked dolphin	Western North Atlantic	0	0	0	0	0	0	0	0
Family Phocoenidae (po	prpoises)								
Harbor porpoise	Gulf of Maine/Bay of Fundy	572	2,551	764	0	572	2,551	764	0
Suborder Pinnipedia									
Family Phocidae (true s	eals)								
Gray seal	Western North Atlantic	0	1	0	0	0	1	0	0
Harbor seal	Western North Atlantic	0	1	0	0	0	1	0	0
Harp seal	Western North Atlantic	1	2	0	0	1	2	0	0
Hooded seal	Western North Atlantic	0	0	0	0	0	0	0	0

Table E.12-1: Estimated Marine Mammal Impacts per Year for Explosive Training Activities (continued)

		Alternat	tive 1 – 5	-Year		Alternat	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Order Sirenia				-	-		-	_	
Family Trichechidae (mo	anatees)								
West Indian manatee*	Florida, Antillean	0	0	0	0	0	0	0	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

[†]NSD: No stock designation

E.13 ESTIMATED MARINE MAMMAL IMPACTS FROM EXPLOSIVES UNDER NAVY TESTING ACTIVITIES (EXCLUDING SHIP SHOCK TRIALS)

Table E.13-1 provides a summary of the estimated number of marine mammal impacts from exposure to explosives used during Navy testing activities (excluding ship shock trials) under Alternatives 1 and 2 over the course of a year.

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials)

		Alterna	tive 1 – N	/linimu	m	Alternative	2 1 – M	laximu	ım	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Suborder Mystic	ceti (baleen whales)			-	-				-		-	_	
Family Balaenia	lae (right whales)												
North Atlantic right whale*	Western North Atlantic	0	9	0	0	0	10	0	0	0	10	0	0
Family Balaeno	pteridae (roquals)								L			·	
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	0	0	0	0	0	0	0	0	0	0	0	0
Bryde's whale	Northern Gulf of Mexico	0	2	0	0	0	2	0	0	0	3	0	0
Minke whale	Canadian East Coast	0	12	0	0	0	13	1	0	0	16	1	0
Fin whale*	Western North Atlantic	0	31	1	0	0	35	1	0	0	42	2	0
Humpback whale	Gulf of Maine	0	10	0	0	0	11	0	0	0	12	1	0
Sei whale*	Nova Scotia	0	4	0	0	0	4	0	0	0	4	0	0
Suborder Odont	toceti (toothed whal	es)											
Family Physeter	ridae (sperm whale)												
Sperm whale*	Gulf of Mexico Oceanic	0	0	0	0	0	0	0	0	0	0	0	0
	North Atlantic	1	2	0	0	2	2	0	0	2	3	1	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	e 1 – N	laximu	ım	Alte	rnative	2	
		Behavioral				Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
Family Kogiidae	(sperm whales)												
Dwarf sperm	Gulf of Mexico Oceanic	2	7	3	0	2	8	4	0	3	10	5	0
whale	Western North Atlantic	17	19	6	0	20	23	7	0	20	24	8	0
Pygmy sperm	Northern Gulf of Mexico	2	7	3	0	2	8	4	0	3	10	5	0
whale	Western North Atlantic	17	19	6	0	20	23	7	0	20	24	8	0
Family Ziphiida	e (beaked whales)			•				•					
Blainville's	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
beaked whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Cuvier's	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
beaked whale	Western North Atlantic	2	2	0	0	2	3	0	0	2	3	0	0
Gervais' beaked whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	2 1 – M	laximu	ım	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Northern bottlenose whale	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0
Sowerby's beaked whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
True's beaked whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Family Delphini	dae (dolphins)												
Atlantic	Northern Gulf of Mexico	24	27	2	0	24	28	2	0	29	33	3	0
spotted dolphin	Western North Atlantic	47	56	6	0	60	77	8	1	62	79	9	1
Atlantic white- sided dolphin	Western North Atlantic	12	11	1	0	14	12	1	0	14	13	1	0
	Choctawatchee Bay	1	1	0	0	1	1	0	0	1	1	0	0
Bottlenose dolphin	Gulf of Mexico Eastern Coastal	0	0	0	0	0	0	0	0	0	0	0	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	2 1 – M	laximu	ım	Alte	rnative	2	
		Behavioral				Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
	Gulf of Mexico Northern Coastal	12	15	1	0	12	15	1	0	13	16	1	0
	Gulf of Mexico Western Coastal	0	0	0	0	0	0	0	0	0	0	0	0
	Indian River Lagoon Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Jacksonville Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Mississippi Sound, Lake Borgne, Bay Boudreau	0	0	0	0	0	0	0	0	0	0	0	0
	Northern Gulf of Mexico Continental Shelf	90	110	8	0	90	111	8	0	95	116	9	0
	Northern Gulf of Mexico Oceanic	10	13	1	0	10	13	1	0	11	13	1	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	e 1 – M	1aximu	ım	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Northern North Carolina Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0	0	0	0	0	0	0
	Western North Atlantic Northern Florida Coastal	0	0	0	0	0	0	0	0	0	0	0	0
	Western North Atlantic Central Florida Coastal	1	1	0	0	1	1	0	0	1	1	0	0
	Western North Atlantic Northern Migratory Coastal	6	14	2	0	7	15	2	0	7	15	2	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	linimu	m	Alternative	21 – M	laximu	m	Alte	rnative	2	
		Behavioral				Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
	Western North Atlantic South Carolina/Georgia Coastal	1	1	0	0	1	1	0	0	1	1	0	0
	Western North Atlantic Southern Migratory Coastal	2	2	0	0	2	3	0	0	2	3	0	0
	Western North Atlantic Offshore	61	111	16	1	68	121	17	1	69	123	18	1
Clymene	Northern Gulf of Mexico	0	0	0	0	0	1	0	0	1	1	0	0
dolphin	Western North Atlantic	11	15	1	0	13	19	2	0	14	20	2	0
False killer	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
whale	Western North Atlantic	1	2	0	0	1	2	0	0	1	2	0	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	2 1 – N	laximu	ım	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Fraser's	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
dolphin	Western North Atlantic	0	0	0	0	0	1	0	0	0	1	0	0
Will a month of a	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
Killer whale	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0
Long-finned pilot whale	Western North Atlantic	3	4	1	0	3	5	1	0	4	5	1	0
Melon-headed	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
whale	Western North Atlantic	4	6	1	0	5	7	1	0	6	8	1	0
Pantropical	Northern Gulf of Mexico	2	3	0	0	2	3	0	0	3	3	1	0
spotted dolphin	Western North Atlantic	18	18	3	0	21	22	4	0	22	23	4	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	2 1 – M	laximu	m	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Pygmy killer	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
whale	Western North Atlantic	1	1	0	0	1	1	0	0	1	1	0	0
Discola de la	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
Risso's dolphin	Western North Atlantic	2	4	1	0	3	6	1	0	3	6	1	0
Rough- toothed	Northern Gulf of Mexico	2	3	0	0	2	3	0	0	2	3	0	0
dolphin	Western North Atlantic	3	3	0	0	4	4	0	0	4	4	1	0
Short-beaked common dolphin	Western North Atlantic	70	88	9	1	83	114	13	1	87	119	14	1
Short-finned pilot whale	Northern Gulf of Mexico	2	4	1	0	3	5	1	0	3	5	1	0
Spinner dolphin	Northern Gulf of Mexico	1	2	0	0	1	2	0	0	2	4	1	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	21 – N	laximu	m	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Western North Atlantic	11	14	1	0	13	19	2	0	13	19	2	0
Striped	Northern Gulf of Mexico	0	0	0	0	0	0	0	0	0	0	0	0
dolphin	Western North Atlantic	16	16	3	0	19	21	4	0	20	21	4	0
White-beaked dolphin	Western North Atlantic	0	0	0	0	0	0	0	0	0	0	0	0
Family Phocoen	idae (porpoises)												
Harbor porpoise	Gulf of Maine/Bay of Fundy	358	577	150	0	411	664	170	0	412	688	195	0
Suborder Pinnip	oedia												
Family Phocidae	e (true seals)												
Gray seal	Western North Atlantic	5	5	0	0	6	5	0	0	6	5	0	0
Harbor seal	Western North Atlantic	9	7	1	0	10	8	1	0	10	8	1	0
Harp seal	Western North Atlantic	34	30	2	0	38	32	2	0	38	32	2	0

Table E.13-1: Estimated Marine Mammal Impacts per Year from Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – N	1inimu	m	Alternative	2 1 – N	laximu	ım	Alte	rnative	2	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Hooded seal	Western North Atlantic	3	2	0	0	3	2	0	0	3	2	0	0
Order Sirenia							•						
Family Trichech	idae (manatees)												
West Indian manatee*	Florida, Antillean	0	0	0	0	0	0	0	0	0	0	0	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

[†]NSD: No stock designation

E.14 ESTIMATED MARINE MAMMAL IMPACTS PER FIVE YEAR PERIOD FROM EXPLOSIVES UNDER NAVY TESTING ACTIVITIES (EXCLUDING SHIP SHOCK TRIALS)

Table E.14-1 provides a summary of the estimated number of marine mammal impacts from exposure to explosives used during Navy testing activities (excluding ship shock trials) under Alternatives 1 and 2 over the course of five years.

Table E.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Suborder Mysticeti (bal	een whales)								
Family Balaenidae (righ	nt whales)								
North Atlantic right whale*	Western North Atlantic	0	49	0	0	0	50	0	0
Family Balaenopteridae	(roquals)								
Blue whale*	Western North Atlantic (Gulf of St. Lawrence)	0	0	0	0	0	0	0	0
Bryde's whale	Northern Gulf of Mexico	0	8	0	0	0	13	0	0
Minke whale	Canadian East Coast	0	63	2	0	0	78	3	0
Fin whale*	Western North Atlantic	0	164	7	0	0	211	9	0
Humpback whale	Gulf of Maine	0	54	0	0	0	60	3	0
Sei whale*	Nova Scotia	0	19	0	0	0	22	0	0
Suborder Odontoceti (to	oothed whales)								
Family Physeteridae (sp	erm whale)								
Sperm whale*	Gulf of Mexico Oceanic	0	1	0	0	1	2	0	0
·	North Atlantic	8	10	0	0	9	13	3	0
Family Kogiidae (sperm	whales)								
Dwarf sperm whale	Gulf of Mexico Oceanic	12	38	17	0	13	50	25	0
Dwaii speiiii wiidie	Western North Atlantic	92	108	34	0	100	122	39	0

TableE.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
		Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
Pygmy sperm whale	Northern Gulf of Mexico	12	38	17	0	13	50	25	0
Pyginy sperm whale	Western North Atlantic	92	108	34	0	100	122	39	0
Family Ziphiidae (beake	ed whales)								
Blainville's beaked	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
whale	Western North Atlantic	3	3	0	0	3	4	0	0
Cuvier's beaked whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Cuvier's beaked wifale	Western North Atlantic	11	13	0	0	12	15	0	0
Gervais' beaked whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Gervais beaked wildie	Western North Atlantic	3	3	0	0	3	4	0	0
Northern bottlenose whale	Western North Atlantic	0	0	0	0	0	0	0	0
Sowerby's beaked whale	Western North Atlantic	3	3	0	0	3	4	0	0
True's beaked whale	Western North Atlantic	3	3	0	0	3	4	0	0
Family Delphinidae (dol	phins)								
Atlantic spotted	Northern Gulf of Mexico	121	136	10	1	147	164	15	1
dolphin	Western North Atlantic	273	340	36	3	308	395	44	4

TableE.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – 5	5-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Atlantic white-sided dolphin	Western North Atlantic	64	58	4	0	69	65	5	0
	Choctawatchee Bay	5	6	0	0	5	6	0	0
	Gulf of Mexico Eastern Coastal	0	0	0	0	0	0	0	0
	Gulf of Mexico Northern Coastal	62	76	5	0	66	80	6	0
	Gulf of Mexico Western Coastal	1	1	0	0	1	1	0	0
	Indian River Lagoon Estuarine System	0	0	0	0	0	0	0	0
	Jacksonville Estuarine System	0	0	0	0	0	0	0	0
Bottlenose dolphin	Mississippi Sound, Lake Borgne, Bay Boudreau	0	0	0	0	0	0	0	0
	Northern Gulf of Mexico Continental Shelf	449	551	38	1	476	580	45	2
	Northern Gulf of Mexico Oceanic	52	64	5	0	55	67	5	0
	Northern North Carolina Estuarine System	0	0	0	0	0	0	0	0
	Southern North Carolina Estuarine System	0	0	0	0	0	0	0	0

TableE.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
	Western North Atlantic Northern Florida Coastal	1	1	0	0	1	1	0	0
	Western North Atlantic Central Florida Coastal	6	6	0	0	6	6	0	0
	Western North Atlantic Northern Migratory Coastal	33	70	11	1	35	74	12	1
	Western North Atlantic South Carolina/Georgia Coastal	6	6	0	0	6	6	0	0
	Western North Atlantic Southern Migratory Coastal	11	11	0	0	12	13	0	0
	Western North Atlantic Offshore	324	582	83	5	344	614	88	5
Clymene dolphin	Northern Gulf of Mexico	2	2	0	0	3	3	0	0
Ciymene doipiiii	Western North Atlantic	62	87	7	1	69	98	9	1
False killer whale	Northern Gulf of Mexico	0	1	0	0	1	1	0	0
raise killer Wilaie	Western North Atlantic	5	10	0	0	6	12	0	0
Fraser's dolphin	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
riasei s uulpillii	Western North Atlantic	1	3	0	0	1	4	0	0

TableE.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Killer whale	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
	Western North Atlantic	0	0	0	0	0	0	0	0
Long-finned pilot whale	Western North Atlantic	16	21	6	1	19	25	7	1
Melon-headed whale	Northern Gulf of Mexico	1	2	0	0	2	2	0	0
Welon-fleaded Whale	Western North Atlantic	25	32	4	0	28	38	4	0
Pantropical spotted	Northern Gulf of Mexico	10	13	0	0	14	16	0	1
dolphin	Western North Atlantic	99	102	19	1	108	114	21	2
Duggay killar yahala	Northern Gulf of Mexico	0	0	0	0	0	0	0	0
Pygmy killer whale	Western North Atlantic	4	6	0	0	4	6	0	0
Discola dalahin	Northern Gulf of Mexico	1	2	0	0	1	2	0	0
Risso's dolphin	Western North Atlantic	12	26	3	0	14	30	4	1
Rough-toothed	Northern Gulf of Mexico	10	13	0	0	11	14	0	0
dolphin	Western North Atlantic	16	19	0	0	18	21	3	0
Short-beaked common dolphin	Western North Atlantic	385	503	53	3	433	595	71	5
Short-finned pilot whale	Northern Gulf of Mexico	12	22	6	1	15	26	7	1

TableE.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
		Behavioral				Behavioral			
Species	Stock	Response	TTS	PTS	Injury	Response	TTS	PTS	Injury
Spinner dolphin	Northern Gulf of Mexico	4	11	0	0	10	18	3	0
Spiriter dolpriii	Western North Atlantic	60	85	7	0	67	96	8	0
Chaire and all all all all all all all all all al	Northern Gulf of Mexico	1	1	0	0	2	2	0	0
Striped dolphin	Western North Atlantic	86	91	18	1	100	107	22	2
White-beaked dolphin	Western North Atlantic	0	0	0	0	0	0	0	0
Family Phocoenidae (po	orpoises)								
Harbor porpoise	Gulf of Maine/Bay of Fundy	1,912	3,067	791	0	2,060	3,438	977	0
Suborder Pinnipedia									
Family Phocidae (true s	eals)								
Gray seal	Western North Atlantic	28	23	0	0	30	24	0	0
Harbor seal	Western North Atlantic	46	38	3	0	49	39	3	0
Harp seal	Western North Atlantic	177	154	11	0	189	161	12	0
Hooded seal	Western North Atlantic	13	11	0	0	15	12	0	0

TableE.14-1: Estimated Marine Mammal Impacts per 5-Year Period for Explosive Testing Activities (Excluding Ship Shock Trials) (continued)

		Alterna	tive 1 – 5	-Year		Alterna	tive 2 – 5	-Year	
Species	Stock	Behavioral Response	TTS	PTS	Injury	Behavioral Response	TTS	PTS	Injury
Order Sirenia			_		-		-		
Family Trichechidae (mo	anatees)								
West Indian manatee*	Florida, Antillean	0	0	0	0	0	0	0	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

[†]NSD: No stock designation

E.15 ESTIMATED MARINE MAMMAL IMPACTS FROM SHIP SHOCK TRIALS UNDER NAVY TESTING ACTIVITIES

Table E.15-1 provides a summary of the estimated number of marine mammal impacts from exposure to Navy ship shock trials (an explosive testing activity) under Alternatives 1 and 2 from small and large shock trials, and over the course of five years. The small ship shock trial could take place up to 3 times over a five-year period and the large ship shock trial could take place once. Takes per species below are the maximum for any proposed location and season. Stock designations are not provided since they are highly dependent on the actual location chosen for each shock trial. See Chapter 2 for details on locations and seasons for ship shock trials.

Table E.15-1: Estimated Marine Mammal Impacts from Small and Large Ship Shock Trials (Explosive Testing Activity) and per 5-Year Period

		Sma	II Ship Sh	nock		Larg	e Ship Sh	hock		5-	Year Toto	al l
Species	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality
Suborder Mysticeti (baleen whales)	-	-			-	_						
Family Balaenidae (right whales)												
North Atlantic right whale*	1	0	0	0	2	0	0	0	5	0	0	0
Family Balaenopteridae (roquals)												
Blue whale*	1	0	0	0	1	0	0	0	4	0	0	0
Bryde's whale	3	0	0	0	6	1	0	0	15	1	0	0
Minke whale	19	1	0	0	39	3	0	0	96	6	0	0
Fin whale*	131	3	0	0	234	27	0	0	627	36	0	0
Humpback whale	8	0	0	0	20	2	0	0	44	2	0	0
Sei whale*	12	1	0	0	27	4	0	0	63	7	0	0
Suborder Odontoceti (toothed whales)												
Family Physeteridae (sperm whale)												
Sperm whale*	1	1	0	0	3	3	1	0	6	6	1	0
Family Kogiidae (sperm whales)												
Dwarf sperm whale	46	28	0	0	91	70	0	0	229	154	0	0
Pygmy sperm whale	46	28	0	0	91	70	0	0	229	154	0	0
Family Ziphiidae (beaked whales)												
Blainville's beaked whale	1	0	0	0	1	1	0	0	4	1	0	0
Cuvier's beaked whale	2	1	0	0	2	3	0	0	8	6	0	0
Gervais' beaked whale	1	0	0	0	1	1	0	0	4	1	0	0
Northern bottlenose whale	0	0	0	0	0	0	0	0	0	0	0	0
Sowersby's beaked whale	1	0	0	0	1	1	0	0	4	1	0	0
True's beaked whale	1	0	0	0	1	1	0	0	4	1	0	0

Table E.15-1: Estimated Marine Mammal Impacts from Small and Large Ship Shock Trials (Explosive Testing Activity) and per 5-Year Period (continued)

		Sma	II Ship Sh	nock		Larg	e Ship Sl	hock		5-	Year Tota	al
Species	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality
Family Delphinidae (dolphins)	•					Ė	=			•		
Atlantic spotted dolphin	6	3	1	0	8	8	4	0	26	17	7	0
Atlantic white-sided dolphin	1	1	0	0	3	6	3	1	6	9	3	1
Bottlenose dolphin	13	8	2	0	16	19	5	0	55	43	11	0
Clymene dolphin	2	4	1	0	9	5	3	0	15	17	6	0
False killer whale	0	0	0	0	2	1	0	0	2	1	0	0
Fraser's dolphin	0	0	0	0	2	2	1	0	2	2	1	0
Killer whale	0	0	0	0	0	0	0	0	0	0	0	0
Long-finned pilot whale	2	2	0	0	5	5	1	0	11	11	1	0
Melon-headed whale	1	1	0	0	5	3	1	0	8	6	1	0
Pantropical spotted dolphin	2	2	1	0	25	14	6	1	31	20	9	1
Pygmy killer whale	0	0	0	0	1	1	0	0	1	1	0	0
Risso's dolphin	1	1	0	0	3	1	0	0	6	4	0	0
Rough-toothed dolphin	1	0	0	0	3	1	1	0	6	1	1	0
Short-beaked common dolphin	40	40	11	1	67	73	34	3	187	193	67	6
Short-finned pilot whale	2	2	0	0	4	4	1	0	10	10	1	0
Spinner dolphin	3	1	0	0	37	31	14	1	46	34	14	1
Striped dolphin	4	6	2	0	10	8	4	0	22	26	10	0
White-beaked dolphin	0	0	0	0	0	0	0	0	0	0	0	0
Family Phocoenidae (porpoises)												
Harbor porpoise	43	41	0	0	120	81	0	0	249	204	0	0
Suborder Pinnipedia												
Family Phocidae (true seals)												
Gray seal	0	0	0	0	0	0	0	0	0	0	0	0
Harbor seal	0	0	0	0	0	0	0	0	0	0	0	0

Table E.15-1: Estimated Marine Mammal Impacts from Small and Large Ship Shock Trials (Explosive Testing Activity) and per 5-Year Period (continued)

		Sma	II Ship Sh	nock		Larg	e Ship Sl	nock		5-	Year Tot	al
Species	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality
Harp seal	0	0	0	0	0	0	0	0	0	0	0	0
Hooded seal	0	0	0	0	0	0	0	0	0	0	0	0
Order Sirenia												
Family Trichechidae (manatees)												
West Indian manatee*	0	0	0	0	0	0	0	0	0	0	0	0

^{*} ESA-listed species (all stocks) within the AFTT Study Area

E.16 ESTIMATED SEA TURTLE IMPACTS FROM SONAR AND OTHER TRANSDUCERS UNDER NAVY TRAINING AND TESTING ACTIVITIES

Table E.16-1 provides a summary of the estimated number of sea turtle impacts from exposure to sonar and other transducers used during Navy training and testing activities under Alternatives 1 and 2 over the course of a year.

Table E.16-1: Estimated Sea Turtle Impacts per Year from Sonar Training and Testing Activities

	Alternative 1 – Minimum			tive 1 – mum	Alternative 2					
Species	TTS	PTS	TTS	PTS	TTS	PTS				
Sonar Training Activitie	Sonar Training Activities									
Family Cheloniidae (ha	Family Cheloniidae (hardshell turtles)									
Green turtle*	0	0	0	0	0	0				
Hawksbill turtle*	0	0	0	0	0	0				
Kemp's ridley turtle*	0	0	0	0	0	0				
Loggerhead turtle*	0	0	0	0	0	0				
Family Dermochelyida	e (scuteless t	turtles)								
Leatherback turtle*	0	0	0	0	0	0				
Sonar Testing Activitie	s									
Family Cheloniidae (ha	rdshell turtl	es)								
Green turtle*	0	0	0	0	0	0				
Hawksbill turtle*	0	0	0	0	0	0				
Kemp's ridley turtle*	1	0	1	0	1	0				
Loggerhead turtle*	6	0	6	0	6	0				
Family Dermochelyida	e (scuteless t	turtles)								
Leatherback turtle*	1	0	1	0	1	0				

^{*} ESA-listed species within the AFTT Study Area

PTS: permanent threshold shift; TTS: temporary threshold shift

E.17 ESTIMATED SEA TURTLE IMPACTS PER FIVE YEAR PERIOD FROM SONAR AND OTHER TRANSDUCERS UNDER NAVY TRAINING AND TESTING ACTIVITIES

Table E.17-1 provides a summary of the estimated number of sea turtle impacts from exposure to sonar and other transducers used during Navy training and testing activities under Alternatives 1 and 2 over the course of five years.

Table E.17-1: Estimated Sea Turtle Impacts per 5-Year Period from Sonar and Other Transducers Training and Testing Activities

	Alternative	2 1 – 5-Year	Alternativ	e 2 – 5-Year						
Species	TTS	PTS	TTS	PTS						
Sonar Training Activities										
Family Cheloniidae (hardshell turtles)										
Green turtle*	0	0	0	0						
Hawksbill turtle*	0	0	0	0						
Kemp's ridley turtle*	0	0	0	0						
Loggerhead turtle*	0	0	0	0						
Family Dermochelyidae (scute	less turtles)									
Leatherback turtle*	1	0	1	0						
Sonar Testing Activities										
Family Cheloniidae (hardshell	turtles)									
Green turtle*	0	0	0	0						
Hawksbill turtle*	0	0	0	0						
Kemp's ridley turtle*	3	0	3	0						
Loggerhead turtle*	32	0	32	0						
Family Dermochelyidae (scute	less turtles)									
Leatherback turtle*	3	0	3	0						

^{*} ESA-listed species within the AFTT Study Area

E.18 ESTIMATED SEA TURTLE IMPACTS FROM AIR GUNS UNDER NAVY TRAINING AND TESTING ACTIVITIES

There are no air gun activities under training, therefore there are no anticipated takes. No sea turtle impacts are anticipated from exposure to air guns used during Navy testing activities under Alternatives 1 and 2 over the course of a year and over the course of five years.

E.19 ESTIMATED SEA TURTLE IMPACTS FROM PILE DRIVING UNDER NAVY TRAINING AND TESTING ACTIVITIES

No sea turtle impacts are anticipated from exposure to pile driving used during Navy testing activities under Alternatives 1 and 2 over the course of a year and over the course of five years. There are no pile driving activities under testing, therefore there are no anticipated takes.

E.20 ESTIMATED SEA TURTLE IMPACTS FROM EXPLOSIVES UNDER NAVY TRAINING AND TESTING ACTIVITIES

Table E.20-1 provides a summary of the estimated number of sea turtle impacts from exposure to explosives used during Navy training and testing activities, excluding ship shock trials, under Alternatives 1 and 2 over the course of a year.

