### Figure 9-33 – Steps in K-SPAN construction.

#### 2.1.7 ABM 240

There is another type of K-SPAN building, actually referred to as a Super Span by the manufacturer, the ABM 240. Even though it can use heavier coil stock and is a larger version, the construction of the ABM 240 is the same as that for the ABM 120 (K-SPAN). *Figure 9-34* shows the differences between the two.

# Figure 9-34 – ABM System 120 and 240 comparison chart.

*Figure 9-35* shows the differences in crew size due in large part to the heavier gauge steel required by the ABM 240. Keep in mind that the information provided in this section on the K-SPAN building is basic. During the actual construction of this building, you must consult the manufacturer's complete set of manuals.

| Figure 9-35 – Determining crew size for ABM 240. |
|--------------------------------------------------|
|                                                  |

| Loads |      | Steel Required |               | Maximum Forces<br>in Arch |         | Maximum Arch Reactions per Foot at<br>Foundation |              |           |             |       |           |
|-------|------|----------------|---------------|---------------------------|---------|--------------------------------------------------|--------------|-----------|-------------|-------|-----------|
| Live  | Wind | Thickr<br>Gra  | ness &<br>ade | Axial                     | Moment  | Horiz<br>(L                                      | ontal<br>.b) | Ver<br>(L | tical<br>b) | Momen | t (In-Lb) |
|       |      | Тор            | End           | (Lb)                      | (In-Lb) | +                                                | -            | +         | -           | +     | -         |
| 0     | 50   | .023D          | .023C         | 133                       | -7462   | 135                                              | -47          | 94        | -70         | 805   | -7462     |
| 0     | 60   | .029D          | .023C         | 199                       | -10854  | 201                                              | -74          | 145       | -88         | 1015  | -10854    |
| 0     | 70   | .035D          | .023C         | 280                       | -14868  | 280                                              | -108         | 207       | -106        | 1224  | -14868    |
| 0     | 80   | .045C          | .023C         | 367                       | -19459  | 367                                              | -143         | 273       | -137        | 1576  | -19459    |
| 10    | 50   | .023D          | .023C         | -341                      | 7800    | 252                                              | -252         | 94        | -250        | 7800  | -7794     |
| 10    | 60   | .029D          | .023C         | -360                      | -10854  | 265                                              | -265         | 145       | -268        | 8006  | -10854    |
| 10    | 70   | .035D          | .023C         | -380                      | -14868  | 280                                              | -277         | 207       | -287        | 8209  | -14868    |
| 10    | 80   | .045C          | .023C         | -414                      | -19459  | 367                                              | -298         | 273       | -317        | 8570  | -19459    |
| 20    | 50   | .023D          | .023C         | -649                      | 15212   | 482                                              | -482         | 94        | -467        | 15195 | -15212    |
| 20    | 60   | .029D          | .023C         | -649                      | 15212   | 482                                              | -482         | 145       | -467        | 15195 | -15212    |
| 20    | 70   | .035D          | .023C         | -649                      | 15212   | 482                                              | -482         | 207       | -467        | 15195 | -15212    |
| 20    | 80   | .045C          | .023C         | -680                      | -19459  | 503                                              | -503         | 273       | -597        | 15565 | -19459    |
| 30    | 50   | .045D          | .023C         | -950                      | 22559   | 708                                              | -708         | 43        | -678        | 22559 | -22537    |
| 30    | 60   | .045D          | .023C         | -950                      | 22559   | 708                                              | -708         | 108       | -678        | 22559 | -22537    |
| 30    | 70   | .045D          | .023C         | -950                      | 22559   | 708                                              | -708         | 184       | -678        | 22559 | -22537    |
| 30    | 80   | .045D          | .023C         | -950                      | 22559   | 708                                              | -708         | 273       | -678        | 22559 | -22537    |
| 40    | 50   | _              | —             | _                         | _       | _                                                | —            | _         | _           | _     | _         |
| 40    | 60   | _              | _             | _                         | _       | -                                                | _            | _         | _           | _     | _         |
| 40    | 70   | _              | _             | _                         | _       | -                                                | _            | _         | _           | _     | -         |
| 40    | 80   | _              | _             | _                         | _       | _                                                | _            | _         | _           | _     | _         |

Table 9-6 – Chart for determining crew size for ABM 240.

| Steel Weights (Lb) |      |      |      |      |      |      |  |  |
|--------------------|------|------|------|------|------|------|--|--|
| Thickness (inch)   | .023 | .026 | .029 | .035 | .041 | .045 |  |  |
| Arch weight* (lb)  | 140  | 158  | 176  | 213  | 249  | 274  |  |  |
| End wall weight    | 1590 | 1798 | 2005 | 2420 | 2835 | 3112 |  |  |

#### NOTE

The arch weight shown above can be divided by 50 pounds (22.7 kg) carrying load per person to determine the number of workers required to transport each arch from the curved runout tables to the pre-staging area.

# 2.2.0 Towers and Bunkers

Towers are framework structures designed to provide vertical support. They may be used to support another structure, such as a bridge, or a piece of equipment, such as a communication antenna, or to serve as a lookout post or weapons mount. Since the prime purpose of a tower is to provide vertical support for a load applied at the top, the compression members providing this support are the only ones that require high-structural strength. The rest of the structure is designed to stiffen the vertical members and to prevent bending under load. Primarily, the bracing members are designed to take loads in tension and are based on a series of diagonals. Typical trestle towers used for observation are shown in *Figure 9-36*.

Bunkers are fortified shelters built partly or entirely below ground, with framework designed to provide protection against certain incoming munitions. *Figure 9-37* shows an example of a standard bunker constructed under contingency operations.

# Training for tower and bunker construction is provided by each regiment during their CCCT.



Figure 9-36 – Tower.



# **3.1.1 NATURAL DISASTER RECOVERY OPERATIONS**

In addition to their construction responsibilities, the Seabees are also tasked to help in humanitarian operations, providing disaster control and recovery measures in the event of natural disasters, such as the following:

- Hurricane (Atlantic Region) /Typhoon (Pacific Region)
- Flood/Tsunami
- Earthquake
- Tornado
- Major fires (such as forest fires that imminently endanger populated areas)
- Other disasters which may be decreed as a national emergency by the President of the United States or other officials authorized to declare emergencies and activate a military response

All actions taken by the NCF in response to a natural disaster are dedicated to reduce, prevent, and repair damage. Certain measures can be taken by the NCF to prepare for these types of potential disasters:

- Maintain emergency communication equipment in a state of readiness.
- Identify shelter areas designed to withstand specific types of disasters within those geographical areas that are prone to them.
- Advance stockpiling of critical materials, such as food, water, medicinal supplies, and basic creature comfort items (blankets, soap, emergency clothing, etc.).
- Maintain copies of the local Disaster Preparedness Plan within each department of a unit.
- Maintain an active disaster recovery organization and make sure all personnel are fully aware of what is expected of them. When they are assigned to recovery teams, ensure that training has been accomplished.
- Identify and maintain a listing of CESE and of operators required for each type of disaster response.

Each NCF unit is responsible for disaster control measures to protect its own personnel, equipment, campsites, and jobsites.

The standard organization of an NCF unit makes it a highly effective disaster control and recovery unit. These units must be prepared to give direct assistance to any military installation or civilian community to assist in returning conditions to as near normal as possible after a natural disaster occurs.

# 4.1.1 WAR DAMAGE REPAIR

When naval facilities are damaged by military action, they must be repaired to operational use in the shortest time possible. The United States has a policy of maintaining a forward defense strategy which contributes significantly to allied solidarity. Advanced basing is provided to support any deployed force. The NCF is tasked to establish and man the forward logistics support facilities to ensure sustainability of the operational forces according to the naval maritime strategy. This strategy identifies war damage repair as a critical NCF capability. The list of critical war damage repair capabilities shown below is not all-inclusive. It is only an example of some of the tasks

that may be assigned to the NCF in the event of conflict or attack upon the facilities of the United States or its allies.

- Airfields and operational facilities
- POL pipelines
- Fuel storage areas
- Fleet hospital facilities
- Piers and wharf facilities
- Railroad facilities that support fleet operations
- Communication facilities

OPNAVINST 3501.115C is the required operational capabilities and the projected operational environment (ROC/POE) which describes the major identifiable tasks that the NCF is expected to accomplish. The above listing is only a few of the many items identified by the ROC and POE.

Materials, procedures, and techniques for rapid repair of bomb-damaged airfield runways and taxiways have been under development for several years. The need for such developments has grown because of the substantial increase in the diversity and lethality of both air-launched and surface-launched weapons, capable of inflicting damage on airfield runways and taxiways.

As part of the mobilization planning process of the Navy, the NCF has developed standard units of material, personnel, and equipment to perform specific combat-related functions at advanced naval bases. Advanced base functional component (ABFC) P-36 is the functional component for use in performing rapid runway repair tasks. The ABFC P-36 rapid runway repair component contains the material and equipment required for the repair of bomb craters using specified types of earthmoving and earthworking equipment for crater cleanout, backfilling, grading, and compaction. Traffic surface panels, emplaced over the repaired craters, are fabricated from the following:

- Prefabricated panels of AM-2 matting
- On-site assembled traffic surface panels prepared from prefabricated bolttogether panels
- On-site preparation of fiberglass mats

Typically, ABFC P-36 is provided to an advanced naval airbase located in friendly territory for rapid runway repair. ABFC P-36 is also included with the ABFCs to be deployed with the NCF participating in the seizure, construction, and occupation of an advanced naval airbase in enemy territory.

All U.S. military services have evaluated rapid runway repair extensively. Presently, the U.S. Navy incorporates the methods and standards set forth in *U.S. Air Force Regulation 93-12* (AFR-93-12), which furnishes detailed guidance for rapid runway repair. This regulation lists and defines the use of specific equipment, materials, and manpower requirements necessary to repair a war-damaged runway. Air Force regulations of this type are similar in format and purpose to a U.S. Navy Instruction.

Other than the ABFC Component P-36, other facilities within the ABFC system for rapid repair of airfield support are as follows:

• Facility 121 OOWD – War damage repair kit for aircraft fuel station

- Facility 124 OOWD War damage repair kit for ready-fuel storage
- Facility 125 OOWD War damage repair kit for POL pipeline
- Facility 136 OOWD War damage repair kit for airfield

When the previous facilities are incorporated with the P-36 and P-25 components, it greatly enhances the capability of the NCF to respond to a hostile action scenario directed against the United States or allied air facilities.

# Summary

You have learned the principles involved in the use of the Advanced Base Functional Component system as well as the procedures used in the construction of field structures. In addition, you were provided information about the NCF's role in natural disaster recovery operations and war damage repair. This knowledge will help you provide the leadership necessary for effective Seabees' construction support in these contingency operations.

