SS EL FARO Stability and Structures Preliminary Report Summary

Jeffrey W. Stettler, Ph.D., P.E. February 6, 2017

Report Outline

- Introduction
- MSC computer model
- Stability test and uncertainty analysis
- Stability booklet and stability software
- Intact and damage stability
- Hydrostatic sinking analyses
- Ship structures
- Conclusions

MSC GHS Computer Model

MSC GHS Computer Model

Stability Test and Uncertainty Analysis

- Stability test
 - February 12, 2006 (post-conversion)
 - IAW ASTM F1321-92 (2004) guidelines
 - Notes
 - Lightship TCG offset in CargoMax
 - Uncertainty in calculated KG and GM values
- Uncertainty analysis

Revised from Preliminary Report

- As-inclined \rightarrow GM = 18.3 ± 0.2 ft, KG = 26.0 ± 0.5 ft
- Lightship \rightarrow KG = 27.8 \pm 0.7 ft
- Accident voyage \rightarrow KG = 37.3 ± 0.6 ft GM = 4.3 ± 0.7 ft

With 95% confidence

Stability Booklet and Stability Software

- Trim & Stability (T&S) Booklet
 - 2007, revised from the 1993 Booklet
 - Modified to account for LO/LO cargo, variable tank data
 - Notes
 - Minimum required GM curves intact stability criteria only
- CargoMax stability and loading software
 - Approved for stability to supplement the T&S Booklet
 - Notes
 - Slack tank requirements in T&S Booklet
 - Approval for loading and ship strength
 - Approval for cargo loading and securing

Ship Structures

- Overall assessment of ship structures
 - Ship structures met regulatory and classification society (ABS) requirements
 - Based on MSC review of documentation available
- CargoMax strength calculations
 - Difference in results vs. MSC analysis
 - Within ABS allowable bending moment
 - Differences in estimated lightship weight distribution
 - Fixed ballast 34% of lightship

Intact and Damage Stability

- Background
 - Righting arms (GZ), righting energy, GM
- Intact stability criteria
 - GM criteria
 - Righting arm (GZ) criteria
- Intact stability assessment of EL FARO
 - GM criteria [applicable]
 - Righting arm (GZ) criteria [if built in 2016]
- Damage stability
 - Damage stability standards
 - Damage stability assessment of EL FARO

Background: Surface Ship Stability

Righting Arm (GZ) Curve and GM

Righting Arm (GZ) Curves

EL FARO "Benchmark" Loading Conditions

Intact Stability: GM Criteria

Applicable

Intact Stability: GZ Criteria

If built in 2016

Damage Stability

- Damage stability standards
 - SOLAS 1990 (probabilistic)
 - Applicable to EL FARO since 1993 conversion
 - Not completed post-2006 conversion
- MSC analyses
 - SOLAS 1990 [applicable]
 - SOLAS 2009 [if built in 2016*]
- Results:

	Analysis	SOLAS	GHS	Required	Required
		Standard	Version	index (R)	GM (feet)
	ABS (Gruber, 2016)	1990	8.30	0.600	2.9
	MSC	1990	8.50	0.602	3.1
7	MSC	1990	15.00	0.602	3.3
	MSC	2009*	15.00	0.674	5.8

Table 5-3

Damage Stability

Applicable

Hydrostatic Sinking Analyses

- Environmental conditions
- Potential sources of flooding
- Wind heel effect
- Free surface effect
- Permeability and pocketing effects
- Flooding of Hold 3
- Progressive flooding, downflooding
- Combined effects of wind heel and flooding
- Additional considerations
- Capsizing and sinking

Environmental Conditions

Hold 3 Access Scuttle (Starboard)

Emergency Fire Pump Piping

Cargo Hold Ventilation Openings

Cargo Hold Ventilation System

Wind Heel Effect

Flooding - Free Surface Effect

Flooding - Permeability and Pocketing

Frame 143
Hold 3 ventilation supply
Hold 3 flooded to 20%
15 degree heel angle

Flooding of Hold 3

Progressive Flooding, Downflooding

Combined Wind Heel and Flooding (Hold 3)

Combined Wind Heel and Flooding (Hold 3)

Figure 6-21(A)

Combined Wind Heel and Flooding

Capsizing and Sinking

- Key considerations
 - Large free surface effect (full-beam cargo holds)
 - Large beam wind heel (70-90 knot winds)
 - Large beam waves (25-30 foot seas)
- Plausible sequence
 - Hold 3 floods, wind heel (→ 15 degrees)
 - Hold 2A floods through vent openings (→ Holds 2, 1)
 - Loss of stability, partial capsize, port main deck awash
 - Loss of containers on deck (arresting full capsize)
 - Continued flooding through port vent openings
 - Vessel sinks
 - Returns ~upright (fixed ballast)

Key Conclusions

- For accident voyage, met applicable intact and damage stability and strength requirements
 - Operated with minimal stability margin, with limited ballast capacity and available freeboard, leaving little flexibility

Sinking analyses

- Results highly sensitive to free surface, permeability, pocketing, wind speed effects
- Ship vulnerable to progressive flooding through cargo hold ventilation openings
- Unlikely to survive even single-compartment flooding of Hold 3 with combined 70-90 knot winds and 25-30 foot seas

If built in 2016

 As operated, would not meet current intact and damage stability standards

Questions & Answers