Table E.20-1: Estimated Sea Turtle Impacts per Year from Explosive Training and Testing Activities

	Alternative 1 – Minimum			Alternative 1 – Maximum			Alternative 2			
Species	TTS	PTS	Injury	TTS	PTS	Injury	TTS	PTS	Injury	
Explosive Training Activities										
Family Cheloniidae (hardshell turtles)										
Green turtle*	2	1	0	2	1	0	2	1	0	
Hawksbill turtle*	0	0	0	0	0	0	0	0	0	
Kemp's ridley turtle*	4	3	0	4	3	0	4	3	0	
Loggerhead turtle*	58	27	4	58	27	4	58	27	4	
Family Dermochelyida	e (scutele	ss turtles	5)							
Leatherback turtle*	5	2	0	5	2	0	5	2	0	
Explosive Testing Activ	ities (Exc	luding Sh	ip Shock	Trials)						
Family Cheloniidae (ha	ırdshell tı	urtles)								
Green turtle*	2	1	0	2	2	0	3	2	0	
Hawksbill turtle*	0	0	0	0	0	0	0	0	0	
Kemp's ridley turtle*	2	1	0	3	1	0	4	2	0	
Loggerhead turtle*	24	12	3	28	15	3	33	16	4	
Family Dermochelyida	e (scutele	ss turtles	5)							
Leatherback turtle*	3	1	0	3	1	0	4	1	0	

^{*} ESA-listed species within the AFTT Study Area

E.21 ESTIMATED SEA TURTLE IMPACTS PER FIVE YEAR PERIOD FROM EXPLOSIVES UNDER NAVY TRAINING AND TESTING ACTIVITIES

Table E.21-1 provides a summary of the estimated number of sea turtle impacts from exposure to explosives used during Navy training and testing activities, excluding ship shock trials, under Alternatives 1 and 2 per five year period.

Table E.21-1: Estimated Sea Turtle Impacts per 5-Year Period from Explosive Training and Testing Activities (Excluding Ship Shock Trials)

	Alternative 1 – 5-Year			А	Iternative	2 – 5-Year				
Species	TTS	PTS	Injury	TTS	PTS	Injury				
Explosive Training Activities										
Family Cheloniidae (hardshell turtles)										
Green turtle*	12	5	1	12	5	1				
Hawksbill turtle*	1	0	0	1	0	0				
Kemp's ridley turtle*	18	13	1	18	13	1				
Loggerhead turtle*	289	134	21	290	134	21				
Family Dermochelyidae	(scuteless	turtles)								
Leatherback turtle*	25	10	0	25	10	0				
Explosive Testing Activi	ties (Exclu	ding Ship S	Shock Trials)							
Family Cheloniidae (hai	rdshell turi	tles)								
Green turtle*	12	8	1	13	8	1				
Hawksbill turtle*	1	0	0	1	0	0				
Kemp's ridley turtle*	13	6	1	19	8	1				
Loggerhead turtle*	128	67	15	163	82	18				
Family Dermochelyidae	(scuteless	turtles)								
Leatherback turtle*	15	4	0	18	6	1				

^{*} ESA-listed species within the AFTT Study Area

E.22 ESTIMATED SEA TURTLE IMPACTS FROM SHIP SHOCK TRIALS UNDER NAVY TESTING ACTIVITIES

Table E.22-1 provides a summary of the estimated number of sea turtle impacts from exposure to Navy ship shock trials (an explosive testing activity) under Alternatives 1 and 2 from small and large shock trials, and over the course of five years. The small ship shock trial could take place up to 3 times over a five-year period and the large ship shock trial could take place once. Takes per species below are the maximum for any proposed location and season. See Chapter 2 for details on locations and seasons for ship shock trials.

Table E.22-1: Estimated Sea Turtle Impacts from Small and Large Ship Shock Trials (Explosive Testing Activity) and per 5-Year Period

	Small Ship Shock			Large Ship Shock			5-Year Total					
Species	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality	TTS	PTS	Injury	Mortality
Family Cheloniidae (hardshell turtles)												
Green turtle*	18	1	0	0	18	1	0	0	72	4	0	0
Hawksbill turtle*	2	0	0	0	2	0	0	0	8	0	0	0
Kemp's ridley turtle*	12	1	0	0	15	1	1	0	51	4	1	0
Loggerhead turtle*	339	19	5	1	283	13	4	1	1,300	70	19	4
Family Dermochelyidae (scuteless turtles)												
Leatherback turtle*	169	7	1	0	215	7	2	0	722	28	5	0

^{*} ESA-listed species within the AFTT Study Area

Atlantic Fleet
Training and Testing Draft EIS/OEIS

This page intentionally left blank.

APPENDIX F Military Expended Materials and Direct Strike Impact Analyses

This page intentionally left blank.

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

APPENDIX F	PPENDIX F MILITARY EXPENDED MATERIAL AND DIRECT STRIKE IMPACT A					
F.1		ating the Impact of Military Expended Materials and Underwater sions on Abiotic Substrates as a Habitat for Biological Resources	F-1			
	F.1.1	Military Expended and Recovered Material – Training Activities	F-8			
	F.1.2	Military Expended and Recovered Materials – Testing Activities	F-27			
F.2	Impac	ts to Abiotic Substrate – Training and Testing Activities	F-41			
F.3		tical and Probability Analysis for Estimating Direct Strike Impact and er of Potential Exposures From Military Expended Materials	F-53			
	F.3.1	Direct Impact Analysis				
	F.3.2	Parameters for Analysis				
	F.3.3	Input Data				
	F.3.4	Output Data	F-57			
F.4	Poisso	on Probability of Direct Vessel Strike with Marine Mammals				
This section o	does no	t contain figures. List of Tables				
		List of Tables				
	Ū	s and Footprints for Various Materials and Underwater Explosions	F-2			
		nd Impacts* of Military Expended Materials Proposed for Use During g Activities in a Single Year Under Alternatives 1 and 2	F-9			
		nd Impacts* of Military Expended Materials Proposed for Use During				
		g Activities in a Single Year Under Alternatives 1 and 2–Inland Waters	F-11			
	Trainin	nd Impacts* of Military Expended Materials Proposed for Use During g Activities in a Single Year with Differences between Alternatives 1	F-13			
		nd Impacts* of Military Expended Materials Proposed for Use				
		Fraining Activities in Five Years Under Alternatives 1 and 2	F-15			
		nd Impacts* of Military Expended Materials Proposed for Use During g Activities in Five Years Under Alternatives 1 and 2 – Inland Waters	F-17			
		nd Impacts* of Military Expended Materials Proposed for Use During g Activities in Five Years with Differences between Alternatives 1 and 2	F-19			

Table F-8: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in Five Years with Differences between Alternatives 1 and	
2–Inland Waters	F-21
Table F-9: Number of Recovered Materials Proposed for Use During Training Activities In a Single Year Under Alternatives 1 and 2	F-23
Table F-10: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities In a Single Year Under Alternatives 1 and 2	F-23
Table F-11: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities in a Single Year Under Alternatives 1 and 2 - Inland Waters	F-23
Table F-12: Number of Recovered Materials Proposed for Use During Training Activities In Five Years Under Alternatives 1 and 2	F-25
Table F-13: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities In Five Years Under Alternatives 1 and 2	F-25
Table F-14: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities in Five Years Under Alternatives 1 and 2 - Inland	г эг
Waters Table F-15: Number and Impacts* of Military Expended Materials Proposed for Use During Testing Activities in a Single Year Under Alternatives 1 and 2	
Table F-16: Number and Impacts* of Military Expended Materials Proposed for Use During Testing Activities in a Single Year with Differences between Alternatives 1 and 2	
Table F-17: Number and Impacts* of Military Expended Materials Proposed for Use During Testing Activities in Five Years Under Alternatives 1 and 2	
Table F-18: Number of Recovered Materials Proposed for Use During Testing Activities in a Single Year Under Alternatives 1 and 2	F-35
Table F-19: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Testing Activities in a Single Year Under Alternatives 1 and 2	
Table F-20: Number of Recovered Materials Proposed for Use During Testing Activities in Five Years Under Alternatives 1 and 2	F-37
Table F-21: Number of Recovered Materials Proposed for Use During Testing Activities in Five Years Under Alternatives 1 & 2—Inland Waters	F-37
Table F-22: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Testing Activities in Five Years as Part of Alternatives 1 and 2	F-39
Table F-23: Potential Impact from Explosives On or Near the Bottom for Training Activities Under Alternative 1 and 2 in a Single Year	
Table F-24: Potential Impact from Explosives On or Near the Bottom for Testing Activities Under Alternative 1 in a Single Year	
Table F-25: Potential Impact from Explosives On or Near the Bottom for Testing Activities Under Alternative 2 in a Single Year	
Table F-26: Potential Impact from Explosives On or Near the Bottom for Training Activities under Alternatives 1 and 2 Over Five Years	F-44

Training and Testing Draft EIS/OEIS

Table F-27: Potential Impact from Explosives On or Near the Bottom for Testing Activities under Alternatives 1 and 2 Over Five Years	F-46
Table F-28: Potential Impact of Military Expended Materials from Training Activities on Each Substrate Type in a Single Year	F-47
Table F-29: Potential Impact of Military Expended Materials from Testing Activities on Each Substrate Type in a Single Year	F-47
Table F-30: Potential Impact of Military Expended Materials from Training Activities on Each Substrate Type over Five Years	F-48
Table F-31: Potential Impact of Military Expended Materials from Testing Activities on Each Substrate Type over Five Years	F-49
Table F-32: Proportional Impact to Bottom Habitat from Training Activities Under Alternatives 1 and 2 in a Single Year	F-50
Table F-33: Proportional Impact to Bottom Habitat from Testing Activities Under Alternatives 1 and 2 in a Single Year	
Table F-34: Proportional Impact to Bottom Habitat from Training Activities Under Alternatives 1 and 2 over Five Years	
Table F-35: Proportional Impact to Bottom Habitat from Testing Activities Under Alternatives 1 and 2 over Five Years	F-53
Table F-36: Estimated Representative Marine Mammal Exposures from Direct Strike of a High Energy Laser by Area and Alternative in a Single Year	F-57
Table F-37: Estimated Representative Sea Turtle Exposures from Direct Strike of a High Energy Laser by Area and Alternative in a Single Year	F-58
Table F-38: Estimated Representative Marine Mammal Exposures from Direct Strike of Military Expended Materials by Area and Alternative in a Single Year	
Table F-39: Estimated Representative Sea Turtle Exposures from Direct Strike of Military Expended Materials by Area and Alternative in a Single Year	

Atlantic	Fleet	t			
Training	and	Testing	Draft	EIS/	OEIS

This page intentionally left blank.

APPENDIX F MILITARY EXPENDED MATERIAL AND DIRECT STRIKE IMPACT ANALYSIS

F.1 ESTIMATING THE IMPACT OF MILITARY EXPENDED MATERIALS AND UNDERWATER EXPLOSIONS ON ABIOTIC SUBSTRATES AS A HABITAT FOR BIOLOGICAL RESOURCES

This section discusses the methods and results for quantifying two scenarios under Alternative 1 and Alternative 2 of the Proposed Action: (1) the highly improbable worst-case scenario of all military expended materials or underwater explosions occurring on one particular substrate type, and (2) the unlikely, but slightly more realistic, scenario of uniform or proportional impact distribution within a particular area. Training and testing typically occurs in areas that are not called out or linked to specific activities for various reasons (e.g., flexibility and national security). Because training and testing activities would not be conducted under the No Action Alternative, it will not be discussed in this appendix.

This section describes the calculation of the disturbance footprint (i.e., military expended material footprint or explosive crater footprint) of an instantaneous impact of military expended materials or explosions on the substrate. The actual instantaneous impact on the bottom will depend on the number and location of military expended materials expended and not recovered, which is likely much lower and more concentrated than either scenario being analyzed. Longer term impacts on the bottom are far more difficult to quantify – refer to the Habitats section of Chapter 3 (Section 3.5, Affected Environment and Environmental Consequences) for qualitative discussion.

The analysis requires two data elements: (1) a tabular summary of the military expended material or crater (underwater explosions) footprints expected in training and testing areas, and (2) a tabular summary of analysis dimensions, which includes abiotic substrate areas. The data for (1) comes from the Atlantic Fleet Training and Testing (AFTT) action proponents and represents the most locational flexibility with regard to expenditure of military expended materials and underwater explosions. The data for both expended and recovered material is reported in Table F-1 through Table F-17 below. Appendix A of the AFTT Environmental Impact Statement (EIS)/Overseas Environmental Impact Statement (OEIS) provides basic descriptions of military expended materials and Chapter 3.0 (3.0.3.3.2, Explosive Stressors) provides basic descriptions of explosive categories. The data for number of military expended materials and underwater explosions are then multiplied by an estimate of the footprint size documented in Table F-1. The data for (2) comes from a compilation of abiotic substrate mapping presented in the Habitats section of Chapter 3 (Section 3.5-Habitats).

To determine the potential level of disturbance of military expended materials on marine substrates, it was assumed that the impact footprint of the expended material on the seafloor is twice the size of its footprint (unless specified otherwise in Appendix F notes). By doubling the footprint, the results should more accurately reflect the potential disturbance to soft bottom habitats (i.e., to account for sediment plumes), but should overestimate disturbance to hard bottom habitats (i.e., because sediment plumes are not expected) based on mitigation requirements. Items with casings (e.g., small-, medium-, and large-caliber munitions; flares; sonobuoys; etc.) have their impact footprints further doubled to account for both the item and its casing. To be conservative, items and their casings were assumed to be the same size, although in reality the items are a smaller size in order to fit in their casing.

Table F-1: Categories and Footprints for Various Materials and Underwater Explosions

Material Group	Material Category	Bottom Frequency*	Crater Footprint (ft.²)	MEM Size (ft.²)	MEM Footprint (ft.²)	Material Specific Notes
	Bombs (Explosive)	NA	NA	8.1203	112.9048	The MEM footprint was calculated using the bomb with the
Bomb	· · · · ·		NA	8.1203	112.9048	largest footprint in terms of material fragments, which in this case is the Rockeye which disperses 247 bomblets.
	Acoustic Countermeasures	NA	NA	0.31107	1.2432	Includes all type of non-recoverable Acoustic Countermeasures
	Chaff- Air Cartridge	NA	NA	0.0012	0.0022	Chaff is a radar reflector material made of thin, narrow, metallic strips cut in various lengths to elicit frequency responses, which deceive enemy radars. Chaff-Air is fired from an aircraft using a small cartridge.
	Chaff-Ship Cartridge	NA	NA	2.000	4.000	Chaff-ship serves the same purpose of chaff-air. It is fired from a ship in cartridges.
Countermeasure	Anti-torpedo Torpedo	NA	NA	4.5424	9.0847	The Countermeasure Anti-torpedo consists of an anti-torpedo torpedo enclosed within All Up Round Equipment canister. The anti-torpedo torpedo is a 6.75-inch diameter highmaneuverability hard-kill torpedo designed to rapidly intercept and engage an incoming threat torpedo. The All Up Round Equipment consists of a nose sabot, ram plate, launch tube, muzzle cover, and breech mechanism to encapsulate, protect, and ultimately launch the anti-torpedo torpedo. Anti-torpedo torpedo s are frequently recovered; assume all are non-recoverable for worst-case.
	Flares	NA	NA	1.2196	4.8782	Assumed to not have parachutes
	0.5 lb. HE charges	50%	12	NA	NA	None
	10 lb. HE charges	50%	85	NA	NA	None
	20 lb. HE charges	50%	135	NA	NA	None
Explosive Charge	5 lb. HE charges	50%	54	NA	NA	None
	60 lb. HE charges	50%	281	NA	NA	None
	650 lb. HE charges	50%	14800.3763	25.7903	51.5806	Another name for an explosive mine including material based on the footprint of a mine shape.
	Line Charges	100%	4324	NA	NA	None

Table F-1: Categories and Footprints for Various Materials and Underwater Explosions (continued)

Material Group	Material Category	Bottom Frequency*	Crater Footprint (ft²)	MEM Size (ft²)	MEM Footprint (ft²)	Material Specific Notes
	Missiles (Explosive)	NA	NA	37.3669	74.7338	MEM size based on SM-6
	Missile (Non-explosive)	NA	NA	31.0011	62.0023	MEM size based on Tomahawk
	Rockets (Explosive)	NA	NA	0.7987	1.5974	MEM sized based on Hydra 70
Missiles	Rockets (Non- explosive)	NA	NA	0.7987	1.5974	MEM size based on Hydra 70. Also include flechette rockets.
	Rockets (Non- explosive): Flechette	NA	NA	0.7987	1.5974	MEM size based on Hydra 70. Included flechette darts in warhead.
	Air-launched lightweight (Explosive) torpedo	NA	NA	19.1199	38.2399	MEM size based on MK50/MK54
	Air-launched lightweight (Non- explosive) torpedo	NA	NA	19.1199	38.2399	MEM size based on MK50/MK54. Typically recovered
	AMNS/EMNS Neutralizer (Explosive)	50%	430.5564	1.6286	3.2572	AMNS is air deployed whereas EMNS is ship deployed
	AMNS Neutralizer (Non-explosive)	NA	NA	0.1513	0.3026	The neutralizer itself is recovered, but the associated fiber optic cable and the can that holds the fiber optic cable is not.
Other	Anchor (Expendable)	NA	NA	6.2495	12.5001	Associated primarily with mine shapes.
Other	Anchor (Recoverable)	NA	NA	6.2495	12.5001	Associated primarily with mine shapes.
	Biodegradable Polymer	NA	NA	NA	NA	A substance composed of molecules that degrade as a result of microorganisms and/or enzymes. Footprint is not applicable because the material breaks up within a couple of hours, depending on the type of material out of which the polymer is made. Reference: Karlsson and Albertsson. 1998. Biodegradable polymers and environmental interaction. Polymer Engineering and Science 38(8): 1251-1253.
	Bottom Placed Instruments	NA	NA	2.0000	4.000	Likely moored tracking beacons, so the footprint on the bottom would be approximately 2 square feet. It would weight approximately 50 pounds.

Table F-1: Categories and Footprints for Various Materials and Underwater Explosions (continued)

Material Group	Material Category	Bottom Frequency*	Crater Footprint (ft²)	MEM Size (ft²)	MEM Footprint (ft²)	Material Specific Notes					
	Buoy (Explosive)	NA	NA	0.9752	3.8987	Explosive buoys including mini-sound source and SUS. MEM-size based on Marine Marker.					
	Buoy (Non-explosive)	NA	NA	0.9752	3.8987	These buoys are separate from sonobuoys, and are included for DWADS (expendable) or IMPASS (recovered). MEM size based on Marine Marker. Can be expended or recovered.					
	Concrete slugs	NA	NA	0.0011	0.0022	Assume similar in dimensions to a chaff cartridge					
	Endcaps & Pistons – Non Chaff & Flare	NA	NA	0.0043	0.0086	Applies only to where it cannot be associated to another object (e.g., endcaps and pistons associated with chaff would be covered by 'chaff'). Used for testing.					
	Endcaps –Chaff & Flare	NA	NA	0.00215	0.0043	Applies only to Chaff-Air and Flares. 1 Endcap is expended per chaff-air or flare.					
	Flare O-Ring	NA	NA	0.0043	0.0086	Assumed similar 2-dimensional footprint as endcaps and pistons. Associated with flares. Assumed 1 Flare O-Ring per flare.					
	Fiber Optic Can	NA	NA	0.0011	0.0022	Assumed similar 2-dimensional footprint as chaff-air cartridge. Associated with AMNS Neutralizer fiber optic cable. Can that holds fiber optic cable is expended.					
	Bathythermograph - Expended	NA	NA	0.0258	0.0516	An instrument that is deployed from a ship to record temperature and depth measurements. Small wires transmit the temperature data from the probe to the ship. This item is fairly standard in terms of footprint; these are off the shelf Commercial products. Reference: NOAA 2015. http://www.aoml.noaa.gov/goos/uot/xbt-what-is.php. Accessed November 3, 2015.					
	Fiber optic cables	NA	NA	NA	NA	Associated with some rockets and AMNS neutralizers					
	Guidance wires	NA	NA	0	0	Fragments created for relatively small portion associated with explosive devices (associated with heavyweight torpedoes).					
	Bathythermograph –	NA	NA	NA	NA	Single vertical wire					

Table F-1: Categories and Footprints for Various Materials and Underwater Explosions (continued)

Material Group	Material Category	Bottom Frequency*	Crater Footprint (ft²)	MEM Size (ft²)	MEM Footprint (ft²)	Material Specific Notes
	Expended Wire					
	Heavyweight (Explosive) torpedo	NA	NA	39.6155	79.2299	MEM size based on MK-48
	Heavyweight torpedo accessories	NA	NA	0.1615	3.2367	MEM includes ballast weights, flex tubing
	Heavyweight (Non- explosive) torpedo	NA	NA	NA	NA	Typically recovered
	Illumination flares	NA	NA	1.2196	4.8782	Flares that have a large parachute; MEM size based on half the surface area of an 18 ft diameter parachute used with an LUU-2 illumination flare.
	Lightweight Torpedo Accessories	NA	NA	1.0107	2.0215	MEM includes ballast weights, flex tubing (parachute size not included)
	Marine marker			0.9752	3.8987	MEM footprint based on two Navy marine markers (MK25 and MK58
	Mine (Explosive)	50%	14800.376	25.7903	51.5806	Another name for a 650 lb. HE explosive charge including material based on the footprint of a mine shape.
	Parachute (Large)	NA	NA	283.9961	MEM size based on diameter of LUU-2 illumination flare parachute (18 ft. diameter).	
	Parachute (Medium)	NA	NA	9.0417	18.0834	Associated with air-launched torpedoes
	Small Decelerator/Parachute	NA	NA	2.8438	5.6876	Associated with launched sonobuoys
	Sabot	NA	NA	1.2195	4.8782	An accessory used during projectile firing. Footprint similar in size to the projectile.
	Sonobuoys (Non-explosive)	NA	NA	1.2206	2.4413	Sonobuoys have an extra item footprint (half the dimensions of the sonobuoy) added in addition to the actual sonobuoy
	Sonobuoys (Explosive)	0	NA	1.2206	2.4413	and casing to account for the items that are discarded from the sonobuoy following its release. MEM size does not include the associated Small Decelerator/Parachute (noted in table above)

Table F-1: Categories and Footprints for Various Materials and Underwater Explosions (continued)

Material Group	Material Category	Bottom Frequency*	Crater Footprint (ft²)	MEM Size (ft²)	MEM Footprint (ft²)	Material Specific Notes					
	Sonobuoy wires	NA	NA	NA	NA	One wire is associated with each sonobuoy					
	Surface-Launched Lightweight (Explosive) Torpedo	0	NA	10.0782	20.1576	MEM size based on MK50/MK54					
	Surface-Launched Lightweight (Non- Explosive) Torpedo	NA	NA	10.0782	Typically recovered						
	Grenades (Explosive)	0	NA	0.1044	0.2088	None					
	Large Caliber (Explosive)	NA	A NA		4.0386	Item assumed to have a projectile and casing					
	Large Caliber (Non-explosive)	NA	NA	1.0097	4.0386	Item assumed to have a projectile and casing					
	Large caliber (Casing only)	NA	NA	0.5048	1.0097	Used when the target is on land; no MEM from projectile					
Projectile	Medium Caliber (Explosive)	NA	NA	0.0560	0.2239	Item assumed to have a projectile and casing					
	Medium Caliber (Non-explosive)	NA	NA	0.0560	0.2239	Item assumed to have a projectile and casing					
	Small Caliber (Non-explosive)	NA	NA	0.0301	0.1216	Item assumed to have a projectile and casing					
	Small Caliber (Casing only)	NA	NA	0.0151	0.0301	Used only for small caliber 'blanks'. All other small caliber rounds are included under NEPM					
	Kinetic Energy Round	NA	NA	0.5048	1.0097	Item assumed to only have a projectile (no casing) - size of Large Caliber round.					
	Aerial Drones – Expendable	NA	NA	294.6082	589.2164	MEM when specifically known it is an aerial drone; MEM size based on Firebee					
Target	Aerial Drones – Recovered	NA	NA	294.6082	589.2164	MEM when specifically known it is an aerial drone; MEM size based on Firebee. Typically recovered.					
	Air Target – Expended	NA	NA	42.1622	84.3244	MEM when specifically known it is an air launched decoy.					

Table F-1: Categories and Footprints for Various Materials and Underwater Explosions (continued)

Material Group	Material Category	Bottom Frequency*	Crater Footprint (ft²)	MEM Size (ft²)	MEM Footprint (ft²)	Material Specific Notes
	(Non-Drone)					MEM size based on dimensions of Tactical Air Launched Decoy or Miniature Air-Launched Decoy.
	Metal Plates	NA	NA	2.7782	5.5563	Charges are secured to a 20" X 20" X 1/2" ferrous metal plate The target unit (concrete blocks, metal plate, and any debris) is brought to the surface and analyzed.
	Surface Target - Expended	NA	NA	5.7522	11.5034	Includes remote controlled or towed targets
	Surface Target - Recovered	NA NA		NA	NA	Reported as recovered.
	Surface Target (Mobile) - Expended	NA	NA	5.7522	11.5034	Includes remote controlled or towed targets
	Surface Target (Stationary) - Expended	NA	NA	96.8752	193.7504	MEM when specifically known it is a stationary surface target. MEM size based on Killer Tomato.
	Subsurface Target (Mobile) - Expended	NA	NA	1.2206	2.4412	MEM when specifically known it is a sub-surface Motorized Autonomous Target
	Mine Shape - Expended	NA	NA	25.7903	51.5807	Mine shapes that were specifically identified as non- recoverable; Footprint based on size of explosive mine; size not including anchor
	Mine Shape - Expended	NA	NA	25.7903	51.5807	Mine shape and associated anchor block that are recovered. The vast majority of practice mines have built-in anchors for placing on the bottom; relatively few are moored/floating, and none are drifting.
	Ship Hulk	NA	NA	316136.0 367	632272.0 734	None.

Note: * Bottom frequencies (%) are only listed for underwater explosions; crater footprints are only listed for material that may be detonated on the bottom.

MEM = Military Expended Materials; AMNS/EMNS = Airborne Mine Neutralization System/ Expendable Mine Neutralization System; lb. = pound; HE = High Explosive

Additionally, highly explosive munitions that explode either at the surface or in the water column were treated in the same manner as non-explosive practice munitions, although in reality, the explosions would result in smaller fragments reaching the substrate than expected by the fully intact non-explosive practice munitions.