# **Review Questions (Select the Correct Response)**

- 1. An ABFC system does NOT include which group?
  - A. Component
  - B. Facility
  - C. Assembly
  - D. Supply
- 2. Component Site Plans are contained in what part of the ABFC/TOA system?
  - A. ABFC/TOA Component View
  - B. ABFC/TOA General Data
  - C. Facility/Group Component View
  - D. Facility/Group General Data
- 3. You have the NSN for an assembly that you want to design and need the line item requirements. In this situation, you should refer to what part of the ABFC/TOA system?
  - A. Assembly View
  - B. ABFC/TOA Component View
  - C. Facility/Group Component View
  - D. All of the above
- 4. In NAVFAC P-72, what is the category code for Hospital and Medical?
  - A. 100
  - B. 300
  - C. 500
  - D. 700
- 5. (True or False) An ABFC building can be tailored to meet your specific needs.
  - A. True
  - B. False
- 6. ABFC assemblies required only in the North Temperate Zone are coded with what letter?
  - A. A
  - B. C
  - C. N
  - D. T
- 7. For which use is a K-Span building NOT designed?
  - A. Office space
  - B. Hangar
  - C. Supply building
  - D. Sports arena

- 8. What nomenclature is used to identify the two types of K-Span building machines?
  - A. MIC 120 and MIC 240
  - B. MIC 250 and MIC 260
  - C. MIC 360 and MIC 380
  - D. MIC 400 and MIC 410
- 9. The P-240 panel-forming machine produces what type of units for a K-span building?
  - A. L spans
  - B. Straight panels
  - C. I spans
  - D. Doorframes
- 10. The design of the foundation for a K-Span building does NOT depend on the
  - -
  - A. size of the building
  - B. existing soil conditions
  - C. wind load

\_·

- D. local construction rules
- 11. (True or False) Towers are designed to provide horizontal support.
  - A. True
  - B. False
- 12. Seabees are tasked to help in humanitarian operations, providing disaster control and recovery measures in the event of natural disasters such as \_\_\_\_\_.
  - A. hurricanes, floods, and earthquakes
  - B. floods, tornadoes, and fires
  - C. earthquakes, typhoons, and monsoons
  - D. plagues and volcanic eruptions
- 13. What publication describes the major identifiable tasks that the NCF is expected to accomplish?
  - A. NAVFAC P-72
  - B. NAVFAC P-405
  - C. OPNAVINST 3501.115
  - D. OPNAVINST 3501.118
- 14. Traffic surface panels are fabricated from which material?
  - A. Prefabricated panels of AM-2 matting
  - B. On-site assembled traffic panels
  - C. On-site preparation of fiber glass mats
  - D. All of the above

- 15. The U.S. Navy incorporates the methods and standards contained in *U.S. Air Force Regulation 93-12* (AFR 93-12) for detailed guidance for what type of operations?
  - A. Rapid runway repair
  - B. Bunker installation
  - C. K-span buildings
  - D. Evacuations

# **Additional Resources and References**

This chapter is intended to present thorough resources for task training. The following reference works are suggested for further study. This is optional material for continued education rather than for task training.

Department of the Navy Facility Category Codes, NAVFAC P-72, Naval Facilities Engineering Command, Alexandria, VA, 1981.

*Engineering Aid Intermediate/Advanced*, NAVEDTRA 12540, Naval Education and Training Professional Development and Technology Center, Pensacola, FL, 1994.

*Facilities Planning Guide*, NAVFAC P-437, Naval Facilities Engineering Command, Alexandria, VA, 1991.

*NCF/Seabee 1 & C*, NAVEDTRA 12543, Naval Education and Training Professional Development and Technology Center, Pensacola, FL, 1995.

*Naval Construction Force Manual*, NAVFAC P-315, Naval Facilities Engineering Command, Alexandria, VA, 1988.

Projected Operational Environment and Required Operational Capabilities for the Naval Construction Force, POE/ROC, OPNAVINST 3501.115, Department of the Navy, Washington, DC, 1974.

*Steelworker*, NAVEDTRA 12530, Naval Education and Training Professional Development and Technology Center, Pensacola, FL, 1996.

# **CSFE Nonresident Training Course – User Update**

CSFE makes every effort to keep their manuals up-to-date and free of technical errors. We appreciate your help in this process. If you have an idea for improving this manual, or if you find an error, a typographical mistake, or an inaccuracy in CSFE manuals, please write or email us, using this form or a photocopy. Be sure to include the exact chapter number, topic, detailed description, and correction, if applicable. Your input will be brought to the attention of the Technical Review Committee. Thank you for your assistance.

| Write:        | CSFE N7A<br>3502 Goodspeed St.<br>Port Hueneme, CA 93130 |  |  |  |  |  |  |  |
|---------------|----------------------------------------------------------|--|--|--|--|--|--|--|
| FAX:          | 805/982-5508                                             |  |  |  |  |  |  |  |
| E-mail:       | CSFE_NRTC@navy.mil                                       |  |  |  |  |  |  |  |
| Rate_ Co      | ourse Name_                                              |  |  |  |  |  |  |  |
| Revision Dat  | te_ Chapter Number_ Page Number(s)_                      |  |  |  |  |  |  |  |
| Description   |                                                          |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |
| (Optional) Co | orrection                                                |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |
| (Optional) Yo | our Name and Address                                     |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |
|               |                                                          |  |  |  |  |  |  |  |

# APPENDIX I MATHEMATICS

The purpose of this mathematics appendix is twofold; first, it is a refresher for the Seabees who have encountered a time lapse between his or her schooling in mathematics; second, and more important, this section applies mathematics to the tasks that can not be accomplished without the correct use of mathematical equations.

#### **Linear Measurement**

Measurements are most often made in feet (ft) and inches (in). It is necessary that a Seabee know how to make computations involving feet and inches.

# **Changing Inches to Feet and Inches**

To change inches to feet and inches, divide inches by 12. The quotient will be the number of feet, and the remainder will be inches.

#### **Changing Feet and Inches to Inches**

To change feet and inches to inches, multiply the number of feet by 12 and add the number of inches. The results will be inches.

#### **Changing Inches to Feet in Decimal Form**

To change inches to feet in decimal form, divide the number of inches by 12 and carry the result to the required number of places.

# **Changing Feet to Inches in Decimal Form**

To change feet in decimal form to inches, multiply the number of feet in decimal form by 12.

# Addition of Feet and Inches

A Seabee often finds it necessary to combine or subtract certain dimensions which are given in feet and inches.

Arrange in columns of feet and inches and add separately. If the answer in the inches column is more than 12, change to feet and inches and combine feet.

# Subtraction of Feet and Inches

Arrange in columns with the number to be subtracted below the other number. If the inches in the lower number are greater, borrow 1 foot (12 Inches) from the feet column in the upper number. Subtract as in any other problem.

#### **Multiplication of Feet and Inches**

Arrange in columns. Multiply each column by the required number. If the inches column is greater than 12, change to feet and inches then add to the number of feet.

# **Division of Feet and Inches**

In dividing feet and inches by a given number, the problem should be reduced to inches unless the number of feet will divide by the number evenly.

To divide feet and inches by feet and inches, change to inches or feet (decimals).

#### Angles

When two lines are drawn in different directions from the same point, an angle is formed.

Angles are of four types:

- Right angle is a 90° angle.
- Acute angles are angles less than 90°.
- Obtuse angles are angles greater than 90°, but less than 180°.
- Reflex angle is an angle greater than 180°.

#### **Measurement of Angles**

Observe that two straight lines have been drawn to form four right angles. Refer to *Figure A-1*.

In order to have a way to measure angles, a system of angle-degrees has been established. Assume that each of the four right angles is divided into 90 equal angles. The measure of each is 1 angle degree; therefore, in the four right angles, there are  $4 \times 90^{\circ}$ , or 360 angle degrees. For accurate measurement, degrees have been subdivided into minutes and minutes into seconds.

1 degree= 60 minutes (').

1 minute= 60 seconds (").

Figure A-1 — Right angles.

# Figure A-2 — Relationship of angles.

- 1.  $\angle$ ZOY and  $\angle$ ZOX are supplementary angles and their total measure in degrees is equal to 180°. When one straight line meets another, two supplementary angles are formed. One is the supplement of the other. Refer to *Figure A-2, View 1*.
- 2.  $\angle$ DAC and  $\angle$ CAB are complementary angles and their total is a right angle or 90°. Refer to *Figure A-2, View 2*.

Two angles whose sum is 90° are said to be complementary, and one is the complement of the other.

3.  $\angle$ MOP and  $\angle$ RON are a pair of vertical angles and are equal. Refer to *Figure A-2, View 3.* 

When two straight lines cross, two pairs of vertical angles are formed. Pairs of vertical angles are equal.

# **Bisecting Angles**

To bisect an angle merely means to divide the angle into two equal angles. This may be done by use of a compass.

#### **Perpendicular Lines**

Lines are said to be perpendicular when they form a right angle (90°).

#### **Parallel Lines**

Two lines are said to be parallel if they are equidistant (equally distant) at all points.

Facts about parallel lines:

Two straight lines lying in the same plane either intersect or are parallel.

Through a point there can be only one parallel drawn to a given line.

If two lines are perpendicular to the third, and in the same plane, they are parallel.

#### **Plane Shapes**

A plane shape is a portion of a plane bounded by straight or curved lines or a combination of the two.

The number of different types of plane shapes is infinite, but we are concerned with those which are of importance to you as a Seabee. We will cover the circle, triangle, quadrilateral, other polygons, and ellipses.

#### Circles

Definitions:

A CIRCLE is a closed curved line in which any point on the curved line is equidistant from a point called the center. (Circle O). Refer to *Figure A-3*.

A RADIUS is a line drawn from the center of a circle to a point on a circle. (As OA, OB, OX, and OY). Refer to *Figure A-3.* 

A DIAMETER is a line drawn through the center of a circle with its ends lying on the circle. Refer to *Figure A-3*.

A DIAMETER is twice the length of a radius. (AB is a diameter of circle O) Refer to *Figure A-3*.

A CHORD is a line joining any two points lying on a circle. (CD is a chord of circle O.) Refer to *Figure A-3*.

Figure A-3 — Circle.

An ARC is a portion of the closed curved lines which forms the circle. It is designated by CD. An arc is said to be subtended by a chord. Chord CD subtends arc CD. Refer to *Figure A-3*.

A TANGENT is a straight line which touches the circle at one and only one point. (Line MZ is a tangent to circle O.) Refer to *Figure A-3*.

A CENTRAL ANGLE is an angle whose vertex is the center of a circle and whose side are radii of the circle. (As XOY, YOA, and XOB.) Refer to *Figure A-3*.

CONCENTRIC CIRCLES are circles having the same center and having different radii.

The CIRCUMFERENCE of a circle is the distance around the circle. It is the distance on the curve from C to A to X to Y to B to D and back to C. Refer to *Figure A-3*.

#### Triangles

A triangle is a plane shape having 3 sides. Its name is derived from its three (tri) angles.

- 1. Equilateral all sides are equal, all angles are equal, and all angles are 60°. Refer to *Figure A-4*.
- 2. Isosceles two sides are equal and two angles are equal. Refer to Figure A-4.
- 3. Scalene all sides are unequal and all angles are unequal. Refer to *Figure A-4.*
- 4. Right one right angle is present. Refer to Figure A-4.

# Figure A-4 — Types of triangles.

### Altitudes and Medians

The altitude and median of a triangle are not the same; the difference is pointed out in the following definitions:

- 1. The altitude of a triangle is a line drawn from the vertex, perpendicular to the base. Refer to *Figure A-5, View 1*.
- 2. The median of a triangle is a line drawn from the vertex to the midpoint of the base. Refer to *Figure A-5, View 2*.

Figure A-5 — Altitude and median of a triangle.

# **Construction of Triangles**

There are many ways to construct a triangle, depending upon what measurements are known to you. The following definitions will assist you.

- 1. A triangle may be constructed if the lengths of three sides are known.
- 2. A triangle may be constructed if two sides and the included angle (angle between the sides) are known.
- 3. A triangle may be constructed if two angles and the included side are given.
- 4. A right triangle may be constructed if the two sides adjacent to the right angle are known.
- 5. A right triangle may be constructed by making the sides 3, 4, and 5 inches or multiples or fractions thereof.

#### Quadrilaterals

A quadrilateral is a four-sided plane shape. There are many types, but only the trapezoid, parallelogram, rectangle, and square are described here.

Trapezoid is a quadrilateral having only two sides parallel. If the other two sides are equal, it is an isosceles trapezoid. BF is the altitude of the trapezoid. See *Figure A-6*.

Parallelogram is a quadrilateral having opposite sides parallel. Refer to *Figure A-7*.

- 1. AB is parallel to CD.
- 2. AC is parallel to BD.
- 3. AD and CB are diagonals.
- 4. Diagonals bisect each other so CO = OB and AO = OD.
- 5. Opposite angles are equal. ACD = DBA and CAB = BDC.
- 6. If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.
- 7. A parallelogram may be constructed if two adjoining sides and one angle are known.

Rectangle is a parallelogram having one right angle. Refer to *Figure A-8*.