The data for analysis dimensions (data element 2) comes from the Aquatic Habitat Database technical report and supporting databases (U.S. Department of the Navy, 2016), in addition to spatial data depicting training and testing areas.

The combined analysis dimensions data was used to create a table of substrate category acreage by training and testing areas, and large marine ecosystems. Within the AFTT Study Area, there are acreages of substrate that are included under Protective Measures Assessment Protocol categories from the Phase II AFTT EIS/OEIS. These Protective Measures Assessment Protocol categories indicate the amount of mapped substrate that may be protected by Navy mitigation measures. However, the Protective Measures Assessment Protocol areas were not excluded from the quantitative impacts analysis due to how Protective Measures Assessment Protocol is implemented. For more information on the substrates protected under the Protective Measures Assessment Protocol see Chapter 5 (Mitigation).

The percentage of impacted substrate (Scenario 1) was calculated by totaling the impact footprint of individual activities divided by the total area of a given substrate in the training or testing area for which the impacts could occur. The results are provided in Table F-18 through Table F-26.

Assumptions used in the Scenario 1 analysis included:

- Areas of unknown substrate type were not included in the analysis.
- The analysis focused on substrates that are likely to have habitat for sedentary benthic organisms; therefore, areas that are not likely to have substrate inhabited by these organisms (i.e., the Atlantic Basin and Abyssal Zone open ocean areas) were excluded from the analysis.
- Artificial substrate was removed from the analysis because it was inconsistently mapped or mapped with a degree of uncertainty considered too high for quantitative analysis.

The above assumptions also applied to Scenario 2 (Proportional Impacts), which used the proportion of a substrate type in an analysis dimension (i.e., training or testing area) multiplied by the total military expended material or crater footprints. The resulting acres indicated the impact area expected if the military expended materials or bottom explosions were distributed uniformly across the training or testing area. In other words, a majority proportion of the military expended material footprint would impact soft substrate if the majority of the analysis dimension was soft substrate. The results are provided in Tables F-27 through Table F-30. This scenario is considered more realistic than Scenario 1, yet still unlikely as it does not account for areas of concentrated training, nor does it account for the clumping of military expended materials and explosives in a particular area and over a particular substrate type where a training or testing activity occurs.

F.1.1 MILITARY EXPENDED AND RECOVERED MATERIAL - TRAINING ACTIVITIES

Tables F-2 through F-14 show military expended and recovered materials and impact footprints within the AFTT Study Area for both a Single Year and Five Year totals.

Table F-2: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in a Single Year Under Alternatives 1 and 2

			Range Complex															
		Impact	Northeast VACAPES			1PFS	Navy Cherry Point JAX				Kev	West	GOMEX		Other AFTT Area		SINKEX Area	
	Size	Footprint	1076	Impact	VACE	Impact	ruary ene	Impact	370	Impact	Key	Impact	307	Impact	Other A	Impact	3,,,,,	Impact
Military Expended Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Bombs	-	-								-				-			·	
Bombs (Explosive)	8.1203	112.9048	0	0.0000	76	0.1970	0	0.0000	50	0.1296	0	0.0000	4	0.0104	0	0.0000	12	0.0311
Bombs (Non-Explosive)	8.1203	112.9048	0	0.0000	2,248	5.8267	596	1.5448	1,366	3.5406	0	0.0000	270	0.6998	0	0.0000	0	0.0000
Projectiles																		
Small-Caliber (Non-Explosive)	0.0301	0.1216	36,600	0.1022	3,806,350	10.6256	833,675	2.3272	1,436,275	4.0094	0	0.0000	237,500	0.6630	200,000	0.5583	0	0.0000
Small-Caliber (Casing Only)	0.0151	0.0301	0	0.0000	3,400	0.0023	0	0.0000	1,000	0.0007	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Medium-Caliber (Explosive)	0.056	0.2239	0	0.0000	65,312	0.3357	23,200	0.1192	58,952	0.3030	0	0.0000	6,250	0.0321	1,350	0.0069	0	0.0000
Medium Caliber (Non-Explosive)	0.056	0.2239	1,000	0.0051	800,769	4.1160	358,574	1.8431	439,234	2.2577	56,000	0.2878	32,000	0.1645	21,250	0.1092	0	0.0000
Large-Caliber (Explosive)	1.0097	4.0386	0	0.0000	2,998	0.2780	756	0.0701	1,160	0.1075	0	0.0000	260	0.0241	96	0.0089	200	0.0185
Large-Caliber (Non-Explosive)	1.0097	4.0386	0	0.0000	3,802	0.3525	1,134	0.1051	1,388	0.1287	0	0.0000	638	0.0592	196	0.0182	0	0.0000
Large-Caliber (Casing only)	0.5048	1.0097	0	0.0000	0	0.0000	960	0.0223	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Missiles																		
Missiles (Explosive)	37.6691	74.7338	4	0.0069	155	0.2659	106	0.1819	136	0.2333	8	0.0137	8	0.0137	0	0.0000	4	0.0069
Rockets (Explosive)	0.7987	1.5974	0	0.0000	1,254	0.0460	76	0.0028	1,330	0.0488	0	0.0000	76	0.0028	0	0.0000	0	0.0000
Rockets (Non-Explosive)	0.7987	1.5974	0	0.0000	2,708	0.0993	289	0.0106	2,996	0.1099	0	0.0000	289	0.0106	0	0.0000	0	0.0000
Rockets (Non-Explosive): Flechette	0.7987	1.5974	0	0.0000	143	0.0052	15	0.0006	158	0.0058	0	0.0000	15	0.0006	0	0.0000	0	0.0000
Countermeasures	•	•								•				•				
Chaff-Air Cartridges	0.0011	0.0022	0	0.0000	2,080	0.0001	25,760	0.0013	47,840	0.0024	48,000	0.0024	288	0.0000	0	0.0000	0	0.0000
Chaff - Ship Cartridges	2.0000	4.0000	0	0.0000	264	0.0242	480	0.0441	516	0.0474	0	0.0000	120	0.0110	0	0.0000	0	0.0000
Flares	1.2196	4.8782	0	0.0000	1,000	0.1120	22,300	2.4973	38,000	4.2555	31,000	3.4716	1,840	0.2061	0	0.0000	0	0.0000
Targets					,		,				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , , , , , , , , , , , , , , , ,					
Air Target - Expended (Non-Drone)	42.1622	84.3245	4	0.0077	78	0.1510	85	0.1645	65	0.1258	8	0.0155	8	0.0155	0	0.0000	0	0.0000
Surface Target - Expended	5.7522	11.5034	2	0.0005	1,215	0.3209	598	0.1579	775	0.2047	0	0.0000	51	0.0135	0	0.0000	0	0.0000
Surface Target (Stationary)-Expended	96.8752	193.7504	0	0.0000	4	0.0178	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Mine Shapes - Expended	25.7903	51.5807	0	0.0000	292	0.3458	24	0.0284	60	0.0710	8	0.0095	60	0.0710	0	0.0000	0	0.0000
Ship Hulk	316,136	632,272	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	1	14.5150
Other	310,130	002,272		0.0000		0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	_	1113130
	0.1044	0.2088	56	0.0003	70	0.0003	28	0.0001	28	0.0001	0	0.0000	28	0.0001	0	0.0000	0	0.0000
Grenades (Explosive) AMNS Neutralizer (Explosive)	1.6286	3.2572	0	0.0003	62	0.0003	1	0.0001	20	0.0001	0	0.0000	22	0.0001	0	0.0000	0	0.0000
, , , ,	0.0043	0.0086	0	0.0000	1,000	0.0046	22,300	0.0001	38,000	0.0001	31,000	0.0000	1840	0.0016	0	0.0000	0	0.0000
Compression Pad/Piston			 		· · · · · · · · · · · · · · · · · · ·		· ·		· ·									
Concrete Slugs	0.0011	0.0022	0	0.0000	14	0.0000	1	0.0000	1	0.0000	6	0.0000	1	0.0000	0	0.0000	0	0.0000
Endcaps	0.0022	0.0043	0	0.0000	3,120	0.0003	48,108	0.0047	85,888	0.0085	79,008	0.0078	2,128	0.0002	0	0.0000	0	0.0000
Fiber Optic Can	0.0011	0.0022	0	0.0000	62	0.0000	1	0.0000	2	0.0000	0	0.0000	22	0.0000	0	0.0000	0	0.0000
Flare O-Ring	0.0043	0.0086	0	0.0000	1,040	0.0002	22,348	0.0044	38,048	0.0075	31,008	0.0061	1,840	0.0004	0	0.0000	0	0.0000
Illumination Flare	1.2196	4.8782	0	0.0000	40	0.0045	48	0.0054	48	0.0054	8	0.0009	0	0.0000	0	0.0000	0	0.0000
Heavyweight Torpedo (Explosive)	39.6155	79.2299	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	1	0.0018
Heavyweight Torpedo Accessories	0.1615	3.2367	24	0.0018	8	0.0006	0	0.0000	48	0.0036	0	0.0000	0	0.0000	0	0.0000	1	0.0001
Lightweight Torpedo Accessories	1.1011	2.0215	0	0.0000	13	0.0006	0	0.0000	44	0.0020	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Marine Marker	0.9752	3.8987	192	0.0172	10,196	0.9126	332	0.0297	1,263	0.1130	0	0.0000	303	0.0271	24	0.0021	0	0.0000
Parachutes - Medium	9.0417	18.0834	0	0.0000	8	0.0033	0	0.0000	28	0.0116	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Parachutes - Large	283.9961	567.9932	0	0.0000	40	0.5216	48	0.6259	48	0.6259	8	0.1043	0	0.0000	0	0.0000	0	0.0000
Total			37,882	0.14	4,709,821	24.57	1,361,843	9.80	2,194,749	16.37	276,062	3.93	285,861	2.03	222,916	0.70	219	14.57

Notes: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560
ac=acre; ft.²=square feet; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes

This page intentionally left blank.

Table F-3: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in a Single Year Under Alternatives 1 and 2—Inland Waters

		Military Expended Materials													
	Proje	ctiles	Targ	gets				Ot	her				Countern	measure	
	Small ((Non-ex		Mine Shapes		Concrete Slugs		Marine	Marker	Flare C)-Ring	Compr Pad/F		Fla	ıre	
Location	Number	Impact (ac)	Number	Impact (ac)	Number	Impact (ac)	Number	Impact (ac)	Number	Impact (ac)	Number	Impact (ac)	Number	Impact (ac)	
Boston, MA	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Narragansett Bay, RI	8,320	0.0232	0	0.0000	0	0.0000	65	0.0058	0	0.0000	0	0.0000	0	0.0000	
Earle, NJ	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Delaware Bay, DE	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Wilmington, DE	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Hampton Roads, VA	0	0.0000	8	0.0095	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
James River and Tributaries, VA	102,000	0.2847	0	0.0000	0	0.0000	660	0.0591	20,400	0.0040	20,400	0.0040	20,400	2.2846	
York River, VA	0	0.0000	0	0.0000	0	0.0000	20	0.0018	0	0.0000	0	0.0000	0	0.0000	
Lower Chesapeake Bay, VA	28,800	0.0804	0	0.0000	6	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Morehead City, NC	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Cooper River, SC	5,100	0.0142	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Savannah, GA	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Kings Bay, GA	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Mayport, FL	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Port Canaveral, FL	12,800	0.0357	4	0.0047	0	0.0000	60	0.0054	0	0.0000	0	0.0000	0	0.0000	
Tampa, FL	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Beaumont, TX	0	0.0000	8	0.0095	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	
Corpus Christi, TX	0	0.0000	4	0.0047	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acres

Table F-4: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in a Single Year with Differences between Alternatives 1 and 2

			Range Complex												Training	
		Impact	North	east	VAC	CAPES	Navy Ch	nerry Point	J.	AX	Key I	West	GOI	ИЕХ	Other	AFTT Area
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Military Expended Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Alternative 1																
Countermeasures																
Acoustic Countermeasures	0.3311	1.2432	84	0.0024	41	0.0012	14	0.0004	164	0.0047	0	0.0000	0	0.0000	88	0.0025
Targets																
Subsurface Target (Mobile) - Expended	1.2206	2.4413	100	0.0056	291	0.0164	81	0.0045	1,108	0.0621	0	0.0000	3	0.0001	178	0.0100
Other																
Buoy (Non-Explosive)	0.9752	3.8987	0	0.0000	24	0.0021	17	0.0015	116	0.0104	0	0.0000	0	0.0000	0	0.0000
Sonobuoys (Non-Explosive)	1.2207	2.4413	3,132	0.1755	8,394	0.4404	2,987	0.1674	30,504	1.7096	0	0.0000	0	0.0000	496	0.0278
Bathythermograph - Expended	0.2771	0.5554	139	0.0018	329	0.0042	85	0.0011	1,171	0.0149	0	0.0000	3	0.0000	154	0.0020
Small Decelerator/Parachute	2.8438	5.6876	3,132	0.4089	8,394	1.096	2,987	0.3900	30,504	3.9829	0	0.0000	0	0.0000	496	0.0648
		Total	6,579	0.5935	17,031	1.5457	6,115	0.5597	63,215	5.7517	0	0.0000	6	0.0001	1,380	0.1040
Alternative 2																
Countermeasures																
Acoustic Countermeasures	0.3311	1.2432	84	0.0024	51	0.0015	24	0.0007	184	0.0053	0	0.0000	6	0.0002	88	0.0025
Targets																
Subsurface Target (Mobile) - Expended	1.2206	2.4413	102	0.0057	401	0.0225	108	0.0061	1,328	0.0744	0	0.0000	5	0.0003	178	0.0100
Other																
Buoy (Non-Explosive)	0.9752	3.8987	0	0.0000	34	0.0030	22	0.0020	186	0.0166	0	0.0000	16	0.0014	0	0.0000
Sonobuoys (Non-Explosive)	1.2207	2.4413	3,132	0.1755	8,394	0.4404	2,987	0.1674	30,504	1.7096	0	0.0000	785	0.0440	496	0.0278
Bathythermograph - Expended	0.2771	0.5554	142	0.0018	439	0.0056	113	0.0014	1,391	0.0177	0	0.0000	128	0.0016	154	0.0020
Small Decelerator/Parachute	2.8438	5.6876	3,132	0.4089	8,394	1.096	2,987	0.3900	30,504	3.9829	0	0.0000	785	0.1025	496	0.0648
		Total	6,584	0.5936	17,271	1.5544	6,175	0.5621	63,725	5.7731	0	0.0000	1,725	0.1500	1,380	0.1040

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; ft.²=square feet; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Table F-5: Number and Impacts* of Military Expended Materials Proposed for Use DuringTraining Activities in Five Years Under Alternatives 1 and 2

			Range Complex															
		Impact	North	east	VACA	PES	Navy Che	rry Point	JAX	(Key V	Vest	GOM	IEX	Other AF	TT Area	SINKE	X Area
	Size	Footprint		Impact		Impact		Impact		Impact	,	Impact		Impact		Impact		Impact
Military Expended Materials	(ft²)	(ft²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Bombs																		
Bombs (Explosive)	8.1203	112.9048	0	0.0000	380	0.9849	0	0.0000	250	0.6480	0	0.0000	20	0.0518	0	0.0000	60	0.1555
Bombs (Non-Explosive)	8.1203	112.9048	0	0.0000	11,240	29.1334	2,980	7.7240	6,830	17.7029	0	0.0000	1,350	3.4991	0	0.0000	0	0.0000
Projectiles																		
Small-Caliber (Non-Explosive)	0.0301	0.1216	183,000	0.5109	19,031,750	53.1281	4,168,375	11.6362	7,181,375	20.0472	0	0.0000	1,187,500	3.3150	1,000,000	2.7916	0	0.0000
Small-Caliber (Casing Only)	0.0151	0.0301	0	0.0000	17,000	0.0117	0	0.0000	5,000	0.0035	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Medium-Caliber (Explosive)	0.056	0.2239	0	0.0000	326,560	1.6785	116,000	0.5962	294,760	1.5151	0	0.0000	31,250	0.1606	6,750	0.0347	0	0.0000
Medium Caliber (Non-Explosive)	0.056	0.2239	5,000	0.0257	4,003,845	20.5799	1,792,870	9.2154	2,196,170	11.2884	280,000	1.4392	160,000	0.8224	106,250	0.5461	0	0.0000
Large-Caliber (Explosive)	1.0097	4.0386	0	0.0000	14,990	1.3898	3,780	0.3505	5,800	0.5377	0	0.0000	1,300	0.1205	480	0.0445	1,000	0.0927
Large-Caliber (Non-Explosive)	1.0097	4.0386	0	0.0000	19,010	1.7625	5,670	0.5257	6,940	0.6434	0	0.0000	3,190	0.2958	980	0.0909	0	0.0000
Large-Caliber (Casing only)	0.5048	1.0097	0	0.0000	0	0.0000	4,800	0.1113	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Missiles																	•	
Missiles (Explosive)	37.6691	74.7338	20	0.0343	775	1.3296	530	0.9093	680	1.1666	40	0.0686	40	0.0686	0	0.0000	20	0.0343
Rockets (Explosive)	0.7987	1.5974	0	0.0000	6,270	0.2299	380	0.0139	6,650	0.2439	0	0.0000	380	0.0139	0	0.0000	0	0.0000
Rockets (Non-Explosive)	0.7987	1.5974	0	0.0000	13,537	0.4964	1,444	0.0530	14,981	0.5494	0	0.0000	1,444	0.0530	0	0.0000	0	0.0000
Rockets (Non-Explosive): Flechette	0.7987	1.5974	0	0.0000	713	0.0261	76	0.0028	789	0.0289	0	0.0000	76	0.0028	0	0.0000	0	0.0000
Countermeasures														,			,	
Chaff-Air Cartridges	0.0011	0.0022	0	0.0000	10,400	0.0005	128,800	0.0065	239,200	0.0121	240,000	0.0121	1,440	0.0001	0	0.0000	0	0.0000
Chaff - Ship Cartridges	2.0000	4.0000	0	0.0000	1,320	0.1212	2,400	0.2204	2,580	0.2369	0	0.0000	600	0.0551	0	0.0000	0	0.0000
Flares	1.2196	4.8782	0	0.0000	5,000	0.5599	111,500	12.4867	190,000	21.2777	155,000	17.3581	9,200	1.0303	0	0.0000	0	0.0000
Targets					·		,	l.	,		·		·			l.		
Air Target - Expended (Non-Drone)	42.1622	84.3245	20	0.0387	390	0.7550	425	0.8227	325	0.6291	40	0.0774	40	0.0774	0	0.0000	0	0.0000
Surface Target - Expended	5.7522	11.5034	10	0.0026	6,075	1.6043	2,990	0.7896	3,875	1.0233	0	0.0000	255	0.0673	15	0.0040	0	0.0000
Surface Target (Stationary) - Expended	96.8752	193.7504	0	0.0000	20	0.0890	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Ship Hulk	316,136	632,272	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	5	72.5748
Other	,	,												l.				
Grenades (Explosive)	0.1044	0.2088	280	0.0013	350	0.0017	140	0.0007	140	0.0007	0	0.0000	140	0.0007	0	0.0000	0	0.0000
Compression Pad/Piston	0.0043	0.0086	0	0.0000	5,000	0.0017	111,500	0.0220	190,000	0.0375	155,000	0.0306	9,200	0.0018	0	0.0000		0.0000
Concrete Slugs	0.0043	0.0022	0	0.0000	70	0.0000	5	0.0000	5	0.0000	30	0.0000	5	0.0000	0	0.0000	0	0.0000
Endcaps	0.0011	0.0022	0	0.0000	15,600	0.0005	240,540	0.0000	429,440	0.0424	395,040	0.0390	10,640	0.0000	0	0.0000	0	0.0000
Flare O-Ring	0.0022	0.0045	0	0.0000	5,200	0.0013	111,740	0.0237	190,240	0.0376	155,040	0.0306	9,200	0.0011	0	0.0000	0	0.0000
Illumination Flare	1.2196	4.8782	0	0.0000	200	0.0224	240	0.0269	240	0.0269	40	0.0045	0	0.0000	0	0.0000	0	0.0000
Heavyweight Torpedo (Explosive)	39.6155	79.2299	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	5	0.0000
Heavyweight Torpedo (Explosive)	0.1615	3.2367	120	0.0089	40	0.0000	0	0.0000	240	0.0000	0	0.0000	0	0.0000	0	0.0000	5	0.0091
Lightweight Torpedo Accessories	1.1011	2.0215	0	0.0009	65	0.0030	0	0.0000	220	0.0178	0	0.0000	0	0.0000	0	0.0000	0	0.0004
Marine Marker	0.9752	3.8987	0	0.0000	50,980	4.5628	1,660	0.0000	6,315	0.0102	0	0.0000	1,515	0.0000	120	0.0000	0	0.0000
+	9.0417	18.0834	0		40	0.0166	0		140	0.5652	0		0	0.0000	0	0.0000	0	0.0000
Parachutes - Medium			0	0.0000	200			0.0000			40	0.0000	0		0		0	
Parachutes - Large	283.9961	567.9932	188,450	0.0000 0.6225	23,547,020	2.6079 121.1018	240 6,809,085	3.1294 48.8375	240 10,973,425	3.1294 81.4800	1,380,270	0.5216 19.5818	1,428,785	0.0000 9.7747	1,114,595	0.0000 3.5224	1,095	0.0000 72.8669

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560 ac=acre; ft.²=square feet; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes

Table F-6: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in Five Years Under Alternatives 1 and 2 – Inland Waters

					۸	Military Expe	ended Materi	ials				
	Pro	jectiles				Ot	her				Coul	ntermeasure
		ll Caliber explosive)	Concret	te Slugs	Marine Marker		Flare O-Ring		-	ression Piston		Flare
		Impact		Impact		Impact		Impact		Impact		Impact
Location	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Boston, MA	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Narragansett Bay, RI	41,600	0.1161	0	0.0000	325	0.0291	0	0.0000	0	0.0000	0	0.0000
Earle, NJ	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Delaware Bay, DE	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Wilmington, DE	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Hampton Roads, VA	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
James River and Tributaries, VA	510,000	1.4237	0	0.0000	3,300	0.2954	102,000	0.0201	102,000	0.0201	102,000	11.4228
York River, VA	0	0.0000	0	0.0000	100	0.0090	0	0.0000	0	0.0000	0	0.0000
Lower Chesapeake Bay, VA	144,000	0.4020	30	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Morehead City, NC	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Cooper River, SC	255,000	0.7118	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Savannah, GA	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Kings Bay, GA	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Mayport, FL	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Port Canaveral, FL	64,000	0.1787	0	0.0000	300	0.0269	0	0.0000	0	0.0000	0	0.0000
Tampa, FL	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Beaumont, TX	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Corpus Christi, TX	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre

Table F-7: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in Five Years with Differences between Alternatives 1 and 2

								Range (Complex							
		Impact	North	neast	VACA	APES	Navy Che	rry Point	JA	X	Key I	Nest	GON	1EX	Other A	FTT Area
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Military Expended Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Alternative 1											-	-				
Countermeasures																
Acoustic Countermeasures	0.3311	1.2432	420	0.0120	205	0.0059	70	0.0020	802	0.0229	0	0.0000	0	0.0000	441	0.0126
Targets																
Mine Shapes -Expended	25.7903	51.5807	0	0.0000	1,456	1.7241	120	0.1421	292	0.3458	40	0.0474	292	0.3458	0	0.0000
Subsurface Target (Mobile)-Expended	1.2206	2.4413	498	0.0279	1,455	0.0815	403	0.0226	5,540	0.3105	0	0.0000	13	0.0007	891	0.0499
Other																
AMNS Neutralizer (Explosive)	1.6286	3.2572	0	0.0000	306	0.0229	5	0.0004	6	0.0004	0	0.0000	106	0.0079	0	0.0000
Buoy (Non-Explosive)	0.9752	3.8987	0	0.0000	114	0.0102	73	0.0065	550	0.0492	0	0.0000	0	0.0000	0	0.0000
Fiber Optic Can	0.0011	0.0022			306	0.0000	5	0.0000	6	0.0000	0	0.0000	16	0.0000	0	0.0000
Sonobuoys (Non-Explosive)	1.2207	2.4413	15,660	0.8777	41,787	2.3419	14,542	0.8150	150,741	8.4482	0	0.0000	0	0.0000	2,480	0.1390
Bathythermograph Expended	0.2771	0.5554	695	0.0089	1,640	0.0209	422	0.0054	5,490	0.0700	0	0.0000	13	0.0002	771	0.0098
Small Decelerator/Parachute	2.8438	5.6876	15,660	2.0447	41,787	5.4561	14,542	1.8987	150,741	19.6822	0	0.0000	0	0.0000	2,480	0.3238
Total			32,893	2.9674	87,296	9.4993	29,902	2.8666	312,408	28.7649	40	0.0474	439	0.3546	6,903	0.5202
Alternative 2																
Countermeasures																
Acoustic Countermeasures	0.3311	1.2432	420	0.0120	255	0.0073	120	0.0034	820	0.0234	0	0.0000	30	0.0009	441	0.0126
Targets																
Mine Shapes -Expended	25.7903	51.5807	0	0.0000	1,460	1.7288	120	0.14	300	0.3552	40	0.0474	300	0.3552	0	0.0000
Subsurface Target (Mobile)-Expended	1.2206	2.4413	510	0.0286	2,005	0.1124	540	0.0303	6,640	0.3721	0	0.0000	25	0.0014	891	0.0499
Other																
AMNS Neutralizer (Explosive)	1.6286	3.2572	0	0.0000	310	0.0232	5	0.0004	10	0.0007	0	0.0000	110	0.0082	0	0.0000
Buoy (Non-Explosive)	0.9752	3.8987	0	0.0000	170	0.0152	110	0.0098	930	0.0832	0	0.0000	80	0.0072	0	0.0000
Fiber Optic Can	0.0011	0.0022			310	0.0000	5	0.0000	10	0.0000	0	0.0000	110	0.0000	0	0.0000
Sonobuoys (Non-Explosive)	1.2207	2.4413	15,660	0.8777	41,970	2.3522	14,935	0.8370	152,520	8.5479	0	0.0000	3,925	0.2200	2,480	0.1390
Bathythermograph Expended	0.2771	0.5554	708	0.0090	2,193	0.0280	563	0.0072	6,953	0.0887	0	0.0000	640	0.0082	771	0.0098
Small Decelerator/Parachute	2.8438	5.6876	15,660	2.0447	41,970	5.4800	14,935	1.9501	152,520	19.9144	0	0.0000	3,925	0.5125	2,480	0.3238
Total			32,918	2.9682	88,883	9.5828	31,053	2.9541	318,943	29.2215	40	0.0474	9,145	1.1135	6,903	0.5202

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; AMNS = Airborne Mine Neutralization System; ft.²=square feet; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Table F-8: Number and Impacts* of Military Expended Materials Proposed for Use During Training Activities in Five Years with Differences between Alternatives 1 and 2—Inland Waters

	Military Exp	ended Materials
	T	argets
	Min	e Shapes
		Impact
Location	Number	(ac)
Alternative 1	-	
Boston, MA	12	0.0142
Earle, NJ	12	0.0142
Delaware Bay, DE	12	0.0142
Wilmington, DE	12	0.0142
Hampton Roads, VA	24	0.0284
Morehead City, NC	24	0.0284
Savannah, GA	12	0.0142
Kings Bay, GA	12	0.0142
Mayport, FL	12	0.0142
Port Canaveral, FL	24	0.0284
Tampa, FL	12	0.0142
Beaumont, TX	24	0.0284
Corpus Christi, TX	12	0.0142
Alternative 2		
Boston, MA	20	0.0237
Earle, NJ	20	0.0237
Delaware Bay, DE	20	0.0237
Wilmington, DE	20	0.0237
Hampton Roads, VA	40	0.0474
Morehead City, NC	40	0.0474
Savannah, GA	20	0.0237
Kings Bay, GA	20	0.0237
Mayport, FL	20	0.0237
Port Canaveral, FL	40	0.0474
Tampa, FL	20	0.0237
Beaumont, TX	40	0.0474
Corpus Christi, TX	20	0.0237

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560; ac=acre
Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Atlantic Fleet
Training and Testing Draft EIS/OEIS

Table F-9: Number of Recovered Materials Proposed for Use During Training Activities In a Single Year Under
Alternatives 1 and 2

			Range Con	nplex			Other Training Locations
	Northeast	VACAPES	Navy Cherry Point	JAX	Key West	GOMEX	Other AFTT Area
Recovered Materials	Number	Number	Number	Number	Number	Number	Number
Other							
Air-Launched Lightweight Torpedo (Non-Explosive)	0	8	0	28	0	0	0
Buoy (Non-Explosive)-Recovered	0	15	4	4	0	0	0
Heavyweight Torpedo (Non-explosive)	24	8	0	48	0	0	0
Surface-Launched Lightweight Torpedo (Non-Explosive)	0	5	0	16	0	0	0
Unmanned Aerial System	0	12	12	384	0	0	24
Targets							
Air Targets -Recovered	0	120	40	75	70	0	0
Aerial Drones - Recovered	4	82	60	69	8	8	0
Sub-surface Target-Recovered	6	7	0	116	0	0	0
Surface Target – Recovered	0	2,657	745	1,534	0	0	194
Total	323	2,914	861	2,174	78	230	218

Note: ac=acre; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes

Table F-10: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities In a Single Year Under
Alternatives 1 and 2

			Range Complex												Other Training Locations		
		Impact	North	east	VAC	APES	Navy Che	rry Point	JA.	x	Key V	Vest	GOMEX		NSWC Panama City		
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact	
Recovered Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	
Mine Shape (Non-explosive)	25.7903	51.5807	0	0.0000	21,038	24.9117	4,998	5.9183	4,946	5.8567	6	0.0071	1,523	1.8034	2,928	3.4671	
Metal Plates	2.7782	5.5563	0	0.0000	0	0.0000	0	0.0000	0	0.0000	5	0.0006	0	0.0000	0	0.0000	
Bottom Placed Instruments	2.0000	4.0000	0	0.0000	96	0.0088	0	0.0000	48	0.0044	48	0.0044	96	0.0088	0	0.0000	
		Total	0	0.0000	21,134	24.9205	4,998	5.9183	4,994	5.8611	59	0.0121	1,619	1.8122	2,928	3.4671	

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; ft.2=square feet; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes

Table F-11: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities in a Single Year Under Alternatives 1 and 2 - Inland Waters

		Military Recov	ered Mater	ials
	F	Projectiles		Targets
			Mi	ine Shapes
	M	etal Plates	(No	n-Explosive)
		Impact		Impact
Location	Number	(ac)	Number	(ac)
Lower Chesapeake Bay, VA	6	0.0008	6	0.0071

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560; ac=acre

Table F-12: Number of Recovered Materials Proposed for Use During Training Activities In Five Years Under Alternatives 1 and 2

			Other Training Locations				
Recovered Materials	Northeast	VACAPES	Navy Cherry Point	JAX	Key West	GOMEX	Other AFTT Area
	Number	Number	Number	Number	Number	Number	Number
Other							
Air-Launched Lightweight Torpedo (Non-Explosive)	0	40	0	140	0	0	0
Buoy (Non-Explosive) - Recovered	0	75	20	20	0	0	0
Heavyweight Torpedo (Non-explosive)	120	40	0	240	0	0	0
Surface-Launched Lightweight Torpedo (Non-Explosive)	0	25	0	80	0	0	0
Unmanned Aerial System	0	60	60	1,920	0	0	120
Targets							
Air Targets -Recovered	20	410	300	345	40	40	0
Aerial Drones - Recovered	0	600	200	375	350	0	0
Sub-surface Target-Recovered	30	35	20	80	0	0	0
Surface Target – Recovered	0	13,285	3,725	7,670	0	1,110	970
Total	170	14,570	4,325	10,850	390	1,150	1,090

Note: ac=acre; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes

Table F-13: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities In Five Years Under Alternatives 1 and 2

								Range	Complex							Training ntions
		Impact	North	east	VAC	APES	Navy Ch	erry Point	J	AX	Key	West	GOI	MEX	NSWC Pa	nama City
	Size	Footprint		Impact I												Impact
Recovered Materials	(ft.²)	(ft.²)	Number											Number	(ac)	
Mine Shape (Non-explosive)	25.7903	51.5807	0									14,640	17.3357			
Metal Plates	2.7782	5.5563	0	0.0000	0	0.0000	0	0.0000	0	0.0000	25	0.0032	0	0.0000	0	0.0000
Bottom Placed Instruments	2.0000	4.0000	0 0.0000 480 0.0441 0 0.0000 240 0.0220 240 0.0220 480 0.0441									0	0.0000			
		Total	0	0 0.0000 105,670 124.6027 24,990 29.5914 24,970 29.3055 295 0.0607 8,095 9.0612										14,640	17.3357	

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; ft.²=square feet; GOMEX= Gulf of Mexico; JAX=Jacksonville; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; VACAPES=Virginia Capes

Table F-14: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Training Activities in Five Years Under Alternatives 1 and 2 - Inland Waters

		Recovered	Materials				
		Projectiles		Targets			
	Mine Shapes						
	٨	Netal Plates	(No	n-Explosive)			
		Impact		Impact			
Location	Number	(ac)	Number	(ac)			
Lower Chesapeake Bay, VA	30	0.0038	30	0.0355			

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560; ac=acre

1

F.1.2 MILITARY EXPENDED AND RECOVERED MATERIALS - TESTING ACTIVITIES

Tables F-15 through F-22 show military expended and recovered materials and impact footprints within the AFTT Study Area for both Single Year and Five Year totals.

Atlantic Fleet
Training and Testing Draft EIS/OEIS

Table F-15: Number and Impacts* of Military Expended Materials Proposed for Use During Testing Activities in a Single Year Under Alternatives 1 and 2

								Range (Complex								Testing	g Ranges		
		Impact	Nort	heast	VAC	APES	Navy Che	erry Point	JA	X	Кеу	West	GO	MEX	NUWC	Newport	SFO	MF	NSWC P	Panama City
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Military Expended Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Bombs		_																	-	
Bombs (Explosive)	8.1203	112.9048	0	0.0000	2	0.0052	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Bombs (Non-Explosive)	8.1203	112.9048	0	0.0000	964	2.4986	0	0.0000	12	0.0311	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Projectiles																				
Small-Caliber (Non-Explosive)	0.0301	0.1216	4,800	0.0134	77,800	0.2172	4,800	0.0134	4,800	0.0134	4,800	0.0134	17,800	0.0497	0	0.0000	0	0.0000	7,000	0.0195
Medium-Caliber (Explosive)	0.056	0.2239	3,860	0.0198	17,270	0.0888	3,360	0.0173	14,860	0.0764	3,360	0.0173	3,360	0.0173	0	0.0000	0	0.0000	0	0.0000
Medium Caliber (Non-Explosive)	0.056	0.2239	9,060	0.0466	239,660	1.2319	8,160	0.0419	237,360	1.2200	32,660	0.1679	22,860	0.1175	0	0.0000	0	0.0000	5,100	0.0262
Large-Caliber (Explosive)	1.0097	4.0386	132	0.0122	3,263	0.3025	132	0.0122	6,276	0.5819	832	0.0771	923	0.0856	0	0.0000	4	0.0004	100	0.0093
Large-Caliber (Non-Explosive)	1.0097	4.0386	1,761	0.1633	8,147	0.7553	1,440	0.1335	14,524	1.3466	3,190	0.2958	2,774	0.2572	0	0.0000	0	0.0000	280	0.0260
Kinetic Energy Round	0.5048	1.0100	35,003	0.8116	35,003	0.8116	35,003	0.8116	350,003	8.1153	35,003	0.8116	35,003	0.8116	4	0.0001	4	0.0001	4	0.0001
Missiles																				
Missiles (Explosive)	37.6691	74.7228	10	0.0172	176	0.3019	0	0.0000	70	0.1201	0	0.0000	12	0.0206	0	0.0000	0	0.0000	0	0.0000
Missiles (Non-Explosive)	31.0011	62.0023	24	0.0342	899	1.2796	24	0.0342	136	0.1936	31	0.0441	24	0.0342	0	0.0000	0	0.0000	0	0.0000
Rockets (Explosive)	0.7987	1.5974	0	0.0000	206	0.0076	0	0.0000	200	0.0073	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Rockets (Non-Explosive)	0.7987	1.5974	0	0.0000	746	0.0274	0	0.0000	406	0.0149	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Rockets (Non-Explosive): Flechette	0.7987	1.5974	0	0.0000	249	0.0091	0	0.0000	135	0.0050	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Countermeasures																				
Acoustic Countermeasures	0.3311	1.2432	842	0.0240	1,038	0.0296	764	0.0218	1,330	0.0380	0	0.0000	836	0.0239	64	0.0018	100	0.0029	0	0.0000
Chaff - Air Cartridge	0.0011	0.0022	0	0.0000	20,595	0.0010	0	0.0000	400	0.0000	0	0.0000	1,200	0.0001	0	0.0000	0	0.0000	0	0.0000
Chaff - Ship Cartridge	2.0000	4.0000	144	0.0132	1,019	0.0936	144	0.0132	480	0.0441	144	0.0132	144	0.0132	0	0.0000	0	0.0000	0	0.0000
Anti-Torpedo Torpedo	4.524	9.0847	142	0.0296	160	0.0334	42	0.0088	156	0.0325	0	0.0000	142	0.0296	0	0.0000	0	0.0000	0	0.0000
Flares	1.2196	4.8782	0	0.0000	20,195	2.2616	0	0.0000	0	0.0000	0	0.0000	600	0.0672	0	0.0000	0	0.0000	0	0.0000
Targets		•			·							L					•			
Aerial Drones - Expended	294.6082	589.2164	6	0.0812	480	6.4927	6	0.0812	174	2.3536	6	0.0812	6	0.0812	6	0.0812	6	0.0812	6	0.0812
Air Targets - Expended	42.1622	84.3245	60	0.1161	60	0.1161	60	0.1161	60	0.1161	60	0.1161	70	0.1355	0	0.0000	0	0.0000	0	0.0000
Surface Target - Expended	5.7522	11.5034	110	0.0290	400	0.1056	110	0.0290	227	0.0599	110	0.0290	121	0.0320	13	0.0034	13	0.0034	13	0.0034
Surface Target (Mobile) - Expended	1.2206	2.4413	1	0.0001	1	0.0001	1	0.0001	1	0.0001	1	0.0001	1	0.0001	0	0.0000	0	0.0000	0	0.0000
Surface Target (Stationary) - Expended	96.8752	193.7504	61	0.2713	61	0.2713	61	0.2713	61	0.2713	61	0.2713	61	0.2713	0	0.0000	0	0.0000	0	0.0000
Subsurface Target (Mobile)-Expended	5.7522	11.5034	100	0.0264	105	0.0277	0	0.0000	265	0.0700	0	0.0000	100	0.0264	240	0.0634	0	0.0000	0	0.0000
Mine Shapes-Expended	25.7903	51.5807	5,600	6.6311	3,172	3.7561	0	0.0000	1,595	1.8887	0	0.0000	2,754	3.2611	342	0.4050	885	1.0480	4,309	5.1024
Other																				
Air-Launched Lightweight Torpedo (Explosive)	19.1199	38.2399	1	0.0009	1	0.0009	1	0.0009	1	0.0009	1	0.0009	1	0.0009	0	0.0000	0	0.0000	0	0.0000
Anchor - Expendable	6.2495	12.5001	3,600	1.0331	1,800	0.5165	0	0.0000	100	0.0287	0	0.0000	1,923	0.5518	206	0.0591	87	0.0250	0	0.0000
Bathythermograph Expended	0.2771	0.5554	1,834	0.0234	1,019	0.0130	315	0.0040	637	0.0081	10	0.0001	978	0.0125	0	0.0000	4	0.0001	0	0.0000
Compression Pad/Piston	0.0043	0.0086	0	0.0000	20,195	0.0040	0	0.0000	0	0.0000	0	0.0000	600	0.0001	0	0.0000	0	0.0000	0	0.0000
Concrete Slugs	0.0011	0.0022	38	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	38	0.0000	0	0.0000	0	0.0000	0	0.0000
Endcaps and Pistons - Non Chaff & Flare	0.0043	0.0860	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	379	0.0007	0	0.0000	0	0.0000
Endcaps	0.0022	0.0043	0	0.0000	40,790	0.0040	0	0.0000	400	0.0000	0	0.0000	1,800	0.0002	0	0.0000	0	0.0000	0	0.0000
Fiber Optic Can	0.0011	0.0022	0	0.0000	430	0.0000	0	0.0000	100	0.0000	0	0.0000	200	0.0000	0	0.0000	0	0.0000	412	0.0000
Flare O-Ring	0.0043	0.0086	0	0.0000	20,195	0.0040	0	0.0000	0	0.0000	0	0.0000	600	0.0001	0	0.0000	0	0.0000	0	0.0000
Heavyweight Torpedo (Explosive)	39.6155	79.2299	1	0.0018	1	0.0018	1	0.0018	1	0.0018	1	0.0018	1	0.0018	0	0.0000	0	0.0000	0	0.0000
Heavyweight Torpedo Accessories	0.1615	3.2367	191	0.0142	221	0.0164	53	0.0039	235	0.0175	3	0.0002	187	0.0139	60	0.0045	34	0.0025	0	0.0000
Lightweight Torpedo Accessories	1.1011	2.0215	196	0.0091	409	0.0190	120	0.0056	497	0.0231	2	0.0001	196	0.0091	60	0.0028	0	0.0000	252	0.0117
Sabot	1.2196	4.8782	35,003	3.9199	35,003	3.9199	35,003	3.9199	35,003	3.9199	35,003	3.9199	35,003	3.9199	383	0.0429	4	0.0004	4	0.0004
Sonobuoy (Explosive)	1.2207	2.4413	0	0.0000	0	0.0000	0	0.0000	0	0.0000	72	0.0040	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Surface-Launched Lightweight Torpedo (Explosive)	10.0782	20.1576	5	0.0023	5	0.0023	1	0.0005	5	0.0023	1	0.0005	5	0.0023	0	0.0000	0	0.0000	12	0.0056
Parachutes (Medium)	9.0417	18.0834	33	0.0137	196	0.0814	33	0.0137	224	0.0930	2	0.0008	33	0.0137	60	0.0249	0	0.0000	252	0.1046
Total				13.36	551,936	25.31	89,634	5.56	670,734	20.70	115,353		130,356	9.86	1,817	0.69	1,141	1.16	17,744	5.4

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560
ac=acre; ft.²=square feet; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City=Naval Surface Warfare Center Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes

Table F-16: Number and Impacts* of Military Expended Materials Proposed for Use During Testing Activities in a Single Year with Differences between Alternatives 1 and 2

								Range C	omplex								Testir	g Ranges		
		Impact	Nort	heast	VAC	APES	Navy Che	rry Point	JA	X	Key	West	GON	ЛЕХ	NUWC N	lewport	SFO	MF	NSWC P	anama City
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Military Expended Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Alternative 1	-			_									-			-			-	
Other																				
Sonobuoys (Non-Explosive)	1.2207	2.4413	9,190	0.5150	8,678	0.4864	2,558	0.1434	6,344	0.3555	3,906	0.2189	4,646	0.2604	1,200	0.0673	32	0.0018	192	0.0108
AMNS Neutralizer (Explosive)	1.6286	3.2572	0	0.0000	250	0.0187	0	0.0000	50	0.0037	0	0.0000	100	0.0075	0	0.0000	0	0.0000	328	0.0245
Buoy (Explosive)	0.97521	3.8987	709	0.0635	575	0.0515	337	0.0302	398	0.0356	705	0.0631	351	0.0314	0	0.0000	0	0.0000	0	0.0000
Mines (Explosive)	25.7903	51.5807	0	0.0000	10	0.0118	0	0.0000	8	0.0095	0	0.0000	16	0.0189	0	0.0000	0	0.0000	4	0.0047
Small Decelerator/Parachute	2.8438	5.6876	9,190	1.0040	8,678	1.1331	2,558	0.3340	6,344	0.8283	3,906	0.5100	4,646	0.6066	1,200	0.1567	32	0.0042	192	0.0251
Total			19,089	1.5825	18,191	1.7014	5,453	0.5075	13,144	1.2327	8,517	0.7920	9,759	0.9248	2,400	0.2239	64	0.0060	716	0.0651
Alternative 2																				
Other																				
Sonobuoys (Non-Explosive)	1.2207	2.4413	9,410	0.5274	8,758	0.4908	2,638	0.1478	6,744	0.3780	3,906	0.2189	4,646	0.2604	1,200	0.0673	32	0.0018	192	0.0108
AMNS Neutralizer (Explosive)	1.6286	3.2572	0	0.0000	255	0.0191	0	0.0000	50	0.0037	0	0.0000	100	0.0075	0	0.0000	0	0.0000	333	0.0249
Buoy (Explosive)	0.97521	3.8987	724	0.0648	580	0.0519	342	0.0305	423	0.0379	705	0.0631	351	0.0314	0	0.0000	0	0.0000	0	0.0000
Mines (Explosive)	25.7903	51.5807	0	0.0000	15	0.0178	0	0.0000	8	0.0095	0	0.0000	16	0.0189	0	0.0000	0	0.0000	9	0.0107
Small Decelerator/Parachute	2.8438	5.6876	9,410	1.2287	8,758	1.1435	2,638	0.3444	6,744	0.8805	3,906	0.5100	4,646	0.6066	1,200	0.1567	32	0.0042	192	0.0251
Total			19,544	1.8208	18,366	1.7231	5,618	0.5227	13,969	1.3096	8,517	0.7920	9,759	0.9248	2,400	0.2240	64	0.0060	726	0.0714

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; AMNS = Airborne Mine Neutralization System; ft.²-square feet; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Table F-17: Number and Impacts* of Military Expended Materials Proposed for Use During Testing Activities in Five Years Under Alternatives 1 and 2

								-		_										
					•		•	Range C	omplex		•		•				Testing	g Ranges	•	
		Impact	Nort	heast	VACA	NPES	Navy Che	rry Point	JA	X	Кеу	West	GO	MEX	NUWC N	lewport	SFC	OMF	NSWC Par	nama City
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Military Expended Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Bombs																				
Bombs (Explosive)	8.1203	112.9048	0	0.0000	10	0.0259	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Bombs (Non-Explosive)	8.1203	112.9048	0	0.0000	4,820	12.4931	0	0.0000	60	0.1555	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Projectiles																				
Small-Caliber (Non-Explosive)	0.0301	0.1216	24,000	0.0670	389,000	1.0859	24,000	0.0670	24,000	0.0670	24,000	0.0670	89,000	0.2484	0	0.0000	0	0.0000	35,000	0.0977
Large-Caliber (Explosive)	1.0097	4.0386	660	0.0612	16,315	1.5126	660	0.0612	31,880	2.9557	4,160	0.3857	4,615	0.4279	0	0.0000	0	0.0000	500	0.0464
Large-Caliber (Non-Explosive)	1.0097	4.0386	8,805	0.8163	40,735	3.7767	7,200	0.6675	72,620	6.7329	15,950	1.4788	13,870	1.2859	0	0.0000	0	0.0000	1,400	0.1298
Kinetic Energy Round	0.5048	1.0100	175,017	4.0580	175,017	4.0580	175,017	4.0580	175,017	4.0580	175,017	4.0580	175,017	4.0580	17	0.0004	17	0.0004	17	0.0004
Countermeasures																				
Acoustic Countermeasures	0.3311	1.2432	4,210	0.1202	5,190	0.1481	3,820	0.1090	6,651	0.1898	0	0.0000	4,180	0.1193	320	0.0091	500	0.0143	0	0.0000
Chaff-Air Cartridges	0.0011	0.0022	0	0.0000	102,975	0.0052	0	0.0000	2,000	0.0001	0	0.0000	6,000	0.0003	0	0.0000	0	0.0000	0	0.0000
Chaff - Ship Cartridges	2.0000	4.0000	720	0.0661	5,095	0.4679	720	0.0661	2,400	0.2204	720	0.0661	720	0.0661	0	0.0000	0	0.0000	0	0.0000
Anti-Torpedo Torpedo	4.524	9.0847	710	0.1481	800	0.1668	210	0.0438	780	0.1627	0	0.0000	710	0.1481	0	0.0000	0	0.0000	0	0.0000
Flares	1.2196	4.8782	0	0.0000	100,975	11.3080	0	0.0000	0	0.0000	0	0.0000	3,000	0.3360	0	0.0000	0	0.0000	0	0.0000
Targets																				
Aerial Drones - Expendable	294.6082	589.2164	0	0.0000	2,397	4.0279	28	0.3787	868	11.7410	28	0.3787	28	0.3787	28	0.3787	28	0.3787	28	0.3787
Air Target - Expended (Non-Drone)	42.1622	84.3245	300	0.5807	300	0.5807	300	0.5807	300	0.5807	300	0.5807	350	0.6775	0	0.0000	0	0.0000	0	0.0000
Surface Target (Stationary) - Expended	96.8752	193.7504	305	1.3566	305	1.3566	305	1.3566	305	1.3566	305	1.3566	305	1.3566	0	0.0000	0	0.0000	0	0.0000
Surface Target (Mobile) - Expended	5.7522	11.5034	4	0.0011	4	0.0011	4	0.0011	4	0.0011	4	0.0011	4	0.0011	0	0.0000	0	0.0000	0	0.0000
Mine Shapes -Expended	25.7903	51.5807	28,000	33.1556	15,860	18.7803	0	0.0000	7,975	9.4434	0	0.0000	13,772	16.3078	1,710	2.0249	4,423	5.2374	21,545	25.5121
Subsurface Target (Mobile)-Expended	1.2206	2.4413	500	0.0280	525	0.0294	0	0.0000	1,325	0.0743	0	0.0000	500	0.0280	1,200	0.0673	0	0.0000	0	0.0000
Other																				
Air-Launched Lightweight Torpedo (Explosive)	19.1199	38.2399	3	0.0026	3	0.0026	3	0.0026	3	0.0026	3	0.0026	3	0.0026	0	0.0000	0	0.0000	0	0.0000
Anchor	6.2495	12.5001	18,000	5.1653	9,000	2.5827	0	0.0000	501	0.1438	0	0.0000	9,614	2.7589	1,026	0.2944	433	0.1243	0	0.0000
Compression Pad/Piston	0.0043	0.0086	0	0.0000	100,975	0.0199	0	0.0000	0	0.0000	0	0.0000	3,000	0.0006	0	0.0000	0	0.0000	0	0.0000
Concrete Slugs	0.0011	0.0022	190	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	190	0.0000	0	0.0000	0	0.0000	0	0.0000
Endcaps	0.0022	0.0043	0	0.0000	203,950	0.0201	720	0.0001	2,000	0.0002	0	0.0000	9,000	0.0009	0	0.0000	0	0.0000	0	0.0000
Endcaps and Pistons - Non Chaff & Flare	0.0043	0.0860	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	1,895	0.0037	0	0.0000	0	0.0000
Flare O-Ring	0.0043	0.0086	0	0.0000	100,975	0.0199	0	0.0000	0	0.0000	0	0.0000	3,000	0.0006	0	0.0000	0	0.0000	0	0.0000
Heavyweight Torpedo (Explosive)	39.6155	79.2299	4	0.0073	4	0.0073	4	0.0073	4	0.0073	4	0.0073	4	0.0073	0	0.0000	0	0.0000	0	0.0000
Heavyweight Torpedo Accessories	0.1615	3.2367	950	0.0706	1,100	0.0817	260	0.0193	1,170	0.0869	10	0.0007	930	0.0691	300	0.0223	170	0.0126	0	0.0000
Sabot	1.2196	4.8782	175,017	19.5998	175,017	19.5998	175,017	19.5998	175,017	19.5998	175,017	19.5998	175,017	19.5998	1,912	0.2141	17	0.0019	17	0.0019
Sonobuoy (Explosive)	1.2207	2.4413	0	0.0000	0	0.0000	0	0.0000	0	0.0000	360	0.0202	0	0.0000	0	0.0000	0	0.0000	0	0.0000
Surface-Launched Lightweight Torpedo (Explosive)	10.0782	20.1576	22	0.0102	22	0.0102	2	0.0009	22	0.0102	2	0.0009	22	0.0102	0	0.0000	0	0.0000	60	0.0278
Total			437,417	65.3148	1,451,369	82.1687	388,270	27.0199	504,902	57.5900	395,880	28.0043	512,851	47.8898	8,408	3.0150	5,588	5.7696	58,567	26.1947