- 1. ABCD is a parallelogram having one right angle. This, of course, makes all angles right angles.
- 2. AC and BD are diagonals.
- 3. O is the midpoint of AC and BD and OB = OC = OD = OA.
- 4. O is equidistant from BC and AD and is also equidistant from AB and CD.
- 5. A rectangle may be constructed if two adjoining sides are known.

Square is a rectangle having its adjoining sides equal. Refer to *Figure A-9*.

Figure A-6 — Trapezoid.

Figure A-7 — Parallelogram.

- 1. ABCD is a square.
- 2. AC and BD are diagonals.
- 3. O is the geometric center of the square. AO = OC = OB = OD.
- 4. O is equidistant from all sides.
- 5. A square may be constructed if one side is known.

#### Polygons

Figure A-9 — Square.

A polygon is a many-sided plane shape. It is said to be regular if all sides are equal and irregular when they are not. Only regular polygons are described here.

Triangles and quadrilaterals fit the description of a polygon and have been covered previously. Three other types of regular polygons are shown in *Figure A-10*. Each one is inscribed in a circle. This means that all vertices of the polygon lie on the circumference of the circle.

Note that the sides of each of the inscribed polygons are actually equal chords of the circumscribed circle. Since equal chords subtend equal arcs, by dividing the circumference into an equal number of arcs, a regular polygon may be inscribed in a circle. Also note that the central angles are equal because they intercept equal arcs. This gives a basic rule for the construction of regular polygons inscribed in a circle as follows:

To inscribe a regular polygon in a circle, create equal chords of the circle by dividing the circumference into equal arcs or by dividing the circle into equal central angles.

Dividing a circle into a given number of parts has been discussed, so construction should be no problem. Since there are 360 degrees around the center of the circle, you should have no problem in determining the number of degrees to make each equal central angle.

Figure A-10 — Types of polygons.

# **Methods for Constructing Polygons**

The three methods for constructing polygons described here are the pentagon, hexagon, and octagon.

The Pentagon is a developed by dividing the circumference into 5 equal parts.

The Hexagon is developed by dividing the circumference into 6 equal parts.

The Octagon method has been developed by creating central angles of 90° to divide a circle into 4 parts and bisecting each arc to divide the circumference into 8 equal parts.

### Ellipses

An ellipse is a plane shape generated by point P, moving in such a manner that the sum of its distances from two points,  $F_1$  and

 $F_2$ , is constant. Refer to *Figure A-11*.

 $BF_1 + PF_2 = C = (a \text{ constant})$ 

AE is the major axis.

BD is the minor axis.

Figure A-11 — Ellipses.

# **Perimeters and Circumferences**

Perimeter and circumference have the same meaning; that is, the distance around. Generally, circumference is applied to a circular object and perimeter to an object bounded by straight lines.

# Perimeter of a Polygon

The perimeter of a triangle, quadrilateral, or any other polygon is actually the sum of the sides.

# **Circumference of a Circle**

Definition of Pi: Mathematics have established that the relationship of the circumference to the diameter of a circle is a constant called Pi and written as  $\pi$ . The numerical value of this constant is approximately 3.141592653. For our purposes 3.1416 or simply 3.14 will suffice.

The formula for the circumference of a circle is  $C = 2\pi D$  where C is the circumference and D is the diameter since D = 2R where R is the radius, the formula may be written as  $C = 2\pi R$ .

#### Areas

All areas are measured in squares.

The area of a square is the product of two of its sides and since both sides are equal, it may be said to be square of its side.

#### NOTE

The area of any plane surface is the measure of the number of squares contained in the object. The unit of measurement is the square of the unit which measures the sides of the square.

# Area of Rectangle

 $A = L \times W$ 

Where:

A = area of a rectangle

L = length of a rectangle

W = width of a rectangle

# Area of a Cross Section

The cross section of an object is a plane figure established by a plane cutting the object at right angles to its axis. The area of this cross section will be the area of the plane figure produced by this cut.

The area of the cross section is L x W.

The most common units are square inches, square feet, square yards and in roofing, "squares."

1 square foot = 144 square inches

1 square yard = 9 square feet

1 square of roofing = 100 square feet

# **Common Conversions**

- 1. To convert square inches to square feet, divide square inches by 144.
- 2. To convert square feet to square inches, multiply by 144.
- 3. To convert square feet to square yards, divide by 9.
- 4. To convert square yards to square feet, multiply by 9.
- 5. To convert square feet to squares, divide by 100.

# Conversion of Units of Cubic Measure

It is often necessary to convert from one cubic measure to another. The conversion factors used are as follows:

- 1. 1 cubic foot = 1,728 cubic inches
- 2. 1 cubic yard = 27 cubic feet
- 3. 1 cubic foot = 7.48 US gallons (liquid measure)
- 4. 1 us gallon (liquid measure) = 231 cubic inches
- 5. 1 bushel (dry measure) = 2,150.42 cubic inches

# Area of a Circle

The formula for the area of a circle is:

 $A = \pi r^2$ 

Where:

A = area of circle

r = radius of circle

 $\pi = 3.1416$ 

NAVEDTRA 14045A

Since r = d/2 where d is the diameter of a circle, the formula for the area of a circle in terms of its diameter is:

$$A = \pi(\frac{d^2}{2}) = \frac{\pi d^2}{4}$$

#### **Geometric Solids**

In describing plane shapes, you use only two dimensions: width and length; there is no thickness. By adding the third dimension, you describe a solid object.

Consider the solids described below.

Prism - is a figure whose two bases are polygons, alike in size and shape, lying in parallel planes and whose lateral edges connect corresponding vertices and are parallel and equal in length. A prism is a right prism if the lateral edge is perpendicular the base. The altitude of a prism is the perpendicular distance between the bases.

Cone - is a figure generated by a line moving in such a manner that one end stays fixed at a point called the "vertex." The line constantly touches a plane curve which is the base of the cone. A cone is a circular cone if its base is a circle. A circular cone is a right circular cone if the line generating it is constant in length. The altitude of a cone is the length of a perpendicular to the plane of the base drawn from the vertex.

Pyramid - is a figure whose base is a plane shape bounded by straight lines and whose sides are triangular plane shapes connecting the vertex and a line of the base. A regular pyramid is one whose base is a regular polygon and whose vertex lays on a perpendicular to the base at its center. The altitude of a pyramid is the length of a perpendicular to the plane of the base drawn from the vertex.

Circular Cylinder - is a figure whose bases are circles lying in parallel planes connected by a curved lateral surface. A right circular cylinder is one whose lateral surface is perpendicular to the base. The altitude of a circular cylinder is the perpendicular distance between the planes of the two bases.

#### **Measurement of Volume**

Volume is measured in terms of cubes.

#### **Common Volume Formulas**

All factors in the formulas must be in the same linear units. As an example, one term could not be expressed in feet while other terms are in inches.

#### Volume of a Rectangular Prism

$$V = L \times W \times H$$

Where:

V = Volume in cubic inches

W = Width of the base in linear units

L = Length of base in linear units

H = Altitude of the prism in linear units

$$V = \frac{Axh}{3}$$
  
Or  
$$V = \frac{\pi r^2 h}{3}$$
  
Or  
$$V = \frac{\pi d^2 h}{12}$$

Where:

V= Volume of a cone in cubic units

A = Area of the base in square units

h = Altitude of a cone in linear units

r = Radius of the base

d = Diameter of the base

#### Volume of a Pyramid

$$V = \frac{Ah}{3}$$

Where:

V = Volume in cubic units

A = Area of base in square units

h = Altitude in linear units

# Volume of a Cylinder

$$V = Ah$$
  
Or  
$$V = \pi r^{2} h$$
  
Or  
$$V = \frac{\pi d^{2} h}{4}$$

Where:

V = Volume in cubic units

A = Area of the base in square units

h = Altitude in linear units

r = Radius of the base

d = Diameter of the base

#### Volume of the Frustum of a Right Circular Cone

The frustum of a cone is formed when a plane is passed parallel to the base of the cone. The frustum is the portion below the plane. The altitude of the frustum is the perpendicular distance between the bases.

$$V = 1/3 \pi h (r^2 + R^2 + Rr)$$

Where:

h = Altitude in linear units

r = Radius of the upper base in linear units

R = Radius of the lower base in linear units

# Volume of a Frustum of a Regular Pyramid

A frustum of a pyramid is formed when a plane is passed parallel to the base of the pyramid. The frustum is the portion below the plane. The altitude is the perpendicular distance between the bases.

$$V = 1/3h (B + b + \sqrt{Bb})$$

Where:

V = Volume of the frustum in cubic units

h = Altitude in linear units

B = Area of the lower base in square units

b = Area of the upper base in square units

#### Ratio

The ratio of one number to another is the quotient of the first, divided by the second. This is often expressed as a:b, which is read as the ratio of a to b. More commonly, this expressed as the fraction a/b.

Ratio has no meaning unless both terms are expressed in the same unit by measurement.

#### Percentage

Percentage (%) is a way of expressing the relationship of one number to another. In reality, percentage is a ratio expressed as a fraction in which the denominator is always one hundred.

#### Proportion

Proportion is a statement of two ratios which are equal.

Solving proportions is done by cross multiplying.

Example: 
$$\frac{a}{b} = \frac{c}{d} = a \times d = b \times c$$

# Law of Pythagoras

The Law of Pythagoras is the square of the hypotenuse of a right triangle equals the sum of the two legs. It is expressed by the formula  $a^2 + b^2 = c^2$ .

Right Triangle: a triangle having one right angle

Hypotenuse: The hypotenuse of a right triangle is the side opposite the right angle

Leg: The leg of a right triangle is a side opposite and acute angle of a right triangle.

| Length Conversion |                |                     |  |  |  |  |
|-------------------|----------------|---------------------|--|--|--|--|
| When You Know:    | You Can Find:  | If You Multiply By: |  |  |  |  |
|                   |                |                     |  |  |  |  |
| inches            | millimeters    | 25.4                |  |  |  |  |
| inches            | centimeters    | 2.54                |  |  |  |  |
| feet              | centimeters    | 30                  |  |  |  |  |
| feet              | meters         | 0.3                 |  |  |  |  |
| yards             | centimeters    | 90                  |  |  |  |  |
| yards             | meters         | 0.9                 |  |  |  |  |
| miles             | kilometers     | 1.6                 |  |  |  |  |
| miles             | meters         | 1609                |  |  |  |  |
| millimeters       | inches         | 0.04                |  |  |  |  |
| centimeters       | inches         | 0.4                 |  |  |  |  |
| centimeters       | feet           | 0.0328              |  |  |  |  |
| meters            | feet           | 3.3                 |  |  |  |  |
| centimeters       | yards          | 0.0109              |  |  |  |  |
| meters            | yards          | 1.1                 |  |  |  |  |
| meters            | miles          | 0.000621            |  |  |  |  |
| kilometers        | miles          | 0.6                 |  |  |  |  |
| meters            | nautical miles | 0.00054             |  |  |  |  |
| nautical miles    | meters         | 1852                |  |  |  |  |

METRIC CONVERSION TABLES

# Weight Conversion

| When You Know: | You Can Find: | If You Multiply By: |
|----------------|---------------|---------------------|
|                |               |                     |
| ounces         | grams         | 28.3                |
| pounds         | kilograms     | 0.45                |
| short tons     | megagrams     | 0.9                 |
| (2000 lbs)     | (metric tons) |                     |
| grams          | ounces        | 0.0353              |
| kilograms      | pounds        | 2.2                 |
| megagrams      | short tons    | 1.1                 |
| (metric tons)  | (2000 lbs)    |                     |

# **Temperature Conversion**

| When You Know:     | You Can Find:     | If You Multiply By:              |
|--------------------|-------------------|----------------------------------|
|                    |                   |                                  |
| Degrees Fahrenheit | Degree Celsius    | Subtract 32 then multiply by 5/9 |
| Degrees Celsius    | Degree Fahrenheit | Multiply by 9/5 then add 32      |
| Degrees Celsius    | Kelvins           | Add 273.15°                      |

**Volume Conversion** 

| When You Know: | You Can Find: | If You Multiply By: |
|----------------|---------------|---------------------|
|                |               |                     |
| teaspoons      | milliters     | 5                   |
| tablespoons    | milliters     | 15                  |
| fluid ounces   | milliters     | 3 0                 |
| cups           | liters        | 0.24                |
| pints          | liters        | 0.47                |
| quarts         | liters        | 0.95                |
| gallons        | liters        | 3.8                 |
| milliters      | teaspoons     | 0.2                 |
| milliters      | tablespoons   | 0.067               |
| milliters      | fluid ounces  | 0.034               |
| liters         | cups          | 4.2                 |
| liters         | pints         | 2.1                 |
| liters         | quarts        | 1.06                |
| liters         | gallons       | 0.26                |
| cubic feet     | cubic meters  | 0.028               |
| cubic yards    | cubic meters  | 0.765               |
| cubic meters   | cubic feet    | 35.3                |
| cubic meters   | cubic yards   | 1.31                |

# **Area Conversions**

| When You Know:     | You Can Find:      | If You Multiply By: |  |  |
|--------------------|--------------------|---------------------|--|--|
|                    |                    |                     |  |  |
| Square inches      | Square centimeters | 6.45                |  |  |
| Square inches      | Square meters      | 0.000 6             |  |  |
| Square feet        | Square centimeters | 929                 |  |  |
| Square feet        | Square meters      | 0.0929              |  |  |
| Square yards       | Square centimeters | 8.360               |  |  |
| Square yards       | Square meters      | 0.836               |  |  |
| Square miles       | Square kilometers  | 2.6                 |  |  |
| Square centimeters | Square inches      | 0.155               |  |  |
| Square meters      | Square inches      | 1550                |  |  |
| Square centimeters | Square feet        | 0.001               |  |  |
| Square meters      | Square feet        | 10.8                |  |  |
| Square centimeters | Square yards       | 0.00012             |  |  |
| Square meters      | Square yards       | 1.2                 |  |  |
| Square kilometers  | Square miles       | 0.4                 |  |  |

| Fraction | 16 <sup>th</sup> | 32 <sup>nd</sup> | 64 <sup>th</sup> | Decimal | Fraction | 16 <sup>th</sup> | 32 <sup>nd</sup> | 64 <sup>th</sup> | Decimal |
|----------|------------------|------------------|------------------|---------|----------|------------------|------------------|------------------|---------|
|          |                  |                  | 1                | .015625 |          |                  |                  | 33               | .515625 |
|          |                  | 1                | 2                | .03125  |          |                  | 17               | 34               | .53125  |
|          |                  |                  | 3                | .046875 |          |                  |                  | 35               | .54875  |
|          | 1                | 2                | 4                | .0625   |          | 9                | 18               | 36               | .5625   |
|          |                  |                  | 5                | .078125 |          |                  |                  | 37               | .578125 |
|          |                  | 3                | 6                | .09375  |          |                  | 19               | 38               | .59375  |
|          |                  |                  | 7                | .109375 |          |                  |                  | 39               | .609375 |
| 1/8      | 2                | 4                | 8                | .125    | 5/8      | 10               | 20               | 40               | .625    |
|          |                  |                  | 9                | .140625 |          |                  |                  | 41               | .640625 |
|          |                  | 5                | 10               | .15625  |          |                  | 21               | 42               | .65625  |
|          |                  |                  | 11               | .171875 |          |                  |                  | 43               | .671875 |
|          | 3                | 6                | 12               | .1875   |          | 11               | 22               | 44               | .6875   |
|          |                  |                  | 13               | .203125 |          |                  |                  | 45               | .703125 |
|          |                  | 7                | 14               | .21875  |          |                  | 23               | 46               | .71875  |
|          |                  |                  | 15               | .234375 |          |                  |                  | 47               | .734375 |
| 1/4      | 4                | 8                | 16               | .25     | 3/4      | 12               | 24               | 48               | .75     |
|          |                  |                  | 17               | .265625 |          |                  |                  | 49               | .765625 |
|          |                  | 9                | 18               | .28125  |          |                  | 25               | 50               | .78125  |
|          |                  |                  | 19               | .296875 |          |                  |                  | 51               | .796875 |
|          | 5                | 10               | 20               | .3125   |          | 13               | 26               | 52               | .8125   |
|          |                  |                  | 21               | .328125 |          |                  |                  | 53               | .818225 |
|          |                  | 11               | 22               | .34375  |          |                  | 27               | 54               | .84375  |
|          |                  |                  | 23               | .359375 |          |                  |                  | 55               | .859375 |
| 3/8      | 6                | 12               | 24               | .375    | 7/8      | 14               | 28               | 56               | .875    |
|          |                  |                  | 25               | .390623 |          |                  |                  | 57               | .890625 |
|          |                  | 13               | 26               | .40625  |          |                  | 29               | 58               | .90625  |
|          |                  |                  | 27               | .421875 |          |                  |                  | 59               | .921875 |
|          | 7                | 14               | 28               | .4375   |          | 15               | 30               | 60               | .9375   |
|          |                  |                  | 29               | .453125 |          |                  |                  | 61               | .953125 |
|          |                  | 15               | 30               | .46875  |          |                  | 31               | 62               | .96875  |
|          |                  |                  | 31               | .484375 |          |                  |                  | 63               | .984375 |
| 1/2      | 8                | 16               | 32               | .5      | 1        | 16               | 32               | 64               | 1.0     |

# Table A-1 — Decimal Equivalents.

| 10 millimeters | = | 1 centimeter (cm) |
|----------------|---|-------------------|
| 10 centimeters | = | 1 decimeter (dm)  |
| 10 decimeters  | = | 1 meter (m)       |
| 10 meters      | = | 1 decameter (dkm) |
| 10 decameters  | = | 1 hectometer (hm) |
| 10 hectometers | = | 1 kilometer (km)  |

Table A-2 — Metric measures of length.

 Table A-3 — Conversion of inches to millimeters.

| Inches | Millimeters | Inches | Millimeters | Inches | Millimeters | Inches | Millimeters |
|--------|-------------|--------|-------------|--------|-------------|--------|-------------|
| 1      | 25.4        | 26     | 660.4       | 51     | 1295.4      | 76     | 1930.4      |
| 2      | 50.8        | 27     | 685.8       | 52     | 1320.8      | 77     | 1955.8      |
| 3      | 76.2        | 28     | 711.2       | 53     | 1346.2      | 78     | 1981.2      |
| 4      | 101.6       | 29     | 736.6       | 54     | 1371.6      | 79     | 2006.6      |
| 5      | 127         | 30     | 762         | 55     | 1397        | 80     | 2032        |
| 6      | 152.4       | 31     | 787.4       | 56     | 1422.4      | 81     | 2057.4      |
| 7      | 177.8       | 32     | 812.8       | 57     | 1447.8      | 82     | 2082.8      |
| 8      | 203.2       | 33     | 838.2       | 58     | 1473.2      | 83     | 2108.2      |
| 9      | 228.6       | 34     | 863.6       | 59     | 1498.6      | 84     | 2133.6      |
| 10     | 254         | 35     | 889         | 60     | 1524        | 85     | 2159        |
| 11     | 279.4       | 36     | 914.4       | 61     | 1549.4      | 86     | 2184.4      |
| 12     | 304.8       | 37     | 939.8       | 62     | 1574.8      | 87     | 2209.8      |
| 13     | 330.2       | 38     | 965.2       | 63     | 1600.2      | 88     | 2235.2      |
| 14     | 355.6       | 39     | 990.6       | 64     | 1625.6      | 89     | 2260.6      |
| 15     | 381         | 40     | 1016        | 65     | 1651        | 90     | 2286        |
| 16     | 406.4       | 41     | 1041.4      | 66     | 1676.4      | 91     | 2311.4      |
| 17     | 431.8       | 42     | 1066.8      | 67     | 1701.8      | 92     | 2336.8      |
| 18     | 457.2       | 43     | 1092.2      | 68     | 1727.2      | 93     | 2362.2      |
| 19     | 482.6       | 44     | 1117.6      | 69     | 1752.6      | 94     | 2387.6      |
| 20     | 508         | 45     | 1143        | 70     | 1778        | 95     | 2413        |
| 21     | 533.4       | 46     | 1168.4      | 71     | 1803.4      | 96     | 2438.4      |
| 22     | 558.8       | 47     | 1193.8      | 72     | 1828.8      | 97     | 2463.8      |
| 23     | 584.2       | 48     | 1219.2      | 73     | 1854.2      | 98     | 2489.2      |
| 24     | 609.6       | 49     | 1244.6      | 74     | 1879.6      | 99     | 2514.6      |
| 25     | 635         | 50     | 1270        | 75     | 1905        | 100    | 2540        |

| Fraction of  | Decimal of | Millimeters   | Fraction of  | Decimal of | Millimeters |
|--------------|------------|---------------|--------------|------------|-------------|
| inch (64ths) | Inch       | Willin Teters | inch (64ths) | Inch       |             |
| 1            | .015625    | .3968         | 33           | .515625    | 13.0966     |
| 2            | .03125     | .7937         | 34           | .53125     | 13.4934     |
| 3            | .046875    | 1.1906        | 35           | .546875    | 13.8903     |
| 4 (1/16")    | .0625      | 1.5875        | 36           | .5625      | 14.2872     |
| 5            | .078125    | 1.9843        | 37           | .578125    | 14.6841     |
| 6            | .09375     | 2.3812        | 38           | .59375     | 15.0809     |
| 7            | .109375    | 2.7780        | 39           | .609375    | 15.4778     |
| 8 (1/8")     | .125       | 3.1749        | 40 (5/8")    | .625       | 15.8747     |
| 9            | .140625    | 3.5817        | 41           | .640625    | 16.2715     |
| 10           | .15625     | 3.9686        | 42           | .65625     | 16.6684     |
| 11           | .171875    | 4.3655        | 43           | .671875    | 17.0653     |
| 12           | .1875      | 4.7624        | 44           | .6875      | 17.4621     |
| 13           | .203125    | 5.1592        | 45           | .703125    | 17.8590     |
| 14           | .21875     | 5.5561        | 46           | .71875     | 18.2559     |
| 15           | .234375    | 5.9530        | 47           | .734375    | 18.6527     |
| 16 (1/4")    | .25        | 6.3498        | 48 (3/4")    | .75        | 19.0496     |
| 17           | .265625    | 6.7467        | 49           | .765625    | 19.4465     |
| 18           | .28125     | 7.1436        | 50           | .78125     | 19.8433     |
| 19           | .296875    | 7.5404        | 51           | .796875    | 20.2402     |
| 20           | .3125      | 7.9373        | 52           | .8125      | 20.6371     |
| 21           | .328125    | 8.3342        | 53           | .818225    | 21.0339     |
| 22           | .34375     | 8.7310        | 54           | .84375     | 21.4308     |
| 23           | .359375    | 9.1279        | 55           | .859375    | 21.8277     |
| 24 (3/8")    | .375       | 9.5248        | 56 (7/8")    | .875       | 22.2245     |
| 25           | .390623    | 9.9216        | 57           | .890625    | 22.6214     |
| 26           | .40625     | 10.3185       | 58           | .90625     | 23.0183     |
| 27           | .421875    | 10.7154       | 59           | .921875    | 23.4151     |
| 28           | .4375      | 11.1122       | 60           | .9375      | 23.8120     |
| 29           | .453125    | 11.5091       | 61           | .953125    | 24.2089     |
| 30           | .46875     | 11.9060       | 62           | .96875     | 24.6057     |
| 31           | .484375    | 12.3029       | 63           | .984375    | 25.0026     |
| 32 (1/2")    | .5         | 12.6997       | 64 (1")      | 1.0        | 25.3995     |

Table A-4 — Conversions of fractions and decimals to millimeters.