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560 ac=acre; ft.²=square feet; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City=Naval Surface Warfare Center Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes

Table F-18: Number of Recovered Materials Proposed for Use During Testing Activities in a Single Year Under Alternatives 1 and 2

				Range Con	nplexes				Testing Ranges	;
		Northeast	VACAPES	Navy Cherry Point	JAX	Key West	GOMEX	NUWC Newport	SFOMF	NSWC Panama City
Recovered Materials		Number	Number	Number	Number	Number	Number	Number	Number	Number
Other										
Air-Launched Lightweight Torpedo (Non-Explosive)		33	196	33	224	1	33	0	0	0
ANANG/FNANG Noutralizer/Passyared	Alternative 1	0	180	0	50	0	100	0	0	84
AMNS/EMNS Neutralizer (Recovered)	Alternative 2] "	195	0	50	0	100	0	0	99
Heavyweight Torpedo (Non-Explosive)		190	220	52	234	2	186	60	34	0
Surface-Launched Lightweight Torpedo (Non-Explosive)		17	49	45	113	1	17	60	0	240
Unmanned Aerial System		30	1,563	0	48	48	48	360	84	84
Unmanned Surface Vehicle		0	0	0	0	0	0	660	0	0
Unmanned Underwater Vehicle		540	270	10	34	0	311	69	8	10
Unmanned Vehicle		0	0	0	0	0	0	0	0	5
Targets										
Air Targets		76	76	76	76	76	86	1,003	28	28
Aerial Drone - Recovered		6	243	9	11	0	2	0	0	0
Subsurface Target - Recovered		125	351	8	283	31	305	901	235	0
Subsurface Target (Stationary) - Recovered		13,680	6,700	3,200	9,600	0	3,500	30	0	0
Surface Target - Recovered		274	870	270	704	298	398	1,244	137	36
	Total	14,971	10,913	3,703	11,377	457	4,986	4,387	526	586

Note: AMNS/EMNS = Airborne Mine Neutralization System/Expendable Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City=Naval Surface Warfare Center Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes

Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Table F-19: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Testing Activities in a Single Year Under Alternatives 1 and 2

								Range C	omplexes								Testing	Ranges		
		Impact	North	neast	VACA	NPES	Navy Che	rry Point	JA	IX	Key V	Vest	GON	ЛЕХ	NUWC N	lewport	SFO	MF	NSWC Pa	nama City
	Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Recovered Materials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Anchor (Recovered)	6.2495	12.5001	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	225	0.0646	0	0.0000
Bottom Placed Instruments	2.0000	4.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	600	0.5510	0	0.0000	0	0.0000
Mine Shape (Non-explosive)	25.7903	51.5807	0	0.0000	919	1.0882	1,200	1.4210	21,802	25.8164	0	0.0000	894	1.0586	825	0.9769	0	0.0000	27,747	32.8560
Total			0	0.0000	919	1.0882	1,200	1.4210	21,802	25.8164	0	0.0000	894	1.0586	1,425	1.5279	225	0.0646	27,747	32.8560

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; ft.2=square feet; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City=Naval Surface Warfare Center Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes

Table F-20: Number of Recovered Materials Proposed for Use During Testing Activities in Five Years Under Alternatives 1 and 2

				Range Comp	olexes				Testing R	anges
		Northeast	VACAPES	Navy Cherry Point	JAX	Key West	GOMEX	NUWC Newport	SFOMF	NSWC Panama City
Recovered Materials		Number	Number	Number	Number	Number	Number	Number	Number	Number
Other		-			-			-		
Air-Launched Lightweight Torpedo	Alternative 1	162	735	162	1,049	2	163	0	0	0
(Non-Explosive)	Alternative 2	163	978	163	1,118	3	163	0	0	0
AMNS Neutralizer	Alternative 1	0	740	0	250	0	F00	0	0	364
(Non-Explosive)	Alternative 2	0	975	0	250	0	500	0	0	495
Heavyweight Torpedo (Non-Explosive)		947	1,097	257	1,167	7	927	300	170	0
Surface-Launched Lightweight Torpedo (Non-Ex	olosive)	82	242	222	562	2	82	300	0	1,200
Unmanned Aerial System		150	7,815	0	240	240	240	1,800	420	420
Unmanned Surface Vehicle		0	0	0	0	0	0	3,300	0	0
Unmanned Underwater Vehicle		3,700	1,350	50	464	0	1,555	342	38	50
Unmanned Vehicle		0	0	0	0	0	0	0	0	25
Targets										
Air Target - Recovered		379	379	379	379	379	429	5,014	139	139
Aerial Drone-Recovered		30	1,215	45	55	0	10	0	0	0
Subsurface Target Recovered	Alternative 1	378	1,092	38	1,338	59	1,518	4 504	1 172	0
Subsurface Target - Recovered	Alternative 2	3/8	1,754	36	1,413	155	1,524	4,504	1,173	U
Subsurface Target (Stationary)- Recovered		68,400	33,500	16,000	48,000	0	17,500	150	0	0
Surface Target	Alternative 1	1,368	4,256	1 2/10	3,452	1 /100	1,988	6,220	686	178
Surface Target	Alternative 2	1,306	4,348	1,348	3,520	1,488	1,300	0,220	000	1/0
Total		75,597	60,476	18,502	63,007	2,333	26,436	21,930	2,626	2,871

Note: AMNS=Airborne Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City=Naval Surface Warfare Center Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes
Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Table F-21: Number of Recovered Materials Proposed for Use During Testing Activities in Five Years Under Alternatives 1 & 2—Inland Waters

	Targets
	Air Target
Location	Number
Little Creek, VA	210
Norfolk, VA	210

Table F-22: Number and Impacts* of Recovered Bottom Placed Materials Proposed for Use During Testing Activities in Five Years as Part of Alternatives 1 and 2

									Range (Complexes								Testing	g Ranges		
			Impact	Nort	heast	VACA	APES	Navy Ch	erry Point	J.	4X	Key V	Vest	GON	1EX	NUWC N	lewport	SFC	OMF	NSWC P	Panama City
		Size	Footprint		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact		Impact
Recovered Mater	ials	(ft.²)	(ft.²)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)	Number	(ac)
Anchors		6.2495	12.5001	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	1,125	0.3228	0	0.0000
Bottom Placed Instruments		2.0000	4.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.0000	3,000	0.2754	0	0.0000	0	0.0000
Mine Shape	Alternative 1	25.7903	51.5807	0	0.0000	3,907	4.6264	6,000	7 1040	100.010	129.0820	0	0.0000	4.470	F 2021	4,125	4.8845	0	0.0000	138,211	163.6598
(Non-explosive)	Alternative 2	25.7903	51.5807	0	0.0000	4,595	5.4411	6,000	7.1048	109,010	129.0820	U	0.0000	4,470	5.2931	4,125	4.8845	U	0.0000	138,735	164.2803
Total	Alternative 1			0	0.0000	3,907	4.6924	6,000	7 1040	100.010	129.0820	0	0.000	4.470	F 2021	7 125	5.1599	1 125	0.3228	138,211	163.6598
	Alternative 2			0	0.0000	4,595	5.4411	6,000	7.1048	109,010	129.0820	U	0.0000	4,470	5.2931	7,125	5.1599	1,125	0.3228	138,735	164.2803

Note: * Calculation for "Impact (ac)" Column = ([Impact Footprint] x [Number]) / 43560

ac=acre; ft.²=square feet; GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC Panama City=Naval Surface Warfare Center Panama City; NUWC Newport=Naval Undersea Warfare Center Newport; SFOMF=South Florida Ocean Measurement Facility; VACAPES=Virginia Capes Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

F.2 IMPACTS TO ABIOTIC SUBSTRATE - TRAINING AND TESTING ACTIVITIES

Tables F-23 through Tables F-35 show impacts to abiotic substrate within the AFTT Study Area for both Single Year and Five Year totals.

Table F-23: Potential Impact from Explosives On or Near the Bottom for Training Activities Under Alternative 1 and 2 in a Single Year

	Net		Total	Hard Su	bstrate	Intermediat	te Substrate	Soft sul	strate
Training Areas	Explosive Weight (lb.)	Number of Charges	Impact Footprint (ac)	ас	% Impact	ас	% Impact	ас	% Impact
Northeast U.S. (·
	10	224	2.3524		0.000420		0.000126		0.000011
	20	296	4.9372		0.000882		0.000263		0.000022
VACAPES RC	60	4	0.1389	559,734	0.000025	1,874,186	0.000007	22,262,693	0.000001
	AMNS Neutralizer	62	0.3064		0.000055		0.000016		0.000001
Total			7.7349		0.001382		0.000413		0.000035
Northeast U.S. (Continental She	lf Large Mai	rine Ecosysten	1		1	1	T	
Lower Chesapeake Bay	5	12	0.0801	0	0	2,134	0.003752	362,740	0.000022
Total			0.0801		0		0.003752		0.000022
Northeast and S	outheast U.S. (Continental S	Shelf Large Mo	arine Ecosysten	1	1		T	
	10	4	0.0420		0.000004		0.000020		0.000000
Navy Cherry Point RC	20	12	0.2002	1,081,358	0.000019	214,657	0.000093	14,611,417	0.000001
	AMNS Neutralizer	1	0.0049		0.000000		0.000002	, ,	0.000000
Total			0.247108		0.000023		0.000115		0.000001
Southeast U.S. (Continental She	lf Large Mai	rine Ecosysten	n and Abyssal Z	'one	ı		T	
	0.5	2	0.0030		0.000000		0.000000		0.000000
	10	8	0.0840		0.000001		0.000001		0.000000
JAX RC	20	12	0.2002	9,306,697	0.000002	6,530,477	0.000003	26,485,602	0.000001
	AMNS Neutralizer	2	0.0099		0.000000		0.000000		0.000000
Total			0.297049		0.000003		0.000004		0.000001
Caribbean and C					0.000000		0.000005		0.000004
Kov Most BC	5	10	0.0667		0.000002	-	0.000005		0.000001
Key West RC	10	4	0.0420	4,493,152	0.000001	1,472,965	0.000003	14,163,039	0.000000
	20	8	0.1334		0.000003		0.000009		0.000001
Total			0.242100		0.000006		0.000016		0.000002
Gulf of Mexico		_							
	0.5	2	0.0030		0.000000		0.000000		0.000000
GOMEX RC	10	4	0.0420		0.000001	-	0.000001		0.000000
GOIVILA NC	20	12	0.2002	2,955,100	0.000007	3,418,643	0.000006	56,370,160	0.000000
	AMNS Neutralizer	22	0.1087		0.000003		0.000003		0.000000
Total			0.353895	m. COMEY-C	0.000012		0.000010	362,740 14,611,417 26,485,602	0.000000

Note: ac=acre; AMNS=Airborne Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; lb.=pounds; RC=Range Complex; VACAPES=Virginia Capes

Table F-24: Potential Impact from Explosives On or Near the Bottom for Testing Activities
Under Alternative 1 in a Single Year

				Hard :	Substrate	Intermedi	ate Substrate	Soft su	bstrate
Training Areas	Net Explosive Weight (lb.)	Number of Charges	Total Impact Footprint (ac)	ас	% Impact	ас	% Impact	ac	% Impact
Northeast U.S. Co	ontinental Shelf	Large Marin	e Ecosystem a	nd Abyssal Z	one				
	650	10	1.6988		0.0003035		0.0000906		0.0000076
VACAPES RC	AMNS Neutralizer	250	1.2355	559,734	0.0002207	1,874,186	0.0000659	22,262,693	0.0000055
Total			2.9343		0.0005242		0.0001566		0.0000132
Southeast U.S. Co	ontinental Shelf	Large Marin	e Ecosystem a	nd Abyssal Z	one				
	650	8	1.3591		0.0000146		0.0000208		0.0000051
JAX RC	AMNS Neutralizer	50	0.2471	9,306,697	0.0000027	6,530,477	0.0000038	26,485,602	0.0000009
Total			1.6062		0.0000173		0.0000246		0.0000061
Gulf Of Mexico Lo	arge Marine Eco	system							
	650	16	2.7182		0.0000920		0.0000795		0.0000048
GOMEX RC	AMNS Neutralizer	100	0.4942	2,955,100	0.0000167	3,418,643	0.0000145	56,370,160	0.0000009
Total			3.2124		0.0001087		0.0000940		0.0000057
NSWC Panama	650	4	0.6795		0.0000539		0.0000287		0.0000043
City Testing Range	AMNS Neutralizer	328	1.6201	1,260,458	0.0001285	2,368,180	0.0000684	15,776,970	0.0000103
ı,aııkc	Line Charge	4	4.2739		0.0003391		0.00018047		0.0000271
Total			6.5736		0.0005215		0.0002776	22,262,693 26,485,602 56,370,160	0.0000417

Note: ac=acre; AMNS=Airborne Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; lb.=pounds; NSWC Panama City=Naval Surface Warfare Center Panama City; RC=Range Complex; VACAPES=Virginia Capes

Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2 $\,$

Table F-25: Potential Impact from Explosives On or Near the Bottom for Testing Activities Under Alternative 2 in a Single Year

				Hard Substrate		Intermediate Substrate		Soft substrate	
Training Areas	Net Explosive Weight (lb.)	Number of Charges	Total Impact Footprint (ac)	ас	%	ac	%	ас	% Impact
Northeast U.S. Continental S				uc	Impact	ac	Impact	ac	Impact
Northeast 0.3. Continentar 3	650	15	2.5483		0.0004553		0.0001360		0.0000118
VACAPES RC	AMNS Neutralizer	255	1.2602	559,734	0.0002251	1,874,186	0.0000672	21,573,934	0.0000058
Total			3.8085		0.0006804		0.0002032		0.0000177
Southeast U.S. Continental Shelf Large Marine Ecosystem									
	650	8	1.3591	9,306,697	0.0000146	6,530,477	0.0000208	26,485,602	0.0000051
JAX RC	AMNS Neutralizer	50	0.2471		0.0000027		0.0000038		0.0000009
Total			1.6062		0.0000173		0.0000246] [0.0000061
Gulf Of Mexico Large Marine	Ecosystem								
	650	16	2.7182		0.0000920	3,418,643	0.0000795	56,370,160	0.0000048
GOMEX RC	AMNS Neutralizer	100	0.4942	2,955,100	0.0000167		0.0000145		0.0000009
Total			3.2124		0.0001087	1	0.0000940		0.0000057
	650	9	1.5290		0.0001213	2,368,180	0.0000646	15,776,970	0.0000097
NSWC Panama City Testing Range	AMNS Neutralizer	333	1.6457	1,260,458	0.0001306		0.0000695		0.0000104
	Line Charge	4	4.2739		0.0003391		0.0001805		0.0000271
Total			13.8733	4,215,558	0.0005909	5,786,823	0.0003145	72,147,130	0.0000472

Note: ac=acre; AMNS=Airborne Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; lb.=pounds; NSWC Panama City=Naval Surface Warfare Center Panama City; RC=Range Complex; VACAPES=Virginia Capes

Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2

Table F-26: Potential Impact from Explosives On or Near the Bottom for Training Activities under Alternatives 1 and 2 Over Five Years

	Net Explosive	Number	Total Impact	Hard Substrate		Intermediate Substrate		Soft substrate			
Training	Weight	of	Footprint		%		%		%		
Areas	(lb.)	Charges	(ac)	ас	Impact	ас	Impact	ас	Impact		
Alternative 1							<u> </u>				
Northeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone											
	10	1,120	11.7622	559,734	0.0021014	1,874,186	0.0006276	22,262,693	0.0000528		
	20	1,480	24.6858		0.0044103		0.0013171		0.0001109		
VACAPES RC	60	20	0.6944		0.0001241		0.0000371		0.0000031		
	AMNS Neutralizer	306	1.5123		0.0002702		0.0000807		0.0000068		
Total			38.6547		0.0069059		0.0020625		0.0001736		
Northeast U.S.	. Continental Sh	elf Large M	arine Ecosyst	em							
Lower Chesapeake Bay	5	60	0.4003	0	0	2,134	0.0187582	362,740	0.0001104		
Total			0.4003		0		0.0187582] [0.0001104		
Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem											
	10	20	0.2100		0.000019	214,657	0.0000978	14,611,417	0.0000014		
Navy Cherry Point RC	20	60	1.0008	1,081,358	0.000093		0.0004662		0.0000068		
	AMNS Neutralizer	5	0.0247		0.000002		0.0000115		0.0000002		
Total			1.235500		0.000114		0.0005756		0.0000085		
Southeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone											
	0.5	6	0.0089	9,306,697	0.0000001	6,530,477	0.0000001	26,485,602	0.0000000		
	10	40	0.4201		0.0000045		0.0000064		0.0000016		
JAX RC	20	60	1.0008		0.0000108		0.0000153		0.0000038		
	AMNS Neutralizer	6	0.0297		0.0000003		0.0000005		0.0000001		
Total			1.459500		0.0000157		0.0000223		0.0000055		
Caribbean and	Gulf of Mexico										
	5	50	0.3336		0.0000074	1,472,965	0.0000226	14,163,039	0.0000024		
Key West RC	10	20	0.2100	4,493,152	0.0000047		0.0000143		0.0000015		
	20	40	0.6672		0.0000148		0.0000453		0.0000047		
Total		F	1.210800		0.0000269		0.0000822	<u> </u>	0.0000085		
Guif of Mexico	o Large Marine I	1									
	0.5	6	0.0089	2,955,100	0.0000003	3,418,643	0.0000003	56,370,160	0.0000000		
GOMEX RC	10	20	0.2100		0.0000071		0.0000061		0.0000004		
3027.110	20	60	1.0008		0.0000339		0.0000293		0.0000018		
	AMNS Neutralizer	106	0.5239		0.0000177		0.0000153		0.0000009		
Total			1.743600		0.000059		0.0000510		0.0000031		

Table F-26: Potential Impact from Explosives On or Near the Bottom for Training Activities under Alternatives 1 and 2 Over Five Years (continued)

	Net		Total	Hard Substrate		Intermedia	te Substrate	Soft substrate		
-	Explosive	Number	Impact		0/		06		06	
Training Areas	Weight (lb.)	of Charges	Footprint (ac)	Acre	% Impact	Acre	% Impact	Acre	% Impact	
Alternative 2	(10.)	charges	(uc)	Acre	mpact	Acre	тприсс	Acre	трисс	
Northeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone										
	10	1,120	11.7622	-	0.00210139		0.0006276		0.0000528	
	20	1,480	24.6858		0.00441027		0.0013171		0.0001109	
VACAPES RC	60	20	0.6944	559,734	0.00012406	1,874,186	0.0000371	22,262,693	0.0000031	
	AMNS Neutralizer	310	1.5321		0.00027371		0.0000817		0.0000069	
Total			38.6745		0.00690944		0.0020635		0.0001737	
Northeast U.S	. Continental Si	helf Large I	Marine Ecosys	tem	1					
Chesapeake Bay Area	5	60	0.4003	0	0	2,134	0.0187582	362,740	0.0001104	
Total			0.4003		0		0.0187582		0.0001104	
	10	20	0.2100	1,081,358	0.000019	214,657	0.0000978	14,611,417	0.0000014	
Navy Cherry	20	60	1.0008		0.000093		0.0004662		0.0000068	
Point RC	AMNS Neutralizer	5	0.0247		0.000002		0.0000115		0.0000002	
Total			1.235500		0.000114		0.0005756		0.0000085	
Southeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone										
	0.5	10	0.0148		0.0000002		0.0000002		0.0000001	
JAX RC	10	40	0.4201		0.0000045		0.0000064		0.0000016	
JAX NC	20	60	1.0008	9,306,697	0.0000108	6,530,477	0.0000153	26,485,602	0.000038	
	AMNS Neutralizer	10	0.0494		0.0000005		0.0000008		0.0000002	
Total			1.485100		0.0000160		0.0000227		0.0000056	
Caribbean and	d Gulf of Mexico	Large Ma	rine Ecosyster	n						
	5	50	0.3336		0.0000074	1,472,965	0.0000226	14,163,039	0.0000024	
Key West RC	10	20	0.2100	4,493,152	0.0000047		0.0000143		0.0000015	
	20	40	0.6672		0.0000148		0.0000453		0.0000047	
Total	a Laurea Marrier -	Faceust	1.210800		0.0000269		0.0000822	<u> </u>	0.0000085	
Guij oj iviexico	Large Marine					<u> </u>			0.000000	
	0.5	10	0.0148		0.0000005		0.0000004		0.0000000	
GOMEX RC	10	20	0.2100		0.0000071		0.0000061		0.0000004	
COMENTO	20	60	1.0008	2,955,100	0.0000339	3,418,643	0.0000293	56,370,160	0.0000018	
	AMNS Neutralizer	110	0.5436		0.0000184		0.0000159		0.000010	
Total			1.769200		0.0000599		0.0000518		0.0000031	
		·			-Culf of Movicou					

Note: ac=acre; AMNS=Airborne Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; lb.=pounds; RC=Range Complex; VACAPES=Virginia Capes

Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2.

Table F-27: Potential Impact from Explosives On or Near the Bottom for Testing Activities under Alternatives 1 and 2 Over Five Years

	Net Explosive	Number	Total Impact	Hard Substrate		Intermedia	te Substrate	Soft substrate		
Testing Areas	Weight (lb.)	of Charges	Footprint (ac)	Acre	% Impact	Acre	% Impact	Acre	% Impact	
Alternative		- Circui geo	1 (4.0)	7.0.0		710.0			puot	
Northeast L	J.S. Continental	Shelf Large	Marine Ecosys	stem and Abys	sal Zone					
VACAPES	650	50	8.4942		0.00151754		0.0004532		0.0000382	
RC	AMNS Neutralizer	1090	5.3869	559,734	0.0009624	1,874,186	0.0002874	22,262,693	0.0000242	
Total			13.8811		0.00247995		0.0007406		0.0000624	
Southeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone										
1477.00	650	40	6.7954	9,306,697	0.0000730		0.0001041	26,485,602	0.0000257	
JAX RC	AMNS Neutralizer	250	1.2355		0.0000133	6,530,477	0.0000189		0.0000047	
Total			8.0309		0.0000863		0.0001230		0.0000303	
Gulf Of Mex	kico Large Mari	ne Ecosystei	n			ı	ı			
GOMEX	650	80	13.5908	2,955,100	0.0004599	3,418,643	0.0003975	56,370,160	0.0000241	
RC	AMNS Neutralizer	500	2.4711		0.0000836		0.0000723		0.0000044	
Total			16.0619		0.0005435		0.0004698		0.0000285	
NSWC	650	20	3.3977	1,260,458	0.0002696	2,368,180	0.0001435	15,776,970	0.0000215	
Panama City Testing	AMNS Neutralizer	1584	7.8283		0.0006211		0.0003306		0.0000496	
Range	Line Charge	20	21.3697		0.0016954		0.0009024		0.0001354	
Total			32.5957		0.0025860		0.0013764		0.0002066	
Alternative 2 Northeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone										
Northeast L	J.S. Continental	Shelf Large	Marine Ecosys	stem and Abys		•				
VACAPES	650	75	12.7414	559,734	0.0022763 3	1,874,186	0.0006798	22,262,693	0.0000572	
RC	AMNS Neutralizer	1275	6.3012		0.0011257 5		0.0003362		0.0000283	
Total			19.0426		0.0034021		0.0010160		0.0000855	
	•		Southeast	U.S. Continent	al Shelf Large N	/larine Ecosyst	em			
	650	40	6.7954		0.0000730		0.0001041		0.0000257	
JAX RC	AMNS Neutralizer	250	1.2355	9,306,697	0.0000133	6,530,477	0.0000189	26,485,602	0.0000047	
Total			8.0309		0.0000863		0.0001230		0.0000303	
				ulf Of Mexico I	arge Marine Ed	osystem				
GOMEX	650	80	13.5908		0.0004599		0.0003975	56,370,160	0.0000241	
RC	AMNS Neutralizer	500	2.4711	2,955,100	0.0000836	3,418,643	0.0000723		0.0000044	
Total			16.0619		0.0005435		0.0004698		0.0000285	
NSWC	650	45	7.6448		0.0006065	2,368,180	0.0003228	15,776,970	0.0000485	
Panama City	AMNS Neutralizer	1665	8.2286	1,260,458	0.0006528		0.0003475		0.0000522	
Testing Range	Line Charge	20	21.3697	1,200,430	0.0016954	2,300,100	0.0009024		0.0001354	
Total			69.3668		0.0029547	1	0.0015726		0.0002361	

Note: ac=acre; AMNS=Airborne Mine Neutralization System; GOMEX=Gulf of Mexico; JAX=Jacksonville; lb.=pounds; NSWC Panama City=Naval Surface Warfare Center Panama City; RC=Range Complex; VACAPES=Virginia Capes
Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2

Table F-28: Potential Impact of Military Expended Materials from Training Activities on Each Substrate Type in a Single Year

		Impact to Bottom	Percent Impact to Botto		Percent Impact to Soft Bottom			
Training Areas	Alternative 1	Alternative 2	Alternative 1	Alternative 2	Alternative 1	Alternative 2		
Northeast U.S. Continent	al Shelf Large Mar	ine Ecosystem and	Abyssal Zone					
Northeast RC	0.00002989	0.0000299	0.000011859	0.0000119	0.000	002358		
VACAPES RC	0.0	0472	0.001408	0.001409	0.000)11860		
Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem								
Lower Chesapeake Bay		0	0 0			0		
Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem								
Navy Cherry Point RC	0.0010025	0.001027	0.0050503	0.005051	0.00007420	0.00007421		
Southeast U.S. Continenta	al Shelf Large Mari	ine Ecosystem and	Abyssal Zone					
JAX RC	0.0002433	0.0002435	0.0003467	0.000347	0.00008548	0.00008556		
Caribbean and Gulf of Me	xico Large Marine	Ecosystems						
Key West RC	0.000	08737	0.0002	.665	0.000	02772		
Gulf of Mexico Large Mari	ine Ecosystem							
GOMEX RC	0.00007273	0.000078	0.00006287	0.00006725	0.00000381	0.00000408		
Abyssal Zone								
Other AFTT Area		0	0		0.0000335			
SINKEX Area		0	0		0.00003118			