| Conversion Chart for Measurement |       |            |       |        |        |        |        |             |  |
|----------------------------------|-------|------------|-------|--------|--------|--------|--------|-------------|--|
| inches                           |       |            |       |        |        |        |        | centimeters |  |
| Cm                               |       |            |       |        |        |        | inches |             |  |
| Feet                             |       |            |       |        |        | meters |        |             |  |
| Meters                           |       |            |       |        | feet   |        |        |             |  |
| Yards                            |       |            |       | meters |        |        |        |             |  |
| Meters                           |       |            | yards |        |        |        |        |             |  |
| Miles                            |       | kilometers |       |        |        |        |        |             |  |
| km                               | miles |            |       |        |        |        |        |             |  |
| 1                                | 0.62  | 1.61       | 1.09  | 0.91   | 3.28   | 0.30   | 0.39   | 2.54        |  |
| 2                                | 1.21  | 3.22       | 2.19  | 1.83   | 6.56   | 0.61   | 0.79   | 5.08        |  |
| 3                                | 1.86  | 4.83       | 3.28  | 2.74   | 9.81   | 0.91   | 1.18   | 7.62        |  |
| 4                                | 2.49  | 6.44       | 4.37  | 3.66   | 13.12  | 1.22   | 1.57   | 10.16       |  |
| 5                                | 3.11  | 8.05       | 5.47  | 4.57   | 16.40  | 1.52   | 1.97   | 12.70       |  |
| 6                                | 3.73  | 9.66       | 6.56  | 5.49   | 19.68  | 1.83   | 2.36   | 15.24       |  |
| 7                                | 4.35  | 11.27      | 7.66  | 6.4    | 22.97  | 2.13   | 2.76   | 17.78       |  |
| 8                                | 4.97  | 12.87      | 8.75  | 7.32   | 26.25  | 2.44   | 3.15   | 20.32       |  |
| 9                                | 5.59  | 14.48      | 9.84  | 8.23   | 29.53  | 2.74   | 3.54   | 22.86       |  |
| 10                               | 6.21  | 16.09      | 10.94 | 9.14   | 32.81  | 3.05   | 3.93   | 25.40       |  |
| 12                               | 7.46  | 19.31      | 13.12 | 10.97  | 39.37  | 3.66   | 4.72   | 30.48       |  |
| 20                               | 12.43 | 32.19      | 21.87 | 18.29  | 65.62  | 6.10   | 7.87   | 50.80       |  |
| 24                               | 14.91 | 38.62      | 26.25 | 21.95  | 78.74  | 7.32   | 9.45   | 60.96       |  |
| 30                               | 18.64 | 48.28      | 32.81 | 27.43  | 98.42  | 9.14   | 11.81  | 76.20       |  |
| 36                               | 22.37 | 57.94      | 39.37 | 32.92  | 118.11 | 10.97  | 14.17  | 91.44       |  |
| 40                               | 24.37 | 64.37      | 43.74 | 36.58  | 131.23 | 12.19  | 15.75  | 101.60      |  |
| 48                               | 29.83 | 77.25      | 52.49 | 43.89  | 157.48 | 14.63  | 18.90  | 121.92      |  |
| 50                               | 31.07 | 80.47      | 54.68 | 45.72  | 164.04 | 15.24  | 19.68  | 127.00      |  |
| 60                               | 37.28 | 96.56      | 65.62 | 54.86  | 196.85 | 18.29  | 23.62  | 152.40      |  |
| 70                               | 43.50 | 112.65     | 76.55 | 64     | 229.66 | 21.34  | 27.56  | 177.80      |  |
| 72                               | 44.74 | 115.87     | 78.74 | 65.84  | 236.22 | 21.95  | 28.35  | 182.88      |  |

# Table A-5 Conversions of measurements.

| Gubic Conversion Chart                                                  |             |        |        |            |            |  |  |  |
|-------------------------------------------------------------------------|-------------|--------|--------|------------|------------|--|--|--|
| Cubic                                                                   |             |        |        | Cubic Feet | Cubic Yard |  |  |  |
| Meters                                                                  |             |        |        |            |            |  |  |  |
| Cubic Yard                                                              |             |        | Cubic  |            |            |  |  |  |
|                                                                         |             | 1      | Meters |            |            |  |  |  |
| Cubic Feet                                                              |             | Cubic  |        |            |            |  |  |  |
|                                                                         |             | Meters |        |            |            |  |  |  |
| Cubic                                                                   | Cubic       |        |        |            |            |  |  |  |
| Inches                                                                  | Centimeters |        |        |            |            |  |  |  |
| 1                                                                       | 16.39       | 0.028  | 0.76   | 35.3       | 1.31       |  |  |  |
| 2                                                                       | 32.77       | 0.057  | 1.53   | 70.6       | 2.62       |  |  |  |
| 3                                                                       | 49.16       | 0.085  | 2.29   | 105.9      | 3.92       |  |  |  |
| 4                                                                       | 65.55       | 0.113  | 3.06   | 141.3      | 5.23       |  |  |  |
| 5                                                                       | 81.94       | 0.142  | 3.82   | 176.6      | 6.54       |  |  |  |
| 6                                                                       | 98.32       | 0.170  | 4.59   | 211.9      | 7.85       |  |  |  |
| 7                                                                       | 114.71      | 0.198  | 5.35   | 247.2      | 9.16       |  |  |  |
| 8                                                                       | 131.10      | 0.227  | 6.12   | 282.5      | 10.46      |  |  |  |
| 9                                                                       | 147.48      | 0.255  | 6.88   | 317.8      | 11.77      |  |  |  |
| 10                                                                      | 163.87      | 0.283  | 7.65   | 353.1      | 13.07      |  |  |  |
| 20                                                                      | 327.74      | 0.566  | 15.29  | 706.3      | 26.16      |  |  |  |
| 30                                                                      | 491.61      | 0.850  | 29.94  | 1059.4     | 39.24      |  |  |  |
| 40                                                                      | 655.48      | 1.133  | 30.58  | 1412.6     | 52.32      |  |  |  |
| 50                                                                      | 819.35      | 1.416  | 38.23  | 1765.7     | 65.40      |  |  |  |
| 60                                                                      | 983.22      | 1.700  | 45.87  | 2118.9     | 78.48      |  |  |  |
| 70                                                                      | 1174.09     | 1.982  | 53.52  | 2472.0     | 91.56      |  |  |  |
| 80                                                                      | 1310.96     | 2.265  | 61.16  | 2825.2     | 104.63     |  |  |  |
| 90                                                                      | 1474.84     | 2.548  | 68.81  | 3178.3     | 117.71     |  |  |  |
| 100                                                                     | 1638.71     | 2.832  | 76.46  | 3531.4     | 130.79     |  |  |  |
| Example: 3 cu. Yd = 2.29 cu. M                                          |             |        |        |            |            |  |  |  |
| Volume. The subject of the only compared dimension used for more static |             |        |        |            |            |  |  |  |

# Table A-6 — Cubic conversion chart.

Volume: The cubic meter is the only common dimension used for measuring the volume of solids in the metric system.
| Gallon         | Liter             | Gallon | Liter | Gallon | Liter  |
|----------------|-------------------|--------|-------|--------|--------|
| .1             | .38 1 3.7         | 1      | 3.79  | 10     | 37.85  |
| .2             | .76               | 2      | 7.57  | 20     | 57.71  |
| .3             | 1.14              | 3      | 11.36 | 30     | 113.56 |
| .4             | 1.51              | 4      | 15.14 | 40     | 151.42 |
| .5             | 1.89              | 5      | 18.93 | 50     | 189.27 |
| .6             | 2.27              | 6      | 22.71 | 60     | 227.12 |
| .7             | 2.65              | 7      | 26.50 | 70     | 264.98 |
| .8             | 3.03              | 8      | 30.28 | 80     | 302.83 |
| .9             | 3.41              | 9      | 34.07 | 90     | 340.69 |
| NOTE: 1 us Ga  | llon = 3.785412 L | liters |       |        |        |
| 100 us Gallons | = 378.5412 Liters | S      |       |        |        |

# Table A-7 — Gallon and liter conversion chart.

# Table A-8 — Weight conversion chart.

| Weight Conversion Chart |               |               |                  |                |              |            |  |  |
|-------------------------|---------------|---------------|------------------|----------------|--------------|------------|--|--|
| Ounces                  |               |               |                  |                |              | Grams      |  |  |
| Grams                   |               |               |                  |                | Ounces       |            |  |  |
| Pounds                  |               |               |                  | Kilograms      |              |            |  |  |
| Kilograms               |               |               | Pounds           |                |              |            |  |  |
|                         |               | Metric        |                  |                |              |            |  |  |
| Short ron               |               | Ton           |                  |                |              |            |  |  |
| Metric                  | Short         |               |                  |                |              |            |  |  |
| Ton                     | Ton           |               |                  |                |              |            |  |  |
| 1                       | 1.10          | 0.91          | 2.20             | 0.45           | 0.04         | 28.1       |  |  |
| 2                       | 2.20          | 1.81          | 4.41             | 0.91           | 0.07         | 56.7       |  |  |
| 3                       | 3.31          | 2.72          | 6.61             | 1.36           | 0.11         | 85.0       |  |  |
| 4                       | 4.41          | 3.63          | 8.82             | 1.81           | 0.14         | 113.4      |  |  |
| 5                       | 5.51          | 4.54          | 11.02            | 2.67           | 0.18         | 141.8      |  |  |
| 6                       | 6.61          | 5.44          | 13.23            | 2.72           | 0.21         | 170.1      |  |  |
| 7                       | 7.72          | 6.35          | 15.43            | 3.18           | 0.25         | 198.4      |  |  |
| 8                       | 8.82          | 7.26          | 17.64            | 3.63           | 0.28         | 226.8      |  |  |
| 9                       | 9.92          | 8.16          | 19.81            | 4.08           | 0.32         | 255.2      |  |  |
| 10                      | 11.02         | 9.07          | 22.05            | 4.54           | 0.35         | 283.5      |  |  |
| 16                      | 17.63         | 14.51         | 35.27            | 7.25           | 0.56         | 453.6      |  |  |
| 20                      | 22.05         | 18.14         | 44.09            | 9.07           | 0.71         | 567.0      |  |  |
| 30                      | 33.07         | 27.22         | 66.14            | 13.61          | 1.06         | 850.5      |  |  |
| 40                      | 44.09         | 36.29         | 88.14            | 18.14          | 1.41         | 1134.0     |  |  |
| 50                      | 55.12         | 45.36         | 110.23           | 22.68          | 1.76         | 1417.5     |  |  |
| 60                      | 66.14         | 54.43         | 132.28           | 27.22          | 2.12         | 1701.0     |  |  |
| 70                      | 77.16         | 63.50         | 154.32           | 31.75          | 2.17         | 1981.5     |  |  |
| 80                      | 88.18         | 72.57         | 176.37           | 36.29          | 2.82         | 2268.0     |  |  |
| 90                      | 99.21         | 81.65         | 198.42           | 40.82          | 3.17         | 2551.5     |  |  |
| 100                     | 110.20        | 90.72         | 220.46           | 45.36          | 3.53         | 2835.0     |  |  |
| NOTE: 1 pou             | nd = 0.453592 | 25 KG: 1 US S | hort Ton $= 2.0$ | 00 pounds: and | 1 Metric Ton | = 1.000 KG |  |  |

## FORMULAS

## Conversion Factors and Constants

| $\pi = 3.14$          | $2\pi = 6.28$      |
|-----------------------|--------------------|
| $\pi^2 = 9.87$        | $(2\pi)^2 = 39.5$  |
| $\varepsilon = 2.718$ | $\sqrt{2} = 1.414$ |
| $\sqrt{3} = 1.732$    | LOG = 0.497        |

# **Sinusoidal Voltages and Currents**

| Effective Value | = | 0.707 x Peak Value      |
|-----------------|---|-------------------------|
| Average Value   | = | 0.637 x Peak Value      |
| Peak Value      | = | 1.414 x Effective Value |
| Effective Value | = | 1.11 x Average Value    |
| Peak Value      | = | 1.57 x Average Value    |
| Average Value   | = | 0.9 x Effective Value   |

| Temperature               | Power                         |
|---------------------------|-------------------------------|
| (F to C) C = 5/9 (F - 32) | 1 kilowatt = 1.341 horsepower |
| (C to F) F = 9/5 C = 32   | 1 horsepower = 746 watts      |
| (C to K) K = C + 73       |                               |

#### **Trigonometric Formulas**

| $\sin A = \frac{a}{c}$ | = <u>Opposite Side</u><br>Hypotenuse              |   |
|------------------------|---------------------------------------------------|---|
| $\cos A = \frac{h}{a}$ | <u>)</u><br>c= <u>Adjacent Sida</u><br>Hypotenuse | e |

| tan A = | <u>a</u> | <b>Opposite Side</b> |
|---------|----------|----------------------|
|         | $b^{=}$  | Adjacent Side        |

$$\cot A = \frac{b}{a} = \frac{Adjacent Side}{Opposite Side}$$

#### Ohm's Law- Direct Current

Figure A-12 — Trapezoid.