Note: GOMEX=Gulf of Mexico; JAX=Jacksonville; RC=Range Complex; SINKEX = Sinking Exercise; VACAPES=Virginia Capes Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2

Table F-29: Potential Impact of Military Expended Materials from Testing Activities on Each Substrate Type in a Single Year

Testing Areas		Impact to Bottom	Percent II Intermedia	•	Percent Impact to Soft Bottom			
	Alternative 1	Alternative 2	Alternative 1	Alternative 2	Alternative 1	Alternative 2		
Northeast U.S. Continental Sh	elf Large Marine	Ecosystem and	Abyssal Zone					
Northeast RC	0.00049380	0.00049550	0.00019590	0.00019660	0.00003895	0.00003909		
VACAPES RC	0.00444900	0.00445300	0.00132860	0.00132980	0.00011185	0.00011194		
Northeast U.S. Continental Sh	Northeast U.S. Continental Shelf Large Marine Ecosystem							
NUWC Newport Testing	0.000	38630	0.00004579		0.000	01033		
Range	0.000		0.00004373					
Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem								
Navy Cherry Point RC	0.00028600	0.00028740	0.00144100	0.00144800	0.00002116	0.00002127		
Southeast U.S. Continental Sh	elf Large Marine	Ecosystem and	Abyssal Zone					
JAX RC	0.00012840	0.00012920	0.00018290	0.00018410	0.00004511	0.00004540		
Southeast U.S. Continental Sh	elf Large Marine	e Ecosystem						
SFOMF	0.000	36250	0.0381	11000	0.001	28500		
Caribbean and Gulf of Mexico	Large Marine E	cosystems						
Key West RC	0.000	08227	0.0002	25100	0.000	02610		
Gulf of Mexico Large Marine I	Ecosystem							
GOMEX RC	0.000	26380	0.0002	22800	0.00001383			
NSWC Panama City Testing Range	0.00042400	0.00042240	0.00022570	0.00022590	0.00003387	0.00003391		

Note: GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC=Naval Surface Warfare Center; NUWC=Naval Undersea Warfare Center; RC=Range Complex; SFOMF = South Florida Ocean Measurement Facility

Table F-30: Potential Impact of Military Expended Materials from Training Activities on Each Substrate Type over Five Years

	Percent I Hard B	•	Percent II Intermedia	•	Percent II Soft B	mpact to ottom		
Training Areas	Alternative 1	Alternative 2	Alternative 1	Alternative 2	Alternative 1	Alternative 2		
Northeast U.S. Continent	al Shelf Large M	arine Ecosystem	and Abyssal Zone					
Northeast RC	0.0001495	0.0001495	0.0000593	0.0000593	0.0000118	0.0000018		
VACAPES RC	0.0	124	0.00704	0.007045	0.00059270	0.00059310		
Northeast and Southeast	U.S. Continenta	l Shelf Large Ma	rine Ecosystem					
Lower Chesapeake Bay	()	0.0000	00007	0			
Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem								
Navy Cherry Point RC	0.005006	0.005014	0.02522	0.02526	0.00037050	0.00037110		
Southeast U.S. Continent	al Shelf Large M	arine Ecosystem	and Abyssal Zone					
JAX RC	0.001213	0.001218	0.001728	0.001735	0.00042610	0.00042780		
Caribbean and Gulf of M	exico Large Mari	ne Ecosystems						
Key West RC	0.00	04369	0.00	1333	0.0002	13860		
Gulf of Mexico Large Ma	rine Ecosystem							
GOMEX RC	0.00036331	0.00038899	0.00031405	0.00033625	0.00001905	0.00002039		
Abyssal Zone								
Other AFTT Area		0		0		0.00001680		
SINKEX Area		0		0		15590		

Note: GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC=Naval Surface Warfare Center; NUWC=Naval Undersea Warfare Center; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; RC=Range Complex; SINKEX = Sinking Exercise

Table F-31: Potential Impact of Military Expended Materials from Testing Activities on Each Substrate Type over Five Years

	Percent Impact to Hard Bottom		•	to Intermediate tom	Percent Impact to Soft Bottom				
Testing Areas	Alternative 1	Alternative 2	Alternative 1	Alternative 2	Alternative 1	Alternative 2			
Northeast U.S. Continental	Shelf Large Marine E	cosystem and Aby	ssal Zone						
Northeast RC	0.002445	0.002478	0.000970	0.000983	0.000193	0.000195			
VACAPES RC	0.022031	0.022263	0.006580	0.006649	0.000554	0.000560			
Northeast U.S. Continental	Northeast U.S. Continental Shelf Large Marine Ecosystem								
NUWC Newport Testing Range	0.001931		0.000229		0.000052				
Northeast and Southeast U.	Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem								
Navy Cherry Point RC	0.783671	0.001437	0.007184	0.007239	0.000106	0.000106			
Southeast U.S. Continental S	Shelf Large Marine E	cosystem and Aby	ssal Zone						
JAX RC	0.000636	0.000646	0.000906	0.000921	0.000223	0.000227			
Southeast U.S. Continental S	Shelf Large Marine E	cosystem							
SFOMF	0.0018	312	0.19	0547	0.00	6424			
Caribbean and Gulf of Mexic	co Large Marine Ecos	systems							
Key West RC	0.000410	0.000411	0.001249	0.001255	0.000130	0.000131			
Gulf of Mexico Large Marin	e Ecosystem								
GOMEX RC	0.001310	0.001319	0.001132	0.001140	0.000069	0.000069			
NSWC Panama City Testing Range	0.002120	0.002122	0.001128	0.001130	0.000169	0.000170			

Note GOMEX=Gulf of Mexico; JAX=Jacksonville; NSWC=Naval Surface Warfare Center; NUWC=Naval Undersea Warfare Center; RC=Range Complex; SFOMF = South Florida Ocean Measurement Facility;

Table F-32: Proportional Impact to Bottom Habitat from Training Activities Under Alternatives 1 and 2 in a Single Year

		Impact to H	lard Bottom	•	ntermediate tom	Impact to S	oft Bottom	Impact to Bot	Unknown tom
		MEM Footprint	Explosive Footprint	MEM Footprint	Explosive Footprint	MEM Footprint	Explosive Footprint	MEM Footprint	Explosive Footprint
Training A	\reas	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)
Northeast U.S. Cont	inental Shelf Lar	ge Marine Eco	system and A	byssal Zone				-	
Northeast	Alternative 1	0.04531	0	0.11421	0	0.57441	0	0.000057	0
Northeast	Alternative 2	0.04532	U	0.11423	U	0.57454	U	0.000057	U
VACABEC	Alternative 1	0.597657	0.175056	2.001162	0.586148	23.770983	6.962617	0	0
VACAPES	Alternative 2	0.597848	0.175056	2.001803	0.586148	23.778601	6.962617	0	U
Northeast U.S. Cont	inental Shelf Lar	ge Marine Ecc	system						
Lower Chesapeake	Alternative 1	0	0	0.000004	0.000442	0.000718	0.075073	0.000001	0.000092
Bay	Alternative 2	0	0	0.000004	0.000442	0.000718	0.075073	0.000001	0.000092
Northeast and Sout	heast U.S. Contin	ental Shelf La	rge Marine E	cosystem					
No Chaum . Daint	Alternative 1	0.735981	0.016775	0.146098	0.003330	9.944648	0.226665	0	0
Navy Cherry Point	Alternative 2	0.736140	0.016775	0.146129	0.003330	9.946793	0.226665	U	U
Southeast U.S. Cont	inental Shelf Lar	ge Marine Ecc	system and A	byssal Zone					
JAX	Alternative 1	4.974781	0.065249	3.490787	0.045785	14.157555	0.185689	0	0
JAX	Alternative 2	4.979482	0.003249	3.494085		14.170934	0.185689	0	U
Caribbean and Gulf	of Mexico Large	Marine Ecosy	stems						
Kov Wost	Alternative 1	0.822796	0.050689	0.269733	0.016617	2.593566	0.159779	0.242469	0.014938
Key West	Alternative 2	0.822796	0.05069	0.209733	0.016617	2.593500	0.159779	0.242469	0.014938
Gulf of Mexico Larg	e Marine Ecosyst	em							
GOMEX	Alternative 1	0.101346	0.016618	0.117244	0.019225	1.933235	0.316999	0.000033	0.000005
GOIVIEX	Alternative 2	0.108383	0.010018	0.125384	0.019223	2.067464	0.510999	0.000036	0.000005
Abyssal Zone								-	
Other AFTT	Alternative 1	0	0	0	0	0.0475608	0	0.760309 0	0
Other AFTT	Alternative 2	U	U	U	U	0.0475608	0		U
CINIVEY Area	Alternative 1	0	0	0	0	10.164603	0	4.40022	0
SINKEX Area	Alternative 2	0	0	0	0	10.164693	0	4.40833	0

Note: ac=acre; GOMEX=Gulf of Mexico; JAX=Jacksonville; MEM = Military Expended Materials; NSWC=Naval Surface Warfare Center; NUWC=Naval Undersea Warfare Center; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; RC=Range Complex; SINKEX = Sinking Exercise

Table F-33: Proportional Impact to Bottom Habitat from Testing Activities Under Alternatives 1 and 2 in a Single Year

				Impact to In	tormodiato				
		Impact to Ho	ard Bottom	Bott		Impact to	Soft Bottom	Impact to Un	known Bottom
		MEM	Explosive	MEM	Explosive	MEM	Explosive	MEM	Explosive
		Footprint	Footprint	Footprint	Footprint	Footprint	Footprint	Footprint	Footprint
Training	Areas	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)
Northeast U.S. Co	ontinental Shel	f Large Marine	Ecosystem o	ınd Abyssal Zoi	ne				
Northeast RC	Alternative 1	0.748575	0	1.886734	0	9.489532	0	0.000941	0
Northeast RC	Alternative 2	0.751188	U	1.893320	U	9.522659	U	0.000944	U
VACABEC DC	Alternative 1	0.563561	0.066411	1.886998	0.222366	22.414872	2.641399	0	0
VACAPES RC	Alternative 2	0.564052	0.086194	1.888640	0.288608	22.434380	3.428258	0	0
Northeast U.S. Continental Shelf Large Marine Ecosystem									
NUWC Newport	Alternative 1	0.007001	0	0.454773	0	0.672726	0	0.004000	0
Testing Range	Alternative 2	0.007991	0	0.151772	0	0.672726	0	0.004980	0
Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem									
Navy Cherry	Alternative 1	0.209937	0	0.041674	0	2.836683	0	0	0
Point RC	Alternative 2	0.210980	U	0.041881	U	2.850788	U	U	U
Southeast U.S. Co	ontinental Shelj	f Large Marine	Ecosystem a	ınd Abyssal Zoı	ne				
JAX RC	Alternative 1	2.624418	0.352843	1.841545	0.247589	7.468739	1.004144	0.000000	0.000000
JAX RC	Alternative 2	2.641308	0.352843	1.853396	0.247589	7.516804	1.004144	0.000000	0.000000
Southeast U.S. Co	ontinental Shelj	f Large Marine	Ecosystem						
SFOMF	Alternative 1	0.934114	0	0.008884	0	0.263547		0.000032	0
3FOIVIF	Alternative 2	0.954114	U	0.008884	O	0.205547		0.000032	U
Caribbean and G	ulf of Mexico L	arge Marine Ed	osystems						
Key West RC	Alternative 1	0.773768	0	0.253660	0	2.439023	0	0.228021	0
key west kc	Alternative 2	0.773708	U	0.233000	0	2.439023	0	0.228021	U
Gulf of Mexico Lo	arge Marine Eco	osystem							
GOMEX RC	Alternative 1	0.366057	0.150862	0.423478	0.174527	6.982745	2.877781	0.000120	0.000050
GOIVILA NC	Alternative 2	0.300037	0.130802	0.423478	0.174327	0.362743	2.877781	0.000120	0.000030
NSWC Panama	Alternative 1	0.345426	0.424939	0.648994	0.798385	4.323641	5.318893		0.000075
City Testing Range	Alternative 2	0.345833	0.481438	0.649759	0.904537	4.328734	6.026086	0.000061	0.000085

Note: ac=acre; GOMEX=Gulf of Mexico; JAX=Jacksonville; MEM = Military Expended Materials; NSWC=Naval Surface Warfare Center;

NUWC=Naval Undersea Warfare Center; Other AFTT Area = Location outside east coast Range Complexes and other defined areas;

RC=Range Complex; SINKEX = Sinking Exercise

Table F-34: Proportional Impact to Bottom Habitat from Training Activities Under Alternatives 1 and 2 over Five Years

				Impact to Ir	ntermediate			Impact to	Unknown	
		Impact to H	ard Bottom	Bot	tom	Impact to S	oft Bottom	Bot	tom	
		MEM	Explosive	MEM	Explosive	MEM	Explosive	MEM	Explosive	
		Footprint	Footprint	Footprint	Footprint	Footprint	Footprint	Footprint	Footprint	
Training	Areas	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	
Northeast U.S. Co	Northeast U.S. Continental Shelf Large Marine Ecosystem and Abyssal Zone									
Northeast RC	Alternative 1	0.226561	0	0.571032	0	2.872069	0	0.000285	0	
Northeast NC	Alternative 2	0.226614	U	0.571166	O	2.872740	U	0.000285	U	
VACAPES RC	Alternative 1	2.987384	0.874833	10.002798	2.929244	118.819124	34.795292	0	0	
VACAPES NC	Alternative 2	2.989241	0.875280	10.009017	2.930742	118.893003	34.813086	0	U	
Northeast U.S. Co	ontinental Shelf I	Large Marine E	cosystem							
Lower	Alternative 1	0	0	0.000021	0.002209	0.003590	0.003590	0	0	
Chesapeake Bay	Alternative 2	U	U	0.000021	0.002209	0.003390	0.003590	U	U	
Northeast and So	utheast U.S. Cor	ntinental Shelf	Large Marine	Ecosystem						
Navy Cherry	Alternative 1	3.674852	0.083875	0.729485	0.016650	49.654945	4 422227	0	0	
Point RC	Alternative 2	3.680700	0.083875	0.730646	0.016650	49.733967	1.133327	0	0	
Southeast U.S. Co	ontinental Shelf I	Large Marine E	cosystem and	d Abyssal Zone	2					
IAV DC	Alternative 1	24.797111	0.320599	17.400046	0.224963	70.569223	0.912381	0	0	
JAX RC	Alternative 2	24.897412	0.326244	17.470427	0.228924	70.854668	0.928447	0	0	
Caribbean and G	ulf of Mexico Lar	ge Marine Eco	systems							
Karr Maat DC	Alternative 1	4 4 4 3 0 7 0	0.353446	1 240662	0.002006	12.067020	0.700005	1 212244	0.074600	
Key West RC	Alternative 2	4.113978	0.253446	1.348663	0.083086	12.967828	0.798895	1.212344	0.074688	
Gulf of Mexico La	rge Marine Ecos	ystem								
COMEY DC	Alternative 1	0.506272	0.081883	0.585687	0.094728	9.657419	1.561971	0.000166	0.000027	
GOMEX RC	Alternative 2	0.541915	0.083090	0.626921	0.096124	10.337320	1.584993	0.000178	0.000027	
Abyssal Zone										
Other AFTT	Alternative 1	0	0	0	0	0.227004	0	2.001546	0	
Other AFTT	Alternative 2] "		0	0	0.237804	0	3.801546		
CINICEY Area	Alternative 1	0	0	0	0	FO 922465	222465	22.041.662		
SINKEX Area	Alternative 2	0	0	0	0	50.823465	0	22.041663	0	

Note: ac=acre; GOMEX=Gulf of Mexico; JAX=Jacksonville; MEM = Military Expended Materials; NSWC=Naval Surface Warfare Center; NUWC=Naval Undersea Warfare Center; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; RC=Range Complex; SINKEX = Sinking Exercise

Table F-35: Proportional Impact to Bottom Habitat from Testing Activities Under Alternatives 1 and 2 over Five Years

		Impact to F	lard Bottom	-	Intermediate ettom	Impact to S	oft Bottom	•	Unknown tom
		MEM Footprint	Explosive Footprint	MEM Footprint	Explosive Footprint	MEM Footprint	Explosive Footprint	MEM Footprint	Explosive Footprint
Training		(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)
Northeast U.S. Co	ontinental Shelf Lo		osystem and /		•	T		T	
Northeast RC	Alternative 1	3.706831	0	9.342822	0	46.990735	0	0.004659	0
1401theast No	Alternative 2	3.755942	Ŭ	9.466600	Ŭ	47.613293	Ŭ	0.004721	
VACAPES RC	Alternative 1	2.790877	0.314158	9.344825	1.051910	111.003336	12.495209	0	0
VACAPES NC	Alternative 2	2.820258	0.430971	9.443200	1.443041	112.171899	17.141291	U	U
Northeast U.S. Co	ontinental Shelf Lo	arge Marine Ed	osystem						
NUWC Newport	Alternative 1	0.000056	0	0.750063	0	2.262620	0	0.024002	0
Testing Range	Alternative 2	0.089956	0	0.758862	0	3.363629	0	0.024902	0
Northeast and So	Northeast and Southeast U.S. Continental Shelf Large Marine Ecosystem								
Navy Cherry	Alternative 1	1.046931		0.207824		14.146236			
Point RC	, ,	1.054902	0	0.209406	0	14.253939	0	0	0
Southeast U.S. Co	ontinental Shelf La	arge Marine Ed	osystem and A	byssal Zone					
	Alternative 1	12.998343		9.120892		36.991525			0
JAX RC	Alternative 2	13.206538	1.764216	9.266982	1.237944	37.584022	5.020720	0	
Southeast U.S. Co	ontinental Shelf La	arge Marine Ec	osystem			,	l .	,	
	Alternative 1	I							
SFOMF	Alternative 2	4.670572	0	0.044422	0	1.317736	0	0.000160	0
Caribbean and G	ulf of Mexico Larg	e Marine Ecos	ystems						
	Alternative 1	3.851870		1.262737		12.141628		1.135104	
Key West RC	Alternative 2	3.868838	0	1.268300	0	12.195114	0	1.140104	0
Gulf of Mexico Lo	arge Marine Ecosy	stem							
	Alternative 1	1.817717		2.102848		34.673953		0.000598	
GOMEX RC	Alternative 2	1.830287	0.754311	2.117389	0.872634167	34.913723	14.388903	0.000602	0.000248
NSWC Panama	Alternative 1	1.726857	2.106805	3.244461	3.958317	21.614811	26.370563	0.000307	0.000374
City Testing Range	Alternative 2	1.729163	2.407190	3.248793	4.522687	21.643669	30.130432	0.000307	0.000427

Note: ac=acre; GOMEX=Gulf of Mexico; JAX=Jacksonville; MEM = Military Expended Materials; NSWC=Naval Surface Warfare Center; NUWC=Naval Undersea Warfare Center; Other AFTT Area = Location outside east coast Range Complexes and other defined areas; RC=Range Complex; SINKEX = Sinking Exercise

Blue shading indicated numbers and impacts of MEM that differ between Alternatives 1 and 2

F.3 STATISTICAL AND PROBABILITY ANALYSIS FOR ESTIMATING DIRECT STRIKE IMPACT AND NUMBER OF POTENTIAL EXPOSURES FROM MILITARY EXPENDED MATERIALS

This section discusses the methods and results for calculating the probability of a direct strike of an animal from any military items from the proposed training and testing activities falling toward (or directed at) the sea surface. For the purposes of this section, military items include non-explosive practice munitions, sonobuoys, acoustic countermeasures, targets, and high-energy lasers. Only marine mammals and sea turtles will be analyzed using these methods because animal densities are necessary to complete the calculations, and density estimates are currently only available for marine mammals and sea turtles within the Study Area. The analysis conducted here does not account for explosive munitions because impacts from explosives are analyzed within the Navy Acoustic Effects Model as described in the Quantifying Acoustic Impacts on Marine Mammals and Sea Turtles: Methods and Analytical Approach for Phase III Training and Testing (U.S. Department of the Navy, 2017).

F.3.1 DIRECT IMPACT ANALYSIS

A probability was calculated to estimate the impact probability (P) and number of exposures (T) associated with direct impact of military items on marine animals on the sea surface within the specified training or testing area (R) in which the activities are occurring. The statistical probability analysis is based on probability theory and modified Venn diagrams with rectangular "footprint" areas for the individual animal (A) and total impact (I) inscribed inside the training or testing area (R). The analysis is over-predictive and conservative, in that it assumes: (1) that all animals would be at or near the surface 100 percent of the time, when in fact, marine mammals spend the majority of their time underwater, and (2) that the animals are stationary, which does not account for any movement or any potential avoidance of the training or testing activity.

- 1. A = length*width, where the individual animal's width (breadth) is assumed to be 20 percent of its length for marine mammals and 112 percent of its length for sea turtles. This product for A is multiplied by the number of animals Na in the specified training or testing area (i.e., product of the highest average month animal density [D] and training or testing area [R]: Na = D*R) to obtain the total animal footprint area (A*Na = A*D*R) in the training or testing area. As a conservative scenario, the total animal footprint area is calculated for the species with the highest average month density in the training or testing area with the highest use of military items within the entire Study Area.
- 2. I = Nmun*length*diameter, where Nmun = total annual number of military items for each type, and "length" and "diameter" refer to the individual military equipment dimensions. For each type, the individual impact footprint area is multiplied by the total annual number of military items to obtain the type-specific impact footprint area (I = Nmun*length*diameter). Each training or testing activity uses one or more different types of military items, each with a specific number and dimensions, and several training and testing activities occur in a given year. When integrating over the number of military items types for the given activity, and then over the number of activities in a year, these calculations are repeated (accounting for differences in dimensions and numbers) for all military items types used, to obtain the type-specific impact footprint area (I). These impact footprint areas are summed over all military items types for the given activity, and then summed (integrated) over all activities to obtain the total impact footprint area resulting from all activities occurring in the training or testing area in a given year. As a conservative scenario, the total impact footprint area is calculated for the training or testing area with the highest use of military items within the entire Study Area.

Though marine mammals and sea turtles may not be randomly distributed in the environment, a random point calculation was chosen due to the intensive data needs that would be required for a calculation that incorporated more detailed information on an animal's or military item's spatial occurrence.

The analysis is expected to provide an overestimation of the probability of a strike for the following reasons: (1) it calculates the probability of a single military item (of all the items expended over the course of the year) hitting a single animal at its species' highest seasonal density, (2) it does not take into account the possibility that an animal may avoid military activities, (3) it does not take into account the possibility that an animal may not be at the water surface, (4) it does not take into account that most projectiles fired during training and testing activities are fired at targets, and so only a very small portion of those projectiles that miss the target would hit the water with their maximum velocity and force, and (5) it does not quantitatively take into account the Navy avoiding animals that are sighted

through the implementation of mitigation measures (for consideration of mitigation during analysis see Sections 3.7.3.4 [Marine Mammals] and 3.8.3.4 [Reptiles]).

The likelihood of an impact is calculated as the probability (P) that the animal footprint (A) and the impact footprint (I) will intersect within the training or testing area (R). This is calculated as the area ratio A/R or I/R, respectively. Note that A (referring to an **individual** animal footprint) and I (referring to the impact footprint resulting from the **total** number of military items N_{mun}) are the relevant quantities used in the following calculations of single-animal impact probability [P], which is then multiplied by the number of animals to obtain the number of exposures (T). The probability that the random point in the training or testing area is within both types of footprints (i.e., A and I) depends on the degree of overlap of A and I. The probability that I overlaps A is calculated by adding a buffer distance around A based on one-half of the impact area (i.e., 0.5*I), such that an impact (center) occurring anywhere within the combined (overlapping) area would impact the animal. Thus, if L_i and W_i are the length and width of the impact footprint such that $L_i*W_i = 0.5*I$ and $W_i/L_i = L_a/W_a$ (i.e., similar geometry between the animal footprint and impact footprint), and if L_a and W_a are the length and width (breadth) of the individual animal such that $L_a*W_a = A$ (= individual animal footprint area), then, assuming a purely static, rectangular scenario (Scenario 1), the total area $A_{tot} = (L_a + 2*L_i)*(W_a + 2*W_i)$, and the buffer area $A_{buffer} = A_{tot} - L_a*W_a$.

Four scenarios were examined with respect to defining and setting up the overlapping combined areas of A and I:

- Scenario 1: Purely static, rectangular scenario. Impact is assumed to be static (i.e., direct impact effects only; non-dynamic; no explosions or scattering of military items after the initial impact). Hence the impact footprint area (I) is assumed to be rectangular and given by the product of military items length and width (multiplied by the number of military items). Atot = (La + 2*Li)*(Wa + 2*Wi) and Abuffer = Atot La*Wa.
- 2. Scenario 2: Dynamic scenario with end-on collision, in which the length of the impact footprint (Li) is enhanced by Rn = 5 military items lengths to reflect forward momentum. $A_{tot} = (L_a + (1 + R_n)^*L_i)^*(W_a + 2^*W_i)$ and $A_{buffer} = A_{tot} L_a^*W_a$.
- 3. Scenario 3: Dynamic scenario with broadside collision, in which the width of the impact footprint (W_i) is enhanced by $R_n = 5$ military items lengths to reflect forward momentum. $A_{tot} = (L_a + 2*W_i)*(W_a + (1 + R_n)*L_i)$ and $A_{buffer} = A_{tot} L_a*W_a$.
- 4. Scenario 4: Purely static, radial scenario, in which the rectangular animal and impact footprints are replaced with circular footprints while conserving area. Define the radius (R_a) of the circular individual animal footprint such that $\pi^*R_a^2 = L_a^*W_a$, and define the radius (R_i) of the circular impact footprint such that $\pi^*R_i^2 = 0.5^*L_i^*W_i = 0.5^*I$. Then $A_{tot} = \pi^*(R_a + R_i)^2$ and $A_{buffer} = A_{tot} \pi^*R_a^2$ (where $\pi = 3.1415927$).