# Ohm's Law- Alternating Current

Figure A-13 — Direct Current.

Figure A-14 — Alternating Current. Speed vs. Poles Formulas

$$F = \frac{NP}{120} \quad N = \frac{F \ 120}{P} \quad P = \frac{F \ 120}{N}$$

$$F = \text{frequency}$$

$$N = \text{speed of rotation}$$

$$P = \text{number of poles}$$

$$120 = \text{time constant}$$

$$Power \ Factor$$

$$PF = \frac{-\frac{\text{actual power}}{\text{apparent power}} = \frac{\text{watts volts x}}{\text{amperes}} = \frac{\text{kW}}{\text{kVA}} = \frac{R}{Z}$$

\_\_\_\_\_

$$PF = \frac{P}{E \times I}$$

\_\_\_\_\_ = kVA x PF

lanced



# Power: Three-Phase Balanced Wye or Delta Circuits

 $P = 1.732 \times E \times I \times PF$   $VA = 1.732 \times E \times I$ 

\_\_\_\_

$$\mathsf{E} = \frac{P}{PF x 1.73 x I} = \frac{0.577 x P}{PF x I}$$
$$\mathsf{I} = \frac{P}{PF x 1.73 x E} = \frac{0.577 x P}{PF x E}$$
$$\mathsf{PF} = \frac{P}{PF x 1.73 x E} = \frac{0.577 x P}{I x E}$$

VA = apparent power (volt-amperes)

P = actual power (watts)

E = line voltage (volts)

I = line current (amperes)

#### WEIGHTS AND MEASURES

#### Dry Measure

2 cups = 1 quart (pt)

2 pints = 1 quart (pt)

4 quarts = 1 gallon (gal)

8 quarts = 1 peck (pk)

4 pecks = 1 bushel (bu)

#### Liquid Measure

3 teaspoons (tsp) = 1 tablespoon (tbsp)

16 tablespoons = 1 cup

2 cups = 1 pint

16 fluid ounces (oz) = 1 pint

2 pints = 1 quart

4 quarts = 1 gallon

31.5 gallons = 1 barrel (bbl)

231 cubic inches = 1 gallon

7.48 gallons = 1 cubic foot (cu ft)

#### <u>Weight</u>

16 ounces = 1 pound (lb) 2,000 pounds = 1 short ton

2,240 pounds = 1 long ton

#### **Distance**

12 inches = 1 foot (ft) 3 feet = 1 yard (yd) 5-1/2 yards = 1 rod (rd) 16-1/2 feet = 1 rod 1,760 yards = 1 statute mile (mi) 5,280 feet = 1 statute mile

#### <u>Area</u>

144 square inches = 1 square foot (sq ft)
9 square feet = 1 square yd (sq yd)
30- ¼ square yards = 1 square rod
160 square rods = 1 acre (A)
640 acres = 1 square mile (sq mi)
Volume
1,728 cubic inches = 1 cubic foot
27 cubic feet = 1 cubic yard (CU yd)

#### **Counting Units**

12 units = 1 dozen (doz)

12 dozen = 1 gross

144 units = 1 gross

24 sheets = 1 quire

480 sheets = 1 ream

#### Equivalents

1 cubic foot of water weighs 62.5 pounds (approx) = 1,000 ounces

1 gallon of water weighs 8-1/3 pounds (approx)

1 cubic foot = 7.48 gallons

1 inch = 2.54 centimeters

1 foot = 30.4801 centimeters

1 meter = 39.37 inches

1 liter = 1.05668 quarts (liquid) = 0.90808 quart (dry)

1 nautical mile = 6,080 feet (approx)

1 fathom = 6 feet

1 shot of chain = 15 fathoms

| Feet                     | x.00019    | = miles                       |
|--------------------------|------------|-------------------------------|
| Feet                     | x 1.5      | = links                       |
| Yards                    | x .9144    | = meters                      |
| Yards                    | x .0006    | = miles                       |
| Links                    | x .22      | = yards                       |
| Links                    | x .66      | = feet                        |
| Rods                     | x 25       | = links                       |
| Rods                     | x 16.5     | = feet                        |
| Square inches            | x .007     | = square feet                 |
| Square inches            | x 6.451    | = square centimeters          |
| Square centimeters       | x 0.1550   | = square inches               |
| Square feet              | x .111     | = square yards                |
| Square feet              | x .0929    | = centares (square<br>meters) |
| Square feet              | x 929      | = square centimeters          |
| Square feet              | x 144      | = square inches               |
| Square yards             | x .0002067 | = acres                       |
| Acres                    | x 4840.0   | = square yards                |
| Square yards             | x 1,296    | = square inches               |
| Square yards             | x 9        | = square feet                 |
| Square yards             | x 0.8362   | = centares                    |
| Square miles,<br>statute | x 640      | = acres                       |
| Square miles,<br>statute | x 25,900   | =ares                         |
| Square miles,<br>statute | x 259      | = hectares                    |
| Square miles, statute    | x 2,590    | = square kilometers           |
| Cubic inches             | x .00058   | = cubic feet                  |
| Cubic feet               | x .03704   | = cubic yards                 |
| Tons (metric)            | x 2,204.6  | = pounds<br>(avoirdupois)     |
| Tons (metric)            | x 1,000    | = kilograms                   |
| Tons (short)             | x 2,000    | = pounds<br>(avoirdupois)     |

| Tons (short)                    | x 0.9072                                                | = metric tons                  |
|---------------------------------|---------------------------------------------------------|--------------------------------|
| Tons (long)                     | x 2,240                                                 | = pounds<br>(avoirdupois)      |
| Tons (long)                     | x 1.016                                                 | = metric tons                  |
| π                               | = 3.14592654                                            |                                |
| 1 radian                        | = 180°/π =<br>57.2957790°                               | = approx. 57° 17'<br>44.8"     |
| 1 radian                        | = 1018.6 miles                                          |                                |
| 1 degree                        | = 0.0174533 radian                                      |                                |
| 1 minute                        | = 0.0002909 radian                                      |                                |
| 1 mil                           | = 0.0009817                                             |                                |
| $\pi$ radians                   | = 180°                                                  |                                |
| $\pi$ /2 radians                | = 90°                                                   |                                |
| Radius                          | = arc of 57.2957790°                                    |                                |
| Arc of $1^{\circ}$ (radius = 1) | = .017453292                                            |                                |
| Arc of 1'(radius = 1)           | = .000290888                                            |                                |
| Arc of 1' (radius = 1)          | = .000004848                                            |                                |
| Area of sector of circle        | = ½ Lr                                                  | (L= length of arc; r = radius) |
| Area of segment of parabola     | = 2/3 cm                                                | (c = chord; m = mid.<br>ord.)  |
| Area of segment of circle       | = approx 2/3                                            |                                |
| Arc – chord length              | = 0.02 foot per 11 <sup>1</sup> / <sub>2</sub><br>miles |                                |
| Curvature of earth's surface    | = approx. 0.667 foot per mile                           |                                |

# **APPENDIX II**

# **Hand Signals**

















Raise Hoist Slowly Hurry up and move out, double time, etc.











Raise Boom and Lower Load



Swing In Direction Finger Points







**Travel Both Tracks** 



Cut, Fill, or Drag Road Point to road to be dragged or bladed, then rub palms together. Applies to scrapers, motor graders, and bulldozers.



Raise a Little



Lower a Little



Dump Load Now Start dumping and spreading load to proper depth if given.



Rehaul or Retract



Crowd or Extend



# **APPENDIX III**

#### COMMON CONSTRUCTION SYMBOLOGY



| Motors or Other Equipment                                                                                                                                                                                                                                                                              | Application:                                                                                | Electrical Distribution or<br>Lighting Systems, Aerial |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                        |
| Push-button Stations in General                                                                                                                                                                                                                                                                        |                                                                                             | Pole                                                   |
|                                                                                                                                                                                                                                                                                                        | Unless indicated otherwise, the wire size of<br>the circuit is the minimum size required by | 0                                                      |
| Float Switch - Mechanical                                                                                                                                                                                                                                                                              | the specification.                                                                          | Pole with Streetlight                                  |
| F→                                                                                                                                                                                                                                                                                                     | functions of wiring system, such as                                                         |                                                        |
| Limit Switch - Mechanical                                                                                                                                                                                                                                                                              | signaling, by notation or other means.                                                      | θд                                                     |
| [L]→                                                                                                                                                                                                                                                                                                   | wiring fumed up                                                                             | Pole, with Down Guy and Anche                          |
| Pneumatic Switch - Mechanical                                                                                                                                                                                                                                                                          | o                                                                                           | 0.1                                                    |
| ₽→                                                                                                                                                                                                                                                                                                     | Wiring Turned Down                                                                          | 5                                                      |
| Electric Eve - Beam Source                                                                                                                                                                                                                                                                             | •                                                                                           | Transformer                                            |
| Electric Eye - Beam Source                                                                                                                                                                                                                                                                             |                                                                                             | Δ                                                      |
|                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                        |
| Electric Eye - Relay                                                                                                                                                                                                                                                                                   | Manhole                                                                                     | Transformer, Constant-Current                          |
| <b>N</b>                                                                                                                                                                                                                                                                                               |                                                                                             | 山                                                      |
| Thermostat                                                                                                                                                                                                                                                                                             | M                                                                                           | Puitab Manual                                          |
|                                                                                                                                                                                                                                                                                                        | Handhole                                                                                    | owitch, manual                                         |
| -0                                                                                                                                                                                                                                                                                                     |                                                                                             | <u> </u>                                               |
|                                                                                                                                                                                                                                                                                                        | н                                                                                           | Circuit Recloser, Automatic                            |
| Circuiting                                                                                                                                                                                                                                                                                             | Transformer Pad                                                                             | Пв                                                     |
| Wiring method identification by potation                                                                                                                                                                                                                                                               | TP                                                                                          |                                                        |
| on drawing or in specifications.                                                                                                                                                                                                                                                                       |                                                                                             | Circuit, Primary                                       |
| Wiring Concealed in Ceiling or Wall                                                                                                                                                                                                                                                                    | Underground Direct Burial Cable                                                             |                                                        |
| ·                                                                                                                                                                                                                                                                                                      | Indicate type, size, and number of                                                          |                                                        |
| Note: Use neavy weight line to identity<br>service and feed runs<br>Wiring Concealed in Floor                                                                                                                                                                                                          |                                                                                             | Circuit, Series Street Lighting                        |
|                                                                                                                                                                                                                                                                                                        | Underground Duct Line                                                                       |                                                        |
| Wiring Exposed                                                                                                                                                                                                                                                                                         | Indicate type, size, and number of ducts<br>by cross section identification of each         | Down Guy                                               |
|                                                                                                                                                                                                                                                                                                        | run by notation or schedule. Indicate<br>type, size, and number of conductors by            | Head Guy                                               |
|                                                                                                                                                                                                                                                                                                        |                                                                                             | Head Ody                                               |
| Branch Circuit Home Run to Panelboard                                                                                                                                                                                                                                                                  | notation or schedule.                                                                       | (22)                                                   |
| Branch Circuit Home Run to Panelboard                                                                                                                                                                                                                                                                  | notation or schedule.                                                                       | -                                                      |
| Branch Circuit Home Run to Panelboard<br>Number of arrows indicates number of<br>circuits. (A numeral at each arrow may be<br>used to identify circuit number.)                                                                                                                                        | notation or schedule.                                                                       | <br>Sidewalk Guy                                       |
| Branch Circuit Home Run to Panelboard<br>Number of arrows indicates number of<br>circuits. (A numeral at each arrow may be<br>used to identify circuit number.)<br>2 1                                                                                                                                 | notation or schedule.                                                                       | Sidewalk Guy                                           |
| Branch Circuit Home Run to Panelboard<br>Number of arrows indicates number of<br>circuits. (A numeral at each arrow may be<br>used to identify circuit number.)<br>2 1<br>NOTE: Any circuit without further                                                                                            | Notation or schedule.                                                                       | Sidewalk Guy<br>Service Weather Head                   |
| Branch Circuit Home Run to Panelboard<br>Number of arrows indicates number of<br>circuits. (A numeral at each arrow may be<br>used to identify circuit number.)<br>2<br>2<br>NOTE: Any circuit without further<br>identification indicates a 2-wire circuit.<br>For a greater number of wires indicate | notation or schedule.<br>————————————————————————————————————                               | Sidewalk Guy<br>Service Weather Head                   |