Static impacts (Scenarios 1 and 4) assume no additional aerial coverage effects of scattered military items beyond the initial impact. For dynamic impacts (Scenarios 2 and 3), the distance of any scattered military items must be considered by increasing the length (Scenario 2) or width (Scenario 3), depending on orientation (broadside versus end-on collision), of the impact footprint to account for the forward horizontal momentum of the falling object. Forward momentum typically accounts for five object lengths, resulting in a corresponding increase in impact area. Significantly different values may result from the static and dynamic orientation. Both of these types of collision conditions can be calculated each with 50 percent likelihood (i.e., equal weighting between Scenarios 2 and 3, to average these potentially different values).

Impact probability P is the probability of impacting one animal with the given number, type, and dimensions of all military items used in training or testing activities occurring in the area per year, and is given by the ratio of total area (A_{tot}) to training or testing area (R): $P = A_{tot}/R$. Number of exposures is $T = N^*P = N^*A_{tot}/R$, where N = number of animals in the training or testing area per year (given as the product of the animal density [D] and range size [R]). Thus, $N = D^*R$ and hence $T = N^*P = N^*A_{tot}/R = D^*A_{tot}$. Using this procedure, P and T were calculated for each of the four scenarios, for Endangered Species Act (ESA)-listed marine mammals and the marine mammal and sea turtle species with the highest average month density (used as the annual density value) and for each military item type. The scenario-specific P and T values were averaged over the four scenarios (using equal weighting) to obtain a single scenario -averaged annual estimate of P and T. The potential numbers of exposures (T) are reported in Table F-36 through Table F-39.

F.3.2 PARAMETERS FOR ANALYSIS

Impact probabilities (P) and number of exposures (T) were estimated by the analysis for the following parameters:

- 1. Two action alternatives: Alternative 1 and Alternative 2. Animal densities, animal dimensions, and military item dimensions are the same for the two action alternatives.
- 2. Two training or testing areas: Virginia Capes (VACAPES) and Jacksonville (JAX) Range Complexes. Areas are approximately 28,000 square nautical miles (NM²) and 50,000 NM², respectively. These two training and testing areas were chosen because they constitute the areas with the highest estimated numbers and concentrations of military expended materials for both alternatives, and would, thus, provide a reasonable comparison for all other areas with fewer expended materials.
- 3. The following types of non-explosive munitions or other items:
 - Small-caliber projectiles: up to and including .50 caliber rounds
 - **Medium-caliber projectiles:** larger than .50 caliber rounds but smaller than 57 millimeters (mm) projectiles
 - Large-caliber projectiles: includes projectiles greater than or equal to a 57 mm projectile
 - Missiles: includes rockets and jet-propelled munitions
 - Bombs: Non-explosive practice bombs and mine shapes, ranging from 10 to 2,000 lbs
 - Torpedoes: includes all lightweight torpedoes
 - **Sonobuoys:** includes all sonobuoys
 - Targets: includes expended airborne and surface, as well as mine shapes
 - **Lightweight torpedo accessories:** includes all accessories that are dropped along with the torpedo (nose cap, air stabilizer, etc.)
 - Anchors: includes blocks used to anchor mine shapes to the seafloor
 - Acoustic countermeasures: includes aircraft deployed acoustic countermeasures
 - High Energy Lasers: includes high energy laser weapons that are directed at a surface target
 - Expended Bathythermographs: small sensor deployed from ships
- 4. Animal species of interest: The six species of Endangered Species Act (ESA)-listed marine mammals and the non-ESA listed marine mammal species with the highest average month

density in the training and testing areas of interest. The sea turtle species with the highest average month density in the training and testing areas of interest.

F.3.3 INPUT DATA

Input data for the direct strike analysis include animal species likely to be in the area and military items proposed for use under each of the two action alternatives. Animal species data include: (1) species identification and status (i.e., threatened, endangered, or neither), (2) highest average month density estimate each species of interest, and (3) adult animal dimensions (length and width) for the species with the highest density. The animal's dimensions are used to calculate individual animal footprint areas (A = length*width), and animal densities are used to calculate the number of exposures (T) from the impact probability (P): T = N*P. Military items data include: (1) military items category (e.g., projectile, bomb, rocket, target), (2) military items dimensions (length and width), and (3) total number of military items used annually.

Military items input data, specifically the quantity (e.g., numbers of bombs, and rockets), are different in magnitude between the two action alternatives. All animal species input data, the military items identification and category, and military items dimensions are the same for the two alternatives, only the quantities (i.e., total number of military items) are different.

F.3.4 OUTPUT DATA

Estimates of impact probability (P) and number of exposures (T) for a given species of interest were made for the specified training or testing area with the highest annual number of military items used for each of the two action alternatives. The calculations derived P and T from the highest annual number of military items used in the Study Area for the given alternative. Differences in P and T between the alternatives arise from different numbers of events (and therefore military items) for the two alternatives.

Results for marine mammals and sea turtles are presented in Tables F-36 through F-39.

Table F-36: Estimated Representative Marine Mammal Exposures from Direct Strike of a High Energy Laser by Area and Alternative in a Single Year

Northeast United States Contin	ental Shelf Large	Marine Ecosystem	and Gulf Stream O	pen Ocean Area					
VACAPES Range Complex									
	Tra	ining	Test	ting					
Species	Alternative 1	Alternative 2	Alternative 1	Alternative 2					
North Atlantic Right Whale	0.000000	0.000000	0.000000	0.000000					
Sei Whale	0.000000	0.000000	0.000001	0.000001					
Fin Whale	0.000001	0.000001	0.000005	0.000005					
Blue Whale	0.000000	0.000000	0.000000	0.000000					
Sperm Whale	0.000002	0.000002	0.000010	0.000010					
Short Beaked Common	0.000007	0.000007	0.000140	0.000140					

Note: VACAPES=Virginia Capes

Table F-37: Estimated Representative Sea Turtle Exposures from Direct Strike of a High Energy Laser by Area and Alternative in a Single Year

Northeast United States Continental Shelf Large Marine Ecosystem and Gulf Stream Open Ocean Area						
VACAPES Range Complex						
	Tra	ining	Testing			
Species	Alternative 1	Alternative 2	Alternative 1	Alternative 2		
Loggerhead Sea Turtle	0.000008	0.000008	0.000136	0.000136		

Note: VACAPES=Virginia Capes

Table F-38: Estimated Representative Marine Mammal Exposures from Direct Strike of Military Expended Materials by Area and Alternative in a Single Year

Northeast United States Con	tinental Shelf Large M	larine Ecosystem a	ınd Gulf Stream O _l	oen Ocean Area				
VACAPES Range Complex								
Species -	Trainii	ng	Testing					
Species	Alternative 1	Alternative 2	Alternative 1	Alternative 2				
North Atlantic Right Whale	0.000071	0.000071	0.000032	0.000032				
Sei Whale	0.000295	0.000295	0.000132	0.000132				
Fin Whale	0.001450	0.001450	0.000655	0.000655				
Blue Whale	0.000003	0.000003	0.000001	0.000001				
Sperm Whale	0.003516	0.003517	0.001581	0.001581				
Short Beaked Common Dolphin	0.079457	0.079474	0.035275	0.035275				
Southeast United States Cont	tinental Shelf Large M	larine Ecosystem a	ınd Gulf Stream O _l	pen Ocean Area				
	JAX Rang	e Complex						
Species	Traini	ng	Testing					
Species	Alternative 1	Alternative 2	Alternative 1	Alternative 2				
North Atlantic Right Whale	0.000217	0.000022	0.000543	0.000544				
Sei Whale	0.000015	0.000015	0.000039	0.000039				
Fin Whale	0.000016	0.000016	0.000040	0.000041				
Blue Whale	0.000001	0.000001	0.000003	0.000003				
Sperm Whale	0.000051	0.000051	0.000126	0.000127				
Atlantic Spotted Dolphin	0.007223	0.007231	0.018350	0.018362				

Note: JAX=Jacksonville; VACAPES=Virginia Capes

Table F-39: Estimated Representative Sea Turtle Exposures from Direct Strike of Military Expended Materials by Area and Alternative in a Single Year

Northeast United States Continental Shelf Large Marine Ecosystem and Gulf Stream Open Ocean Area							
VACAPES Range Complex							
	Training Testing						
Species	Alternative 1	Alternative 2	Alternative 1	Alternative 2			
Loggerhead Sea Turtle	0.075879	0.075895	0.033703	0.033712			
Southeast United States	s Continental Shelf Larg	e Marine Ecosystem	and Gulf Stream Օլ	oen Ocean Area			
	JAX R	ange Complex					
Species	Train	ing	Testing				
Species	Alternative 1	Alternative 2	Alternative 1	Alternative 2			
Loggerhead Sea Turtle	0.025516	0.025545	0.064775	0.064818			

Note: JAX=Jacksonville; VACAPES=Virginia Capes

F.4 POISSON PROBABILITY OF DIRECT VESSEL STRIKE WITH MARINE MAMMALS

In order to assess the probability of a Navy vessel striking a marine mammal during future training and testing activities, the Navy considered data on vessel usage within the Study Area (steaming days) and past ship strike records from the time period beginning in 2009. The Navy determined that data beginning in 2009 would be the most representative for predicting the potential for future vessel strikes, because this year coincided with when the Navy's mitigation, monitoring, and reporting requirements became standardized across the Fleets with the issuance of Marine Mammal Protection Act (MMPA) permits for sonar and explosive usage in at-sea Navy ranges.

Between 2007 and 2009, the Navy developed and distributed additional training, mitigation, and reporting tools to Navy operators to improve marine mammal protection and to ensure compliance with upcoming permit requirements. In 2007, the Navy implemented the Marine Species Awareness Training, which is designed to improve the effectiveness of visual observations for marine resources, including marine mammals and sea turtles. In subsequent years, the Navy issued refined policy guidance regarding marine mammal incidents (e.g., ship strikes) in order to collect the most accurate and detailed data possible in response to a possible incident. For over a decade, the Navy has implemented the Protective Measures Assessment Protocol software tool, which provides operators with notification of the required mitigation and a visual display of the planned training or testing activity location overlaid with relevant environmental data (see Chapter 5.1 for more detail).

Similar mitigation, reporting and monitoring requirements have been in place since 2009 and are expected to continue into the future. Therefore, the conditions affecting the potential for ship strikes are the most consistent across this time frame. As a result, data from the past eight years (i.e., 2009 to 2016) are used to calculate the probability of a Navy vessel striking a whale during proposed training and testing activities in the Study Area. The level of vessel use and the manner in which the Navy trains and tests in the future is expected to be consistent with this time period.

In the AFTT Study Area, there were a total of three reported Navy vessel whale strikes from 2009-2016. During this same time period there were a total of 39,040 steaming days of vessel use within the Study Area. Therefore, there was an average strike rate of 0.00008 strikes per steaming day. Based on the annual average from 2009-2016, the Navy estimates that 34,160 steaming days will occur between 2017 and 2023, extending through the end of the anticipated MMPA authorization. These values were used to determine the rate parameters to calculate a series of Poisson probabilities (a Poisson distribution is often used to describe random occurrences when the probability of an occurrence is small, e.g., count

data such as cetacean sighting data, or in this case strike data, are often described as a Poisson or overdispersed Poisson distribution). In modeling strikes as a Poisson process, we assume this strike rate for the future and we use the Poisson distribution to estimate the number of strikes over a defined time period in the future:

$$P\left\langle n\,\middle|\,\mu\right\rangle = \frac{e^{-\mu}\bullet\mu^n}{n!}$$

 $P(n|\mu)$ is the probability of observing n events in some time interval, when the expected number of events in that time interval is u. As stated previously, the Navy estimates that 34,160 steaming days could occur during this period (2017-2023); given a strike rate of 0.00008 strikes per steaming day the expected number of strikes over the period 2017-2023 equals 2.63 strikes. To estimate zero occurrences (in this case, no whales being struck), the formula $P(0)=e^{-\mu}$ would apply. Assuming the estimated number of strikes over the next 7 years, the equation yields a value of P(0)=0.0721. The resulting probabilities of one through five strikes over the next 7 years covering through the end of the anticipated MMPA authorization are:

- 1. $P(1) = (0.0721 * 2.63^1)/1 = 0.190$ (or a 19 percent probability of striking one whale in the 7 year period from 2017-2023)
- 2. $P(2) = (0.0721\ 069 * 2.63^2)/2 = 0.250$ (or a 25 percent probability of striking two whales in the 7 year period from 2017-2023)
- 3. $P(3) = (0.0721 * 2.63^3)/6 = 0.218$ (or a 22 percent probability of striking three whales in the 7 year period from 2017-2023)
- 4. $P(4) = (0.0721 * 2.63^4)/24 = 0.143$ (or a 14 percent probability of striking four whales in the 7 year period from 2017-2023)
- 5. $P(5) = (0.0721 * 2.63^5)/120 = 0.075$ (or an 8 percent probability of striking five whales in the 7 year period from 2017-2023)

References

- U.S. Department of the Navy. (2016). Building and Maintaining a Comprehensive Database and Prioritization Scheme for Overlapping Habitat Data.
- U.S. Department of the Navy (2017). Quantifying Acoustic Impacts on Marine Mammals and Sea Turtles:

 Methods and Analytical Approach for Phase III Training and Testing. Technical report prepared
 by Space and Naval Warfare Systems Center Pacific, San Diego and Naval Undersea Warfare
 Center, Division Newport.

Atlantic Fleet	
Training and Testing Draft EIS/OE	ľ

June 2017

APPENDIX G Federal Register Notices

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing Activities

TABLE OF CONTENTS

APPENDIX G	FEDERAL REGISTER NOTICES	G-1
	List of Figures	
This section does	not contain figures.	
	List of Tables	
This section does	not contain tables.	

APPENDIX G FEDERAL REGISTER NOTICES

Federal Register/Vol. 80, No. 218/Thursday, November 12, 2015/Notices

69951

(c) An amicus curiae brief submitted before the Court's consideration of a petition for grant of review, petition for extraordinary relief, writ-appeal petition, or petition for new trial may be filed under subparagraphs (a)(1) or (a)(2), or if the Court grants leave to file under subparagraph (a)(3) of this rule. (d) Unless otherwise ordered by the Court, a brief of an amicus curiae in

(d) Unless otherwise ordered by the Court, a brief of an amicus curiae in support of a party shall be filed no later than 10 days after that party has filed its brief, supplement to the petition for grant of review, petition for extraordinary relief, writ-appeal petition. or answer. If neither party is supported, the brief of an amicus curiae shall be filed no later than 10 days after the first brief, supplement to the petition for grant of review, petition for extraordinary relief, or writ-appeal petition is filed. In the case of a petition for new trial, the brief of an amicus curiae shall be filed no later than 10 days after the petition has been filed with the Court. Motions for leave to file an amicus curiae shall be filed no later than 10 days after the petition has been filed with the Court. Motions for leave to file an amicus curiae brief itself. Requests for extensions of time to file an amicus curiae brief will not be granted. A party may file a motion under Rule 30 for leave to reply to the brief of an amicus

(e) Neither the hearing nor the disposition of a case will be delayed pending action on a motion for leave to file an amicus curiae brief or a motion of an amicus curiae to participate in a hearing, or to await the filing of a brief of an amicus curiae under this rule.

(f) Except by the Court's permission.

(f) Except by the Court's permission, a brief of an amicus curiae may be in more than one-half the maximum length authorized by Rule 24 for a brief for an appellant/petitioner. If the Court grants a party permission to file a longer brief, that extension does not affect the length of an amicus brief.

of an amicus brief.

[g] A member of the Bar of the Court who represents an amicus curiae and is authorized to file a brief under paragraph (a) of this rule may file a motion for leave to have a law student enter an appearance on behalf of the amicus curiae. To be eligible to participate under this rule, a law student must be acting under the attorney's supervision and the attorney and the law student must substantially comply with the requirements of Rule 13A(b)(1)-(5) and (c)(1)-(11). Argument by a law student granted permission to appear on behalf of an amicus curiae may be requested by motion filed under Rule 30.

Comment: The first part of new paragraph (b) tracks similar language in Supreme Court Rule 37. It advises that "me too" briefs are not favored, and this is generally the view of all appellate courts. The proposal goes on to require that motions for leave to file, as well as the amicus briefs themselves, contain a statement of the movant's interest and explain why the matters asserted in the brief are relevant to the disposition of the case. The proposal operates differently from the practice in the Article III courts of appeal in that even with the consent of the parties, an amicus filer must still ask for leave of the Court to file an amicus curiae brief. In this way, the Court retains the authority to decide all requests to file amicus briefs based on its own determination that the brief will be helpful. It is believed that party consent may not be an adequate filter that ensures that amicus briefs are belpful to the Court. While party consent is not a guarantee that the brief will be accepted. lack of consent is not a guarantee that it will be rejected. Rather, the Court oversees all filings to be sure that amicus participation is warranted. Paragraph (b) also includes a requirement that only members of the Court's Bar or attorneys appearing pro hec vice may file motions for leave to file amicus curiae briefs.

Paragraph (c) proposes a new rule to clarify that motions to file amicus curiae briefs can be filed in support of petitions for grant of review, petitions for extraordinary relief, writ-appeal petitions, petitions for new trial, and answers to such pleadings.

[FR Doc. 2015-28598 Filed 11-10-15; 8:45 am]

DEPARTMENT OF DEFENSE

Department of the Navy

Notice of Intent To Prepare an Environmental Impact Statement/ Overseas Environmental Impact Statement for Navy Atlantic Fleet Training and Testing

AGENCY: Department of the Navy, DoD. ACTION: Notice.

SUMMARY: Pursuant to section 102(2)(c) of the National Environmental Policy Act (NEPA) of 1969, as implemented by the Council on Environmental Quality Regulations (40 Code of Federal Regulations [CFR] Parts 1500–1508), and Executive Order (EO) 12114, the Department of the Navy (Navy) annonnces its intent to prepare an Environmental Impact Statement (EIS)/

Overseas EIS (OEIS) to evaluate the potential environmental effects associated with continuing to conduct military readiness activities, which consist of training activities and research, development, testing, and evaluation (hereinafter referred to as "testing") activities in the Atlantic Fleet Training and Testing (AFTT) Study Area. The Sludy Area consists of sea space in and airspace over the Atlantic Ocean along the eastern coast of North America, portions of the Caribbean Sea, and the Gulf of Mexico. The AFTT Study Area begins seaward from the mean high water line and moves east to the 45 degree longitude line. The Study Area covers approximately 2.6 million square nautical miles of ocean area, including designated Navy operating areas, warning areas, select Navy pierside locations, and associated port transit channels.

In order to both achieve and maintain

In order to both achieve and maintain military readiness, the Navy proposes to:

to:

Conduct training and testing activities at levels required to support Navy military readiness requirements beginning in 2018 into the reasonably foreseeable future; and

 Accommodate evolving mission requirements associated with force structure changes, including those resulting from the development, testing, and ultimate introduction of new platforms (vessels, aircraft, and weapon systems) into the fleet; thereby ensuring

critical Navy requirements are met.
As part of this process the Navy will seek to obtain authorization and permitting, as required under the Marine Mammal Protection Act and Endangered Species Act, respectively.

The Navy invites comments on the scope and content of the EIS/OEIS from all interested parties, Comments may be provided by mail and through the EIS/OEIS Web site at: http://www.AFTTEIS.com. Mailed comments must be postmarked no later than January 16, 2016 and mailed to the address below to ensure they are considered.

FOR FURTHER INFORMATION CONTACT: Lesley Dobbins-Noble. Naval Facilities Engineering Command, Code EV22LDN (AFTT EIS/OEIS Project Manager), 6506 Hampton Boulsvard, Norfolk, Virginia 23508–1278, 703–322–4625.

SUPPLEMENTARY INFORMATION: The Navy's lead action proponent is Commander, U.S. Fleet Forces Command. Additional action proponents include Naval Sea Systems Command (NAVSEA), Naval Air Systems Command (NAVAIR), and the Office of Naval Research (ONR). The 69952

Proposed Action is to conduct military readiness activities in the AFTT Study Area. These training and testing activities are generally consistent with those analyzed in the AFTT EIS/OEIS completed in August 2013 and are representative of training and testing that the Navy has been conducting in the AFTT Study Area for docades.

The following range complexes fall within the AFTT Study Area: Northeast Range Complexes. Virginia Capes Range Complex, Navy Cherry Point Range Complex, Jacksonville Range Complex, Key West Range Complex, and Gulf of Mexico Range Complex. The testing ranges in the AFTT Study Area include: Naval Undersea Warfare Center Division Newport, Newport, Rhode Island; Naval Surface Warfare Center (NSWC) Panama City Division, Panama City, Florida: and NSWC Carderock Division South Florida Ocean Measurement Facility, Dania, Florida. While most Navy military readiness activities take place in operating and warning areas in the AFTT Study Area, some activities, such as sonar maintenance and gunnery exercises, are conducted concurrent with normal transits and occur outside of these areas, but still within the Study Area. The pierside testing locations and associated port transit channels are located at the following Navy ports and naval shipyards: Portsmouth Naval Shipyard, Kittery, Maine: Naval Submarine Base New London, Groton, Connecticut; Naval Station Norfolk, Norfolk, Virginia: Joint Expeditionary Base Little Creek-Fort Story, Virginia Beach, Virginia: Naval Submarine Base Kings Bay, Kings Bay, Georgia; Naval Station Mayport, Jacksonville. Florida; Norfolk Naval Shipyard, Portsmouth, Virginia; and Port Canaveral, Cape Canaveral, Florida. Additional AFTT Study Area pierside testing locations and associated port transit channels are located in Bath. Maine: Groton. Connecticut: Newport News, Virginia: and Pascagoula, Mississippi.

Pursuant to 40 CFR 1501.6, the Navy will invite the National Marine Fisheries Service to be a cooperating agency in preparation of the EIS/OEIS.

The purpose of the Proposed Action is to maintain a ready force, which is needed to ensure that the Navy can meet its mission to maintain, train, and equip combat-ready naval forces capable of winning wars, deterring aggression, and maintaining freedom of the seas, as consistent with Congressional direction Section 5062, of Title 10 U.S. Code.

The AFTT Phase III EIS/OEIS will consider a No Action Alternative and action alternatives that account for types and tempo of training and testing activities beginning in 2018 as necessary to meet future readiness requirements. Resource areas that will be addressed

Resource areas that will be addressed include, but are not limited to: Biological resources (including marine manmals and threatened and endangered species), sediments and water quality, air quality, noise, cultural resources, socioeconomic resources, and public health and safety.

The scoping process will be used to identify community concerns and local issues to be addressed in the EIS/OEIS. Federal agencies, state agencies, local agencies, Native American Indian Tribes and Nations, the public, and interested persons are encouraged to identify specific issues or topics of environmental concern that the Navy should consider. Written comments must be postmarked no later than January 12, 2016 to ensure they are considered in the development of the EIS/OEIS and mailed to: Naval Facilities Engineering Command, Atlantic, Code: EV22LDN (AFTT EIS/OEIS Project Manager), 6506 Hampton Boulevard, Norfolk, Virginia, 23508–1278. Comments also can be submitted electronically by January 12, 2016 via the project Web site at http:// www.AFTTEIS.com.

Dated: November 5, 2015.

N.A. Hagerty-Ford,

Commander, Judge Advocate General's Corps. U.S. Navv. Administrative Law Division, Federal Register Liaison Officer. [FR Doc. 2015–28730 Filed 11–10–15; 8:45 am]

BILLING CODE 3810-FF-P

DEPARTMENT OF DEFENSE

Department of the Navy

Notice of Intent To Prepare an Environmental Impact Statement/ Overseas Environmental Impact Statement for Hawaii-Southern California Training and Testing and Notice of Public Scoping Meetings

AGENCY: Department of the Navy, DoD. **ACTION:** Notice.

SUMMARY: Pursuant to section 102(2)(c) of the National Environmental Policy Act (NEPA) of 1969, as implemented by the Council on Environmental Quality Regulations (40 Code of Federal Regulations [CFR] parts 1500–1508), and Executive Order (EO) 12114, the Department of the Navy (Navy) announces its intent to prepare an Environmental Impact Statement (EIS)/Overseas EIS (OEIS) to evaluate the potential environmental effects associated with continuing to conduct military readiness activities, which

consist of training activities and research, development, testing, and evaluation (hereinafter referred to as "testing") activities in the Hawaii-Southern California Training and Testing (HSTT) Study Area. The Study Area consists of the in-water areas of the Southern California (SOCAL) Range Complex (including San Diego Bay): inwater areas of Silver Strand Training Complex (SSTC); the Hawaii Range Complex (HRC); areas on the high seas where training and sonar testing and maintenance may occur during vessel transit between the Hawaii and Southern California Range Complexes: the Temporary Operating Area north and west of the Hawaii Range Complex; and specific Navy pierside, port, and harbor locations

In order to achieve and maintain military readiness, the Navy proposes to:

- to:
 Conduct training and testing activities at levels required to support Navy military readiness requirements beginning in December 2018 into the reasonably foreseeable future; and
- Accommodate evolving mission requirements associated with force structure changes, including those resulting from the development, testing, and ultimate introduction of new platforms (vessels, aircraft, and weapon systems) into the fleet; thereby ensuring critical Navy requirements are mel.

critical Navy requirements are met.
As part of this process the Navy will seek to obtain authorization and permitting, as required under the Marine Mammal Protection Act and Endangered Species Act, respectively.
The Navy invites comments on the

The Navy invites comments on the scope and content of the EIS/OEIS from all interested parties. Comments may be provided by mail and through the EIS/OEIS Web site at: http://www.hstteis.com. Mailed comments must be postmarked no later than January 16, 2016 and mailed to the address below to ensure they are considered.

In addition, the Navy will conduct public scoping meetings to obtain comments on the scope of the EIS/OEIS and to identify specific environmental concerns or topics for consideration in the document.

DATES: Dates and Addresses: Three public scoping meetings will be held on:

- Tuesday, December 1, 2015, 5:00–
 8:00 p.m., Marina Village Conference Center Starboard Room, 1936 Quivira Way, San Diego, CA 92109
 Thursday, December 3, 2015, 5:00–
- Thursday, December 3, 2015, 5:00– 8:00 p.m., Island School Main Hall, 3– 1901 Kaumuali'i Highway Lihue, Kauai, HI 96766
- 3. Saturday, December 5, 2015, 11:00–2:00 p.m., Ke'ehi Lagoon Memorial,

Federal Register/Vol. 80, No. 230/Tuesday, December 1, 2015/Notices

Dated: November 24, 2015.

N.A. Hagerty-Ford,

Commander, Judge Advocate Ceneral's Corps. U.S. Navy, Federal Begister Liaison Officer. [FR Doc. 2015–30494 Filed 11–30–15; 8:45 am] BILLING CODE 3810–FF-P

DEPARTMENT OF DEFENSE

Department of Navy

Notice of Intent To Grant a Partially/Co-Exclusive License; CogniTek Management Systems

AGENCY: Department of the Navy, DoD.

ACTION: Notice.

SUMMARY: The Department of the Navy hereby gives notice of its intent to grant to CogniTek Management Systems located at 3175 Commercial Avenue Suite 102, Northbrook, Illinois 60062, a revocable, nonassignable, partially exclusive license throughout the United States (U.S.) in the fields of use for Spray Cleaning and Disinfecting for food, flavors, paints, inks, and desiccants; Fuel Atomization for Combustion, Power Generation and Fuel Production; Water Atomization and Water Evaporation for Heating, Cooling, Humidification and Dehumidification in Heating, Ventilation, and Air Conditioning and Greenhouse applications, as well as Freeze Drying: and a co-exclusive license throughout the U.S. in the fields of use for Water Desalination and Cleaning Systems for Health Products in the Government-Owned inventions described in U.S. Patent number 5,520,331 issued on May 28, 1996 entitled "Liquid Atomizing Nozzle" and U.S. Patent number 7,523,876 B2 issued on April 28, 2009 entitled "Adjustable Liquid Atomization

ADDRESSES: Written objections are to be filed with the Naval Air Warfare Center Aircraft Division, Technology Transfer Office, Attention Michelle Miedzinski, Code 5.0H, 22347 Cedar Point Road, Building 2185, Room 2160, Patuxent River, Maryland 20670.

DATES: Anyone wishing to object to the grant of this license must file written objections along with supporting evidence, if any, within lifteen (15) days of the date of this published notice.

FOR FURTHER INFORMATION CONTACT: Michelle Miedzinski, 301–342–1133, Naval Air Warfare Center Aircraft Division, 22347 Cedar Point Road, Building 2185, Room 2160, Patuxent River, Maryland 20670.

Authority: 35 U.S.C. 207, 37 CFR part 404.

Dated: November 24, 2015.

N.A. Hagerty-Ford.

Commander, Office of the Judge Advocate General, U.S. Navy, Federal Register Liaison Officer

FR Doc. 2015–30495 Filed 11 30–15; 8:45 am]

DEPARTMENT OF DEFENSE

Department of the Navy

Notice of Intent To Prepare an Environmental Impact Statement/ Overseas Environmental Impact Statement for Navy Atlantic Fleet Training and Testing; Correction

AGENCY: Department of the Navy, DoD.

ACTION: Notice: correction.

SUMMARY: The Department of the Navy published a document in the Federal Register (80 FR 218) on November 12, 2015, announcing a Notice of Intent to prepare an Environmental Impact Statement/Overseas Environmental Impact Statement for Navy Atlantic Fleet Training and Testing. The document contained an incorrect date and phone number.

FOR FURTHER INFORMATION CONTACT: Lesley Dobbins-Noble, Naval Facilities Engineering Command, Code EV22LDN (AFTT EIS/OEIS Project Manager), 6506 Hampton Boulevard, Norfolk, Virginia 23508–1278, 757–322–4625.

Correction: In the Federal Register (80 FR 218) of November 12, 2015, on page 69951, in the third column, correct the mailed comments postmarked date and telephone number to read:

1. January 12. 2016; and 2. 757–322–4625.

Dated: November 24, 2015.

N.A. Hagerty-Ford,

Commander, Judge Advocate General's Corps. U.S. Navy, Administrative Law Division, Federal Begister Liaison Officer.

(FR Doc. 2015-30498 Filed 11-30-15; 8:45 am) BILLING CODE 3810-FF-P

DEPARTMENT OF EDUCATION

[Docket No. ED-2015-ICCD-0112]

Agency Information Collection-Activities; Submission to the Office of Management and Budget for Review and Approval; Comment Request; Data Challenges and Appeals Solution (DCAS)

AGENCY: Federal Student Aid (FSA), Department of Education (ED), ACTION: Notice. SUMMARY: In accordance with the Paperwork Reduction Act of 1995 (44 U.S.C. chapter 3501 et seq.), ED is proposing an extension of an existing information collection.

DATES: Interested persons are invited to submit comments on or before December 31, 2015.

ADDRESSES: To access and review all the documents related to the information collection listed in this notice, please use http://www.regulations.gov.by searching the Docket ID number ED-2015-ICCD-0112. Comments submitted in response to this notice should be submitted electronically through the Federal eRulemaking Portal at http:// www.regulations.gov by selecting the Docket ID number or via postal mail, commercial delivery, or hand delivery Please note that comments submitted by fax or email and those submitted after the comment period will not be accepted. Written requests for information or comments submitted by postal mail or delivery should be addressed to the Director of the Information Collection Clearance Division, U.S. Department of Education, 400 Maryland Avenue SW., LBJ, Room 2E103, Washington, DC 20202-4537.

FOR FURTHER INFORMATION CONTACT: For specific questions related to collection activities, please contact Beth Grebeldinger, 202–377–4018.

SUPPLEMENTARY INFORMATION: The Department of Education (ED), in accordance with the Paperwork Reduction Act of 1995 (PRA) (44 U.S.C. 3506(c)(2)(A)), provides the general public and Federal agencies with an opportunity to comment on proposed. revised, and continuing collections of information. This helps the Department assess the impact of its information collection requirements and minimize the public's reporting burden. It also helps the public understand the Department's information collection requirements and provide the requested data in the desired format. ED is soliciting comments on the proposed information collection request (ICR) that is described below. The Department of Education is especially interested in public comment addressing the following issues: (1) Is this collection necessary to the proper functions of the Department; (2) will this information be processed and used in a timely manner; (3) is the estimate of burden accurate; (4) how might the Department enhance the quality, utility, and clarity of the information to be collected; and (5) how might the Department minimize the burden of this collection on the respondents, including through the use of information technology. Please note

Appendix H Public Comment Responses

1		Draft	
2	Environmental Impact State	ment/Overseas Environmental I	mpact Statement
3	Atlantic Fle	et Training and Testing Activities	s
4		TABLE OF CONTENTS	
5	APPENDIX H PUBLIC COMM	IENT RESPONSES	H-1
6			
7		List of Figures	
8	This section does not contain figures.		
9		List of Tables	
10	This section does not contain tables.		

Atlantic Fleet
Training and Testing Draft EIS/OEIS

APPENDIX H PUBLIC COMMENT RESPONSES

[Placeholder: Public Comments appendix will be provided in the Final EIS, after comments are received on the Public Draft EIS]

APPENDIX I Geographic Information System Data Sources

Draft

Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing

TABLE OF CONTENTS

APPENDIX I GEOGRAPHIC INFORMATION	N SYSTEM DATA SOURCESI-1
	List of Figures
This section does not contain figures.	
	List of Tables
Table I-1: Data Sources by Feature/Layer.	I-1

Atlantic Fleet			
Training and Testing	Draft	EIS	OEIS

Appendix I Geographic Information System Data Sources

Table I-1: Data Sources by Feature/Layer

Feature/Layer	Applicable Figures	Data Source References
	Multiple	Department of the Navy (2016)
AFTT Study Area	Figures (Global)	Navy POC: Jonathan Crain
		Jonathan.crain@navy.mil
Military	Multiple	Department of the Navy (2016)
Training/Range/Operatio	Figures (Global)	Navy POC: David Urbik
n Areas	rigures (Global)	David.urbik@navy.mil
Special Use Airspace	Multiple Figures (Global)	NGA Digital Aeronautical Flight Information File (DAFIF) (2010).
	Multiple	NOAA-Fisheries, US LME Program, Narragansett Laboratory
Large Marine Ecosystems	Figures (Global)	Kenneth.Sherman@NOAA.gov
	rigures (Giobai)	www.lme.noaa.gov
	8.4 July 1	NOAA-Fisheries, US LME Program, Narragansett Laboratory
Open Ocean Areas	Multiple	Kenneth.Sherman@NOAA.gov
	Figures (Global)	www.lme.noaa.gov
		Department of the Navy (2015)
Bay or Inland Water	Multiple Figures (Global)	Navy POC: David Urbik
		David.urbik.ctr@navy.mil
	d Multiple Figures (Global)	Department of the Navy (2015)
Navy Contractor Shipyard		Navy POC: David Urbik
, , , , , , , , , , , , , , , , , , , ,		David.urbik.ctr@navy.mil
	Multiple Figures (Global)	Department of the Navy (2015)
Navy Port or Pierside		Navy POC: David Urbik
Location		David.urbik.ctr@navy.mil
		Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global
Bathymetry and Ocean	3.0-3, 3.0-4, 3.0-5, 3.0-6,	Relief Model: Procedures, Data Sources and Analysis. NOAA
Base Map		Technical Memorandum NESDIS NGDC-24. National Geophysical
		Data Center, NOAA. doi:10.7289/V5C8276M [2017]
		Department of the Navy (2015)
Major Ocean Current	3.0-7	Navy POC: David Urbik
		David.urbik.ctr@navy.mil
		Appendix JNOAA Optimum Interpolation (OI) Sea Surface
	3.0-8	Temperature (SST) V2 (2016).
Sea Surface Temperature		NCEP/NWS/NOAA. Climate Modeling Branch
		W/NP24http://www.esrl.noaa.gov/psd/data/gridded/data.noaa
		.oisst.v2.html#references
Vessel Traffic Density	3.0-10	Mintz 2012.
Ozone, PM2.5, and PM10	3.1-1, 3.1-2,	U.S. Environmental Protection Agency:
Nonattainment/	3.1-3. 3.1-4	Ozone 2014; PM2.5 – 2015; PM 10
Maintenance Areas		Nonattainment/Maintenance Areas – 2013

Table I-1: Data Sources by Feature/Layer (continued)

Table I-1: Data Sources by Feature/Layer (continued)			
Feature/Layer	Applicable Figures	Data Source References	
Sediment Quality	3.2-2, 3.2-3, 3.2-4	(EPA National Aquatic Resource Surveys https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys 2010)	
Water Quality	3.2-6, 3.2-7, 3.2-8	(EPA National Aquatic Resource Surveys https://www.epa.gov/national-aquatic-resource-surveys/data- national-aquatic-resource-surveys 2010)	
Seagrass/Essential Fish Habitat	3.3-2; 3.3-3; 3.3-4	Department of the Navy (2016)	
Johnson's Seagrass Critical Habitat	3.3-1	NOAA, 2000. (USFWS Critical Habitat Portal: https://ecos.fws.gov/ecp/report/table/critical-habitat.html)	
Reef Habitat	3.5-1, 3.5-2, 3.5-3, 3.5-4, 3.5-5, 3.5-6, 3.5-7, 3.5-8	(National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment, the University of Hawaii, BAE Systems Spectral Solutions and Analytical Laboratories of Hawaii, LLC, 2007)	
Bottom Substrate	3.5-1, 3.5-2, 3.5-3, 3.5-4, 3.5-5	(United States Navy 2016)	
Towers (AF and Navy)	3.5-5, 3.5-6, 3.5-8	(United States Navy 2016)	
Oil and Gas platforms	3.5-5, 3.5-6, 3.5-8,	Bureau of Ocean Energy Management (Minerals Management Service) 2006	
Oil and Gas Pipelines	3.11-3	Department of the Navy (2015) Navy POC: Jonathan Crain Jonathan.crain@navy.mil	
Shipwrecks	3.5-5, 3.5-6, 3.5-7, 3.5-8	NOAA Automated Wreck and Obstruction Information System [AWOIS] (2002) Veridian Corporation (2001) National Registry of Historic Places (2016)	
North Atlantic Right Whale Critical Habitat	3.7-3, 5.4-4, 5.4-5	(NOAA Fisheries Greater Atlantic Regional Fisheries Office, 2016)	
Smalltooth Sawfish Critical Habitat	3.6-2	NMFS, Office of Protected Resources, October 2009	
Atlantic Sturgeon Proposed Critical Habitat	3.6-1, 3.6-2	(NOAA NMFS http://sero.nmfs.noaa.gov/maps_gis_data/protected_resources/critical_habitat/geodata/proposed_atlantic_sturgeon_critical_habitat_ln.htm 2016)	
Gulf Sturgeon Critical Habitat	3.6-5	National Coastal Data Development Center, 2003	
Loggerhead Turtle Critical Habitat	3.8-6, 3.8-7, 3.8-8	(NOAA Fisheries http://www.nmfs.noaa.gov/pr/species/turtles/criticalhabitat_log gerhead.htm 2014)	
Hawksbill Turtle Critical Habitat	3.8-5	National Oceanic and Atmospheric Administration National Marine Fisheries Service, 1998	

Table I-1: Data Sources by Feature/Layer (continued)

	Table 1-1. Data Sources by Feature/ Layer (Continued)		
Feature/Layer	Applicable Figures	Data Source References	
Green Turtle Critical Habitat	3.8-4	National Oceanic and Atmospheric Administration National Marine Fisheries Service, 1998	
Leatherback Turtle Critical Habitat	3.8-9	National Oceanic and Atmospheric Administration National Marine Fisheries Service, 1979	
American Crocodile	3.8-10	U.S. Fish and Wildlife Service, 2003	
Piping Plover Critical Habitat	3.9-1; 3.9-2; 3.9-3	U.S. Fish and Wildlife Service, 2009	
NRHP Eligible or Listed Resources/Sovereign Immunity, Shipwrecks	3.10-4, 3.10-5, 3.10-6	(NOAA's Automated Wreck and Obstruction Information System [AWOIS] 2002; Google Earth 2010)	
Bureau of Ocean Energy Management Planning Areas	3.11-1	(Bureau of Ocean Energy Management http://www.boem.gov/Maps-and-GIS-Data/ 2016)	
Commercially Used Waterways	3.11-4	Research and Innovative Technology Administration's Bureau of Transportation Statistics (RITA/BTS) National Transportation Atlas Database (2007). National Waterway Network	
Ports	3.11-4	NGA (2016). World Port Index	
Danger Zones and Restricted Areas	3.11-15, 3.11- 16, 3.11-17	(Title 33-Navigation and Navigable Waters, Chapter II-Corps of Engineers, Department of the Army, Department of Defense, Part 334-Danger Zone and Restricted Area Regulations 2005)	
Fish locations	3.6-1, 3.5-2, 3.6-3, 3.6-4, 3.6-5	Alabama Department of Conservation and Natural Resources, Marine Resources Division (2005) Florida Fish and Wildlife Conservation Commission (2004, 2005) Mississippi Department of Marine Resources (2001, 2004) Gusey (1981) Coastal Outdoors (2001) Delaware Division of Natural Resources and Environmental Control (2005) North Carolina Department of Marine Fisheries (2005) Ocean City Reef Foundation (2005) Virginia Marine Resources Commission (2005) Delaware Division of Fish and Wildlife (2008) Delaware Division of Fish and Wildlife (2002), NOAA (2002) New Jersey Division of Fish and Wildlife (2004) Treasure Expeditions (2004). Source maps (scanned): Freeman and Walford (1974a, 1974b, 1974c) and Screamingreel (2003).	
Biologically Important Areas for Cetaceans	5.4-4, 5.4-5	(National Oceanic and Atmospheric Administration 2015)	
National Marine Sanctuaries	6.1-4, 6.1-5	(NOAA National Marine Sanctuaries, 2004)	
Marine Protected Area	6.1-1. 6.1-2. 6.1-3	(NOAA National Marine Protected Areas Center, 2015)	

Notes: AUTEC = Atlantic Undersea Test and Evaluation Center, EPA = Environmental Protections Agency, MRA = Marine
Resources Assessment, NGA = National Geospatial-Intelligence Agency, NMFS = National Marine Fisheries Service, NOAA
= National Oceanic and Atmospheric Administration, U.S. = United States, OPAREA = Operating Area, VACAPES = Virginia
Capes, HAPC = Habitat Area of Particular Concern, AWOIS = Automated Wreck and Obstruction Information System,
NRHP = National Register of Historic Places, , OCS = Office of Coast Survey

APPENDIX J Agency Correspondence

1		Draft	
2	Environmental Impact Stater	ment/Overseas Environmental Impact Stater	ment
3	Atlantic Flee	et Training and Testing Activities	
4	•	TABLE OF CONTENTS	
5	APPENDIX J AGENCY CORRE	ESPONDENCE	J-1
6			
7		List of Figures	
8	This section does not contain figures.		
9		List of Tables	
10	This section does not contain tables.		

Atlantic Fleet
Training and Testing Draft EIS/OEIS

APPENDIX J AGENCY CORRESPONDENCE

Appendix J contains correspondence between the Navy and federal or state agencies with respect to cooperating agency status.

Atlantic Fleet	
Training and T	esting Draft EIS/OEIS

DEPARTMENT OF THE NAVY OFFICE OF THE CHIEF OF NAVAL OPERATIONS 2000 NAVY PENTAGON WASHINGTON, DC 20350-2000

5090 Ser N45/15U132462 December 18, 2015

Ms. Donna S. Wieting Director, Office of Protected Resources National Marine Fisheries Service 1315 East West Highway Silver Spring, MD 20910

Dear Ms. Wieting:

SUBJECT: COOPERATING AGENCY REQUEST FOR THE ATLANTIC FLEET TRAINING AND TESTING (AFTT) PHASE III ENVIRONMENTAL IMPACT STATEMENT/OVERSEAS ENVIRONMENTAL IMPACT STATEMENT (EIS/OEIS)

In accordance with the National Environmental Policy Act (NEPA) and Executive Order (EO) 12114, the Department of the Navy is initiating the preparation of an EIS/OEIS to evaluate the potential environmental effects associated with the continuation of military readiness activities, which consist of training as well as research, development, testing, and evaluation (RDT&E, hereinafter referred to as "testing") activities that include the use of active sonar and explosives in the AFTT Study Area. The AFTT Study Area includes the western North Atlantic Ocean along the east coast of North America, the lower Chesapeake Bay, portions of the Caribbean Sea, and the Gulf of Mexico. Also included are continued activities at select pier-side testing locations and port access channels.

This AFTT EIS/OEIS represents the third phase (Phase III) of ongoing NEPA and EO 12114 compliance for continuing at-sea training and testing. It will evaluate military readiness activities from November 2018 into the reasonably foreseeable future and accommodate evolving mission requirements associated with force structure changes, including those resulting from the development, testing, and ultimate introduction of new platforms (vessels, aircraft, and weapon systems) into the fleet. This Phase III AFTT EIS/OEIS will also evaluate a No Action Alternative for Navy at-sea training and testing. The existing Marine Mammal Protection Act (MMPA) Final Rule and Letters of Authorization for AFTT will expire in November 2018. This Phase III EIS/OEIS will support further MMPA authorization and consultation requirements under the Endangered Species Act (ESA).

To complete the analysis required by the permitting and consultation processes pursuant to MMPA and ESA in an efficient and effective way, Navy believes that participation by the National Marine Fisheries Service (NMFS) is essential. Therefore, in accordance with the Council on Environmental Quality's (CEQ's) regulations implementing NEPA (specifically 40 CFR § 1501.6) and CEQ's 2002 guidance on cooperating agencies, Navy requests that NMFS participate, as a cooperating agency for the development of the AFTT Phase III EIS/OEIS.

5090 Ser N45/15U132462 December 18, 2015

As the lead agency, Navy will be responsible for overseeing preparation of the EIS/OEIS that will include, but not be limited to, the following:

- Gathering the necessary background information, including the most up-to-date scientific research, and preparing the EIS/OEIS and the necessary permit applications associated with the proposed action;
- Working with NMFS personnel to determine the method of estimating potential effects to protected marine species, including threatened and endangered species;
- Determining the scope of the EIS/OEIS, including the alternatives evaluated;
- Circulating the NEPA document with the public, including any other interested parties;
- Scheduling and supervising meetings held in support of the NEPA process and compiling any comments received from the public; and
- Maintaining an administrative record and responding to any Freedom of Information Act requests relating to the EIS/OEIS.

Navy requests that NMFS, in its role as a cooperating agency, provide support as follows:

- Providing timely comments on working drafts of the EIS/OEIS. Navy requests that comments on draft EIS/OEIS documents be provided in accordance with approved project schedules and commenting protocols;
- Responding to Navy requests for information, in particular related to review of the acoustic effects analysis and evaluation of the effectiveness of protection and mitigation measures;
- Participating, as necessary, in public engagement hosted by the Navy for discussion of issues related to the EIS/OEIS, including public meetings;
- Adhering to the overall schedule as set forth by the Navy in coordination with NMFS:
- Preparing any NMFS-specific documents, such as a Record of Decision, required to support the NMFS decision-making process;
- Maintaining an administrative record and responding to any Freedom of Information Act requests relating to the EIS/OEIS; and
- Providing a formal, written response to this request.

5090 Ser N45/15U132462 December 18, 2015

Navy views NMFS participation as an important element to the successful completion of the environmental planning process for the AFTT Phase III EIS/OEIS.

My point of contact for this action is Ms. Dawn Schroeder, (703) 602-4769, email: dawn.schroeder@navy.mil.

Sincerely

K. H. OHANNESSIAN

Deputy Director,

Energy and Environmental

Readiness Division (OPNAV N45)

Enclosure: 1. Notional schedule for AFTT Phase III EIS/OEIS, MMPA, and ESA

documentation

Copy to:

COMFLTFORCOM (N465) COMPACFLT (N465)

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Silver Spring, MD 20910

OCT 1 3 2016

Admiral Louis Cariello
Director,
Energy and Environmental Readiness Division
Department of the Navy
Office of the Chief of Naval Operations
2000 Navy Pentagon
Washington, DC 20350-2000

Dear Admiral Cariello,

Thank you for your letters requesting that the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NMFS) participate as a cooperating agency in the preparation of an Environmental Impact Statement (EIS)/Overseas Environmental Impact Statement (OEIS) to evaluate potential environmental effects of military readiness activities, which consist of training as well as research, development, testing, and evaluation activities conducted within the Hawaii-Southern California Training and Testing (HSTT) Study Area and the Atlantic Fleet Training and Testing (AFTT) Study Area. We reaffirm our support of the Navy's decision to prepare an EIS/OEIS for HSTT and AFTT and agree to be a cooperating agency, due, in part, to our responsibilities under section 101(a)(5)(A) of the Marine Mammal Protection Act and section 7 of the Endangered Species Act.

In response to your letters, NMFS staff will continue to, to the extent possible, provide support as follows:

- Provide timely comments on working drafts of the EIS/OEIS documents in accordance with approved project schedules and commenting protocols;
- Respond to Navy requests for information, in particular related to review of the acoustic effects analysis and evaluation of the effectiveness of protection and mitigation measures;
- Participate, as necessary, in public engagement hosted by the Navy for discussion of issues related to the EIS/OEIS, including public meetings;
- Adhere to the overall schedules as set forth by the Navy in coordination with NMFS;
- Prepare any NMFS-specific documents, such as a Record of Decision, required to support the NMFS decision-making process; and
- Maintain an administrative record and respond to any Freedom of Information Act requests relating to the EIS/OEIS.

If you need any additional information, please contact Jolie Harrison, NMFS Office of Protected Resources, at $(301)\,427-8401$.

Sincerely,

Donna S. Wieting

Director, Office of Protected Resources

DEPARTMENT OF THE NAVY UNITED STATES FLEET FORCES COMMAND 1562 MITSCHER AVENUE SUITE 250 NORFOLK VA 23551-2487

5090 Ser N46/045 June 16, 2017

Ms. Donna Wieting
Director, Office of Protected Resources
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
1315 East-West Highway
SSMC3, Room 13821
Silver Spring, MD 20910-3282

Subject: REQUEST FOR MARINE MAMMAL PROTECTION ACT INCIDENTAL TAKE AUTHORIZATION AND REGULATIONS FOR U.S. NAVY ATLANTIC FLEET TRAINING AND TESTING ACTIVITIES

Dear Ms. Wieting:

In accordance with the Marine Mammal Protection Act, as amended, and 50 C.F.R. Part 216, the U.S. Navy requests a five-year incidental take authorization and regulations for the incidental taking of marine mammals associated with Atlantic Fleet Training and Testing (AFTT) activities occurring within the Gulf of Mexico and Atlantic Ocean.

The proposed action may incidentally expose marine mammals that reside within the AFTT study area to sound and other environmental stressors associated with training and testing activities. The enclosed request further describes the AFTT activities and study area, and provides the specific information required by the National Marine Fisheries Service (NMFS) for consideration for an incidental take request.

The U.S. Navy also requests that above regulation authorize, and NMFS issue, two five-year Letters of Authorization; one issued to Commander, United States Fleet Forces Command for training activities, and one issued to Commander, Naval Sea Systems Command for testing activities. Addresses for these commands are provided below:

Commander, United States Fleet Forces Command Attn: Code N46 1562 Mitscher Avenue, Suite 250 Norfolk, Virginia 23551-2487

Commander, Naval Sea Systems Command Attn: Code SEA 04R 1333 Isaac Hull Avenue, SE Washington Navy Yard, DC 20376

5090 Ser N46/044 June 16, 2017

We appreciate your continued support in helping the U.S. Navy to meet its environmental responsibilities.

Sincerely,

Elizabeth Nashold

Director, Fleet Installations and Environment

and Deputy Chief of Staff

Enclosure: Request for Regulations and Letter of Authorization for the Incidental Taking of

Marine Mammals Resulting from U.S. Navy Training and Testing Activities in the

AFTT Study Area.

Copy to: Ms. Cathryn E. Tortorici, NMFS Office of Protected Resources

Ms. Jolie Harrison, NMFS Office of Protected Resources

OPNAV (N45) NAVSEASYSCOM NAVAIRSYSCOM

SPAWAR ONR