The following letter combinations or symbol elements may be used with relay symbols. The requisite number of these letters or symbol elements may be used to show what special features a relay AC Alternating-current or ringing relay Differential Double-biased (biased in both directions) Dashpot Electrically polarized Fast-operate Fast-release Latching MG Marginal Magnetic-latching (remanent) No bias Nonreactive Magnetically polarized using biasing spring, or having magnet bias Slow-operate and slowrelease Slow-operate Slow-release SW Sandwich-wound to improve balance to

The proper poling for a polarized relay shall be shown by the use of + and - designations applied to the winding leads. The interpretation of this shall be that a voltage applied with the polarity as indicated shall cause the armature to move toward the contact shown nearer the coil on the diagram. If the relay is equipped with numbered terminals, the proper terminal numbers shall alson be



0000

0000









3-phase wye (ungrounded)



3-phase wye (grounded)

3-phase delta



Alternating-Current Machines

Squirrel-cage induction motor or generator, split-phase induction motor or generator, rotary phase converter, or repulsion motor



Wound-rotor induction motor, synchronous induction motor, induction generator, or induction frequency converter



1-phase shaded-pole motor

1-phase repulsion-start induction motor





Alternating-Current Machines with Direct-Current Field Excitation

Synchronous motor, generator, or condenserv



Graphic Symbols for Mechanical Functions

Mechanical Connection Mechanical Interlock

Mechanical connection

The top symbol consists of shor dashees.

NOTE: The short parallel lines should be used only where there is insufficient space for the short dashes in series

OR

Mechanical Motion

Translation, one direction

---

Translation, both directions

Rotation, one direction

# 0

Application: angular motion, applied to open contact (make), symbol

NOTE: The asterisk is not part of the symbol. Explanatory information (similar to type shown) may be added if neccessary to explain circuit operation.



REV

Rotation, both directions

 $\mathbf{O}$ 

Alternating or reciprocating

Rotation designation (applied to a resistor)

CW indicates position of adjustable contact at the limit of clockwise travel viewed from knob or actuator end unless otherwise indicated.



NOTE: This symbol represents any method of rectification (electron tube, solid-state device, electrochemical device, etc).



Controlled

Bridge-type rectifier



On connection or wiring diagrams, rectifier may be shown with terminals and plarity marking. Heavy line may be used to indicate nameplate or positivepolarity end.



For connection or wiring diagram



| Description                                 | Example | Symbol      | Illustrated Use |
|---------------------------------------------|---------|-------------|-----------------|
| W- Shape (Wide Flange)                      | Æ       | w           | W24 x 78        |
| Bearing Pile                                | Æ       | BP          | BP14 x 73       |
| S-Shape (American STD I-Beam)               | E.      | s           | S15 x 42.9      |
| C-Shape (American STD Channel)              | 1<br>K  | с           | C9 x 13.4       |
| M-Shape (Misc Shapes Other Than             | _       | м           | M5 x 34.3       |
| W, BP, S, & C)                              |         |             | M5 x 17         |
|                                             |         |             | M7 x 5.5        |
| MC-Shape (Channels Other Than American STD) |         | MC          | MC12 x 45       |
|                                             |         | 2015-015-42 | MC 12 x 12.8    |
| Angles:                                     | 1       |             | 3x 3x           |
| Equal Leg                                   |         | L           | L 3x 3x 1/4     |
| Un-equal Leg                                | D       | L           | L 7x 4x 1/2     |
| Tees, Structural:                           |         | wт          | WT 12x38        |
| Cut From S-Shape                            | UV IV   | ST          | ST 12x38        |
| Cut From M-Shape                            |         | мт          | MT 12x38        |
| Plate                                       |         | PL          | PL 1/2x18"x30"  |
| Flat Bar                                    | _       | BAR         | BAR 2 1/2 x 1/4 |
| Pipe Structural                             |         |             | Pipe 4 STD      |
| i poj ostaoral ti                           | 0       |             | Pipe 4x-STRG    |
|                                             | 22      | ¥           | Pipe XX-STRG    |

|      | BASIC WELD SYMBOLS |                 |                |        |              |   |   |         |                |
|------|--------------------|-----------------|----------------|--------|--------------|---|---|---------|----------------|
|      |                    | PLUG            | GROOVE OR BUTT |        |              |   |   |         |                |
| BEAD | FILLET             | LLET OR<br>SLOT | SQUARE         | v      | BEVEL        | U | J | FLARE V | FLARE<br>BEVEL |
| Q    | $\square$          |                 | Π              | $\sim$ | $\checkmark$ | Y | Y | $\leq$  | $\leq$         |

| CONTOUR       |                         |                         | WELD-      |            |  |
|---------------|-------------------------|-------------------------|------------|------------|--|
| FLUSH         | CONVEX                  | CONCAVE                 | ALL-AROUND | FIELD WELD |  |
| $\overline{}$ | $\overline{\mathbf{x}}$ | $\overline{\mathbf{v}}$ |            |            |  |



| General Outlets       Junction Box, Ceiling       J         Fan, Ceiling       F         Recessed Incandescent, Wall       R         Surface Incandescent, Ceiling       R         Surface or Pendant Single       R         Fluorescent Fixture       R         Switch Outlets       S         Single-Pole Switch       S         Double-Pole Switch       S2         Three-Way Switch       S3         Four-Way Switch       S4         Key-Operated Switch       Sk         Door Switch       S2         Momentary Contact Switch       SMC         Weatherproof Switch       Swr         Fused Switch       SF         Circuit Breaker Switch       ScB | Receptacle Outlets<br>Single Receptacle<br>Duplex Receptacle<br>Split-Wired Duplex Recep.<br>Single Special Purpose Recep.<br>Duplex Special Purpose Recep.<br>Range Receptacle<br>Switch & Single Receptacle<br>Grounded Duplex Receptacle<br>Grounded Duplex Receptacle<br>GFCI<br>Auxiliary Systems<br>Telephone Jack<br>Meter<br>Vacuum Outlet<br>Electric Door Opener<br>Chime<br>Pushbutton (Doorbell)<br>Bell and Buzzer Combination<br>Kitchen Ventilating Fan<br>Lighting Panel<br>Power Panel<br>Television Outlet |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Plumbing                          |
|-----------------------------------|
| Corner Bath                       |
| Recessed Bath                     |
| Roll Rim Bath                     |
| Sitz Bath                         |
| Floor Bath                        |
|                                   |
| Shower Stall                      |
| Shower Head                       |
| Overhead Gang Shower              |
| Pedestal Lavatory                 |
| Wall Lavatory                     |
| Corner Lavatory                   |
| Medical Lavatory                  |
| Dental Lavatory                   |
| Plain Kitchen Sink 🗊              |
| Kitchen Sink, R & L Drain Board   |
| Kitchen Sink, L H Drain Board     |
| Combination Sink and Dishwasher   |
| Combination Sink & Laundry Tray   |
| Service Sink                      |
| Wash Sink (Wall Type)             |
| Wash Sink                         |
| Laundry Tray                      |
| Water Closet (Low Tank)           |
| Water Closet (No Tank)            |
| Urinal (Pedestal Type)            |
| Urinal (Wall Type)                |
| Urinal (Corner Type)              |
| Urinal (Stall Type)               |
| Urinal (Trough Type)              |
| Drinking Fountain (Pedestal Type) |
| Drinking Fountain (Wall Type)     |
| Drinking Fountain (Trough Type)   |
| Hot Water Tank                    |
| Water Heater                      |
| Meter                             |
| Hose Back                         |
| Hose Bibb                         |
| Gas Qutlet                        |
| Vacuum Outlet                     |
| Drain                             |
| Grease Separator                  |
| Oil Separator                     |
| Cleanout                          |
| Garage Drain                      |
| Floor Drain With Backwater Valve  |
| Roof Sump                         |
|                                   |

| 2                                                        |                                                           | LINE STANDARDS                                                                                                                                                                             |              |  |
|----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Name                                                     | Name Convention Description and Application               |                                                                                                                                                                                            | Example      |  |
| Center<br>Lines                                          |                                                           | Thin lines made up of long and short dashes<br>alternately spaced and consistent in length.<br>Used to indicate symmetry about an axis and<br>location of centers.                         | - <b>(</b>   |  |
| Visible<br>Lines                                         | Visible<br>Lines Used to indicate visible edges of an obj |                                                                                                                                                                                            | $\bigcirc [$ |  |
| Hidden<br>Lines                                          |                                                           | Medium lines with short evenly spaced dashes<br>Used to indicate concealed edges                                                                                                           |              |  |
| Extension<br>Lines                                       |                                                           | Thin unbroken lines<br>Used to indicate extent of dimensions                                                                                                                               | <b>←</b> →   |  |
| Dimension<br>Lines                                       | Ţ<br>↓                                                    | Thin lines terminated with arrow heads at each end<br>Used to indicate distance measured                                                                                                   |              |  |
| Leader                                                   | Ť                                                         | Thin line terminated with arrowhead or dot at<br>one end<br>Used to indicate a part, dimension or other<br>reference                                                                       | THD.         |  |
| Break<br>(Long)                                          |                                                           | Thin, solid ruled lines with freehand zigzags<br>Used to reduce size of drawing required to<br>delineate object and reduce detail                                                          |              |  |
| Break<br>(Short)                                         | $\sim$                                                    | Thick, solid free hand lines<br>Used to indicate a short break                                                                                                                             |              |  |
| Phantom or<br>Datum Line                                 |                                                           | Medium series of one long dash and two short<br>dases evenly spaced ending with long dash<br>Used to indicate alternate position of parts,<br>repeated detail or to indicate a datum plane | $\int$       |  |
| Stitch<br>Line                                           |                                                           | Medium line of short dases evenly spaced and<br>labeled<br>Used to indicate stitching or sewing                                                                                            | Stitch       |  |
| Cutting or<br>Viewing Plane<br>Viewing Plane<br>Optional |                                                           | Thick solid lines with arrowhead to indicate direction in which section or plane is viewed or taken                                                                                        | F. J         |  |
| Cutting Plane<br>for Complex<br>or Offset Views          |                                                           | Thick short dashes<br>Used to show offset with arrowheads to show<br>direction viewed                                                                                                      |              |  |

| Valves Barew                    | ad Sol | dered          |
|---------------------------------|--------|----------------|
| Gate Valve                      | + 3    | *              |
| Globe Valve                     | ≁ →    | +              |
| Angle Glove Valve               |        |                |
| Angle Gate Valve                |        |                |
| Check Valve                     | N      | <del>(</del> - |
| Angle Check Valve               | - 1    | F              |
| Stop Cock                       |        | 06-            |
| Safety Valve                    | >>     | RF-            |
| Quick Opening Valve             | 2      |                |
| Float Opening Valve             | 04     |                |
| Motor Operated Gate Valve ····· | -0-9   |                |

| Pipe Fittings                    | Screwed Soldered                       |
|----------------------------------|----------------------------------------|
| Joint                            | + +                                    |
| Elbow - 90                       | t+ +                                   |
| Elbow - 45                       | '× ×'                                  |
| Elbow - Turned Up                |                                        |
| Elbow - Turned Down              |                                        |
| Elbow Long Radius                |                                        |
| Side Outlet Elbow-               | 4-u<br>0+ +0                           |
| Outlet Down                      | ······································ |
| Side outlet Elbow -              |                                        |
| Outlet Up                        | 1 1                                    |
| Base Elbow                       | ······································ |
| Double Branch Elbow              | ······ **                              |
| Single Sweep Tee                 | <del>'</del>                           |
| Double Sweep Tee                 | + <del>++</del> +                      |
| Reducing Elbow                   |                                        |
| Tee                              |                                        |
| Tee - Outlet UP                  | +++<br>+0+ +0+                         |
| Tee - Outlet Down                | ······                                 |
| Side Outlet Tee -<br>Outlet Up   |                                        |
| Side Outlet Tee -<br>Outlet Down | ······ 🛉 📥                             |
| Cross                            |                                        |
| Reducer                          |                                        |
| Eccentric Reducer                | A A                                    |
| Lateral                          |                                        |
| Expansion Joint Flanged          |                                        |

| 55 |                              | Battery, Multicells                                              | F                         | Fire-Alarm Box,<br>Wall Type                       | S              | Single-Pole Switch                       |
|----|------------------------------|------------------------------------------------------------------|---------------------------|----------------------------------------------------|----------------|------------------------------------------|
|    | - <b>67</b> 5 <sup>10A</sup> | Switch Breaker                                                   |                           | Lighting Panel                                     | S <sub>2</sub> | Double-Pole Switch                       |
|    |                              | Automatic<br>Reset Breaker                                       |                           | Power Panel                                        | 3              | Pull Switch Ceiling                      |
|    | <del>_₩<u></u>₽₩</del>       | Bus                                                              | _                         | Branch Circuit,<br>Concealed In<br>Ceiling Or Wall | -(3)           | Pull Switch Wall                         |
|    | 9                            | Voltmeter                                                        | <u> </u>                  | Branch Circuit,<br>Concealed In Floor              | B              | Fixture, Fluorescent,<br>Ceiling         |
|    | 44                           | Toggle Switch DPST                                               |                           | Branch Circuit,<br>Exposed                         | -8             | Fixture, Fluorescent,<br>Wall            |
|    |                              | Transformer,<br>Magnetic Core                                    |                           | Feeders                                            | J              | Junction Box, Ceiling                    |
|    | D                            | Bell                                                             | ∎⊒≡                       | Underfloor Duct<br>And Junction Box                | -0             | Junction Box, Wall                       |
|    | Гас<br>П                     | Buzzer, AC                                                       | (1)                       | Motor                                              | Ŀ              | Lampholder, Ceiling                      |
|    | +                            | Crossing Not<br>Connected (Not<br>Necessarily At<br>A 90° Angle) | $\boxtimes$               | Controller                                         | -0             | Lampholder, Wall                         |
|    | -                            | Junction                                                         | Ø                         | Street Lighting<br>Standard                        |                | Lampholder, With Pull<br>Switch, Ceiling |
|    |                              | Transformer, Basic                                               | ۲                         | Outlet, Floor                                      |                | Lampholder, With Pull<br>Switch, Wall    |
|    | Ŧ                            | Ground                                                           | ₽                         | Convenience,<br>Duplex                             | $\bigcirc$     | Special Purpose                          |
|    | 0                            | Outlet, Ceiling                                                  | -(F)                      | Fan, Wall                                          |                | Telephone,<br>Switchboard                |
|    | -0                           | Outlet, Wall                                                     | <b>(</b>                  | Fan, Ceiling                                       | -0             | Thermostat                               |
|    |                              | Fuse                                                             | 4 <del>4</del> 4<br>4 4 4 | Knife Switch<br>Disconnected                       | ●              | Push Button                              |






| Architectural Symbols         |                                                            |                                                  |                                                            |  |  |  |  |
|-------------------------------|------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| Material                      | Elevation                                                  | Plan                                             | Section                                                    |  |  |  |  |
| Earth                         |                                                            |                                                  |                                                            |  |  |  |  |
| Brick                         | With note indicating type of brick<br>(common, face, ets.) | Common or Face<br>Firebrick                      | Same as Plan Views                                         |  |  |  |  |
| Concrete                      |                                                            | Lightweight<br>Structural                        | Same as Plan Views                                         |  |  |  |  |
| Concrete<br>Block             |                                                            |                                                  | Or (1000)                                                  |  |  |  |  |
| Stone                         | Cut Stone Rubble                                           | Cut Stone Rubble<br>Cast Stone (Concrete)        | Cut Stone<br>Cast Stone<br>(Concrete)                      |  |  |  |  |
| Wood                          | Siding Panel                                               | Wood Stud Display                                | Rough<br>Rembers<br>Members                                |  |  |  |  |
| Plaster                       |                                                            | Wood Stud, Lath,<br>and Plaster<br>Solid Plaster | Lath and<br>Plaster                                        |  |  |  |  |
| Roofing                       | Shingles                                                   | Same as Elevation View                           |                                                            |  |  |  |  |
| Glass                         | Or Glass Block                                             | Glass<br>Glass Block                             | Small Large<br>Scale Scale                                 |  |  |  |  |
| Facing<br>Tile                | Ceramic Tile                                               | Floor Tile                                       | Ceramic Tile Ceramic Tile<br>Large Scale Small Scale       |  |  |  |  |
| Structural<br>Clay Tile       |                                                            |                                                  | Same as Plan Views                                         |  |  |  |  |
| Insulation                    |                                                            | Loose Fill or Batts Rigid                        | Same as Plan Views                                         |  |  |  |  |
| Sheet Metal<br>Flashing       |                                                            | Occasionally<br>Indicated by Note                | - <u></u>                                                  |  |  |  |  |
| Metals Other<br>Than Flashing | Indicated by Note<br>or Drawn to Scale                     | Same as Elevation                                | Steel Cast Iron<br>Small Aluminum Bronze<br>Scale or Brass |  |  |  |  |
| Structural<br>Steel           | Indicated by Note<br>or Drawn to Scale                     | Or                                               | Linge Scale L-Angles, S-Beams, etc.                        |  |  |  |  |

|              |                             | 2           | Plot Plan    | Symbols        |                    |             |                          |
|--------------|-----------------------------|-------------|--------------|----------------|--------------------|-------------|--------------------------|
|              | North                       | •           | Fire Hydrant | —              | Walk               | — е —<br>Ог | Electric<br>Service      |
| •            | Point of<br>Beginning (POB) | $\boxtimes$ | Mailbox      |                | Improved Road      | G<br>       | Natural<br>Gas Line      |
| ▲            | Utility Meter<br>or Valve   | $\bigcirc$  | Manhole      |                | Unimproved<br>Road | — w—<br>Or  | Water Line               |
| •            | ) Power Pole<br>) and Guy   | $\odot$     | Tree         | 电              | Building<br>Line   | — т —<br>Ог | Telephone                |
| X            | Light Standard              | 0           | Bush         | Ł              | Property<br>Line   |             | Line<br>Natural<br>Grade |
| $\mathbf{O}$ | Traffic Signal              | E           | Hedge Row    | 19 <del></del> | Property<br>Line   | s <u></u>   | Finish<br>Grade          |
|              | Street Sign                 |             | - Fence      |                | Township<br>Line   | + XX.00'    | Existing<br>Elevation    |



| Contours                | 21-21-                                  |
|-------------------------|-----------------------------------------|
| Depression Contour      | C                                       |
| Stream                  |                                         |
| Boundary or Right-of-Wa | y Line                                  |
| Paved Road              |                                         |
| Unpaved or Gravel Road  | ::::::::::::::::::::::::::::::::::::::: |
| Trail                   |                                         |
| Walk                    | Туре                                    |
| Railroad                | +++++++++++++++++++++++++++++++++++++++ |
| Abandoned Railroad      | ++++++ ++++++                           |
| Tunnel                  | $\rightarrow \cdots \prec$              |
| Bridge                  | $\leq$                                  |
| Box Culvert             | t Isizē I                               |
| Pipe Culvert            |                                         |
| Dams                    |                                         |
| Retaining Wall          | (/') '))                                |
| Bulkhead                |                                         |
| Pier                    | Type                                    |
| Fence                   | ××                                      |
| Hedge                   | www                                     |
| Canal or Ditch          | Canal                                   |
| Marsh                   |                                         |
| Woods                   | ٢                                       |
| Individual Trees        | (C3)                                    |
| Shoreline               |                                         |
| Depth Curve             | 8                                       |
|                         |                                         |



| (Above Grade)         |             |   |
|-----------------------|-------------|---|
| (Below Grade)         |             |   |
| Vent                  |             | - |
| Cold Water            | <u> </u>    |   |
| Hot Water             |             |   |
| Hot-Water Return      |             |   |
| Drinking Water        |             |   |
| Drinking Water Return |             | _ |
| Acid Waste            | ACID        |   |
| Compressed Air        | — A — — A - |   |
| Fire Line             | F F -       | _ |
| Gas Line              | G G -       |   |
| Tile Pipe             | — т — т -   |   |
| Vacuum                | — v —       |   |





| - <b>#</b> | Battery, Nutficells                                              | Ū   | Fire-Alarm Box,<br>Wali Type                       | s  | Single-Pole Switch                       |
|------------|------------------------------------------------------------------|-----|----------------------------------------------------|----|------------------------------------------|
|            | Switch Breaker                                                   |     | Lighting Panel                                     | Sz | Double-Pole Switch                       |
| <b>~</b> ~ | Automatic<br>Reset Breaker                                       | -   | Power Panel                                        | Ø  | Pull Switch Ceiling                      |
| ₩₩         | Bus                                                              | _   | Branch Circuit,<br>Concealed In<br>Ceiling Or Wall | -0 | Pull Switch Wall                         |
| ۲          | Voltmeter                                                        |     | Branch Circuit,<br>Concealed in Floor              | 8  | Fixture, Fluorescent,<br>Ceiling         |
| 2          | Toggle Switch DPST                                               |     | Branch Circuit,<br>Exposed                         | -8 | Fixture, Fluorescent,<br>Wall            |
| JC         | Transformer,<br>Nagnetic Core                                    | —   | Feedors                                            | Ø  | Junction Box, Ceiling                    |
| в          | Bell                                                             | ∎⊡≡ | Underfloor Duct<br>And Junction Box                | -0 | Junction Box, Wall                       |
| f          | Buzzer, AC                                                       | Θ   | Notor                                              | O  | Lampholder, Ceiling                      |
| +          | Crossing Not<br>Connected (Not<br>Necessarily At<br>A 90° Angle) |     | Controller                                         | -0 | Lampholder, Wall                         |
| +          | Junction                                                         | ×   | Street Lighting<br>Standard                        | Q  | Lampholder, With Pull<br>Switch, Celling |
| שכ         | Transformer, Basic                                               | ۲   | Outlet, Floor                                      | Q  | Lampholder, With Pull<br>Switch, Wall    |
| +          | Ground                                                           | ⇒   | Convenience,<br>Duplex                             | Ø  | Special Purpose                          |
| 0          | Outlet, Ceiling                                                  | -0  | Fan, Wall                                          | M  | Telephone,<br>Switchboard                |
| -0         | Outlet, Wall                                                     | o   | Fan, Ceiling                                       | -0 | Thermostat                               |
|            | Fuse                                                             |     | Knife Switch<br>Disconnected                       |    | Push Button                              |

